* configure.ac (ENABLE_GOLD): Consider *-*-nacl* targets ELF.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     incremental_inputs_(NULL),
412     record_output_section_data_from_script_(false),
413     script_output_section_data_list_(),
414     segment_states_(NULL),
415     relaxation_debug_check_(NULL),
416     section_order_map_(),
417     input_section_position_(),
418     input_section_glob_(),
419     incremental_base_(NULL),
420     free_list_()
421 {
422   // Make space for more than enough segments for a typical file.
423   // This is just for efficiency--it's OK if we wind up needing more.
424   this->segment_list_.reserve(12);
425
426   // We expect two unattached Output_data objects: the file header and
427   // the segment headers.
428   this->special_output_list_.reserve(2);
429
430   // Initialize structure needed for an incremental build.
431   if (parameters->incremental())
432     this->incremental_inputs_ = new Incremental_inputs;
433
434   // The section name pool is worth optimizing in all cases, because
435   // it is small, but there are often overlaps due to .rel sections.
436   this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444   this->incremental_base_ = base;
445   this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453  return k.first + k.second.first + k.second.second;
454 }
455
456 // Returns whether the given section is in the list of
457 // debug-sections-used-by-some-version-of-gdb.  Currently,
458 // we've checked versions of gdb up to and including 6.7.1.
459
460 static const char* gdb_sections[] =
461 { ".debug_abbrev",
462   // ".debug_aranges",   // not used by gdb as of 6.7.1
463   ".debug_frame",
464   ".debug_info",
465   ".debug_types",
466   ".debug_line",
467   ".debug_loc",
468   ".debug_macinfo",
469   // ".debug_pubnames",  // not used by gdb as of 6.7.1
470   ".debug_ranges",
471   ".debug_str",
472 };
473
474 static const char* lines_only_debug_sections[] =
475 { ".debug_abbrev",
476   // ".debug_aranges",   // not used by gdb as of 6.7.1
477   // ".debug_frame",
478   ".debug_info",
479   // ".debug_types",
480   ".debug_line",
481   // ".debug_loc",
482   // ".debug_macinfo",
483   // ".debug_pubnames",  // not used by gdb as of 6.7.1
484   // ".debug_ranges",
485   ".debug_str",
486 };
487
488 static inline bool
489 is_gdb_debug_section(const char* str)
490 {
491   // We can do this faster: binary search or a hashtable.  But why bother?
492   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
493     if (strcmp(str, gdb_sections[i]) == 0)
494       return true;
495   return false;
496 }
497
498 static inline bool
499 is_lines_only_debug_section(const char* str)
500 {
501   // We can do this faster: binary search or a hashtable.  But why bother?
502   for (size_t i = 0;
503        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
504        ++i)
505     if (strcmp(str, lines_only_debug_sections[i]) == 0)
506       return true;
507   return false;
508 }
509
510 // Sometimes we compress sections.  This is typically done for
511 // sections that are not part of normal program execution (such as
512 // .debug_* sections), and where the readers of these sections know
513 // how to deal with compressed sections.  This routine doesn't say for
514 // certain whether we'll compress -- it depends on commandline options
515 // as well -- just whether this section is a candidate for compression.
516 // (The Output_compressed_section class decides whether to compress
517 // a given section, and picks the name of the compressed section.)
518
519 static bool
520 is_compressible_debug_section(const char* secname)
521 {
522   return (is_prefix_of(".debug", secname));
523 }
524
525 // We may see compressed debug sections in input files.  Return TRUE
526 // if this is the name of a compressed debug section.
527
528 bool
529 is_compressed_debug_section(const char* secname)
530 {
531   return (is_prefix_of(".zdebug", secname));
532 }
533
534 // Whether to include this section in the link.
535
536 template<int size, bool big_endian>
537 bool
538 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
539                         const elfcpp::Shdr<size, big_endian>& shdr)
540 {
541   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
542     return false;
543
544   switch (shdr.get_sh_type())
545     {
546     case elfcpp::SHT_NULL:
547     case elfcpp::SHT_SYMTAB:
548     case elfcpp::SHT_DYNSYM:
549     case elfcpp::SHT_HASH:
550     case elfcpp::SHT_DYNAMIC:
551     case elfcpp::SHT_SYMTAB_SHNDX:
552       return false;
553
554     case elfcpp::SHT_STRTAB:
555       // Discard the sections which have special meanings in the ELF
556       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
557       // checking the sh_link fields of the appropriate sections.
558       return (strcmp(name, ".dynstr") != 0
559               && strcmp(name, ".strtab") != 0
560               && strcmp(name, ".shstrtab") != 0);
561
562     case elfcpp::SHT_RELA:
563     case elfcpp::SHT_REL:
564     case elfcpp::SHT_GROUP:
565       // If we are emitting relocations these should be handled
566       // elsewhere.
567       gold_assert(!parameters->options().relocatable()
568                   && !parameters->options().emit_relocs());
569       return false;
570
571     case elfcpp::SHT_PROGBITS:
572       if (parameters->options().strip_debug()
573           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
574         {
575           if (is_debug_info_section(name))
576             return false;
577         }
578       if (parameters->options().strip_debug_non_line()
579           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
580         {
581           // Debugging sections can only be recognized by name.
582           if (is_prefix_of(".debug", name)
583               && !is_lines_only_debug_section(name))
584             return false;
585         }
586       if (parameters->options().strip_debug_gdb()
587           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
588         {
589           // Debugging sections can only be recognized by name.
590           if (is_prefix_of(".debug", name)
591               && !is_gdb_debug_section(name))
592             return false;
593         }
594       if (parameters->options().strip_lto_sections()
595           && !parameters->options().relocatable()
596           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
597         {
598           // Ignore LTO sections containing intermediate code.
599           if (is_prefix_of(".gnu.lto_", name))
600             return false;
601         }
602       // The GNU linker strips .gnu_debuglink sections, so we do too.
603       // This is a feature used to keep debugging information in
604       // separate files.
605       if (strcmp(name, ".gnu_debuglink") == 0)
606         return false;
607       return true;
608
609     default:
610       return true;
611     }
612 }
613
614 // Return an output section named NAME, or NULL if there is none.
615
616 Output_section*
617 Layout::find_output_section(const char* name) const
618 {
619   for (Section_list::const_iterator p = this->section_list_.begin();
620        p != this->section_list_.end();
621        ++p)
622     if (strcmp((*p)->name(), name) == 0)
623       return *p;
624   return NULL;
625 }
626
627 // Return an output segment of type TYPE, with segment flags SET set
628 // and segment flags CLEAR clear.  Return NULL if there is none.
629
630 Output_segment*
631 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
632                             elfcpp::Elf_Word clear) const
633 {
634   for (Segment_list::const_iterator p = this->segment_list_.begin();
635        p != this->segment_list_.end();
636        ++p)
637     if (static_cast<elfcpp::PT>((*p)->type()) == type
638         && ((*p)->flags() & set) == set
639         && ((*p)->flags() & clear) == 0)
640       return *p;
641   return NULL;
642 }
643
644 // When we put a .ctors or .dtors section with more than one word into
645 // a .init_array or .fini_array section, we need to reverse the words
646 // in the .ctors/.dtors section.  This is because .init_array executes
647 // constructors front to back, where .ctors executes them back to
648 // front, and vice-versa for .fini_array/.dtors.  Although we do want
649 // to remap .ctors/.dtors into .init_array/.fini_array because it can
650 // be more efficient, we don't want to change the order in which
651 // constructors/destructors are run.  This set just keeps track of
652 // these sections which need to be reversed.  It is only changed by
653 // Layout::layout.  It should be a private member of Layout, but that
654 // would require layout.h to #include object.h to get the definition
655 // of Section_id.
656 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
657
658 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
659 // .init_array/.fini_array section.
660
661 bool
662 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
663 {
664   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
665           != ctors_sections_in_init_array.end());
666 }
667
668 // Return the output section to use for section NAME with type TYPE
669 // and section flags FLAGS.  NAME must be canonicalized in the string
670 // pool, and NAME_KEY is the key.  ORDER is where this should appear
671 // in the output sections.  IS_RELRO is true for a relro section.
672
673 Output_section*
674 Layout::get_output_section(const char* name, Stringpool::Key name_key,
675                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
676                            Output_section_order order, bool is_relro)
677 {
678   elfcpp::Elf_Word lookup_type = type;
679
680   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
681   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
682   // .init_array, .fini_array, and .preinit_array sections by name
683   // whatever their type in the input file.  We do this because the
684   // types are not always right in the input files.
685   if (lookup_type == elfcpp::SHT_INIT_ARRAY
686       || lookup_type == elfcpp::SHT_FINI_ARRAY
687       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
688     lookup_type = elfcpp::SHT_PROGBITS;
689
690   elfcpp::Elf_Xword lookup_flags = flags;
691
692   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
693   // read-write with read-only sections.  Some other ELF linkers do
694   // not do this.  FIXME: Perhaps there should be an option
695   // controlling this.
696   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
697
698   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
699   const std::pair<Key, Output_section*> v(key, NULL);
700   std::pair<Section_name_map::iterator, bool> ins(
701     this->section_name_map_.insert(v));
702
703   if (!ins.second)
704     return ins.first->second;
705   else
706     {
707       // This is the first time we've seen this name/type/flags
708       // combination.  For compatibility with the GNU linker, we
709       // combine sections with contents and zero flags with sections
710       // with non-zero flags.  This is a workaround for cases where
711       // assembler code forgets to set section flags.  FIXME: Perhaps
712       // there should be an option to control this.
713       Output_section* os = NULL;
714
715       if (lookup_type == elfcpp::SHT_PROGBITS)
716         {
717           if (flags == 0)
718             {
719               Output_section* same_name = this->find_output_section(name);
720               if (same_name != NULL
721                   && (same_name->type() == elfcpp::SHT_PROGBITS
722                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
723                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
724                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
725                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
726                 os = same_name;
727             }
728           else if ((flags & elfcpp::SHF_TLS) == 0)
729             {
730               elfcpp::Elf_Xword zero_flags = 0;
731               const Key zero_key(name_key, std::make_pair(lookup_type,
732                                                           zero_flags));
733               Section_name_map::iterator p =
734                   this->section_name_map_.find(zero_key);
735               if (p != this->section_name_map_.end())
736                 os = p->second;
737             }
738         }
739
740       if (os == NULL)
741         os = this->make_output_section(name, type, flags, order, is_relro);
742
743       ins.first->second = os;
744       return os;
745     }
746 }
747
748 // Pick the output section to use for section NAME, in input file
749 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
750 // linker created section.  IS_INPUT_SECTION is true if we are
751 // choosing an output section for an input section found in a input
752 // file.  ORDER is where this section should appear in the output
753 // sections.  IS_RELRO is true for a relro section.  This will return
754 // NULL if the input section should be discarded.
755
756 Output_section*
757 Layout::choose_output_section(const Relobj* relobj, const char* name,
758                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
759                               bool is_input_section, Output_section_order order,
760                               bool is_relro)
761 {
762   // We should not see any input sections after we have attached
763   // sections to segments.
764   gold_assert(!is_input_section || !this->sections_are_attached_);
765
766   // Some flags in the input section should not be automatically
767   // copied to the output section.
768   flags &= ~ (elfcpp::SHF_INFO_LINK
769               | elfcpp::SHF_GROUP
770               | elfcpp::SHF_MERGE
771               | elfcpp::SHF_STRINGS);
772
773   // We only clear the SHF_LINK_ORDER flag in for
774   // a non-relocatable link.
775   if (!parameters->options().relocatable())
776     flags &= ~elfcpp::SHF_LINK_ORDER;
777
778   if (this->script_options_->saw_sections_clause())
779     {
780       // We are using a SECTIONS clause, so the output section is
781       // chosen based only on the name.
782
783       Script_sections* ss = this->script_options_->script_sections();
784       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
785       Output_section** output_section_slot;
786       Script_sections::Section_type script_section_type;
787       const char* orig_name = name;
788       name = ss->output_section_name(file_name, name, &output_section_slot,
789                                      &script_section_type);
790       if (name == NULL)
791         {
792           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
793                                      "because it is not allowed by the "
794                                      "SECTIONS clause of the linker script"),
795                      orig_name);
796           // The SECTIONS clause says to discard this input section.
797           return NULL;
798         }
799
800       // We can only handle script section types ST_NONE and ST_NOLOAD.
801       switch (script_section_type)
802         {
803         case Script_sections::ST_NONE:
804           break;
805         case Script_sections::ST_NOLOAD:
806           flags &= elfcpp::SHF_ALLOC;
807           break;
808         default:
809           gold_unreachable();
810         }
811
812       // If this is an orphan section--one not mentioned in the linker
813       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
814       // default processing below.
815
816       if (output_section_slot != NULL)
817         {
818           if (*output_section_slot != NULL)
819             {
820               (*output_section_slot)->update_flags_for_input_section(flags);
821               return *output_section_slot;
822             }
823
824           // We don't put sections found in the linker script into
825           // SECTION_NAME_MAP_.  That keeps us from getting confused
826           // if an orphan section is mapped to a section with the same
827           // name as one in the linker script.
828
829           name = this->namepool_.add(name, false, NULL);
830
831           Output_section* os = this->make_output_section(name, type, flags,
832                                                          order, is_relro);
833
834           os->set_found_in_sections_clause();
835
836           // Special handling for NOLOAD sections.
837           if (script_section_type == Script_sections::ST_NOLOAD)
838             {
839               os->set_is_noload();
840
841               // The constructor of Output_section sets addresses of non-ALLOC
842               // sections to 0 by default.  We don't want that for NOLOAD
843               // sections even if they have no SHF_ALLOC flag.
844               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
845                   && os->is_address_valid())
846                 {
847                   gold_assert(os->address() == 0
848                               && !os->is_offset_valid()
849                               && !os->is_data_size_valid());
850                   os->reset_address_and_file_offset();
851                 }
852             }
853
854           *output_section_slot = os;
855           return os;
856         }
857     }
858
859   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
860
861   size_t len = strlen(name);
862   char* uncompressed_name = NULL;
863
864   // Compressed debug sections should be mapped to the corresponding
865   // uncompressed section.
866   if (is_compressed_debug_section(name))
867     {
868       uncompressed_name = new char[len];
869       uncompressed_name[0] = '.';
870       gold_assert(name[0] == '.' && name[1] == 'z');
871       strncpy(&uncompressed_name[1], &name[2], len - 2);
872       uncompressed_name[len - 1] = '\0';
873       len -= 1;
874       name = uncompressed_name;
875     }
876
877   // Turn NAME from the name of the input section into the name of the
878   // output section.
879   if (is_input_section
880       && !this->script_options_->saw_sections_clause()
881       && !parameters->options().relocatable())
882     name = Layout::output_section_name(relobj, name, &len);
883
884   Stringpool::Key name_key;
885   name = this->namepool_.add_with_length(name, len, true, &name_key);
886
887   if (uncompressed_name != NULL)
888     delete[] uncompressed_name;
889
890   // Find or make the output section.  The output section is selected
891   // based on the section name, type, and flags.
892   return this->get_output_section(name, name_key, type, flags, order, is_relro);
893 }
894
895 // For incremental links, record the initial fixed layout of a section
896 // from the base file, and return a pointer to the Output_section.
897
898 template<int size, bool big_endian>
899 Output_section*
900 Layout::init_fixed_output_section(const char* name,
901                                   elfcpp::Shdr<size, big_endian>& shdr)
902 {
903   unsigned int sh_type = shdr.get_sh_type();
904
905   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
906   // PRE_INIT_ARRAY, and NOTE sections.
907   // All others will be created from scratch and reallocated.
908   if (!can_incremental_update(sh_type))
909     return NULL;
910
911   // If we're generating a .gdb_index section, we need to regenerate
912   // it from scratch.
913   if (parameters->options().gdb_index()
914       && sh_type == elfcpp::SHT_PROGBITS
915       && strcmp(name, ".gdb_index") == 0)
916     return NULL;
917
918   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
919   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
920   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
921   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
922   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
923       shdr.get_sh_addralign();
924
925   // Make the output section.
926   Stringpool::Key name_key;
927   name = this->namepool_.add(name, true, &name_key);
928   Output_section* os = this->get_output_section(name, name_key, sh_type,
929                                                 sh_flags, ORDER_INVALID, false);
930   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
931   if (sh_type != elfcpp::SHT_NOBITS)
932     this->free_list_.remove(sh_offset, sh_offset + sh_size);
933   return os;
934 }
935
936 // Return the output section to use for input section SHNDX, with name
937 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
938 // index of a relocation section which applies to this section, or 0
939 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
940 // relocation section if there is one.  Set *OFF to the offset of this
941 // input section without the output section.  Return NULL if the
942 // section should be discarded.  Set *OFF to -1 if the section
943 // contents should not be written directly to the output file, but
944 // will instead receive special handling.
945
946 template<int size, bool big_endian>
947 Output_section*
948 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
949                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
950                unsigned int reloc_shndx, unsigned int, off_t* off)
951 {
952   *off = 0;
953
954   if (!this->include_section(object, name, shdr))
955     return NULL;
956
957   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
958
959   // In a relocatable link a grouped section must not be combined with
960   // any other sections.
961   Output_section* os;
962   if (parameters->options().relocatable()
963       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
964     {
965       name = this->namepool_.add(name, true, NULL);
966       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
967                                      ORDER_INVALID, false);
968     }
969   else
970     {
971       os = this->choose_output_section(object, name, sh_type,
972                                        shdr.get_sh_flags(), true,
973                                        ORDER_INVALID, false);
974       if (os == NULL)
975         return NULL;
976     }
977
978   // By default the GNU linker sorts input sections whose names match
979   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
980   // sections are sorted by name.  This is used to implement
981   // constructor priority ordering.  We are compatible.  When we put
982   // .ctor sections in .init_array and .dtor sections in .fini_array,
983   // we must also sort plain .ctor and .dtor sections.
984   if (!this->script_options_->saw_sections_clause()
985       && !parameters->options().relocatable()
986       && (is_prefix_of(".ctors.", name)
987           || is_prefix_of(".dtors.", name)
988           || is_prefix_of(".init_array.", name)
989           || is_prefix_of(".fini_array.", name)
990           || (parameters->options().ctors_in_init_array()
991               && (strcmp(name, ".ctors") == 0
992                   || strcmp(name, ".dtors") == 0))))
993     os->set_must_sort_attached_input_sections();
994
995   // If this is a .ctors or .ctors.* section being mapped to a
996   // .init_array section, or a .dtors or .dtors.* section being mapped
997   // to a .fini_array section, we will need to reverse the words if
998   // there is more than one.  Record this section for later.  See
999   // ctors_sections_in_init_array above.
1000   if (!this->script_options_->saw_sections_clause()
1001       && !parameters->options().relocatable()
1002       && shdr.get_sh_size() > size / 8
1003       && (((strcmp(name, ".ctors") == 0
1004             || is_prefix_of(".ctors.", name))
1005            && strcmp(os->name(), ".init_array") == 0)
1006           || ((strcmp(name, ".dtors") == 0
1007                || is_prefix_of(".dtors.", name))
1008               && strcmp(os->name(), ".fini_array") == 0)))
1009     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1010
1011   // FIXME: Handle SHF_LINK_ORDER somewhere.
1012
1013   elfcpp::Elf_Xword orig_flags = os->flags();
1014
1015   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1016                                this->script_options_->saw_sections_clause());
1017
1018   // If the flags changed, we may have to change the order.
1019   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1020     {
1021       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1022       elfcpp::Elf_Xword new_flags =
1023         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1024       if (orig_flags != new_flags)
1025         os->set_order(this->default_section_order(os, false));
1026     }
1027
1028   this->have_added_input_section_ = true;
1029
1030   return os;
1031 }
1032
1033 // Handle a relocation section when doing a relocatable link.
1034
1035 template<int size, bool big_endian>
1036 Output_section*
1037 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1038                      unsigned int,
1039                      const elfcpp::Shdr<size, big_endian>& shdr,
1040                      Output_section* data_section,
1041                      Relocatable_relocs* rr)
1042 {
1043   gold_assert(parameters->options().relocatable()
1044               || parameters->options().emit_relocs());
1045
1046   int sh_type = shdr.get_sh_type();
1047
1048   std::string name;
1049   if (sh_type == elfcpp::SHT_REL)
1050     name = ".rel";
1051   else if (sh_type == elfcpp::SHT_RELA)
1052     name = ".rela";
1053   else
1054     gold_unreachable();
1055   name += data_section->name();
1056
1057   // In a relocatable link relocs for a grouped section must not be
1058   // combined with other reloc sections.
1059   Output_section* os;
1060   if (!parameters->options().relocatable()
1061       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1062     os = this->choose_output_section(object, name.c_str(), sh_type,
1063                                      shdr.get_sh_flags(), false,
1064                                      ORDER_INVALID, false);
1065   else
1066     {
1067       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1068       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1069                                      ORDER_INVALID, false);
1070     }
1071
1072   os->set_should_link_to_symtab();
1073   os->set_info_section(data_section);
1074
1075   Output_section_data* posd;
1076   if (sh_type == elfcpp::SHT_REL)
1077     {
1078       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1079       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1080                                            size,
1081                                            big_endian>(rr);
1082     }
1083   else if (sh_type == elfcpp::SHT_RELA)
1084     {
1085       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1086       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1087                                            size,
1088                                            big_endian>(rr);
1089     }
1090   else
1091     gold_unreachable();
1092
1093   os->add_output_section_data(posd);
1094   rr->set_output_data(posd);
1095
1096   return os;
1097 }
1098
1099 // Handle a group section when doing a relocatable link.
1100
1101 template<int size, bool big_endian>
1102 void
1103 Layout::layout_group(Symbol_table* symtab,
1104                      Sized_relobj_file<size, big_endian>* object,
1105                      unsigned int,
1106                      const char* group_section_name,
1107                      const char* signature,
1108                      const elfcpp::Shdr<size, big_endian>& shdr,
1109                      elfcpp::Elf_Word flags,
1110                      std::vector<unsigned int>* shndxes)
1111 {
1112   gold_assert(parameters->options().relocatable());
1113   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1114   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1115   Output_section* os = this->make_output_section(group_section_name,
1116                                                  elfcpp::SHT_GROUP,
1117                                                  shdr.get_sh_flags(),
1118                                                  ORDER_INVALID, false);
1119
1120   // We need to find a symbol with the signature in the symbol table.
1121   // If we don't find one now, we need to look again later.
1122   Symbol* sym = symtab->lookup(signature, NULL);
1123   if (sym != NULL)
1124     os->set_info_symndx(sym);
1125   else
1126     {
1127       // Reserve some space to minimize reallocations.
1128       if (this->group_signatures_.empty())
1129         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1130
1131       // We will wind up using a symbol whose name is the signature.
1132       // So just put the signature in the symbol name pool to save it.
1133       signature = symtab->canonicalize_name(signature);
1134       this->group_signatures_.push_back(Group_signature(os, signature));
1135     }
1136
1137   os->set_should_link_to_symtab();
1138   os->set_entsize(4);
1139
1140   section_size_type entry_count =
1141     convert_to_section_size_type(shdr.get_sh_size() / 4);
1142   Output_section_data* posd =
1143     new Output_data_group<size, big_endian>(object, entry_count, flags,
1144                                             shndxes);
1145   os->add_output_section_data(posd);
1146 }
1147
1148 // Special GNU handling of sections name .eh_frame.  They will
1149 // normally hold exception frame data as defined by the C++ ABI
1150 // (http://codesourcery.com/cxx-abi/).
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1155                         const unsigned char* symbols,
1156                         off_t symbols_size,
1157                         const unsigned char* symbol_names,
1158                         off_t symbol_names_size,
1159                         unsigned int shndx,
1160                         const elfcpp::Shdr<size, big_endian>& shdr,
1161                         unsigned int reloc_shndx, unsigned int reloc_type,
1162                         off_t* off)
1163 {
1164   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1165               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1166   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1167
1168   Output_section* os = this->make_eh_frame_section(object);
1169   if (os == NULL)
1170     return NULL;
1171
1172   gold_assert(this->eh_frame_section_ == os);
1173
1174   elfcpp::Elf_Xword orig_flags = os->flags();
1175
1176   if (!parameters->incremental()
1177       && this->eh_frame_data_->add_ehframe_input_section(object,
1178                                                          symbols,
1179                                                          symbols_size,
1180                                                          symbol_names,
1181                                                          symbol_names_size,
1182                                                          shndx,
1183                                                          reloc_shndx,
1184                                                          reloc_type))
1185     {
1186       os->update_flags_for_input_section(shdr.get_sh_flags());
1187
1188       // A writable .eh_frame section is a RELRO section.
1189       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1190           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1191         {
1192           os->set_is_relro();
1193           os->set_order(ORDER_RELRO);
1194         }
1195
1196       // We found a .eh_frame section we are going to optimize, so now
1197       // we can add the set of optimized sections to the output
1198       // section.  We need to postpone adding this until we've found a
1199       // section we can optimize so that the .eh_frame section in
1200       // crtbegin.o winds up at the start of the output section.
1201       if (!this->added_eh_frame_data_)
1202         {
1203           os->add_output_section_data(this->eh_frame_data_);
1204           this->added_eh_frame_data_ = true;
1205         }
1206       *off = -1;
1207     }
1208   else
1209     {
1210       // We couldn't handle this .eh_frame section for some reason.
1211       // Add it as a normal section.
1212       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1213       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1214                                    reloc_shndx, saw_sections_clause);
1215       this->have_added_input_section_ = true;
1216
1217       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1218           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1219         os->set_order(this->default_section_order(os, false));
1220     }
1221
1222   return os;
1223 }
1224
1225 // Create and return the magic .eh_frame section.  Create
1226 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1227 // input .eh_frame section; it may be NULL.
1228
1229 Output_section*
1230 Layout::make_eh_frame_section(const Relobj* object)
1231 {
1232   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1233   // SHT_PROGBITS.
1234   Output_section* os = this->choose_output_section(object, ".eh_frame",
1235                                                    elfcpp::SHT_PROGBITS,
1236                                                    elfcpp::SHF_ALLOC, false,
1237                                                    ORDER_EHFRAME, false);
1238   if (os == NULL)
1239     return NULL;
1240
1241   if (this->eh_frame_section_ == NULL)
1242     {
1243       this->eh_frame_section_ = os;
1244       this->eh_frame_data_ = new Eh_frame();
1245
1246       // For incremental linking, we do not optimize .eh_frame sections
1247       // or create a .eh_frame_hdr section.
1248       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1249         {
1250           Output_section* hdr_os =
1251             this->choose_output_section(NULL, ".eh_frame_hdr",
1252                                         elfcpp::SHT_PROGBITS,
1253                                         elfcpp::SHF_ALLOC, false,
1254                                         ORDER_EHFRAME, false);
1255
1256           if (hdr_os != NULL)
1257             {
1258               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1259                                                         this->eh_frame_data_);
1260               hdr_os->add_output_section_data(hdr_posd);
1261
1262               hdr_os->set_after_input_sections();
1263
1264               if (!this->script_options_->saw_phdrs_clause())
1265                 {
1266                   Output_segment* hdr_oseg;
1267                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1268                                                        elfcpp::PF_R);
1269                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1270                                                           elfcpp::PF_R);
1271                 }
1272
1273               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1274             }
1275         }
1276     }
1277
1278   return os;
1279 }
1280
1281 // Add an exception frame for a PLT.  This is called from target code.
1282
1283 void
1284 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1285                              size_t cie_length, const unsigned char* fde_data,
1286                              size_t fde_length)
1287 {
1288   if (parameters->incremental())
1289     {
1290       // FIXME: Maybe this could work some day....
1291       return;
1292     }
1293   Output_section* os = this->make_eh_frame_section(NULL);
1294   if (os == NULL)
1295     return;
1296   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1297                                             fde_data, fde_length);
1298   if (!this->added_eh_frame_data_)
1299     {
1300       os->add_output_section_data(this->eh_frame_data_);
1301       this->added_eh_frame_data_ = true;
1302     }
1303 }
1304
1305 // Scan a .debug_info or .debug_types section, and add summary
1306 // information to the .gdb_index section.
1307
1308 template<int size, bool big_endian>
1309 void
1310 Layout::add_to_gdb_index(bool is_type_unit,
1311                          Sized_relobj<size, big_endian>* object,
1312                          const unsigned char* symbols,
1313                          off_t symbols_size,
1314                          unsigned int shndx,
1315                          unsigned int reloc_shndx,
1316                          unsigned int reloc_type)
1317 {
1318   if (this->gdb_index_data_ == NULL)
1319     {
1320       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1321                                                        elfcpp::SHT_PROGBITS, 0,
1322                                                        false, ORDER_INVALID,
1323                                                        false);
1324       if (os == NULL)
1325         return;
1326
1327       this->gdb_index_data_ = new Gdb_index(os);
1328       os->add_output_section_data(this->gdb_index_data_);
1329       os->set_after_input_sections();
1330     }
1331
1332   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1333                                          symbols_size, shndx, reloc_shndx,
1334                                          reloc_type);
1335 }
1336
1337 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1338 // the output section.
1339
1340 Output_section*
1341 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1342                                 elfcpp::Elf_Xword flags,
1343                                 Output_section_data* posd,
1344                                 Output_section_order order, bool is_relro)
1345 {
1346   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1347                                                    false, order, is_relro);
1348   if (os != NULL)
1349     os->add_output_section_data(posd);
1350   return os;
1351 }
1352
1353 // Map section flags to segment flags.
1354
1355 elfcpp::Elf_Word
1356 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1357 {
1358   elfcpp::Elf_Word ret = elfcpp::PF_R;
1359   if ((flags & elfcpp::SHF_WRITE) != 0)
1360     ret |= elfcpp::PF_W;
1361   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1362     ret |= elfcpp::PF_X;
1363   return ret;
1364 }
1365
1366 // Make a new Output_section, and attach it to segments as
1367 // appropriate.  ORDER is the order in which this section should
1368 // appear in the output segment.  IS_RELRO is true if this is a relro
1369 // (read-only after relocations) section.
1370
1371 Output_section*
1372 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1373                             elfcpp::Elf_Xword flags,
1374                             Output_section_order order, bool is_relro)
1375 {
1376   Output_section* os;
1377   if ((flags & elfcpp::SHF_ALLOC) == 0
1378       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1379       && is_compressible_debug_section(name))
1380     os = new Output_compressed_section(&parameters->options(), name, type,
1381                                        flags);
1382   else if ((flags & elfcpp::SHF_ALLOC) == 0
1383            && parameters->options().strip_debug_non_line()
1384            && strcmp(".debug_abbrev", name) == 0)
1385     {
1386       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1387           name, type, flags);
1388       if (this->debug_info_)
1389         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1390     }
1391   else if ((flags & elfcpp::SHF_ALLOC) == 0
1392            && parameters->options().strip_debug_non_line()
1393            && strcmp(".debug_info", name) == 0)
1394     {
1395       os = this->debug_info_ = new Output_reduced_debug_info_section(
1396           name, type, flags);
1397       if (this->debug_abbrev_)
1398         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1399     }
1400   else
1401     {
1402       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1403       // not have correct section types.  Force them here.
1404       if (type == elfcpp::SHT_PROGBITS)
1405         {
1406           if (is_prefix_of(".init_array", name))
1407             type = elfcpp::SHT_INIT_ARRAY;
1408           else if (is_prefix_of(".preinit_array", name))
1409             type = elfcpp::SHT_PREINIT_ARRAY;
1410           else if (is_prefix_of(".fini_array", name))
1411             type = elfcpp::SHT_FINI_ARRAY;
1412         }
1413
1414       // FIXME: const_cast is ugly.
1415       Target* target = const_cast<Target*>(&parameters->target());
1416       os = target->make_output_section(name, type, flags);
1417     }
1418
1419   // With -z relro, we have to recognize the special sections by name.
1420   // There is no other way.
1421   bool is_relro_local = false;
1422   if (!this->script_options_->saw_sections_clause()
1423       && parameters->options().relro()
1424       && (flags & elfcpp::SHF_ALLOC) != 0
1425       && (flags & elfcpp::SHF_WRITE) != 0)
1426     {
1427       if (type == elfcpp::SHT_PROGBITS)
1428         {
1429           if (strcmp(name, ".data.rel.ro") == 0)
1430             is_relro = true;
1431           else if (strcmp(name, ".data.rel.ro.local") == 0)
1432             {
1433               is_relro = true;
1434               is_relro_local = true;
1435             }
1436           else if (strcmp(name, ".ctors") == 0
1437                    || strcmp(name, ".dtors") == 0
1438                    || strcmp(name, ".jcr") == 0)
1439             is_relro = true;
1440         }
1441       else if (type == elfcpp::SHT_INIT_ARRAY
1442                || type == elfcpp::SHT_FINI_ARRAY
1443                || type == elfcpp::SHT_PREINIT_ARRAY)
1444         is_relro = true;
1445     }
1446
1447   if (is_relro)
1448     os->set_is_relro();
1449
1450   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1451     order = this->default_section_order(os, is_relro_local);
1452
1453   os->set_order(order);
1454
1455   parameters->target().new_output_section(os);
1456
1457   this->section_list_.push_back(os);
1458
1459   // The GNU linker by default sorts some sections by priority, so we
1460   // do the same.  We need to know that this might happen before we
1461   // attach any input sections.
1462   if (!this->script_options_->saw_sections_clause()
1463       && !parameters->options().relocatable()
1464       && (strcmp(name, ".init_array") == 0
1465           || strcmp(name, ".fini_array") == 0
1466           || (!parameters->options().ctors_in_init_array()
1467               && (strcmp(name, ".ctors") == 0
1468                   || strcmp(name, ".dtors") == 0))))
1469     os->set_may_sort_attached_input_sections();
1470
1471   // Check for .stab*str sections, as .stab* sections need to link to
1472   // them.
1473   if (type == elfcpp::SHT_STRTAB
1474       && !this->have_stabstr_section_
1475       && strncmp(name, ".stab", 5) == 0
1476       && strcmp(name + strlen(name) - 3, "str") == 0)
1477     this->have_stabstr_section_ = true;
1478
1479   // During a full incremental link, we add patch space to most
1480   // PROGBITS and NOBITS sections.  Flag those that may be
1481   // arbitrarily padded.
1482   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1483       && order != ORDER_INTERP
1484       && order != ORDER_INIT
1485       && order != ORDER_PLT
1486       && order != ORDER_FINI
1487       && order != ORDER_RELRO_LAST
1488       && order != ORDER_NON_RELRO_FIRST
1489       && strcmp(name, ".eh_frame") != 0
1490       && strcmp(name, ".ctors") != 0
1491       && strcmp(name, ".dtors") != 0
1492       && strcmp(name, ".jcr") != 0)
1493     {
1494       os->set_is_patch_space_allowed();
1495
1496       // Certain sections require "holes" to be filled with
1497       // specific fill patterns.  These fill patterns may have
1498       // a minimum size, so we must prevent allocations from the
1499       // free list that leave a hole smaller than the minimum.
1500       if (strcmp(name, ".debug_info") == 0)
1501         os->set_free_space_fill(new Output_fill_debug_info(false));
1502       else if (strcmp(name, ".debug_types") == 0)
1503         os->set_free_space_fill(new Output_fill_debug_info(true));
1504       else if (strcmp(name, ".debug_line") == 0)
1505         os->set_free_space_fill(new Output_fill_debug_line());
1506     }
1507
1508   // If we have already attached the sections to segments, then we
1509   // need to attach this one now.  This happens for sections created
1510   // directly by the linker.
1511   if (this->sections_are_attached_)
1512     this->attach_section_to_segment(&parameters->target(), os);
1513
1514   return os;
1515 }
1516
1517 // Return the default order in which a section should be placed in an
1518 // output segment.  This function captures a lot of the ideas in
1519 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1520 // linker created section is normally set when the section is created;
1521 // this function is used for input sections.
1522
1523 Output_section_order
1524 Layout::default_section_order(Output_section* os, bool is_relro_local)
1525 {
1526   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1527   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1528   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1529   bool is_bss = false;
1530
1531   switch (os->type())
1532     {
1533     default:
1534     case elfcpp::SHT_PROGBITS:
1535       break;
1536     case elfcpp::SHT_NOBITS:
1537       is_bss = true;
1538       break;
1539     case elfcpp::SHT_RELA:
1540     case elfcpp::SHT_REL:
1541       if (!is_write)
1542         return ORDER_DYNAMIC_RELOCS;
1543       break;
1544     case elfcpp::SHT_HASH:
1545     case elfcpp::SHT_DYNAMIC:
1546     case elfcpp::SHT_SHLIB:
1547     case elfcpp::SHT_DYNSYM:
1548     case elfcpp::SHT_GNU_HASH:
1549     case elfcpp::SHT_GNU_verdef:
1550     case elfcpp::SHT_GNU_verneed:
1551     case elfcpp::SHT_GNU_versym:
1552       if (!is_write)
1553         return ORDER_DYNAMIC_LINKER;
1554       break;
1555     case elfcpp::SHT_NOTE:
1556       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1557     }
1558
1559   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1560     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1561
1562   if (!is_bss && !is_write)
1563     {
1564       if (is_execinstr)
1565         {
1566           if (strcmp(os->name(), ".init") == 0)
1567             return ORDER_INIT;
1568           else if (strcmp(os->name(), ".fini") == 0)
1569             return ORDER_FINI;
1570         }
1571       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1572     }
1573
1574   if (os->is_relro())
1575     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1576
1577   if (os->is_small_section())
1578     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1579   if (os->is_large_section())
1580     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1581
1582   return is_bss ? ORDER_BSS : ORDER_DATA;
1583 }
1584
1585 // Attach output sections to segments.  This is called after we have
1586 // seen all the input sections.
1587
1588 void
1589 Layout::attach_sections_to_segments(const Target* target)
1590 {
1591   for (Section_list::iterator p = this->section_list_.begin();
1592        p != this->section_list_.end();
1593        ++p)
1594     this->attach_section_to_segment(target, *p);
1595
1596   this->sections_are_attached_ = true;
1597 }
1598
1599 // Attach an output section to a segment.
1600
1601 void
1602 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1603 {
1604   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1605     this->unattached_section_list_.push_back(os);
1606   else
1607     this->attach_allocated_section_to_segment(target, os);
1608 }
1609
1610 // Attach an allocated output section to a segment.
1611
1612 void
1613 Layout::attach_allocated_section_to_segment(const Target* target,
1614                                             Output_section* os)
1615 {
1616   elfcpp::Elf_Xword flags = os->flags();
1617   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1618
1619   if (parameters->options().relocatable())
1620     return;
1621
1622   // If we have a SECTIONS clause, we can't handle the attachment to
1623   // segments until after we've seen all the sections.
1624   if (this->script_options_->saw_sections_clause())
1625     return;
1626
1627   gold_assert(!this->script_options_->saw_phdrs_clause());
1628
1629   // This output section goes into a PT_LOAD segment.
1630
1631   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1632
1633   // Check for --section-start.
1634   uint64_t addr;
1635   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1636
1637   // In general the only thing we really care about for PT_LOAD
1638   // segments is whether or not they are writable or executable,
1639   // so that is how we search for them.
1640   // Large data sections also go into their own PT_LOAD segment.
1641   // People who need segments sorted on some other basis will
1642   // have to use a linker script.
1643
1644   Segment_list::const_iterator p;
1645   for (p = this->segment_list_.begin();
1646        p != this->segment_list_.end();
1647        ++p)
1648     {
1649       if ((*p)->type() != elfcpp::PT_LOAD)
1650         continue;
1651       if (!parameters->options().omagic()
1652           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1653         continue;
1654       if ((target->isolate_execinstr() || parameters->options().rosegment())
1655           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1656         continue;
1657       // If -Tbss was specified, we need to separate the data and BSS
1658       // segments.
1659       if (parameters->options().user_set_Tbss())
1660         {
1661           if ((os->type() == elfcpp::SHT_NOBITS)
1662               == (*p)->has_any_data_sections())
1663             continue;
1664         }
1665       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1666         continue;
1667
1668       if (is_address_set)
1669         {
1670           if ((*p)->are_addresses_set())
1671             continue;
1672
1673           (*p)->add_initial_output_data(os);
1674           (*p)->update_flags_for_output_section(seg_flags);
1675           (*p)->set_addresses(addr, addr);
1676           break;
1677         }
1678
1679       (*p)->add_output_section_to_load(this, os, seg_flags);
1680       break;
1681     }
1682
1683   if (p == this->segment_list_.end())
1684     {
1685       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1686                                                        seg_flags);
1687       if (os->is_large_data_section())
1688         oseg->set_is_large_data_segment();
1689       oseg->add_output_section_to_load(this, os, seg_flags);
1690       if (is_address_set)
1691         oseg->set_addresses(addr, addr);
1692     }
1693
1694   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1695   // segment.
1696   if (os->type() == elfcpp::SHT_NOTE)
1697     {
1698       // See if we already have an equivalent PT_NOTE segment.
1699       for (p = this->segment_list_.begin();
1700            p != segment_list_.end();
1701            ++p)
1702         {
1703           if ((*p)->type() == elfcpp::PT_NOTE
1704               && (((*p)->flags() & elfcpp::PF_W)
1705                   == (seg_flags & elfcpp::PF_W)))
1706             {
1707               (*p)->add_output_section_to_nonload(os, seg_flags);
1708               break;
1709             }
1710         }
1711
1712       if (p == this->segment_list_.end())
1713         {
1714           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1715                                                            seg_flags);
1716           oseg->add_output_section_to_nonload(os, seg_flags);
1717         }
1718     }
1719
1720   // If we see a loadable SHF_TLS section, we create a PT_TLS
1721   // segment.  There can only be one such segment.
1722   if ((flags & elfcpp::SHF_TLS) != 0)
1723     {
1724       if (this->tls_segment_ == NULL)
1725         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1726       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1727     }
1728
1729   // If -z relro is in effect, and we see a relro section, we create a
1730   // PT_GNU_RELRO segment.  There can only be one such segment.
1731   if (os->is_relro() && parameters->options().relro())
1732     {
1733       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1734       if (this->relro_segment_ == NULL)
1735         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1736       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1737     }
1738
1739   // If we see a section named .interp, put it into a PT_INTERP
1740   // segment.  This seems broken to me, but this is what GNU ld does,
1741   // and glibc expects it.
1742   if (strcmp(os->name(), ".interp") == 0
1743       && !this->script_options_->saw_phdrs_clause())
1744     {
1745       if (this->interp_segment_ == NULL)
1746         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1747       else
1748         gold_warning(_("multiple '.interp' sections in input files "
1749                        "may cause confusing PT_INTERP segment"));
1750       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1751     }
1752 }
1753
1754 // Make an output section for a script.
1755
1756 Output_section*
1757 Layout::make_output_section_for_script(
1758     const char* name,
1759     Script_sections::Section_type section_type)
1760 {
1761   name = this->namepool_.add(name, false, NULL);
1762   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1763   if (section_type == Script_sections::ST_NOLOAD)
1764     sh_flags = 0;
1765   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1766                                                  sh_flags, ORDER_INVALID,
1767                                                  false);
1768   os->set_found_in_sections_clause();
1769   if (section_type == Script_sections::ST_NOLOAD)
1770     os->set_is_noload();
1771   return os;
1772 }
1773
1774 // Return the number of segments we expect to see.
1775
1776 size_t
1777 Layout::expected_segment_count() const
1778 {
1779   size_t ret = this->segment_list_.size();
1780
1781   // If we didn't see a SECTIONS clause in a linker script, we should
1782   // already have the complete list of segments.  Otherwise we ask the
1783   // SECTIONS clause how many segments it expects, and add in the ones
1784   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1785
1786   if (!this->script_options_->saw_sections_clause())
1787     return ret;
1788   else
1789     {
1790       const Script_sections* ss = this->script_options_->script_sections();
1791       return ret + ss->expected_segment_count(this);
1792     }
1793 }
1794
1795 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1796 // is whether we saw a .note.GNU-stack section in the object file.
1797 // GNU_STACK_FLAGS is the section flags.  The flags give the
1798 // protection required for stack memory.  We record this in an
1799 // executable as a PT_GNU_STACK segment.  If an object file does not
1800 // have a .note.GNU-stack segment, we must assume that it is an old
1801 // object.  On some targets that will force an executable stack.
1802
1803 void
1804 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1805                          const Object* obj)
1806 {
1807   if (!seen_gnu_stack)
1808     {
1809       this->input_without_gnu_stack_note_ = true;
1810       if (parameters->options().warn_execstack()
1811           && parameters->target().is_default_stack_executable())
1812         gold_warning(_("%s: missing .note.GNU-stack section"
1813                        " implies executable stack"),
1814                      obj->name().c_str());
1815     }
1816   else
1817     {
1818       this->input_with_gnu_stack_note_ = true;
1819       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1820         {
1821           this->input_requires_executable_stack_ = true;
1822           if (parameters->options().warn_execstack()
1823               || parameters->options().is_stack_executable())
1824             gold_warning(_("%s: requires executable stack"),
1825                          obj->name().c_str());
1826         }
1827     }
1828 }
1829
1830 // Create automatic note sections.
1831
1832 void
1833 Layout::create_notes()
1834 {
1835   this->create_gold_note();
1836   this->create_executable_stack_info();
1837   this->create_build_id();
1838 }
1839
1840 // Create the dynamic sections which are needed before we read the
1841 // relocs.
1842
1843 void
1844 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1845 {
1846   if (parameters->doing_static_link())
1847     return;
1848
1849   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1850                                                        elfcpp::SHT_DYNAMIC,
1851                                                        (elfcpp::SHF_ALLOC
1852                                                         | elfcpp::SHF_WRITE),
1853                                                        false, ORDER_RELRO,
1854                                                        true);
1855
1856   // A linker script may discard .dynamic, so check for NULL.
1857   if (this->dynamic_section_ != NULL)
1858     {
1859       this->dynamic_symbol_ =
1860         symtab->define_in_output_data("_DYNAMIC", NULL,
1861                                       Symbol_table::PREDEFINED,
1862                                       this->dynamic_section_, 0, 0,
1863                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1864                                       elfcpp::STV_HIDDEN, 0, false, false);
1865
1866       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1867
1868       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1869     }
1870 }
1871
1872 // For each output section whose name can be represented as C symbol,
1873 // define __start and __stop symbols for the section.  This is a GNU
1874 // extension.
1875
1876 void
1877 Layout::define_section_symbols(Symbol_table* symtab)
1878 {
1879   for (Section_list::const_iterator p = this->section_list_.begin();
1880        p != this->section_list_.end();
1881        ++p)
1882     {
1883       const char* const name = (*p)->name();
1884       if (is_cident(name))
1885         {
1886           const std::string name_string(name);
1887           const std::string start_name(cident_section_start_prefix
1888                                        + name_string);
1889           const std::string stop_name(cident_section_stop_prefix
1890                                       + name_string);
1891
1892           symtab->define_in_output_data(start_name.c_str(),
1893                                         NULL, // version
1894                                         Symbol_table::PREDEFINED,
1895                                         *p,
1896                                         0, // value
1897                                         0, // symsize
1898                                         elfcpp::STT_NOTYPE,
1899                                         elfcpp::STB_GLOBAL,
1900                                         elfcpp::STV_DEFAULT,
1901                                         0, // nonvis
1902                                         false, // offset_is_from_end
1903                                         true); // only_if_ref
1904
1905           symtab->define_in_output_data(stop_name.c_str(),
1906                                         NULL, // version
1907                                         Symbol_table::PREDEFINED,
1908                                         *p,
1909                                         0, // value
1910                                         0, // symsize
1911                                         elfcpp::STT_NOTYPE,
1912                                         elfcpp::STB_GLOBAL,
1913                                         elfcpp::STV_DEFAULT,
1914                                         0, // nonvis
1915                                         true, // offset_is_from_end
1916                                         true); // only_if_ref
1917         }
1918     }
1919 }
1920
1921 // Define symbols for group signatures.
1922
1923 void
1924 Layout::define_group_signatures(Symbol_table* symtab)
1925 {
1926   for (Group_signatures::iterator p = this->group_signatures_.begin();
1927        p != this->group_signatures_.end();
1928        ++p)
1929     {
1930       Symbol* sym = symtab->lookup(p->signature, NULL);
1931       if (sym != NULL)
1932         p->section->set_info_symndx(sym);
1933       else
1934         {
1935           // Force the name of the group section to the group
1936           // signature, and use the group's section symbol as the
1937           // signature symbol.
1938           if (strcmp(p->section->name(), p->signature) != 0)
1939             {
1940               const char* name = this->namepool_.add(p->signature,
1941                                                      true, NULL);
1942               p->section->set_name(name);
1943             }
1944           p->section->set_needs_symtab_index();
1945           p->section->set_info_section_symndx(p->section);
1946         }
1947     }
1948
1949   this->group_signatures_.clear();
1950 }
1951
1952 // Find the first read-only PT_LOAD segment, creating one if
1953 // necessary.
1954
1955 Output_segment*
1956 Layout::find_first_load_seg(const Target* target)
1957 {
1958   Output_segment* best = NULL;
1959   for (Segment_list::const_iterator p = this->segment_list_.begin();
1960        p != this->segment_list_.end();
1961        ++p)
1962     {
1963       if ((*p)->type() == elfcpp::PT_LOAD
1964           && ((*p)->flags() & elfcpp::PF_R) != 0
1965           && (parameters->options().omagic()
1966               || ((*p)->flags() & elfcpp::PF_W) == 0)
1967           && (!target->isolate_execinstr()
1968               || ((*p)->flags() & elfcpp::PF_X) == 0))
1969         {
1970           if (best == NULL || this->segment_precedes(*p, best))
1971             best = *p;
1972         }
1973     }
1974   if (best != NULL)
1975     return best;
1976
1977   gold_assert(!this->script_options_->saw_phdrs_clause());
1978
1979   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1980                                                        elfcpp::PF_R);
1981   return load_seg;
1982 }
1983
1984 // Save states of all current output segments.  Store saved states
1985 // in SEGMENT_STATES.
1986
1987 void
1988 Layout::save_segments(Segment_states* segment_states)
1989 {
1990   for (Segment_list::const_iterator p = this->segment_list_.begin();
1991        p != this->segment_list_.end();
1992        ++p)
1993     {
1994       Output_segment* segment = *p;
1995       // Shallow copy.
1996       Output_segment* copy = new Output_segment(*segment);
1997       (*segment_states)[segment] = copy;
1998     }
1999 }
2000
2001 // Restore states of output segments and delete any segment not found in
2002 // SEGMENT_STATES.
2003
2004 void
2005 Layout::restore_segments(const Segment_states* segment_states)
2006 {
2007   // Go through the segment list and remove any segment added in the
2008   // relaxation loop.
2009   this->tls_segment_ = NULL;
2010   this->relro_segment_ = NULL;
2011   Segment_list::iterator list_iter = this->segment_list_.begin();
2012   while (list_iter != this->segment_list_.end())
2013     {
2014       Output_segment* segment = *list_iter;
2015       Segment_states::const_iterator states_iter =
2016           segment_states->find(segment);
2017       if (states_iter != segment_states->end())
2018         {
2019           const Output_segment* copy = states_iter->second;
2020           // Shallow copy to restore states.
2021           *segment = *copy;
2022
2023           // Also fix up TLS and RELRO segment pointers as appropriate.
2024           if (segment->type() == elfcpp::PT_TLS)
2025             this->tls_segment_ = segment;
2026           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2027             this->relro_segment_ = segment;
2028
2029           ++list_iter;
2030         }
2031       else
2032         {
2033           list_iter = this->segment_list_.erase(list_iter);
2034           // This is a segment created during section layout.  It should be
2035           // safe to remove it since we should have removed all pointers to it.
2036           delete segment;
2037         }
2038     }
2039 }
2040
2041 // Clean up after relaxation so that sections can be laid out again.
2042
2043 void
2044 Layout::clean_up_after_relaxation()
2045 {
2046   // Restore the segments to point state just prior to the relaxation loop.
2047   Script_sections* script_section = this->script_options_->script_sections();
2048   script_section->release_segments();
2049   this->restore_segments(this->segment_states_);
2050
2051   // Reset section addresses and file offsets
2052   for (Section_list::iterator p = this->section_list_.begin();
2053        p != this->section_list_.end();
2054        ++p)
2055     {
2056       (*p)->restore_states();
2057
2058       // If an input section changes size because of relaxation,
2059       // we need to adjust the section offsets of all input sections.
2060       // after such a section.
2061       if ((*p)->section_offsets_need_adjustment())
2062         (*p)->adjust_section_offsets();
2063
2064       (*p)->reset_address_and_file_offset();
2065     }
2066
2067   // Reset special output object address and file offsets.
2068   for (Data_list::iterator p = this->special_output_list_.begin();
2069        p != this->special_output_list_.end();
2070        ++p)
2071     (*p)->reset_address_and_file_offset();
2072
2073   // A linker script may have created some output section data objects.
2074   // They are useless now.
2075   for (Output_section_data_list::const_iterator p =
2076          this->script_output_section_data_list_.begin();
2077        p != this->script_output_section_data_list_.end();
2078        ++p)
2079     delete *p;
2080   this->script_output_section_data_list_.clear();
2081 }
2082
2083 // Prepare for relaxation.
2084
2085 void
2086 Layout::prepare_for_relaxation()
2087 {
2088   // Create an relaxation debug check if in debugging mode.
2089   if (is_debugging_enabled(DEBUG_RELAXATION))
2090     this->relaxation_debug_check_ = new Relaxation_debug_check();
2091
2092   // Save segment states.
2093   this->segment_states_ = new Segment_states();
2094   this->save_segments(this->segment_states_);
2095
2096   for(Section_list::const_iterator p = this->section_list_.begin();
2097       p != this->section_list_.end();
2098       ++p)
2099     (*p)->save_states();
2100
2101   if (is_debugging_enabled(DEBUG_RELAXATION))
2102     this->relaxation_debug_check_->check_output_data_for_reset_values(
2103         this->section_list_, this->special_output_list_);
2104
2105   // Also enable recording of output section data from scripts.
2106   this->record_output_section_data_from_script_ = true;
2107 }
2108
2109 // Relaxation loop body:  If target has no relaxation, this runs only once
2110 // Otherwise, the target relaxation hook is called at the end of
2111 // each iteration.  If the hook returns true, it means re-layout of
2112 // section is required.
2113 //
2114 // The number of segments created by a linking script without a PHDRS
2115 // clause may be affected by section sizes and alignments.  There is
2116 // a remote chance that relaxation causes different number of PT_LOAD
2117 // segments are created and sections are attached to different segments.
2118 // Therefore, we always throw away all segments created during section
2119 // layout.  In order to be able to restart the section layout, we keep
2120 // a copy of the segment list right before the relaxation loop and use
2121 // that to restore the segments.
2122 //
2123 // PASS is the current relaxation pass number.
2124 // SYMTAB is a symbol table.
2125 // PLOAD_SEG is the address of a pointer for the load segment.
2126 // PHDR_SEG is a pointer to the PHDR segment.
2127 // SEGMENT_HEADERS points to the output segment header.
2128 // FILE_HEADER points to the output file header.
2129 // PSHNDX is the address to store the output section index.
2130
2131 off_t inline
2132 Layout::relaxation_loop_body(
2133     int pass,
2134     Target* target,
2135     Symbol_table* symtab,
2136     Output_segment** pload_seg,
2137     Output_segment* phdr_seg,
2138     Output_segment_headers* segment_headers,
2139     Output_file_header* file_header,
2140     unsigned int* pshndx)
2141 {
2142   // If this is not the first iteration, we need to clean up after
2143   // relaxation so that we can lay out the sections again.
2144   if (pass != 0)
2145     this->clean_up_after_relaxation();
2146
2147   // If there is a SECTIONS clause, put all the input sections into
2148   // the required order.
2149   Output_segment* load_seg;
2150   if (this->script_options_->saw_sections_clause())
2151     load_seg = this->set_section_addresses_from_script(symtab);
2152   else if (parameters->options().relocatable())
2153     load_seg = NULL;
2154   else
2155     load_seg = this->find_first_load_seg(target);
2156
2157   if (parameters->options().oformat_enum()
2158       != General_options::OBJECT_FORMAT_ELF)
2159     load_seg = NULL;
2160
2161   // If the user set the address of the text segment, that may not be
2162   // compatible with putting the segment headers and file headers into
2163   // that segment.
2164   if (parameters->options().user_set_Ttext()
2165       && parameters->options().Ttext() % target->common_pagesize() != 0)
2166     {
2167       load_seg = NULL;
2168       phdr_seg = NULL;
2169     }
2170
2171   gold_assert(phdr_seg == NULL
2172               || load_seg != NULL
2173               || this->script_options_->saw_sections_clause());
2174
2175   // If the address of the load segment we found has been set by
2176   // --section-start rather than by a script, then adjust the VMA and
2177   // LMA downward if possible to include the file and section headers.
2178   uint64_t header_gap = 0;
2179   if (load_seg != NULL
2180       && load_seg->are_addresses_set()
2181       && !this->script_options_->saw_sections_clause()
2182       && !parameters->options().relocatable())
2183     {
2184       file_header->finalize_data_size();
2185       segment_headers->finalize_data_size();
2186       size_t sizeof_headers = (file_header->data_size()
2187                                + segment_headers->data_size());
2188       const uint64_t abi_pagesize = target->abi_pagesize();
2189       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2190       hdr_paddr &= ~(abi_pagesize - 1);
2191       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2192       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2193         load_seg = NULL;
2194       else
2195         {
2196           load_seg->set_addresses(load_seg->vaddr() - subtract,
2197                                   load_seg->paddr() - subtract);
2198           header_gap = subtract - sizeof_headers;
2199         }
2200     }
2201
2202   // Lay out the segment headers.
2203   if (!parameters->options().relocatable())
2204     {
2205       gold_assert(segment_headers != NULL);
2206       if (header_gap != 0 && load_seg != NULL)
2207         {
2208           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2209           load_seg->add_initial_output_data(z);
2210         }
2211       if (load_seg != NULL)
2212         load_seg->add_initial_output_data(segment_headers);
2213       if (phdr_seg != NULL)
2214         phdr_seg->add_initial_output_data(segment_headers);
2215     }
2216
2217   // Lay out the file header.
2218   if (load_seg != NULL)
2219     load_seg->add_initial_output_data(file_header);
2220
2221   if (this->script_options_->saw_phdrs_clause()
2222       && !parameters->options().relocatable())
2223     {
2224       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2225       // clause in a linker script.
2226       Script_sections* ss = this->script_options_->script_sections();
2227       ss->put_headers_in_phdrs(file_header, segment_headers);
2228     }
2229
2230   // We set the output section indexes in set_segment_offsets and
2231   // set_section_indexes.
2232   *pshndx = 1;
2233
2234   // Set the file offsets of all the segments, and all the sections
2235   // they contain.
2236   off_t off;
2237   if (!parameters->options().relocatable())
2238     off = this->set_segment_offsets(target, load_seg, pshndx);
2239   else
2240     off = this->set_relocatable_section_offsets(file_header, pshndx);
2241
2242    // Verify that the dummy relaxation does not change anything.
2243   if (is_debugging_enabled(DEBUG_RELAXATION))
2244     {
2245       if (pass == 0)
2246         this->relaxation_debug_check_->read_sections(this->section_list_);
2247       else
2248         this->relaxation_debug_check_->verify_sections(this->section_list_);
2249     }
2250
2251   *pload_seg = load_seg;
2252   return off;
2253 }
2254
2255 // Search the list of patterns and find the postion of the given section
2256 // name in the output section.  If the section name matches a glob
2257 // pattern and a non-glob name, then the non-glob position takes
2258 // precedence.  Return 0 if no match is found.
2259
2260 unsigned int
2261 Layout::find_section_order_index(const std::string& section_name)
2262 {
2263   Unordered_map<std::string, unsigned int>::iterator map_it;
2264   map_it = this->input_section_position_.find(section_name);
2265   if (map_it != this->input_section_position_.end())
2266     return map_it->second;
2267
2268   // Absolute match failed.  Linear search the glob patterns.
2269   std::vector<std::string>::iterator it;
2270   for (it = this->input_section_glob_.begin();
2271        it != this->input_section_glob_.end();
2272        ++it)
2273     {
2274        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2275          {
2276            map_it = this->input_section_position_.find(*it);
2277            gold_assert(map_it != this->input_section_position_.end());
2278            return map_it->second;
2279          }
2280     }
2281   return 0;
2282 }
2283
2284 // Read the sequence of input sections from the file specified with
2285 // option --section-ordering-file.
2286
2287 void
2288 Layout::read_layout_from_file()
2289 {
2290   const char* filename = parameters->options().section_ordering_file();
2291   std::ifstream in;
2292   std::string line;
2293
2294   in.open(filename);
2295   if (!in)
2296     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2297                filename, strerror(errno));
2298
2299   std::getline(in, line);   // this chops off the trailing \n, if any
2300   unsigned int position = 1;
2301   this->set_section_ordering_specified();
2302
2303   while (in)
2304     {
2305       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2306         line.resize(line.length() - 1);
2307       // Ignore comments, beginning with '#'
2308       if (line[0] == '#')
2309         {
2310           std::getline(in, line);
2311           continue;
2312         }
2313       this->input_section_position_[line] = position;
2314       // Store all glob patterns in a vector.
2315       if (is_wildcard_string(line.c_str()))
2316         this->input_section_glob_.push_back(line);
2317       position++;
2318       std::getline(in, line);
2319     }
2320 }
2321
2322 // Finalize the layout.  When this is called, we have created all the
2323 // output sections and all the output segments which are based on
2324 // input sections.  We have several things to do, and we have to do
2325 // them in the right order, so that we get the right results correctly
2326 // and efficiently.
2327
2328 // 1) Finalize the list of output segments and create the segment
2329 // table header.
2330
2331 // 2) Finalize the dynamic symbol table and associated sections.
2332
2333 // 3) Determine the final file offset of all the output segments.
2334
2335 // 4) Determine the final file offset of all the SHF_ALLOC output
2336 // sections.
2337
2338 // 5) Create the symbol table sections and the section name table
2339 // section.
2340
2341 // 6) Finalize the symbol table: set symbol values to their final
2342 // value and make a final determination of which symbols are going
2343 // into the output symbol table.
2344
2345 // 7) Create the section table header.
2346
2347 // 8) Determine the final file offset of all the output sections which
2348 // are not SHF_ALLOC, including the section table header.
2349
2350 // 9) Finalize the ELF file header.
2351
2352 // This function returns the size of the output file.
2353
2354 off_t
2355 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2356                  Target* target, const Task* task)
2357 {
2358   target->finalize_sections(this, input_objects, symtab);
2359
2360   this->count_local_symbols(task, input_objects);
2361
2362   this->link_stabs_sections();
2363
2364   Output_segment* phdr_seg = NULL;
2365   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2366     {
2367       // There was a dynamic object in the link.  We need to create
2368       // some information for the dynamic linker.
2369
2370       // Create the PT_PHDR segment which will hold the program
2371       // headers.
2372       if (!this->script_options_->saw_phdrs_clause())
2373         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2374
2375       // Create the dynamic symbol table, including the hash table.
2376       Output_section* dynstr;
2377       std::vector<Symbol*> dynamic_symbols;
2378       unsigned int local_dynamic_count;
2379       Versions versions(*this->script_options()->version_script_info(),
2380                         &this->dynpool_);
2381       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2382                                   &local_dynamic_count, &dynamic_symbols,
2383                                   &versions);
2384
2385       // Create the .interp section to hold the name of the
2386       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2387       // if we saw a .interp section in an input file.
2388       if ((!parameters->options().shared()
2389            || parameters->options().dynamic_linker() != NULL)
2390           && this->interp_segment_ == NULL)
2391         this->create_interp(target);
2392
2393       // Finish the .dynamic section to hold the dynamic data, and put
2394       // it in a PT_DYNAMIC segment.
2395       this->finish_dynamic_section(input_objects, symtab);
2396
2397       // We should have added everything we need to the dynamic string
2398       // table.
2399       this->dynpool_.set_string_offsets();
2400
2401       // Create the version sections.  We can't do this until the
2402       // dynamic string table is complete.
2403       this->create_version_sections(&versions, symtab, local_dynamic_count,
2404                                     dynamic_symbols, dynstr);
2405
2406       // Set the size of the _DYNAMIC symbol.  We can't do this until
2407       // after we call create_version_sections.
2408       this->set_dynamic_symbol_size(symtab);
2409     }
2410
2411   // Create segment headers.
2412   Output_segment_headers* segment_headers =
2413     (parameters->options().relocatable()
2414      ? NULL
2415      : new Output_segment_headers(this->segment_list_));
2416
2417   // Lay out the file header.
2418   Output_file_header* file_header = new Output_file_header(target, symtab,
2419                                                            segment_headers);
2420
2421   this->special_output_list_.push_back(file_header);
2422   if (segment_headers != NULL)
2423     this->special_output_list_.push_back(segment_headers);
2424
2425   // Find approriate places for orphan output sections if we are using
2426   // a linker script.
2427   if (this->script_options_->saw_sections_clause())
2428     this->place_orphan_sections_in_script();
2429
2430   Output_segment* load_seg;
2431   off_t off;
2432   unsigned int shndx;
2433   int pass = 0;
2434
2435   // Take a snapshot of the section layout as needed.
2436   if (target->may_relax())
2437     this->prepare_for_relaxation();
2438
2439   // Run the relaxation loop to lay out sections.
2440   do
2441     {
2442       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2443                                        phdr_seg, segment_headers, file_header,
2444                                        &shndx);
2445       pass++;
2446     }
2447   while (target->may_relax()
2448          && target->relax(pass, input_objects, symtab, this, task));
2449
2450   // Set the file offsets of all the non-data sections we've seen so
2451   // far which don't have to wait for the input sections.  We need
2452   // this in order to finalize local symbols in non-allocated
2453   // sections.
2454   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2455
2456   // Set the section indexes of all unallocated sections seen so far,
2457   // in case any of them are somehow referenced by a symbol.
2458   shndx = this->set_section_indexes(shndx);
2459
2460   // Create the symbol table sections.
2461   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2462   if (!parameters->doing_static_link())
2463     this->assign_local_dynsym_offsets(input_objects);
2464
2465   // Process any symbol assignments from a linker script.  This must
2466   // be called after the symbol table has been finalized.
2467   this->script_options_->finalize_symbols(symtab, this);
2468
2469   // Create the incremental inputs sections.
2470   if (this->incremental_inputs_)
2471     {
2472       this->incremental_inputs_->finalize();
2473       this->create_incremental_info_sections(symtab);
2474     }
2475
2476   // Create the .shstrtab section.
2477   Output_section* shstrtab_section = this->create_shstrtab();
2478
2479   // Set the file offsets of the rest of the non-data sections which
2480   // don't have to wait for the input sections.
2481   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2482
2483   // Now that all sections have been created, set the section indexes
2484   // for any sections which haven't been done yet.
2485   shndx = this->set_section_indexes(shndx);
2486
2487   // Create the section table header.
2488   this->create_shdrs(shstrtab_section, &off);
2489
2490   // If there are no sections which require postprocessing, we can
2491   // handle the section names now, and avoid a resize later.
2492   if (!this->any_postprocessing_sections_)
2493     {
2494       off = this->set_section_offsets(off,
2495                                       POSTPROCESSING_SECTIONS_PASS);
2496       off =
2497           this->set_section_offsets(off,
2498                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2499     }
2500
2501   file_header->set_section_info(this->section_headers_, shstrtab_section);
2502
2503   // Now we know exactly where everything goes in the output file
2504   // (except for non-allocated sections which require postprocessing).
2505   Output_data::layout_complete();
2506
2507   this->output_file_size_ = off;
2508
2509   return off;
2510 }
2511
2512 // Create a note header following the format defined in the ELF ABI.
2513 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2514 // of the section to create, DESCSZ is the size of the descriptor.
2515 // ALLOCATE is true if the section should be allocated in memory.
2516 // This returns the new note section.  It sets *TRAILING_PADDING to
2517 // the number of trailing zero bytes required.
2518
2519 Output_section*
2520 Layout::create_note(const char* name, int note_type,
2521                     const char* section_name, size_t descsz,
2522                     bool allocate, size_t* trailing_padding)
2523 {
2524   // Authorities all agree that the values in a .note field should
2525   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2526   // they differ on what the alignment is for 64-bit binaries.
2527   // The GABI says unambiguously they take 8-byte alignment:
2528   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2529   // Other documentation says alignment should always be 4 bytes:
2530   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2531   // GNU ld and GNU readelf both support the latter (at least as of
2532   // version 2.16.91), and glibc always generates the latter for
2533   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2534   // here.
2535 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2536   const int size = parameters->target().get_size();
2537 #else
2538   const int size = 32;
2539 #endif
2540
2541   // The contents of the .note section.
2542   size_t namesz = strlen(name) + 1;
2543   size_t aligned_namesz = align_address(namesz, size / 8);
2544   size_t aligned_descsz = align_address(descsz, size / 8);
2545
2546   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2547
2548   unsigned char* buffer = new unsigned char[notehdrsz];
2549   memset(buffer, 0, notehdrsz);
2550
2551   bool is_big_endian = parameters->target().is_big_endian();
2552
2553   if (size == 32)
2554     {
2555       if (!is_big_endian)
2556         {
2557           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2558           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2559           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2560         }
2561       else
2562         {
2563           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2564           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2565           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2566         }
2567     }
2568   else if (size == 64)
2569     {
2570       if (!is_big_endian)
2571         {
2572           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2573           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2574           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2575         }
2576       else
2577         {
2578           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2579           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2580           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2581         }
2582     }
2583   else
2584     gold_unreachable();
2585
2586   memcpy(buffer + 3 * (size / 8), name, namesz);
2587
2588   elfcpp::Elf_Xword flags = 0;
2589   Output_section_order order = ORDER_INVALID;
2590   if (allocate)
2591     {
2592       flags = elfcpp::SHF_ALLOC;
2593       order = ORDER_RO_NOTE;
2594     }
2595   Output_section* os = this->choose_output_section(NULL, section_name,
2596                                                    elfcpp::SHT_NOTE,
2597                                                    flags, false, order, false);
2598   if (os == NULL)
2599     return NULL;
2600
2601   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2602                                                            size / 8,
2603                                                            "** note header");
2604   os->add_output_section_data(posd);
2605
2606   *trailing_padding = aligned_descsz - descsz;
2607
2608   return os;
2609 }
2610
2611 // For an executable or shared library, create a note to record the
2612 // version of gold used to create the binary.
2613
2614 void
2615 Layout::create_gold_note()
2616 {
2617   if (parameters->options().relocatable()
2618       || parameters->incremental_update())
2619     return;
2620
2621   std::string desc = std::string("gold ") + gold::get_version_string();
2622
2623   size_t trailing_padding;
2624   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2625                                          ".note.gnu.gold-version", desc.size(),
2626                                          false, &trailing_padding);
2627   if (os == NULL)
2628     return;
2629
2630   Output_section_data* posd = new Output_data_const(desc, 4);
2631   os->add_output_section_data(posd);
2632
2633   if (trailing_padding > 0)
2634     {
2635       posd = new Output_data_zero_fill(trailing_padding, 0);
2636       os->add_output_section_data(posd);
2637     }
2638 }
2639
2640 // Record whether the stack should be executable.  This can be set
2641 // from the command line using the -z execstack or -z noexecstack
2642 // options.  Otherwise, if any input file has a .note.GNU-stack
2643 // section with the SHF_EXECINSTR flag set, the stack should be
2644 // executable.  Otherwise, if at least one input file a
2645 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2646 // section, we use the target default for whether the stack should be
2647 // executable.  Otherwise, we don't generate a stack note.  When
2648 // generating a object file, we create a .note.GNU-stack section with
2649 // the appropriate marking.  When generating an executable or shared
2650 // library, we create a PT_GNU_STACK segment.
2651
2652 void
2653 Layout::create_executable_stack_info()
2654 {
2655   bool is_stack_executable;
2656   if (parameters->options().is_execstack_set())
2657     is_stack_executable = parameters->options().is_stack_executable();
2658   else if (!this->input_with_gnu_stack_note_)
2659     return;
2660   else
2661     {
2662       if (this->input_requires_executable_stack_)
2663         is_stack_executable = true;
2664       else if (this->input_without_gnu_stack_note_)
2665         is_stack_executable =
2666           parameters->target().is_default_stack_executable();
2667       else
2668         is_stack_executable = false;
2669     }
2670
2671   if (parameters->options().relocatable())
2672     {
2673       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2674       elfcpp::Elf_Xword flags = 0;
2675       if (is_stack_executable)
2676         flags |= elfcpp::SHF_EXECINSTR;
2677       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2678                                 ORDER_INVALID, false);
2679     }
2680   else
2681     {
2682       if (this->script_options_->saw_phdrs_clause())
2683         return;
2684       int flags = elfcpp::PF_R | elfcpp::PF_W;
2685       if (is_stack_executable)
2686         flags |= elfcpp::PF_X;
2687       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2688     }
2689 }
2690
2691 // If --build-id was used, set up the build ID note.
2692
2693 void
2694 Layout::create_build_id()
2695 {
2696   if (!parameters->options().user_set_build_id())
2697     return;
2698
2699   const char* style = parameters->options().build_id();
2700   if (strcmp(style, "none") == 0)
2701     return;
2702
2703   // Set DESCSZ to the size of the note descriptor.  When possible,
2704   // set DESC to the note descriptor contents.
2705   size_t descsz;
2706   std::string desc;
2707   if (strcmp(style, "md5") == 0)
2708     descsz = 128 / 8;
2709   else if (strcmp(style, "sha1") == 0)
2710     descsz = 160 / 8;
2711   else if (strcmp(style, "uuid") == 0)
2712     {
2713       const size_t uuidsz = 128 / 8;
2714
2715       char buffer[uuidsz];
2716       memset(buffer, 0, uuidsz);
2717
2718       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2719       if (descriptor < 0)
2720         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2721                    strerror(errno));
2722       else
2723         {
2724           ssize_t got = ::read(descriptor, buffer, uuidsz);
2725           release_descriptor(descriptor, true);
2726           if (got < 0)
2727             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2728           else if (static_cast<size_t>(got) != uuidsz)
2729             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2730                        uuidsz, got);
2731         }
2732
2733       desc.assign(buffer, uuidsz);
2734       descsz = uuidsz;
2735     }
2736   else if (strncmp(style, "0x", 2) == 0)
2737     {
2738       hex_init();
2739       const char* p = style + 2;
2740       while (*p != '\0')
2741         {
2742           if (hex_p(p[0]) && hex_p(p[1]))
2743             {
2744               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2745               desc += c;
2746               p += 2;
2747             }
2748           else if (*p == '-' || *p == ':')
2749             ++p;
2750           else
2751             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2752                        style);
2753         }
2754       descsz = desc.size();
2755     }
2756   else
2757     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2758
2759   // Create the note.
2760   size_t trailing_padding;
2761   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2762                                          ".note.gnu.build-id", descsz, true,
2763                                          &trailing_padding);
2764   if (os == NULL)
2765     return;
2766
2767   if (!desc.empty())
2768     {
2769       // We know the value already, so we fill it in now.
2770       gold_assert(desc.size() == descsz);
2771
2772       Output_section_data* posd = new Output_data_const(desc, 4);
2773       os->add_output_section_data(posd);
2774
2775       if (trailing_padding != 0)
2776         {
2777           posd = new Output_data_zero_fill(trailing_padding, 0);
2778           os->add_output_section_data(posd);
2779         }
2780     }
2781   else
2782     {
2783       // We need to compute a checksum after we have completed the
2784       // link.
2785       gold_assert(trailing_padding == 0);
2786       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2787       os->add_output_section_data(this->build_id_note_);
2788     }
2789 }
2790
2791 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2792 // field of the former should point to the latter.  I'm not sure who
2793 // started this, but the GNU linker does it, and some tools depend
2794 // upon it.
2795
2796 void
2797 Layout::link_stabs_sections()
2798 {
2799   if (!this->have_stabstr_section_)
2800     return;
2801
2802   for (Section_list::iterator p = this->section_list_.begin();
2803        p != this->section_list_.end();
2804        ++p)
2805     {
2806       if ((*p)->type() != elfcpp::SHT_STRTAB)
2807         continue;
2808
2809       const char* name = (*p)->name();
2810       if (strncmp(name, ".stab", 5) != 0)
2811         continue;
2812
2813       size_t len = strlen(name);
2814       if (strcmp(name + len - 3, "str") != 0)
2815         continue;
2816
2817       std::string stab_name(name, len - 3);
2818       Output_section* stab_sec;
2819       stab_sec = this->find_output_section(stab_name.c_str());
2820       if (stab_sec != NULL)
2821         stab_sec->set_link_section(*p);
2822     }
2823 }
2824
2825 // Create .gnu_incremental_inputs and related sections needed
2826 // for the next run of incremental linking to check what has changed.
2827
2828 void
2829 Layout::create_incremental_info_sections(Symbol_table* symtab)
2830 {
2831   Incremental_inputs* incr = this->incremental_inputs_;
2832
2833   gold_assert(incr != NULL);
2834
2835   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2836   incr->create_data_sections(symtab);
2837
2838   // Add the .gnu_incremental_inputs section.
2839   const char* incremental_inputs_name =
2840     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2841   Output_section* incremental_inputs_os =
2842     this->make_output_section(incremental_inputs_name,
2843                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2844                               ORDER_INVALID, false);
2845   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2846
2847   // Add the .gnu_incremental_symtab section.
2848   const char* incremental_symtab_name =
2849     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2850   Output_section* incremental_symtab_os =
2851     this->make_output_section(incremental_symtab_name,
2852                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2853                               ORDER_INVALID, false);
2854   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2855   incremental_symtab_os->set_entsize(4);
2856
2857   // Add the .gnu_incremental_relocs section.
2858   const char* incremental_relocs_name =
2859     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2860   Output_section* incremental_relocs_os =
2861     this->make_output_section(incremental_relocs_name,
2862                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2863                               ORDER_INVALID, false);
2864   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2865   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2866
2867   // Add the .gnu_incremental_got_plt section.
2868   const char* incremental_got_plt_name =
2869     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2870   Output_section* incremental_got_plt_os =
2871     this->make_output_section(incremental_got_plt_name,
2872                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2873                               ORDER_INVALID, false);
2874   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2875
2876   // Add the .gnu_incremental_strtab section.
2877   const char* incremental_strtab_name =
2878     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2879   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2880                                                         elfcpp::SHT_STRTAB, 0,
2881                                                         ORDER_INVALID, false);
2882   Output_data_strtab* strtab_data =
2883       new Output_data_strtab(incr->get_stringpool());
2884   incremental_strtab_os->add_output_section_data(strtab_data);
2885
2886   incremental_inputs_os->set_after_input_sections();
2887   incremental_symtab_os->set_after_input_sections();
2888   incremental_relocs_os->set_after_input_sections();
2889   incremental_got_plt_os->set_after_input_sections();
2890
2891   incremental_inputs_os->set_link_section(incremental_strtab_os);
2892   incremental_symtab_os->set_link_section(incremental_inputs_os);
2893   incremental_relocs_os->set_link_section(incremental_inputs_os);
2894   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2895 }
2896
2897 // Return whether SEG1 should be before SEG2 in the output file.  This
2898 // is based entirely on the segment type and flags.  When this is
2899 // called the segment addresses have normally not yet been set.
2900
2901 bool
2902 Layout::segment_precedes(const Output_segment* seg1,
2903                          const Output_segment* seg2)
2904 {
2905   elfcpp::Elf_Word type1 = seg1->type();
2906   elfcpp::Elf_Word type2 = seg2->type();
2907
2908   // The single PT_PHDR segment is required to precede any loadable
2909   // segment.  We simply make it always first.
2910   if (type1 == elfcpp::PT_PHDR)
2911     {
2912       gold_assert(type2 != elfcpp::PT_PHDR);
2913       return true;
2914     }
2915   if (type2 == elfcpp::PT_PHDR)
2916     return false;
2917
2918   // The single PT_INTERP segment is required to precede any loadable
2919   // segment.  We simply make it always second.
2920   if (type1 == elfcpp::PT_INTERP)
2921     {
2922       gold_assert(type2 != elfcpp::PT_INTERP);
2923       return true;
2924     }
2925   if (type2 == elfcpp::PT_INTERP)
2926     return false;
2927
2928   // We then put PT_LOAD segments before any other segments.
2929   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2930     return true;
2931   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2932     return false;
2933
2934   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2935   // segment, because that is where the dynamic linker expects to find
2936   // it (this is just for efficiency; other positions would also work
2937   // correctly).
2938   if (type1 == elfcpp::PT_TLS
2939       && type2 != elfcpp::PT_TLS
2940       && type2 != elfcpp::PT_GNU_RELRO)
2941     return false;
2942   if (type2 == elfcpp::PT_TLS
2943       && type1 != elfcpp::PT_TLS
2944       && type1 != elfcpp::PT_GNU_RELRO)
2945     return true;
2946
2947   // We put the PT_GNU_RELRO segment last, because that is where the
2948   // dynamic linker expects to find it (as with PT_TLS, this is just
2949   // for efficiency).
2950   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2951     return false;
2952   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2953     return true;
2954
2955   const elfcpp::Elf_Word flags1 = seg1->flags();
2956   const elfcpp::Elf_Word flags2 = seg2->flags();
2957
2958   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2959   // by the numeric segment type and flags values.  There should not
2960   // be more than one segment with the same type and flags.
2961   if (type1 != elfcpp::PT_LOAD)
2962     {
2963       if (type1 != type2)
2964         return type1 < type2;
2965       gold_assert(flags1 != flags2);
2966       return flags1 < flags2;
2967     }
2968
2969   // If the addresses are set already, sort by load address.
2970   if (seg1->are_addresses_set())
2971     {
2972       if (!seg2->are_addresses_set())
2973         return true;
2974
2975       unsigned int section_count1 = seg1->output_section_count();
2976       unsigned int section_count2 = seg2->output_section_count();
2977       if (section_count1 == 0 && section_count2 > 0)
2978         return true;
2979       if (section_count1 > 0 && section_count2 == 0)
2980         return false;
2981
2982       uint64_t paddr1 = (seg1->are_addresses_set()
2983                          ? seg1->paddr()
2984                          : seg1->first_section_load_address());
2985       uint64_t paddr2 = (seg2->are_addresses_set()
2986                          ? seg2->paddr()
2987                          : seg2->first_section_load_address());
2988
2989       if (paddr1 != paddr2)
2990         return paddr1 < paddr2;
2991     }
2992   else if (seg2->are_addresses_set())
2993     return false;
2994
2995   // A segment which holds large data comes after a segment which does
2996   // not hold large data.
2997   if (seg1->is_large_data_segment())
2998     {
2999       if (!seg2->is_large_data_segment())
3000         return false;
3001     }
3002   else if (seg2->is_large_data_segment())
3003     return true;
3004
3005   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3006   // segments come before writable segments.  Then writable segments
3007   // with data come before writable segments without data.  Then
3008   // executable segments come before non-executable segments.  Then
3009   // the unlikely case of a non-readable segment comes before the
3010   // normal case of a readable segment.  If there are multiple
3011   // segments with the same type and flags, we require that the
3012   // address be set, and we sort by virtual address and then physical
3013   // address.
3014   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3015     return (flags1 & elfcpp::PF_W) == 0;
3016   if ((flags1 & elfcpp::PF_W) != 0
3017       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3018     return seg1->has_any_data_sections();
3019   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3020     return (flags1 & elfcpp::PF_X) != 0;
3021   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3022     return (flags1 & elfcpp::PF_R) == 0;
3023
3024   // We shouldn't get here--we shouldn't create segments which we
3025   // can't distinguish.  Unless of course we are using a weird linker
3026   // script or overlapping --section-start options.
3027   gold_assert(this->script_options_->saw_phdrs_clause()
3028               || parameters->options().any_section_start());
3029   return false;
3030 }
3031
3032 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3033
3034 static off_t
3035 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3036 {
3037   uint64_t unsigned_off = off;
3038   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3039                           | (addr & (abi_pagesize - 1)));
3040   if (aligned_off < unsigned_off)
3041     aligned_off += abi_pagesize;
3042   return aligned_off;
3043 }
3044
3045 // Set the file offsets of all the segments, and all the sections they
3046 // contain.  They have all been created.  LOAD_SEG must be be laid out
3047 // first.  Return the offset of the data to follow.
3048
3049 off_t
3050 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3051                             unsigned int* pshndx)
3052 {
3053   // Sort them into the final order.  We use a stable sort so that we
3054   // don't randomize the order of indistinguishable segments created
3055   // by linker scripts.
3056   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3057                    Layout::Compare_segments(this));
3058
3059   // Find the PT_LOAD segments, and set their addresses and offsets
3060   // and their section's addresses and offsets.
3061   uint64_t start_addr;
3062   if (parameters->options().user_set_Ttext())
3063     start_addr = parameters->options().Ttext();
3064   else if (parameters->options().output_is_position_independent())
3065     start_addr = 0;
3066   else
3067     start_addr = target->default_text_segment_address();
3068
3069   uint64_t addr = start_addr;
3070   off_t off = 0;
3071
3072   // If LOAD_SEG is NULL, then the file header and segment headers
3073   // will not be loadable.  But they still need to be at offset 0 in
3074   // the file.  Set their offsets now.
3075   if (load_seg == NULL)
3076     {
3077       for (Data_list::iterator p = this->special_output_list_.begin();
3078            p != this->special_output_list_.end();
3079            ++p)
3080         {
3081           off = align_address(off, (*p)->addralign());
3082           (*p)->set_address_and_file_offset(0, off);
3083           off += (*p)->data_size();
3084         }
3085     }
3086
3087   unsigned int increase_relro = this->increase_relro_;
3088   if (this->script_options_->saw_sections_clause())
3089     increase_relro = 0;
3090
3091   const bool check_sections = parameters->options().check_sections();
3092   Output_segment* last_load_segment = NULL;
3093
3094   unsigned int shndx_begin = *pshndx;
3095   unsigned int shndx_load_seg = *pshndx;
3096
3097   for (Segment_list::iterator p = this->segment_list_.begin();
3098        p != this->segment_list_.end();
3099        ++p)
3100     {
3101       if ((*p)->type() == elfcpp::PT_LOAD)
3102         {
3103           if (target->isolate_execinstr())
3104             {
3105               // When we hit the segment that should contain the
3106               // file headers, reset the file offset so we place
3107               // it and subsequent segments appropriately.
3108               // We'll fix up the preceding segments below.
3109               if (load_seg == *p)
3110                 {
3111                   if (off == 0)
3112                     load_seg = NULL;
3113                   else
3114                     {
3115                       off = 0;
3116                       shndx_load_seg = *pshndx;
3117                     }
3118                 }
3119             }
3120           else
3121             {
3122               // Verify that the file headers fall into the first segment.
3123               if (load_seg != NULL && load_seg != *p)
3124                 gold_unreachable();
3125               load_seg = NULL;
3126             }
3127
3128           bool are_addresses_set = (*p)->are_addresses_set();
3129           if (are_addresses_set)
3130             {
3131               // When it comes to setting file offsets, we care about
3132               // the physical address.
3133               addr = (*p)->paddr();
3134             }
3135           else if (parameters->options().user_set_Ttext()
3136                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3137             {
3138               are_addresses_set = true;
3139             }
3140           else if (parameters->options().user_set_Tdata()
3141                    && ((*p)->flags() & elfcpp::PF_W) != 0
3142                    && (!parameters->options().user_set_Tbss()
3143                        || (*p)->has_any_data_sections()))
3144             {
3145               addr = parameters->options().Tdata();
3146               are_addresses_set = true;
3147             }
3148           else if (parameters->options().user_set_Tbss()
3149                    && ((*p)->flags() & elfcpp::PF_W) != 0
3150                    && !(*p)->has_any_data_sections())
3151             {
3152               addr = parameters->options().Tbss();
3153               are_addresses_set = true;
3154             }
3155
3156           uint64_t orig_addr = addr;
3157           uint64_t orig_off = off;
3158
3159           uint64_t aligned_addr = 0;
3160           uint64_t abi_pagesize = target->abi_pagesize();
3161           uint64_t common_pagesize = target->common_pagesize();
3162
3163           if (!parameters->options().nmagic()
3164               && !parameters->options().omagic())
3165             (*p)->set_minimum_p_align(common_pagesize);
3166
3167           if (!are_addresses_set)
3168             {
3169               // Skip the address forward one page, maintaining the same
3170               // position within the page.  This lets us store both segments
3171               // overlapping on a single page in the file, but the loader will
3172               // put them on different pages in memory. We will revisit this
3173               // decision once we know the size of the segment.
3174
3175               addr = align_address(addr, (*p)->maximum_alignment());
3176               aligned_addr = addr;
3177
3178               if (load_seg == *p)
3179                 {
3180                   // This is the segment that will contain the file
3181                   // headers, so its offset will have to be exactly zero.
3182                   gold_assert(orig_off == 0);
3183
3184                   // If the target wants a fixed minimum distance from the
3185                   // text segment to the read-only segment, move up now.
3186                   uint64_t min_addr = start_addr + target->rosegment_gap();
3187                   if (addr < min_addr)
3188                     addr = min_addr;
3189
3190                   // But this is not the first segment!  To make its
3191                   // address congruent with its offset, that address better
3192                   // be aligned to the ABI-mandated page size.
3193                   addr = align_address(addr, abi_pagesize);
3194                   aligned_addr = addr;
3195                 }
3196               else
3197                 {
3198                   if ((addr & (abi_pagesize - 1)) != 0)
3199                     addr = addr + abi_pagesize;
3200
3201                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3202                 }
3203             }
3204
3205           if (!parameters->options().nmagic()
3206               && !parameters->options().omagic())
3207             off = align_file_offset(off, addr, abi_pagesize);
3208           else
3209             {
3210               // This is -N or -n with a section script which prevents
3211               // us from using a load segment.  We need to ensure that
3212               // the file offset is aligned to the alignment of the
3213               // segment.  This is because the linker script
3214               // implicitly assumed a zero offset.  If we don't align
3215               // here, then the alignment of the sections in the
3216               // linker script may not match the alignment of the
3217               // sections in the set_section_addresses call below,
3218               // causing an error about dot moving backward.
3219               off = align_address(off, (*p)->maximum_alignment());
3220             }
3221
3222           unsigned int shndx_hold = *pshndx;
3223           bool has_relro = false;
3224           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3225                                                           &increase_relro,
3226                                                           &has_relro,
3227                                                           &off, pshndx);
3228
3229           // Now that we know the size of this segment, we may be able
3230           // to save a page in memory, at the cost of wasting some
3231           // file space, by instead aligning to the start of a new
3232           // page.  Here we use the real machine page size rather than
3233           // the ABI mandated page size.  If the segment has been
3234           // aligned so that the relro data ends at a page boundary,
3235           // we do not try to realign it.
3236
3237           if (!are_addresses_set
3238               && !has_relro
3239               && aligned_addr != addr
3240               && !parameters->incremental())
3241             {
3242               uint64_t first_off = (common_pagesize
3243                                     - (aligned_addr
3244                                        & (common_pagesize - 1)));
3245               uint64_t last_off = new_addr & (common_pagesize - 1);
3246               if (first_off > 0
3247                   && last_off > 0
3248                   && ((aligned_addr & ~ (common_pagesize - 1))
3249                       != (new_addr & ~ (common_pagesize - 1)))
3250                   && first_off + last_off <= common_pagesize)
3251                 {
3252                   *pshndx = shndx_hold;
3253                   addr = align_address(aligned_addr, common_pagesize);
3254                   addr = align_address(addr, (*p)->maximum_alignment());
3255                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3256                   off = align_file_offset(off, addr, abi_pagesize);
3257
3258                   increase_relro = this->increase_relro_;
3259                   if (this->script_options_->saw_sections_clause())
3260                     increase_relro = 0;
3261                   has_relro = false;
3262
3263                   new_addr = (*p)->set_section_addresses(this, true, addr,
3264                                                          &increase_relro,
3265                                                          &has_relro,
3266                                                          &off, pshndx);
3267                 }
3268             }
3269
3270           addr = new_addr;
3271
3272           // Implement --check-sections.  We know that the segments
3273           // are sorted by LMA.
3274           if (check_sections && last_load_segment != NULL)
3275             {
3276               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3277               if (last_load_segment->paddr() + last_load_segment->memsz()
3278                   > (*p)->paddr())
3279                 {
3280                   unsigned long long lb1 = last_load_segment->paddr();
3281                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3282                   unsigned long long lb2 = (*p)->paddr();
3283                   unsigned long long le2 = lb2 + (*p)->memsz();
3284                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3285                                "[0x%llx -> 0x%llx]"),
3286                              lb1, le1, lb2, le2);
3287                 }
3288             }
3289           last_load_segment = *p;
3290         }
3291     }
3292
3293   if (load_seg != NULL && target->isolate_execinstr())
3294     {
3295       // Process the early segments again, setting their file offsets
3296       // so they land after the segments starting at LOAD_SEG.
3297       off = align_file_offset(off, 0, target->abi_pagesize());
3298
3299       for (Segment_list::iterator p = this->segment_list_.begin();
3300            *p != load_seg;
3301            ++p)
3302         {
3303           if ((*p)->type() == elfcpp::PT_LOAD)
3304             {
3305               // We repeat the whole job of assigning addresses and
3306               // offsets, but we really only want to change the offsets and
3307               // must ensure that the addresses all come out the same as
3308               // they did the first time through.
3309               bool has_relro = false;
3310               const uint64_t old_addr = (*p)->vaddr();
3311               const uint64_t old_end = old_addr + (*p)->memsz();
3312               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3313                                                               old_addr,
3314                                                               &increase_relro,
3315                                                               &has_relro,
3316                                                               &off,
3317                                                               &shndx_begin);
3318               gold_assert(new_addr == old_end);
3319             }
3320         }
3321
3322       gold_assert(shndx_begin == shndx_load_seg);
3323     }
3324
3325   // Handle the non-PT_LOAD segments, setting their offsets from their
3326   // section's offsets.
3327   for (Segment_list::iterator p = this->segment_list_.begin();
3328        p != this->segment_list_.end();
3329        ++p)
3330     {
3331       if ((*p)->type() != elfcpp::PT_LOAD)
3332         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3333                          ? increase_relro
3334                          : 0);
3335     }
3336
3337   // Set the TLS offsets for each section in the PT_TLS segment.
3338   if (this->tls_segment_ != NULL)
3339     this->tls_segment_->set_tls_offsets();
3340
3341   return off;
3342 }
3343
3344 // Set the offsets of all the allocated sections when doing a
3345 // relocatable link.  This does the same jobs as set_segment_offsets,
3346 // only for a relocatable link.
3347
3348 off_t
3349 Layout::set_relocatable_section_offsets(Output_data* file_header,
3350                                         unsigned int* pshndx)
3351 {
3352   off_t off = 0;
3353
3354   file_header->set_address_and_file_offset(0, 0);
3355   off += file_header->data_size();
3356
3357   for (Section_list::iterator p = this->section_list_.begin();
3358        p != this->section_list_.end();
3359        ++p)
3360     {
3361       // We skip unallocated sections here, except that group sections
3362       // have to come first.
3363       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3364           && (*p)->type() != elfcpp::SHT_GROUP)
3365         continue;
3366
3367       off = align_address(off, (*p)->addralign());
3368
3369       // The linker script might have set the address.
3370       if (!(*p)->is_address_valid())
3371         (*p)->set_address(0);
3372       (*p)->set_file_offset(off);
3373       (*p)->finalize_data_size();
3374       off += (*p)->data_size();
3375
3376       (*p)->set_out_shndx(*pshndx);
3377       ++*pshndx;
3378     }
3379
3380   return off;
3381 }
3382
3383 // Set the file offset of all the sections not associated with a
3384 // segment.
3385
3386 off_t
3387 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3388 {
3389   off_t startoff = off;
3390   off_t maxoff = off;
3391
3392   for (Section_list::iterator p = this->unattached_section_list_.begin();
3393        p != this->unattached_section_list_.end();
3394        ++p)
3395     {
3396       // The symtab section is handled in create_symtab_sections.
3397       if (*p == this->symtab_section_)
3398         continue;
3399
3400       // If we've already set the data size, don't set it again.
3401       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3402         continue;
3403
3404       if (pass == BEFORE_INPUT_SECTIONS_PASS
3405           && (*p)->requires_postprocessing())
3406         {
3407           (*p)->create_postprocessing_buffer();
3408           this->any_postprocessing_sections_ = true;
3409         }
3410
3411       if (pass == BEFORE_INPUT_SECTIONS_PASS
3412           && (*p)->after_input_sections())
3413         continue;
3414       else if (pass == POSTPROCESSING_SECTIONS_PASS
3415                && (!(*p)->after_input_sections()
3416                    || (*p)->type() == elfcpp::SHT_STRTAB))
3417         continue;
3418       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3419                && (!(*p)->after_input_sections()
3420                    || (*p)->type() != elfcpp::SHT_STRTAB))
3421         continue;
3422
3423       if (!parameters->incremental_update())
3424         {
3425           off = align_address(off, (*p)->addralign());
3426           (*p)->set_file_offset(off);
3427           (*p)->finalize_data_size();
3428         }
3429       else
3430         {
3431           // Incremental update: allocate file space from free list.
3432           (*p)->pre_finalize_data_size();
3433           off_t current_size = (*p)->current_data_size();
3434           off = this->allocate(current_size, (*p)->addralign(), startoff);
3435           if (off == -1)
3436             {
3437               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3438                 this->free_list_.dump();
3439               gold_assert((*p)->output_section() != NULL);
3440               gold_fallback(_("out of patch space for section %s; "
3441                               "relink with --incremental-full"),
3442                             (*p)->output_section()->name());
3443             }
3444           (*p)->set_file_offset(off);
3445           (*p)->finalize_data_size();
3446           if ((*p)->data_size() > current_size)
3447             {
3448               gold_assert((*p)->output_section() != NULL);
3449               gold_fallback(_("%s: section changed size; "
3450                               "relink with --incremental-full"),
3451                             (*p)->output_section()->name());
3452             }
3453           gold_debug(DEBUG_INCREMENTAL,
3454                      "set_section_offsets: %08lx %08lx %s",
3455                      static_cast<long>(off),
3456                      static_cast<long>((*p)->data_size()),
3457                      ((*p)->output_section() != NULL
3458                       ? (*p)->output_section()->name() : "(special)"));
3459         }
3460
3461       off += (*p)->data_size();
3462       if (off > maxoff)
3463         maxoff = off;
3464
3465       // At this point the name must be set.
3466       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3467         this->namepool_.add((*p)->name(), false, NULL);
3468     }
3469   return maxoff;
3470 }
3471
3472 // Set the section indexes of all the sections not associated with a
3473 // segment.
3474
3475 unsigned int
3476 Layout::set_section_indexes(unsigned int shndx)
3477 {
3478   for (Section_list::iterator p = this->unattached_section_list_.begin();
3479        p != this->unattached_section_list_.end();
3480        ++p)
3481     {
3482       if (!(*p)->has_out_shndx())
3483         {
3484           (*p)->set_out_shndx(shndx);
3485           ++shndx;
3486         }
3487     }
3488   return shndx;
3489 }
3490
3491 // Set the section addresses according to the linker script.  This is
3492 // only called when we see a SECTIONS clause.  This returns the
3493 // program segment which should hold the file header and segment
3494 // headers, if any.  It will return NULL if they should not be in a
3495 // segment.
3496
3497 Output_segment*
3498 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3499 {
3500   Script_sections* ss = this->script_options_->script_sections();
3501   gold_assert(ss->saw_sections_clause());
3502   return this->script_options_->set_section_addresses(symtab, this);
3503 }
3504
3505 // Place the orphan sections in the linker script.
3506
3507 void
3508 Layout::place_orphan_sections_in_script()
3509 {
3510   Script_sections* ss = this->script_options_->script_sections();
3511   gold_assert(ss->saw_sections_clause());
3512
3513   // Place each orphaned output section in the script.
3514   for (Section_list::iterator p = this->section_list_.begin();
3515        p != this->section_list_.end();
3516        ++p)
3517     {
3518       if (!(*p)->found_in_sections_clause())
3519         ss->place_orphan(*p);
3520     }
3521 }
3522
3523 // Count the local symbols in the regular symbol table and the dynamic
3524 // symbol table, and build the respective string pools.
3525
3526 void
3527 Layout::count_local_symbols(const Task* task,
3528                             const Input_objects* input_objects)
3529 {
3530   // First, figure out an upper bound on the number of symbols we'll
3531   // be inserting into each pool.  This helps us create the pools with
3532   // the right size, to avoid unnecessary hashtable resizing.
3533   unsigned int symbol_count = 0;
3534   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3535        p != input_objects->relobj_end();
3536        ++p)
3537     symbol_count += (*p)->local_symbol_count();
3538
3539   // Go from "upper bound" to "estimate."  We overcount for two
3540   // reasons: we double-count symbols that occur in more than one
3541   // object file, and we count symbols that are dropped from the
3542   // output.  Add it all together and assume we overcount by 100%.
3543   symbol_count /= 2;
3544
3545   // We assume all symbols will go into both the sympool and dynpool.
3546   this->sympool_.reserve(symbol_count);
3547   this->dynpool_.reserve(symbol_count);
3548
3549   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3550        p != input_objects->relobj_end();
3551        ++p)
3552     {
3553       Task_lock_obj<Object> tlo(task, *p);
3554       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3555     }
3556 }
3557
3558 // Create the symbol table sections.  Here we also set the final
3559 // values of the symbols.  At this point all the loadable sections are
3560 // fully laid out.  SHNUM is the number of sections so far.
3561
3562 void
3563 Layout::create_symtab_sections(const Input_objects* input_objects,
3564                                Symbol_table* symtab,
3565                                unsigned int shnum,
3566                                off_t* poff)
3567 {
3568   int symsize;
3569   unsigned int align;
3570   if (parameters->target().get_size() == 32)
3571     {
3572       symsize = elfcpp::Elf_sizes<32>::sym_size;
3573       align = 4;
3574     }
3575   else if (parameters->target().get_size() == 64)
3576     {
3577       symsize = elfcpp::Elf_sizes<64>::sym_size;
3578       align = 8;
3579     }
3580   else
3581     gold_unreachable();
3582
3583   // Compute file offsets relative to the start of the symtab section.
3584   off_t off = 0;
3585
3586   // Save space for the dummy symbol at the start of the section.  We
3587   // never bother to write this out--it will just be left as zero.
3588   off += symsize;
3589   unsigned int local_symbol_index = 1;
3590
3591   // Add STT_SECTION symbols for each Output section which needs one.
3592   for (Section_list::iterator p = this->section_list_.begin();
3593        p != this->section_list_.end();
3594        ++p)
3595     {
3596       if (!(*p)->needs_symtab_index())
3597         (*p)->set_symtab_index(-1U);
3598       else
3599         {
3600           (*p)->set_symtab_index(local_symbol_index);
3601           ++local_symbol_index;
3602           off += symsize;
3603         }
3604     }
3605
3606   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3607        p != input_objects->relobj_end();
3608        ++p)
3609     {
3610       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3611                                                         off, symtab);
3612       off += (index - local_symbol_index) * symsize;
3613       local_symbol_index = index;
3614     }
3615
3616   unsigned int local_symcount = local_symbol_index;
3617   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3618
3619   off_t dynoff;
3620   size_t dyn_global_index;
3621   size_t dyncount;
3622   if (this->dynsym_section_ == NULL)
3623     {
3624       dynoff = 0;
3625       dyn_global_index = 0;
3626       dyncount = 0;
3627     }
3628   else
3629     {
3630       dyn_global_index = this->dynsym_section_->info();
3631       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3632       dynoff = this->dynsym_section_->offset() + locsize;
3633       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3634       gold_assert(static_cast<off_t>(dyncount * symsize)
3635                   == this->dynsym_section_->data_size() - locsize);
3636     }
3637
3638   off_t global_off = off;
3639   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3640                          &this->sympool_, &local_symcount);
3641
3642   if (!parameters->options().strip_all())
3643     {
3644       this->sympool_.set_string_offsets();
3645
3646       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3647       Output_section* osymtab = this->make_output_section(symtab_name,
3648                                                           elfcpp::SHT_SYMTAB,
3649                                                           0, ORDER_INVALID,
3650                                                           false);
3651       this->symtab_section_ = osymtab;
3652
3653       Output_section_data* pos = new Output_data_fixed_space(off, align,
3654                                                              "** symtab");
3655       osymtab->add_output_section_data(pos);
3656
3657       // We generate a .symtab_shndx section if we have more than
3658       // SHN_LORESERVE sections.  Technically it is possible that we
3659       // don't need one, because it is possible that there are no
3660       // symbols in any of sections with indexes larger than
3661       // SHN_LORESERVE.  That is probably unusual, though, and it is
3662       // easier to always create one than to compute section indexes
3663       // twice (once here, once when writing out the symbols).
3664       if (shnum >= elfcpp::SHN_LORESERVE)
3665         {
3666           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3667                                                                false, NULL);
3668           Output_section* osymtab_xindex =
3669             this->make_output_section(symtab_xindex_name,
3670                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3671                                       ORDER_INVALID, false);
3672
3673           size_t symcount = off / symsize;
3674           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3675
3676           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3677
3678           osymtab_xindex->set_link_section(osymtab);
3679           osymtab_xindex->set_addralign(4);
3680           osymtab_xindex->set_entsize(4);
3681
3682           osymtab_xindex->set_after_input_sections();
3683
3684           // This tells the driver code to wait until the symbol table
3685           // has written out before writing out the postprocessing
3686           // sections, including the .symtab_shndx section.
3687           this->any_postprocessing_sections_ = true;
3688         }
3689
3690       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3691       Output_section* ostrtab = this->make_output_section(strtab_name,
3692                                                           elfcpp::SHT_STRTAB,
3693                                                           0, ORDER_INVALID,
3694                                                           false);
3695
3696       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3697       ostrtab->add_output_section_data(pstr);
3698
3699       off_t symtab_off;
3700       if (!parameters->incremental_update())
3701         symtab_off = align_address(*poff, align);
3702       else
3703         {
3704           symtab_off = this->allocate(off, align, *poff);
3705           if (off == -1)
3706             gold_fallback(_("out of patch space for symbol table; "
3707                             "relink with --incremental-full"));
3708           gold_debug(DEBUG_INCREMENTAL,
3709                      "create_symtab_sections: %08lx %08lx .symtab",
3710                      static_cast<long>(symtab_off),
3711                      static_cast<long>(off));
3712         }
3713
3714       symtab->set_file_offset(symtab_off + global_off);
3715       osymtab->set_file_offset(symtab_off);
3716       osymtab->finalize_data_size();
3717       osymtab->set_link_section(ostrtab);
3718       osymtab->set_info(local_symcount);
3719       osymtab->set_entsize(symsize);
3720
3721       if (symtab_off + off > *poff)
3722         *poff = symtab_off + off;
3723     }
3724 }
3725
3726 // Create the .shstrtab section, which holds the names of the
3727 // sections.  At the time this is called, we have created all the
3728 // output sections except .shstrtab itself.
3729
3730 Output_section*
3731 Layout::create_shstrtab()
3732 {
3733   // FIXME: We don't need to create a .shstrtab section if we are
3734   // stripping everything.
3735
3736   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3737
3738   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3739                                                  ORDER_INVALID, false);
3740
3741   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3742     {
3743       // We can't write out this section until we've set all the
3744       // section names, and we don't set the names of compressed
3745       // output sections until relocations are complete.  FIXME: With
3746       // the current names we use, this is unnecessary.
3747       os->set_after_input_sections();
3748     }
3749
3750   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3751   os->add_output_section_data(posd);
3752
3753   return os;
3754 }
3755
3756 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3757 // offset.
3758
3759 void
3760 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3761 {
3762   Output_section_headers* oshdrs;
3763   oshdrs = new Output_section_headers(this,
3764                                       &this->segment_list_,
3765                                       &this->section_list_,
3766                                       &this->unattached_section_list_,
3767                                       &this->namepool_,
3768                                       shstrtab_section);
3769   off_t off;
3770   if (!parameters->incremental_update())
3771     off = align_address(*poff, oshdrs->addralign());
3772   else
3773     {
3774       oshdrs->pre_finalize_data_size();
3775       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3776       if (off == -1)
3777           gold_fallback(_("out of patch space for section header table; "
3778                           "relink with --incremental-full"));
3779       gold_debug(DEBUG_INCREMENTAL,
3780                  "create_shdrs: %08lx %08lx (section header table)",
3781                  static_cast<long>(off),
3782                  static_cast<long>(off + oshdrs->data_size()));
3783     }
3784   oshdrs->set_address_and_file_offset(0, off);
3785   off += oshdrs->data_size();
3786   if (off > *poff)
3787     *poff = off;
3788   this->section_headers_ = oshdrs;
3789 }
3790
3791 // Count the allocated sections.
3792
3793 size_t
3794 Layout::allocated_output_section_count() const
3795 {
3796   size_t section_count = 0;
3797   for (Segment_list::const_iterator p = this->segment_list_.begin();
3798        p != this->segment_list_.end();
3799        ++p)
3800     section_count += (*p)->output_section_count();
3801   return section_count;
3802 }
3803
3804 // Create the dynamic symbol table.
3805
3806 void
3807 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3808                               Symbol_table* symtab,
3809                               Output_section** pdynstr,
3810                               unsigned int* plocal_dynamic_count,
3811                               std::vector<Symbol*>* pdynamic_symbols,
3812                               Versions* pversions)
3813 {
3814   // Count all the symbols in the dynamic symbol table, and set the
3815   // dynamic symbol indexes.
3816
3817   // Skip symbol 0, which is always all zeroes.
3818   unsigned int index = 1;
3819
3820   // Add STT_SECTION symbols for each Output section which needs one.
3821   for (Section_list::iterator p = this->section_list_.begin();
3822        p != this->section_list_.end();
3823        ++p)
3824     {
3825       if (!(*p)->needs_dynsym_index())
3826         (*p)->set_dynsym_index(-1U);
3827       else
3828         {
3829           (*p)->set_dynsym_index(index);
3830           ++index;
3831         }
3832     }
3833
3834   // Count the local symbols that need to go in the dynamic symbol table,
3835   // and set the dynamic symbol indexes.
3836   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3837        p != input_objects->relobj_end();
3838        ++p)
3839     {
3840       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3841       index = new_index;
3842     }
3843
3844   unsigned int local_symcount = index;
3845   *plocal_dynamic_count = local_symcount;
3846
3847   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3848                                      &this->dynpool_, pversions);
3849
3850   int symsize;
3851   unsigned int align;
3852   const int size = parameters->target().get_size();
3853   if (size == 32)
3854     {
3855       symsize = elfcpp::Elf_sizes<32>::sym_size;
3856       align = 4;
3857     }
3858   else if (size == 64)
3859     {
3860       symsize = elfcpp::Elf_sizes<64>::sym_size;
3861       align = 8;
3862     }
3863   else
3864     gold_unreachable();
3865
3866   // Create the dynamic symbol table section.
3867
3868   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3869                                                        elfcpp::SHT_DYNSYM,
3870                                                        elfcpp::SHF_ALLOC,
3871                                                        false,
3872                                                        ORDER_DYNAMIC_LINKER,
3873                                                        false);
3874
3875   // Check for NULL as a linker script may discard .dynsym.
3876   if (dynsym != NULL)
3877     {
3878       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3879                                                                align,
3880                                                                "** dynsym");
3881       dynsym->add_output_section_data(odata);
3882
3883       dynsym->set_info(local_symcount);
3884       dynsym->set_entsize(symsize);
3885       dynsym->set_addralign(align);
3886
3887       this->dynsym_section_ = dynsym;
3888     }
3889
3890   Output_data_dynamic* const odyn = this->dynamic_data_;
3891   if (odyn != NULL)
3892     {
3893       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3894       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3895     }
3896
3897   // If there are more than SHN_LORESERVE allocated sections, we
3898   // create a .dynsym_shndx section.  It is possible that we don't
3899   // need one, because it is possible that there are no dynamic
3900   // symbols in any of the sections with indexes larger than
3901   // SHN_LORESERVE.  This is probably unusual, though, and at this
3902   // time we don't know the actual section indexes so it is
3903   // inconvenient to check.
3904   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3905     {
3906       Output_section* dynsym_xindex =
3907         this->choose_output_section(NULL, ".dynsym_shndx",
3908                                     elfcpp::SHT_SYMTAB_SHNDX,
3909                                     elfcpp::SHF_ALLOC,
3910                                     false, ORDER_DYNAMIC_LINKER, false);
3911
3912       if (dynsym_xindex != NULL)
3913         {
3914           this->dynsym_xindex_ = new Output_symtab_xindex(index);
3915
3916           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3917
3918           dynsym_xindex->set_link_section(dynsym);
3919           dynsym_xindex->set_addralign(4);
3920           dynsym_xindex->set_entsize(4);
3921
3922           dynsym_xindex->set_after_input_sections();
3923
3924           // This tells the driver code to wait until the symbol table
3925           // has written out before writing out the postprocessing
3926           // sections, including the .dynsym_shndx section.
3927           this->any_postprocessing_sections_ = true;
3928         }
3929     }
3930
3931   // Create the dynamic string table section.
3932
3933   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3934                                                        elfcpp::SHT_STRTAB,
3935                                                        elfcpp::SHF_ALLOC,
3936                                                        false,
3937                                                        ORDER_DYNAMIC_LINKER,
3938                                                        false);
3939
3940   if (dynstr != NULL)
3941     {
3942       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3943       dynstr->add_output_section_data(strdata);
3944
3945       if (dynsym != NULL)
3946         dynsym->set_link_section(dynstr);
3947       if (this->dynamic_section_ != NULL)
3948         this->dynamic_section_->set_link_section(dynstr);
3949
3950       if (odyn != NULL)
3951         {
3952           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3953           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3954         }
3955
3956       *pdynstr = dynstr;
3957     }
3958
3959   // Create the hash tables.
3960
3961   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3962       || strcmp(parameters->options().hash_style(), "both") == 0)
3963     {
3964       unsigned char* phash;
3965       unsigned int hashlen;
3966       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3967                                     &phash, &hashlen);
3968
3969       Output_section* hashsec =
3970         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3971                                     elfcpp::SHF_ALLOC, false,
3972                                     ORDER_DYNAMIC_LINKER, false);
3973
3974       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3975                                                                    hashlen,
3976                                                                    align,
3977                                                                    "** hash");
3978       if (hashsec != NULL && hashdata != NULL)
3979         hashsec->add_output_section_data(hashdata);
3980
3981       if (hashsec != NULL)
3982         {
3983           if (dynsym != NULL)
3984             hashsec->set_link_section(dynsym);
3985           hashsec->set_entsize(4);
3986         }
3987
3988       if (odyn != NULL)
3989         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3990     }
3991
3992   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3993       || strcmp(parameters->options().hash_style(), "both") == 0)
3994     {
3995       unsigned char* phash;
3996       unsigned int hashlen;
3997       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3998                                     &phash, &hashlen);
3999
4000       Output_section* hashsec =
4001         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4002                                     elfcpp::SHF_ALLOC, false,
4003                                     ORDER_DYNAMIC_LINKER, false);
4004
4005       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4006                                                                    hashlen,
4007                                                                    align,
4008                                                                    "** hash");
4009       if (hashsec != NULL && hashdata != NULL)
4010         hashsec->add_output_section_data(hashdata);
4011
4012       if (hashsec != NULL)
4013         {
4014           if (dynsym != NULL)
4015             hashsec->set_link_section(dynsym);
4016
4017           // For a 64-bit target, the entries in .gnu.hash do not have
4018           // a uniform size, so we only set the entry size for a
4019           // 32-bit target.
4020           if (parameters->target().get_size() == 32)
4021             hashsec->set_entsize(4);
4022
4023           if (odyn != NULL)
4024             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4025         }
4026     }
4027 }
4028
4029 // Assign offsets to each local portion of the dynamic symbol table.
4030
4031 void
4032 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4033 {
4034   Output_section* dynsym = this->dynsym_section_;
4035   if (dynsym == NULL)
4036     return;
4037
4038   off_t off = dynsym->offset();
4039
4040   // Skip the dummy symbol at the start of the section.
4041   off += dynsym->entsize();
4042
4043   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4044        p != input_objects->relobj_end();
4045        ++p)
4046     {
4047       unsigned int count = (*p)->set_local_dynsym_offset(off);
4048       off += count * dynsym->entsize();
4049     }
4050 }
4051
4052 // Create the version sections.
4053
4054 void
4055 Layout::create_version_sections(const Versions* versions,
4056                                 const Symbol_table* symtab,
4057                                 unsigned int local_symcount,
4058                                 const std::vector<Symbol*>& dynamic_symbols,
4059                                 const Output_section* dynstr)
4060 {
4061   if (!versions->any_defs() && !versions->any_needs())
4062     return;
4063
4064   switch (parameters->size_and_endianness())
4065     {
4066 #ifdef HAVE_TARGET_32_LITTLE
4067     case Parameters::TARGET_32_LITTLE:
4068       this->sized_create_version_sections<32, false>(versions, symtab,
4069                                                      local_symcount,
4070                                                      dynamic_symbols, dynstr);
4071       break;
4072 #endif
4073 #ifdef HAVE_TARGET_32_BIG
4074     case Parameters::TARGET_32_BIG:
4075       this->sized_create_version_sections<32, true>(versions, symtab,
4076                                                     local_symcount,
4077                                                     dynamic_symbols, dynstr);
4078       break;
4079 #endif
4080 #ifdef HAVE_TARGET_64_LITTLE
4081     case Parameters::TARGET_64_LITTLE:
4082       this->sized_create_version_sections<64, false>(versions, symtab,
4083                                                      local_symcount,
4084                                                      dynamic_symbols, dynstr);
4085       break;
4086 #endif
4087 #ifdef HAVE_TARGET_64_BIG
4088     case Parameters::TARGET_64_BIG:
4089       this->sized_create_version_sections<64, true>(versions, symtab,
4090                                                     local_symcount,
4091                                                     dynamic_symbols, dynstr);
4092       break;
4093 #endif
4094     default:
4095       gold_unreachable();
4096     }
4097 }
4098
4099 // Create the version sections, sized version.
4100
4101 template<int size, bool big_endian>
4102 void
4103 Layout::sized_create_version_sections(
4104     const Versions* versions,
4105     const Symbol_table* symtab,
4106     unsigned int local_symcount,
4107     const std::vector<Symbol*>& dynamic_symbols,
4108     const Output_section* dynstr)
4109 {
4110   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4111                                                      elfcpp::SHT_GNU_versym,
4112                                                      elfcpp::SHF_ALLOC,
4113                                                      false,
4114                                                      ORDER_DYNAMIC_LINKER,
4115                                                      false);
4116
4117   // Check for NULL since a linker script may discard this section.
4118   if (vsec != NULL)
4119     {
4120       unsigned char* vbuf;
4121       unsigned int vsize;
4122       versions->symbol_section_contents<size, big_endian>(symtab,
4123                                                           &this->dynpool_,
4124                                                           local_symcount,
4125                                                           dynamic_symbols,
4126                                                           &vbuf, &vsize);
4127
4128       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4129                                                                 "** versions");
4130
4131       vsec->add_output_section_data(vdata);
4132       vsec->set_entsize(2);
4133       vsec->set_link_section(this->dynsym_section_);
4134     }
4135
4136   Output_data_dynamic* const odyn = this->dynamic_data_;
4137   if (odyn != NULL && vsec != NULL)
4138     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4139
4140   if (versions->any_defs())
4141     {
4142       Output_section* vdsec;
4143       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4144                                           elfcpp::SHT_GNU_verdef,
4145                                           elfcpp::SHF_ALLOC,
4146                                           false, ORDER_DYNAMIC_LINKER, false);
4147
4148       if (vdsec != NULL)
4149         {
4150           unsigned char* vdbuf;
4151           unsigned int vdsize;
4152           unsigned int vdentries;
4153           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4154                                                            &vdbuf, &vdsize,
4155                                                            &vdentries);
4156
4157           Output_section_data* vddata =
4158             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4159
4160           vdsec->add_output_section_data(vddata);
4161           vdsec->set_link_section(dynstr);
4162           vdsec->set_info(vdentries);
4163
4164           if (odyn != NULL)
4165             {
4166               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4167               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4168             }
4169         }
4170     }
4171
4172   if (versions->any_needs())
4173     {
4174       Output_section* vnsec;
4175       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4176                                           elfcpp::SHT_GNU_verneed,
4177                                           elfcpp::SHF_ALLOC,
4178                                           false, ORDER_DYNAMIC_LINKER, false);
4179
4180       if (vnsec != NULL)
4181         {
4182           unsigned char* vnbuf;
4183           unsigned int vnsize;
4184           unsigned int vnentries;
4185           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4186                                                             &vnbuf, &vnsize,
4187                                                             &vnentries);
4188
4189           Output_section_data* vndata =
4190             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4191
4192           vnsec->add_output_section_data(vndata);
4193           vnsec->set_link_section(dynstr);
4194           vnsec->set_info(vnentries);
4195
4196           if (odyn != NULL)
4197             {
4198               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4199               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4200             }
4201         }
4202     }
4203 }
4204
4205 // Create the .interp section and PT_INTERP segment.
4206
4207 void
4208 Layout::create_interp(const Target* target)
4209 {
4210   gold_assert(this->interp_segment_ == NULL);
4211
4212   const char* interp = parameters->options().dynamic_linker();
4213   if (interp == NULL)
4214     {
4215       interp = target->dynamic_linker();
4216       gold_assert(interp != NULL);
4217     }
4218
4219   size_t len = strlen(interp) + 1;
4220
4221   Output_section_data* odata = new Output_data_const(interp, len, 1);
4222
4223   Output_section* osec = this->choose_output_section(NULL, ".interp",
4224                                                      elfcpp::SHT_PROGBITS,
4225                                                      elfcpp::SHF_ALLOC,
4226                                                      false, ORDER_INTERP,
4227                                                      false);
4228   if (osec != NULL)
4229     osec->add_output_section_data(odata);
4230 }
4231
4232 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4233 // called by the target-specific code.  This does nothing if not doing
4234 // a dynamic link.
4235
4236 // USE_REL is true for REL relocs rather than RELA relocs.
4237
4238 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4239
4240 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4241 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4242 // some targets have multiple reloc sections in PLT_REL.
4243
4244 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4245 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4246 // section.
4247
4248 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4249 // executable.
4250
4251 void
4252 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4253                                 const Output_data* plt_rel,
4254                                 const Output_data_reloc_generic* dyn_rel,
4255                                 bool add_debug, bool dynrel_includes_plt)
4256 {
4257   Output_data_dynamic* odyn = this->dynamic_data_;
4258   if (odyn == NULL)
4259     return;
4260
4261   if (plt_got != NULL && plt_got->output_section() != NULL)
4262     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4263
4264   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4265     {
4266       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4267       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4268       odyn->add_constant(elfcpp::DT_PLTREL,
4269                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4270     }
4271
4272   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4273     {
4274       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4275                                 dyn_rel->output_section());
4276       if (plt_rel != NULL
4277           && plt_rel->output_section() != NULL
4278           && dynrel_includes_plt)
4279         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4280                                dyn_rel->output_section(),
4281                                plt_rel->output_section());
4282       else
4283         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4284                                dyn_rel->output_section());
4285       const int size = parameters->target().get_size();
4286       elfcpp::DT rel_tag;
4287       int rel_size;
4288       if (use_rel)
4289         {
4290           rel_tag = elfcpp::DT_RELENT;
4291           if (size == 32)
4292             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4293           else if (size == 64)
4294             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4295           else
4296             gold_unreachable();
4297         }
4298       else
4299         {
4300           rel_tag = elfcpp::DT_RELAENT;
4301           if (size == 32)
4302             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4303           else if (size == 64)
4304             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4305           else
4306             gold_unreachable();
4307         }
4308       odyn->add_constant(rel_tag, rel_size);
4309
4310       if (parameters->options().combreloc())
4311         {
4312           size_t c = dyn_rel->relative_reloc_count();
4313           if (c > 0)
4314             odyn->add_constant((use_rel
4315                                 ? elfcpp::DT_RELCOUNT
4316                                 : elfcpp::DT_RELACOUNT),
4317                                c);
4318         }
4319     }
4320
4321   if (add_debug && !parameters->options().shared())
4322     {
4323       // The value of the DT_DEBUG tag is filled in by the dynamic
4324       // linker at run time, and used by the debugger.
4325       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4326     }
4327 }
4328
4329 // Finish the .dynamic section and PT_DYNAMIC segment.
4330
4331 void
4332 Layout::finish_dynamic_section(const Input_objects* input_objects,
4333                                const Symbol_table* symtab)
4334 {
4335   if (!this->script_options_->saw_phdrs_clause()
4336       && this->dynamic_section_ != NULL)
4337     {
4338       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4339                                                        (elfcpp::PF_R
4340                                                         | elfcpp::PF_W));
4341       oseg->add_output_section_to_nonload(this->dynamic_section_,
4342                                           elfcpp::PF_R | elfcpp::PF_W);
4343     }
4344
4345   Output_data_dynamic* const odyn = this->dynamic_data_;
4346   if (odyn == NULL)
4347     return;
4348
4349   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4350        p != input_objects->dynobj_end();
4351        ++p)
4352     {
4353       if (!(*p)->is_needed() && (*p)->as_needed())
4354         {
4355           // This dynamic object was linked with --as-needed, but it
4356           // is not needed.
4357           continue;
4358         }
4359
4360       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4361     }
4362
4363   if (parameters->options().shared())
4364     {
4365       const char* soname = parameters->options().soname();
4366       if (soname != NULL)
4367         odyn->add_string(elfcpp::DT_SONAME, soname);
4368     }
4369
4370   Symbol* sym = symtab->lookup(parameters->options().init());
4371   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4372     odyn->add_symbol(elfcpp::DT_INIT, sym);
4373
4374   sym = symtab->lookup(parameters->options().fini());
4375   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4376     odyn->add_symbol(elfcpp::DT_FINI, sym);
4377
4378   // Look for .init_array, .preinit_array and .fini_array by checking
4379   // section types.
4380   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4381       p != this->section_list_.end();
4382       ++p)
4383     switch((*p)->type())
4384       {
4385       case elfcpp::SHT_FINI_ARRAY:
4386         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4387         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4388         break;
4389       case elfcpp::SHT_INIT_ARRAY:
4390         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4391         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4392         break;
4393       case elfcpp::SHT_PREINIT_ARRAY:
4394         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4395         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4396         break;
4397       default:
4398         break;
4399       }
4400
4401   // Add a DT_RPATH entry if needed.
4402   const General_options::Dir_list& rpath(parameters->options().rpath());
4403   if (!rpath.empty())
4404     {
4405       std::string rpath_val;
4406       for (General_options::Dir_list::const_iterator p = rpath.begin();
4407            p != rpath.end();
4408            ++p)
4409         {
4410           if (rpath_val.empty())
4411             rpath_val = p->name();
4412           else
4413             {
4414               // Eliminate duplicates.
4415               General_options::Dir_list::const_iterator q;
4416               for (q = rpath.begin(); q != p; ++q)
4417                 if (q->name() == p->name())
4418                   break;
4419               if (q == p)
4420                 {
4421                   rpath_val += ':';
4422                   rpath_val += p->name();
4423                 }
4424             }
4425         }
4426
4427       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4428       if (parameters->options().enable_new_dtags())
4429         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4430     }
4431
4432   // Look for text segments that have dynamic relocations.
4433   bool have_textrel = false;
4434   if (!this->script_options_->saw_sections_clause())
4435     {
4436       for (Segment_list::const_iterator p = this->segment_list_.begin();
4437            p != this->segment_list_.end();
4438            ++p)
4439         {
4440           if ((*p)->type() == elfcpp::PT_LOAD
4441               && ((*p)->flags() & elfcpp::PF_W) == 0
4442               && (*p)->has_dynamic_reloc())
4443             {
4444               have_textrel = true;
4445               break;
4446             }
4447         }
4448     }
4449   else
4450     {
4451       // We don't know the section -> segment mapping, so we are
4452       // conservative and just look for readonly sections with
4453       // relocations.  If those sections wind up in writable segments,
4454       // then we have created an unnecessary DT_TEXTREL entry.
4455       for (Section_list::const_iterator p = this->section_list_.begin();
4456            p != this->section_list_.end();
4457            ++p)
4458         {
4459           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4460               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4461               && (*p)->has_dynamic_reloc())
4462             {
4463               have_textrel = true;
4464               break;
4465             }
4466         }
4467     }
4468
4469   if (parameters->options().filter() != NULL)
4470     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4471   if (parameters->options().any_auxiliary())
4472     {
4473       for (options::String_set::const_iterator p =
4474              parameters->options().auxiliary_begin();
4475            p != parameters->options().auxiliary_end();
4476            ++p)
4477         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4478     }
4479
4480   // Add a DT_FLAGS entry if necessary.
4481   unsigned int flags = 0;
4482   if (have_textrel)
4483     {
4484       // Add a DT_TEXTREL for compatibility with older loaders.
4485       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4486       flags |= elfcpp::DF_TEXTREL;
4487
4488       if (parameters->options().text())
4489         gold_error(_("read-only segment has dynamic relocations"));
4490       else if (parameters->options().warn_shared_textrel()
4491                && parameters->options().shared())
4492         gold_warning(_("shared library text segment is not shareable"));
4493     }
4494   if (parameters->options().shared() && this->has_static_tls())
4495     flags |= elfcpp::DF_STATIC_TLS;
4496   if (parameters->options().origin())
4497     flags |= elfcpp::DF_ORIGIN;
4498   if (parameters->options().Bsymbolic())
4499     {
4500       flags |= elfcpp::DF_SYMBOLIC;
4501       // Add DT_SYMBOLIC for compatibility with older loaders.
4502       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4503     }
4504   if (parameters->options().now())
4505     flags |= elfcpp::DF_BIND_NOW;
4506   if (flags != 0)
4507     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4508
4509   flags = 0;
4510   if (parameters->options().initfirst())
4511     flags |= elfcpp::DF_1_INITFIRST;
4512   if (parameters->options().interpose())
4513     flags |= elfcpp::DF_1_INTERPOSE;
4514   if (parameters->options().loadfltr())
4515     flags |= elfcpp::DF_1_LOADFLTR;
4516   if (parameters->options().nodefaultlib())
4517     flags |= elfcpp::DF_1_NODEFLIB;
4518   if (parameters->options().nodelete())
4519     flags |= elfcpp::DF_1_NODELETE;
4520   if (parameters->options().nodlopen())
4521     flags |= elfcpp::DF_1_NOOPEN;
4522   if (parameters->options().nodump())
4523     flags |= elfcpp::DF_1_NODUMP;
4524   if (!parameters->options().shared())
4525     flags &= ~(elfcpp::DF_1_INITFIRST
4526                | elfcpp::DF_1_NODELETE
4527                | elfcpp::DF_1_NOOPEN);
4528   if (parameters->options().origin())
4529     flags |= elfcpp::DF_1_ORIGIN;
4530   if (parameters->options().now())
4531     flags |= elfcpp::DF_1_NOW;
4532   if (parameters->options().Bgroup())
4533     flags |= elfcpp::DF_1_GROUP;
4534   if (flags != 0)
4535     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4536 }
4537
4538 // Set the size of the _DYNAMIC symbol table to be the size of the
4539 // dynamic data.
4540
4541 void
4542 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4543 {
4544   Output_data_dynamic* const odyn = this->dynamic_data_;
4545   if (odyn == NULL)
4546     return;
4547   odyn->finalize_data_size();
4548   if (this->dynamic_symbol_ == NULL)
4549     return;
4550   off_t data_size = odyn->data_size();
4551   const int size = parameters->target().get_size();
4552   if (size == 32)
4553     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4554   else if (size == 64)
4555     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4556   else
4557     gold_unreachable();
4558 }
4559
4560 // The mapping of input section name prefixes to output section names.
4561 // In some cases one prefix is itself a prefix of another prefix; in
4562 // such a case the longer prefix must come first.  These prefixes are
4563 // based on the GNU linker default ELF linker script.
4564
4565 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4566 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4567 {
4568   MAPPING_INIT(".text.", ".text"),
4569   MAPPING_INIT(".rodata.", ".rodata"),
4570   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4571   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4572   MAPPING_INIT(".data.", ".data"),
4573   MAPPING_INIT(".bss.", ".bss"),
4574   MAPPING_INIT(".tdata.", ".tdata"),
4575   MAPPING_INIT(".tbss.", ".tbss"),
4576   MAPPING_INIT(".init_array.", ".init_array"),
4577   MAPPING_INIT(".fini_array.", ".fini_array"),
4578   MAPPING_INIT(".sdata.", ".sdata"),
4579   MAPPING_INIT(".sbss.", ".sbss"),
4580   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4581   // differently depending on whether it is creating a shared library.
4582   MAPPING_INIT(".sdata2.", ".sdata"),
4583   MAPPING_INIT(".sbss2.", ".sbss"),
4584   MAPPING_INIT(".lrodata.", ".lrodata"),
4585   MAPPING_INIT(".ldata.", ".ldata"),
4586   MAPPING_INIT(".lbss.", ".lbss"),
4587   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4588   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4589   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4590   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4591   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4592   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4593   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4594   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4595   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4596   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4597   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4598   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4599   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4600   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4601   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4602   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4603   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4604   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4605   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4606   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4607   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4608 };
4609 #undef MAPPING_INIT
4610
4611 const int Layout::section_name_mapping_count =
4612   (sizeof(Layout::section_name_mapping)
4613    / sizeof(Layout::section_name_mapping[0]));
4614
4615 // Choose the output section name to use given an input section name.
4616 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4617 // length of NAME.
4618
4619 const char*
4620 Layout::output_section_name(const Relobj* relobj, const char* name,
4621                             size_t* plen)
4622 {
4623   // gcc 4.3 generates the following sorts of section names when it
4624   // needs a section name specific to a function:
4625   //   .text.FN
4626   //   .rodata.FN
4627   //   .sdata2.FN
4628   //   .data.FN
4629   //   .data.rel.FN
4630   //   .data.rel.local.FN
4631   //   .data.rel.ro.FN
4632   //   .data.rel.ro.local.FN
4633   //   .sdata.FN
4634   //   .bss.FN
4635   //   .sbss.FN
4636   //   .tdata.FN
4637   //   .tbss.FN
4638
4639   // The GNU linker maps all of those to the part before the .FN,
4640   // except that .data.rel.local.FN is mapped to .data, and
4641   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4642   // beginning with .data.rel.ro.local are grouped together.
4643
4644   // For an anonymous namespace, the string FN can contain a '.'.
4645
4646   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4647   // GNU linker maps to .rodata.
4648
4649   // The .data.rel.ro sections are used with -z relro.  The sections
4650   // are recognized by name.  We use the same names that the GNU
4651   // linker does for these sections.
4652
4653   // It is hard to handle this in a principled way, so we don't even
4654   // try.  We use a table of mappings.  If the input section name is
4655   // not found in the table, we simply use it as the output section
4656   // name.
4657
4658   const Section_name_mapping* psnm = section_name_mapping;
4659   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4660     {
4661       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4662         {
4663           *plen = psnm->tolen;
4664           return psnm->to;
4665         }
4666     }
4667
4668   // As an additional complication, .ctors sections are output in
4669   // either .ctors or .init_array sections, and .dtors sections are
4670   // output in either .dtors or .fini_array sections.
4671   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4672     {
4673       if (parameters->options().ctors_in_init_array())
4674         {
4675           *plen = 11;
4676           return name[1] == 'c' ? ".init_array" : ".fini_array";
4677         }
4678       else
4679         {
4680           *plen = 6;
4681           return name[1] == 'c' ? ".ctors" : ".dtors";
4682         }
4683     }
4684   if (parameters->options().ctors_in_init_array()
4685       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4686     {
4687       // To make .init_array/.fini_array work with gcc we must exclude
4688       // .ctors and .dtors sections from the crtbegin and crtend
4689       // files.
4690       if (relobj == NULL
4691           || (!Layout::match_file_name(relobj, "crtbegin")
4692               && !Layout::match_file_name(relobj, "crtend")))
4693         {
4694           *plen = 11;
4695           return name[1] == 'c' ? ".init_array" : ".fini_array";
4696         }
4697     }
4698
4699   return name;
4700 }
4701
4702 // Return true if RELOBJ is an input file whose base name matches
4703 // FILE_NAME.  The base name must have an extension of ".o", and must
4704 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4705 // to match crtbegin.o as well as crtbeginS.o without getting confused
4706 // by other possibilities.  Overall matching the file name this way is
4707 // a dreadful hack, but the GNU linker does it in order to better
4708 // support gcc, and we need to be compatible.
4709
4710 bool
4711 Layout::match_file_name(const Relobj* relobj, const char* match)
4712 {
4713   const std::string& file_name(relobj->name());
4714   const char* base_name = lbasename(file_name.c_str());
4715   size_t match_len = strlen(match);
4716   if (strncmp(base_name, match, match_len) != 0)
4717     return false;
4718   size_t base_len = strlen(base_name);
4719   if (base_len != match_len + 2 && base_len != match_len + 3)
4720     return false;
4721   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4722 }
4723
4724 // Check if a comdat group or .gnu.linkonce section with the given
4725 // NAME is selected for the link.  If there is already a section,
4726 // *KEPT_SECTION is set to point to the existing section and the
4727 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4728 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4729 // *KEPT_SECTION is set to the internal copy and the function returns
4730 // true.
4731
4732 bool
4733 Layout::find_or_add_kept_section(const std::string& name,
4734                                  Relobj* object,
4735                                  unsigned int shndx,
4736                                  bool is_comdat,
4737                                  bool is_group_name,
4738                                  Kept_section** kept_section)
4739 {
4740   // It's normal to see a couple of entries here, for the x86 thunk
4741   // sections.  If we see more than a few, we're linking a C++
4742   // program, and we resize to get more space to minimize rehashing.
4743   if (this->signatures_.size() > 4
4744       && !this->resized_signatures_)
4745     {
4746       reserve_unordered_map(&this->signatures_,
4747                             this->number_of_input_files_ * 64);
4748       this->resized_signatures_ = true;
4749     }
4750
4751   Kept_section candidate;
4752   std::pair<Signatures::iterator, bool> ins =
4753     this->signatures_.insert(std::make_pair(name, candidate));
4754
4755   if (kept_section != NULL)
4756     *kept_section = &ins.first->second;
4757   if (ins.second)
4758     {
4759       // This is the first time we've seen this signature.
4760       ins.first->second.set_object(object);
4761       ins.first->second.set_shndx(shndx);
4762       if (is_comdat)
4763         ins.first->second.set_is_comdat();
4764       if (is_group_name)
4765         ins.first->second.set_is_group_name();
4766       return true;
4767     }
4768
4769   // We have already seen this signature.
4770
4771   if (ins.first->second.is_group_name())
4772     {
4773       // We've already seen a real section group with this signature.
4774       // If the kept group is from a plugin object, and we're in the
4775       // replacement phase, accept the new one as a replacement.
4776       if (ins.first->second.object() == NULL
4777           && parameters->options().plugins()->in_replacement_phase())
4778         {
4779           ins.first->second.set_object(object);
4780           ins.first->second.set_shndx(shndx);
4781           return true;
4782         }
4783       return false;
4784     }
4785   else if (is_group_name)
4786     {
4787       // This is a real section group, and we've already seen a
4788       // linkonce section with this signature.  Record that we've seen
4789       // a section group, and don't include this section group.
4790       ins.first->second.set_is_group_name();
4791       return false;
4792     }
4793   else
4794     {
4795       // We've already seen a linkonce section and this is a linkonce
4796       // section.  These don't block each other--this may be the same
4797       // symbol name with different section types.
4798       return true;
4799     }
4800 }
4801
4802 // Store the allocated sections into the section list.
4803
4804 void
4805 Layout::get_allocated_sections(Section_list* section_list) const
4806 {
4807   for (Section_list::const_iterator p = this->section_list_.begin();
4808        p != this->section_list_.end();
4809        ++p)
4810     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4811       section_list->push_back(*p);
4812 }
4813
4814 // Create an output segment.
4815
4816 Output_segment*
4817 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4818 {
4819   gold_assert(!parameters->options().relocatable());
4820   Output_segment* oseg = new Output_segment(type, flags);
4821   this->segment_list_.push_back(oseg);
4822
4823   if (type == elfcpp::PT_TLS)
4824     this->tls_segment_ = oseg;
4825   else if (type == elfcpp::PT_GNU_RELRO)
4826     this->relro_segment_ = oseg;
4827   else if (type == elfcpp::PT_INTERP)
4828     this->interp_segment_ = oseg;
4829
4830   return oseg;
4831 }
4832
4833 // Return the file offset of the normal symbol table.
4834
4835 off_t
4836 Layout::symtab_section_offset() const
4837 {
4838   if (this->symtab_section_ != NULL)
4839     return this->symtab_section_->offset();
4840   return 0;
4841 }
4842
4843 // Return the section index of the normal symbol table.  It may have
4844 // been stripped by the -s/--strip-all option.
4845
4846 unsigned int
4847 Layout::symtab_section_shndx() const
4848 {
4849   if (this->symtab_section_ != NULL)
4850     return this->symtab_section_->out_shndx();
4851   return 0;
4852 }
4853
4854 // Write out the Output_sections.  Most won't have anything to write,
4855 // since most of the data will come from input sections which are
4856 // handled elsewhere.  But some Output_sections do have Output_data.
4857
4858 void
4859 Layout::write_output_sections(Output_file* of) const
4860 {
4861   for (Section_list::const_iterator p = this->section_list_.begin();
4862        p != this->section_list_.end();
4863        ++p)
4864     {
4865       if (!(*p)->after_input_sections())
4866         (*p)->write(of);
4867     }
4868 }
4869
4870 // Write out data not associated with a section or the symbol table.
4871
4872 void
4873 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4874 {
4875   if (!parameters->options().strip_all())
4876     {
4877       const Output_section* symtab_section = this->symtab_section_;
4878       for (Section_list::const_iterator p = this->section_list_.begin();
4879            p != this->section_list_.end();
4880            ++p)
4881         {
4882           if ((*p)->needs_symtab_index())
4883             {
4884               gold_assert(symtab_section != NULL);
4885               unsigned int index = (*p)->symtab_index();
4886               gold_assert(index > 0 && index != -1U);
4887               off_t off = (symtab_section->offset()
4888                            + index * symtab_section->entsize());
4889               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4890             }
4891         }
4892     }
4893
4894   const Output_section* dynsym_section = this->dynsym_section_;
4895   for (Section_list::const_iterator p = this->section_list_.begin();
4896        p != this->section_list_.end();
4897        ++p)
4898     {
4899       if ((*p)->needs_dynsym_index())
4900         {
4901           gold_assert(dynsym_section != NULL);
4902           unsigned int index = (*p)->dynsym_index();
4903           gold_assert(index > 0 && index != -1U);
4904           off_t off = (dynsym_section->offset()
4905                        + index * dynsym_section->entsize());
4906           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4907         }
4908     }
4909
4910   // Write out the Output_data which are not in an Output_section.
4911   for (Data_list::const_iterator p = this->special_output_list_.begin();
4912        p != this->special_output_list_.end();
4913        ++p)
4914     (*p)->write(of);
4915 }
4916
4917 // Write out the Output_sections which can only be written after the
4918 // input sections are complete.
4919
4920 void
4921 Layout::write_sections_after_input_sections(Output_file* of)
4922 {
4923   // Determine the final section offsets, and thus the final output
4924   // file size.  Note we finalize the .shstrab last, to allow the
4925   // after_input_section sections to modify their section-names before
4926   // writing.
4927   if (this->any_postprocessing_sections_)
4928     {
4929       off_t off = this->output_file_size_;
4930       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4931
4932       // Now that we've finalized the names, we can finalize the shstrab.
4933       off =
4934         this->set_section_offsets(off,
4935                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4936
4937       if (off > this->output_file_size_)
4938         {
4939           of->resize(off);
4940           this->output_file_size_ = off;
4941         }
4942     }
4943
4944   for (Section_list::const_iterator p = this->section_list_.begin();
4945        p != this->section_list_.end();
4946        ++p)
4947     {
4948       if ((*p)->after_input_sections())
4949         (*p)->write(of);
4950     }
4951
4952   this->section_headers_->write(of);
4953 }
4954
4955 // If the build ID requires computing a checksum, do so here, and
4956 // write it out.  We compute a checksum over the entire file because
4957 // that is simplest.
4958
4959 void
4960 Layout::write_build_id(Output_file* of) const
4961 {
4962   if (this->build_id_note_ == NULL)
4963     return;
4964
4965   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4966
4967   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4968                                           this->build_id_note_->data_size());
4969
4970   const char* style = parameters->options().build_id();
4971   if (strcmp(style, "sha1") == 0)
4972     {
4973       sha1_ctx ctx;
4974       sha1_init_ctx(&ctx);
4975       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4976       sha1_finish_ctx(&ctx, ov);
4977     }
4978   else if (strcmp(style, "md5") == 0)
4979     {
4980       md5_ctx ctx;
4981       md5_init_ctx(&ctx);
4982       md5_process_bytes(iv, this->output_file_size_, &ctx);
4983       md5_finish_ctx(&ctx, ov);
4984     }
4985   else
4986     gold_unreachable();
4987
4988   of->write_output_view(this->build_id_note_->offset(),
4989                         this->build_id_note_->data_size(),
4990                         ov);
4991
4992   of->free_input_view(0, this->output_file_size_, iv);
4993 }
4994
4995 // Write out a binary file.  This is called after the link is
4996 // complete.  IN is the temporary output file we used to generate the
4997 // ELF code.  We simply walk through the segments, read them from
4998 // their file offset in IN, and write them to their load address in
4999 // the output file.  FIXME: with a bit more work, we could support
5000 // S-records and/or Intel hex format here.
5001
5002 void
5003 Layout::write_binary(Output_file* in) const
5004 {
5005   gold_assert(parameters->options().oformat_enum()
5006               == General_options::OBJECT_FORMAT_BINARY);
5007
5008   // Get the size of the binary file.
5009   uint64_t max_load_address = 0;
5010   for (Segment_list::const_iterator p = this->segment_list_.begin();
5011        p != this->segment_list_.end();
5012        ++p)
5013     {
5014       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5015         {
5016           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5017           if (max_paddr > max_load_address)
5018             max_load_address = max_paddr;
5019         }
5020     }
5021
5022   Output_file out(parameters->options().output_file_name());
5023   out.open(max_load_address);
5024
5025   for (Segment_list::const_iterator p = this->segment_list_.begin();
5026        p != this->segment_list_.end();
5027        ++p)
5028     {
5029       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5030         {
5031           const unsigned char* vin = in->get_input_view((*p)->offset(),
5032                                                         (*p)->filesz());
5033           unsigned char* vout = out.get_output_view((*p)->paddr(),
5034                                                     (*p)->filesz());
5035           memcpy(vout, vin, (*p)->filesz());
5036           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5037           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5038         }
5039     }
5040
5041   out.close();
5042 }
5043
5044 // Print the output sections to the map file.
5045
5046 void
5047 Layout::print_to_mapfile(Mapfile* mapfile) const
5048 {
5049   for (Segment_list::const_iterator p = this->segment_list_.begin();
5050        p != this->segment_list_.end();
5051        ++p)
5052     (*p)->print_sections_to_mapfile(mapfile);
5053 }
5054
5055 // Print statistical information to stderr.  This is used for --stats.
5056
5057 void
5058 Layout::print_stats() const
5059 {
5060   this->namepool_.print_stats("section name pool");
5061   this->sympool_.print_stats("output symbol name pool");
5062   this->dynpool_.print_stats("dynamic name pool");
5063
5064   for (Section_list::const_iterator p = this->section_list_.begin();
5065        p != this->section_list_.end();
5066        ++p)
5067     (*p)->print_merge_stats();
5068 }
5069
5070 // Write_sections_task methods.
5071
5072 // We can always run this task.
5073
5074 Task_token*
5075 Write_sections_task::is_runnable()
5076 {
5077   return NULL;
5078 }
5079
5080 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5081 // when finished.
5082
5083 void
5084 Write_sections_task::locks(Task_locker* tl)
5085 {
5086   tl->add(this, this->output_sections_blocker_);
5087   tl->add(this, this->final_blocker_);
5088 }
5089
5090 // Run the task--write out the data.
5091
5092 void
5093 Write_sections_task::run(Workqueue*)
5094 {
5095   this->layout_->write_output_sections(this->of_);
5096 }
5097
5098 // Write_data_task methods.
5099
5100 // We can always run this task.
5101
5102 Task_token*
5103 Write_data_task::is_runnable()
5104 {
5105   return NULL;
5106 }
5107
5108 // We need to unlock FINAL_BLOCKER when finished.
5109
5110 void
5111 Write_data_task::locks(Task_locker* tl)
5112 {
5113   tl->add(this, this->final_blocker_);
5114 }
5115
5116 // Run the task--write out the data.
5117
5118 void
5119 Write_data_task::run(Workqueue*)
5120 {
5121   this->layout_->write_data(this->symtab_, this->of_);
5122 }
5123
5124 // Write_symbols_task methods.
5125
5126 // We can always run this task.
5127
5128 Task_token*
5129 Write_symbols_task::is_runnable()
5130 {
5131   return NULL;
5132 }
5133
5134 // We need to unlock FINAL_BLOCKER when finished.
5135
5136 void
5137 Write_symbols_task::locks(Task_locker* tl)
5138 {
5139   tl->add(this, this->final_blocker_);
5140 }
5141
5142 // Run the task--write out the symbols.
5143
5144 void
5145 Write_symbols_task::run(Workqueue*)
5146 {
5147   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5148                                this->layout_->symtab_xindex(),
5149                                this->layout_->dynsym_xindex(), this->of_);
5150 }
5151
5152 // Write_after_input_sections_task methods.
5153
5154 // We can only run this task after the input sections have completed.
5155
5156 Task_token*
5157 Write_after_input_sections_task::is_runnable()
5158 {
5159   if (this->input_sections_blocker_->is_blocked())
5160     return this->input_sections_blocker_;
5161   return NULL;
5162 }
5163
5164 // We need to unlock FINAL_BLOCKER when finished.
5165
5166 void
5167 Write_after_input_sections_task::locks(Task_locker* tl)
5168 {
5169   tl->add(this, this->final_blocker_);
5170 }
5171
5172 // Run the task.
5173
5174 void
5175 Write_after_input_sections_task::run(Workqueue*)
5176 {
5177   this->layout_->write_sections_after_input_sections(this->of_);
5178 }
5179
5180 // Close_task_runner methods.
5181
5182 // Run the task--close the file.
5183
5184 void
5185 Close_task_runner::run(Workqueue*, const Task*)
5186 {
5187   // If we need to compute a checksum for the BUILD if, we do so here.
5188   this->layout_->write_build_id(this->of_);
5189
5190   // If we've been asked to create a binary file, we do so here.
5191   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5192     this->layout_->write_binary(this->of_);
5193
5194   this->of_->close();
5195 }
5196
5197 // Instantiate the templates we need.  We could use the configure
5198 // script to restrict this to only the ones for implemented targets.
5199
5200 #ifdef HAVE_TARGET_32_LITTLE
5201 template
5202 Output_section*
5203 Layout::init_fixed_output_section<32, false>(
5204     const char* name,
5205     elfcpp::Shdr<32, false>& shdr);
5206 #endif
5207
5208 #ifdef HAVE_TARGET_32_BIG
5209 template
5210 Output_section*
5211 Layout::init_fixed_output_section<32, true>(
5212     const char* name,
5213     elfcpp::Shdr<32, true>& shdr);
5214 #endif
5215
5216 #ifdef HAVE_TARGET_64_LITTLE
5217 template
5218 Output_section*
5219 Layout::init_fixed_output_section<64, false>(
5220     const char* name,
5221     elfcpp::Shdr<64, false>& shdr);
5222 #endif
5223
5224 #ifdef HAVE_TARGET_64_BIG
5225 template
5226 Output_section*
5227 Layout::init_fixed_output_section<64, true>(
5228     const char* name,
5229     elfcpp::Shdr<64, true>& shdr);
5230 #endif
5231
5232 #ifdef HAVE_TARGET_32_LITTLE
5233 template
5234 Output_section*
5235 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5236                           unsigned int shndx,
5237                           const char* name,
5238                           const elfcpp::Shdr<32, false>& shdr,
5239                           unsigned int, unsigned int, off_t*);
5240 #endif
5241
5242 #ifdef HAVE_TARGET_32_BIG
5243 template
5244 Output_section*
5245 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5246                          unsigned int shndx,
5247                          const char* name,
5248                          const elfcpp::Shdr<32, true>& shdr,
5249                          unsigned int, unsigned int, off_t*);
5250 #endif
5251
5252 #ifdef HAVE_TARGET_64_LITTLE
5253 template
5254 Output_section*
5255 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5256                           unsigned int shndx,
5257                           const char* name,
5258                           const elfcpp::Shdr<64, false>& shdr,
5259                           unsigned int, unsigned int, off_t*);
5260 #endif
5261
5262 #ifdef HAVE_TARGET_64_BIG
5263 template
5264 Output_section*
5265 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5266                          unsigned int shndx,
5267                          const char* name,
5268                          const elfcpp::Shdr<64, true>& shdr,
5269                          unsigned int, unsigned int, off_t*);
5270 #endif
5271
5272 #ifdef HAVE_TARGET_32_LITTLE
5273 template
5274 Output_section*
5275 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5276                                 unsigned int reloc_shndx,
5277                                 const elfcpp::Shdr<32, false>& shdr,
5278                                 Output_section* data_section,
5279                                 Relocatable_relocs* rr);
5280 #endif
5281
5282 #ifdef HAVE_TARGET_32_BIG
5283 template
5284 Output_section*
5285 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5286                                unsigned int reloc_shndx,
5287                                const elfcpp::Shdr<32, true>& shdr,
5288                                Output_section* data_section,
5289                                Relocatable_relocs* rr);
5290 #endif
5291
5292 #ifdef HAVE_TARGET_64_LITTLE
5293 template
5294 Output_section*
5295 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5296                                 unsigned int reloc_shndx,
5297                                 const elfcpp::Shdr<64, false>& shdr,
5298                                 Output_section* data_section,
5299                                 Relocatable_relocs* rr);
5300 #endif
5301
5302 #ifdef HAVE_TARGET_64_BIG
5303 template
5304 Output_section*
5305 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5306                                unsigned int reloc_shndx,
5307                                const elfcpp::Shdr<64, true>& shdr,
5308                                Output_section* data_section,
5309                                Relocatable_relocs* rr);
5310 #endif
5311
5312 #ifdef HAVE_TARGET_32_LITTLE
5313 template
5314 void
5315 Layout::layout_group<32, false>(Symbol_table* symtab,
5316                                 Sized_relobj_file<32, false>* object,
5317                                 unsigned int,
5318                                 const char* group_section_name,
5319                                 const char* signature,
5320                                 const elfcpp::Shdr<32, false>& shdr,
5321                                 elfcpp::Elf_Word flags,
5322                                 std::vector<unsigned int>* shndxes);
5323 #endif
5324
5325 #ifdef HAVE_TARGET_32_BIG
5326 template
5327 void
5328 Layout::layout_group<32, true>(Symbol_table* symtab,
5329                                Sized_relobj_file<32, true>* object,
5330                                unsigned int,
5331                                const char* group_section_name,
5332                                const char* signature,
5333                                const elfcpp::Shdr<32, true>& shdr,
5334                                elfcpp::Elf_Word flags,
5335                                std::vector<unsigned int>* shndxes);
5336 #endif
5337
5338 #ifdef HAVE_TARGET_64_LITTLE
5339 template
5340 void
5341 Layout::layout_group<64, false>(Symbol_table* symtab,
5342                                 Sized_relobj_file<64, false>* object,
5343                                 unsigned int,
5344                                 const char* group_section_name,
5345                                 const char* signature,
5346                                 const elfcpp::Shdr<64, false>& shdr,
5347                                 elfcpp::Elf_Word flags,
5348                                 std::vector<unsigned int>* shndxes);
5349 #endif
5350
5351 #ifdef HAVE_TARGET_64_BIG
5352 template
5353 void
5354 Layout::layout_group<64, true>(Symbol_table* symtab,
5355                                Sized_relobj_file<64, true>* object,
5356                                unsigned int,
5357                                const char* group_section_name,
5358                                const char* signature,
5359                                const elfcpp::Shdr<64, true>& shdr,
5360                                elfcpp::Elf_Word flags,
5361                                std::vector<unsigned int>* shndxes);
5362 #endif
5363
5364 #ifdef HAVE_TARGET_32_LITTLE
5365 template
5366 Output_section*
5367 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5368                                    const unsigned char* symbols,
5369                                    off_t symbols_size,
5370                                    const unsigned char* symbol_names,
5371                                    off_t symbol_names_size,
5372                                    unsigned int shndx,
5373                                    const elfcpp::Shdr<32, false>& shdr,
5374                                    unsigned int reloc_shndx,
5375                                    unsigned int reloc_type,
5376                                    off_t* off);
5377 #endif
5378
5379 #ifdef HAVE_TARGET_32_BIG
5380 template
5381 Output_section*
5382 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5383                                   const unsigned char* symbols,
5384                                   off_t symbols_size,
5385                                   const unsigned char* symbol_names,
5386                                   off_t symbol_names_size,
5387                                   unsigned int shndx,
5388                                   const elfcpp::Shdr<32, true>& shdr,
5389                                   unsigned int reloc_shndx,
5390                                   unsigned int reloc_type,
5391                                   off_t* off);
5392 #endif
5393
5394 #ifdef HAVE_TARGET_64_LITTLE
5395 template
5396 Output_section*
5397 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5398                                    const unsigned char* symbols,
5399                                    off_t symbols_size,
5400                                    const unsigned char* symbol_names,
5401                                    off_t symbol_names_size,
5402                                    unsigned int shndx,
5403                                    const elfcpp::Shdr<64, false>& shdr,
5404                                    unsigned int reloc_shndx,
5405                                    unsigned int reloc_type,
5406                                    off_t* off);
5407 #endif
5408
5409 #ifdef HAVE_TARGET_64_BIG
5410 template
5411 Output_section*
5412 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5413                                   const unsigned char* symbols,
5414                                   off_t symbols_size,
5415                                   const unsigned char* symbol_names,
5416                                   off_t symbol_names_size,
5417                                   unsigned int shndx,
5418                                   const elfcpp::Shdr<64, true>& shdr,
5419                                   unsigned int reloc_shndx,
5420                                   unsigned int reloc_type,
5421                                   off_t* off);
5422 #endif
5423
5424 #ifdef HAVE_TARGET_32_LITTLE
5425 template
5426 void
5427 Layout::add_to_gdb_index(bool is_type_unit,
5428                          Sized_relobj<32, false>* object,
5429                          const unsigned char* symbols,
5430                          off_t symbols_size,
5431                          unsigned int shndx,
5432                          unsigned int reloc_shndx,
5433                          unsigned int reloc_type);
5434 #endif
5435
5436 #ifdef HAVE_TARGET_32_BIG
5437 template
5438 void
5439 Layout::add_to_gdb_index(bool is_type_unit,
5440                          Sized_relobj<32, true>* object,
5441                          const unsigned char* symbols,
5442                          off_t symbols_size,
5443                          unsigned int shndx,
5444                          unsigned int reloc_shndx,
5445                          unsigned int reloc_type);
5446 #endif
5447
5448 #ifdef HAVE_TARGET_64_LITTLE
5449 template
5450 void
5451 Layout::add_to_gdb_index(bool is_type_unit,
5452                          Sized_relobj<64, false>* object,
5453                          const unsigned char* symbols,
5454                          off_t symbols_size,
5455                          unsigned int shndx,
5456                          unsigned int reloc_shndx,
5457                          unsigned int reloc_type);
5458 #endif
5459
5460 #ifdef HAVE_TARGET_64_BIG
5461 template
5462 void
5463 Layout::add_to_gdb_index(bool is_type_unit,
5464                          Sized_relobj<64, true>* object,
5465                          const unsigned char* symbols,
5466                          off_t symbols_size,
5467                          unsigned int shndx,
5468                          unsigned int reloc_shndx,
5469                          unsigned int reloc_type);
5470 #endif
5471
5472 } // End namespace gold.