Group text sections with prefixes .text.unlikely,.text.hot and .text.startup
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     unique_segment_for_sections_specified_(false),
412     incremental_inputs_(NULL),
413     record_output_section_data_from_script_(false),
414     script_output_section_data_list_(),
415     segment_states_(NULL),
416     relaxation_debug_check_(NULL),
417     section_order_map_(),
418     section_segment_map_(),
419     input_section_position_(),
420     input_section_glob_(),
421     incremental_base_(NULL),
422     free_list_()
423 {
424   // Make space for more than enough segments for a typical file.
425   // This is just for efficiency--it's OK if we wind up needing more.
426   this->segment_list_.reserve(12);
427
428   // We expect two unattached Output_data objects: the file header and
429   // the segment headers.
430   this->special_output_list_.reserve(2);
431
432   // Initialize structure needed for an incremental build.
433   if (parameters->incremental())
434     this->incremental_inputs_ = new Incremental_inputs;
435
436   // The section name pool is worth optimizing in all cases, because
437   // it is small, but there are often overlaps due to .rel sections.
438   this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446   this->incremental_base_ = base;
447   this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455  return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465   "abbrev",
466   "addr",         // Fission extension
467   // "aranges",   // not used by gdb as of 7.4
468   "frame",
469   "info",
470   "types",
471   "line",
472   "loc",
473   "macinfo",
474   "macro",
475   // "pubnames",  // not used by gdb as of 7.4
476   // "pubtypes",  // not used by gdb as of 7.4
477   "ranges",
478   "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485   "abbrev",
486   // "addr",      // Fission extension
487   // "aranges",   // not used by gdb as of 7.4
488   // "frame",
489   "info",
490   // "types",
491   "line",
492   // "loc",
493   // "macinfo",
494   // "macro",
495   // "pubnames",  // not used by gdb as of 7.4
496   // "pubtypes",  // not used by gdb as of 7.4
497   // "ranges",
498   "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506   "aranges",
507   "pubnames",
508   "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518   // We can do this faster: binary search or a hashtable.  But why bother?
519   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520     if (strcmp(suffix, gdb_sections[i]) == 0)
521       return true;
522   return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530   // We can do this faster: binary search or a hashtable.  But why bother?
531   for (size_t i = 0;
532        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533        ++i)
534     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535       return true;
536   return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545   // We can do this faster: binary search or a hashtable.  But why bother?
546   for (size_t i = 0;
547        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548        ++i)
549     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550       return true;
551   return false;
552 }
553
554 // Sometimes we compress sections.  This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections.  This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566   return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files.  Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575   return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583                         const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585   if (!parameters->options().relocatable()
586       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
587     return false;
588
589   switch (shdr.get_sh_type())
590     {
591     case elfcpp::SHT_NULL:
592     case elfcpp::SHT_SYMTAB:
593     case elfcpp::SHT_DYNSYM:
594     case elfcpp::SHT_HASH:
595     case elfcpp::SHT_DYNAMIC:
596     case elfcpp::SHT_SYMTAB_SHNDX:
597       return false;
598
599     case elfcpp::SHT_STRTAB:
600       // Discard the sections which have special meanings in the ELF
601       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
602       // checking the sh_link fields of the appropriate sections.
603       return (strcmp(name, ".dynstr") != 0
604               && strcmp(name, ".strtab") != 0
605               && strcmp(name, ".shstrtab") != 0);
606
607     case elfcpp::SHT_RELA:
608     case elfcpp::SHT_REL:
609     case elfcpp::SHT_GROUP:
610       // If we are emitting relocations these should be handled
611       // elsewhere.
612       gold_assert(!parameters->options().relocatable());
613       return false;
614
615     case elfcpp::SHT_PROGBITS:
616       if (parameters->options().strip_debug()
617           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
618         {
619           if (is_debug_info_section(name))
620             return false;
621         }
622       if (parameters->options().strip_debug_non_line()
623           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
624         {
625           // Debugging sections can only be recognized by name.
626           if (is_prefix_of(".debug_", name)
627               && !is_lines_only_debug_section(name + 7))
628             return false;
629           if (is_prefix_of(".zdebug_", name)
630               && !is_lines_only_debug_section(name + 8))
631             return false;
632         }
633       if (parameters->options().strip_debug_gdb()
634           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
635         {
636           // Debugging sections can only be recognized by name.
637           if (is_prefix_of(".debug_", name)
638               && !is_gdb_debug_section(name + 7))
639             return false;
640           if (is_prefix_of(".zdebug_", name)
641               && !is_gdb_debug_section(name + 8))
642             return false;
643         }
644       if (parameters->options().gdb_index()
645           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
646         {
647           // When building .gdb_index, we can strip .debug_pubnames,
648           // .debug_pubtypes, and .debug_aranges sections.
649           if (is_prefix_of(".debug_", name)
650               && is_gdb_fast_lookup_section(name + 7))
651             return false;
652           if (is_prefix_of(".zdebug_", name)
653               && is_gdb_fast_lookup_section(name + 8))
654             return false;
655         }
656       if (parameters->options().strip_lto_sections()
657           && !parameters->options().relocatable()
658           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
659         {
660           // Ignore LTO sections containing intermediate code.
661           if (is_prefix_of(".gnu.lto_", name))
662             return false;
663         }
664       // The GNU linker strips .gnu_debuglink sections, so we do too.
665       // This is a feature used to keep debugging information in
666       // separate files.
667       if (strcmp(name, ".gnu_debuglink") == 0)
668         return false;
669       return true;
670
671     default:
672       return true;
673     }
674 }
675
676 // Return an output section named NAME, or NULL if there is none.
677
678 Output_section*
679 Layout::find_output_section(const char* name) const
680 {
681   for (Section_list::const_iterator p = this->section_list_.begin();
682        p != this->section_list_.end();
683        ++p)
684     if (strcmp((*p)->name(), name) == 0)
685       return *p;
686   return NULL;
687 }
688
689 // Return an output segment of type TYPE, with segment flags SET set
690 // and segment flags CLEAR clear.  Return NULL if there is none.
691
692 Output_segment*
693 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
694                             elfcpp::Elf_Word clear) const
695 {
696   for (Segment_list::const_iterator p = this->segment_list_.begin();
697        p != this->segment_list_.end();
698        ++p)
699     if (static_cast<elfcpp::PT>((*p)->type()) == type
700         && ((*p)->flags() & set) == set
701         && ((*p)->flags() & clear) == 0)
702       return *p;
703   return NULL;
704 }
705
706 // When we put a .ctors or .dtors section with more than one word into
707 // a .init_array or .fini_array section, we need to reverse the words
708 // in the .ctors/.dtors section.  This is because .init_array executes
709 // constructors front to back, where .ctors executes them back to
710 // front, and vice-versa for .fini_array/.dtors.  Although we do want
711 // to remap .ctors/.dtors into .init_array/.fini_array because it can
712 // be more efficient, we don't want to change the order in which
713 // constructors/destructors are run.  This set just keeps track of
714 // these sections which need to be reversed.  It is only changed by
715 // Layout::layout.  It should be a private member of Layout, but that
716 // would require layout.h to #include object.h to get the definition
717 // of Section_id.
718 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
719
720 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
721 // .init_array/.fini_array section.
722
723 bool
724 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
725 {
726   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
727           != ctors_sections_in_init_array.end());
728 }
729
730 // Return the output section to use for section NAME with type TYPE
731 // and section flags FLAGS.  NAME must be canonicalized in the string
732 // pool, and NAME_KEY is the key.  ORDER is where this should appear
733 // in the output sections.  IS_RELRO is true for a relro section.
734
735 Output_section*
736 Layout::get_output_section(const char* name, Stringpool::Key name_key,
737                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
738                            Output_section_order order, bool is_relro)
739 {
740   elfcpp::Elf_Word lookup_type = type;
741
742   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
743   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
744   // .init_array, .fini_array, and .preinit_array sections by name
745   // whatever their type in the input file.  We do this because the
746   // types are not always right in the input files.
747   if (lookup_type == elfcpp::SHT_INIT_ARRAY
748       || lookup_type == elfcpp::SHT_FINI_ARRAY
749       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
750     lookup_type = elfcpp::SHT_PROGBITS;
751
752   elfcpp::Elf_Xword lookup_flags = flags;
753
754   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
755   // read-write with read-only sections.  Some other ELF linkers do
756   // not do this.  FIXME: Perhaps there should be an option
757   // controlling this.
758   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
759
760   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
761   const std::pair<Key, Output_section*> v(key, NULL);
762   std::pair<Section_name_map::iterator, bool> ins(
763     this->section_name_map_.insert(v));
764
765   if (!ins.second)
766     return ins.first->second;
767   else
768     {
769       // This is the first time we've seen this name/type/flags
770       // combination.  For compatibility with the GNU linker, we
771       // combine sections with contents and zero flags with sections
772       // with non-zero flags.  This is a workaround for cases where
773       // assembler code forgets to set section flags.  FIXME: Perhaps
774       // there should be an option to control this.
775       Output_section* os = NULL;
776
777       if (lookup_type == elfcpp::SHT_PROGBITS)
778         {
779           if (flags == 0)
780             {
781               Output_section* same_name = this->find_output_section(name);
782               if (same_name != NULL
783                   && (same_name->type() == elfcpp::SHT_PROGBITS
784                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
785                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
786                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
787                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
788                 os = same_name;
789             }
790           else if ((flags & elfcpp::SHF_TLS) == 0)
791             {
792               elfcpp::Elf_Xword zero_flags = 0;
793               const Key zero_key(name_key, std::make_pair(lookup_type,
794                                                           zero_flags));
795               Section_name_map::iterator p =
796                   this->section_name_map_.find(zero_key);
797               if (p != this->section_name_map_.end())
798                 os = p->second;
799             }
800         }
801
802       if (os == NULL)
803         os = this->make_output_section(name, type, flags, order, is_relro);
804
805       ins.first->second = os;
806       return os;
807     }
808 }
809
810 // Returns TRUE iff NAME (an input section from RELOBJ) will
811 // be mapped to an output section that should be KEPT.
812
813 bool
814 Layout::keep_input_section(const Relobj* relobj, const char* name)
815 {
816   if (! this->script_options_->saw_sections_clause())
817     return false;
818
819   Script_sections* ss = this->script_options_->script_sections();
820   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
821   Output_section** output_section_slot;
822   Script_sections::Section_type script_section_type;
823   bool keep;
824
825   name = ss->output_section_name(file_name, name, &output_section_slot,
826                                  &script_section_type, &keep);
827   return name != NULL && keep;
828 }
829
830 // Clear the input section flags that should not be copied to the
831 // output section.
832
833 elfcpp::Elf_Xword
834 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
835 {
836   // Some flags in the input section should not be automatically
837   // copied to the output section.
838   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
839                             | elfcpp::SHF_GROUP
840                             | elfcpp::SHF_MERGE
841                             | elfcpp::SHF_STRINGS);
842
843   // We only clear the SHF_LINK_ORDER flag in for
844   // a non-relocatable link.
845   if (!parameters->options().relocatable())
846     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
847
848   return input_section_flags;
849 }
850
851 // Pick the output section to use for section NAME, in input file
852 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
853 // linker created section.  IS_INPUT_SECTION is true if we are
854 // choosing an output section for an input section found in a input
855 // file.  ORDER is where this section should appear in the output
856 // sections.  IS_RELRO is true for a relro section.  This will return
857 // NULL if the input section should be discarded.
858
859 Output_section*
860 Layout::choose_output_section(const Relobj* relobj, const char* name,
861                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
862                               bool is_input_section, Output_section_order order,
863                               bool is_relro)
864 {
865   // We should not see any input sections after we have attached
866   // sections to segments.
867   gold_assert(!is_input_section || !this->sections_are_attached_);
868
869   flags = this->get_output_section_flags(flags);
870
871   if (this->script_options_->saw_sections_clause())
872     {
873       // We are using a SECTIONS clause, so the output section is
874       // chosen based only on the name.
875
876       Script_sections* ss = this->script_options_->script_sections();
877       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
878       Output_section** output_section_slot;
879       Script_sections::Section_type script_section_type;
880       const char* orig_name = name;
881       bool keep;
882       name = ss->output_section_name(file_name, name, &output_section_slot,
883                                      &script_section_type, &keep);
884
885       if (name == NULL)
886         {
887           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
888                                      "because it is not allowed by the "
889                                      "SECTIONS clause of the linker script"),
890                      orig_name);
891           // The SECTIONS clause says to discard this input section.
892           return NULL;
893         }
894
895       // We can only handle script section types ST_NONE and ST_NOLOAD.
896       switch (script_section_type)
897         {
898         case Script_sections::ST_NONE:
899           break;
900         case Script_sections::ST_NOLOAD:
901           flags &= elfcpp::SHF_ALLOC;
902           break;
903         default:
904           gold_unreachable();
905         }
906
907       // If this is an orphan section--one not mentioned in the linker
908       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
909       // default processing below.
910
911       if (output_section_slot != NULL)
912         {
913           if (*output_section_slot != NULL)
914             {
915               (*output_section_slot)->update_flags_for_input_section(flags);
916               return *output_section_slot;
917             }
918
919           // We don't put sections found in the linker script into
920           // SECTION_NAME_MAP_.  That keeps us from getting confused
921           // if an orphan section is mapped to a section with the same
922           // name as one in the linker script.
923
924           name = this->namepool_.add(name, false, NULL);
925
926           Output_section* os = this->make_output_section(name, type, flags,
927                                                          order, is_relro);
928
929           os->set_found_in_sections_clause();
930
931           // Special handling for NOLOAD sections.
932           if (script_section_type == Script_sections::ST_NOLOAD)
933             {
934               os->set_is_noload();
935
936               // The constructor of Output_section sets addresses of non-ALLOC
937               // sections to 0 by default.  We don't want that for NOLOAD
938               // sections even if they have no SHF_ALLOC flag.
939               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
940                   && os->is_address_valid())
941                 {
942                   gold_assert(os->address() == 0
943                               && !os->is_offset_valid()
944                               && !os->is_data_size_valid());
945                   os->reset_address_and_file_offset();
946                 }
947             }
948
949           *output_section_slot = os;
950           return os;
951         }
952     }
953
954   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
955
956   size_t len = strlen(name);
957   char* uncompressed_name = NULL;
958
959   // Compressed debug sections should be mapped to the corresponding
960   // uncompressed section.
961   if (is_compressed_debug_section(name))
962     {
963       uncompressed_name = new char[len];
964       uncompressed_name[0] = '.';
965       gold_assert(name[0] == '.' && name[1] == 'z');
966       strncpy(&uncompressed_name[1], &name[2], len - 2);
967       uncompressed_name[len - 1] = '\0';
968       len -= 1;
969       name = uncompressed_name;
970     }
971
972   // Turn NAME from the name of the input section into the name of the
973   // output section.
974   if (is_input_section
975       && !this->script_options_->saw_sections_clause()
976       && !parameters->options().relocatable())
977     {
978       const char *orig_name = name;
979       name = parameters->target().output_section_name(relobj, name, &len);
980       if (name == NULL)
981         name = Layout::output_section_name(relobj, orig_name, &len);
982     }
983
984   Stringpool::Key name_key;
985   name = this->namepool_.add_with_length(name, len, true, &name_key);
986
987   if (uncompressed_name != NULL)
988     delete[] uncompressed_name;
989
990   // Find or make the output section.  The output section is selected
991   // based on the section name, type, and flags.
992   return this->get_output_section(name, name_key, type, flags, order, is_relro);
993 }
994
995 // For incremental links, record the initial fixed layout of a section
996 // from the base file, and return a pointer to the Output_section.
997
998 template<int size, bool big_endian>
999 Output_section*
1000 Layout::init_fixed_output_section(const char* name,
1001                                   elfcpp::Shdr<size, big_endian>& shdr)
1002 {
1003   unsigned int sh_type = shdr.get_sh_type();
1004
1005   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1006   // PRE_INIT_ARRAY, and NOTE sections.
1007   // All others will be created from scratch and reallocated.
1008   if (!can_incremental_update(sh_type))
1009     return NULL;
1010
1011   // If we're generating a .gdb_index section, we need to regenerate
1012   // it from scratch.
1013   if (parameters->options().gdb_index()
1014       && sh_type == elfcpp::SHT_PROGBITS
1015       && strcmp(name, ".gdb_index") == 0)
1016     return NULL;
1017
1018   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1019   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1020   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1021   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1022   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1023       shdr.get_sh_addralign();
1024
1025   // Make the output section.
1026   Stringpool::Key name_key;
1027   name = this->namepool_.add(name, true, &name_key);
1028   Output_section* os = this->get_output_section(name, name_key, sh_type,
1029                                                 sh_flags, ORDER_INVALID, false);
1030   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1031   if (sh_type != elfcpp::SHT_NOBITS)
1032     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1033   return os;
1034 }
1035
1036 // Return the output section to use for input section SHNDX, with name
1037 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1038 // index of a relocation section which applies to this section, or 0
1039 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1040 // relocation section if there is one.  Set *OFF to the offset of this
1041 // input section without the output section.  Return NULL if the
1042 // section should be discarded.  Set *OFF to -1 if the section
1043 // contents should not be written directly to the output file, but
1044 // will instead receive special handling.
1045
1046 template<int size, bool big_endian>
1047 Output_section*
1048 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1049                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1050                unsigned int reloc_shndx, unsigned int, off_t* off)
1051 {
1052   *off = 0;
1053
1054   if (!this->include_section(object, name, shdr))
1055     return NULL;
1056
1057   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1058
1059   // In a relocatable link a grouped section must not be combined with
1060   // any other sections.
1061   Output_section* os;
1062   if (parameters->options().relocatable()
1063       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1064     {
1065       name = this->namepool_.add(name, true, NULL);
1066       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1067                                      ORDER_INVALID, false);
1068     }
1069   else
1070     {
1071       // Plugins can choose to place one or more subsets of sections in
1072       // unique segments and this is done by mapping these section subsets
1073       // to unique output sections.  Check if this section needs to be
1074       // remapped to a unique output section.
1075       Section_segment_map::iterator it
1076           = this->section_segment_map_.find(Const_section_id(object, shndx));
1077       if (it == this->section_segment_map_.end())
1078         {
1079           os = this->choose_output_section(object, name, sh_type,
1080                                            shdr.get_sh_flags(), true,
1081                                            ORDER_INVALID, false);
1082         }
1083       else
1084         {
1085           // We know the name of the output section, directly call
1086           // get_output_section here by-passing choose_output_section.
1087           elfcpp::Elf_Xword flags
1088             = this->get_output_section_flags(shdr.get_sh_flags());
1089
1090           const char* os_name = it->second->name;
1091           Stringpool::Key name_key;
1092           os_name = this->namepool_.add(os_name, true, &name_key);
1093           os = this->get_output_section(os_name, name_key, sh_type, flags,
1094                                         ORDER_INVALID, false);
1095           if (!os->is_unique_segment())
1096             {
1097               os->set_is_unique_segment();
1098               os->set_extra_segment_flags(it->second->flags);
1099               os->set_segment_alignment(it->second->align);
1100             }
1101         }
1102       if (os == NULL)
1103         return NULL;
1104     }
1105
1106   // By default the GNU linker sorts input sections whose names match
1107   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1108   // sections are sorted by name.  This is used to implement
1109   // constructor priority ordering.  We are compatible.  When we put
1110   // .ctor sections in .init_array and .dtor sections in .fini_array,
1111   // we must also sort plain .ctor and .dtor sections.
1112   if (!this->script_options_->saw_sections_clause()
1113       && !parameters->options().relocatable()
1114       && (is_prefix_of(".ctors.", name)
1115           || is_prefix_of(".dtors.", name)
1116           || is_prefix_of(".init_array.", name)
1117           || is_prefix_of(".fini_array.", name)
1118           || (parameters->options().ctors_in_init_array()
1119               && (strcmp(name, ".ctors") == 0
1120                   || strcmp(name, ".dtors") == 0))))
1121     os->set_must_sort_attached_input_sections();
1122
1123   // If this is a .ctors or .ctors.* section being mapped to a
1124   // .init_array section, or a .dtors or .dtors.* section being mapped
1125   // to a .fini_array section, we will need to reverse the words if
1126   // there is more than one.  Record this section for later.  See
1127   // ctors_sections_in_init_array above.
1128   if (!this->script_options_->saw_sections_clause()
1129       && !parameters->options().relocatable()
1130       && shdr.get_sh_size() > size / 8
1131       && (((strcmp(name, ".ctors") == 0
1132             || is_prefix_of(".ctors.", name))
1133            && strcmp(os->name(), ".init_array") == 0)
1134           || ((strcmp(name, ".dtors") == 0
1135                || is_prefix_of(".dtors.", name))
1136               && strcmp(os->name(), ".fini_array") == 0)))
1137     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1138
1139   // FIXME: Handle SHF_LINK_ORDER somewhere.
1140
1141   elfcpp::Elf_Xword orig_flags = os->flags();
1142
1143   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1144                                this->script_options_->saw_sections_clause());
1145
1146   // If the flags changed, we may have to change the order.
1147   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1148     {
1149       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1150       elfcpp::Elf_Xword new_flags =
1151         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1152       if (orig_flags != new_flags)
1153         os->set_order(this->default_section_order(os, false));
1154     }
1155
1156   this->have_added_input_section_ = true;
1157
1158   return os;
1159 }
1160
1161 // Maps section SECN to SEGMENT s.
1162 void
1163 Layout::insert_section_segment_map(Const_section_id secn,
1164                                    Unique_segment_info *s)
1165 {
1166   gold_assert(this->unique_segment_for_sections_specified_); 
1167   this->section_segment_map_[secn] = s;
1168 }
1169
1170 // Handle a relocation section when doing a relocatable link.
1171
1172 template<int size, bool big_endian>
1173 Output_section*
1174 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1175                      unsigned int,
1176                      const elfcpp::Shdr<size, big_endian>& shdr,
1177                      Output_section* data_section,
1178                      Relocatable_relocs* rr)
1179 {
1180   gold_assert(parameters->options().relocatable()
1181               || parameters->options().emit_relocs());
1182
1183   int sh_type = shdr.get_sh_type();
1184
1185   std::string name;
1186   if (sh_type == elfcpp::SHT_REL)
1187     name = ".rel";
1188   else if (sh_type == elfcpp::SHT_RELA)
1189     name = ".rela";
1190   else
1191     gold_unreachable();
1192   name += data_section->name();
1193
1194   // In a relocatable link relocs for a grouped section must not be
1195   // combined with other reloc sections.
1196   Output_section* os;
1197   if (!parameters->options().relocatable()
1198       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1199     os = this->choose_output_section(object, name.c_str(), sh_type,
1200                                      shdr.get_sh_flags(), false,
1201                                      ORDER_INVALID, false);
1202   else
1203     {
1204       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1205       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1206                                      ORDER_INVALID, false);
1207     }
1208
1209   os->set_should_link_to_symtab();
1210   os->set_info_section(data_section);
1211
1212   Output_section_data* posd;
1213   if (sh_type == elfcpp::SHT_REL)
1214     {
1215       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1216       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1217                                            size,
1218                                            big_endian>(rr);
1219     }
1220   else if (sh_type == elfcpp::SHT_RELA)
1221     {
1222       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1223       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1224                                            size,
1225                                            big_endian>(rr);
1226     }
1227   else
1228     gold_unreachable();
1229
1230   os->add_output_section_data(posd);
1231   rr->set_output_data(posd);
1232
1233   return os;
1234 }
1235
1236 // Handle a group section when doing a relocatable link.
1237
1238 template<int size, bool big_endian>
1239 void
1240 Layout::layout_group(Symbol_table* symtab,
1241                      Sized_relobj_file<size, big_endian>* object,
1242                      unsigned int,
1243                      const char* group_section_name,
1244                      const char* signature,
1245                      const elfcpp::Shdr<size, big_endian>& shdr,
1246                      elfcpp::Elf_Word flags,
1247                      std::vector<unsigned int>* shndxes)
1248 {
1249   gold_assert(parameters->options().relocatable());
1250   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1251   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1252   Output_section* os = this->make_output_section(group_section_name,
1253                                                  elfcpp::SHT_GROUP,
1254                                                  shdr.get_sh_flags(),
1255                                                  ORDER_INVALID, false);
1256
1257   // We need to find a symbol with the signature in the symbol table.
1258   // If we don't find one now, we need to look again later.
1259   Symbol* sym = symtab->lookup(signature, NULL);
1260   if (sym != NULL)
1261     os->set_info_symndx(sym);
1262   else
1263     {
1264       // Reserve some space to minimize reallocations.
1265       if (this->group_signatures_.empty())
1266         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1267
1268       // We will wind up using a symbol whose name is the signature.
1269       // So just put the signature in the symbol name pool to save it.
1270       signature = symtab->canonicalize_name(signature);
1271       this->group_signatures_.push_back(Group_signature(os, signature));
1272     }
1273
1274   os->set_should_link_to_symtab();
1275   os->set_entsize(4);
1276
1277   section_size_type entry_count =
1278     convert_to_section_size_type(shdr.get_sh_size() / 4);
1279   Output_section_data* posd =
1280     new Output_data_group<size, big_endian>(object, entry_count, flags,
1281                                             shndxes);
1282   os->add_output_section_data(posd);
1283 }
1284
1285 // Special GNU handling of sections name .eh_frame.  They will
1286 // normally hold exception frame data as defined by the C++ ABI
1287 // (http://codesourcery.com/cxx-abi/).
1288
1289 template<int size, bool big_endian>
1290 Output_section*
1291 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1292                         const unsigned char* symbols,
1293                         off_t symbols_size,
1294                         const unsigned char* symbol_names,
1295                         off_t symbol_names_size,
1296                         unsigned int shndx,
1297                         const elfcpp::Shdr<size, big_endian>& shdr,
1298                         unsigned int reloc_shndx, unsigned int reloc_type,
1299                         off_t* off)
1300 {
1301   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1302               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1303   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1304
1305   Output_section* os = this->make_eh_frame_section(object);
1306   if (os == NULL)
1307     return NULL;
1308
1309   gold_assert(this->eh_frame_section_ == os);
1310
1311   elfcpp::Elf_Xword orig_flags = os->flags();
1312
1313   if (!parameters->incremental()
1314       && this->eh_frame_data_->add_ehframe_input_section(object,
1315                                                          symbols,
1316                                                          symbols_size,
1317                                                          symbol_names,
1318                                                          symbol_names_size,
1319                                                          shndx,
1320                                                          reloc_shndx,
1321                                                          reloc_type))
1322     {
1323       os->update_flags_for_input_section(shdr.get_sh_flags());
1324
1325       // A writable .eh_frame section is a RELRO section.
1326       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1327           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1328         {
1329           os->set_is_relro();
1330           os->set_order(ORDER_RELRO);
1331         }
1332
1333       // We found a .eh_frame section we are going to optimize, so now
1334       // we can add the set of optimized sections to the output
1335       // section.  We need to postpone adding this until we've found a
1336       // section we can optimize so that the .eh_frame section in
1337       // crtbegin.o winds up at the start of the output section.
1338       if (!this->added_eh_frame_data_)
1339         {
1340           os->add_output_section_data(this->eh_frame_data_);
1341           this->added_eh_frame_data_ = true;
1342         }
1343       *off = -1;
1344     }
1345   else
1346     {
1347       // We couldn't handle this .eh_frame section for some reason.
1348       // Add it as a normal section.
1349       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1350       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1351                                    reloc_shndx, saw_sections_clause);
1352       this->have_added_input_section_ = true;
1353
1354       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1355           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1356         os->set_order(this->default_section_order(os, false));
1357     }
1358
1359   return os;
1360 }
1361
1362 // Create and return the magic .eh_frame section.  Create
1363 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1364 // input .eh_frame section; it may be NULL.
1365
1366 Output_section*
1367 Layout::make_eh_frame_section(const Relobj* object)
1368 {
1369   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1370   // SHT_PROGBITS.
1371   Output_section* os = this->choose_output_section(object, ".eh_frame",
1372                                                    elfcpp::SHT_PROGBITS,
1373                                                    elfcpp::SHF_ALLOC, false,
1374                                                    ORDER_EHFRAME, false);
1375   if (os == NULL)
1376     return NULL;
1377
1378   if (this->eh_frame_section_ == NULL)
1379     {
1380       this->eh_frame_section_ = os;
1381       this->eh_frame_data_ = new Eh_frame();
1382
1383       // For incremental linking, we do not optimize .eh_frame sections
1384       // or create a .eh_frame_hdr section.
1385       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1386         {
1387           Output_section* hdr_os =
1388             this->choose_output_section(NULL, ".eh_frame_hdr",
1389                                         elfcpp::SHT_PROGBITS,
1390                                         elfcpp::SHF_ALLOC, false,
1391                                         ORDER_EHFRAME, false);
1392
1393           if (hdr_os != NULL)
1394             {
1395               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1396                                                         this->eh_frame_data_);
1397               hdr_os->add_output_section_data(hdr_posd);
1398
1399               hdr_os->set_after_input_sections();
1400
1401               if (!this->script_options_->saw_phdrs_clause())
1402                 {
1403                   Output_segment* hdr_oseg;
1404                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1405                                                        elfcpp::PF_R);
1406                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1407                                                           elfcpp::PF_R);
1408                 }
1409
1410               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1411             }
1412         }
1413     }
1414
1415   return os;
1416 }
1417
1418 // Add an exception frame for a PLT.  This is called from target code.
1419
1420 void
1421 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1422                              size_t cie_length, const unsigned char* fde_data,
1423                              size_t fde_length)
1424 {
1425   if (parameters->incremental())
1426     {
1427       // FIXME: Maybe this could work some day....
1428       return;
1429     }
1430   Output_section* os = this->make_eh_frame_section(NULL);
1431   if (os == NULL)
1432     return;
1433   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1434                                             fde_data, fde_length);
1435   if (!this->added_eh_frame_data_)
1436     {
1437       os->add_output_section_data(this->eh_frame_data_);
1438       this->added_eh_frame_data_ = true;
1439     }
1440 }
1441
1442 // Scan a .debug_info or .debug_types section, and add summary
1443 // information to the .gdb_index section.
1444
1445 template<int size, bool big_endian>
1446 void
1447 Layout::add_to_gdb_index(bool is_type_unit,
1448                          Sized_relobj<size, big_endian>* object,
1449                          const unsigned char* symbols,
1450                          off_t symbols_size,
1451                          unsigned int shndx,
1452                          unsigned int reloc_shndx,
1453                          unsigned int reloc_type)
1454 {
1455   if (this->gdb_index_data_ == NULL)
1456     {
1457       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1458                                                        elfcpp::SHT_PROGBITS, 0,
1459                                                        false, ORDER_INVALID,
1460                                                        false);
1461       if (os == NULL)
1462         return;
1463
1464       this->gdb_index_data_ = new Gdb_index(os);
1465       os->add_output_section_data(this->gdb_index_data_);
1466       os->set_after_input_sections();
1467     }
1468
1469   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1470                                          symbols_size, shndx, reloc_shndx,
1471                                          reloc_type);
1472 }
1473
1474 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1475 // the output section.
1476
1477 Output_section*
1478 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1479                                 elfcpp::Elf_Xword flags,
1480                                 Output_section_data* posd,
1481                                 Output_section_order order, bool is_relro)
1482 {
1483   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1484                                                    false, order, is_relro);
1485   if (os != NULL)
1486     os->add_output_section_data(posd);
1487   return os;
1488 }
1489
1490 // Map section flags to segment flags.
1491
1492 elfcpp::Elf_Word
1493 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1494 {
1495   elfcpp::Elf_Word ret = elfcpp::PF_R;
1496   if ((flags & elfcpp::SHF_WRITE) != 0)
1497     ret |= elfcpp::PF_W;
1498   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1499     ret |= elfcpp::PF_X;
1500   return ret;
1501 }
1502
1503 // Make a new Output_section, and attach it to segments as
1504 // appropriate.  ORDER is the order in which this section should
1505 // appear in the output segment.  IS_RELRO is true if this is a relro
1506 // (read-only after relocations) section.
1507
1508 Output_section*
1509 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1510                             elfcpp::Elf_Xword flags,
1511                             Output_section_order order, bool is_relro)
1512 {
1513   Output_section* os;
1514   if ((flags & elfcpp::SHF_ALLOC) == 0
1515       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1516       && is_compressible_debug_section(name))
1517     os = new Output_compressed_section(&parameters->options(), name, type,
1518                                        flags);
1519   else if ((flags & elfcpp::SHF_ALLOC) == 0
1520            && parameters->options().strip_debug_non_line()
1521            && strcmp(".debug_abbrev", name) == 0)
1522     {
1523       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1524           name, type, flags);
1525       if (this->debug_info_)
1526         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1527     }
1528   else if ((flags & elfcpp::SHF_ALLOC) == 0
1529            && parameters->options().strip_debug_non_line()
1530            && strcmp(".debug_info", name) == 0)
1531     {
1532       os = this->debug_info_ = new Output_reduced_debug_info_section(
1533           name, type, flags);
1534       if (this->debug_abbrev_)
1535         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1536     }
1537   else
1538     {
1539       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1540       // not have correct section types.  Force them here.
1541       if (type == elfcpp::SHT_PROGBITS)
1542         {
1543           if (is_prefix_of(".init_array", name))
1544             type = elfcpp::SHT_INIT_ARRAY;
1545           else if (is_prefix_of(".preinit_array", name))
1546             type = elfcpp::SHT_PREINIT_ARRAY;
1547           else if (is_prefix_of(".fini_array", name))
1548             type = elfcpp::SHT_FINI_ARRAY;
1549         }
1550
1551       // FIXME: const_cast is ugly.
1552       Target* target = const_cast<Target*>(&parameters->target());
1553       os = target->make_output_section(name, type, flags);
1554     }
1555
1556   // With -z relro, we have to recognize the special sections by name.
1557   // There is no other way.
1558   bool is_relro_local = false;
1559   if (!this->script_options_->saw_sections_clause()
1560       && parameters->options().relro()
1561       && (flags & elfcpp::SHF_ALLOC) != 0
1562       && (flags & elfcpp::SHF_WRITE) != 0)
1563     {
1564       if (type == elfcpp::SHT_PROGBITS)
1565         {
1566           if ((flags & elfcpp::SHF_TLS) != 0)
1567             is_relro = true;
1568           else if (strcmp(name, ".data.rel.ro") == 0)
1569             is_relro = true;
1570           else if (strcmp(name, ".data.rel.ro.local") == 0)
1571             {
1572               is_relro = true;
1573               is_relro_local = true;
1574             }
1575           else if (strcmp(name, ".ctors") == 0
1576                    || strcmp(name, ".dtors") == 0
1577                    || strcmp(name, ".jcr") == 0)
1578             is_relro = true;
1579         }
1580       else if (type == elfcpp::SHT_INIT_ARRAY
1581                || type == elfcpp::SHT_FINI_ARRAY
1582                || type == elfcpp::SHT_PREINIT_ARRAY)
1583         is_relro = true;
1584     }
1585
1586   if (is_relro)
1587     os->set_is_relro();
1588
1589   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1590     order = this->default_section_order(os, is_relro_local);
1591
1592   os->set_order(order);
1593
1594   parameters->target().new_output_section(os);
1595
1596   this->section_list_.push_back(os);
1597
1598   // The GNU linker by default sorts some sections by priority, so we
1599   // do the same.  We need to know that this might happen before we
1600   // attach any input sections.
1601   if (!this->script_options_->saw_sections_clause()
1602       && !parameters->options().relocatable()
1603       && (strcmp(name, ".init_array") == 0
1604           || strcmp(name, ".fini_array") == 0
1605           || (!parameters->options().ctors_in_init_array()
1606               && (strcmp(name, ".ctors") == 0
1607                   || strcmp(name, ".dtors") == 0))))
1608     os->set_may_sort_attached_input_sections();
1609
1610   // Check for .stab*str sections, as .stab* sections need to link to
1611   // them.
1612   if (type == elfcpp::SHT_STRTAB
1613       && !this->have_stabstr_section_
1614       && strncmp(name, ".stab", 5) == 0
1615       && strcmp(name + strlen(name) - 3, "str") == 0)
1616     this->have_stabstr_section_ = true;
1617
1618   // During a full incremental link, we add patch space to most
1619   // PROGBITS and NOBITS sections.  Flag those that may be
1620   // arbitrarily padded.
1621   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1622       && order != ORDER_INTERP
1623       && order != ORDER_INIT
1624       && order != ORDER_PLT
1625       && order != ORDER_FINI
1626       && order != ORDER_RELRO_LAST
1627       && order != ORDER_NON_RELRO_FIRST
1628       && strcmp(name, ".eh_frame") != 0
1629       && strcmp(name, ".ctors") != 0
1630       && strcmp(name, ".dtors") != 0
1631       && strcmp(name, ".jcr") != 0)
1632     {
1633       os->set_is_patch_space_allowed();
1634
1635       // Certain sections require "holes" to be filled with
1636       // specific fill patterns.  These fill patterns may have
1637       // a minimum size, so we must prevent allocations from the
1638       // free list that leave a hole smaller than the minimum.
1639       if (strcmp(name, ".debug_info") == 0)
1640         os->set_free_space_fill(new Output_fill_debug_info(false));
1641       else if (strcmp(name, ".debug_types") == 0)
1642         os->set_free_space_fill(new Output_fill_debug_info(true));
1643       else if (strcmp(name, ".debug_line") == 0)
1644         os->set_free_space_fill(new Output_fill_debug_line());
1645     }
1646
1647   // If we have already attached the sections to segments, then we
1648   // need to attach this one now.  This happens for sections created
1649   // directly by the linker.
1650   if (this->sections_are_attached_)
1651     this->attach_section_to_segment(&parameters->target(), os);
1652
1653   return os;
1654 }
1655
1656 // Return the default order in which a section should be placed in an
1657 // output segment.  This function captures a lot of the ideas in
1658 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1659 // linker created section is normally set when the section is created;
1660 // this function is used for input sections.
1661
1662 Output_section_order
1663 Layout::default_section_order(Output_section* os, bool is_relro_local)
1664 {
1665   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1666   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1667   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1668   bool is_bss = false;
1669
1670   switch (os->type())
1671     {
1672     default:
1673     case elfcpp::SHT_PROGBITS:
1674       break;
1675     case elfcpp::SHT_NOBITS:
1676       is_bss = true;
1677       break;
1678     case elfcpp::SHT_RELA:
1679     case elfcpp::SHT_REL:
1680       if (!is_write)
1681         return ORDER_DYNAMIC_RELOCS;
1682       break;
1683     case elfcpp::SHT_HASH:
1684     case elfcpp::SHT_DYNAMIC:
1685     case elfcpp::SHT_SHLIB:
1686     case elfcpp::SHT_DYNSYM:
1687     case elfcpp::SHT_GNU_HASH:
1688     case elfcpp::SHT_GNU_verdef:
1689     case elfcpp::SHT_GNU_verneed:
1690     case elfcpp::SHT_GNU_versym:
1691       if (!is_write)
1692         return ORDER_DYNAMIC_LINKER;
1693       break;
1694     case elfcpp::SHT_NOTE:
1695       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1696     }
1697
1698   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1699     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1700
1701   if (!is_bss && !is_write)
1702     {
1703       if (is_execinstr)
1704         {
1705           if (strcmp(os->name(), ".init") == 0)
1706             return ORDER_INIT;
1707           else if (strcmp(os->name(), ".fini") == 0)
1708             return ORDER_FINI;
1709         }
1710       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1711     }
1712
1713   if (os->is_relro())
1714     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1715
1716   if (os->is_small_section())
1717     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1718   if (os->is_large_section())
1719     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1720
1721   return is_bss ? ORDER_BSS : ORDER_DATA;
1722 }
1723
1724 // Attach output sections to segments.  This is called after we have
1725 // seen all the input sections.
1726
1727 void
1728 Layout::attach_sections_to_segments(const Target* target)
1729 {
1730   for (Section_list::iterator p = this->section_list_.begin();
1731        p != this->section_list_.end();
1732        ++p)
1733     this->attach_section_to_segment(target, *p);
1734
1735   this->sections_are_attached_ = true;
1736 }
1737
1738 // Attach an output section to a segment.
1739
1740 void
1741 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1742 {
1743   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1744     this->unattached_section_list_.push_back(os);
1745   else
1746     this->attach_allocated_section_to_segment(target, os);
1747 }
1748
1749 // Attach an allocated output section to a segment.
1750
1751 void
1752 Layout::attach_allocated_section_to_segment(const Target* target,
1753                                             Output_section* os)
1754 {
1755   elfcpp::Elf_Xword flags = os->flags();
1756   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1757
1758   if (parameters->options().relocatable())
1759     return;
1760
1761   // If we have a SECTIONS clause, we can't handle the attachment to
1762   // segments until after we've seen all the sections.
1763   if (this->script_options_->saw_sections_clause())
1764     return;
1765
1766   gold_assert(!this->script_options_->saw_phdrs_clause());
1767
1768   // This output section goes into a PT_LOAD segment.
1769
1770   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1771
1772   // If this output section's segment has extra flags that need to be set,
1773   // coming from a linker plugin, do that.
1774   seg_flags |= os->extra_segment_flags();
1775
1776   // Check for --section-start.
1777   uint64_t addr;
1778   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1779
1780   // In general the only thing we really care about for PT_LOAD
1781   // segments is whether or not they are writable or executable,
1782   // so that is how we search for them.
1783   // Large data sections also go into their own PT_LOAD segment.
1784   // People who need segments sorted on some other basis will
1785   // have to use a linker script.
1786
1787   Segment_list::const_iterator p;
1788   if (!os->is_unique_segment())
1789     {
1790       for (p = this->segment_list_.begin();
1791            p != this->segment_list_.end();
1792            ++p)
1793         {
1794           if ((*p)->type() != elfcpp::PT_LOAD)                        
1795             continue;                        
1796           if ((*p)->is_unique_segment())                        
1797             continue;                        
1798           if (!parameters->options().omagic()                        
1799               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))                        
1800             continue;                        
1801           if ((target->isolate_execinstr() || parameters->options().rosegment())                        
1802               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))                        
1803             continue;                        
1804           // If -Tbss was specified, we need to separate the data and BSS                        
1805           // segments.                        
1806           if (parameters->options().user_set_Tbss())                        
1807             {                        
1808               if ((os->type() == elfcpp::SHT_NOBITS)                        
1809                   == (*p)->has_any_data_sections())                        
1810                 continue;                        
1811             }                        
1812           if (os->is_large_data_section() && !(*p)->is_large_data_segment())                        
1813             continue;                        
1814                             
1815           if (is_address_set)                        
1816             {                        
1817               if ((*p)->are_addresses_set())                        
1818                 continue;                        
1819                             
1820               (*p)->add_initial_output_data(os);                        
1821               (*p)->update_flags_for_output_section(seg_flags);                        
1822               (*p)->set_addresses(addr, addr);                        
1823               break;                        
1824             }                        
1825                             
1826           (*p)->add_output_section_to_load(this, os, seg_flags);                        
1827           break;                        
1828         }                        
1829     }
1830
1831   if (p == this->segment_list_.end()
1832       || os->is_unique_segment())
1833     {
1834       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1835                                                        seg_flags);
1836       if (os->is_large_data_section())
1837         oseg->set_is_large_data_segment();
1838       oseg->add_output_section_to_load(this, os, seg_flags);
1839       if (is_address_set)
1840         oseg->set_addresses(addr, addr);
1841       // Check if segment should be marked unique.  For segments marked
1842       // unique by linker plugins, set the new alignment if specified.
1843       if (os->is_unique_segment())
1844         {
1845           oseg->set_is_unique_segment();
1846           if (os->segment_alignment() != 0)
1847             oseg->set_minimum_p_align(os->segment_alignment());
1848         }
1849     }
1850
1851   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1852   // segment.
1853   if (os->type() == elfcpp::SHT_NOTE)
1854     {
1855       // See if we already have an equivalent PT_NOTE segment.
1856       for (p = this->segment_list_.begin();
1857            p != segment_list_.end();
1858            ++p)
1859         {
1860           if ((*p)->type() == elfcpp::PT_NOTE
1861               && (((*p)->flags() & elfcpp::PF_W)
1862                   == (seg_flags & elfcpp::PF_W)))
1863             {
1864               (*p)->add_output_section_to_nonload(os, seg_flags);
1865               break;
1866             }
1867         }
1868
1869       if (p == this->segment_list_.end())
1870         {
1871           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1872                                                            seg_flags);
1873           oseg->add_output_section_to_nonload(os, seg_flags);
1874         }
1875     }
1876
1877   // If we see a loadable SHF_TLS section, we create a PT_TLS
1878   // segment.  There can only be one such segment.
1879   if ((flags & elfcpp::SHF_TLS) != 0)
1880     {
1881       if (this->tls_segment_ == NULL)
1882         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1883       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1884     }
1885
1886   // If -z relro is in effect, and we see a relro section, we create a
1887   // PT_GNU_RELRO segment.  There can only be one such segment.
1888   if (os->is_relro() && parameters->options().relro())
1889     {
1890       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1891       if (this->relro_segment_ == NULL)
1892         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1893       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1894     }
1895
1896   // If we see a section named .interp, put it into a PT_INTERP
1897   // segment.  This seems broken to me, but this is what GNU ld does,
1898   // and glibc expects it.
1899   if (strcmp(os->name(), ".interp") == 0
1900       && !this->script_options_->saw_phdrs_clause())
1901     {
1902       if (this->interp_segment_ == NULL)
1903         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1904       else
1905         gold_warning(_("multiple '.interp' sections in input files "
1906                        "may cause confusing PT_INTERP segment"));
1907       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1908     }
1909 }
1910
1911 // Make an output section for a script.
1912
1913 Output_section*
1914 Layout::make_output_section_for_script(
1915     const char* name,
1916     Script_sections::Section_type section_type)
1917 {
1918   name = this->namepool_.add(name, false, NULL);
1919   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1920   if (section_type == Script_sections::ST_NOLOAD)
1921     sh_flags = 0;
1922   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1923                                                  sh_flags, ORDER_INVALID,
1924                                                  false);
1925   os->set_found_in_sections_clause();
1926   if (section_type == Script_sections::ST_NOLOAD)
1927     os->set_is_noload();
1928   return os;
1929 }
1930
1931 // Return the number of segments we expect to see.
1932
1933 size_t
1934 Layout::expected_segment_count() const
1935 {
1936   size_t ret = this->segment_list_.size();
1937
1938   // If we didn't see a SECTIONS clause in a linker script, we should
1939   // already have the complete list of segments.  Otherwise we ask the
1940   // SECTIONS clause how many segments it expects, and add in the ones
1941   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1942
1943   if (!this->script_options_->saw_sections_clause())
1944     return ret;
1945   else
1946     {
1947       const Script_sections* ss = this->script_options_->script_sections();
1948       return ret + ss->expected_segment_count(this);
1949     }
1950 }
1951
1952 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1953 // is whether we saw a .note.GNU-stack section in the object file.
1954 // GNU_STACK_FLAGS is the section flags.  The flags give the
1955 // protection required for stack memory.  We record this in an
1956 // executable as a PT_GNU_STACK segment.  If an object file does not
1957 // have a .note.GNU-stack segment, we must assume that it is an old
1958 // object.  On some targets that will force an executable stack.
1959
1960 void
1961 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1962                          const Object* obj)
1963 {
1964   if (!seen_gnu_stack)
1965     {
1966       this->input_without_gnu_stack_note_ = true;
1967       if (parameters->options().warn_execstack()
1968           && parameters->target().is_default_stack_executable())
1969         gold_warning(_("%s: missing .note.GNU-stack section"
1970                        " implies executable stack"),
1971                      obj->name().c_str());
1972     }
1973   else
1974     {
1975       this->input_with_gnu_stack_note_ = true;
1976       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1977         {
1978           this->input_requires_executable_stack_ = true;
1979           if (parameters->options().warn_execstack()
1980               || parameters->options().is_stack_executable())
1981             gold_warning(_("%s: requires executable stack"),
1982                          obj->name().c_str());
1983         }
1984     }
1985 }
1986
1987 // Create automatic note sections.
1988
1989 void
1990 Layout::create_notes()
1991 {
1992   this->create_gold_note();
1993   this->create_executable_stack_info();
1994   this->create_build_id();
1995 }
1996
1997 // Create the dynamic sections which are needed before we read the
1998 // relocs.
1999
2000 void
2001 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2002 {
2003   if (parameters->doing_static_link())
2004     return;
2005
2006   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2007                                                        elfcpp::SHT_DYNAMIC,
2008                                                        (elfcpp::SHF_ALLOC
2009                                                         | elfcpp::SHF_WRITE),
2010                                                        false, ORDER_RELRO,
2011                                                        true);
2012
2013   // A linker script may discard .dynamic, so check for NULL.
2014   if (this->dynamic_section_ != NULL)
2015     {
2016       this->dynamic_symbol_ =
2017         symtab->define_in_output_data("_DYNAMIC", NULL,
2018                                       Symbol_table::PREDEFINED,
2019                                       this->dynamic_section_, 0, 0,
2020                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2021                                       elfcpp::STV_HIDDEN, 0, false, false);
2022
2023       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2024
2025       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2026     }
2027 }
2028
2029 // For each output section whose name can be represented as C symbol,
2030 // define __start and __stop symbols for the section.  This is a GNU
2031 // extension.
2032
2033 void
2034 Layout::define_section_symbols(Symbol_table* symtab)
2035 {
2036   for (Section_list::const_iterator p = this->section_list_.begin();
2037        p != this->section_list_.end();
2038        ++p)
2039     {
2040       const char* const name = (*p)->name();
2041       if (is_cident(name))
2042         {
2043           const std::string name_string(name);
2044           const std::string start_name(cident_section_start_prefix
2045                                        + name_string);
2046           const std::string stop_name(cident_section_stop_prefix
2047                                       + name_string);
2048
2049           symtab->define_in_output_data(start_name.c_str(),
2050                                         NULL, // version
2051                                         Symbol_table::PREDEFINED,
2052                                         *p,
2053                                         0, // value
2054                                         0, // symsize
2055                                         elfcpp::STT_NOTYPE,
2056                                         elfcpp::STB_GLOBAL,
2057                                         elfcpp::STV_DEFAULT,
2058                                         0, // nonvis
2059                                         false, // offset_is_from_end
2060                                         true); // only_if_ref
2061
2062           symtab->define_in_output_data(stop_name.c_str(),
2063                                         NULL, // version
2064                                         Symbol_table::PREDEFINED,
2065                                         *p,
2066                                         0, // value
2067                                         0, // symsize
2068                                         elfcpp::STT_NOTYPE,
2069                                         elfcpp::STB_GLOBAL,
2070                                         elfcpp::STV_DEFAULT,
2071                                         0, // nonvis
2072                                         true, // offset_is_from_end
2073                                         true); // only_if_ref
2074         }
2075     }
2076 }
2077
2078 // Define symbols for group signatures.
2079
2080 void
2081 Layout::define_group_signatures(Symbol_table* symtab)
2082 {
2083   for (Group_signatures::iterator p = this->group_signatures_.begin();
2084        p != this->group_signatures_.end();
2085        ++p)
2086     {
2087       Symbol* sym = symtab->lookup(p->signature, NULL);
2088       if (sym != NULL)
2089         p->section->set_info_symndx(sym);
2090       else
2091         {
2092           // Force the name of the group section to the group
2093           // signature, and use the group's section symbol as the
2094           // signature symbol.
2095           if (strcmp(p->section->name(), p->signature) != 0)
2096             {
2097               const char* name = this->namepool_.add(p->signature,
2098                                                      true, NULL);
2099               p->section->set_name(name);
2100             }
2101           p->section->set_needs_symtab_index();
2102           p->section->set_info_section_symndx(p->section);
2103         }
2104     }
2105
2106   this->group_signatures_.clear();
2107 }
2108
2109 // Find the first read-only PT_LOAD segment, creating one if
2110 // necessary.
2111
2112 Output_segment*
2113 Layout::find_first_load_seg(const Target* target)
2114 {
2115   Output_segment* best = NULL;
2116   for (Segment_list::const_iterator p = this->segment_list_.begin();
2117        p != this->segment_list_.end();
2118        ++p)
2119     {
2120       if ((*p)->type() == elfcpp::PT_LOAD
2121           && ((*p)->flags() & elfcpp::PF_R) != 0
2122           && (parameters->options().omagic()
2123               || ((*p)->flags() & elfcpp::PF_W) == 0)
2124           && (!target->isolate_execinstr()
2125               || ((*p)->flags() & elfcpp::PF_X) == 0))
2126         {
2127           if (best == NULL || this->segment_precedes(*p, best))
2128             best = *p;
2129         }
2130     }
2131   if (best != NULL)
2132     return best;
2133
2134   gold_assert(!this->script_options_->saw_phdrs_clause());
2135
2136   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2137                                                        elfcpp::PF_R);
2138   return load_seg;
2139 }
2140
2141 // Save states of all current output segments.  Store saved states
2142 // in SEGMENT_STATES.
2143
2144 void
2145 Layout::save_segments(Segment_states* segment_states)
2146 {
2147   for (Segment_list::const_iterator p = this->segment_list_.begin();
2148        p != this->segment_list_.end();
2149        ++p)
2150     {
2151       Output_segment* segment = *p;
2152       // Shallow copy.
2153       Output_segment* copy = new Output_segment(*segment);
2154       (*segment_states)[segment] = copy;
2155     }
2156 }
2157
2158 // Restore states of output segments and delete any segment not found in
2159 // SEGMENT_STATES.
2160
2161 void
2162 Layout::restore_segments(const Segment_states* segment_states)
2163 {
2164   // Go through the segment list and remove any segment added in the
2165   // relaxation loop.
2166   this->tls_segment_ = NULL;
2167   this->relro_segment_ = NULL;
2168   Segment_list::iterator list_iter = this->segment_list_.begin();
2169   while (list_iter != this->segment_list_.end())
2170     {
2171       Output_segment* segment = *list_iter;
2172       Segment_states::const_iterator states_iter =
2173           segment_states->find(segment);
2174       if (states_iter != segment_states->end())
2175         {
2176           const Output_segment* copy = states_iter->second;
2177           // Shallow copy to restore states.
2178           *segment = *copy;
2179
2180           // Also fix up TLS and RELRO segment pointers as appropriate.
2181           if (segment->type() == elfcpp::PT_TLS)
2182             this->tls_segment_ = segment;
2183           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2184             this->relro_segment_ = segment;
2185
2186           ++list_iter;
2187         }
2188       else
2189         {
2190           list_iter = this->segment_list_.erase(list_iter);
2191           // This is a segment created during section layout.  It should be
2192           // safe to remove it since we should have removed all pointers to it.
2193           delete segment;
2194         }
2195     }
2196 }
2197
2198 // Clean up after relaxation so that sections can be laid out again.
2199
2200 void
2201 Layout::clean_up_after_relaxation()
2202 {
2203   // Restore the segments to point state just prior to the relaxation loop.
2204   Script_sections* script_section = this->script_options_->script_sections();
2205   script_section->release_segments();
2206   this->restore_segments(this->segment_states_);
2207
2208   // Reset section addresses and file offsets
2209   for (Section_list::iterator p = this->section_list_.begin();
2210        p != this->section_list_.end();
2211        ++p)
2212     {
2213       (*p)->restore_states();
2214
2215       // If an input section changes size because of relaxation,
2216       // we need to adjust the section offsets of all input sections.
2217       // after such a section.
2218       if ((*p)->section_offsets_need_adjustment())
2219         (*p)->adjust_section_offsets();
2220
2221       (*p)->reset_address_and_file_offset();
2222     }
2223
2224   // Reset special output object address and file offsets.
2225   for (Data_list::iterator p = this->special_output_list_.begin();
2226        p != this->special_output_list_.end();
2227        ++p)
2228     (*p)->reset_address_and_file_offset();
2229
2230   // A linker script may have created some output section data objects.
2231   // They are useless now.
2232   for (Output_section_data_list::const_iterator p =
2233          this->script_output_section_data_list_.begin();
2234        p != this->script_output_section_data_list_.end();
2235        ++p)
2236     delete *p;
2237   this->script_output_section_data_list_.clear();
2238 }
2239
2240 // Prepare for relaxation.
2241
2242 void
2243 Layout::prepare_for_relaxation()
2244 {
2245   // Create an relaxation debug check if in debugging mode.
2246   if (is_debugging_enabled(DEBUG_RELAXATION))
2247     this->relaxation_debug_check_ = new Relaxation_debug_check();
2248
2249   // Save segment states.
2250   this->segment_states_ = new Segment_states();
2251   this->save_segments(this->segment_states_);
2252
2253   for(Section_list::const_iterator p = this->section_list_.begin();
2254       p != this->section_list_.end();
2255       ++p)
2256     (*p)->save_states();
2257
2258   if (is_debugging_enabled(DEBUG_RELAXATION))
2259     this->relaxation_debug_check_->check_output_data_for_reset_values(
2260         this->section_list_, this->special_output_list_);
2261
2262   // Also enable recording of output section data from scripts.
2263   this->record_output_section_data_from_script_ = true;
2264 }
2265
2266 // Relaxation loop body:  If target has no relaxation, this runs only once
2267 // Otherwise, the target relaxation hook is called at the end of
2268 // each iteration.  If the hook returns true, it means re-layout of
2269 // section is required.
2270 //
2271 // The number of segments created by a linking script without a PHDRS
2272 // clause may be affected by section sizes and alignments.  There is
2273 // a remote chance that relaxation causes different number of PT_LOAD
2274 // segments are created and sections are attached to different segments.
2275 // Therefore, we always throw away all segments created during section
2276 // layout.  In order to be able to restart the section layout, we keep
2277 // a copy of the segment list right before the relaxation loop and use
2278 // that to restore the segments.
2279 //
2280 // PASS is the current relaxation pass number.
2281 // SYMTAB is a symbol table.
2282 // PLOAD_SEG is the address of a pointer for the load segment.
2283 // PHDR_SEG is a pointer to the PHDR segment.
2284 // SEGMENT_HEADERS points to the output segment header.
2285 // FILE_HEADER points to the output file header.
2286 // PSHNDX is the address to store the output section index.
2287
2288 off_t inline
2289 Layout::relaxation_loop_body(
2290     int pass,
2291     Target* target,
2292     Symbol_table* symtab,
2293     Output_segment** pload_seg,
2294     Output_segment* phdr_seg,
2295     Output_segment_headers* segment_headers,
2296     Output_file_header* file_header,
2297     unsigned int* pshndx)
2298 {
2299   // If this is not the first iteration, we need to clean up after
2300   // relaxation so that we can lay out the sections again.
2301   if (pass != 0)
2302     this->clean_up_after_relaxation();
2303
2304   // If there is a SECTIONS clause, put all the input sections into
2305   // the required order.
2306   Output_segment* load_seg;
2307   if (this->script_options_->saw_sections_clause())
2308     load_seg = this->set_section_addresses_from_script(symtab);
2309   else if (parameters->options().relocatable())
2310     load_seg = NULL;
2311   else
2312     load_seg = this->find_first_load_seg(target);
2313
2314   if (parameters->options().oformat_enum()
2315       != General_options::OBJECT_FORMAT_ELF)
2316     load_seg = NULL;
2317
2318   // If the user set the address of the text segment, that may not be
2319   // compatible with putting the segment headers and file headers into
2320   // that segment.
2321   if (parameters->options().user_set_Ttext()
2322       && parameters->options().Ttext() % target->abi_pagesize() != 0)
2323     {
2324       load_seg = NULL;
2325       phdr_seg = NULL;
2326     }
2327
2328   gold_assert(phdr_seg == NULL
2329               || load_seg != NULL
2330               || this->script_options_->saw_sections_clause());
2331
2332   // If the address of the load segment we found has been set by
2333   // --section-start rather than by a script, then adjust the VMA and
2334   // LMA downward if possible to include the file and section headers.
2335   uint64_t header_gap = 0;
2336   if (load_seg != NULL
2337       && load_seg->are_addresses_set()
2338       && !this->script_options_->saw_sections_clause()
2339       && !parameters->options().relocatable())
2340     {
2341       file_header->finalize_data_size();
2342       segment_headers->finalize_data_size();
2343       size_t sizeof_headers = (file_header->data_size()
2344                                + segment_headers->data_size());
2345       const uint64_t abi_pagesize = target->abi_pagesize();
2346       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2347       hdr_paddr &= ~(abi_pagesize - 1);
2348       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2349       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2350         load_seg = NULL;
2351       else
2352         {
2353           load_seg->set_addresses(load_seg->vaddr() - subtract,
2354                                   load_seg->paddr() - subtract);
2355           header_gap = subtract - sizeof_headers;
2356         }
2357     }
2358
2359   // Lay out the segment headers.
2360   if (!parameters->options().relocatable())
2361     {
2362       gold_assert(segment_headers != NULL);
2363       if (header_gap != 0 && load_seg != NULL)
2364         {
2365           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2366           load_seg->add_initial_output_data(z);
2367         }
2368       if (load_seg != NULL)
2369         load_seg->add_initial_output_data(segment_headers);
2370       if (phdr_seg != NULL)
2371         phdr_seg->add_initial_output_data(segment_headers);
2372     }
2373
2374   // Lay out the file header.
2375   if (load_seg != NULL)
2376     load_seg->add_initial_output_data(file_header);
2377
2378   if (this->script_options_->saw_phdrs_clause()
2379       && !parameters->options().relocatable())
2380     {
2381       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2382       // clause in a linker script.
2383       Script_sections* ss = this->script_options_->script_sections();
2384       ss->put_headers_in_phdrs(file_header, segment_headers);
2385     }
2386
2387   // We set the output section indexes in set_segment_offsets and
2388   // set_section_indexes.
2389   *pshndx = 1;
2390
2391   // Set the file offsets of all the segments, and all the sections
2392   // they contain.
2393   off_t off;
2394   if (!parameters->options().relocatable())
2395     off = this->set_segment_offsets(target, load_seg, pshndx);
2396   else
2397     off = this->set_relocatable_section_offsets(file_header, pshndx);
2398
2399    // Verify that the dummy relaxation does not change anything.
2400   if (is_debugging_enabled(DEBUG_RELAXATION))
2401     {
2402       if (pass == 0)
2403         this->relaxation_debug_check_->read_sections(this->section_list_);
2404       else
2405         this->relaxation_debug_check_->verify_sections(this->section_list_);
2406     }
2407
2408   *pload_seg = load_seg;
2409   return off;
2410 }
2411
2412 // By default, gold groups input sections with certain prefixes.  This 
2413 // function returns true if this section name NAME contains such a prefix.
2414
2415 bool
2416 Layout::is_section_name_prefix_grouped(const char *name)
2417 {
2418   if (is_prefix_of(".text.unlikely", name)
2419       || is_prefix_of(".text.startup", name)
2420       || is_prefix_of(".text.hot", name))
2421     return true;
2422
2423   return false;
2424 }
2425
2426 // Search the list of patterns and find the postion of the given section
2427 // name in the output section.  If the section name matches a glob
2428 // pattern and a non-glob name, then the non-glob position takes
2429 // precedence.  Return 0 if no match is found.
2430
2431 unsigned int
2432 Layout::find_section_order_index(const std::string& section_name)
2433 {
2434   Unordered_map<std::string, unsigned int>::iterator map_it;
2435   map_it = this->input_section_position_.find(section_name);
2436   if (map_it != this->input_section_position_.end())
2437     return map_it->second;
2438
2439   // Absolute match failed.  Linear search the glob patterns.
2440   std::vector<std::string>::iterator it;
2441   for (it = this->input_section_glob_.begin();
2442        it != this->input_section_glob_.end();
2443        ++it)
2444     {
2445        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2446          {
2447            map_it = this->input_section_position_.find(*it);
2448            gold_assert(map_it != this->input_section_position_.end());
2449            return map_it->second;
2450          }
2451     }
2452   return 0;
2453 }
2454
2455 // Read the sequence of input sections from the file specified with
2456 // option --section-ordering-file.
2457
2458 void
2459 Layout::read_layout_from_file()
2460 {
2461   const char* filename = parameters->options().section_ordering_file();
2462   std::ifstream in;
2463   std::string line;
2464
2465   in.open(filename);
2466   if (!in)
2467     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2468                filename, strerror(errno));
2469
2470   std::getline(in, line);   // this chops off the trailing \n, if any
2471   unsigned int position = 1;
2472   this->set_section_ordering_specified();
2473
2474   while (in)
2475     {
2476       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2477         line.resize(line.length() - 1);
2478       // Ignore comments, beginning with '#'
2479       if (line[0] == '#')
2480         {
2481           std::getline(in, line);
2482           continue;
2483         }
2484       this->input_section_position_[line] = position;
2485       // Store all glob patterns in a vector.
2486       if (is_wildcard_string(line.c_str()))
2487         this->input_section_glob_.push_back(line);
2488       position++;
2489       std::getline(in, line);
2490     }
2491 }
2492
2493 // Finalize the layout.  When this is called, we have created all the
2494 // output sections and all the output segments which are based on
2495 // input sections.  We have several things to do, and we have to do
2496 // them in the right order, so that we get the right results correctly
2497 // and efficiently.
2498
2499 // 1) Finalize the list of output segments and create the segment
2500 // table header.
2501
2502 // 2) Finalize the dynamic symbol table and associated sections.
2503
2504 // 3) Determine the final file offset of all the output segments.
2505
2506 // 4) Determine the final file offset of all the SHF_ALLOC output
2507 // sections.
2508
2509 // 5) Create the symbol table sections and the section name table
2510 // section.
2511
2512 // 6) Finalize the symbol table: set symbol values to their final
2513 // value and make a final determination of which symbols are going
2514 // into the output symbol table.
2515
2516 // 7) Create the section table header.
2517
2518 // 8) Determine the final file offset of all the output sections which
2519 // are not SHF_ALLOC, including the section table header.
2520
2521 // 9) Finalize the ELF file header.
2522
2523 // This function returns the size of the output file.
2524
2525 off_t
2526 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2527                  Target* target, const Task* task)
2528 {
2529   target->finalize_sections(this, input_objects, symtab);
2530
2531   this->count_local_symbols(task, input_objects);
2532
2533   this->link_stabs_sections();
2534
2535   Output_segment* phdr_seg = NULL;
2536   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2537     {
2538       // There was a dynamic object in the link.  We need to create
2539       // some information for the dynamic linker.
2540
2541       // Create the PT_PHDR segment which will hold the program
2542       // headers.
2543       if (!this->script_options_->saw_phdrs_clause())
2544         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2545
2546       // Create the dynamic symbol table, including the hash table.
2547       Output_section* dynstr;
2548       std::vector<Symbol*> dynamic_symbols;
2549       unsigned int local_dynamic_count;
2550       Versions versions(*this->script_options()->version_script_info(),
2551                         &this->dynpool_);
2552       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2553                                   &local_dynamic_count, &dynamic_symbols,
2554                                   &versions);
2555
2556       // Create the .interp section to hold the name of the
2557       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2558       // if we saw a .interp section in an input file.
2559       if ((!parameters->options().shared()
2560            || parameters->options().dynamic_linker() != NULL)
2561           && this->interp_segment_ == NULL)
2562         this->create_interp(target);
2563
2564       // Finish the .dynamic section to hold the dynamic data, and put
2565       // it in a PT_DYNAMIC segment.
2566       this->finish_dynamic_section(input_objects, symtab);
2567
2568       // We should have added everything we need to the dynamic string
2569       // table.
2570       this->dynpool_.set_string_offsets();
2571
2572       // Create the version sections.  We can't do this until the
2573       // dynamic string table is complete.
2574       this->create_version_sections(&versions, symtab, local_dynamic_count,
2575                                     dynamic_symbols, dynstr);
2576
2577       // Set the size of the _DYNAMIC symbol.  We can't do this until
2578       // after we call create_version_sections.
2579       this->set_dynamic_symbol_size(symtab);
2580     }
2581
2582   // Create segment headers.
2583   Output_segment_headers* segment_headers =
2584     (parameters->options().relocatable()
2585      ? NULL
2586      : new Output_segment_headers(this->segment_list_));
2587
2588   // Lay out the file header.
2589   Output_file_header* file_header = new Output_file_header(target, symtab,
2590                                                            segment_headers);
2591
2592   this->special_output_list_.push_back(file_header);
2593   if (segment_headers != NULL)
2594     this->special_output_list_.push_back(segment_headers);
2595
2596   // Find approriate places for orphan output sections if we are using
2597   // a linker script.
2598   if (this->script_options_->saw_sections_clause())
2599     this->place_orphan_sections_in_script();
2600
2601   Output_segment* load_seg;
2602   off_t off;
2603   unsigned int shndx;
2604   int pass = 0;
2605
2606   // Take a snapshot of the section layout as needed.
2607   if (target->may_relax())
2608     this->prepare_for_relaxation();
2609
2610   // Run the relaxation loop to lay out sections.
2611   do
2612     {
2613       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2614                                        phdr_seg, segment_headers, file_header,
2615                                        &shndx);
2616       pass++;
2617     }
2618   while (target->may_relax()
2619          && target->relax(pass, input_objects, symtab, this, task));
2620
2621   // If there is a load segment that contains the file and program headers,
2622   // provide a symbol __ehdr_start pointing there.
2623   // A program can use this to examine itself robustly.
2624   if (load_seg != NULL)
2625     symtab->define_in_output_segment("__ehdr_start", NULL,
2626                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2627                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2628                                      elfcpp::STV_DEFAULT, 0,
2629                                      Symbol::SEGMENT_START, true);
2630
2631   // Set the file offsets of all the non-data sections we've seen so
2632   // far which don't have to wait for the input sections.  We need
2633   // this in order to finalize local symbols in non-allocated
2634   // sections.
2635   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2636
2637   // Set the section indexes of all unallocated sections seen so far,
2638   // in case any of them are somehow referenced by a symbol.
2639   shndx = this->set_section_indexes(shndx);
2640
2641   // Create the symbol table sections.
2642   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2643   if (!parameters->doing_static_link())
2644     this->assign_local_dynsym_offsets(input_objects);
2645
2646   // Process any symbol assignments from a linker script.  This must
2647   // be called after the symbol table has been finalized.
2648   this->script_options_->finalize_symbols(symtab, this);
2649
2650   // Create the incremental inputs sections.
2651   if (this->incremental_inputs_)
2652     {
2653       this->incremental_inputs_->finalize();
2654       this->create_incremental_info_sections(symtab);
2655     }
2656
2657   // Create the .shstrtab section.
2658   Output_section* shstrtab_section = this->create_shstrtab();
2659
2660   // Set the file offsets of the rest of the non-data sections which
2661   // don't have to wait for the input sections.
2662   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2663
2664   // Now that all sections have been created, set the section indexes
2665   // for any sections which haven't been done yet.
2666   shndx = this->set_section_indexes(shndx);
2667
2668   // Create the section table header.
2669   this->create_shdrs(shstrtab_section, &off);
2670
2671   // If there are no sections which require postprocessing, we can
2672   // handle the section names now, and avoid a resize later.
2673   if (!this->any_postprocessing_sections_)
2674     {
2675       off = this->set_section_offsets(off,
2676                                       POSTPROCESSING_SECTIONS_PASS);
2677       off =
2678           this->set_section_offsets(off,
2679                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2680     }
2681
2682   file_header->set_section_info(this->section_headers_, shstrtab_section);
2683
2684   // Now we know exactly where everything goes in the output file
2685   // (except for non-allocated sections which require postprocessing).
2686   Output_data::layout_complete();
2687
2688   this->output_file_size_ = off;
2689
2690   return off;
2691 }
2692
2693 // Create a note header following the format defined in the ELF ABI.
2694 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2695 // of the section to create, DESCSZ is the size of the descriptor.
2696 // ALLOCATE is true if the section should be allocated in memory.
2697 // This returns the new note section.  It sets *TRAILING_PADDING to
2698 // the number of trailing zero bytes required.
2699
2700 Output_section*
2701 Layout::create_note(const char* name, int note_type,
2702                     const char* section_name, size_t descsz,
2703                     bool allocate, size_t* trailing_padding)
2704 {
2705   // Authorities all agree that the values in a .note field should
2706   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2707   // they differ on what the alignment is for 64-bit binaries.
2708   // The GABI says unambiguously they take 8-byte alignment:
2709   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2710   // Other documentation says alignment should always be 4 bytes:
2711   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2712   // GNU ld and GNU readelf both support the latter (at least as of
2713   // version 2.16.91), and glibc always generates the latter for
2714   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2715   // here.
2716 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2717   const int size = parameters->target().get_size();
2718 #else
2719   const int size = 32;
2720 #endif
2721
2722   // The contents of the .note section.
2723   size_t namesz = strlen(name) + 1;
2724   size_t aligned_namesz = align_address(namesz, size / 8);
2725   size_t aligned_descsz = align_address(descsz, size / 8);
2726
2727   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2728
2729   unsigned char* buffer = new unsigned char[notehdrsz];
2730   memset(buffer, 0, notehdrsz);
2731
2732   bool is_big_endian = parameters->target().is_big_endian();
2733
2734   if (size == 32)
2735     {
2736       if (!is_big_endian)
2737         {
2738           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2739           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2740           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2741         }
2742       else
2743         {
2744           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2745           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2746           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2747         }
2748     }
2749   else if (size == 64)
2750     {
2751       if (!is_big_endian)
2752         {
2753           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2754           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2755           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2756         }
2757       else
2758         {
2759           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2760           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2761           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2762         }
2763     }
2764   else
2765     gold_unreachable();
2766
2767   memcpy(buffer + 3 * (size / 8), name, namesz);
2768
2769   elfcpp::Elf_Xword flags = 0;
2770   Output_section_order order = ORDER_INVALID;
2771   if (allocate)
2772     {
2773       flags = elfcpp::SHF_ALLOC;
2774       order = ORDER_RO_NOTE;
2775     }
2776   Output_section* os = this->choose_output_section(NULL, section_name,
2777                                                    elfcpp::SHT_NOTE,
2778                                                    flags, false, order, false);
2779   if (os == NULL)
2780     return NULL;
2781
2782   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2783                                                            size / 8,
2784                                                            "** note header");
2785   os->add_output_section_data(posd);
2786
2787   *trailing_padding = aligned_descsz - descsz;
2788
2789   return os;
2790 }
2791
2792 // For an executable or shared library, create a note to record the
2793 // version of gold used to create the binary.
2794
2795 void
2796 Layout::create_gold_note()
2797 {
2798   if (parameters->options().relocatable()
2799       || parameters->incremental_update())
2800     return;
2801
2802   std::string desc = std::string("gold ") + gold::get_version_string();
2803
2804   size_t trailing_padding;
2805   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2806                                          ".note.gnu.gold-version", desc.size(),
2807                                          false, &trailing_padding);
2808   if (os == NULL)
2809     return;
2810
2811   Output_section_data* posd = new Output_data_const(desc, 4);
2812   os->add_output_section_data(posd);
2813
2814   if (trailing_padding > 0)
2815     {
2816       posd = new Output_data_zero_fill(trailing_padding, 0);
2817       os->add_output_section_data(posd);
2818     }
2819 }
2820
2821 // Record whether the stack should be executable.  This can be set
2822 // from the command line using the -z execstack or -z noexecstack
2823 // options.  Otherwise, if any input file has a .note.GNU-stack
2824 // section with the SHF_EXECINSTR flag set, the stack should be
2825 // executable.  Otherwise, if at least one input file a
2826 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2827 // section, we use the target default for whether the stack should be
2828 // executable.  Otherwise, we don't generate a stack note.  When
2829 // generating a object file, we create a .note.GNU-stack section with
2830 // the appropriate marking.  When generating an executable or shared
2831 // library, we create a PT_GNU_STACK segment.
2832
2833 void
2834 Layout::create_executable_stack_info()
2835 {
2836   bool is_stack_executable;
2837   if (parameters->options().is_execstack_set())
2838     is_stack_executable = parameters->options().is_stack_executable();
2839   else if (!this->input_with_gnu_stack_note_)
2840     return;
2841   else
2842     {
2843       if (this->input_requires_executable_stack_)
2844         is_stack_executable = true;
2845       else if (this->input_without_gnu_stack_note_)
2846         is_stack_executable =
2847           parameters->target().is_default_stack_executable();
2848       else
2849         is_stack_executable = false;
2850     }
2851
2852   if (parameters->options().relocatable())
2853     {
2854       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2855       elfcpp::Elf_Xword flags = 0;
2856       if (is_stack_executable)
2857         flags |= elfcpp::SHF_EXECINSTR;
2858       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2859                                 ORDER_INVALID, false);
2860     }
2861   else
2862     {
2863       if (this->script_options_->saw_phdrs_clause())
2864         return;
2865       int flags = elfcpp::PF_R | elfcpp::PF_W;
2866       if (is_stack_executable)
2867         flags |= elfcpp::PF_X;
2868       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2869     }
2870 }
2871
2872 // If --build-id was used, set up the build ID note.
2873
2874 void
2875 Layout::create_build_id()
2876 {
2877   if (!parameters->options().user_set_build_id())
2878     return;
2879
2880   const char* style = parameters->options().build_id();
2881   if (strcmp(style, "none") == 0)
2882     return;
2883
2884   // Set DESCSZ to the size of the note descriptor.  When possible,
2885   // set DESC to the note descriptor contents.
2886   size_t descsz;
2887   std::string desc;
2888   if (strcmp(style, "md5") == 0)
2889     descsz = 128 / 8;
2890   else if (strcmp(style, "sha1") == 0)
2891     descsz = 160 / 8;
2892   else if (strcmp(style, "uuid") == 0)
2893     {
2894       const size_t uuidsz = 128 / 8;
2895
2896       char buffer[uuidsz];
2897       memset(buffer, 0, uuidsz);
2898
2899       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2900       if (descriptor < 0)
2901         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2902                    strerror(errno));
2903       else
2904         {
2905           ssize_t got = ::read(descriptor, buffer, uuidsz);
2906           release_descriptor(descriptor, true);
2907           if (got < 0)
2908             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2909           else if (static_cast<size_t>(got) != uuidsz)
2910             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2911                        uuidsz, got);
2912         }
2913
2914       desc.assign(buffer, uuidsz);
2915       descsz = uuidsz;
2916     }
2917   else if (strncmp(style, "0x", 2) == 0)
2918     {
2919       hex_init();
2920       const char* p = style + 2;
2921       while (*p != '\0')
2922         {
2923           if (hex_p(p[0]) && hex_p(p[1]))
2924             {
2925               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2926               desc += c;
2927               p += 2;
2928             }
2929           else if (*p == '-' || *p == ':')
2930             ++p;
2931           else
2932             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2933                        style);
2934         }
2935       descsz = desc.size();
2936     }
2937   else
2938     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2939
2940   // Create the note.
2941   size_t trailing_padding;
2942   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2943                                          ".note.gnu.build-id", descsz, true,
2944                                          &trailing_padding);
2945   if (os == NULL)
2946     return;
2947
2948   if (!desc.empty())
2949     {
2950       // We know the value already, so we fill it in now.
2951       gold_assert(desc.size() == descsz);
2952
2953       Output_section_data* posd = new Output_data_const(desc, 4);
2954       os->add_output_section_data(posd);
2955
2956       if (trailing_padding != 0)
2957         {
2958           posd = new Output_data_zero_fill(trailing_padding, 0);
2959           os->add_output_section_data(posd);
2960         }
2961     }
2962   else
2963     {
2964       // We need to compute a checksum after we have completed the
2965       // link.
2966       gold_assert(trailing_padding == 0);
2967       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2968       os->add_output_section_data(this->build_id_note_);
2969     }
2970 }
2971
2972 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2973 // field of the former should point to the latter.  I'm not sure who
2974 // started this, but the GNU linker does it, and some tools depend
2975 // upon it.
2976
2977 void
2978 Layout::link_stabs_sections()
2979 {
2980   if (!this->have_stabstr_section_)
2981     return;
2982
2983   for (Section_list::iterator p = this->section_list_.begin();
2984        p != this->section_list_.end();
2985        ++p)
2986     {
2987       if ((*p)->type() != elfcpp::SHT_STRTAB)
2988         continue;
2989
2990       const char* name = (*p)->name();
2991       if (strncmp(name, ".stab", 5) != 0)
2992         continue;
2993
2994       size_t len = strlen(name);
2995       if (strcmp(name + len - 3, "str") != 0)
2996         continue;
2997
2998       std::string stab_name(name, len - 3);
2999       Output_section* stab_sec;
3000       stab_sec = this->find_output_section(stab_name.c_str());
3001       if (stab_sec != NULL)
3002         stab_sec->set_link_section(*p);
3003     }
3004 }
3005
3006 // Create .gnu_incremental_inputs and related sections needed
3007 // for the next run of incremental linking to check what has changed.
3008
3009 void
3010 Layout::create_incremental_info_sections(Symbol_table* symtab)
3011 {
3012   Incremental_inputs* incr = this->incremental_inputs_;
3013
3014   gold_assert(incr != NULL);
3015
3016   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3017   incr->create_data_sections(symtab);
3018
3019   // Add the .gnu_incremental_inputs section.
3020   const char* incremental_inputs_name =
3021     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3022   Output_section* incremental_inputs_os =
3023     this->make_output_section(incremental_inputs_name,
3024                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3025                               ORDER_INVALID, false);
3026   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3027
3028   // Add the .gnu_incremental_symtab section.
3029   const char* incremental_symtab_name =
3030     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3031   Output_section* incremental_symtab_os =
3032     this->make_output_section(incremental_symtab_name,
3033                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3034                               ORDER_INVALID, false);
3035   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3036   incremental_symtab_os->set_entsize(4);
3037
3038   // Add the .gnu_incremental_relocs section.
3039   const char* incremental_relocs_name =
3040     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3041   Output_section* incremental_relocs_os =
3042     this->make_output_section(incremental_relocs_name,
3043                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3044                               ORDER_INVALID, false);
3045   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3046   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3047
3048   // Add the .gnu_incremental_got_plt section.
3049   const char* incremental_got_plt_name =
3050     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3051   Output_section* incremental_got_plt_os =
3052     this->make_output_section(incremental_got_plt_name,
3053                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3054                               ORDER_INVALID, false);
3055   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3056
3057   // Add the .gnu_incremental_strtab section.
3058   const char* incremental_strtab_name =
3059     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3060   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3061                                                         elfcpp::SHT_STRTAB, 0,
3062                                                         ORDER_INVALID, false);
3063   Output_data_strtab* strtab_data =
3064       new Output_data_strtab(incr->get_stringpool());
3065   incremental_strtab_os->add_output_section_data(strtab_data);
3066
3067   incremental_inputs_os->set_after_input_sections();
3068   incremental_symtab_os->set_after_input_sections();
3069   incremental_relocs_os->set_after_input_sections();
3070   incremental_got_plt_os->set_after_input_sections();
3071
3072   incremental_inputs_os->set_link_section(incremental_strtab_os);
3073   incremental_symtab_os->set_link_section(incremental_inputs_os);
3074   incremental_relocs_os->set_link_section(incremental_inputs_os);
3075   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3076 }
3077
3078 // Return whether SEG1 should be before SEG2 in the output file.  This
3079 // is based entirely on the segment type and flags.  When this is
3080 // called the segment addresses have normally not yet been set.
3081
3082 bool
3083 Layout::segment_precedes(const Output_segment* seg1,
3084                          const Output_segment* seg2)
3085 {
3086   elfcpp::Elf_Word type1 = seg1->type();
3087   elfcpp::Elf_Word type2 = seg2->type();
3088
3089   // The single PT_PHDR segment is required to precede any loadable
3090   // segment.  We simply make it always first.
3091   if (type1 == elfcpp::PT_PHDR)
3092     {
3093       gold_assert(type2 != elfcpp::PT_PHDR);
3094       return true;
3095     }
3096   if (type2 == elfcpp::PT_PHDR)
3097     return false;
3098
3099   // The single PT_INTERP segment is required to precede any loadable
3100   // segment.  We simply make it always second.
3101   if (type1 == elfcpp::PT_INTERP)
3102     {
3103       gold_assert(type2 != elfcpp::PT_INTERP);
3104       return true;
3105     }
3106   if (type2 == elfcpp::PT_INTERP)
3107     return false;
3108
3109   // We then put PT_LOAD segments before any other segments.
3110   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3111     return true;
3112   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3113     return false;
3114
3115   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3116   // segment, because that is where the dynamic linker expects to find
3117   // it (this is just for efficiency; other positions would also work
3118   // correctly).
3119   if (type1 == elfcpp::PT_TLS
3120       && type2 != elfcpp::PT_TLS
3121       && type2 != elfcpp::PT_GNU_RELRO)
3122     return false;
3123   if (type2 == elfcpp::PT_TLS
3124       && type1 != elfcpp::PT_TLS
3125       && type1 != elfcpp::PT_GNU_RELRO)
3126     return true;
3127
3128   // We put the PT_GNU_RELRO segment last, because that is where the
3129   // dynamic linker expects to find it (as with PT_TLS, this is just
3130   // for efficiency).
3131   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3132     return false;
3133   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3134     return true;
3135
3136   const elfcpp::Elf_Word flags1 = seg1->flags();
3137   const elfcpp::Elf_Word flags2 = seg2->flags();
3138
3139   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3140   // by the numeric segment type and flags values.  There should not
3141   // be more than one segment with the same type and flags.
3142   if (type1 != elfcpp::PT_LOAD)
3143     {
3144       if (type1 != type2)
3145         return type1 < type2;
3146       gold_assert(flags1 != flags2);
3147       return flags1 < flags2;
3148     }
3149
3150   // If the addresses are set already, sort by load address.
3151   if (seg1->are_addresses_set())
3152     {
3153       if (!seg2->are_addresses_set())
3154         return true;
3155
3156       unsigned int section_count1 = seg1->output_section_count();
3157       unsigned int section_count2 = seg2->output_section_count();
3158       if (section_count1 == 0 && section_count2 > 0)
3159         return true;
3160       if (section_count1 > 0 && section_count2 == 0)
3161         return false;
3162
3163       uint64_t paddr1 = (seg1->are_addresses_set()
3164                          ? seg1->paddr()
3165                          : seg1->first_section_load_address());
3166       uint64_t paddr2 = (seg2->are_addresses_set()
3167                          ? seg2->paddr()
3168                          : seg2->first_section_load_address());
3169
3170       if (paddr1 != paddr2)
3171         return paddr1 < paddr2;
3172     }
3173   else if (seg2->are_addresses_set())
3174     return false;
3175
3176   // A segment which holds large data comes after a segment which does
3177   // not hold large data.
3178   if (seg1->is_large_data_segment())
3179     {
3180       if (!seg2->is_large_data_segment())
3181         return false;
3182     }
3183   else if (seg2->is_large_data_segment())
3184     return true;
3185
3186   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3187   // segments come before writable segments.  Then writable segments
3188   // with data come before writable segments without data.  Then
3189   // executable segments come before non-executable segments.  Then
3190   // the unlikely case of a non-readable segment comes before the
3191   // normal case of a readable segment.  If there are multiple
3192   // segments with the same type and flags, we require that the
3193   // address be set, and we sort by virtual address and then physical
3194   // address.
3195   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3196     return (flags1 & elfcpp::PF_W) == 0;
3197   if ((flags1 & elfcpp::PF_W) != 0
3198       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3199     return seg1->has_any_data_sections();
3200   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3201     return (flags1 & elfcpp::PF_X) != 0;
3202   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3203     return (flags1 & elfcpp::PF_R) == 0;
3204
3205   // We shouldn't get here--we shouldn't create segments which we
3206   // can't distinguish.  Unless of course we are using a weird linker
3207   // script or overlapping --section-start options.  We could also get
3208   // here if plugins want unique segments for subsets of sections.
3209   gold_assert(this->script_options_->saw_phdrs_clause()
3210               || parameters->options().any_section_start()
3211               || this->is_unique_segment_for_sections_specified());
3212   return false;
3213 }
3214
3215 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3216
3217 static off_t
3218 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3219 {
3220   uint64_t unsigned_off = off;
3221   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3222                           | (addr & (abi_pagesize - 1)));
3223   if (aligned_off < unsigned_off)
3224     aligned_off += abi_pagesize;
3225   return aligned_off;
3226 }
3227
3228 // Set the file offsets of all the segments, and all the sections they
3229 // contain.  They have all been created.  LOAD_SEG must be be laid out
3230 // first.  Return the offset of the data to follow.
3231
3232 off_t
3233 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3234                             unsigned int* pshndx)
3235 {
3236   // Sort them into the final order.  We use a stable sort so that we
3237   // don't randomize the order of indistinguishable segments created
3238   // by linker scripts.
3239   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3240                    Layout::Compare_segments(this));
3241
3242   // Find the PT_LOAD segments, and set their addresses and offsets
3243   // and their section's addresses and offsets.
3244   uint64_t start_addr;
3245   if (parameters->options().user_set_Ttext())
3246     start_addr = parameters->options().Ttext();
3247   else if (parameters->options().output_is_position_independent())
3248     start_addr = 0;
3249   else
3250     start_addr = target->default_text_segment_address();
3251
3252   uint64_t addr = start_addr;
3253   off_t off = 0;
3254
3255   // If LOAD_SEG is NULL, then the file header and segment headers
3256   // will not be loadable.  But they still need to be at offset 0 in
3257   // the file.  Set their offsets now.
3258   if (load_seg == NULL)
3259     {
3260       for (Data_list::iterator p = this->special_output_list_.begin();
3261            p != this->special_output_list_.end();
3262            ++p)
3263         {
3264           off = align_address(off, (*p)->addralign());
3265           (*p)->set_address_and_file_offset(0, off);
3266           off += (*p)->data_size();
3267         }
3268     }
3269
3270   unsigned int increase_relro = this->increase_relro_;
3271   if (this->script_options_->saw_sections_clause())
3272     increase_relro = 0;
3273
3274   const bool check_sections = parameters->options().check_sections();
3275   Output_segment* last_load_segment = NULL;
3276
3277   unsigned int shndx_begin = *pshndx;
3278   unsigned int shndx_load_seg = *pshndx;
3279
3280   for (Segment_list::iterator p = this->segment_list_.begin();
3281        p != this->segment_list_.end();
3282        ++p)
3283     {
3284       if ((*p)->type() == elfcpp::PT_LOAD)
3285         {
3286           if (target->isolate_execinstr())
3287             {
3288               // When we hit the segment that should contain the
3289               // file headers, reset the file offset so we place
3290               // it and subsequent segments appropriately.
3291               // We'll fix up the preceding segments below.
3292               if (load_seg == *p)
3293                 {
3294                   if (off == 0)
3295                     load_seg = NULL;
3296                   else
3297                     {
3298                       off = 0;
3299                       shndx_load_seg = *pshndx;
3300                     }
3301                 }
3302             }
3303           else
3304             {
3305               // Verify that the file headers fall into the first segment.
3306               if (load_seg != NULL && load_seg != *p)
3307                 gold_unreachable();
3308               load_seg = NULL;
3309             }
3310
3311           bool are_addresses_set = (*p)->are_addresses_set();
3312           if (are_addresses_set)
3313             {
3314               // When it comes to setting file offsets, we care about
3315               // the physical address.
3316               addr = (*p)->paddr();
3317             }
3318           else if (parameters->options().user_set_Ttext()
3319                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3320             {
3321               are_addresses_set = true;
3322             }
3323           else if (parameters->options().user_set_Tdata()
3324                    && ((*p)->flags() & elfcpp::PF_W) != 0
3325                    && (!parameters->options().user_set_Tbss()
3326                        || (*p)->has_any_data_sections()))
3327             {
3328               addr = parameters->options().Tdata();
3329               are_addresses_set = true;
3330             }
3331           else if (parameters->options().user_set_Tbss()
3332                    && ((*p)->flags() & elfcpp::PF_W) != 0
3333                    && !(*p)->has_any_data_sections())
3334             {
3335               addr = parameters->options().Tbss();
3336               are_addresses_set = true;
3337             }
3338
3339           uint64_t orig_addr = addr;
3340           uint64_t orig_off = off;
3341
3342           uint64_t aligned_addr = 0;
3343           uint64_t abi_pagesize = target->abi_pagesize();
3344           uint64_t common_pagesize = target->common_pagesize();
3345
3346           if (!parameters->options().nmagic()
3347               && !parameters->options().omagic())
3348             (*p)->set_minimum_p_align(abi_pagesize);
3349
3350           if (!are_addresses_set)
3351             {
3352               // Skip the address forward one page, maintaining the same
3353               // position within the page.  This lets us store both segments
3354               // overlapping on a single page in the file, but the loader will
3355               // put them on different pages in memory. We will revisit this
3356               // decision once we know the size of the segment.
3357
3358               addr = align_address(addr, (*p)->maximum_alignment());
3359               aligned_addr = addr;
3360
3361               if (load_seg == *p)
3362                 {
3363                   // This is the segment that will contain the file
3364                   // headers, so its offset will have to be exactly zero.
3365                   gold_assert(orig_off == 0);
3366
3367                   // If the target wants a fixed minimum distance from the
3368                   // text segment to the read-only segment, move up now.
3369                   uint64_t min_addr = start_addr + target->rosegment_gap();
3370                   if (addr < min_addr)
3371                     addr = min_addr;
3372
3373                   // But this is not the first segment!  To make its
3374                   // address congruent with its offset, that address better
3375                   // be aligned to the ABI-mandated page size.
3376                   addr = align_address(addr, abi_pagesize);
3377                   aligned_addr = addr;
3378                 }
3379               else
3380                 {
3381                   if ((addr & (abi_pagesize - 1)) != 0)
3382                     addr = addr + abi_pagesize;
3383
3384                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3385                 }
3386             }
3387
3388           if (!parameters->options().nmagic()
3389               && !parameters->options().omagic())
3390             off = align_file_offset(off, addr, abi_pagesize);
3391           else
3392             {
3393               // This is -N or -n with a section script which prevents
3394               // us from using a load segment.  We need to ensure that
3395               // the file offset is aligned to the alignment of the
3396               // segment.  This is because the linker script
3397               // implicitly assumed a zero offset.  If we don't align
3398               // here, then the alignment of the sections in the
3399               // linker script may not match the alignment of the
3400               // sections in the set_section_addresses call below,
3401               // causing an error about dot moving backward.
3402               off = align_address(off, (*p)->maximum_alignment());
3403             }
3404
3405           unsigned int shndx_hold = *pshndx;
3406           bool has_relro = false;
3407           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3408                                                           &increase_relro,
3409                                                           &has_relro,
3410                                                           &off, pshndx);
3411
3412           // Now that we know the size of this segment, we may be able
3413           // to save a page in memory, at the cost of wasting some
3414           // file space, by instead aligning to the start of a new
3415           // page.  Here we use the real machine page size rather than
3416           // the ABI mandated page size.  If the segment has been
3417           // aligned so that the relro data ends at a page boundary,
3418           // we do not try to realign it.
3419
3420           if (!are_addresses_set
3421               && !has_relro
3422               && aligned_addr != addr
3423               && !parameters->incremental())
3424             {
3425               uint64_t first_off = (common_pagesize
3426                                     - (aligned_addr
3427                                        & (common_pagesize - 1)));
3428               uint64_t last_off = new_addr & (common_pagesize - 1);
3429               if (first_off > 0
3430                   && last_off > 0
3431                   && ((aligned_addr & ~ (common_pagesize - 1))
3432                       != (new_addr & ~ (common_pagesize - 1)))
3433                   && first_off + last_off <= common_pagesize)
3434                 {
3435                   *pshndx = shndx_hold;
3436                   addr = align_address(aligned_addr, common_pagesize);
3437                   addr = align_address(addr, (*p)->maximum_alignment());
3438                   if ((addr & (abi_pagesize - 1)) != 0)
3439                     addr = addr + abi_pagesize;
3440                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3441                   off = align_file_offset(off, addr, abi_pagesize);
3442
3443                   increase_relro = this->increase_relro_;
3444                   if (this->script_options_->saw_sections_clause())
3445                     increase_relro = 0;
3446                   has_relro = false;
3447
3448                   new_addr = (*p)->set_section_addresses(this, true, addr,
3449                                                          &increase_relro,
3450                                                          &has_relro,
3451                                                          &off, pshndx);
3452                 }
3453             }
3454
3455           addr = new_addr;
3456
3457           // Implement --check-sections.  We know that the segments
3458           // are sorted by LMA.
3459           if (check_sections && last_load_segment != NULL)
3460             {
3461               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3462               if (last_load_segment->paddr() + last_load_segment->memsz()
3463                   > (*p)->paddr())
3464                 {
3465                   unsigned long long lb1 = last_load_segment->paddr();
3466                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3467                   unsigned long long lb2 = (*p)->paddr();
3468                   unsigned long long le2 = lb2 + (*p)->memsz();
3469                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3470                                "[0x%llx -> 0x%llx]"),
3471                              lb1, le1, lb2, le2);
3472                 }
3473             }
3474           last_load_segment = *p;
3475         }
3476     }
3477
3478   if (load_seg != NULL && target->isolate_execinstr())
3479     {
3480       // Process the early segments again, setting their file offsets
3481       // so they land after the segments starting at LOAD_SEG.
3482       off = align_file_offset(off, 0, target->abi_pagesize());
3483
3484       for (Segment_list::iterator p = this->segment_list_.begin();
3485            *p != load_seg;
3486            ++p)
3487         {
3488           if ((*p)->type() == elfcpp::PT_LOAD)
3489             {
3490               // We repeat the whole job of assigning addresses and
3491               // offsets, but we really only want to change the offsets and
3492               // must ensure that the addresses all come out the same as
3493               // they did the first time through.
3494               bool has_relro = false;
3495               const uint64_t old_addr = (*p)->vaddr();
3496               const uint64_t old_end = old_addr + (*p)->memsz();
3497               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3498                                                               old_addr,
3499                                                               &increase_relro,
3500                                                               &has_relro,
3501                                                               &off,
3502                                                               &shndx_begin);
3503               gold_assert(new_addr == old_end);
3504             }
3505         }
3506
3507       gold_assert(shndx_begin == shndx_load_seg);
3508     }
3509
3510   // Handle the non-PT_LOAD segments, setting their offsets from their
3511   // section's offsets.
3512   for (Segment_list::iterator p = this->segment_list_.begin();
3513        p != this->segment_list_.end();
3514        ++p)
3515     {
3516       if ((*p)->type() != elfcpp::PT_LOAD)
3517         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3518                          ? increase_relro
3519                          : 0);
3520     }
3521
3522   // Set the TLS offsets for each section in the PT_TLS segment.
3523   if (this->tls_segment_ != NULL)
3524     this->tls_segment_->set_tls_offsets();
3525
3526   return off;
3527 }
3528
3529 // Set the offsets of all the allocated sections when doing a
3530 // relocatable link.  This does the same jobs as set_segment_offsets,
3531 // only for a relocatable link.
3532
3533 off_t
3534 Layout::set_relocatable_section_offsets(Output_data* file_header,
3535                                         unsigned int* pshndx)
3536 {
3537   off_t off = 0;
3538
3539   file_header->set_address_and_file_offset(0, 0);
3540   off += file_header->data_size();
3541
3542   for (Section_list::iterator p = this->section_list_.begin();
3543        p != this->section_list_.end();
3544        ++p)
3545     {
3546       // We skip unallocated sections here, except that group sections
3547       // have to come first.
3548       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3549           && (*p)->type() != elfcpp::SHT_GROUP)
3550         continue;
3551
3552       off = align_address(off, (*p)->addralign());
3553
3554       // The linker script might have set the address.
3555       if (!(*p)->is_address_valid())
3556         (*p)->set_address(0);
3557       (*p)->set_file_offset(off);
3558       (*p)->finalize_data_size();
3559       off += (*p)->data_size();
3560
3561       (*p)->set_out_shndx(*pshndx);
3562       ++*pshndx;
3563     }
3564
3565   return off;
3566 }
3567
3568 // Set the file offset of all the sections not associated with a
3569 // segment.
3570
3571 off_t
3572 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3573 {
3574   off_t startoff = off;
3575   off_t maxoff = off;
3576
3577   for (Section_list::iterator p = this->unattached_section_list_.begin();
3578        p != this->unattached_section_list_.end();
3579        ++p)
3580     {
3581       // The symtab section is handled in create_symtab_sections.
3582       if (*p == this->symtab_section_)
3583         continue;
3584
3585       // If we've already set the data size, don't set it again.
3586       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3587         continue;
3588
3589       if (pass == BEFORE_INPUT_SECTIONS_PASS
3590           && (*p)->requires_postprocessing())
3591         {
3592           (*p)->create_postprocessing_buffer();
3593           this->any_postprocessing_sections_ = true;
3594         }
3595
3596       if (pass == BEFORE_INPUT_SECTIONS_PASS
3597           && (*p)->after_input_sections())
3598         continue;
3599       else if (pass == POSTPROCESSING_SECTIONS_PASS
3600                && (!(*p)->after_input_sections()
3601                    || (*p)->type() == elfcpp::SHT_STRTAB))
3602         continue;
3603       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3604                && (!(*p)->after_input_sections()
3605                    || (*p)->type() != elfcpp::SHT_STRTAB))
3606         continue;
3607
3608       if (!parameters->incremental_update())
3609         {
3610           off = align_address(off, (*p)->addralign());
3611           (*p)->set_file_offset(off);
3612           (*p)->finalize_data_size();
3613         }
3614       else
3615         {
3616           // Incremental update: allocate file space from free list.
3617           (*p)->pre_finalize_data_size();
3618           off_t current_size = (*p)->current_data_size();
3619           off = this->allocate(current_size, (*p)->addralign(), startoff);
3620           if (off == -1)
3621             {
3622               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3623                 this->free_list_.dump();
3624               gold_assert((*p)->output_section() != NULL);
3625               gold_fallback(_("out of patch space for section %s; "
3626                               "relink with --incremental-full"),
3627                             (*p)->output_section()->name());
3628             }
3629           (*p)->set_file_offset(off);
3630           (*p)->finalize_data_size();
3631           if ((*p)->data_size() > current_size)
3632             {
3633               gold_assert((*p)->output_section() != NULL);
3634               gold_fallback(_("%s: section changed size; "
3635                               "relink with --incremental-full"),
3636                             (*p)->output_section()->name());
3637             }
3638           gold_debug(DEBUG_INCREMENTAL,
3639                      "set_section_offsets: %08lx %08lx %s",
3640                      static_cast<long>(off),
3641                      static_cast<long>((*p)->data_size()),
3642                      ((*p)->output_section() != NULL
3643                       ? (*p)->output_section()->name() : "(special)"));
3644         }
3645
3646       off += (*p)->data_size();
3647       if (off > maxoff)
3648         maxoff = off;
3649
3650       // At this point the name must be set.
3651       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3652         this->namepool_.add((*p)->name(), false, NULL);
3653     }
3654   return maxoff;
3655 }
3656
3657 // Set the section indexes of all the sections not associated with a
3658 // segment.
3659
3660 unsigned int
3661 Layout::set_section_indexes(unsigned int shndx)
3662 {
3663   for (Section_list::iterator p = this->unattached_section_list_.begin();
3664        p != this->unattached_section_list_.end();
3665        ++p)
3666     {
3667       if (!(*p)->has_out_shndx())
3668         {
3669           (*p)->set_out_shndx(shndx);
3670           ++shndx;
3671         }
3672     }
3673   return shndx;
3674 }
3675
3676 // Set the section addresses according to the linker script.  This is
3677 // only called when we see a SECTIONS clause.  This returns the
3678 // program segment which should hold the file header and segment
3679 // headers, if any.  It will return NULL if they should not be in a
3680 // segment.
3681
3682 Output_segment*
3683 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3684 {
3685   Script_sections* ss = this->script_options_->script_sections();
3686   gold_assert(ss->saw_sections_clause());
3687   return this->script_options_->set_section_addresses(symtab, this);
3688 }
3689
3690 // Place the orphan sections in the linker script.
3691
3692 void
3693 Layout::place_orphan_sections_in_script()
3694 {
3695   Script_sections* ss = this->script_options_->script_sections();
3696   gold_assert(ss->saw_sections_clause());
3697
3698   // Place each orphaned output section in the script.
3699   for (Section_list::iterator p = this->section_list_.begin();
3700        p != this->section_list_.end();
3701        ++p)
3702     {
3703       if (!(*p)->found_in_sections_clause())
3704         ss->place_orphan(*p);
3705     }
3706 }
3707
3708 // Count the local symbols in the regular symbol table and the dynamic
3709 // symbol table, and build the respective string pools.
3710
3711 void
3712 Layout::count_local_symbols(const Task* task,
3713                             const Input_objects* input_objects)
3714 {
3715   // First, figure out an upper bound on the number of symbols we'll
3716   // be inserting into each pool.  This helps us create the pools with
3717   // the right size, to avoid unnecessary hashtable resizing.
3718   unsigned int symbol_count = 0;
3719   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3720        p != input_objects->relobj_end();
3721        ++p)
3722     symbol_count += (*p)->local_symbol_count();
3723
3724   // Go from "upper bound" to "estimate."  We overcount for two
3725   // reasons: we double-count symbols that occur in more than one
3726   // object file, and we count symbols that are dropped from the
3727   // output.  Add it all together and assume we overcount by 100%.
3728   symbol_count /= 2;
3729
3730   // We assume all symbols will go into both the sympool and dynpool.
3731   this->sympool_.reserve(symbol_count);
3732   this->dynpool_.reserve(symbol_count);
3733
3734   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3735        p != input_objects->relobj_end();
3736        ++p)
3737     {
3738       Task_lock_obj<Object> tlo(task, *p);
3739       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3740     }
3741 }
3742
3743 // Create the symbol table sections.  Here we also set the final
3744 // values of the symbols.  At this point all the loadable sections are
3745 // fully laid out.  SHNUM is the number of sections so far.
3746
3747 void
3748 Layout::create_symtab_sections(const Input_objects* input_objects,
3749                                Symbol_table* symtab,
3750                                unsigned int shnum,
3751                                off_t* poff)
3752 {
3753   int symsize;
3754   unsigned int align;
3755   if (parameters->target().get_size() == 32)
3756     {
3757       symsize = elfcpp::Elf_sizes<32>::sym_size;
3758       align = 4;
3759     }
3760   else if (parameters->target().get_size() == 64)
3761     {
3762       symsize = elfcpp::Elf_sizes<64>::sym_size;
3763       align = 8;
3764     }
3765   else
3766     gold_unreachable();
3767
3768   // Compute file offsets relative to the start of the symtab section.
3769   off_t off = 0;
3770
3771   // Save space for the dummy symbol at the start of the section.  We
3772   // never bother to write this out--it will just be left as zero.
3773   off += symsize;
3774   unsigned int local_symbol_index = 1;
3775
3776   // Add STT_SECTION symbols for each Output section which needs one.
3777   for (Section_list::iterator p = this->section_list_.begin();
3778        p != this->section_list_.end();
3779        ++p)
3780     {
3781       if (!(*p)->needs_symtab_index())
3782         (*p)->set_symtab_index(-1U);
3783       else
3784         {
3785           (*p)->set_symtab_index(local_symbol_index);
3786           ++local_symbol_index;
3787           off += symsize;
3788         }
3789     }
3790
3791   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3792        p != input_objects->relobj_end();
3793        ++p)
3794     {
3795       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3796                                                         off, symtab);
3797       off += (index - local_symbol_index) * symsize;
3798       local_symbol_index = index;
3799     }
3800
3801   unsigned int local_symcount = local_symbol_index;
3802   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3803
3804   off_t dynoff;
3805   size_t dyn_global_index;
3806   size_t dyncount;
3807   if (this->dynsym_section_ == NULL)
3808     {
3809       dynoff = 0;
3810       dyn_global_index = 0;
3811       dyncount = 0;
3812     }
3813   else
3814     {
3815       dyn_global_index = this->dynsym_section_->info();
3816       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3817       dynoff = this->dynsym_section_->offset() + locsize;
3818       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3819       gold_assert(static_cast<off_t>(dyncount * symsize)
3820                   == this->dynsym_section_->data_size() - locsize);
3821     }
3822
3823   off_t global_off = off;
3824   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3825                          &this->sympool_, &local_symcount);
3826
3827   if (!parameters->options().strip_all())
3828     {
3829       this->sympool_.set_string_offsets();
3830
3831       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3832       Output_section* osymtab = this->make_output_section(symtab_name,
3833                                                           elfcpp::SHT_SYMTAB,
3834                                                           0, ORDER_INVALID,
3835                                                           false);
3836       this->symtab_section_ = osymtab;
3837
3838       Output_section_data* pos = new Output_data_fixed_space(off, align,
3839                                                              "** symtab");
3840       osymtab->add_output_section_data(pos);
3841
3842       // We generate a .symtab_shndx section if we have more than
3843       // SHN_LORESERVE sections.  Technically it is possible that we
3844       // don't need one, because it is possible that there are no
3845       // symbols in any of sections with indexes larger than
3846       // SHN_LORESERVE.  That is probably unusual, though, and it is
3847       // easier to always create one than to compute section indexes
3848       // twice (once here, once when writing out the symbols).
3849       if (shnum >= elfcpp::SHN_LORESERVE)
3850         {
3851           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3852                                                                false, NULL);
3853           Output_section* osymtab_xindex =
3854             this->make_output_section(symtab_xindex_name,
3855                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3856                                       ORDER_INVALID, false);
3857
3858           size_t symcount = off / symsize;
3859           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3860
3861           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3862
3863           osymtab_xindex->set_link_section(osymtab);
3864           osymtab_xindex->set_addralign(4);
3865           osymtab_xindex->set_entsize(4);
3866
3867           osymtab_xindex->set_after_input_sections();
3868
3869           // This tells the driver code to wait until the symbol table
3870           // has written out before writing out the postprocessing
3871           // sections, including the .symtab_shndx section.
3872           this->any_postprocessing_sections_ = true;
3873         }
3874
3875       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3876       Output_section* ostrtab = this->make_output_section(strtab_name,
3877                                                           elfcpp::SHT_STRTAB,
3878                                                           0, ORDER_INVALID,
3879                                                           false);
3880
3881       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3882       ostrtab->add_output_section_data(pstr);
3883
3884       off_t symtab_off;
3885       if (!parameters->incremental_update())
3886         symtab_off = align_address(*poff, align);
3887       else
3888         {
3889           symtab_off = this->allocate(off, align, *poff);
3890           if (off == -1)
3891             gold_fallback(_("out of patch space for symbol table; "
3892                             "relink with --incremental-full"));
3893           gold_debug(DEBUG_INCREMENTAL,
3894                      "create_symtab_sections: %08lx %08lx .symtab",
3895                      static_cast<long>(symtab_off),
3896                      static_cast<long>(off));
3897         }
3898
3899       symtab->set_file_offset(symtab_off + global_off);
3900       osymtab->set_file_offset(symtab_off);
3901       osymtab->finalize_data_size();
3902       osymtab->set_link_section(ostrtab);
3903       osymtab->set_info(local_symcount);
3904       osymtab->set_entsize(symsize);
3905
3906       if (symtab_off + off > *poff)
3907         *poff = symtab_off + off;
3908     }
3909 }
3910
3911 // Create the .shstrtab section, which holds the names of the
3912 // sections.  At the time this is called, we have created all the
3913 // output sections except .shstrtab itself.
3914
3915 Output_section*
3916 Layout::create_shstrtab()
3917 {
3918   // FIXME: We don't need to create a .shstrtab section if we are
3919   // stripping everything.
3920
3921   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3922
3923   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3924                                                  ORDER_INVALID, false);
3925
3926   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3927     {
3928       // We can't write out this section until we've set all the
3929       // section names, and we don't set the names of compressed
3930       // output sections until relocations are complete.  FIXME: With
3931       // the current names we use, this is unnecessary.
3932       os->set_after_input_sections();
3933     }
3934
3935   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3936   os->add_output_section_data(posd);
3937
3938   return os;
3939 }
3940
3941 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3942 // offset.
3943
3944 void
3945 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3946 {
3947   Output_section_headers* oshdrs;
3948   oshdrs = new Output_section_headers(this,
3949                                       &this->segment_list_,
3950                                       &this->section_list_,
3951                                       &this->unattached_section_list_,
3952                                       &this->namepool_,
3953                                       shstrtab_section);
3954   off_t off;
3955   if (!parameters->incremental_update())
3956     off = align_address(*poff, oshdrs->addralign());
3957   else
3958     {
3959       oshdrs->pre_finalize_data_size();
3960       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3961       if (off == -1)
3962           gold_fallback(_("out of patch space for section header table; "
3963                           "relink with --incremental-full"));
3964       gold_debug(DEBUG_INCREMENTAL,
3965                  "create_shdrs: %08lx %08lx (section header table)",
3966                  static_cast<long>(off),
3967                  static_cast<long>(off + oshdrs->data_size()));
3968     }
3969   oshdrs->set_address_and_file_offset(0, off);
3970   off += oshdrs->data_size();
3971   if (off > *poff)
3972     *poff = off;
3973   this->section_headers_ = oshdrs;
3974 }
3975
3976 // Count the allocated sections.
3977
3978 size_t
3979 Layout::allocated_output_section_count() const
3980 {
3981   size_t section_count = 0;
3982   for (Segment_list::const_iterator p = this->segment_list_.begin();
3983        p != this->segment_list_.end();
3984        ++p)
3985     section_count += (*p)->output_section_count();
3986   return section_count;
3987 }
3988
3989 // Create the dynamic symbol table.
3990
3991 void
3992 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3993                               Symbol_table* symtab,
3994                               Output_section** pdynstr,
3995                               unsigned int* plocal_dynamic_count,
3996                               std::vector<Symbol*>* pdynamic_symbols,
3997                               Versions* pversions)
3998 {
3999   // Count all the symbols in the dynamic symbol table, and set the
4000   // dynamic symbol indexes.
4001
4002   // Skip symbol 0, which is always all zeroes.
4003   unsigned int index = 1;
4004
4005   // Add STT_SECTION symbols for each Output section which needs one.
4006   for (Section_list::iterator p = this->section_list_.begin();
4007        p != this->section_list_.end();
4008        ++p)
4009     {
4010       if (!(*p)->needs_dynsym_index())
4011         (*p)->set_dynsym_index(-1U);
4012       else
4013         {
4014           (*p)->set_dynsym_index(index);
4015           ++index;
4016         }
4017     }
4018
4019   // Count the local symbols that need to go in the dynamic symbol table,
4020   // and set the dynamic symbol indexes.
4021   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4022        p != input_objects->relobj_end();
4023        ++p)
4024     {
4025       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4026       index = new_index;
4027     }
4028
4029   unsigned int local_symcount = index;
4030   *plocal_dynamic_count = local_symcount;
4031
4032   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4033                                      &this->dynpool_, pversions);
4034
4035   int symsize;
4036   unsigned int align;
4037   const int size = parameters->target().get_size();
4038   if (size == 32)
4039     {
4040       symsize = elfcpp::Elf_sizes<32>::sym_size;
4041       align = 4;
4042     }
4043   else if (size == 64)
4044     {
4045       symsize = elfcpp::Elf_sizes<64>::sym_size;
4046       align = 8;
4047     }
4048   else
4049     gold_unreachable();
4050
4051   // Create the dynamic symbol table section.
4052
4053   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4054                                                        elfcpp::SHT_DYNSYM,
4055                                                        elfcpp::SHF_ALLOC,
4056                                                        false,
4057                                                        ORDER_DYNAMIC_LINKER,
4058                                                        false);
4059
4060   // Check for NULL as a linker script may discard .dynsym.
4061   if (dynsym != NULL)
4062     {
4063       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4064                                                                align,
4065                                                                "** dynsym");
4066       dynsym->add_output_section_data(odata);
4067
4068       dynsym->set_info(local_symcount);
4069       dynsym->set_entsize(symsize);
4070       dynsym->set_addralign(align);
4071
4072       this->dynsym_section_ = dynsym;
4073     }
4074
4075   Output_data_dynamic* const odyn = this->dynamic_data_;
4076   if (odyn != NULL)
4077     {
4078       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4079       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4080     }
4081
4082   // If there are more than SHN_LORESERVE allocated sections, we
4083   // create a .dynsym_shndx section.  It is possible that we don't
4084   // need one, because it is possible that there are no dynamic
4085   // symbols in any of the sections with indexes larger than
4086   // SHN_LORESERVE.  This is probably unusual, though, and at this
4087   // time we don't know the actual section indexes so it is
4088   // inconvenient to check.
4089   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4090     {
4091       Output_section* dynsym_xindex =
4092         this->choose_output_section(NULL, ".dynsym_shndx",
4093                                     elfcpp::SHT_SYMTAB_SHNDX,
4094                                     elfcpp::SHF_ALLOC,
4095                                     false, ORDER_DYNAMIC_LINKER, false);
4096
4097       if (dynsym_xindex != NULL)
4098         {
4099           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4100
4101           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4102
4103           dynsym_xindex->set_link_section(dynsym);
4104           dynsym_xindex->set_addralign(4);
4105           dynsym_xindex->set_entsize(4);
4106
4107           dynsym_xindex->set_after_input_sections();
4108
4109           // This tells the driver code to wait until the symbol table
4110           // has written out before writing out the postprocessing
4111           // sections, including the .dynsym_shndx section.
4112           this->any_postprocessing_sections_ = true;
4113         }
4114     }
4115
4116   // Create the dynamic string table section.
4117
4118   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4119                                                        elfcpp::SHT_STRTAB,
4120                                                        elfcpp::SHF_ALLOC,
4121                                                        false,
4122                                                        ORDER_DYNAMIC_LINKER,
4123                                                        false);
4124
4125   if (dynstr != NULL)
4126     {
4127       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4128       dynstr->add_output_section_data(strdata);
4129
4130       if (dynsym != NULL)
4131         dynsym->set_link_section(dynstr);
4132       if (this->dynamic_section_ != NULL)
4133         this->dynamic_section_->set_link_section(dynstr);
4134
4135       if (odyn != NULL)
4136         {
4137           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4138           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4139         }
4140
4141       *pdynstr = dynstr;
4142     }
4143
4144   // Create the hash tables.
4145
4146   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4147       || strcmp(parameters->options().hash_style(), "both") == 0)
4148     {
4149       unsigned char* phash;
4150       unsigned int hashlen;
4151       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4152                                     &phash, &hashlen);
4153
4154       Output_section* hashsec =
4155         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4156                                     elfcpp::SHF_ALLOC, false,
4157                                     ORDER_DYNAMIC_LINKER, false);
4158
4159       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4160                                                                    hashlen,
4161                                                                    align,
4162                                                                    "** hash");
4163       if (hashsec != NULL && hashdata != NULL)
4164         hashsec->add_output_section_data(hashdata);
4165
4166       if (hashsec != NULL)
4167         {
4168           if (dynsym != NULL)
4169             hashsec->set_link_section(dynsym);
4170           hashsec->set_entsize(4);
4171         }
4172
4173       if (odyn != NULL)
4174         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4175     }
4176
4177   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4178       || strcmp(parameters->options().hash_style(), "both") == 0)
4179     {
4180       unsigned char* phash;
4181       unsigned int hashlen;
4182       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4183                                     &phash, &hashlen);
4184
4185       Output_section* hashsec =
4186         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4187                                     elfcpp::SHF_ALLOC, false,
4188                                     ORDER_DYNAMIC_LINKER, false);
4189
4190       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4191                                                                    hashlen,
4192                                                                    align,
4193                                                                    "** hash");
4194       if (hashsec != NULL && hashdata != NULL)
4195         hashsec->add_output_section_data(hashdata);
4196
4197       if (hashsec != NULL)
4198         {
4199           if (dynsym != NULL)
4200             hashsec->set_link_section(dynsym);
4201
4202           // For a 64-bit target, the entries in .gnu.hash do not have
4203           // a uniform size, so we only set the entry size for a
4204           // 32-bit target.
4205           if (parameters->target().get_size() == 32)
4206             hashsec->set_entsize(4);
4207
4208           if (odyn != NULL)
4209             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4210         }
4211     }
4212 }
4213
4214 // Assign offsets to each local portion of the dynamic symbol table.
4215
4216 void
4217 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4218 {
4219   Output_section* dynsym = this->dynsym_section_;
4220   if (dynsym == NULL)
4221     return;
4222
4223   off_t off = dynsym->offset();
4224
4225   // Skip the dummy symbol at the start of the section.
4226   off += dynsym->entsize();
4227
4228   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4229        p != input_objects->relobj_end();
4230        ++p)
4231     {
4232       unsigned int count = (*p)->set_local_dynsym_offset(off);
4233       off += count * dynsym->entsize();
4234     }
4235 }
4236
4237 // Create the version sections.
4238
4239 void
4240 Layout::create_version_sections(const Versions* versions,
4241                                 const Symbol_table* symtab,
4242                                 unsigned int local_symcount,
4243                                 const std::vector<Symbol*>& dynamic_symbols,
4244                                 const Output_section* dynstr)
4245 {
4246   if (!versions->any_defs() && !versions->any_needs())
4247     return;
4248
4249   switch (parameters->size_and_endianness())
4250     {
4251 #ifdef HAVE_TARGET_32_LITTLE
4252     case Parameters::TARGET_32_LITTLE:
4253       this->sized_create_version_sections<32, false>(versions, symtab,
4254                                                      local_symcount,
4255                                                      dynamic_symbols, dynstr);
4256       break;
4257 #endif
4258 #ifdef HAVE_TARGET_32_BIG
4259     case Parameters::TARGET_32_BIG:
4260       this->sized_create_version_sections<32, true>(versions, symtab,
4261                                                     local_symcount,
4262                                                     dynamic_symbols, dynstr);
4263       break;
4264 #endif
4265 #ifdef HAVE_TARGET_64_LITTLE
4266     case Parameters::TARGET_64_LITTLE:
4267       this->sized_create_version_sections<64, false>(versions, symtab,
4268                                                      local_symcount,
4269                                                      dynamic_symbols, dynstr);
4270       break;
4271 #endif
4272 #ifdef HAVE_TARGET_64_BIG
4273     case Parameters::TARGET_64_BIG:
4274       this->sized_create_version_sections<64, true>(versions, symtab,
4275                                                     local_symcount,
4276                                                     dynamic_symbols, dynstr);
4277       break;
4278 #endif
4279     default:
4280       gold_unreachable();
4281     }
4282 }
4283
4284 // Create the version sections, sized version.
4285
4286 template<int size, bool big_endian>
4287 void
4288 Layout::sized_create_version_sections(
4289     const Versions* versions,
4290     const Symbol_table* symtab,
4291     unsigned int local_symcount,
4292     const std::vector<Symbol*>& dynamic_symbols,
4293     const Output_section* dynstr)
4294 {
4295   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4296                                                      elfcpp::SHT_GNU_versym,
4297                                                      elfcpp::SHF_ALLOC,
4298                                                      false,
4299                                                      ORDER_DYNAMIC_LINKER,
4300                                                      false);
4301
4302   // Check for NULL since a linker script may discard this section.
4303   if (vsec != NULL)
4304     {
4305       unsigned char* vbuf;
4306       unsigned int vsize;
4307       versions->symbol_section_contents<size, big_endian>(symtab,
4308                                                           &this->dynpool_,
4309                                                           local_symcount,
4310                                                           dynamic_symbols,
4311                                                           &vbuf, &vsize);
4312
4313       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4314                                                                 "** versions");
4315
4316       vsec->add_output_section_data(vdata);
4317       vsec->set_entsize(2);
4318       vsec->set_link_section(this->dynsym_section_);
4319     }
4320
4321   Output_data_dynamic* const odyn = this->dynamic_data_;
4322   if (odyn != NULL && vsec != NULL)
4323     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4324
4325   if (versions->any_defs())
4326     {
4327       Output_section* vdsec;
4328       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4329                                           elfcpp::SHT_GNU_verdef,
4330                                           elfcpp::SHF_ALLOC,
4331                                           false, ORDER_DYNAMIC_LINKER, false);
4332
4333       if (vdsec != NULL)
4334         {
4335           unsigned char* vdbuf;
4336           unsigned int vdsize;
4337           unsigned int vdentries;
4338           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4339                                                            &vdbuf, &vdsize,
4340                                                            &vdentries);
4341
4342           Output_section_data* vddata =
4343             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4344
4345           vdsec->add_output_section_data(vddata);
4346           vdsec->set_link_section(dynstr);
4347           vdsec->set_info(vdentries);
4348
4349           if (odyn != NULL)
4350             {
4351               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4352               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4353             }
4354         }
4355     }
4356
4357   if (versions->any_needs())
4358     {
4359       Output_section* vnsec;
4360       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4361                                           elfcpp::SHT_GNU_verneed,
4362                                           elfcpp::SHF_ALLOC,
4363                                           false, ORDER_DYNAMIC_LINKER, false);
4364
4365       if (vnsec != NULL)
4366         {
4367           unsigned char* vnbuf;
4368           unsigned int vnsize;
4369           unsigned int vnentries;
4370           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4371                                                             &vnbuf, &vnsize,
4372                                                             &vnentries);
4373
4374           Output_section_data* vndata =
4375             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4376
4377           vnsec->add_output_section_data(vndata);
4378           vnsec->set_link_section(dynstr);
4379           vnsec->set_info(vnentries);
4380
4381           if (odyn != NULL)
4382             {
4383               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4384               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4385             }
4386         }
4387     }
4388 }
4389
4390 // Create the .interp section and PT_INTERP segment.
4391
4392 void
4393 Layout::create_interp(const Target* target)
4394 {
4395   gold_assert(this->interp_segment_ == NULL);
4396
4397   const char* interp = parameters->options().dynamic_linker();
4398   if (interp == NULL)
4399     {
4400       interp = target->dynamic_linker();
4401       gold_assert(interp != NULL);
4402     }
4403
4404   size_t len = strlen(interp) + 1;
4405
4406   Output_section_data* odata = new Output_data_const(interp, len, 1);
4407
4408   Output_section* osec = this->choose_output_section(NULL, ".interp",
4409                                                      elfcpp::SHT_PROGBITS,
4410                                                      elfcpp::SHF_ALLOC,
4411                                                      false, ORDER_INTERP,
4412                                                      false);
4413   if (osec != NULL)
4414     osec->add_output_section_data(odata);
4415 }
4416
4417 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4418 // called by the target-specific code.  This does nothing if not doing
4419 // a dynamic link.
4420
4421 // USE_REL is true for REL relocs rather than RELA relocs.
4422
4423 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4424
4425 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4426 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4427 // some targets have multiple reloc sections in PLT_REL.
4428
4429 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4430 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4431 // section.
4432
4433 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4434 // executable.
4435
4436 void
4437 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4438                                 const Output_data* plt_rel,
4439                                 const Output_data_reloc_generic* dyn_rel,
4440                                 bool add_debug, bool dynrel_includes_plt)
4441 {
4442   Output_data_dynamic* odyn = this->dynamic_data_;
4443   if (odyn == NULL)
4444     return;
4445
4446   if (plt_got != NULL && plt_got->output_section() != NULL)
4447     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4448
4449   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4450     {
4451       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4452       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4453       odyn->add_constant(elfcpp::DT_PLTREL,
4454                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4455     }
4456
4457   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4458       || (dynrel_includes_plt
4459           && plt_rel != NULL
4460           && plt_rel->output_section() != NULL))
4461     {
4462       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4463       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4464       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4465                                 (have_dyn_rel
4466                                  ? dyn_rel->output_section()
4467                                  : plt_rel->output_section()));
4468       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4469       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4470         odyn->add_section_size(size_tag,
4471                                dyn_rel->output_section(),
4472                                plt_rel->output_section());
4473       else if (have_dyn_rel)
4474         odyn->add_section_size(size_tag, dyn_rel->output_section());
4475       else
4476         odyn->add_section_size(size_tag, plt_rel->output_section());
4477       const int size = parameters->target().get_size();
4478       elfcpp::DT rel_tag;
4479       int rel_size;
4480       if (use_rel)
4481         {
4482           rel_tag = elfcpp::DT_RELENT;
4483           if (size == 32)
4484             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4485           else if (size == 64)
4486             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4487           else
4488             gold_unreachable();
4489         }
4490       else
4491         {
4492           rel_tag = elfcpp::DT_RELAENT;
4493           if (size == 32)
4494             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4495           else if (size == 64)
4496             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4497           else
4498             gold_unreachable();
4499         }
4500       odyn->add_constant(rel_tag, rel_size);
4501
4502       if (parameters->options().combreloc() && have_dyn_rel)
4503         {
4504           size_t c = dyn_rel->relative_reloc_count();
4505           if (c > 0)
4506             odyn->add_constant((use_rel
4507                                 ? elfcpp::DT_RELCOUNT
4508                                 : elfcpp::DT_RELACOUNT),
4509                                c);
4510         }
4511     }
4512
4513   if (add_debug && !parameters->options().shared())
4514     {
4515       // The value of the DT_DEBUG tag is filled in by the dynamic
4516       // linker at run time, and used by the debugger.
4517       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4518     }
4519 }
4520
4521 // Finish the .dynamic section and PT_DYNAMIC segment.
4522
4523 void
4524 Layout::finish_dynamic_section(const Input_objects* input_objects,
4525                                const Symbol_table* symtab)
4526 {
4527   if (!this->script_options_->saw_phdrs_clause()
4528       && this->dynamic_section_ != NULL)
4529     {
4530       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4531                                                        (elfcpp::PF_R
4532                                                         | elfcpp::PF_W));
4533       oseg->add_output_section_to_nonload(this->dynamic_section_,
4534                                           elfcpp::PF_R | elfcpp::PF_W);
4535     }
4536
4537   Output_data_dynamic* const odyn = this->dynamic_data_;
4538   if (odyn == NULL)
4539     return;
4540
4541   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4542        p != input_objects->dynobj_end();
4543        ++p)
4544     {
4545       if (!(*p)->is_needed() && (*p)->as_needed())
4546         {
4547           // This dynamic object was linked with --as-needed, but it
4548           // is not needed.
4549           continue;
4550         }
4551
4552       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4553     }
4554
4555   if (parameters->options().shared())
4556     {
4557       const char* soname = parameters->options().soname();
4558       if (soname != NULL)
4559         odyn->add_string(elfcpp::DT_SONAME, soname);
4560     }
4561
4562   Symbol* sym = symtab->lookup(parameters->options().init());
4563   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4564     odyn->add_symbol(elfcpp::DT_INIT, sym);
4565
4566   sym = symtab->lookup(parameters->options().fini());
4567   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4568     odyn->add_symbol(elfcpp::DT_FINI, sym);
4569
4570   // Look for .init_array, .preinit_array and .fini_array by checking
4571   // section types.
4572   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4573       p != this->section_list_.end();
4574       ++p)
4575     switch((*p)->type())
4576       {
4577       case elfcpp::SHT_FINI_ARRAY:
4578         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4579         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4580         break;
4581       case elfcpp::SHT_INIT_ARRAY:
4582         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4583         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4584         break;
4585       case elfcpp::SHT_PREINIT_ARRAY:
4586         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4587         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4588         break;
4589       default:
4590         break;
4591       }
4592
4593   // Add a DT_RPATH entry if needed.
4594   const General_options::Dir_list& rpath(parameters->options().rpath());
4595   if (!rpath.empty())
4596     {
4597       std::string rpath_val;
4598       for (General_options::Dir_list::const_iterator p = rpath.begin();
4599            p != rpath.end();
4600            ++p)
4601         {
4602           if (rpath_val.empty())
4603             rpath_val = p->name();
4604           else
4605             {
4606               // Eliminate duplicates.
4607               General_options::Dir_list::const_iterator q;
4608               for (q = rpath.begin(); q != p; ++q)
4609                 if (q->name() == p->name())
4610                   break;
4611               if (q == p)
4612                 {
4613                   rpath_val += ':';
4614                   rpath_val += p->name();
4615                 }
4616             }
4617         }
4618
4619       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4620       if (parameters->options().enable_new_dtags())
4621         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4622     }
4623
4624   // Look for text segments that have dynamic relocations.
4625   bool have_textrel = false;
4626   if (!this->script_options_->saw_sections_clause())
4627     {
4628       for (Segment_list::const_iterator p = this->segment_list_.begin();
4629            p != this->segment_list_.end();
4630            ++p)
4631         {
4632           if ((*p)->type() == elfcpp::PT_LOAD
4633               && ((*p)->flags() & elfcpp::PF_W) == 0
4634               && (*p)->has_dynamic_reloc())
4635             {
4636               have_textrel = true;
4637               break;
4638             }
4639         }
4640     }
4641   else
4642     {
4643       // We don't know the section -> segment mapping, so we are
4644       // conservative and just look for readonly sections with
4645       // relocations.  If those sections wind up in writable segments,
4646       // then we have created an unnecessary DT_TEXTREL entry.
4647       for (Section_list::const_iterator p = this->section_list_.begin();
4648            p != this->section_list_.end();
4649            ++p)
4650         {
4651           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4652               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4653               && (*p)->has_dynamic_reloc())
4654             {
4655               have_textrel = true;
4656               break;
4657             }
4658         }
4659     }
4660
4661   if (parameters->options().filter() != NULL)
4662     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4663   if (parameters->options().any_auxiliary())
4664     {
4665       for (options::String_set::const_iterator p =
4666              parameters->options().auxiliary_begin();
4667            p != parameters->options().auxiliary_end();
4668            ++p)
4669         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4670     }
4671
4672   // Add a DT_FLAGS entry if necessary.
4673   unsigned int flags = 0;
4674   if (have_textrel)
4675     {
4676       // Add a DT_TEXTREL for compatibility with older loaders.
4677       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4678       flags |= elfcpp::DF_TEXTREL;
4679
4680       if (parameters->options().text())
4681         gold_error(_("read-only segment has dynamic relocations"));
4682       else if (parameters->options().warn_shared_textrel()
4683                && parameters->options().shared())
4684         gold_warning(_("shared library text segment is not shareable"));
4685     }
4686   if (parameters->options().shared() && this->has_static_tls())
4687     flags |= elfcpp::DF_STATIC_TLS;
4688   if (parameters->options().origin())
4689     flags |= elfcpp::DF_ORIGIN;
4690   if (parameters->options().Bsymbolic())
4691     {
4692       flags |= elfcpp::DF_SYMBOLIC;
4693       // Add DT_SYMBOLIC for compatibility with older loaders.
4694       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4695     }
4696   if (parameters->options().now())
4697     flags |= elfcpp::DF_BIND_NOW;
4698   if (flags != 0)
4699     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4700
4701   flags = 0;
4702   if (parameters->options().initfirst())
4703     flags |= elfcpp::DF_1_INITFIRST;
4704   if (parameters->options().interpose())
4705     flags |= elfcpp::DF_1_INTERPOSE;
4706   if (parameters->options().loadfltr())
4707     flags |= elfcpp::DF_1_LOADFLTR;
4708   if (parameters->options().nodefaultlib())
4709     flags |= elfcpp::DF_1_NODEFLIB;
4710   if (parameters->options().nodelete())
4711     flags |= elfcpp::DF_1_NODELETE;
4712   if (parameters->options().nodlopen())
4713     flags |= elfcpp::DF_1_NOOPEN;
4714   if (parameters->options().nodump())
4715     flags |= elfcpp::DF_1_NODUMP;
4716   if (!parameters->options().shared())
4717     flags &= ~(elfcpp::DF_1_INITFIRST
4718                | elfcpp::DF_1_NODELETE
4719                | elfcpp::DF_1_NOOPEN);
4720   if (parameters->options().origin())
4721     flags |= elfcpp::DF_1_ORIGIN;
4722   if (parameters->options().now())
4723     flags |= elfcpp::DF_1_NOW;
4724   if (parameters->options().Bgroup())
4725     flags |= elfcpp::DF_1_GROUP;
4726   if (flags != 0)
4727     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4728 }
4729
4730 // Set the size of the _DYNAMIC symbol table to be the size of the
4731 // dynamic data.
4732
4733 void
4734 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4735 {
4736   Output_data_dynamic* const odyn = this->dynamic_data_;
4737   if (odyn == NULL)
4738     return;
4739   odyn->finalize_data_size();
4740   if (this->dynamic_symbol_ == NULL)
4741     return;
4742   off_t data_size = odyn->data_size();
4743   const int size = parameters->target().get_size();
4744   if (size == 32)
4745     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4746   else if (size == 64)
4747     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4748   else
4749     gold_unreachable();
4750 }
4751
4752 // The mapping of input section name prefixes to output section names.
4753 // In some cases one prefix is itself a prefix of another prefix; in
4754 // such a case the longer prefix must come first.  These prefixes are
4755 // based on the GNU linker default ELF linker script.
4756
4757 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4758 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4759 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4760 {
4761   MAPPING_INIT(".text.", ".text"),
4762   MAPPING_INIT(".rodata.", ".rodata"),
4763   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4764   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4765   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4766   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4767   MAPPING_INIT(".data.", ".data"),
4768   MAPPING_INIT(".bss.", ".bss"),
4769   MAPPING_INIT(".tdata.", ".tdata"),
4770   MAPPING_INIT(".tbss.", ".tbss"),
4771   MAPPING_INIT(".init_array.", ".init_array"),
4772   MAPPING_INIT(".fini_array.", ".fini_array"),
4773   MAPPING_INIT(".sdata.", ".sdata"),
4774   MAPPING_INIT(".sbss.", ".sbss"),
4775   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4776   // differently depending on whether it is creating a shared library.
4777   MAPPING_INIT(".sdata2.", ".sdata"),
4778   MAPPING_INIT(".sbss2.", ".sbss"),
4779   MAPPING_INIT(".lrodata.", ".lrodata"),
4780   MAPPING_INIT(".ldata.", ".ldata"),
4781   MAPPING_INIT(".lbss.", ".lbss"),
4782   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4783   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4784   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4785   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4786   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4787   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4788   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4789   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4790   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4791   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4792   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4793   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4794   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4795   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4796   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4797   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4798   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4799   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4800   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4801   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4802   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4803 };
4804 #undef MAPPING_INIT
4805 #undef MAPPING_INIT_EXACT
4806
4807 const int Layout::section_name_mapping_count =
4808   (sizeof(Layout::section_name_mapping)
4809    / sizeof(Layout::section_name_mapping[0]));
4810
4811 // Choose the output section name to use given an input section name.
4812 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4813 // length of NAME.
4814
4815 const char*
4816 Layout::output_section_name(const Relobj* relobj, const char* name,
4817                             size_t* plen)
4818 {
4819   // gcc 4.3 generates the following sorts of section names when it
4820   // needs a section name specific to a function:
4821   //   .text.FN
4822   //   .rodata.FN
4823   //   .sdata2.FN
4824   //   .data.FN
4825   //   .data.rel.FN
4826   //   .data.rel.local.FN
4827   //   .data.rel.ro.FN
4828   //   .data.rel.ro.local.FN
4829   //   .sdata.FN
4830   //   .bss.FN
4831   //   .sbss.FN
4832   //   .tdata.FN
4833   //   .tbss.FN
4834
4835   // The GNU linker maps all of those to the part before the .FN,
4836   // except that .data.rel.local.FN is mapped to .data, and
4837   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4838   // beginning with .data.rel.ro.local are grouped together.
4839
4840   // For an anonymous namespace, the string FN can contain a '.'.
4841
4842   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4843   // GNU linker maps to .rodata.
4844
4845   // The .data.rel.ro sections are used with -z relro.  The sections
4846   // are recognized by name.  We use the same names that the GNU
4847   // linker does for these sections.
4848
4849   // It is hard to handle this in a principled way, so we don't even
4850   // try.  We use a table of mappings.  If the input section name is
4851   // not found in the table, we simply use it as the output section
4852   // name.
4853
4854   const Section_name_mapping* psnm = section_name_mapping;
4855   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4856     {
4857       if (psnm->fromlen > 0)
4858         {
4859           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4860             {
4861               *plen = psnm->tolen;
4862               return psnm->to;
4863             }
4864         }
4865       else
4866         {
4867           if (strcmp(name, psnm->from) == 0)
4868             {
4869               *plen = psnm->tolen;
4870               return psnm->to;
4871             }
4872         }
4873     }
4874
4875   // As an additional complication, .ctors sections are output in
4876   // either .ctors or .init_array sections, and .dtors sections are
4877   // output in either .dtors or .fini_array sections.
4878   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4879     {
4880       if (parameters->options().ctors_in_init_array())
4881         {
4882           *plen = 11;
4883           return name[1] == 'c' ? ".init_array" : ".fini_array";
4884         }
4885       else
4886         {
4887           *plen = 6;
4888           return name[1] == 'c' ? ".ctors" : ".dtors";
4889         }
4890     }
4891   if (parameters->options().ctors_in_init_array()
4892       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4893     {
4894       // To make .init_array/.fini_array work with gcc we must exclude
4895       // .ctors and .dtors sections from the crtbegin and crtend
4896       // files.
4897       if (relobj == NULL
4898           || (!Layout::match_file_name(relobj, "crtbegin")
4899               && !Layout::match_file_name(relobj, "crtend")))
4900         {
4901           *plen = 11;
4902           return name[1] == 'c' ? ".init_array" : ".fini_array";
4903         }
4904     }
4905
4906   return name;
4907 }
4908
4909 // Return true if RELOBJ is an input file whose base name matches
4910 // FILE_NAME.  The base name must have an extension of ".o", and must
4911 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4912 // to match crtbegin.o as well as crtbeginS.o without getting confused
4913 // by other possibilities.  Overall matching the file name this way is
4914 // a dreadful hack, but the GNU linker does it in order to better
4915 // support gcc, and we need to be compatible.
4916
4917 bool
4918 Layout::match_file_name(const Relobj* relobj, const char* match)
4919 {
4920   const std::string& file_name(relobj->name());
4921   const char* base_name = lbasename(file_name.c_str());
4922   size_t match_len = strlen(match);
4923   if (strncmp(base_name, match, match_len) != 0)
4924     return false;
4925   size_t base_len = strlen(base_name);
4926   if (base_len != match_len + 2 && base_len != match_len + 3)
4927     return false;
4928   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4929 }
4930
4931 // Check if a comdat group or .gnu.linkonce section with the given
4932 // NAME is selected for the link.  If there is already a section,
4933 // *KEPT_SECTION is set to point to the existing section and the
4934 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4935 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4936 // *KEPT_SECTION is set to the internal copy and the function returns
4937 // true.
4938
4939 bool
4940 Layout::find_or_add_kept_section(const std::string& name,
4941                                  Relobj* object,
4942                                  unsigned int shndx,
4943                                  bool is_comdat,
4944                                  bool is_group_name,
4945                                  Kept_section** kept_section)
4946 {
4947   // It's normal to see a couple of entries here, for the x86 thunk
4948   // sections.  If we see more than a few, we're linking a C++
4949   // program, and we resize to get more space to minimize rehashing.
4950   if (this->signatures_.size() > 4
4951       && !this->resized_signatures_)
4952     {
4953       reserve_unordered_map(&this->signatures_,
4954                             this->number_of_input_files_ * 64);
4955       this->resized_signatures_ = true;
4956     }
4957
4958   Kept_section candidate;
4959   std::pair<Signatures::iterator, bool> ins =
4960     this->signatures_.insert(std::make_pair(name, candidate));
4961
4962   if (kept_section != NULL)
4963     *kept_section = &ins.first->second;
4964   if (ins.second)
4965     {
4966       // This is the first time we've seen this signature.
4967       ins.first->second.set_object(object);
4968       ins.first->second.set_shndx(shndx);
4969       if (is_comdat)
4970         ins.first->second.set_is_comdat();
4971       if (is_group_name)
4972         ins.first->second.set_is_group_name();
4973       return true;
4974     }
4975
4976   // We have already seen this signature.
4977
4978   if (ins.first->second.is_group_name())
4979     {
4980       // We've already seen a real section group with this signature.
4981       // If the kept group is from a plugin object, and we're in the
4982       // replacement phase, accept the new one as a replacement.
4983       if (ins.first->second.object() == NULL
4984           && parameters->options().plugins()->in_replacement_phase())
4985         {
4986           ins.first->second.set_object(object);
4987           ins.first->second.set_shndx(shndx);
4988           return true;
4989         }
4990       return false;
4991     }
4992   else if (is_group_name)
4993     {
4994       // This is a real section group, and we've already seen a
4995       // linkonce section with this signature.  Record that we've seen
4996       // a section group, and don't include this section group.
4997       ins.first->second.set_is_group_name();
4998       return false;
4999     }
5000   else
5001     {
5002       // We've already seen a linkonce section and this is a linkonce
5003       // section.  These don't block each other--this may be the same
5004       // symbol name with different section types.
5005       return true;
5006     }
5007 }
5008
5009 // Store the allocated sections into the section list.
5010
5011 void
5012 Layout::get_allocated_sections(Section_list* section_list) const
5013 {
5014   for (Section_list::const_iterator p = this->section_list_.begin();
5015        p != this->section_list_.end();
5016        ++p)
5017     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5018       section_list->push_back(*p);
5019 }
5020
5021 // Store the executable sections into the section list.
5022
5023 void
5024 Layout::get_executable_sections(Section_list* section_list) const
5025 {
5026   for (Section_list::const_iterator p = this->section_list_.begin();
5027        p != this->section_list_.end();
5028        ++p)
5029     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5030         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5031       section_list->push_back(*p);
5032 }
5033
5034 // Create an output segment.
5035
5036 Output_segment*
5037 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5038 {
5039   gold_assert(!parameters->options().relocatable());
5040   Output_segment* oseg = new Output_segment(type, flags);
5041   this->segment_list_.push_back(oseg);
5042
5043   if (type == elfcpp::PT_TLS)
5044     this->tls_segment_ = oseg;
5045   else if (type == elfcpp::PT_GNU_RELRO)
5046     this->relro_segment_ = oseg;
5047   else if (type == elfcpp::PT_INTERP)
5048     this->interp_segment_ = oseg;
5049
5050   return oseg;
5051 }
5052
5053 // Return the file offset of the normal symbol table.
5054
5055 off_t
5056 Layout::symtab_section_offset() const
5057 {
5058   if (this->symtab_section_ != NULL)
5059     return this->symtab_section_->offset();
5060   return 0;
5061 }
5062
5063 // Return the section index of the normal symbol table.  It may have
5064 // been stripped by the -s/--strip-all option.
5065
5066 unsigned int
5067 Layout::symtab_section_shndx() const
5068 {
5069   if (this->symtab_section_ != NULL)
5070     return this->symtab_section_->out_shndx();
5071   return 0;
5072 }
5073
5074 // Write out the Output_sections.  Most won't have anything to write,
5075 // since most of the data will come from input sections which are
5076 // handled elsewhere.  But some Output_sections do have Output_data.
5077
5078 void
5079 Layout::write_output_sections(Output_file* of) const
5080 {
5081   for (Section_list::const_iterator p = this->section_list_.begin();
5082        p != this->section_list_.end();
5083        ++p)
5084     {
5085       if (!(*p)->after_input_sections())
5086         (*p)->write(of);
5087     }
5088 }
5089
5090 // Write out data not associated with a section or the symbol table.
5091
5092 void
5093 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5094 {
5095   if (!parameters->options().strip_all())
5096     {
5097       const Output_section* symtab_section = this->symtab_section_;
5098       for (Section_list::const_iterator p = this->section_list_.begin();
5099            p != this->section_list_.end();
5100            ++p)
5101         {
5102           if ((*p)->needs_symtab_index())
5103             {
5104               gold_assert(symtab_section != NULL);
5105               unsigned int index = (*p)->symtab_index();
5106               gold_assert(index > 0 && index != -1U);
5107               off_t off = (symtab_section->offset()
5108                            + index * symtab_section->entsize());
5109               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5110             }
5111         }
5112     }
5113
5114   const Output_section* dynsym_section = this->dynsym_section_;
5115   for (Section_list::const_iterator p = this->section_list_.begin();
5116        p != this->section_list_.end();
5117        ++p)
5118     {
5119       if ((*p)->needs_dynsym_index())
5120         {
5121           gold_assert(dynsym_section != NULL);
5122           unsigned int index = (*p)->dynsym_index();
5123           gold_assert(index > 0 && index != -1U);
5124           off_t off = (dynsym_section->offset()
5125                        + index * dynsym_section->entsize());
5126           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5127         }
5128     }
5129
5130   // Write out the Output_data which are not in an Output_section.
5131   for (Data_list::const_iterator p = this->special_output_list_.begin();
5132        p != this->special_output_list_.end();
5133        ++p)
5134     (*p)->write(of);
5135 }
5136
5137 // Write out the Output_sections which can only be written after the
5138 // input sections are complete.
5139
5140 void
5141 Layout::write_sections_after_input_sections(Output_file* of)
5142 {
5143   // Determine the final section offsets, and thus the final output
5144   // file size.  Note we finalize the .shstrab last, to allow the
5145   // after_input_section sections to modify their section-names before
5146   // writing.
5147   if (this->any_postprocessing_sections_)
5148     {
5149       off_t off = this->output_file_size_;
5150       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5151
5152       // Now that we've finalized the names, we can finalize the shstrab.
5153       off =
5154         this->set_section_offsets(off,
5155                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5156
5157       if (off > this->output_file_size_)
5158         {
5159           of->resize(off);
5160           this->output_file_size_ = off;
5161         }
5162     }
5163
5164   for (Section_list::const_iterator p = this->section_list_.begin();
5165        p != this->section_list_.end();
5166        ++p)
5167     {
5168       if ((*p)->after_input_sections())
5169         (*p)->write(of);
5170     }
5171
5172   this->section_headers_->write(of);
5173 }
5174
5175 // If the build ID requires computing a checksum, do so here, and
5176 // write it out.  We compute a checksum over the entire file because
5177 // that is simplest.
5178
5179 void
5180 Layout::write_build_id(Output_file* of) const
5181 {
5182   if (this->build_id_note_ == NULL)
5183     return;
5184
5185   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5186
5187   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5188                                           this->build_id_note_->data_size());
5189
5190   const char* style = parameters->options().build_id();
5191   if (strcmp(style, "sha1") == 0)
5192     {
5193       sha1_ctx ctx;
5194       sha1_init_ctx(&ctx);
5195       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5196       sha1_finish_ctx(&ctx, ov);
5197     }
5198   else if (strcmp(style, "md5") == 0)
5199     {
5200       md5_ctx ctx;
5201       md5_init_ctx(&ctx);
5202       md5_process_bytes(iv, this->output_file_size_, &ctx);
5203       md5_finish_ctx(&ctx, ov);
5204     }
5205   else
5206     gold_unreachable();
5207
5208   of->write_output_view(this->build_id_note_->offset(),
5209                         this->build_id_note_->data_size(),
5210                         ov);
5211
5212   of->free_input_view(0, this->output_file_size_, iv);
5213 }
5214
5215 // Write out a binary file.  This is called after the link is
5216 // complete.  IN is the temporary output file we used to generate the
5217 // ELF code.  We simply walk through the segments, read them from
5218 // their file offset in IN, and write them to their load address in
5219 // the output file.  FIXME: with a bit more work, we could support
5220 // S-records and/or Intel hex format here.
5221
5222 void
5223 Layout::write_binary(Output_file* in) const
5224 {
5225   gold_assert(parameters->options().oformat_enum()
5226               == General_options::OBJECT_FORMAT_BINARY);
5227
5228   // Get the size of the binary file.
5229   uint64_t max_load_address = 0;
5230   for (Segment_list::const_iterator p = this->segment_list_.begin();
5231        p != this->segment_list_.end();
5232        ++p)
5233     {
5234       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5235         {
5236           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5237           if (max_paddr > max_load_address)
5238             max_load_address = max_paddr;
5239         }
5240     }
5241
5242   Output_file out(parameters->options().output_file_name());
5243   out.open(max_load_address);
5244
5245   for (Segment_list::const_iterator p = this->segment_list_.begin();
5246        p != this->segment_list_.end();
5247        ++p)
5248     {
5249       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5250         {
5251           const unsigned char* vin = in->get_input_view((*p)->offset(),
5252                                                         (*p)->filesz());
5253           unsigned char* vout = out.get_output_view((*p)->paddr(),
5254                                                     (*p)->filesz());
5255           memcpy(vout, vin, (*p)->filesz());
5256           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5257           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5258         }
5259     }
5260
5261   out.close();
5262 }
5263
5264 // Print the output sections to the map file.
5265
5266 void
5267 Layout::print_to_mapfile(Mapfile* mapfile) const
5268 {
5269   for (Segment_list::const_iterator p = this->segment_list_.begin();
5270        p != this->segment_list_.end();
5271        ++p)
5272     (*p)->print_sections_to_mapfile(mapfile);
5273 }
5274
5275 // Print statistical information to stderr.  This is used for --stats.
5276
5277 void
5278 Layout::print_stats() const
5279 {
5280   this->namepool_.print_stats("section name pool");
5281   this->sympool_.print_stats("output symbol name pool");
5282   this->dynpool_.print_stats("dynamic name pool");
5283
5284   for (Section_list::const_iterator p = this->section_list_.begin();
5285        p != this->section_list_.end();
5286        ++p)
5287     (*p)->print_merge_stats();
5288 }
5289
5290 // Write_sections_task methods.
5291
5292 // We can always run this task.
5293
5294 Task_token*
5295 Write_sections_task::is_runnable()
5296 {
5297   return NULL;
5298 }
5299
5300 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5301 // when finished.
5302
5303 void
5304 Write_sections_task::locks(Task_locker* tl)
5305 {
5306   tl->add(this, this->output_sections_blocker_);
5307   tl->add(this, this->final_blocker_);
5308 }
5309
5310 // Run the task--write out the data.
5311
5312 void
5313 Write_sections_task::run(Workqueue*)
5314 {
5315   this->layout_->write_output_sections(this->of_);
5316 }
5317
5318 // Write_data_task methods.
5319
5320 // We can always run this task.
5321
5322 Task_token*
5323 Write_data_task::is_runnable()
5324 {
5325   return NULL;
5326 }
5327
5328 // We need to unlock FINAL_BLOCKER when finished.
5329
5330 void
5331 Write_data_task::locks(Task_locker* tl)
5332 {
5333   tl->add(this, this->final_blocker_);
5334 }
5335
5336 // Run the task--write out the data.
5337
5338 void
5339 Write_data_task::run(Workqueue*)
5340 {
5341   this->layout_->write_data(this->symtab_, this->of_);
5342 }
5343
5344 // Write_symbols_task methods.
5345
5346 // We can always run this task.
5347
5348 Task_token*
5349 Write_symbols_task::is_runnable()
5350 {
5351   return NULL;
5352 }
5353
5354 // We need to unlock FINAL_BLOCKER when finished.
5355
5356 void
5357 Write_symbols_task::locks(Task_locker* tl)
5358 {
5359   tl->add(this, this->final_blocker_);
5360 }
5361
5362 // Run the task--write out the symbols.
5363
5364 void
5365 Write_symbols_task::run(Workqueue*)
5366 {
5367   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5368                                this->layout_->symtab_xindex(),
5369                                this->layout_->dynsym_xindex(), this->of_);
5370 }
5371
5372 // Write_after_input_sections_task methods.
5373
5374 // We can only run this task after the input sections have completed.
5375
5376 Task_token*
5377 Write_after_input_sections_task::is_runnable()
5378 {
5379   if (this->input_sections_blocker_->is_blocked())
5380     return this->input_sections_blocker_;
5381   return NULL;
5382 }
5383
5384 // We need to unlock FINAL_BLOCKER when finished.
5385
5386 void
5387 Write_after_input_sections_task::locks(Task_locker* tl)
5388 {
5389   tl->add(this, this->final_blocker_);
5390 }
5391
5392 // Run the task.
5393
5394 void
5395 Write_after_input_sections_task::run(Workqueue*)
5396 {
5397   this->layout_->write_sections_after_input_sections(this->of_);
5398 }
5399
5400 // Close_task_runner methods.
5401
5402 // Run the task--close the file.
5403
5404 void
5405 Close_task_runner::run(Workqueue*, const Task*)
5406 {
5407   // If we need to compute a checksum for the BUILD if, we do so here.
5408   this->layout_->write_build_id(this->of_);
5409
5410   // If we've been asked to create a binary file, we do so here.
5411   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5412     this->layout_->write_binary(this->of_);
5413
5414   this->of_->close();
5415 }
5416
5417 // Instantiate the templates we need.  We could use the configure
5418 // script to restrict this to only the ones for implemented targets.
5419
5420 #ifdef HAVE_TARGET_32_LITTLE
5421 template
5422 Output_section*
5423 Layout::init_fixed_output_section<32, false>(
5424     const char* name,
5425     elfcpp::Shdr<32, false>& shdr);
5426 #endif
5427
5428 #ifdef HAVE_TARGET_32_BIG
5429 template
5430 Output_section*
5431 Layout::init_fixed_output_section<32, true>(
5432     const char* name,
5433     elfcpp::Shdr<32, true>& shdr);
5434 #endif
5435
5436 #ifdef HAVE_TARGET_64_LITTLE
5437 template
5438 Output_section*
5439 Layout::init_fixed_output_section<64, false>(
5440     const char* name,
5441     elfcpp::Shdr<64, false>& shdr);
5442 #endif
5443
5444 #ifdef HAVE_TARGET_64_BIG
5445 template
5446 Output_section*
5447 Layout::init_fixed_output_section<64, true>(
5448     const char* name,
5449     elfcpp::Shdr<64, true>& shdr);
5450 #endif
5451
5452 #ifdef HAVE_TARGET_32_LITTLE
5453 template
5454 Output_section*
5455 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5456                           unsigned int shndx,
5457                           const char* name,
5458                           const elfcpp::Shdr<32, false>& shdr,
5459                           unsigned int, unsigned int, off_t*);
5460 #endif
5461
5462 #ifdef HAVE_TARGET_32_BIG
5463 template
5464 Output_section*
5465 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5466                          unsigned int shndx,
5467                          const char* name,
5468                          const elfcpp::Shdr<32, true>& shdr,
5469                          unsigned int, unsigned int, off_t*);
5470 #endif
5471
5472 #ifdef HAVE_TARGET_64_LITTLE
5473 template
5474 Output_section*
5475 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5476                           unsigned int shndx,
5477                           const char* name,
5478                           const elfcpp::Shdr<64, false>& shdr,
5479                           unsigned int, unsigned int, off_t*);
5480 #endif
5481
5482 #ifdef HAVE_TARGET_64_BIG
5483 template
5484 Output_section*
5485 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5486                          unsigned int shndx,
5487                          const char* name,
5488                          const elfcpp::Shdr<64, true>& shdr,
5489                          unsigned int, unsigned int, off_t*);
5490 #endif
5491
5492 #ifdef HAVE_TARGET_32_LITTLE
5493 template
5494 Output_section*
5495 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5496                                 unsigned int reloc_shndx,
5497                                 const elfcpp::Shdr<32, false>& shdr,
5498                                 Output_section* data_section,
5499                                 Relocatable_relocs* rr);
5500 #endif
5501
5502 #ifdef HAVE_TARGET_32_BIG
5503 template
5504 Output_section*
5505 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5506                                unsigned int reloc_shndx,
5507                                const elfcpp::Shdr<32, true>& shdr,
5508                                Output_section* data_section,
5509                                Relocatable_relocs* rr);
5510 #endif
5511
5512 #ifdef HAVE_TARGET_64_LITTLE
5513 template
5514 Output_section*
5515 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5516                                 unsigned int reloc_shndx,
5517                                 const elfcpp::Shdr<64, false>& shdr,
5518                                 Output_section* data_section,
5519                                 Relocatable_relocs* rr);
5520 #endif
5521
5522 #ifdef HAVE_TARGET_64_BIG
5523 template
5524 Output_section*
5525 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5526                                unsigned int reloc_shndx,
5527                                const elfcpp::Shdr<64, true>& shdr,
5528                                Output_section* data_section,
5529                                Relocatable_relocs* rr);
5530 #endif
5531
5532 #ifdef HAVE_TARGET_32_LITTLE
5533 template
5534 void
5535 Layout::layout_group<32, false>(Symbol_table* symtab,
5536                                 Sized_relobj_file<32, false>* object,
5537                                 unsigned int,
5538                                 const char* group_section_name,
5539                                 const char* signature,
5540                                 const elfcpp::Shdr<32, false>& shdr,
5541                                 elfcpp::Elf_Word flags,
5542                                 std::vector<unsigned int>* shndxes);
5543 #endif
5544
5545 #ifdef HAVE_TARGET_32_BIG
5546 template
5547 void
5548 Layout::layout_group<32, true>(Symbol_table* symtab,
5549                                Sized_relobj_file<32, true>* object,
5550                                unsigned int,
5551                                const char* group_section_name,
5552                                const char* signature,
5553                                const elfcpp::Shdr<32, true>& shdr,
5554                                elfcpp::Elf_Word flags,
5555                                std::vector<unsigned int>* shndxes);
5556 #endif
5557
5558 #ifdef HAVE_TARGET_64_LITTLE
5559 template
5560 void
5561 Layout::layout_group<64, false>(Symbol_table* symtab,
5562                                 Sized_relobj_file<64, false>* object,
5563                                 unsigned int,
5564                                 const char* group_section_name,
5565                                 const char* signature,
5566                                 const elfcpp::Shdr<64, false>& shdr,
5567                                 elfcpp::Elf_Word flags,
5568                                 std::vector<unsigned int>* shndxes);
5569 #endif
5570
5571 #ifdef HAVE_TARGET_64_BIG
5572 template
5573 void
5574 Layout::layout_group<64, true>(Symbol_table* symtab,
5575                                Sized_relobj_file<64, true>* object,
5576                                unsigned int,
5577                                const char* group_section_name,
5578                                const char* signature,
5579                                const elfcpp::Shdr<64, true>& shdr,
5580                                elfcpp::Elf_Word flags,
5581                                std::vector<unsigned int>* shndxes);
5582 #endif
5583
5584 #ifdef HAVE_TARGET_32_LITTLE
5585 template
5586 Output_section*
5587 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5588                                    const unsigned char* symbols,
5589                                    off_t symbols_size,
5590                                    const unsigned char* symbol_names,
5591                                    off_t symbol_names_size,
5592                                    unsigned int shndx,
5593                                    const elfcpp::Shdr<32, false>& shdr,
5594                                    unsigned int reloc_shndx,
5595                                    unsigned int reloc_type,
5596                                    off_t* off);
5597 #endif
5598
5599 #ifdef HAVE_TARGET_32_BIG
5600 template
5601 Output_section*
5602 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5603                                   const unsigned char* symbols,
5604                                   off_t symbols_size,
5605                                   const unsigned char* symbol_names,
5606                                   off_t symbol_names_size,
5607                                   unsigned int shndx,
5608                                   const elfcpp::Shdr<32, true>& shdr,
5609                                   unsigned int reloc_shndx,
5610                                   unsigned int reloc_type,
5611                                   off_t* off);
5612 #endif
5613
5614 #ifdef HAVE_TARGET_64_LITTLE
5615 template
5616 Output_section*
5617 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5618                                    const unsigned char* symbols,
5619                                    off_t symbols_size,
5620                                    const unsigned char* symbol_names,
5621                                    off_t symbol_names_size,
5622                                    unsigned int shndx,
5623                                    const elfcpp::Shdr<64, false>& shdr,
5624                                    unsigned int reloc_shndx,
5625                                    unsigned int reloc_type,
5626                                    off_t* off);
5627 #endif
5628
5629 #ifdef HAVE_TARGET_64_BIG
5630 template
5631 Output_section*
5632 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5633                                   const unsigned char* symbols,
5634                                   off_t symbols_size,
5635                                   const unsigned char* symbol_names,
5636                                   off_t symbol_names_size,
5637                                   unsigned int shndx,
5638                                   const elfcpp::Shdr<64, true>& shdr,
5639                                   unsigned int reloc_shndx,
5640                                   unsigned int reloc_type,
5641                                   off_t* off);
5642 #endif
5643
5644 #ifdef HAVE_TARGET_32_LITTLE
5645 template
5646 void
5647 Layout::add_to_gdb_index(bool is_type_unit,
5648                          Sized_relobj<32, false>* object,
5649                          const unsigned char* symbols,
5650                          off_t symbols_size,
5651                          unsigned int shndx,
5652                          unsigned int reloc_shndx,
5653                          unsigned int reloc_type);
5654 #endif
5655
5656 #ifdef HAVE_TARGET_32_BIG
5657 template
5658 void
5659 Layout::add_to_gdb_index(bool is_type_unit,
5660                          Sized_relobj<32, true>* object,
5661                          const unsigned char* symbols,
5662                          off_t symbols_size,
5663                          unsigned int shndx,
5664                          unsigned int reloc_shndx,
5665                          unsigned int reloc_type);
5666 #endif
5667
5668 #ifdef HAVE_TARGET_64_LITTLE
5669 template
5670 void
5671 Layout::add_to_gdb_index(bool is_type_unit,
5672                          Sized_relobj<64, false>* object,
5673                          const unsigned char* symbols,
5674                          off_t symbols_size,
5675                          unsigned int shndx,
5676                          unsigned int reloc_shndx,
5677                          unsigned int reloc_type);
5678 #endif
5679
5680 #ifdef HAVE_TARGET_64_BIG
5681 template
5682 void
5683 Layout::add_to_gdb_index(bool is_type_unit,
5684                          Sized_relobj<64, true>* object,
5685                          const unsigned char* symbols,
5686                          off_t symbols_size,
5687                          unsigned int shndx,
5688                          unsigned int reloc_shndx,
5689                          unsigned int reloc_type);
5690 #endif
5691
5692 } // End namespace gold.