Add basic exception frame header, plus test.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL)
71 {
72   // Make space for more than enough segments for a typical file.
73   // This is just for efficiency--it's OK if we wind up needing more.
74   this->segment_list_.reserve(12);
75
76   // We expect three unattached Output_data objects: the file header,
77   // the segment headers, and the section headers.
78   this->special_output_list_.reserve(3);
79 }
80
81 // Hash a key we use to look up an output section mapping.
82
83 size_t
84 Layout::Hash_key::operator()(const Layout::Key& k) const
85 {
86  return k.first + k.second.first + k.second.second;
87 }
88
89 // Whether to include this section in the link.
90
91 template<int size, bool big_endian>
92 bool
93 Layout::include_section(Object*, const char*,
94                         const elfcpp::Shdr<size, big_endian>& shdr)
95 {
96   // Some section types are never linked.  Some are only linked when
97   // doing a relocateable link.
98   switch (shdr.get_sh_type())
99     {
100     case elfcpp::SHT_NULL:
101     case elfcpp::SHT_SYMTAB:
102     case elfcpp::SHT_DYNSYM:
103     case elfcpp::SHT_STRTAB:
104     case elfcpp::SHT_HASH:
105     case elfcpp::SHT_DYNAMIC:
106     case elfcpp::SHT_SYMTAB_SHNDX:
107       return false;
108
109     case elfcpp::SHT_RELA:
110     case elfcpp::SHT_REL:
111     case elfcpp::SHT_GROUP:
112       return parameters->output_is_object();
113
114     default:
115       // FIXME: Handle stripping debug sections here.
116       return true;
117     }
118 }
119
120 // Return an output section named NAME, or NULL if there is none.
121
122 Output_section*
123 Layout::find_output_section(const char* name) const
124 {
125   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
126        p != this->section_name_map_.end();
127        ++p)
128     if (strcmp(p->second->name(), name) == 0)
129       return p->second;
130   return NULL;
131 }
132
133 // Return an output segment of type TYPE, with segment flags SET set
134 // and segment flags CLEAR clear.  Return NULL if there is none.
135
136 Output_segment*
137 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
138                             elfcpp::Elf_Word clear) const
139 {
140   for (Segment_list::const_iterator p = this->segment_list_.begin();
141        p != this->segment_list_.end();
142        ++p)
143     if (static_cast<elfcpp::PT>((*p)->type()) == type
144         && ((*p)->flags() & set) == set
145         && ((*p)->flags() & clear) == 0)
146       return *p;
147   return NULL;
148 }
149
150 // Return the output section to use for section NAME with type TYPE
151 // and section flags FLAGS.
152
153 Output_section*
154 Layout::get_output_section(const char* name, Stringpool::Key name_key,
155                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
156 {
157   // We should ignore some flags.
158   flags &= ~ (elfcpp::SHF_INFO_LINK
159               | elfcpp::SHF_LINK_ORDER
160               | elfcpp::SHF_GROUP
161               | elfcpp::SHF_MERGE
162               | elfcpp::SHF_STRINGS);
163
164   const Key key(name_key, std::make_pair(type, flags));
165   const std::pair<Key, Output_section*> v(key, NULL);
166   std::pair<Section_name_map::iterator, bool> ins(
167     this->section_name_map_.insert(v));
168
169   if (!ins.second)
170     return ins.first->second;
171   else
172     {
173       // This is the first time we've seen this name/type/flags
174       // combination.
175       Output_section* os = this->make_output_section(name, type, flags);
176       ins.first->second = os;
177       return os;
178     }
179 }
180
181 // Return the output section to use for input section SHNDX, with name
182 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
183 // offset of this input section without the output section.
184
185 template<int size, bool big_endian>
186 Output_section*
187 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
188                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
189 {
190   if (!this->include_section(object, name, shdr))
191     return NULL;
192
193   // If we are not doing a relocateable link, choose the name to use
194   // for the output section.
195   size_t len = strlen(name);
196   if (!parameters->output_is_object())
197     name = Layout::output_section_name(name, &len);
198
199   // FIXME: Handle SHF_OS_NONCONFORMING here.
200
201   // Canonicalize the section name.
202   Stringpool::Key name_key;
203   name = this->namepool_.add(name, len, &name_key);
204
205   // Find the output section.  The output section is selected based on
206   // the section name, type, and flags.
207   Output_section* os = this->get_output_section(name, name_key,
208                                                 shdr.get_sh_type(),
209                                                 shdr.get_sh_flags());
210
211   // Special GNU handling of sections named .eh_frame.
212   if (!parameters->output_is_object()
213       && strcmp(name, ".eh_frame") == 0
214       && shdr.get_sh_size() > 0
215       && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
216       && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
217     {
218       this->layout_eh_frame(object, shndx, name, shdr, os, off);
219       return os;
220     }
221
222   // FIXME: Handle SHF_LINK_ORDER somewhere.
223
224   *off = os->add_input_section(object, shndx, name, shdr);
225
226   return os;
227 }
228
229 // Special GNU handling of sections named .eh_frame.  They will
230 // normally hold exception frame data.
231
232 template<int size, bool big_endian>
233 void
234 Layout::layout_eh_frame(Relobj* object,
235                         unsigned int shndx,
236                         const char* name,
237                         const elfcpp::Shdr<size, big_endian>& shdr,
238                         Output_section* os, off_t* off)
239 {
240   if (this->eh_frame_section_ == NULL)
241     {
242       this->eh_frame_section_ = os;
243
244       if (this->options_.create_eh_frame_hdr())
245         {
246           Stringpool::Key hdr_name_key;
247           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
248                                                      &hdr_name_key);
249           Output_section* hdr_os =
250             this->get_output_section(hdr_name, hdr_name_key,
251                                      elfcpp::SHT_PROGBITS,
252                                      elfcpp::SHF_ALLOC);
253
254           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(object->target(), os);
255           hdr_os->add_output_section_data(hdr_posd);
256
257           Output_segment* hdr_oseg =
258             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
259           this->segment_list_.push_back(hdr_oseg);
260           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
261         }
262     }
263
264   gold_assert(this->eh_frame_section_ == os);
265
266   *off = os->add_input_section(object, shndx, name, shdr);
267 }
268
269 // Add POSD to an output section using NAME, TYPE, and FLAGS.
270
271 void
272 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
273                                 elfcpp::Elf_Xword flags,
274                                 Output_section_data* posd)
275 {
276   // Canonicalize the name.
277   Stringpool::Key name_key;
278   name = this->namepool_.add(name, &name_key);
279
280   Output_section* os = this->get_output_section(name, name_key, type, flags);
281   os->add_output_section_data(posd);
282 }
283
284 // Map section flags to segment flags.
285
286 elfcpp::Elf_Word
287 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
288 {
289   elfcpp::Elf_Word ret = elfcpp::PF_R;
290   if ((flags & elfcpp::SHF_WRITE) != 0)
291     ret |= elfcpp::PF_W;
292   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
293     ret |= elfcpp::PF_X;
294   return ret;
295 }
296
297 // Make a new Output_section, and attach it to segments as
298 // appropriate.
299
300 Output_section*
301 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
302                             elfcpp::Elf_Xword flags)
303 {
304   Output_section* os = new Output_section(name, type, flags);
305   this->section_list_.push_back(os);
306
307   if ((flags & elfcpp::SHF_ALLOC) == 0)
308     this->unattached_section_list_.push_back(os);
309   else
310     {
311       // This output section goes into a PT_LOAD segment.
312
313       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
314
315       // The only thing we really care about for PT_LOAD segments is
316       // whether or not they are writable, so that is how we search
317       // for them.  People who need segments sorted on some other
318       // basis will have to wait until we implement a mechanism for
319       // them to describe the segments they want.
320
321       Segment_list::const_iterator p;
322       for (p = this->segment_list_.begin();
323            p != this->segment_list_.end();
324            ++p)
325         {
326           if ((*p)->type() == elfcpp::PT_LOAD
327               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
328             {
329               (*p)->add_output_section(os, seg_flags);
330               break;
331             }
332         }
333
334       if (p == this->segment_list_.end())
335         {
336           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
337                                                     seg_flags);
338           this->segment_list_.push_back(oseg);
339           oseg->add_output_section(os, seg_flags);
340         }
341
342       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
343       // segment.
344       if (type == elfcpp::SHT_NOTE)
345         {
346           // See if we already have an equivalent PT_NOTE segment.
347           for (p = this->segment_list_.begin();
348                p != segment_list_.end();
349                ++p)
350             {
351               if ((*p)->type() == elfcpp::PT_NOTE
352                   && (((*p)->flags() & elfcpp::PF_W)
353                       == (seg_flags & elfcpp::PF_W)))
354                 {
355                   (*p)->add_output_section(os, seg_flags);
356                   break;
357                 }
358             }
359
360           if (p == this->segment_list_.end())
361             {
362               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
363                                                         seg_flags);
364               this->segment_list_.push_back(oseg);
365               oseg->add_output_section(os, seg_flags);
366             }
367         }
368
369       // If we see a loadable SHF_TLS section, we create a PT_TLS
370       // segment.  There can only be one such segment.
371       if ((flags & elfcpp::SHF_TLS) != 0)
372         {
373           if (this->tls_segment_ == NULL)
374             {
375               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
376                                                       seg_flags);
377               this->segment_list_.push_back(this->tls_segment_);
378             }
379           this->tls_segment_->add_output_section(os, seg_flags);
380         }
381     }
382
383   return os;
384 }
385
386 // Create the dynamic sections which are needed before we read the
387 // relocs.
388
389 void
390 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
391                                         Symbol_table* symtab)
392 {
393   if (!input_objects->any_dynamic())
394     return;
395
396   const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
397   this->dynamic_section_ = this->make_output_section(dynamic_name,
398                                                      elfcpp::SHT_DYNAMIC,
399                                                      (elfcpp::SHF_ALLOC
400                                                       | elfcpp::SHF_WRITE));
401
402   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
403                                 this->dynamic_section_, 0, 0,
404                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
405                                 elfcpp::STV_HIDDEN, 0, false, false);
406
407   this->dynamic_data_ =  new Output_data_dynamic(input_objects->target(),
408                                                  &this->dynpool_);
409
410   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
411 }
412
413 // For each output section whose name can be represented as C symbol,
414 // define __start and __stop symbols for the section.  This is a GNU
415 // extension.
416
417 void
418 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
419 {
420   for (Section_list::const_iterator p = this->section_list_.begin();
421        p != this->section_list_.end();
422        ++p)
423     {
424       const char* const name = (*p)->name();
425       if (name[strspn(name,
426                       ("0123456789"
427                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
428                        "abcdefghijklmnopqrstuvwxyz"
429                        "_"))]
430           == '\0')
431         {
432           const std::string name_string(name);
433           const std::string start_name("__start_" + name_string);
434           const std::string stop_name("__stop_" + name_string);
435
436           symtab->define_in_output_data(target,
437                                         start_name.c_str(),
438                                         NULL, // version
439                                         *p,
440                                         0, // value
441                                         0, // symsize
442                                         elfcpp::STT_NOTYPE,
443                                         elfcpp::STB_GLOBAL,
444                                         elfcpp::STV_DEFAULT,
445                                         0, // nonvis
446                                         false, // offset_is_from_end
447                                         false); // only_if_ref
448
449           symtab->define_in_output_data(target,
450                                         stop_name.c_str(),
451                                         NULL, // version
452                                         *p,
453                                         0, // value
454                                         0, // symsize
455                                         elfcpp::STT_NOTYPE,
456                                         elfcpp::STB_GLOBAL,
457                                         elfcpp::STV_DEFAULT,
458                                         0, // nonvis
459                                         true, // offset_is_from_end
460                                         false); // only_if_ref
461         }
462     }
463 }
464
465 // Find the first read-only PT_LOAD segment, creating one if
466 // necessary.
467
468 Output_segment*
469 Layout::find_first_load_seg()
470 {
471   for (Segment_list::const_iterator p = this->segment_list_.begin();
472        p != this->segment_list_.end();
473        ++p)
474     {
475       if ((*p)->type() == elfcpp::PT_LOAD
476           && ((*p)->flags() & elfcpp::PF_R) != 0
477           && ((*p)->flags() & elfcpp::PF_W) == 0)
478         return *p;
479     }
480
481   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
482   this->segment_list_.push_back(load_seg);
483   return load_seg;
484 }
485
486 // Finalize the layout.  When this is called, we have created all the
487 // output sections and all the output segments which are based on
488 // input sections.  We have several things to do, and we have to do
489 // them in the right order, so that we get the right results correctly
490 // and efficiently.
491
492 // 1) Finalize the list of output segments and create the segment
493 // table header.
494
495 // 2) Finalize the dynamic symbol table and associated sections.
496
497 // 3) Determine the final file offset of all the output segments.
498
499 // 4) Determine the final file offset of all the SHF_ALLOC output
500 // sections.
501
502 // 5) Create the symbol table sections and the section name table
503 // section.
504
505 // 6) Finalize the symbol table: set symbol values to their final
506 // value and make a final determination of which symbols are going
507 // into the output symbol table.
508
509 // 7) Create the section table header.
510
511 // 8) Determine the final file offset of all the output sections which
512 // are not SHF_ALLOC, including the section table header.
513
514 // 9) Finalize the ELF file header.
515
516 // This function returns the size of the output file.
517
518 off_t
519 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
520 {
521   Target* const target = input_objects->target();
522   const int size = target->get_size();
523
524   target->finalize_sections(this);
525
526   Output_segment* phdr_seg = NULL;
527   if (input_objects->any_dynamic())
528     {
529       // There was a dynamic object in the link.  We need to create
530       // some information for the dynamic linker.
531
532       // Create the PT_PHDR segment which will hold the program
533       // headers.
534       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
535       this->segment_list_.push_back(phdr_seg);
536
537       // Create the dynamic symbol table, including the hash table.
538       Output_section* dynstr;
539       std::vector<Symbol*> dynamic_symbols;
540       unsigned int local_dynamic_count;
541       Versions versions;
542       this->create_dynamic_symtab(target, symtab, &dynstr,
543                                   &local_dynamic_count, &dynamic_symbols,
544                                   &versions);
545
546       // Create the .interp section to hold the name of the
547       // interpreter, and put it in a PT_INTERP segment.
548       this->create_interp(target);
549
550       // Finish the .dynamic section to hold the dynamic data, and put
551       // it in a PT_DYNAMIC segment.
552       this->finish_dynamic_section(input_objects, symtab);
553
554       // We should have added everything we need to the dynamic string
555       // table.
556       this->dynpool_.set_string_offsets();
557
558       // Create the version sections.  We can't do this until the
559       // dynamic string table is complete.
560       this->create_version_sections(target, &versions, local_dynamic_count,
561                                     dynamic_symbols, dynstr);
562     }
563
564   // FIXME: Handle PT_GNU_STACK.
565
566   Output_segment* load_seg = this->find_first_load_seg();
567
568   // Lay out the segment headers.
569   bool big_endian = target->is_big_endian();
570   Output_segment_headers* segment_headers;
571   segment_headers = new Output_segment_headers(size, big_endian,
572                                                this->segment_list_);
573   load_seg->add_initial_output_data(segment_headers);
574   this->special_output_list_.push_back(segment_headers);
575   if (phdr_seg != NULL)
576     phdr_seg->add_initial_output_data(segment_headers);
577
578   // Lay out the file header.
579   Output_file_header* file_header;
580   file_header = new Output_file_header(size,
581                                        big_endian,
582                                        target,
583                                        symtab,
584                                        segment_headers);
585   load_seg->add_initial_output_data(file_header);
586   this->special_output_list_.push_back(file_header);
587
588   // We set the output section indexes in set_segment_offsets and
589   // set_section_offsets.
590   unsigned int shndx = 1;
591
592   // Set the file offsets of all the segments, and all the sections
593   // they contain.
594   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
595
596   // Create the symbol table sections.
597   this->create_symtab_sections(size, input_objects, symtab, &off);
598
599   // Create the .shstrtab section.
600   Output_section* shstrtab_section = this->create_shstrtab();
601
602   // Set the file offsets of all the sections not associated with
603   // segments.
604   off = this->set_section_offsets(off, &shndx);
605
606   // Create the section table header.
607   Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
608
609   file_header->set_section_info(oshdrs, shstrtab_section);
610
611   // Now we know exactly where everything goes in the output file.
612   Output_data::layout_complete();
613
614   return off;
615 }
616
617 // Return whether SEG1 should be before SEG2 in the output file.  This
618 // is based entirely on the segment type and flags.  When this is
619 // called the segment addresses has normally not yet been set.
620
621 bool
622 Layout::segment_precedes(const Output_segment* seg1,
623                          const Output_segment* seg2)
624 {
625   elfcpp::Elf_Word type1 = seg1->type();
626   elfcpp::Elf_Word type2 = seg2->type();
627
628   // The single PT_PHDR segment is required to precede any loadable
629   // segment.  We simply make it always first.
630   if (type1 == elfcpp::PT_PHDR)
631     {
632       gold_assert(type2 != elfcpp::PT_PHDR);
633       return true;
634     }
635   if (type2 == elfcpp::PT_PHDR)
636     return false;
637
638   // The single PT_INTERP segment is required to precede any loadable
639   // segment.  We simply make it always second.
640   if (type1 == elfcpp::PT_INTERP)
641     {
642       gold_assert(type2 != elfcpp::PT_INTERP);
643       return true;
644     }
645   if (type2 == elfcpp::PT_INTERP)
646     return false;
647
648   // We then put PT_LOAD segments before any other segments.
649   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
650     return true;
651   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
652     return false;
653
654   // We put the PT_TLS segment last, because that is where the dynamic
655   // linker expects to find it (this is just for efficiency; other
656   // positions would also work correctly).
657   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
658     return false;
659   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
660     return true;
661
662   const elfcpp::Elf_Word flags1 = seg1->flags();
663   const elfcpp::Elf_Word flags2 = seg2->flags();
664
665   // The order of non-PT_LOAD segments is unimportant.  We simply sort
666   // by the numeric segment type and flags values.  There should not
667   // be more than one segment with the same type and flags.
668   if (type1 != elfcpp::PT_LOAD)
669     {
670       if (type1 != type2)
671         return type1 < type2;
672       gold_assert(flags1 != flags2);
673       return flags1 < flags2;
674     }
675
676   // We sort PT_LOAD segments based on the flags.  Readonly segments
677   // come before writable segments.  Then executable segments come
678   // before non-executable segments.  Then the unlikely case of a
679   // non-readable segment comes before the normal case of a readable
680   // segment.  If there are multiple segments with the same type and
681   // flags, we require that the address be set, and we sort by
682   // virtual address and then physical address.
683   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
684     return (flags1 & elfcpp::PF_W) == 0;
685   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
686     return (flags1 & elfcpp::PF_X) != 0;
687   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
688     return (flags1 & elfcpp::PF_R) == 0;
689
690   uint64_t vaddr1 = seg1->vaddr();
691   uint64_t vaddr2 = seg2->vaddr();
692   if (vaddr1 != vaddr2)
693     return vaddr1 < vaddr2;
694
695   uint64_t paddr1 = seg1->paddr();
696   uint64_t paddr2 = seg2->paddr();
697   gold_assert(paddr1 != paddr2);
698   return paddr1 < paddr2;
699 }
700
701 // Set the file offsets of all the segments, and all the sections they
702 // contain.  They have all been created.  LOAD_SEG must be be laid out
703 // first.  Return the offset of the data to follow.
704
705 off_t
706 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
707                             unsigned int *pshndx)
708 {
709   // Sort them into the final order.
710   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
711             Layout::Compare_segments());
712
713   // Find the PT_LOAD segments, and set their addresses and offsets
714   // and their section's addresses and offsets.
715   uint64_t addr = target->text_segment_address();
716   off_t off = 0;
717   bool was_readonly = false;
718   for (Segment_list::iterator p = this->segment_list_.begin();
719        p != this->segment_list_.end();
720        ++p)
721     {
722       if ((*p)->type() == elfcpp::PT_LOAD)
723         {
724           if (load_seg != NULL && load_seg != *p)
725             gold_unreachable();
726           load_seg = NULL;
727
728           // If the last segment was readonly, and this one is not,
729           // then skip the address forward one page, maintaining the
730           // same position within the page.  This lets us store both
731           // segments overlapping on a single page in the file, but
732           // the loader will put them on different pages in memory.
733
734           uint64_t orig_addr = addr;
735           uint64_t orig_off = off;
736
737           uint64_t aligned_addr = addr;
738           uint64_t abi_pagesize = target->abi_pagesize();
739
740           // FIXME: This should depend on the -n and -N options.
741           (*p)->set_minimum_addralign(target->common_pagesize());
742
743           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
744             {
745               uint64_t align = (*p)->addralign();
746
747               addr = align_address(addr, align);
748               aligned_addr = addr;
749               if ((addr & (abi_pagesize - 1)) != 0)
750                 addr = addr + abi_pagesize;
751             }
752
753           unsigned int shndx_hold = *pshndx;
754           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
755           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
756
757           // Now that we know the size of this segment, we may be able
758           // to save a page in memory, at the cost of wasting some
759           // file space, by instead aligning to the start of a new
760           // page.  Here we use the real machine page size rather than
761           // the ABI mandated page size.
762
763           if (aligned_addr != addr)
764             {
765               uint64_t common_pagesize = target->common_pagesize();
766               uint64_t first_off = (common_pagesize
767                                     - (aligned_addr
768                                        & (common_pagesize - 1)));
769               uint64_t last_off = new_addr & (common_pagesize - 1);
770               if (first_off > 0
771                   && last_off > 0
772                   && ((aligned_addr & ~ (common_pagesize - 1))
773                       != (new_addr & ~ (common_pagesize - 1)))
774                   && first_off + last_off <= common_pagesize)
775                 {
776                   *pshndx = shndx_hold;
777                   addr = align_address(aligned_addr, common_pagesize);
778                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
779                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
780                 }
781             }
782
783           addr = new_addr;
784
785           if (((*p)->flags() & elfcpp::PF_W) == 0)
786             was_readonly = true;
787         }
788     }
789
790   // Handle the non-PT_LOAD segments, setting their offsets from their
791   // section's offsets.
792   for (Segment_list::iterator p = this->segment_list_.begin();
793        p != this->segment_list_.end();
794        ++p)
795     {
796       if ((*p)->type() != elfcpp::PT_LOAD)
797         (*p)->set_offset();
798     }
799
800   return off;
801 }
802
803 // Set the file offset of all the sections not associated with a
804 // segment.
805
806 off_t
807 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
808 {
809   for (Section_list::iterator p = this->unattached_section_list_.begin();
810        p != this->unattached_section_list_.end();
811        ++p)
812     {
813       (*p)->set_out_shndx(*pshndx);
814       ++*pshndx;
815       if ((*p)->offset() != -1)
816         continue;
817       off = align_address(off, (*p)->addralign());
818       (*p)->set_address(0, off);
819       off += (*p)->data_size();
820     }
821   return off;
822 }
823
824 // Create the symbol table sections.  Here we also set the final
825 // values of the symbols.  At this point all the loadable sections are
826 // fully laid out.
827
828 void
829 Layout::create_symtab_sections(int size, const Input_objects* input_objects,
830                                Symbol_table* symtab,
831                                off_t* poff)
832 {
833   int symsize;
834   unsigned int align;
835   if (size == 32)
836     {
837       symsize = elfcpp::Elf_sizes<32>::sym_size;
838       align = 4;
839     }
840   else if (size == 64)
841     {
842       symsize = elfcpp::Elf_sizes<64>::sym_size;
843       align = 8;
844     }
845   else
846     gold_unreachable();
847
848   off_t off = *poff;
849   off = align_address(off, align);
850   off_t startoff = off;
851
852   // Save space for the dummy symbol at the start of the section.  We
853   // never bother to write this out--it will just be left as zero.
854   off += symsize;
855   unsigned int local_symbol_index = 1;
856
857   // Add STT_SECTION symbols for each Output section which needs one.
858   for (Section_list::iterator p = this->section_list_.begin();
859        p != this->section_list_.end();
860        ++p)
861     {
862       if (!(*p)->needs_symtab_index())
863         (*p)->set_symtab_index(-1U);
864       else
865         {
866           (*p)->set_symtab_index(local_symbol_index);
867           ++local_symbol_index;
868           off += symsize;
869         }
870     }
871
872   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
873        p != input_objects->relobj_end();
874        ++p)
875     {
876       Task_lock_obj<Object> tlo(**p);
877       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
878                                                         off,
879                                                         &this->sympool_);
880       off += (index - local_symbol_index) * symsize;
881       local_symbol_index = index;
882     }
883
884   unsigned int local_symcount = local_symbol_index;
885   gold_assert(local_symcount * symsize == off - startoff);
886
887   off_t dynoff;
888   size_t dyn_global_index;
889   size_t dyncount;
890   if (this->dynsym_section_ == NULL)
891     {
892       dynoff = 0;
893       dyn_global_index = 0;
894       dyncount = 0;
895     }
896   else
897     {
898       dyn_global_index = this->dynsym_section_->info();
899       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
900       dynoff = this->dynsym_section_->offset() + locsize;
901       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
902       gold_assert(dyncount * symsize
903                   == this->dynsym_section_->data_size() - locsize);
904     }
905
906   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
907                          dyncount, &this->sympool_);
908
909   this->sympool_.set_string_offsets();
910
911   const char* symtab_name = this->namepool_.add(".symtab", NULL);
912   Output_section* osymtab = this->make_output_section(symtab_name,
913                                                       elfcpp::SHT_SYMTAB,
914                                                       0);
915   this->symtab_section_ = osymtab;
916
917   Output_section_data* pos = new Output_data_space(off - startoff,
918                                                    align);
919   osymtab->add_output_section_data(pos);
920
921   const char* strtab_name = this->namepool_.add(".strtab", NULL);
922   Output_section* ostrtab = this->make_output_section(strtab_name,
923                                                       elfcpp::SHT_STRTAB,
924                                                       0);
925
926   Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
927   ostrtab->add_output_section_data(pstr);
928
929   osymtab->set_address(0, startoff);
930   osymtab->set_link_section(ostrtab);
931   osymtab->set_info(local_symcount);
932   osymtab->set_entsize(symsize);
933
934   *poff = off;
935 }
936
937 // Create the .shstrtab section, which holds the names of the
938 // sections.  At the time this is called, we have created all the
939 // output sections except .shstrtab itself.
940
941 Output_section*
942 Layout::create_shstrtab()
943 {
944   // FIXME: We don't need to create a .shstrtab section if we are
945   // stripping everything.
946
947   const char* name = this->namepool_.add(".shstrtab", NULL);
948
949   this->namepool_.set_string_offsets();
950
951   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
952
953   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
954   os->add_output_section_data(posd);
955
956   return os;
957 }
958
959 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
960 // offset.
961
962 Output_section_headers*
963 Layout::create_shdrs(int size, bool big_endian, off_t* poff)
964 {
965   Output_section_headers* oshdrs;
966   oshdrs = new Output_section_headers(size, big_endian, this,
967                                       &this->segment_list_,
968                                       &this->unattached_section_list_,
969                                       &this->namepool_);
970   off_t off = align_address(*poff, oshdrs->addralign());
971   oshdrs->set_address(0, off);
972   off += oshdrs->data_size();
973   *poff = off;
974   this->special_output_list_.push_back(oshdrs);
975   return oshdrs;
976 }
977
978 // Create the dynamic symbol table.
979
980 void
981 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
982                               Output_section **pdynstr,
983                               unsigned int* plocal_dynamic_count,
984                               std::vector<Symbol*>* pdynamic_symbols,
985                               Versions* pversions)
986 {
987   // Count all the symbols in the dynamic symbol table, and set the
988   // dynamic symbol indexes.
989
990   // Skip symbol 0, which is always all zeroes.
991   unsigned int index = 1;
992
993   // Add STT_SECTION symbols for each Output section which needs one.
994   for (Section_list::iterator p = this->section_list_.begin();
995        p != this->section_list_.end();
996        ++p)
997     {
998       if (!(*p)->needs_dynsym_index())
999         (*p)->set_dynsym_index(-1U);
1000       else
1001         {
1002           (*p)->set_dynsym_index(index);
1003           ++index;
1004         }
1005     }
1006
1007   // FIXME: Some targets apparently require local symbols in the
1008   // dynamic symbol table.  Here is where we will have to count them,
1009   // and set the dynamic symbol indexes, and add the names to
1010   // this->dynpool_.
1011
1012   unsigned int local_symcount = index;
1013   *plocal_dynamic_count = local_symcount;
1014
1015   // FIXME: We have to tell set_dynsym_indexes whether the
1016   // -E/--export-dynamic option was used.
1017   index = symtab->set_dynsym_indexes(&this->options_, target, index,
1018                                      pdynamic_symbols, &this->dynpool_,
1019                                      pversions);
1020
1021   int symsize;
1022   unsigned int align;
1023   const int size = target->get_size();
1024   if (size == 32)
1025     {
1026       symsize = elfcpp::Elf_sizes<32>::sym_size;
1027       align = 4;
1028     }
1029   else if (size == 64)
1030     {
1031       symsize = elfcpp::Elf_sizes<64>::sym_size;
1032       align = 8;
1033     }
1034   else
1035     gold_unreachable();
1036
1037   // Create the dynamic symbol table section.
1038
1039   const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
1040   Output_section* dynsym = this->make_output_section(dynsym_name,
1041                                                      elfcpp::SHT_DYNSYM,
1042                                                      elfcpp::SHF_ALLOC);
1043
1044   Output_section_data* odata = new Output_data_space(index * symsize,
1045                                                      align);
1046   dynsym->add_output_section_data(odata);
1047
1048   dynsym->set_info(local_symcount);
1049   dynsym->set_entsize(symsize);
1050   dynsym->set_addralign(align);
1051
1052   this->dynsym_section_ = dynsym;
1053
1054   Output_data_dynamic* const odyn = this->dynamic_data_;
1055   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1056   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1057
1058   // Create the dynamic string table section.
1059
1060   const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
1061   Output_section* dynstr = this->make_output_section(dynstr_name,
1062                                                      elfcpp::SHT_STRTAB,
1063                                                      elfcpp::SHF_ALLOC);
1064
1065   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1066   dynstr->add_output_section_data(strdata);
1067
1068   dynsym->set_link_section(dynstr);
1069   this->dynamic_section_->set_link_section(dynstr);
1070
1071   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1072   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1073
1074   *pdynstr = dynstr;
1075
1076   // Create the hash tables.
1077
1078   // FIXME: We need an option to create a GNU hash table.
1079
1080   unsigned char* phash;
1081   unsigned int hashlen;
1082   Dynobj::create_elf_hash_table(target, *pdynamic_symbols, local_symcount,
1083                                 &phash, &hashlen);
1084
1085   const char* hash_name = this->namepool_.add(".hash", NULL);
1086   Output_section* hashsec = this->make_output_section(hash_name,
1087                                                       elfcpp::SHT_HASH,
1088                                                       elfcpp::SHF_ALLOC);
1089
1090   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1091                                                                hashlen,
1092                                                                align);
1093   hashsec->add_output_section_data(hashdata);
1094
1095   hashsec->set_link_section(dynsym);
1096   hashsec->set_entsize(4);
1097
1098   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1099 }
1100
1101 // Create the version sections.
1102
1103 void
1104 Layout::create_version_sections(const Target* target, const Versions* versions,
1105                                 unsigned int local_symcount,
1106                                 const std::vector<Symbol*>& dynamic_symbols,
1107                                 const Output_section* dynstr)
1108 {
1109   if (!versions->any_defs() && !versions->any_needs())
1110     return;
1111
1112   if (target->get_size() == 32)
1113     {
1114       if (target->is_big_endian())
1115         {
1116 #ifdef HAVE_TARGET_32_BIG
1117           this->sized_create_version_sections
1118               SELECT_SIZE_ENDIAN_NAME(32, true)(
1119                   versions, local_symcount, dynamic_symbols, dynstr
1120                   SELECT_SIZE_ENDIAN(32, true));
1121 #else
1122           gold_unreachable();
1123 #endif
1124         }
1125       else
1126         {
1127 #ifdef HAVE_TARGET_32_LITTLE
1128           this->sized_create_version_sections
1129               SELECT_SIZE_ENDIAN_NAME(32, false)(
1130                   versions, local_symcount, dynamic_symbols, dynstr
1131                   SELECT_SIZE_ENDIAN(32, false));
1132 #else
1133           gold_unreachable();
1134 #endif
1135         }
1136     }
1137   else if (target->get_size() == 64)
1138     {
1139       if (target->is_big_endian())
1140         {
1141 #ifdef HAVE_TARGET_64_BIG
1142           this->sized_create_version_sections
1143               SELECT_SIZE_ENDIAN_NAME(64, true)(
1144                   versions, local_symcount, dynamic_symbols, dynstr
1145                   SELECT_SIZE_ENDIAN(64, true));
1146 #else
1147           gold_unreachable();
1148 #endif
1149         }
1150       else
1151         {
1152 #ifdef HAVE_TARGET_64_LITTLE
1153           this->sized_create_version_sections
1154               SELECT_SIZE_ENDIAN_NAME(64, false)(
1155                   versions, local_symcount, dynamic_symbols, dynstr
1156                   SELECT_SIZE_ENDIAN(64, false));
1157 #else
1158           gold_unreachable();
1159 #endif
1160         }
1161     }
1162   else
1163     gold_unreachable();
1164 }
1165
1166 // Create the version sections, sized version.
1167
1168 template<int size, bool big_endian>
1169 void
1170 Layout::sized_create_version_sections(
1171     const Versions* versions,
1172     unsigned int local_symcount,
1173     const std::vector<Symbol*>& dynamic_symbols,
1174     const Output_section* dynstr
1175     ACCEPT_SIZE_ENDIAN)
1176 {
1177   const char* vname = this->namepool_.add(".gnu.version", NULL);
1178   Output_section* vsec = this->make_output_section(vname,
1179                                                    elfcpp::SHT_GNU_versym,
1180                                                    elfcpp::SHF_ALLOC);
1181
1182   unsigned char* vbuf;
1183   unsigned int vsize;
1184   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1185       &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1186       SELECT_SIZE_ENDIAN(size, big_endian));
1187
1188   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1189
1190   vsec->add_output_section_data(vdata);
1191   vsec->set_entsize(2);
1192   vsec->set_link_section(this->dynsym_section_);
1193
1194   Output_data_dynamic* const odyn = this->dynamic_data_;
1195   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1196
1197   if (versions->any_defs())
1198     {
1199       const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1200       Output_section *vdsec;
1201       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1202                                         elfcpp::SHF_ALLOC);
1203
1204       unsigned char* vdbuf;
1205       unsigned int vdsize;
1206       unsigned int vdentries;
1207       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1208           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1209           SELECT_SIZE_ENDIAN(size, big_endian));
1210
1211       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1212                                                                  vdsize,
1213                                                                  4);
1214
1215       vdsec->add_output_section_data(vddata);
1216       vdsec->set_link_section(dynstr);
1217       vdsec->set_info(vdentries);
1218
1219       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1220       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1221     }
1222
1223   if (versions->any_needs())
1224     {
1225       const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1226       Output_section* vnsec;
1227       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1228                                         elfcpp::SHF_ALLOC);
1229
1230       unsigned char* vnbuf;
1231       unsigned int vnsize;
1232       unsigned int vnentries;
1233       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1234         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1235          SELECT_SIZE_ENDIAN(size, big_endian));
1236
1237       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1238                                                                  vnsize,
1239                                                                  4);
1240
1241       vnsec->add_output_section_data(vndata);
1242       vnsec->set_link_section(dynstr);
1243       vnsec->set_info(vnentries);
1244
1245       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1246       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1247     }
1248 }
1249
1250 // Create the .interp section and PT_INTERP segment.
1251
1252 void
1253 Layout::create_interp(const Target* target)
1254 {
1255   const char* interp = this->options_.dynamic_linker();
1256   if (interp == NULL)
1257     {
1258       interp = target->dynamic_linker();
1259       gold_assert(interp != NULL);
1260     }
1261
1262   size_t len = strlen(interp) + 1;
1263
1264   Output_section_data* odata = new Output_data_const(interp, len, 1);
1265
1266   const char* interp_name = this->namepool_.add(".interp", NULL);
1267   Output_section* osec = this->make_output_section(interp_name,
1268                                                    elfcpp::SHT_PROGBITS,
1269                                                    elfcpp::SHF_ALLOC);
1270   osec->add_output_section_data(odata);
1271
1272   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1273   this->segment_list_.push_back(oseg);
1274   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1275 }
1276
1277 // Finish the .dynamic section and PT_DYNAMIC segment.
1278
1279 void
1280 Layout::finish_dynamic_section(const Input_objects* input_objects,
1281                                const Symbol_table* symtab)
1282 {
1283   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1284                                             elfcpp::PF_R | elfcpp::PF_W);
1285   this->segment_list_.push_back(oseg);
1286   oseg->add_initial_output_section(this->dynamic_section_,
1287                                    elfcpp::PF_R | elfcpp::PF_W);
1288
1289   Output_data_dynamic* const odyn = this->dynamic_data_;
1290
1291   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1292        p != input_objects->dynobj_end();
1293        ++p)
1294     {
1295       // FIXME: Handle --as-needed.
1296       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1297     }
1298
1299   // FIXME: Support --init and --fini.
1300   Symbol* sym = symtab->lookup("_init");
1301   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1302     odyn->add_symbol(elfcpp::DT_INIT, sym);
1303
1304   sym = symtab->lookup("_fini");
1305   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1306     odyn->add_symbol(elfcpp::DT_FINI, sym);
1307
1308   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1309
1310   // Add a DT_RPATH entry if needed.
1311   const General_options::Dir_list& rpath(this->options_.rpath());
1312   if (!rpath.empty())
1313     {
1314       std::string rpath_val;
1315       for (General_options::Dir_list::const_iterator p = rpath.begin();
1316            p != rpath.end();
1317            ++p)
1318         {
1319           if (rpath_val.empty())
1320             rpath_val = *p;
1321           else
1322             {
1323               // Eliminate duplicates.
1324               General_options::Dir_list::const_iterator q;
1325               for (q = rpath.begin(); q != p; ++q)
1326                 if (strcmp(*q, *p) == 0)
1327                   break;
1328               if (q == p)
1329                 {
1330                   rpath_val += ':';
1331                   rpath_val += *p;
1332                 }
1333             }
1334         }
1335
1336       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1337     }
1338 }
1339
1340 // The mapping of .gnu.linkonce section names to real section names.
1341
1342 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1343 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1344 {
1345   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1346   MAPPING_INIT("t", ".text"),
1347   MAPPING_INIT("r", ".rodata"),
1348   MAPPING_INIT("d", ".data"),
1349   MAPPING_INIT("b", ".bss"),
1350   MAPPING_INIT("s", ".sdata"),
1351   MAPPING_INIT("sb", ".sbss"),
1352   MAPPING_INIT("s2", ".sdata2"),
1353   MAPPING_INIT("sb2", ".sbss2"),
1354   MAPPING_INIT("wi", ".debug_info"),
1355   MAPPING_INIT("td", ".tdata"),
1356   MAPPING_INIT("tb", ".tbss"),
1357   MAPPING_INIT("lr", ".lrodata"),
1358   MAPPING_INIT("l", ".ldata"),
1359   MAPPING_INIT("lb", ".lbss"),
1360 };
1361 #undef MAPPING_INIT
1362
1363 const int Layout::linkonce_mapping_count =
1364   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1365
1366 // Return the name of the output section to use for a .gnu.linkonce
1367 // section.  This is based on the default ELF linker script of the old
1368 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1369 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1370 // initialized to the length of NAME.
1371
1372 const char*
1373 Layout::linkonce_output_name(const char* name, size_t *plen)
1374 {
1375   const char* s = name + sizeof(".gnu.linkonce") - 1;
1376   if (*s != '.')
1377     return name;
1378   ++s;
1379   const Linkonce_mapping* plm = linkonce_mapping;
1380   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1381     {
1382       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1383         {
1384           *plen = plm->tolen;
1385           return plm->to;
1386         }
1387     }
1388   return name;
1389 }
1390
1391 // Choose the output section name to use given an input section name.
1392 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1393 // length of NAME.
1394
1395 const char*
1396 Layout::output_section_name(const char* name, size_t* plen)
1397 {
1398   if (Layout::is_linkonce(name))
1399     {
1400       // .gnu.linkonce sections are laid out as though they were named
1401       // for the sections are placed into.
1402       return Layout::linkonce_output_name(name, plen);
1403     }
1404
1405   // If the section name has no '.', or only an initial '.', we use
1406   // the name unchanged (i.e., ".text" is unchanged).
1407
1408   // Otherwise, if the section name does not include ".rel", we drop
1409   // the last '.'  and everything that follows (i.e., ".text.XXX"
1410   // becomes ".text").
1411
1412   // Otherwise, if the section name has zero or one '.' after the
1413   // ".rel", we use the name unchanged (i.e., ".rel.text" is
1414   // unchanged).
1415
1416   // Otherwise, we drop the last '.' and everything that follows
1417   // (i.e., ".rel.text.XXX" becomes ".rel.text").
1418
1419   const char* s = name;
1420   if (*s == '.')
1421     ++s;
1422   const char* sdot = strchr(s, '.');
1423   if (sdot == NULL)
1424     return name;
1425
1426   const char* srel = strstr(s, ".rel");
1427   if (srel == NULL)
1428     {
1429       *plen = sdot - name;
1430       return name;
1431     }
1432
1433   sdot = strchr(srel + 1, '.');
1434   if (sdot == NULL)
1435     return name;
1436   sdot = strchr(sdot + 1, '.');
1437   if (sdot == NULL)
1438     return name;
1439
1440   *plen = sdot - name;
1441   return name;
1442 }
1443
1444 // Record the signature of a comdat section, and return whether to
1445 // include it in the link.  If GROUP is true, this is a regular
1446 // section group.  If GROUP is false, this is a group signature
1447 // derived from the name of a linkonce section.  We want linkonce
1448 // signatures and group signatures to block each other, but we don't
1449 // want a linkonce signature to block another linkonce signature.
1450
1451 bool
1452 Layout::add_comdat(const char* signature, bool group)
1453 {
1454   std::string sig(signature);
1455   std::pair<Signatures::iterator, bool> ins(
1456     this->signatures_.insert(std::make_pair(sig, group)));
1457
1458   if (ins.second)
1459     {
1460       // This is the first time we've seen this signature.
1461       return true;
1462     }
1463
1464   if (ins.first->second)
1465     {
1466       // We've already seen a real section group with this signature.
1467       return false;
1468     }
1469   else if (group)
1470     {
1471       // This is a real section group, and we've already seen a
1472       // linkonce section with this signature.  Record that we've seen
1473       // a section group, and don't include this section group.
1474       ins.first->second = true;
1475       return false;
1476     }
1477   else
1478     {
1479       // We've already seen a linkonce section and this is a linkonce
1480       // section.  These don't block each other--this may be the same
1481       // symbol name with different section types.
1482       return true;
1483     }
1484 }
1485
1486 // Write out data not associated with a section or the symbol table.
1487
1488 void
1489 Layout::write_data(const Symbol_table* symtab, const Target* target,
1490                    Output_file* of) const
1491 {
1492   const Output_section* symtab_section = this->symtab_section_;
1493   for (Section_list::const_iterator p = this->section_list_.begin();
1494        p != this->section_list_.end();
1495        ++p)
1496     {
1497       if ((*p)->needs_symtab_index())
1498         {
1499           gold_assert(symtab_section != NULL);
1500           unsigned int index = (*p)->symtab_index();
1501           gold_assert(index > 0 && index != -1U);
1502           off_t off = (symtab_section->offset()
1503                        + index * symtab_section->entsize());
1504           symtab->write_section_symbol(target, *p, of, off);
1505         }
1506     }
1507
1508   const Output_section* dynsym_section = this->dynsym_section_;
1509   for (Section_list::const_iterator p = this->section_list_.begin();
1510        p != this->section_list_.end();
1511        ++p)
1512     {
1513       if ((*p)->needs_dynsym_index())
1514         {
1515           gold_assert(dynsym_section != NULL);
1516           unsigned int index = (*p)->dynsym_index();
1517           gold_assert(index > 0 && index != -1U);
1518           off_t off = (dynsym_section->offset()
1519                        + index * dynsym_section->entsize());
1520           symtab->write_section_symbol(target, *p, of, off);
1521         }
1522     }
1523
1524   // Write out the Output_sections.  Most won't have anything to
1525   // write, since most of the data will come from input sections which
1526   // are handled elsewhere.  But some Output_sections do have
1527   // Output_data.
1528   for (Section_list::const_iterator p = this->section_list_.begin();
1529        p != this->section_list_.end();
1530        ++p)
1531     (*p)->write(of);
1532
1533   // Write out the Output_data which are not in an Output_section.
1534   for (Data_list::const_iterator p = this->special_output_list_.begin();
1535        p != this->special_output_list_.end();
1536        ++p)
1537     (*p)->write(of);
1538 }
1539
1540 // Write_data_task methods.
1541
1542 // We can always run this task.
1543
1544 Task::Is_runnable_type
1545 Write_data_task::is_runnable(Workqueue*)
1546 {
1547   return IS_RUNNABLE;
1548 }
1549
1550 // We need to unlock FINAL_BLOCKER when finished.
1551
1552 Task_locker*
1553 Write_data_task::locks(Workqueue* workqueue)
1554 {
1555   return new Task_locker_block(*this->final_blocker_, workqueue);
1556 }
1557
1558 // Run the task--write out the data.
1559
1560 void
1561 Write_data_task::run(Workqueue*)
1562 {
1563   this->layout_->write_data(this->symtab_, this->target_, this->of_);
1564 }
1565
1566 // Write_symbols_task methods.
1567
1568 // We can always run this task.
1569
1570 Task::Is_runnable_type
1571 Write_symbols_task::is_runnable(Workqueue*)
1572 {
1573   return IS_RUNNABLE;
1574 }
1575
1576 // We need to unlock FINAL_BLOCKER when finished.
1577
1578 Task_locker*
1579 Write_symbols_task::locks(Workqueue* workqueue)
1580 {
1581   return new Task_locker_block(*this->final_blocker_, workqueue);
1582 }
1583
1584 // Run the task--write out the symbols.
1585
1586 void
1587 Write_symbols_task::run(Workqueue*)
1588 {
1589   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1590                                this->of_);
1591 }
1592
1593 // Close_task_runner methods.
1594
1595 // Run the task--close the file.
1596
1597 void
1598 Close_task_runner::run(Workqueue*)
1599 {
1600   this->of_->close();
1601 }
1602
1603 // Instantiate the templates we need.  We could use the configure
1604 // script to restrict this to only the ones for implemented targets.
1605
1606 #ifdef HAVE_TARGET_32_LITTLE
1607 template
1608 Output_section*
1609 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1610                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1611 #endif
1612
1613 #ifdef HAVE_TARGET_32_BIG
1614 template
1615 Output_section*
1616 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1617                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1618 #endif
1619
1620 #ifdef HAVE_TARGET_64_LITTLE
1621 template
1622 Output_section*
1623 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1624                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1625 #endif
1626
1627 #ifdef HAVE_TARGET_64_BIG
1628 template
1629 Output_section*
1630 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1631                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1632 #endif
1633
1634
1635 } // End namespace gold.