2010-04-09 Doug Kwan <dougkwan@google.com>
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64     const Layout::Section_list& sections,
65     const Layout::Data_list& special_outputs)
66 {
67   for(Layout::Section_list::const_iterator p = sections.begin();
68       p != sections.end();
69       ++p)
70     gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72   for(Layout::Data_list::const_iterator p = special_outputs.begin();
73       p != special_outputs.end();
74       ++p)
75     gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77   
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82     const Layout::Section_list& sections)
83 {
84   for(Layout::Section_list::const_iterator p = sections.begin();
85       p != sections.end();
86       ++p)
87     {
88       Output_section* os = *p;
89       Section_info info;
90       info.output_section = os;
91       info.address = os->is_address_valid() ? os->address() : 0;
92       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93       info.offset = os->is_offset_valid()? os->offset() : -1 ;
94       this->section_infos_.push_back(info);
95     }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102     const Layout::Section_list& sections)
103 {
104   size_t i = 0;
105   for(Layout::Section_list::const_iterator p = sections.begin();
106       p != sections.end();
107       ++p, ++i)
108     {
109       Output_section* os = *p;
110       uint64_t address = os->is_address_valid() ? os->address() : 0;
111       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114       if (i >= this->section_infos_.size())
115         {
116           gold_fatal("Section_info of %s missing.\n", os->name());
117         }
118       const Section_info& info = this->section_infos_[i];
119       if (os != info.output_section)
120         gold_fatal("Section order changed.  Expecting %s but see %s\n",
121                    info.output_section->name(), os->name());
122       if (address != info.address
123           || data_size != info.data_size
124           || offset != info.offset)
125         gold_fatal("Section %s changed.\n", os->name());
126     }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections.  This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137   off_t file_size = this->layout_->finalize(this->input_objects_,
138                                             this->symtab_,
139                                             this->target_,
140                                             task);
141
142   // Now we know the final size of the output file and we know where
143   // each piece of information goes.
144
145   if (this->mapfile_ != NULL)
146     {
147       this->mapfile_->print_discarded_sections(this->input_objects_);
148       this->layout_->print_to_mapfile(this->mapfile_);
149     }
150
151   Output_file* of = new Output_file(parameters->options().output_file_name());
152   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153     of->set_is_temporary();
154   of->open(file_size);
155
156   // Queue up the final set of tasks.
157   gold::queue_final_tasks(this->options_, this->input_objects_,
158                           this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164   : number_of_input_files_(number_of_input_files),
165     script_options_(script_options),
166     namepool_(),
167     sympool_(),
168     dynpool_(),
169     signatures_(),
170     section_name_map_(),
171     segment_list_(),
172     section_list_(),
173     unattached_section_list_(),
174     special_output_list_(),
175     section_headers_(NULL),
176     tls_segment_(NULL),
177     relro_segment_(NULL),
178     increase_relro_(0),
179     symtab_section_(NULL),
180     symtab_xindex_(NULL),
181     dynsym_section_(NULL),
182     dynsym_xindex_(NULL),
183     dynamic_section_(NULL),
184     dynamic_symbol_(NULL),
185     dynamic_data_(NULL),
186     eh_frame_section_(NULL),
187     eh_frame_data_(NULL),
188     added_eh_frame_data_(false),
189     eh_frame_hdr_section_(NULL),
190     build_id_note_(NULL),
191     debug_abbrev_(NULL),
192     debug_info_(NULL),
193     group_signatures_(),
194     output_file_size_(-1),
195     have_added_input_section_(false),
196     sections_are_attached_(false),
197     input_requires_executable_stack_(false),
198     input_with_gnu_stack_note_(false),
199     input_without_gnu_stack_note_(false),
200     has_static_tls_(false),
201     any_postprocessing_sections_(false),
202     resized_signatures_(false),
203     have_stabstr_section_(false),
204     incremental_inputs_(NULL),
205     record_output_section_data_from_script_(false),
206     script_output_section_data_list_(),
207     segment_states_(NULL),
208     relaxation_debug_check_(NULL)
209 {
210   // Make space for more than enough segments for a typical file.
211   // This is just for efficiency--it's OK if we wind up needing more.
212   this->segment_list_.reserve(12);
213
214   // We expect two unattached Output_data objects: the file header and
215   // the segment headers.
216   this->special_output_list_.reserve(2);
217
218   // Initialize structure needed for an incremental build.
219   if (parameters->options().incremental())
220     this->incremental_inputs_ = new Incremental_inputs;
221
222   // The section name pool is worth optimizing in all cases, because
223   // it is small, but there are often overlaps due to .rel sections.
224   this->namepool_.set_optimize();
225 }
226
227 // Hash a key we use to look up an output section mapping.
228
229 size_t
230 Layout::Hash_key::operator()(const Layout::Key& k) const
231 {
232  return k.first + k.second.first + k.second.second;
233 }
234
235 // Returns whether the given section is in the list of
236 // debug-sections-used-by-some-version-of-gdb.  Currently,
237 // we've checked versions of gdb up to and including 6.7.1.
238
239 static const char* gdb_sections[] =
240 { ".debug_abbrev",
241   // ".debug_aranges",   // not used by gdb as of 6.7.1
242   ".debug_frame",
243   ".debug_info",
244   ".debug_line",
245   ".debug_loc",
246   ".debug_macinfo",
247   // ".debug_pubnames",  // not used by gdb as of 6.7.1
248   ".debug_ranges",
249   ".debug_str",
250 };
251
252 static const char* lines_only_debug_sections[] =
253 { ".debug_abbrev",
254   // ".debug_aranges",   // not used by gdb as of 6.7.1
255   // ".debug_frame",
256   ".debug_info",
257   ".debug_line",
258   // ".debug_loc",
259   // ".debug_macinfo",
260   // ".debug_pubnames",  // not used by gdb as of 6.7.1
261   // ".debug_ranges",
262   ".debug_str",
263 };
264
265 static inline bool
266 is_gdb_debug_section(const char* str)
267 {
268   // We can do this faster: binary search or a hashtable.  But why bother?
269   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
270     if (strcmp(str, gdb_sections[i]) == 0)
271       return true;
272   return false;
273 }
274
275 static inline bool
276 is_lines_only_debug_section(const char* str)
277 {
278   // We can do this faster: binary search or a hashtable.  But why bother?
279   for (size_t i = 0;
280        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
281        ++i)
282     if (strcmp(str, lines_only_debug_sections[i]) == 0)
283       return true;
284   return false;
285 }
286
287 // Whether to include this section in the link.
288
289 template<int size, bool big_endian>
290 bool
291 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
292                         const elfcpp::Shdr<size, big_endian>& shdr)
293 {
294   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
295     return false;
296
297   switch (shdr.get_sh_type())
298     {
299     case elfcpp::SHT_NULL:
300     case elfcpp::SHT_SYMTAB:
301     case elfcpp::SHT_DYNSYM:
302     case elfcpp::SHT_HASH:
303     case elfcpp::SHT_DYNAMIC:
304     case elfcpp::SHT_SYMTAB_SHNDX:
305       return false;
306
307     case elfcpp::SHT_STRTAB:
308       // Discard the sections which have special meanings in the ELF
309       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
310       // checking the sh_link fields of the appropriate sections.
311       return (strcmp(name, ".dynstr") != 0
312               && strcmp(name, ".strtab") != 0
313               && strcmp(name, ".shstrtab") != 0);
314
315     case elfcpp::SHT_RELA:
316     case elfcpp::SHT_REL:
317     case elfcpp::SHT_GROUP:
318       // If we are emitting relocations these should be handled
319       // elsewhere.
320       gold_assert(!parameters->options().relocatable()
321                   && !parameters->options().emit_relocs());
322       return false;
323
324     case elfcpp::SHT_PROGBITS:
325       if (parameters->options().strip_debug()
326           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
327         {
328           if (is_debug_info_section(name))
329             return false;
330         }
331       if (parameters->options().strip_debug_non_line()
332           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
333         {
334           // Debugging sections can only be recognized by name.
335           if (is_prefix_of(".debug", name)
336               && !is_lines_only_debug_section(name))
337             return false;
338         }
339       if (parameters->options().strip_debug_gdb()
340           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
341         {
342           // Debugging sections can only be recognized by name.
343           if (is_prefix_of(".debug", name)
344               && !is_gdb_debug_section(name))
345             return false;
346         }
347       if (parameters->options().strip_lto_sections()
348           && !parameters->options().relocatable()
349           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
350         {
351           // Ignore LTO sections containing intermediate code.
352           if (is_prefix_of(".gnu.lto_", name))
353             return false;
354         }
355       // The GNU linker strips .gnu_debuglink sections, so we do too.
356       // This is a feature used to keep debugging information in
357       // separate files.
358       if (strcmp(name, ".gnu_debuglink") == 0)
359         return false;
360       return true;
361
362     default:
363       return true;
364     }
365 }
366
367 // Return an output section named NAME, or NULL if there is none.
368
369 Output_section*
370 Layout::find_output_section(const char* name) const
371 {
372   for (Section_list::const_iterator p = this->section_list_.begin();
373        p != this->section_list_.end();
374        ++p)
375     if (strcmp((*p)->name(), name) == 0)
376       return *p;
377   return NULL;
378 }
379
380 // Return an output segment of type TYPE, with segment flags SET set
381 // and segment flags CLEAR clear.  Return NULL if there is none.
382
383 Output_segment*
384 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
385                             elfcpp::Elf_Word clear) const
386 {
387   for (Segment_list::const_iterator p = this->segment_list_.begin();
388        p != this->segment_list_.end();
389        ++p)
390     if (static_cast<elfcpp::PT>((*p)->type()) == type
391         && ((*p)->flags() & set) == set
392         && ((*p)->flags() & clear) == 0)
393       return *p;
394   return NULL;
395 }
396
397 // Return the output section to use for section NAME with type TYPE
398 // and section flags FLAGS.  NAME must be canonicalized in the string
399 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
400 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
401 // is used by the dynamic linker.  IS_RELRO is true for a relro
402 // section.  IS_LAST_RELRO is true for the last relro section.
403 // IS_FIRST_NON_RELRO is true for the first non-relro section.
404
405 Output_section*
406 Layout::get_output_section(const char* name, Stringpool::Key name_key,
407                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
408                            bool is_interp, bool is_dynamic_linker_section,
409                            bool is_relro, bool is_last_relro,
410                            bool is_first_non_relro)
411 {
412   elfcpp::Elf_Xword lookup_flags = flags;
413
414   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
415   // read-write with read-only sections.  Some other ELF linkers do
416   // not do this.  FIXME: Perhaps there should be an option
417   // controlling this.
418   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
419
420   const Key key(name_key, std::make_pair(type, lookup_flags));
421   const std::pair<Key, Output_section*> v(key, NULL);
422   std::pair<Section_name_map::iterator, bool> ins(
423     this->section_name_map_.insert(v));
424
425   if (!ins.second)
426     return ins.first->second;
427   else
428     {
429       // This is the first time we've seen this name/type/flags
430       // combination.  For compatibility with the GNU linker, we
431       // combine sections with contents and zero flags with sections
432       // with non-zero flags.  This is a workaround for cases where
433       // assembler code forgets to set section flags.  FIXME: Perhaps
434       // there should be an option to control this.
435       Output_section* os = NULL;
436
437       if (type == elfcpp::SHT_PROGBITS)
438         {
439           if (flags == 0)
440             {
441               Output_section* same_name = this->find_output_section(name);
442               if (same_name != NULL
443                   && same_name->type() == elfcpp::SHT_PROGBITS
444                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
445                 os = same_name;
446             }
447           else if ((flags & elfcpp::SHF_TLS) == 0)
448             {
449               elfcpp::Elf_Xword zero_flags = 0;
450               const Key zero_key(name_key, std::make_pair(type, zero_flags));
451               Section_name_map::iterator p =
452                   this->section_name_map_.find(zero_key);
453               if (p != this->section_name_map_.end())
454                 os = p->second;
455             }
456         }
457
458       if (os == NULL)
459         os = this->make_output_section(name, type, flags, is_interp,
460                                        is_dynamic_linker_section, is_relro,
461                                        is_last_relro, is_first_non_relro);
462       ins.first->second = os;
463       return os;
464     }
465 }
466
467 // Pick the output section to use for section NAME, in input file
468 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
469 // linker created section.  IS_INPUT_SECTION is true if we are
470 // choosing an output section for an input section found in a input
471 // file.  IS_INTERP is true if this is the .interp section.
472 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
473 // dynamic linker.  IS_RELRO is true for a relro section.
474 // IS_LAST_RELRO is true for the last relro section.
475 // IS_FIRST_NON_RELRO is true for the first non-relro section.  This
476 // will return NULL if the input section should be discarded.
477
478 Output_section*
479 Layout::choose_output_section(const Relobj* relobj, const char* name,
480                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
481                               bool is_input_section, bool is_interp,
482                               bool is_dynamic_linker_section, bool is_relro,
483                               bool is_last_relro, bool is_first_non_relro)
484 {
485   // We should not see any input sections after we have attached
486   // sections to segments.
487   gold_assert(!is_input_section || !this->sections_are_attached_);
488
489   // Some flags in the input section should not be automatically
490   // copied to the output section.
491   flags &= ~ (elfcpp::SHF_INFO_LINK
492               | elfcpp::SHF_LINK_ORDER
493               | elfcpp::SHF_GROUP
494               | elfcpp::SHF_MERGE
495               | elfcpp::SHF_STRINGS);
496
497   if (this->script_options_->saw_sections_clause())
498     {
499       // We are using a SECTIONS clause, so the output section is
500       // chosen based only on the name.
501
502       Script_sections* ss = this->script_options_->script_sections();
503       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
504       Output_section** output_section_slot;
505       Script_sections::Section_type script_section_type;
506       name = ss->output_section_name(file_name, name, &output_section_slot,
507                                      &script_section_type);
508       if (name == NULL)
509         {
510           // The SECTIONS clause says to discard this input section.
511           return NULL;
512         }
513
514       // We can only handle script section types ST_NONE and ST_NOLOAD.
515       switch (script_section_type)
516         {
517         case Script_sections::ST_NONE:
518           break;
519         case Script_sections::ST_NOLOAD:
520           flags &= elfcpp::SHF_ALLOC;
521           break;
522         default:
523           gold_unreachable();
524         }
525
526       // If this is an orphan section--one not mentioned in the linker
527       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
528       // default processing below.
529
530       if (output_section_slot != NULL)
531         {
532           if (*output_section_slot != NULL)
533             {
534               (*output_section_slot)->update_flags_for_input_section(flags);
535               return *output_section_slot;
536             }
537
538           // We don't put sections found in the linker script into
539           // SECTION_NAME_MAP_.  That keeps us from getting confused
540           // if an orphan section is mapped to a section with the same
541           // name as one in the linker script.
542
543           name = this->namepool_.add(name, false, NULL);
544
545           Output_section* os =
546             this->make_output_section(name, type, flags, is_interp,
547                                       is_dynamic_linker_section, is_relro,
548                                       is_last_relro, is_first_non_relro);
549           os->set_found_in_sections_clause();
550
551           // Special handling for NOLOAD sections.
552           if (script_section_type == Script_sections::ST_NOLOAD)
553             {
554               os->set_is_noload();
555
556               // The constructor of Output_section sets addresses of non-ALLOC
557               // sections to 0 by default.  We don't want that for NOLOAD
558               // sections even if they have no SHF_ALLOC flag.
559               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
560                   && os->is_address_valid())
561                 {
562                   gold_assert(os->address() == 0
563                               && !os->is_offset_valid()
564                               && !os->is_data_size_valid());
565                   os->reset_address_and_file_offset();
566                 }
567             }
568
569           *output_section_slot = os;
570           return os;
571         }
572     }
573
574   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
575
576   // Turn NAME from the name of the input section into the name of the
577   // output section.
578
579   size_t len = strlen(name);
580   if (is_input_section
581       && !this->script_options_->saw_sections_clause()
582       && !parameters->options().relocatable())
583     name = Layout::output_section_name(name, &len);
584
585   Stringpool::Key name_key;
586   name = this->namepool_.add_with_length(name, len, true, &name_key);
587
588   // Find or make the output section.  The output section is selected
589   // based on the section name, type, and flags.
590   return this->get_output_section(name, name_key, type, flags, is_interp,
591                                   is_dynamic_linker_section, is_relro,
592                                   is_last_relro, is_first_non_relro);
593 }
594
595 // Return the output section to use for input section SHNDX, with name
596 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
597 // index of a relocation section which applies to this section, or 0
598 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
599 // relocation section if there is one.  Set *OFF to the offset of this
600 // input section without the output section.  Return NULL if the
601 // section should be discarded.  Set *OFF to -1 if the section
602 // contents should not be written directly to the output file, but
603 // will instead receive special handling.
604
605 template<int size, bool big_endian>
606 Output_section*
607 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
608                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
609                unsigned int reloc_shndx, unsigned int, off_t* off)
610 {
611   *off = 0;
612
613   if (!this->include_section(object, name, shdr))
614     return NULL;
615
616   Output_section* os;
617
618   // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
619   // correct section types.  Force them here.
620   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
621   if (sh_type == elfcpp::SHT_PROGBITS)
622     {
623       static const char init_array_prefix[] = ".init_array";
624       static const char preinit_array_prefix[] = ".preinit_array";
625       static const char fini_array_prefix[] = ".fini_array";
626       static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
627       static size_t preinit_array_prefix_size =
628         sizeof(preinit_array_prefix) - 1;
629       static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
630
631       if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
632         sh_type = elfcpp::SHT_INIT_ARRAY;
633       else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
634                == 0)
635         sh_type = elfcpp::SHT_PREINIT_ARRAY;
636       else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
637         sh_type = elfcpp::SHT_FINI_ARRAY;
638     }
639
640   // In a relocatable link a grouped section must not be combined with
641   // any other sections.
642   if (parameters->options().relocatable()
643       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
644     {
645       name = this->namepool_.add(name, true, NULL);
646       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(), false,
647                                      false, false, false, false);
648     }
649   else
650     {
651       os = this->choose_output_section(object, name, sh_type,
652                                        shdr.get_sh_flags(), true, false,
653                                        false, false, false, false);
654       if (os == NULL)
655         return NULL;
656     }
657
658   // By default the GNU linker sorts input sections whose names match
659   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
660   // are sorted by name.  This is used to implement constructor
661   // priority ordering.  We are compatible.
662   if (!this->script_options_->saw_sections_clause()
663       && (is_prefix_of(".ctors.", name)
664           || is_prefix_of(".dtors.", name)
665           || is_prefix_of(".init_array.", name)
666           || is_prefix_of(".fini_array.", name)))
667     os->set_must_sort_attached_input_sections();
668
669   // FIXME: Handle SHF_LINK_ORDER somewhere.
670
671   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
672                                this->script_options_->saw_sections_clause());
673   this->have_added_input_section_ = true;
674
675   return os;
676 }
677
678 // Handle a relocation section when doing a relocatable link.
679
680 template<int size, bool big_endian>
681 Output_section*
682 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
683                      unsigned int,
684                      const elfcpp::Shdr<size, big_endian>& shdr,
685                      Output_section* data_section,
686                      Relocatable_relocs* rr)
687 {
688   gold_assert(parameters->options().relocatable()
689               || parameters->options().emit_relocs());
690
691   int sh_type = shdr.get_sh_type();
692
693   std::string name;
694   if (sh_type == elfcpp::SHT_REL)
695     name = ".rel";
696   else if (sh_type == elfcpp::SHT_RELA)
697     name = ".rela";
698   else
699     gold_unreachable();
700   name += data_section->name();
701
702   Output_section* os = this->choose_output_section(object, name.c_str(),
703                                                    sh_type,
704                                                    shdr.get_sh_flags(),
705                                                    false, false, false,
706                                                    false, false, false);
707
708   os->set_should_link_to_symtab();
709   os->set_info_section(data_section);
710
711   Output_section_data* posd;
712   if (sh_type == elfcpp::SHT_REL)
713     {
714       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
715       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
716                                            size,
717                                            big_endian>(rr);
718     }
719   else if (sh_type == elfcpp::SHT_RELA)
720     {
721       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
722       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
723                                            size,
724                                            big_endian>(rr);
725     }
726   else
727     gold_unreachable();
728
729   os->add_output_section_data(posd);
730   rr->set_output_data(posd);
731
732   return os;
733 }
734
735 // Handle a group section when doing a relocatable link.
736
737 template<int size, bool big_endian>
738 void
739 Layout::layout_group(Symbol_table* symtab,
740                      Sized_relobj<size, big_endian>* object,
741                      unsigned int,
742                      const char* group_section_name,
743                      const char* signature,
744                      const elfcpp::Shdr<size, big_endian>& shdr,
745                      elfcpp::Elf_Word flags,
746                      std::vector<unsigned int>* shndxes)
747 {
748   gold_assert(parameters->options().relocatable());
749   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
750   group_section_name = this->namepool_.add(group_section_name, true, NULL);
751   Output_section* os = this->make_output_section(group_section_name,
752                                                  elfcpp::SHT_GROUP,
753                                                  shdr.get_sh_flags(),
754                                                  false, false, false,
755                                                  false, false);
756
757   // We need to find a symbol with the signature in the symbol table.
758   // If we don't find one now, we need to look again later.
759   Symbol* sym = symtab->lookup(signature, NULL);
760   if (sym != NULL)
761     os->set_info_symndx(sym);
762   else
763     {
764       // Reserve some space to minimize reallocations.
765       if (this->group_signatures_.empty())
766         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
767
768       // We will wind up using a symbol whose name is the signature.
769       // So just put the signature in the symbol name pool to save it.
770       signature = symtab->canonicalize_name(signature);
771       this->group_signatures_.push_back(Group_signature(os, signature));
772     }
773
774   os->set_should_link_to_symtab();
775   os->set_entsize(4);
776
777   section_size_type entry_count =
778     convert_to_section_size_type(shdr.get_sh_size() / 4);
779   Output_section_data* posd =
780     new Output_data_group<size, big_endian>(object, entry_count, flags,
781                                             shndxes);
782   os->add_output_section_data(posd);
783 }
784
785 // Special GNU handling of sections name .eh_frame.  They will
786 // normally hold exception frame data as defined by the C++ ABI
787 // (http://codesourcery.com/cxx-abi/).
788
789 template<int size, bool big_endian>
790 Output_section*
791 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
792                         const unsigned char* symbols,
793                         off_t symbols_size,
794                         const unsigned char* symbol_names,
795                         off_t symbol_names_size,
796                         unsigned int shndx,
797                         const elfcpp::Shdr<size, big_endian>& shdr,
798                         unsigned int reloc_shndx, unsigned int reloc_type,
799                         off_t* off)
800 {
801   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
802   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
803
804   const char* const name = ".eh_frame";
805   Output_section* os = this->choose_output_section(object,
806                                                    name,
807                                                    elfcpp::SHT_PROGBITS,
808                                                    elfcpp::SHF_ALLOC,
809                                                    false, false, false,
810                                                    false, false, false);
811   if (os == NULL)
812     return NULL;
813
814   if (this->eh_frame_section_ == NULL)
815     {
816       this->eh_frame_section_ = os;
817       this->eh_frame_data_ = new Eh_frame();
818
819       if (parameters->options().eh_frame_hdr())
820         {
821           Output_section* hdr_os =
822             this->choose_output_section(NULL,
823                                         ".eh_frame_hdr",
824                                         elfcpp::SHT_PROGBITS,
825                                         elfcpp::SHF_ALLOC,
826                                         false, false, false,
827                                         false, false, false);
828
829           if (hdr_os != NULL)
830             {
831               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
832                                                         this->eh_frame_data_);
833               hdr_os->add_output_section_data(hdr_posd);
834
835               hdr_os->set_after_input_sections();
836
837               if (!this->script_options_->saw_phdrs_clause())
838                 {
839                   Output_segment* hdr_oseg;
840                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
841                                                        elfcpp::PF_R);
842                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R, false);
843                 }
844
845               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
846             }
847         }
848     }
849
850   gold_assert(this->eh_frame_section_ == os);
851
852   if (this->eh_frame_data_->add_ehframe_input_section(object,
853                                                       symbols,
854                                                       symbols_size,
855                                                       symbol_names,
856                                                       symbol_names_size,
857                                                       shndx,
858                                                       reloc_shndx,
859                                                       reloc_type))
860     {
861       os->update_flags_for_input_section(shdr.get_sh_flags());
862
863       // We found a .eh_frame section we are going to optimize, so now
864       // we can add the set of optimized sections to the output
865       // section.  We need to postpone adding this until we've found a
866       // section we can optimize so that the .eh_frame section in
867       // crtbegin.o winds up at the start of the output section.
868       if (!this->added_eh_frame_data_)
869         {
870           os->add_output_section_data(this->eh_frame_data_);
871           this->added_eh_frame_data_ = true;
872         }
873       *off = -1;
874     }
875   else
876     {
877       // We couldn't handle this .eh_frame section for some reason.
878       // Add it as a normal section.
879       bool saw_sections_clause = this->script_options_->saw_sections_clause();
880       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
881                                    saw_sections_clause);
882       this->have_added_input_section_ = true;
883     }
884
885   return os;
886 }
887
888 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
889 // the output section.
890
891 Output_section*
892 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
893                                 elfcpp::Elf_Xword flags,
894                                 Output_section_data* posd,
895                                 bool is_dynamic_linker_section,
896                                 bool is_relro, bool is_last_relro,
897                                 bool is_first_non_relro)
898 {
899   Output_section* os = this->choose_output_section(NULL, name, type, flags,
900                                                    false, false,
901                                                    is_dynamic_linker_section,
902                                                    is_relro, is_last_relro,
903                                                    is_first_non_relro);
904   if (os != NULL)
905     os->add_output_section_data(posd);
906   return os;
907 }
908
909 // Map section flags to segment flags.
910
911 elfcpp::Elf_Word
912 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
913 {
914   elfcpp::Elf_Word ret = elfcpp::PF_R;
915   if ((flags & elfcpp::SHF_WRITE) != 0)
916     ret |= elfcpp::PF_W;
917   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
918     ret |= elfcpp::PF_X;
919   return ret;
920 }
921
922 // Sometimes we compress sections.  This is typically done for
923 // sections that are not part of normal program execution (such as
924 // .debug_* sections), and where the readers of these sections know
925 // how to deal with compressed sections.  This routine doesn't say for
926 // certain whether we'll compress -- it depends on commandline options
927 // as well -- just whether this section is a candidate for compression.
928 // (The Output_compressed_section class decides whether to compress
929 // a given section, and picks the name of the compressed section.)
930
931 static bool
932 is_compressible_debug_section(const char* secname)
933 {
934   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
935 }
936
937 // Make a new Output_section, and attach it to segments as
938 // appropriate.  IS_INTERP is true if this is the .interp section.
939 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
940 // dynamic linker.  IS_RELRO is true if this is a relro section.
941 // IS_LAST_RELRO is true if this is the last relro section.
942 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
943
944 Output_section*
945 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
946                             elfcpp::Elf_Xword flags, bool is_interp,
947                             bool is_dynamic_linker_section, bool is_relro,
948                             bool is_last_relro, bool is_first_non_relro)
949 {
950   Output_section* os;
951   if ((flags & elfcpp::SHF_ALLOC) == 0
952       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
953       && is_compressible_debug_section(name))
954     os = new Output_compressed_section(&parameters->options(), name, type,
955                                        flags);
956   else if ((flags & elfcpp::SHF_ALLOC) == 0
957            && parameters->options().strip_debug_non_line()
958            && strcmp(".debug_abbrev", name) == 0)
959     {
960       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
961           name, type, flags);
962       if (this->debug_info_)
963         this->debug_info_->set_abbreviations(this->debug_abbrev_);
964     }
965   else if ((flags & elfcpp::SHF_ALLOC) == 0
966            && parameters->options().strip_debug_non_line()
967            && strcmp(".debug_info", name) == 0)
968     {
969       os = this->debug_info_ = new Output_reduced_debug_info_section(
970           name, type, flags);
971       if (this->debug_abbrev_)
972         this->debug_info_->set_abbreviations(this->debug_abbrev_);
973     }
974  else
975     {
976       // FIXME: const_cast is ugly.
977       Target* target = const_cast<Target*>(&parameters->target());
978       os = target->make_output_section(name, type, flags);
979     }
980
981   if (is_interp)
982     os->set_is_interp();
983   if (is_dynamic_linker_section)
984     os->set_is_dynamic_linker_section();
985   if (is_relro)
986     os->set_is_relro();
987   if (is_last_relro)
988     os->set_is_last_relro();
989   if (is_first_non_relro)
990     os->set_is_first_non_relro();
991
992   parameters->target().new_output_section(os);
993
994   this->section_list_.push_back(os);
995
996   // The GNU linker by default sorts some sections by priority, so we
997   // do the same.  We need to know that this might happen before we
998   // attach any input sections.
999   if (!this->script_options_->saw_sections_clause()
1000       && (strcmp(name, ".ctors") == 0
1001           || strcmp(name, ".dtors") == 0
1002           || strcmp(name, ".init_array") == 0
1003           || strcmp(name, ".fini_array") == 0))
1004     os->set_may_sort_attached_input_sections();
1005
1006   // With -z relro, we have to recognize the special sections by name.
1007   // There is no other way.
1008   if (!this->script_options_->saw_sections_clause()
1009       && parameters->options().relro()
1010       && type == elfcpp::SHT_PROGBITS
1011       && (flags & elfcpp::SHF_ALLOC) != 0
1012       && (flags & elfcpp::SHF_WRITE) != 0)
1013     {
1014       if (strcmp(name, ".data.rel.ro") == 0)
1015         os->set_is_relro();
1016       else if (strcmp(name, ".data.rel.ro.local") == 0)
1017         {
1018           os->set_is_relro();
1019           os->set_is_relro_local();
1020         }
1021     }
1022
1023   // Check for .stab*str sections, as .stab* sections need to link to
1024   // them.
1025   if (type == elfcpp::SHT_STRTAB
1026       && !this->have_stabstr_section_
1027       && strncmp(name, ".stab", 5) == 0
1028       && strcmp(name + strlen(name) - 3, "str") == 0)
1029     this->have_stabstr_section_ = true;
1030
1031   // If we have already attached the sections to segments, then we
1032   // need to attach this one now.  This happens for sections created
1033   // directly by the linker.
1034   if (this->sections_are_attached_)
1035     this->attach_section_to_segment(os);
1036
1037   return os;
1038 }
1039
1040 // Attach output sections to segments.  This is called after we have
1041 // seen all the input sections.
1042
1043 void
1044 Layout::attach_sections_to_segments()
1045 {
1046   for (Section_list::iterator p = this->section_list_.begin();
1047        p != this->section_list_.end();
1048        ++p)
1049     this->attach_section_to_segment(*p);
1050
1051   this->sections_are_attached_ = true;
1052 }
1053
1054 // Attach an output section to a segment.
1055
1056 void
1057 Layout::attach_section_to_segment(Output_section* os)
1058 {
1059   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1060     this->unattached_section_list_.push_back(os);
1061   else
1062     this->attach_allocated_section_to_segment(os);
1063 }
1064
1065 // Attach an allocated output section to a segment.
1066
1067 void
1068 Layout::attach_allocated_section_to_segment(Output_section* os)
1069 {
1070   elfcpp::Elf_Xword flags = os->flags();
1071   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1072
1073   if (parameters->options().relocatable())
1074     return;
1075
1076   // If we have a SECTIONS clause, we can't handle the attachment to
1077   // segments until after we've seen all the sections.
1078   if (this->script_options_->saw_sections_clause())
1079     return;
1080
1081   gold_assert(!this->script_options_->saw_phdrs_clause());
1082
1083   // This output section goes into a PT_LOAD segment.
1084
1085   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1086
1087   // Check for --section-start.
1088   uint64_t addr;
1089   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1090
1091   // In general the only thing we really care about for PT_LOAD
1092   // segments is whether or not they are writable, so that is how we
1093   // search for them.  Large data sections also go into their own
1094   // PT_LOAD segment.  People who need segments sorted on some other
1095   // basis will have to use a linker script.
1096
1097   Segment_list::const_iterator p;
1098   for (p = this->segment_list_.begin();
1099        p != this->segment_list_.end();
1100        ++p)
1101     {
1102       if ((*p)->type() != elfcpp::PT_LOAD)
1103         continue;
1104       if (!parameters->options().omagic()
1105           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1106         continue;
1107       // If -Tbss was specified, we need to separate the data and BSS
1108       // segments.
1109       if (parameters->options().user_set_Tbss())
1110         {
1111           if ((os->type() == elfcpp::SHT_NOBITS)
1112               == (*p)->has_any_data_sections())
1113             continue;
1114         }
1115       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1116         continue;
1117
1118       if (is_address_set)
1119         {
1120           if ((*p)->are_addresses_set())
1121             continue;
1122
1123           (*p)->add_initial_output_data(os);
1124           (*p)->update_flags_for_output_section(seg_flags);
1125           (*p)->set_addresses(addr, addr);
1126           break;
1127         }
1128
1129       (*p)->add_output_section(os, seg_flags, true);
1130       break;
1131     }
1132
1133   if (p == this->segment_list_.end())
1134     {
1135       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1136                                                        seg_flags);
1137       if (os->is_large_data_section())
1138         oseg->set_is_large_data_segment();
1139       oseg->add_output_section(os, seg_flags, true);
1140       if (is_address_set)
1141         oseg->set_addresses(addr, addr);
1142     }
1143
1144   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1145   // segment.
1146   if (os->type() == elfcpp::SHT_NOTE)
1147     {
1148       // See if we already have an equivalent PT_NOTE segment.
1149       for (p = this->segment_list_.begin();
1150            p != segment_list_.end();
1151            ++p)
1152         {
1153           if ((*p)->type() == elfcpp::PT_NOTE
1154               && (((*p)->flags() & elfcpp::PF_W)
1155                   == (seg_flags & elfcpp::PF_W)))
1156             {
1157               (*p)->add_output_section(os, seg_flags, false);
1158               break;
1159             }
1160         }
1161
1162       if (p == this->segment_list_.end())
1163         {
1164           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1165                                                            seg_flags);
1166           oseg->add_output_section(os, seg_flags, false);
1167         }
1168     }
1169
1170   // If we see a loadable SHF_TLS section, we create a PT_TLS
1171   // segment.  There can only be one such segment.
1172   if ((flags & elfcpp::SHF_TLS) != 0)
1173     {
1174       if (this->tls_segment_ == NULL)
1175         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1176       this->tls_segment_->add_output_section(os, seg_flags, false);
1177     }
1178
1179   // If -z relro is in effect, and we see a relro section, we create a
1180   // PT_GNU_RELRO segment.  There can only be one such segment.
1181   if (os->is_relro() && parameters->options().relro())
1182     {
1183       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1184       if (this->relro_segment_ == NULL)
1185         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1186       this->relro_segment_->add_output_section(os, seg_flags, false);
1187     }
1188 }
1189
1190 // Make an output section for a script.
1191
1192 Output_section*
1193 Layout::make_output_section_for_script(
1194     const char* name,
1195     Script_sections::Section_type section_type)
1196 {
1197   name = this->namepool_.add(name, false, NULL);
1198   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1199   if (section_type == Script_sections::ST_NOLOAD)
1200     sh_flags = 0;
1201   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1202                                                  sh_flags, false,
1203                                                  false, false, false, false);
1204   os->set_found_in_sections_clause();
1205   if (section_type == Script_sections::ST_NOLOAD)
1206     os->set_is_noload();
1207   return os;
1208 }
1209
1210 // Return the number of segments we expect to see.
1211
1212 size_t
1213 Layout::expected_segment_count() const
1214 {
1215   size_t ret = this->segment_list_.size();
1216
1217   // If we didn't see a SECTIONS clause in a linker script, we should
1218   // already have the complete list of segments.  Otherwise we ask the
1219   // SECTIONS clause how many segments it expects, and add in the ones
1220   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1221
1222   if (!this->script_options_->saw_sections_clause())
1223     return ret;
1224   else
1225     {
1226       const Script_sections* ss = this->script_options_->script_sections();
1227       return ret + ss->expected_segment_count(this);
1228     }
1229 }
1230
1231 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1232 // is whether we saw a .note.GNU-stack section in the object file.
1233 // GNU_STACK_FLAGS is the section flags.  The flags give the
1234 // protection required for stack memory.  We record this in an
1235 // executable as a PT_GNU_STACK segment.  If an object file does not
1236 // have a .note.GNU-stack segment, we must assume that it is an old
1237 // object.  On some targets that will force an executable stack.
1238
1239 void
1240 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1241 {
1242   if (!seen_gnu_stack)
1243     this->input_without_gnu_stack_note_ = true;
1244   else
1245     {
1246       this->input_with_gnu_stack_note_ = true;
1247       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1248         this->input_requires_executable_stack_ = true;
1249     }
1250 }
1251
1252 // Create automatic note sections.
1253
1254 void
1255 Layout::create_notes()
1256 {
1257   this->create_gold_note();
1258   this->create_executable_stack_info();
1259   this->create_build_id();
1260 }
1261
1262 // Create the dynamic sections which are needed before we read the
1263 // relocs.
1264
1265 void
1266 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1267 {
1268   if (parameters->doing_static_link())
1269     return;
1270
1271   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1272                                                        elfcpp::SHT_DYNAMIC,
1273                                                        (elfcpp::SHF_ALLOC
1274                                                         | elfcpp::SHF_WRITE),
1275                                                        false, false, true,
1276                                                        true, false, false);
1277
1278   this->dynamic_symbol_ =
1279     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1280                                   this->dynamic_section_, 0, 0,
1281                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1282                                   elfcpp::STV_HIDDEN, 0, false, false);
1283
1284   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1285
1286   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1287 }
1288
1289 // For each output section whose name can be represented as C symbol,
1290 // define __start and __stop symbols for the section.  This is a GNU
1291 // extension.
1292
1293 void
1294 Layout::define_section_symbols(Symbol_table* symtab)
1295 {
1296   for (Section_list::const_iterator p = this->section_list_.begin();
1297        p != this->section_list_.end();
1298        ++p)
1299     {
1300       const char* const name = (*p)->name();
1301       if (is_cident(name))
1302         {
1303           const std::string name_string(name);
1304           const std::string start_name(cident_section_start_prefix
1305                                        + name_string);
1306           const std::string stop_name(cident_section_stop_prefix
1307                                       + name_string);
1308
1309           symtab->define_in_output_data(start_name.c_str(),
1310                                         NULL, // version
1311                                         Symbol_table::PREDEFINED,
1312                                         *p,
1313                                         0, // value
1314                                         0, // symsize
1315                                         elfcpp::STT_NOTYPE,
1316                                         elfcpp::STB_GLOBAL,
1317                                         elfcpp::STV_DEFAULT,
1318                                         0, // nonvis
1319                                         false, // offset_is_from_end
1320                                         true); // only_if_ref
1321
1322           symtab->define_in_output_data(stop_name.c_str(),
1323                                         NULL, // version
1324                                         Symbol_table::PREDEFINED,
1325                                         *p,
1326                                         0, // value
1327                                         0, // symsize
1328                                         elfcpp::STT_NOTYPE,
1329                                         elfcpp::STB_GLOBAL,
1330                                         elfcpp::STV_DEFAULT,
1331                                         0, // nonvis
1332                                         true, // offset_is_from_end
1333                                         true); // only_if_ref
1334         }
1335     }
1336 }
1337
1338 // Define symbols for group signatures.
1339
1340 void
1341 Layout::define_group_signatures(Symbol_table* symtab)
1342 {
1343   for (Group_signatures::iterator p = this->group_signatures_.begin();
1344        p != this->group_signatures_.end();
1345        ++p)
1346     {
1347       Symbol* sym = symtab->lookup(p->signature, NULL);
1348       if (sym != NULL)
1349         p->section->set_info_symndx(sym);
1350       else
1351         {
1352           // Force the name of the group section to the group
1353           // signature, and use the group's section symbol as the
1354           // signature symbol.
1355           if (strcmp(p->section->name(), p->signature) != 0)
1356             {
1357               const char* name = this->namepool_.add(p->signature,
1358                                                      true, NULL);
1359               p->section->set_name(name);
1360             }
1361           p->section->set_needs_symtab_index();
1362           p->section->set_info_section_symndx(p->section);
1363         }
1364     }
1365
1366   this->group_signatures_.clear();
1367 }
1368
1369 // Find the first read-only PT_LOAD segment, creating one if
1370 // necessary.
1371
1372 Output_segment*
1373 Layout::find_first_load_seg()
1374 {
1375   for (Segment_list::const_iterator p = this->segment_list_.begin();
1376        p != this->segment_list_.end();
1377        ++p)
1378     {
1379       if ((*p)->type() == elfcpp::PT_LOAD
1380           && ((*p)->flags() & elfcpp::PF_R) != 0
1381           && (parameters->options().omagic()
1382               || ((*p)->flags() & elfcpp::PF_W) == 0))
1383         return *p;
1384     }
1385
1386   gold_assert(!this->script_options_->saw_phdrs_clause());
1387
1388   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1389                                                        elfcpp::PF_R);
1390   return load_seg;
1391 }
1392
1393 // Save states of all current output segments.  Store saved states
1394 // in SEGMENT_STATES.
1395
1396 void
1397 Layout::save_segments(Segment_states* segment_states)
1398 {
1399   for (Segment_list::const_iterator p = this->segment_list_.begin();
1400        p != this->segment_list_.end();
1401        ++p)
1402     {
1403       Output_segment* segment = *p;
1404       // Shallow copy.
1405       Output_segment* copy = new Output_segment(*segment);
1406       (*segment_states)[segment] = copy;
1407     }
1408 }
1409
1410 // Restore states of output segments and delete any segment not found in
1411 // SEGMENT_STATES.
1412
1413 void
1414 Layout::restore_segments(const Segment_states* segment_states)
1415 {
1416   // Go through the segment list and remove any segment added in the
1417   // relaxation loop.
1418   this->tls_segment_ = NULL;
1419   this->relro_segment_ = NULL;
1420   Segment_list::iterator list_iter = this->segment_list_.begin();
1421   while (list_iter != this->segment_list_.end())
1422     {
1423       Output_segment* segment = *list_iter;
1424       Segment_states::const_iterator states_iter =
1425           segment_states->find(segment);
1426       if (states_iter != segment_states->end())
1427         {
1428           const Output_segment* copy = states_iter->second;
1429           // Shallow copy to restore states.
1430           *segment = *copy;
1431
1432           // Also fix up TLS and RELRO segment pointers as appropriate.
1433           if (segment->type() == elfcpp::PT_TLS)
1434             this->tls_segment_ = segment;
1435           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1436             this->relro_segment_ = segment;
1437
1438           ++list_iter;
1439         } 
1440       else
1441         {
1442           list_iter = this->segment_list_.erase(list_iter); 
1443           // This is a segment created during section layout.  It should be
1444           // safe to remove it since we should have removed all pointers to it.
1445           delete segment;
1446         }
1447     }
1448 }
1449
1450 // Clean up after relaxation so that sections can be laid out again.
1451
1452 void
1453 Layout::clean_up_after_relaxation()
1454 {
1455   // Restore the segments to point state just prior to the relaxation loop.
1456   Script_sections* script_section = this->script_options_->script_sections();
1457   script_section->release_segments();
1458   this->restore_segments(this->segment_states_);
1459
1460   // Reset section addresses and file offsets
1461   for (Section_list::iterator p = this->section_list_.begin();
1462        p != this->section_list_.end();
1463        ++p)
1464     {
1465       (*p)->restore_states();
1466
1467       // If an input section changes size because of relaxation,
1468       // we need to adjust the section offsets of all input sections.
1469       // after such a section.
1470       if ((*p)->section_offsets_need_adjustment())
1471         (*p)->adjust_section_offsets();
1472
1473       (*p)->reset_address_and_file_offset();
1474     }
1475   
1476   // Reset special output object address and file offsets.
1477   for (Data_list::iterator p = this->special_output_list_.begin();
1478        p != this->special_output_list_.end();
1479        ++p)
1480     (*p)->reset_address_and_file_offset();
1481
1482   // A linker script may have created some output section data objects.
1483   // They are useless now.
1484   for (Output_section_data_list::const_iterator p =
1485          this->script_output_section_data_list_.begin();
1486        p != this->script_output_section_data_list_.end();
1487        ++p)
1488     delete *p;
1489   this->script_output_section_data_list_.clear(); 
1490 }
1491
1492 // Prepare for relaxation.
1493
1494 void
1495 Layout::prepare_for_relaxation()
1496 {
1497   // Create an relaxation debug check if in debugging mode.
1498   if (is_debugging_enabled(DEBUG_RELAXATION))
1499     this->relaxation_debug_check_ = new Relaxation_debug_check();
1500
1501   // Save segment states.
1502   this->segment_states_ = new Segment_states();
1503   this->save_segments(this->segment_states_);
1504
1505   for(Section_list::const_iterator p = this->section_list_.begin();
1506       p != this->section_list_.end();
1507       ++p)
1508     (*p)->save_states();
1509
1510   if (is_debugging_enabled(DEBUG_RELAXATION))
1511     this->relaxation_debug_check_->check_output_data_for_reset_values(
1512         this->section_list_, this->special_output_list_);
1513
1514   // Also enable recording of output section data from scripts.
1515   this->record_output_section_data_from_script_ = true;
1516 }
1517
1518 // Relaxation loop body:  If target has no relaxation, this runs only once
1519 // Otherwise, the target relaxation hook is called at the end of
1520 // each iteration.  If the hook returns true, it means re-layout of
1521 // section is required.  
1522 //
1523 // The number of segments created by a linking script without a PHDRS
1524 // clause may be affected by section sizes and alignments.  There is
1525 // a remote chance that relaxation causes different number of PT_LOAD
1526 // segments are created and sections are attached to different segments.
1527 // Therefore, we always throw away all segments created during section
1528 // layout.  In order to be able to restart the section layout, we keep
1529 // a copy of the segment list right before the relaxation loop and use
1530 // that to restore the segments.
1531 // 
1532 // PASS is the current relaxation pass number. 
1533 // SYMTAB is a symbol table.
1534 // PLOAD_SEG is the address of a pointer for the load segment.
1535 // PHDR_SEG is a pointer to the PHDR segment.
1536 // SEGMENT_HEADERS points to the output segment header.
1537 // FILE_HEADER points to the output file header.
1538 // PSHNDX is the address to store the output section index.
1539
1540 off_t inline
1541 Layout::relaxation_loop_body(
1542     int pass,
1543     Target* target,
1544     Symbol_table* symtab,
1545     Output_segment** pload_seg,
1546     Output_segment* phdr_seg,
1547     Output_segment_headers* segment_headers,
1548     Output_file_header* file_header,
1549     unsigned int* pshndx)
1550 {
1551   // If this is not the first iteration, we need to clean up after
1552   // relaxation so that we can lay out the sections again.
1553   if (pass != 0)
1554     this->clean_up_after_relaxation();
1555
1556   // If there is a SECTIONS clause, put all the input sections into
1557   // the required order.
1558   Output_segment* load_seg;
1559   if (this->script_options_->saw_sections_clause())
1560     load_seg = this->set_section_addresses_from_script(symtab);
1561   else if (parameters->options().relocatable())
1562     load_seg = NULL;
1563   else
1564     load_seg = this->find_first_load_seg();
1565
1566   if (parameters->options().oformat_enum()
1567       != General_options::OBJECT_FORMAT_ELF)
1568     load_seg = NULL;
1569
1570   // If the user set the address of the text segment, that may not be
1571   // compatible with putting the segment headers and file headers into
1572   // that segment.
1573   if (parameters->options().user_set_Ttext())
1574     load_seg = NULL;
1575
1576   gold_assert(phdr_seg == NULL
1577               || load_seg != NULL
1578               || this->script_options_->saw_sections_clause());
1579
1580   // If the address of the load segment we found has been set by
1581   // --section-start rather than by a script, then we don't want to
1582   // use it for the file and segment headers.
1583   if (load_seg != NULL
1584       && load_seg->are_addresses_set()
1585       && !this->script_options_->saw_sections_clause())
1586     load_seg = NULL;
1587
1588   // Lay out the segment headers.
1589   if (!parameters->options().relocatable())
1590     {
1591       gold_assert(segment_headers != NULL);
1592       if (load_seg != NULL)
1593         load_seg->add_initial_output_data(segment_headers);
1594       if (phdr_seg != NULL)
1595         phdr_seg->add_initial_output_data(segment_headers);
1596     }
1597
1598   // Lay out the file header.
1599   if (load_seg != NULL)
1600     load_seg->add_initial_output_data(file_header);
1601
1602   if (this->script_options_->saw_phdrs_clause()
1603       && !parameters->options().relocatable())
1604     {
1605       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1606       // clause in a linker script.
1607       Script_sections* ss = this->script_options_->script_sections();
1608       ss->put_headers_in_phdrs(file_header, segment_headers);
1609     }
1610
1611   // We set the output section indexes in set_segment_offsets and
1612   // set_section_indexes.
1613   *pshndx = 1;
1614
1615   // Set the file offsets of all the segments, and all the sections
1616   // they contain.
1617   off_t off;
1618   if (!parameters->options().relocatable())
1619     off = this->set_segment_offsets(target, load_seg, pshndx);
1620   else
1621     off = this->set_relocatable_section_offsets(file_header, pshndx);
1622
1623    // Verify that the dummy relaxation does not change anything.
1624   if (is_debugging_enabled(DEBUG_RELAXATION))
1625     {
1626       if (pass == 0)
1627         this->relaxation_debug_check_->read_sections(this->section_list_);
1628       else
1629         this->relaxation_debug_check_->verify_sections(this->section_list_);
1630     }
1631
1632   *pload_seg = load_seg;
1633   return off;
1634 }
1635
1636 // Finalize the layout.  When this is called, we have created all the
1637 // output sections and all the output segments which are based on
1638 // input sections.  We have several things to do, and we have to do
1639 // them in the right order, so that we get the right results correctly
1640 // and efficiently.
1641
1642 // 1) Finalize the list of output segments and create the segment
1643 // table header.
1644
1645 // 2) Finalize the dynamic symbol table and associated sections.
1646
1647 // 3) Determine the final file offset of all the output segments.
1648
1649 // 4) Determine the final file offset of all the SHF_ALLOC output
1650 // sections.
1651
1652 // 5) Create the symbol table sections and the section name table
1653 // section.
1654
1655 // 6) Finalize the symbol table: set symbol values to their final
1656 // value and make a final determination of which symbols are going
1657 // into the output symbol table.
1658
1659 // 7) Create the section table header.
1660
1661 // 8) Determine the final file offset of all the output sections which
1662 // are not SHF_ALLOC, including the section table header.
1663
1664 // 9) Finalize the ELF file header.
1665
1666 // This function returns the size of the output file.
1667
1668 off_t
1669 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1670                  Target* target, const Task* task)
1671 {
1672   target->finalize_sections(this, input_objects, symtab);
1673
1674   this->count_local_symbols(task, input_objects);
1675
1676   this->link_stabs_sections();
1677
1678   Output_segment* phdr_seg = NULL;
1679   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1680     {
1681       // There was a dynamic object in the link.  We need to create
1682       // some information for the dynamic linker.
1683
1684       // Create the PT_PHDR segment which will hold the program
1685       // headers.
1686       if (!this->script_options_->saw_phdrs_clause())
1687         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1688
1689       // Create the dynamic symbol table, including the hash table.
1690       Output_section* dynstr;
1691       std::vector<Symbol*> dynamic_symbols;
1692       unsigned int local_dynamic_count;
1693       Versions versions(*this->script_options()->version_script_info(),
1694                         &this->dynpool_);
1695       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1696                                   &local_dynamic_count, &dynamic_symbols,
1697                                   &versions);
1698
1699       // Create the .interp section to hold the name of the
1700       // interpreter, and put it in a PT_INTERP segment.
1701       if (!parameters->options().shared())
1702         this->create_interp(target);
1703
1704       // Finish the .dynamic section to hold the dynamic data, and put
1705       // it in a PT_DYNAMIC segment.
1706       this->finish_dynamic_section(input_objects, symtab);
1707
1708       // We should have added everything we need to the dynamic string
1709       // table.
1710       this->dynpool_.set_string_offsets();
1711
1712       // Create the version sections.  We can't do this until the
1713       // dynamic string table is complete.
1714       this->create_version_sections(&versions, symtab, local_dynamic_count,
1715                                     dynamic_symbols, dynstr);
1716
1717       // Set the size of the _DYNAMIC symbol.  We can't do this until
1718       // after we call create_version_sections.
1719       this->set_dynamic_symbol_size(symtab);
1720     }
1721   
1722   if (this->incremental_inputs_)
1723     {
1724       this->incremental_inputs_->finalize();
1725       this->create_incremental_info_sections();
1726     }
1727
1728   // Create segment headers.
1729   Output_segment_headers* segment_headers =
1730     (parameters->options().relocatable()
1731      ? NULL
1732      : new Output_segment_headers(this->segment_list_));
1733
1734   // Lay out the file header.
1735   Output_file_header* file_header
1736     = new Output_file_header(target, symtab, segment_headers,
1737                              parameters->options().entry());
1738
1739   this->special_output_list_.push_back(file_header);
1740   if (segment_headers != NULL)
1741     this->special_output_list_.push_back(segment_headers);
1742
1743   // Find approriate places for orphan output sections if we are using
1744   // a linker script.
1745   if (this->script_options_->saw_sections_clause())
1746     this->place_orphan_sections_in_script();
1747   
1748   Output_segment* load_seg;
1749   off_t off;
1750   unsigned int shndx;
1751   int pass = 0;
1752
1753   // Take a snapshot of the section layout as needed.
1754   if (target->may_relax())
1755     this->prepare_for_relaxation();
1756   
1757   // Run the relaxation loop to lay out sections.
1758   do
1759     {
1760       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1761                                        phdr_seg, segment_headers, file_header,
1762                                        &shndx);
1763       pass++;
1764     }
1765   while (target->may_relax()
1766          && target->relax(pass, input_objects, symtab, this));
1767
1768   // Set the file offsets of all the non-data sections we've seen so
1769   // far which don't have to wait for the input sections.  We need
1770   // this in order to finalize local symbols in non-allocated
1771   // sections.
1772   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1773
1774   // Set the section indexes of all unallocated sections seen so far,
1775   // in case any of them are somehow referenced by a symbol.
1776   shndx = this->set_section_indexes(shndx);
1777
1778   // Create the symbol table sections.
1779   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1780   if (!parameters->doing_static_link())
1781     this->assign_local_dynsym_offsets(input_objects);
1782
1783   // Process any symbol assignments from a linker script.  This must
1784   // be called after the symbol table has been finalized.
1785   this->script_options_->finalize_symbols(symtab, this);
1786
1787   // Create the .shstrtab section.
1788   Output_section* shstrtab_section = this->create_shstrtab();
1789
1790   // Set the file offsets of the rest of the non-data sections which
1791   // don't have to wait for the input sections.
1792   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1793
1794   // Now that all sections have been created, set the section indexes
1795   // for any sections which haven't been done yet.
1796   shndx = this->set_section_indexes(shndx);
1797
1798   // Create the section table header.
1799   this->create_shdrs(shstrtab_section, &off);
1800
1801   // If there are no sections which require postprocessing, we can
1802   // handle the section names now, and avoid a resize later.
1803   if (!this->any_postprocessing_sections_)
1804     off = this->set_section_offsets(off,
1805                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1806
1807   file_header->set_section_info(this->section_headers_, shstrtab_section);
1808
1809   // Now we know exactly where everything goes in the output file
1810   // (except for non-allocated sections which require postprocessing).
1811   Output_data::layout_complete();
1812
1813   this->output_file_size_ = off;
1814
1815   return off;
1816 }
1817
1818 // Create a note header following the format defined in the ELF ABI.
1819 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1820 // of the section to create, DESCSZ is the size of the descriptor.
1821 // ALLOCATE is true if the section should be allocated in memory.
1822 // This returns the new note section.  It sets *TRAILING_PADDING to
1823 // the number of trailing zero bytes required.
1824
1825 Output_section*
1826 Layout::create_note(const char* name, int note_type,
1827                     const char* section_name, size_t descsz,
1828                     bool allocate, size_t* trailing_padding)
1829 {
1830   // Authorities all agree that the values in a .note field should
1831   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1832   // they differ on what the alignment is for 64-bit binaries.
1833   // The GABI says unambiguously they take 8-byte alignment:
1834   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1835   // Other documentation says alignment should always be 4 bytes:
1836   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1837   // GNU ld and GNU readelf both support the latter (at least as of
1838   // version 2.16.91), and glibc always generates the latter for
1839   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1840   // here.
1841 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1842   const int size = parameters->target().get_size();
1843 #else
1844   const int size = 32;
1845 #endif
1846
1847   // The contents of the .note section.
1848   size_t namesz = strlen(name) + 1;
1849   size_t aligned_namesz = align_address(namesz, size / 8);
1850   size_t aligned_descsz = align_address(descsz, size / 8);
1851
1852   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1853
1854   unsigned char* buffer = new unsigned char[notehdrsz];
1855   memset(buffer, 0, notehdrsz);
1856
1857   bool is_big_endian = parameters->target().is_big_endian();
1858
1859   if (size == 32)
1860     {
1861       if (!is_big_endian)
1862         {
1863           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1864           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1865           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1866         }
1867       else
1868         {
1869           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1870           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1871           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1872         }
1873     }
1874   else if (size == 64)
1875     {
1876       if (!is_big_endian)
1877         {
1878           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1879           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1880           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1881         }
1882       else
1883         {
1884           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1885           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1886           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1887         }
1888     }
1889   else
1890     gold_unreachable();
1891
1892   memcpy(buffer + 3 * (size / 8), name, namesz);
1893
1894   elfcpp::Elf_Xword flags = 0;
1895   if (allocate)
1896     flags = elfcpp::SHF_ALLOC;
1897   Output_section* os = this->choose_output_section(NULL, section_name,
1898                                                    elfcpp::SHT_NOTE,
1899                                                    flags, false, false,
1900                                                    false, false, false, false);
1901   if (os == NULL)
1902     return NULL;
1903
1904   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1905                                                            size / 8,
1906                                                            "** note header");
1907   os->add_output_section_data(posd);
1908
1909   *trailing_padding = aligned_descsz - descsz;
1910
1911   return os;
1912 }
1913
1914 // For an executable or shared library, create a note to record the
1915 // version of gold used to create the binary.
1916
1917 void
1918 Layout::create_gold_note()
1919 {
1920   if (parameters->options().relocatable())
1921     return;
1922
1923   std::string desc = std::string("gold ") + gold::get_version_string();
1924
1925   size_t trailing_padding;
1926   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1927                                          ".note.gnu.gold-version", desc.size(),
1928                                          false, &trailing_padding);
1929   if (os == NULL)
1930     return;
1931
1932   Output_section_data* posd = new Output_data_const(desc, 4);
1933   os->add_output_section_data(posd);
1934
1935   if (trailing_padding > 0)
1936     {
1937       posd = new Output_data_zero_fill(trailing_padding, 0);
1938       os->add_output_section_data(posd);
1939     }
1940 }
1941
1942 // Record whether the stack should be executable.  This can be set
1943 // from the command line using the -z execstack or -z noexecstack
1944 // options.  Otherwise, if any input file has a .note.GNU-stack
1945 // section with the SHF_EXECINSTR flag set, the stack should be
1946 // executable.  Otherwise, if at least one input file a
1947 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1948 // section, we use the target default for whether the stack should be
1949 // executable.  Otherwise, we don't generate a stack note.  When
1950 // generating a object file, we create a .note.GNU-stack section with
1951 // the appropriate marking.  When generating an executable or shared
1952 // library, we create a PT_GNU_STACK segment.
1953
1954 void
1955 Layout::create_executable_stack_info()
1956 {
1957   bool is_stack_executable;
1958   if (parameters->options().is_execstack_set())
1959     is_stack_executable = parameters->options().is_stack_executable();
1960   else if (!this->input_with_gnu_stack_note_)
1961     return;
1962   else
1963     {
1964       if (this->input_requires_executable_stack_)
1965         is_stack_executable = true;
1966       else if (this->input_without_gnu_stack_note_)
1967         is_stack_executable =
1968           parameters->target().is_default_stack_executable();
1969       else
1970         is_stack_executable = false;
1971     }
1972
1973   if (parameters->options().relocatable())
1974     {
1975       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1976       elfcpp::Elf_Xword flags = 0;
1977       if (is_stack_executable)
1978         flags |= elfcpp::SHF_EXECINSTR;
1979       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, false,
1980                                 false, false, false, false);
1981     }
1982   else
1983     {
1984       if (this->script_options_->saw_phdrs_clause())
1985         return;
1986       int flags = elfcpp::PF_R | elfcpp::PF_W;
1987       if (is_stack_executable)
1988         flags |= elfcpp::PF_X;
1989       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1990     }
1991 }
1992
1993 // If --build-id was used, set up the build ID note.
1994
1995 void
1996 Layout::create_build_id()
1997 {
1998   if (!parameters->options().user_set_build_id())
1999     return;
2000
2001   const char* style = parameters->options().build_id();
2002   if (strcmp(style, "none") == 0)
2003     return;
2004
2005   // Set DESCSZ to the size of the note descriptor.  When possible,
2006   // set DESC to the note descriptor contents.
2007   size_t descsz;
2008   std::string desc;
2009   if (strcmp(style, "md5") == 0)
2010     descsz = 128 / 8;
2011   else if (strcmp(style, "sha1") == 0)
2012     descsz = 160 / 8;
2013   else if (strcmp(style, "uuid") == 0)
2014     {
2015       const size_t uuidsz = 128 / 8;
2016
2017       char buffer[uuidsz];
2018       memset(buffer, 0, uuidsz);
2019
2020       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2021       if (descriptor < 0)
2022         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2023                    strerror(errno));
2024       else
2025         {
2026           ssize_t got = ::read(descriptor, buffer, uuidsz);
2027           release_descriptor(descriptor, true);
2028           if (got < 0)
2029             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2030           else if (static_cast<size_t>(got) != uuidsz)
2031             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2032                        uuidsz, got);
2033         }
2034
2035       desc.assign(buffer, uuidsz);
2036       descsz = uuidsz;
2037     }
2038   else if (strncmp(style, "0x", 2) == 0)
2039     {
2040       hex_init();
2041       const char* p = style + 2;
2042       while (*p != '\0')
2043         {
2044           if (hex_p(p[0]) && hex_p(p[1]))
2045             {
2046               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2047               desc += c;
2048               p += 2;
2049             }
2050           else if (*p == '-' || *p == ':')
2051             ++p;
2052           else
2053             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2054                        style);
2055         }
2056       descsz = desc.size();
2057     }
2058   else
2059     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2060
2061   // Create the note.
2062   size_t trailing_padding;
2063   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2064                                          ".note.gnu.build-id", descsz, true,
2065                                          &trailing_padding);
2066   if (os == NULL)
2067     return;
2068
2069   if (!desc.empty())
2070     {
2071       // We know the value already, so we fill it in now.
2072       gold_assert(desc.size() == descsz);
2073
2074       Output_section_data* posd = new Output_data_const(desc, 4);
2075       os->add_output_section_data(posd);
2076
2077       if (trailing_padding != 0)
2078         {
2079           posd = new Output_data_zero_fill(trailing_padding, 0);
2080           os->add_output_section_data(posd);
2081         }
2082     }
2083   else
2084     {
2085       // We need to compute a checksum after we have completed the
2086       // link.
2087       gold_assert(trailing_padding == 0);
2088       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2089       os->add_output_section_data(this->build_id_note_);
2090     }
2091 }
2092
2093 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2094 // field of the former should point to the latter.  I'm not sure who
2095 // started this, but the GNU linker does it, and some tools depend
2096 // upon it.
2097
2098 void
2099 Layout::link_stabs_sections()
2100 {
2101   if (!this->have_stabstr_section_)
2102     return;
2103
2104   for (Section_list::iterator p = this->section_list_.begin();
2105        p != this->section_list_.end();
2106        ++p)
2107     {
2108       if ((*p)->type() != elfcpp::SHT_STRTAB)
2109         continue;
2110
2111       const char* name = (*p)->name();
2112       if (strncmp(name, ".stab", 5) != 0)
2113         continue;
2114
2115       size_t len = strlen(name);
2116       if (strcmp(name + len - 3, "str") != 0)
2117         continue;
2118
2119       std::string stab_name(name, len - 3);
2120       Output_section* stab_sec;
2121       stab_sec = this->find_output_section(stab_name.c_str());
2122       if (stab_sec != NULL)
2123         stab_sec->set_link_section(*p);
2124     }
2125 }
2126
2127 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2128 // for the next run of incremental linking to check what has changed.
2129
2130 void
2131 Layout::create_incremental_info_sections()
2132 {
2133   gold_assert(this->incremental_inputs_ != NULL);
2134
2135   // Add the .gnu_incremental_inputs section.
2136   const char *incremental_inputs_name =
2137     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2138   Output_section* inputs_os =
2139     this->make_output_section(incremental_inputs_name,
2140                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2141                               false, false, false, false, false);
2142   Output_section_data* posd =
2143       this->incremental_inputs_->create_incremental_inputs_section_data();
2144   inputs_os->add_output_section_data(posd);
2145   
2146   // Add the .gnu_incremental_strtab section.
2147   const char *incremental_strtab_name =
2148     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2149   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2150                                                         elfcpp::SHT_STRTAB,
2151                                                         0, false, false,
2152                                                         false, false, false);
2153   Output_data_strtab* strtab_data =
2154     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2155   strtab_os->add_output_section_data(strtab_data);
2156   
2157   inputs_os->set_link_section(strtab_data);
2158 }
2159
2160 // Return whether SEG1 should be before SEG2 in the output file.  This
2161 // is based entirely on the segment type and flags.  When this is
2162 // called the segment addresses has normally not yet been set.
2163
2164 bool
2165 Layout::segment_precedes(const Output_segment* seg1,
2166                          const Output_segment* seg2)
2167 {
2168   elfcpp::Elf_Word type1 = seg1->type();
2169   elfcpp::Elf_Word type2 = seg2->type();
2170
2171   // The single PT_PHDR segment is required to precede any loadable
2172   // segment.  We simply make it always first.
2173   if (type1 == elfcpp::PT_PHDR)
2174     {
2175       gold_assert(type2 != elfcpp::PT_PHDR);
2176       return true;
2177     }
2178   if (type2 == elfcpp::PT_PHDR)
2179     return false;
2180
2181   // The single PT_INTERP segment is required to precede any loadable
2182   // segment.  We simply make it always second.
2183   if (type1 == elfcpp::PT_INTERP)
2184     {
2185       gold_assert(type2 != elfcpp::PT_INTERP);
2186       return true;
2187     }
2188   if (type2 == elfcpp::PT_INTERP)
2189     return false;
2190
2191   // We then put PT_LOAD segments before any other segments.
2192   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2193     return true;
2194   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2195     return false;
2196
2197   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2198   // segment, because that is where the dynamic linker expects to find
2199   // it (this is just for efficiency; other positions would also work
2200   // correctly).
2201   if (type1 == elfcpp::PT_TLS
2202       && type2 != elfcpp::PT_TLS
2203       && type2 != elfcpp::PT_GNU_RELRO)
2204     return false;
2205   if (type2 == elfcpp::PT_TLS
2206       && type1 != elfcpp::PT_TLS
2207       && type1 != elfcpp::PT_GNU_RELRO)
2208     return true;
2209
2210   // We put the PT_GNU_RELRO segment last, because that is where the
2211   // dynamic linker expects to find it (as with PT_TLS, this is just
2212   // for efficiency).
2213   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2214     return false;
2215   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2216     return true;
2217
2218   const elfcpp::Elf_Word flags1 = seg1->flags();
2219   const elfcpp::Elf_Word flags2 = seg2->flags();
2220
2221   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2222   // by the numeric segment type and flags values.  There should not
2223   // be more than one segment with the same type and flags.
2224   if (type1 != elfcpp::PT_LOAD)
2225     {
2226       if (type1 != type2)
2227         return type1 < type2;
2228       gold_assert(flags1 != flags2);
2229       return flags1 < flags2;
2230     }
2231
2232   // If the addresses are set already, sort by load address.
2233   if (seg1->are_addresses_set())
2234     {
2235       if (!seg2->are_addresses_set())
2236         return true;
2237
2238       unsigned int section_count1 = seg1->output_section_count();
2239       unsigned int section_count2 = seg2->output_section_count();
2240       if (section_count1 == 0 && section_count2 > 0)
2241         return true;
2242       if (section_count1 > 0 && section_count2 == 0)
2243         return false;
2244
2245       uint64_t paddr1 = seg1->first_section_load_address();
2246       uint64_t paddr2 = seg2->first_section_load_address();
2247       if (paddr1 != paddr2)
2248         return paddr1 < paddr2;
2249     }
2250   else if (seg2->are_addresses_set())
2251     return false;
2252
2253   // A segment which holds large data comes after a segment which does
2254   // not hold large data.
2255   if (seg1->is_large_data_segment())
2256     {
2257       if (!seg2->is_large_data_segment())
2258         return false;
2259     }
2260   else if (seg2->is_large_data_segment())
2261     return true;
2262
2263   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2264   // segments come before writable segments.  Then writable segments
2265   // with data come before writable segments without data.  Then
2266   // executable segments come before non-executable segments.  Then
2267   // the unlikely case of a non-readable segment comes before the
2268   // normal case of a readable segment.  If there are multiple
2269   // segments with the same type and flags, we require that the
2270   // address be set, and we sort by virtual address and then physical
2271   // address.
2272   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2273     return (flags1 & elfcpp::PF_W) == 0;
2274   if ((flags1 & elfcpp::PF_W) != 0
2275       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2276     return seg1->has_any_data_sections();
2277   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2278     return (flags1 & elfcpp::PF_X) != 0;
2279   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2280     return (flags1 & elfcpp::PF_R) == 0;
2281
2282   // We shouldn't get here--we shouldn't create segments which we
2283   // can't distinguish.
2284   gold_unreachable();
2285 }
2286
2287 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2288
2289 static off_t
2290 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2291 {
2292   uint64_t unsigned_off = off;
2293   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2294                           | (addr & (abi_pagesize - 1)));
2295   if (aligned_off < unsigned_off)
2296     aligned_off += abi_pagesize;
2297   return aligned_off;
2298 }
2299
2300 // Set the file offsets of all the segments, and all the sections they
2301 // contain.  They have all been created.  LOAD_SEG must be be laid out
2302 // first.  Return the offset of the data to follow.
2303
2304 off_t
2305 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2306                             unsigned int *pshndx)
2307 {
2308   // Sort them into the final order.
2309   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2310             Layout::Compare_segments());
2311
2312   // Find the PT_LOAD segments, and set their addresses and offsets
2313   // and their section's addresses and offsets.
2314   uint64_t addr;
2315   if (parameters->options().user_set_Ttext())
2316     addr = parameters->options().Ttext();
2317   else if (parameters->options().output_is_position_independent())
2318     addr = 0;
2319   else
2320     addr = target->default_text_segment_address();
2321   off_t off = 0;
2322
2323   // If LOAD_SEG is NULL, then the file header and segment headers
2324   // will not be loadable.  But they still need to be at offset 0 in
2325   // the file.  Set their offsets now.
2326   if (load_seg == NULL)
2327     {
2328       for (Data_list::iterator p = this->special_output_list_.begin();
2329            p != this->special_output_list_.end();
2330            ++p)
2331         {
2332           off = align_address(off, (*p)->addralign());
2333           (*p)->set_address_and_file_offset(0, off);
2334           off += (*p)->data_size();
2335         }
2336     }
2337
2338   unsigned int increase_relro = this->increase_relro_;
2339   if (this->script_options_->saw_sections_clause())
2340     increase_relro = 0;
2341
2342   const bool check_sections = parameters->options().check_sections();
2343   Output_segment* last_load_segment = NULL;
2344
2345   bool was_readonly = false;
2346   for (Segment_list::iterator p = this->segment_list_.begin();
2347        p != this->segment_list_.end();
2348        ++p)
2349     {
2350       if ((*p)->type() == elfcpp::PT_LOAD)
2351         {
2352           if (load_seg != NULL && load_seg != *p)
2353             gold_unreachable();
2354           load_seg = NULL;
2355
2356           bool are_addresses_set = (*p)->are_addresses_set();
2357           if (are_addresses_set)
2358             {
2359               // When it comes to setting file offsets, we care about
2360               // the physical address.
2361               addr = (*p)->paddr();
2362             }
2363           else if (parameters->options().user_set_Tdata()
2364                    && ((*p)->flags() & elfcpp::PF_W) != 0
2365                    && (!parameters->options().user_set_Tbss()
2366                        || (*p)->has_any_data_sections()))
2367             {
2368               addr = parameters->options().Tdata();
2369               are_addresses_set = true;
2370             }
2371           else if (parameters->options().user_set_Tbss()
2372                    && ((*p)->flags() & elfcpp::PF_W) != 0
2373                    && !(*p)->has_any_data_sections())
2374             {
2375               addr = parameters->options().Tbss();
2376               are_addresses_set = true;
2377             }
2378
2379           uint64_t orig_addr = addr;
2380           uint64_t orig_off = off;
2381
2382           uint64_t aligned_addr = 0;
2383           uint64_t abi_pagesize = target->abi_pagesize();
2384           uint64_t common_pagesize = target->common_pagesize();
2385
2386           if (!parameters->options().nmagic()
2387               && !parameters->options().omagic())
2388             (*p)->set_minimum_p_align(common_pagesize);
2389
2390           if (!are_addresses_set)
2391             {
2392               // If the last segment was readonly, and this one is
2393               // not, then skip the address forward one page,
2394               // maintaining the same position within the page.  This
2395               // lets us store both segments overlapping on a single
2396               // page in the file, but the loader will put them on
2397               // different pages in memory.
2398
2399               addr = align_address(addr, (*p)->maximum_alignment());
2400               aligned_addr = addr;
2401
2402               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2403                 {
2404                   if ((addr & (abi_pagesize - 1)) != 0)
2405                     addr = addr + abi_pagesize;
2406                 }
2407
2408               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2409             }
2410
2411           if (!parameters->options().nmagic()
2412               && !parameters->options().omagic())
2413             off = align_file_offset(off, addr, abi_pagesize);
2414           else if (load_seg == NULL)
2415             {
2416               // This is -N or -n with a section script which prevents
2417               // us from using a load segment.  We need to ensure that
2418               // the file offset is aligned to the alignment of the
2419               // segment.  This is because the linker script
2420               // implicitly assumed a zero offset.  If we don't align
2421               // here, then the alignment of the sections in the
2422               // linker script may not match the alignment of the
2423               // sections in the set_section_addresses call below,
2424               // causing an error about dot moving backward.
2425               off = align_address(off, (*p)->maximum_alignment());
2426             }
2427
2428           unsigned int shndx_hold = *pshndx;
2429           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2430                                                           increase_relro,
2431                                                           &off, pshndx);
2432
2433           // Now that we know the size of this segment, we may be able
2434           // to save a page in memory, at the cost of wasting some
2435           // file space, by instead aligning to the start of a new
2436           // page.  Here we use the real machine page size rather than
2437           // the ABI mandated page size.
2438
2439           if (!are_addresses_set && aligned_addr != addr)
2440             {
2441               uint64_t first_off = (common_pagesize
2442                                     - (aligned_addr
2443                                        & (common_pagesize - 1)));
2444               uint64_t last_off = new_addr & (common_pagesize - 1);
2445               if (first_off > 0
2446                   && last_off > 0
2447                   && ((aligned_addr & ~ (common_pagesize - 1))
2448                       != (new_addr & ~ (common_pagesize - 1)))
2449                   && first_off + last_off <= common_pagesize)
2450                 {
2451                   *pshndx = shndx_hold;
2452                   addr = align_address(aligned_addr, common_pagesize);
2453                   addr = align_address(addr, (*p)->maximum_alignment());
2454                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2455                   off = align_file_offset(off, addr, abi_pagesize);
2456                   new_addr = (*p)->set_section_addresses(this, true, addr,
2457                                                          increase_relro,
2458                                                          &off, pshndx);
2459                 }
2460             }
2461
2462           addr = new_addr;
2463
2464           if (((*p)->flags() & elfcpp::PF_W) == 0)
2465             was_readonly = true;
2466
2467           // Implement --check-sections.  We know that the segments
2468           // are sorted by LMA.
2469           if (check_sections && last_load_segment != NULL)
2470             {
2471               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2472               if (last_load_segment->paddr() + last_load_segment->memsz()
2473                   > (*p)->paddr())
2474                 {
2475                   unsigned long long lb1 = last_load_segment->paddr();
2476                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2477                   unsigned long long lb2 = (*p)->paddr();
2478                   unsigned long long le2 = lb2 + (*p)->memsz();
2479                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2480                                "[0x%llx -> 0x%llx]"),
2481                              lb1, le1, lb2, le2);
2482                 }
2483             }
2484           last_load_segment = *p;
2485         }
2486     }
2487
2488   // Handle the non-PT_LOAD segments, setting their offsets from their
2489   // section's offsets.
2490   for (Segment_list::iterator p = this->segment_list_.begin();
2491        p != this->segment_list_.end();
2492        ++p)
2493     {
2494       if ((*p)->type() != elfcpp::PT_LOAD)
2495         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2496                          ? increase_relro
2497                          : 0);
2498     }
2499
2500   // Set the TLS offsets for each section in the PT_TLS segment.
2501   if (this->tls_segment_ != NULL)
2502     this->tls_segment_->set_tls_offsets();
2503
2504   return off;
2505 }
2506
2507 // Set the offsets of all the allocated sections when doing a
2508 // relocatable link.  This does the same jobs as set_segment_offsets,
2509 // only for a relocatable link.
2510
2511 off_t
2512 Layout::set_relocatable_section_offsets(Output_data* file_header,
2513                                         unsigned int *pshndx)
2514 {
2515   off_t off = 0;
2516
2517   file_header->set_address_and_file_offset(0, 0);
2518   off += file_header->data_size();
2519
2520   for (Section_list::iterator p = this->section_list_.begin();
2521        p != this->section_list_.end();
2522        ++p)
2523     {
2524       // We skip unallocated sections here, except that group sections
2525       // have to come first.
2526       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2527           && (*p)->type() != elfcpp::SHT_GROUP)
2528         continue;
2529
2530       off = align_address(off, (*p)->addralign());
2531
2532       // The linker script might have set the address.
2533       if (!(*p)->is_address_valid())
2534         (*p)->set_address(0);
2535       (*p)->set_file_offset(off);
2536       (*p)->finalize_data_size();
2537       off += (*p)->data_size();
2538
2539       (*p)->set_out_shndx(*pshndx);
2540       ++*pshndx;
2541     }
2542
2543   return off;
2544 }
2545
2546 // Set the file offset of all the sections not associated with a
2547 // segment.
2548
2549 off_t
2550 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2551 {
2552   for (Section_list::iterator p = this->unattached_section_list_.begin();
2553        p != this->unattached_section_list_.end();
2554        ++p)
2555     {
2556       // The symtab section is handled in create_symtab_sections.
2557       if (*p == this->symtab_section_)
2558         continue;
2559
2560       // If we've already set the data size, don't set it again.
2561       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2562         continue;
2563
2564       if (pass == BEFORE_INPUT_SECTIONS_PASS
2565           && (*p)->requires_postprocessing())
2566         {
2567           (*p)->create_postprocessing_buffer();
2568           this->any_postprocessing_sections_ = true;
2569         }
2570
2571       if (pass == BEFORE_INPUT_SECTIONS_PASS
2572           && (*p)->after_input_sections())
2573         continue;
2574       else if (pass == POSTPROCESSING_SECTIONS_PASS
2575                && (!(*p)->after_input_sections()
2576                    || (*p)->type() == elfcpp::SHT_STRTAB))
2577         continue;
2578       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2579                && (!(*p)->after_input_sections()
2580                    || (*p)->type() != elfcpp::SHT_STRTAB))
2581         continue;
2582
2583       off = align_address(off, (*p)->addralign());
2584       (*p)->set_file_offset(off);
2585       (*p)->finalize_data_size();
2586       off += (*p)->data_size();
2587
2588       // At this point the name must be set.
2589       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2590         this->namepool_.add((*p)->name(), false, NULL);
2591     }
2592   return off;
2593 }
2594
2595 // Set the section indexes of all the sections not associated with a
2596 // segment.
2597
2598 unsigned int
2599 Layout::set_section_indexes(unsigned int shndx)
2600 {
2601   for (Section_list::iterator p = this->unattached_section_list_.begin();
2602        p != this->unattached_section_list_.end();
2603        ++p)
2604     {
2605       if (!(*p)->has_out_shndx())
2606         {
2607           (*p)->set_out_shndx(shndx);
2608           ++shndx;
2609         }
2610     }
2611   return shndx;
2612 }
2613
2614 // Set the section addresses according to the linker script.  This is
2615 // only called when we see a SECTIONS clause.  This returns the
2616 // program segment which should hold the file header and segment
2617 // headers, if any.  It will return NULL if they should not be in a
2618 // segment.
2619
2620 Output_segment*
2621 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2622 {
2623   Script_sections* ss = this->script_options_->script_sections();
2624   gold_assert(ss->saw_sections_clause());
2625   return this->script_options_->set_section_addresses(symtab, this);
2626 }
2627
2628 // Place the orphan sections in the linker script.
2629
2630 void
2631 Layout::place_orphan_sections_in_script()
2632 {
2633   Script_sections* ss = this->script_options_->script_sections();
2634   gold_assert(ss->saw_sections_clause());
2635
2636   // Place each orphaned output section in the script.
2637   for (Section_list::iterator p = this->section_list_.begin();
2638        p != this->section_list_.end();
2639        ++p)
2640     {
2641       if (!(*p)->found_in_sections_clause())
2642         ss->place_orphan(*p);
2643     }
2644 }
2645
2646 // Count the local symbols in the regular symbol table and the dynamic
2647 // symbol table, and build the respective string pools.
2648
2649 void
2650 Layout::count_local_symbols(const Task* task,
2651                             const Input_objects* input_objects)
2652 {
2653   // First, figure out an upper bound on the number of symbols we'll
2654   // be inserting into each pool.  This helps us create the pools with
2655   // the right size, to avoid unnecessary hashtable resizing.
2656   unsigned int symbol_count = 0;
2657   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2658        p != input_objects->relobj_end();
2659        ++p)
2660     symbol_count += (*p)->local_symbol_count();
2661
2662   // Go from "upper bound" to "estimate."  We overcount for two
2663   // reasons: we double-count symbols that occur in more than one
2664   // object file, and we count symbols that are dropped from the
2665   // output.  Add it all together and assume we overcount by 100%.
2666   symbol_count /= 2;
2667
2668   // We assume all symbols will go into both the sympool and dynpool.
2669   this->sympool_.reserve(symbol_count);
2670   this->dynpool_.reserve(symbol_count);
2671
2672   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2673        p != input_objects->relobj_end();
2674        ++p)
2675     {
2676       Task_lock_obj<Object> tlo(task, *p);
2677       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2678     }
2679 }
2680
2681 // Create the symbol table sections.  Here we also set the final
2682 // values of the symbols.  At this point all the loadable sections are
2683 // fully laid out.  SHNUM is the number of sections so far.
2684
2685 void
2686 Layout::create_symtab_sections(const Input_objects* input_objects,
2687                                Symbol_table* symtab,
2688                                unsigned int shnum,
2689                                off_t* poff)
2690 {
2691   int symsize;
2692   unsigned int align;
2693   if (parameters->target().get_size() == 32)
2694     {
2695       symsize = elfcpp::Elf_sizes<32>::sym_size;
2696       align = 4;
2697     }
2698   else if (parameters->target().get_size() == 64)
2699     {
2700       symsize = elfcpp::Elf_sizes<64>::sym_size;
2701       align = 8;
2702     }
2703   else
2704     gold_unreachable();
2705
2706   off_t off = *poff;
2707   off = align_address(off, align);
2708   off_t startoff = off;
2709
2710   // Save space for the dummy symbol at the start of the section.  We
2711   // never bother to write this out--it will just be left as zero.
2712   off += symsize;
2713   unsigned int local_symbol_index = 1;
2714
2715   // Add STT_SECTION symbols for each Output section which needs one.
2716   for (Section_list::iterator p = this->section_list_.begin();
2717        p != this->section_list_.end();
2718        ++p)
2719     {
2720       if (!(*p)->needs_symtab_index())
2721         (*p)->set_symtab_index(-1U);
2722       else
2723         {
2724           (*p)->set_symtab_index(local_symbol_index);
2725           ++local_symbol_index;
2726           off += symsize;
2727         }
2728     }
2729
2730   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2731        p != input_objects->relobj_end();
2732        ++p)
2733     {
2734       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2735                                                         off, symtab);
2736       off += (index - local_symbol_index) * symsize;
2737       local_symbol_index = index;
2738     }
2739
2740   unsigned int local_symcount = local_symbol_index;
2741   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2742
2743   off_t dynoff;
2744   size_t dyn_global_index;
2745   size_t dyncount;
2746   if (this->dynsym_section_ == NULL)
2747     {
2748       dynoff = 0;
2749       dyn_global_index = 0;
2750       dyncount = 0;
2751     }
2752   else
2753     {
2754       dyn_global_index = this->dynsym_section_->info();
2755       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2756       dynoff = this->dynsym_section_->offset() + locsize;
2757       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2758       gold_assert(static_cast<off_t>(dyncount * symsize)
2759                   == this->dynsym_section_->data_size() - locsize);
2760     }
2761
2762   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2763                          &this->sympool_, &local_symcount);
2764
2765   if (!parameters->options().strip_all())
2766     {
2767       this->sympool_.set_string_offsets();
2768
2769       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2770       Output_section* osymtab = this->make_output_section(symtab_name,
2771                                                           elfcpp::SHT_SYMTAB,
2772                                                           0, false, false,
2773                                                           false, false, false);
2774       this->symtab_section_ = osymtab;
2775
2776       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2777                                                              align,
2778                                                              "** symtab");
2779       osymtab->add_output_section_data(pos);
2780
2781       // We generate a .symtab_shndx section if we have more than
2782       // SHN_LORESERVE sections.  Technically it is possible that we
2783       // don't need one, because it is possible that there are no
2784       // symbols in any of sections with indexes larger than
2785       // SHN_LORESERVE.  That is probably unusual, though, and it is
2786       // easier to always create one than to compute section indexes
2787       // twice (once here, once when writing out the symbols).
2788       if (shnum >= elfcpp::SHN_LORESERVE)
2789         {
2790           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2791                                                                false, NULL);
2792           Output_section* osymtab_xindex =
2793             this->make_output_section(symtab_xindex_name,
2794                                       elfcpp::SHT_SYMTAB_SHNDX, 0, false,
2795                                       false, false, false, false);
2796
2797           size_t symcount = (off - startoff) / symsize;
2798           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2799
2800           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2801
2802           osymtab_xindex->set_link_section(osymtab);
2803           osymtab_xindex->set_addralign(4);
2804           osymtab_xindex->set_entsize(4);
2805
2806           osymtab_xindex->set_after_input_sections();
2807
2808           // This tells the driver code to wait until the symbol table
2809           // has written out before writing out the postprocessing
2810           // sections, including the .symtab_shndx section.
2811           this->any_postprocessing_sections_ = true;
2812         }
2813
2814       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2815       Output_section* ostrtab = this->make_output_section(strtab_name,
2816                                                           elfcpp::SHT_STRTAB,
2817                                                           0, false, false,
2818                                                           false, false, false);
2819
2820       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2821       ostrtab->add_output_section_data(pstr);
2822
2823       osymtab->set_file_offset(startoff);
2824       osymtab->finalize_data_size();
2825       osymtab->set_link_section(ostrtab);
2826       osymtab->set_info(local_symcount);
2827       osymtab->set_entsize(symsize);
2828
2829       *poff = off;
2830     }
2831 }
2832
2833 // Create the .shstrtab section, which holds the names of the
2834 // sections.  At the time this is called, we have created all the
2835 // output sections except .shstrtab itself.
2836
2837 Output_section*
2838 Layout::create_shstrtab()
2839 {
2840   // FIXME: We don't need to create a .shstrtab section if we are
2841   // stripping everything.
2842
2843   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2844
2845   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2846                                                  false, false, false, false,
2847                                                  false);
2848
2849   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
2850     {
2851       // We can't write out this section until we've set all the
2852       // section names, and we don't set the names of compressed
2853       // output sections until relocations are complete.  FIXME: With
2854       // the current names we use, this is unnecessary.
2855       os->set_after_input_sections();
2856     }
2857
2858   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2859   os->add_output_section_data(posd);
2860
2861   return os;
2862 }
2863
2864 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2865 // offset.
2866
2867 void
2868 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2869 {
2870   Output_section_headers* oshdrs;
2871   oshdrs = new Output_section_headers(this,
2872                                       &this->segment_list_,
2873                                       &this->section_list_,
2874                                       &this->unattached_section_list_,
2875                                       &this->namepool_,
2876                                       shstrtab_section);
2877   off_t off = align_address(*poff, oshdrs->addralign());
2878   oshdrs->set_address_and_file_offset(0, off);
2879   off += oshdrs->data_size();
2880   *poff = off;
2881   this->section_headers_ = oshdrs;
2882 }
2883
2884 // Count the allocated sections.
2885
2886 size_t
2887 Layout::allocated_output_section_count() const
2888 {
2889   size_t section_count = 0;
2890   for (Segment_list::const_iterator p = this->segment_list_.begin();
2891        p != this->segment_list_.end();
2892        ++p)
2893     section_count += (*p)->output_section_count();
2894   return section_count;
2895 }
2896
2897 // Create the dynamic symbol table.
2898
2899 void
2900 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2901                               Symbol_table* symtab,
2902                               Output_section **pdynstr,
2903                               unsigned int* plocal_dynamic_count,
2904                               std::vector<Symbol*>* pdynamic_symbols,
2905                               Versions* pversions)
2906 {
2907   // Count all the symbols in the dynamic symbol table, and set the
2908   // dynamic symbol indexes.
2909
2910   // Skip symbol 0, which is always all zeroes.
2911   unsigned int index = 1;
2912
2913   // Add STT_SECTION symbols for each Output section which needs one.
2914   for (Section_list::iterator p = this->section_list_.begin();
2915        p != this->section_list_.end();
2916        ++p)
2917     {
2918       if (!(*p)->needs_dynsym_index())
2919         (*p)->set_dynsym_index(-1U);
2920       else
2921         {
2922           (*p)->set_dynsym_index(index);
2923           ++index;
2924         }
2925     }
2926
2927   // Count the local symbols that need to go in the dynamic symbol table,
2928   // and set the dynamic symbol indexes.
2929   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2930        p != input_objects->relobj_end();
2931        ++p)
2932     {
2933       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2934       index = new_index;
2935     }
2936
2937   unsigned int local_symcount = index;
2938   *plocal_dynamic_count = local_symcount;
2939
2940   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2941                                      &this->dynpool_, pversions);
2942
2943   int symsize;
2944   unsigned int align;
2945   const int size = parameters->target().get_size();
2946   if (size == 32)
2947     {
2948       symsize = elfcpp::Elf_sizes<32>::sym_size;
2949       align = 4;
2950     }
2951   else if (size == 64)
2952     {
2953       symsize = elfcpp::Elf_sizes<64>::sym_size;
2954       align = 8;
2955     }
2956   else
2957     gold_unreachable();
2958
2959   // Create the dynamic symbol table section.
2960
2961   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2962                                                        elfcpp::SHT_DYNSYM,
2963                                                        elfcpp::SHF_ALLOC,
2964                                                        false, false, true,
2965                                                        false, false, false);
2966
2967   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2968                                                            align,
2969                                                            "** dynsym");
2970   dynsym->add_output_section_data(odata);
2971
2972   dynsym->set_info(local_symcount);
2973   dynsym->set_entsize(symsize);
2974   dynsym->set_addralign(align);
2975
2976   this->dynsym_section_ = dynsym;
2977
2978   Output_data_dynamic* const odyn = this->dynamic_data_;
2979   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2980   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2981
2982   // If there are more than SHN_LORESERVE allocated sections, we
2983   // create a .dynsym_shndx section.  It is possible that we don't
2984   // need one, because it is possible that there are no dynamic
2985   // symbols in any of the sections with indexes larger than
2986   // SHN_LORESERVE.  This is probably unusual, though, and at this
2987   // time we don't know the actual section indexes so it is
2988   // inconvenient to check.
2989   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2990     {
2991       Output_section* dynsym_xindex =
2992         this->choose_output_section(NULL, ".dynsym_shndx",
2993                                     elfcpp::SHT_SYMTAB_SHNDX,
2994                                     elfcpp::SHF_ALLOC,
2995                                     false, false, true, false, false, false);
2996
2997       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2998
2999       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3000
3001       dynsym_xindex->set_link_section(dynsym);
3002       dynsym_xindex->set_addralign(4);
3003       dynsym_xindex->set_entsize(4);
3004
3005       dynsym_xindex->set_after_input_sections();
3006
3007       // This tells the driver code to wait until the symbol table has
3008       // written out before writing out the postprocessing sections,
3009       // including the .dynsym_shndx section.
3010       this->any_postprocessing_sections_ = true;
3011     }
3012
3013   // Create the dynamic string table section.
3014
3015   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3016                                                        elfcpp::SHT_STRTAB,
3017                                                        elfcpp::SHF_ALLOC,
3018                                                        false, false, true,
3019                                                        false, false, false);
3020
3021   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3022   dynstr->add_output_section_data(strdata);
3023
3024   dynsym->set_link_section(dynstr);
3025   this->dynamic_section_->set_link_section(dynstr);
3026
3027   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3028   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3029
3030   *pdynstr = dynstr;
3031
3032   // Create the hash tables.
3033
3034   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3035       || strcmp(parameters->options().hash_style(), "both") == 0)
3036     {
3037       unsigned char* phash;
3038       unsigned int hashlen;
3039       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3040                                     &phash, &hashlen);
3041
3042       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
3043                                                             elfcpp::SHT_HASH,
3044                                                             elfcpp::SHF_ALLOC,
3045                                                             false, false, true,
3046                                                             false, false,
3047                                                             false);
3048
3049       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3050                                                                    hashlen,
3051                                                                    align,
3052                                                                    "** hash");
3053       hashsec->add_output_section_data(hashdata);
3054
3055       hashsec->set_link_section(dynsym);
3056       hashsec->set_entsize(4);
3057
3058       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3059     }
3060
3061   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3062       || strcmp(parameters->options().hash_style(), "both") == 0)
3063     {
3064       unsigned char* phash;
3065       unsigned int hashlen;
3066       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3067                                     &phash, &hashlen);
3068
3069       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
3070                                                             elfcpp::SHT_GNU_HASH,
3071                                                             elfcpp::SHF_ALLOC,
3072                                                             false, false, true,
3073                                                             false, false,
3074                                                             false);
3075
3076       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3077                                                                    hashlen,
3078                                                                    align,
3079                                                                    "** hash");
3080       hashsec->add_output_section_data(hashdata);
3081
3082       hashsec->set_link_section(dynsym);
3083
3084       // For a 64-bit target, the entries in .gnu.hash do not have a
3085       // uniform size, so we only set the entry size for a 32-bit
3086       // target.
3087       if (parameters->target().get_size() == 32)
3088         hashsec->set_entsize(4);
3089
3090       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3091     }
3092 }
3093
3094 // Assign offsets to each local portion of the dynamic symbol table.
3095
3096 void
3097 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3098 {
3099   Output_section* dynsym = this->dynsym_section_;
3100   gold_assert(dynsym != NULL);
3101
3102   off_t off = dynsym->offset();
3103
3104   // Skip the dummy symbol at the start of the section.
3105   off += dynsym->entsize();
3106
3107   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3108        p != input_objects->relobj_end();
3109        ++p)
3110     {
3111       unsigned int count = (*p)->set_local_dynsym_offset(off);
3112       off += count * dynsym->entsize();
3113     }
3114 }
3115
3116 // Create the version sections.
3117
3118 void
3119 Layout::create_version_sections(const Versions* versions,
3120                                 const Symbol_table* symtab,
3121                                 unsigned int local_symcount,
3122                                 const std::vector<Symbol*>& dynamic_symbols,
3123                                 const Output_section* dynstr)
3124 {
3125   if (!versions->any_defs() && !versions->any_needs())
3126     return;
3127
3128   switch (parameters->size_and_endianness())
3129     {
3130 #ifdef HAVE_TARGET_32_LITTLE
3131     case Parameters::TARGET_32_LITTLE:
3132       this->sized_create_version_sections<32, false>(versions, symtab,
3133                                                      local_symcount,
3134                                                      dynamic_symbols, dynstr);
3135       break;
3136 #endif
3137 #ifdef HAVE_TARGET_32_BIG
3138     case Parameters::TARGET_32_BIG:
3139       this->sized_create_version_sections<32, true>(versions, symtab,
3140                                                     local_symcount,
3141                                                     dynamic_symbols, dynstr);
3142       break;
3143 #endif
3144 #ifdef HAVE_TARGET_64_LITTLE
3145     case Parameters::TARGET_64_LITTLE:
3146       this->sized_create_version_sections<64, false>(versions, symtab,
3147                                                      local_symcount,
3148                                                      dynamic_symbols, dynstr);
3149       break;
3150 #endif
3151 #ifdef HAVE_TARGET_64_BIG
3152     case Parameters::TARGET_64_BIG:
3153       this->sized_create_version_sections<64, true>(versions, symtab,
3154                                                     local_symcount,
3155                                                     dynamic_symbols, dynstr);
3156       break;
3157 #endif
3158     default:
3159       gold_unreachable();
3160     }
3161 }
3162
3163 // Create the version sections, sized version.
3164
3165 template<int size, bool big_endian>
3166 void
3167 Layout::sized_create_version_sections(
3168     const Versions* versions,
3169     const Symbol_table* symtab,
3170     unsigned int local_symcount,
3171     const std::vector<Symbol*>& dynamic_symbols,
3172     const Output_section* dynstr)
3173 {
3174   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3175                                                      elfcpp::SHT_GNU_versym,
3176                                                      elfcpp::SHF_ALLOC,
3177                                                      false, false, true,
3178                                                      false, false, false);
3179
3180   unsigned char* vbuf;
3181   unsigned int vsize;
3182   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3183                                                       local_symcount,
3184                                                       dynamic_symbols,
3185                                                       &vbuf, &vsize);
3186
3187   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3188                                                             "** versions");
3189
3190   vsec->add_output_section_data(vdata);
3191   vsec->set_entsize(2);
3192   vsec->set_link_section(this->dynsym_section_);
3193
3194   Output_data_dynamic* const odyn = this->dynamic_data_;
3195   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3196
3197   if (versions->any_defs())
3198     {
3199       Output_section* vdsec;
3200       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3201                                          elfcpp::SHT_GNU_verdef,
3202                                          elfcpp::SHF_ALLOC,
3203                                          false, false, true, false, false,
3204                                          false);
3205
3206       unsigned char* vdbuf;
3207       unsigned int vdsize;
3208       unsigned int vdentries;
3209       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3210                                                        &vdsize, &vdentries);
3211
3212       Output_section_data* vddata =
3213         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3214
3215       vdsec->add_output_section_data(vddata);
3216       vdsec->set_link_section(dynstr);
3217       vdsec->set_info(vdentries);
3218
3219       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3220       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3221     }
3222
3223   if (versions->any_needs())
3224     {
3225       Output_section* vnsec;
3226       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3227                                           elfcpp::SHT_GNU_verneed,
3228                                           elfcpp::SHF_ALLOC,
3229                                           false, false, true, false, false,
3230                                           false);
3231
3232       unsigned char* vnbuf;
3233       unsigned int vnsize;
3234       unsigned int vnentries;
3235       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3236                                                         &vnbuf, &vnsize,
3237                                                         &vnentries);
3238
3239       Output_section_data* vndata =
3240         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3241
3242       vnsec->add_output_section_data(vndata);
3243       vnsec->set_link_section(dynstr);
3244       vnsec->set_info(vnentries);
3245
3246       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3247       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3248     }
3249 }
3250
3251 // Create the .interp section and PT_INTERP segment.
3252
3253 void
3254 Layout::create_interp(const Target* target)
3255 {
3256   const char* interp = parameters->options().dynamic_linker();
3257   if (interp == NULL)
3258     {
3259       interp = target->dynamic_linker();
3260       gold_assert(interp != NULL);
3261     }
3262
3263   size_t len = strlen(interp) + 1;
3264
3265   Output_section_data* odata = new Output_data_const(interp, len, 1);
3266
3267   Output_section* osec = this->choose_output_section(NULL, ".interp",
3268                                                      elfcpp::SHT_PROGBITS,
3269                                                      elfcpp::SHF_ALLOC,
3270                                                      false, true, true,
3271                                                      false, false, false);
3272   osec->add_output_section_data(odata);
3273
3274   if (!this->script_options_->saw_phdrs_clause())
3275     {
3276       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3277                                                        elfcpp::PF_R);
3278       oseg->add_output_section(osec, elfcpp::PF_R, false);
3279     }
3280 }
3281
3282 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3283 // called by the target-specific code.  This does nothing if not doing
3284 // a dynamic link.
3285
3286 // USE_REL is true for REL relocs rather than RELA relocs.
3287
3288 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3289
3290 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3291 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3292 // some targets have multiple reloc sections in PLT_REL.
3293
3294 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3295 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3296
3297 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3298 // executable.
3299
3300 void
3301 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3302                                 const Output_data* plt_rel,
3303                                 const Output_data_reloc_generic* dyn_rel,
3304                                 bool add_debug, bool dynrel_includes_plt)
3305 {
3306   Output_data_dynamic* odyn = this->dynamic_data_;
3307   if (odyn == NULL)
3308     return;
3309
3310   if (plt_got != NULL && plt_got->output_section() != NULL)
3311     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3312
3313   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3314     {
3315       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3316       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3317       odyn->add_constant(elfcpp::DT_PLTREL,
3318                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3319     }
3320
3321   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3322     {
3323       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3324                                 dyn_rel);
3325       if (plt_rel != NULL && dynrel_includes_plt)
3326         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3327                                dyn_rel, plt_rel);
3328       else
3329         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3330                                dyn_rel);
3331       const int size = parameters->target().get_size();
3332       elfcpp::DT rel_tag;
3333       int rel_size;
3334       if (use_rel)
3335         {
3336           rel_tag = elfcpp::DT_RELENT;
3337           if (size == 32)
3338             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3339           else if (size == 64)
3340             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3341           else
3342             gold_unreachable();
3343         }
3344       else
3345         {
3346           rel_tag = elfcpp::DT_RELAENT;
3347           if (size == 32)
3348             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3349           else if (size == 64)
3350             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3351           else
3352             gold_unreachable();
3353         }
3354       odyn->add_constant(rel_tag, rel_size);
3355
3356       if (parameters->options().combreloc())
3357         {
3358           size_t c = dyn_rel->relative_reloc_count();
3359           if (c > 0)
3360             odyn->add_constant((use_rel
3361                                 ? elfcpp::DT_RELCOUNT
3362                                 : elfcpp::DT_RELACOUNT),
3363                                c);
3364         }
3365     }
3366
3367   if (add_debug && !parameters->options().shared())
3368     {
3369       // The value of the DT_DEBUG tag is filled in by the dynamic
3370       // linker at run time, and used by the debugger.
3371       odyn->add_constant(elfcpp::DT_DEBUG, 0);
3372     }
3373 }
3374
3375 // Finish the .dynamic section and PT_DYNAMIC segment.
3376
3377 void
3378 Layout::finish_dynamic_section(const Input_objects* input_objects,
3379                                const Symbol_table* symtab)
3380 {
3381   if (!this->script_options_->saw_phdrs_clause())
3382     {
3383       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3384                                                        (elfcpp::PF_R
3385                                                         | elfcpp::PF_W));
3386       oseg->add_output_section(this->dynamic_section_,
3387                                elfcpp::PF_R | elfcpp::PF_W,
3388                                false);
3389     }
3390
3391   Output_data_dynamic* const odyn = this->dynamic_data_;
3392
3393   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3394        p != input_objects->dynobj_end();
3395        ++p)
3396     {
3397       if (!(*p)->is_needed()
3398           && (*p)->input_file()->options().as_needed())
3399         {
3400           // This dynamic object was linked with --as-needed, but it
3401           // is not needed.
3402           continue;
3403         }
3404
3405       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3406     }
3407
3408   if (parameters->options().shared())
3409     {
3410       const char* soname = parameters->options().soname();
3411       if (soname != NULL)
3412         odyn->add_string(elfcpp::DT_SONAME, soname);
3413     }
3414
3415   Symbol* sym = symtab->lookup(parameters->options().init());
3416   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3417     odyn->add_symbol(elfcpp::DT_INIT, sym);
3418
3419   sym = symtab->lookup(parameters->options().fini());
3420   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3421     odyn->add_symbol(elfcpp::DT_FINI, sym);
3422
3423   // Look for .init_array, .preinit_array and .fini_array by checking
3424   // section types.
3425   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3426       p != this->section_list_.end();
3427       ++p)
3428     switch((*p)->type())
3429       {
3430       case elfcpp::SHT_FINI_ARRAY:
3431         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3432         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3433         break;
3434       case elfcpp::SHT_INIT_ARRAY:
3435         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3436         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3437         break;
3438       case elfcpp::SHT_PREINIT_ARRAY:
3439         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3440         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3441         break;
3442       default:
3443         break;
3444       }
3445   
3446   // Add a DT_RPATH entry if needed.
3447   const General_options::Dir_list& rpath(parameters->options().rpath());
3448   if (!rpath.empty())
3449     {
3450       std::string rpath_val;
3451       for (General_options::Dir_list::const_iterator p = rpath.begin();
3452            p != rpath.end();
3453            ++p)
3454         {
3455           if (rpath_val.empty())
3456             rpath_val = p->name();
3457           else
3458             {
3459               // Eliminate duplicates.
3460               General_options::Dir_list::const_iterator q;
3461               for (q = rpath.begin(); q != p; ++q)
3462                 if (q->name() == p->name())
3463                   break;
3464               if (q == p)
3465                 {
3466                   rpath_val += ':';
3467                   rpath_val += p->name();
3468                 }
3469             }
3470         }
3471
3472       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3473       if (parameters->options().enable_new_dtags())
3474         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3475     }
3476
3477   // Look for text segments that have dynamic relocations.
3478   bool have_textrel = false;
3479   if (!this->script_options_->saw_sections_clause())
3480     {
3481       for (Segment_list::const_iterator p = this->segment_list_.begin();
3482            p != this->segment_list_.end();
3483            ++p)
3484         {
3485           if (((*p)->flags() & elfcpp::PF_W) == 0
3486               && (*p)->dynamic_reloc_count() > 0)
3487             {
3488               have_textrel = true;
3489               break;
3490             }
3491         }
3492     }
3493   else
3494     {
3495       // We don't know the section -> segment mapping, so we are
3496       // conservative and just look for readonly sections with
3497       // relocations.  If those sections wind up in writable segments,
3498       // then we have created an unnecessary DT_TEXTREL entry.
3499       for (Section_list::const_iterator p = this->section_list_.begin();
3500            p != this->section_list_.end();
3501            ++p)
3502         {
3503           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3504               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3505               && ((*p)->dynamic_reloc_count() > 0))
3506             {
3507               have_textrel = true;
3508               break;
3509             }
3510         }
3511     }
3512
3513   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3514   // post-link tools can easily modify these flags if desired.
3515   unsigned int flags = 0;
3516   if (have_textrel)
3517     {
3518       // Add a DT_TEXTREL for compatibility with older loaders.
3519       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3520       flags |= elfcpp::DF_TEXTREL;
3521
3522       if (parameters->options().text())
3523         gold_error(_("read-only segment has dynamic relocations"));
3524       else if (parameters->options().warn_shared_textrel()
3525                && parameters->options().shared())
3526         gold_warning(_("shared library text segment is not shareable"));
3527     }
3528   if (parameters->options().shared() && this->has_static_tls())
3529     flags |= elfcpp::DF_STATIC_TLS;
3530   if (parameters->options().origin())
3531     flags |= elfcpp::DF_ORIGIN;
3532   if (parameters->options().Bsymbolic())
3533     {
3534       flags |= elfcpp::DF_SYMBOLIC;
3535       // Add DT_SYMBOLIC for compatibility with older loaders.
3536       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3537     }
3538   if (parameters->options().now())
3539     flags |= elfcpp::DF_BIND_NOW;
3540   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3541
3542   flags = 0;
3543   if (parameters->options().initfirst())
3544     flags |= elfcpp::DF_1_INITFIRST;
3545   if (parameters->options().interpose())
3546     flags |= elfcpp::DF_1_INTERPOSE;
3547   if (parameters->options().loadfltr())
3548     flags |= elfcpp::DF_1_LOADFLTR;
3549   if (parameters->options().nodefaultlib())
3550     flags |= elfcpp::DF_1_NODEFLIB;
3551   if (parameters->options().nodelete())
3552     flags |= elfcpp::DF_1_NODELETE;
3553   if (parameters->options().nodlopen())
3554     flags |= elfcpp::DF_1_NOOPEN;
3555   if (parameters->options().nodump())
3556     flags |= elfcpp::DF_1_NODUMP;
3557   if (!parameters->options().shared())
3558     flags &= ~(elfcpp::DF_1_INITFIRST
3559                | elfcpp::DF_1_NODELETE
3560                | elfcpp::DF_1_NOOPEN);
3561   if (parameters->options().origin())
3562     flags |= elfcpp::DF_1_ORIGIN;
3563   if (parameters->options().now())
3564     flags |= elfcpp::DF_1_NOW;
3565   if (flags)
3566     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3567 }
3568
3569 // Set the size of the _DYNAMIC symbol table to be the size of the
3570 // dynamic data.
3571
3572 void
3573 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3574 {
3575   Output_data_dynamic* const odyn = this->dynamic_data_;
3576   odyn->finalize_data_size();
3577   off_t data_size = odyn->data_size();
3578   const int size = parameters->target().get_size();
3579   if (size == 32)
3580     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3581   else if (size == 64)
3582     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3583   else
3584     gold_unreachable();
3585 }
3586
3587 // The mapping of input section name prefixes to output section names.
3588 // In some cases one prefix is itself a prefix of another prefix; in
3589 // such a case the longer prefix must come first.  These prefixes are
3590 // based on the GNU linker default ELF linker script.
3591
3592 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3593 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3594 {
3595   MAPPING_INIT(".text.", ".text"),
3596   MAPPING_INIT(".ctors.", ".ctors"),
3597   MAPPING_INIT(".dtors.", ".dtors"),
3598   MAPPING_INIT(".rodata.", ".rodata"),
3599   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3600   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3601   MAPPING_INIT(".data.", ".data"),
3602   MAPPING_INIT(".bss.", ".bss"),
3603   MAPPING_INIT(".tdata.", ".tdata"),
3604   MAPPING_INIT(".tbss.", ".tbss"),
3605   MAPPING_INIT(".init_array.", ".init_array"),
3606   MAPPING_INIT(".fini_array.", ".fini_array"),
3607   MAPPING_INIT(".sdata.", ".sdata"),
3608   MAPPING_INIT(".sbss.", ".sbss"),
3609   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3610   // differently depending on whether it is creating a shared library.
3611   MAPPING_INIT(".sdata2.", ".sdata"),
3612   MAPPING_INIT(".sbss2.", ".sbss"),
3613   MAPPING_INIT(".lrodata.", ".lrodata"),
3614   MAPPING_INIT(".ldata.", ".ldata"),
3615   MAPPING_INIT(".lbss.", ".lbss"),
3616   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3617   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3618   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3619   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3620   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3621   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3622   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3623   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3624   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3625   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3626   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3627   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3628   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3629   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3630   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3631   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3632   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3633   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3634   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3635   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3636   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3637 };
3638 #undef MAPPING_INIT
3639
3640 const int Layout::section_name_mapping_count =
3641   (sizeof(Layout::section_name_mapping)
3642    / sizeof(Layout::section_name_mapping[0]));
3643
3644 // Choose the output section name to use given an input section name.
3645 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3646 // length of NAME.
3647
3648 const char*
3649 Layout::output_section_name(const char* name, size_t* plen)
3650 {
3651   // gcc 4.3 generates the following sorts of section names when it
3652   // needs a section name specific to a function:
3653   //   .text.FN
3654   //   .rodata.FN
3655   //   .sdata2.FN
3656   //   .data.FN
3657   //   .data.rel.FN
3658   //   .data.rel.local.FN
3659   //   .data.rel.ro.FN
3660   //   .data.rel.ro.local.FN
3661   //   .sdata.FN
3662   //   .bss.FN
3663   //   .sbss.FN
3664   //   .tdata.FN
3665   //   .tbss.FN
3666
3667   // The GNU linker maps all of those to the part before the .FN,
3668   // except that .data.rel.local.FN is mapped to .data, and
3669   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3670   // beginning with .data.rel.ro.local are grouped together.
3671
3672   // For an anonymous namespace, the string FN can contain a '.'.
3673
3674   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3675   // GNU linker maps to .rodata.
3676
3677   // The .data.rel.ro sections are used with -z relro.  The sections
3678   // are recognized by name.  We use the same names that the GNU
3679   // linker does for these sections.
3680
3681   // It is hard to handle this in a principled way, so we don't even
3682   // try.  We use a table of mappings.  If the input section name is
3683   // not found in the table, we simply use it as the output section
3684   // name.
3685
3686   const Section_name_mapping* psnm = section_name_mapping;
3687   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3688     {
3689       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3690         {
3691           *plen = psnm->tolen;
3692           return psnm->to;
3693         }
3694     }
3695
3696   return name;
3697 }
3698
3699 // Check if a comdat group or .gnu.linkonce section with the given
3700 // NAME is selected for the link.  If there is already a section,
3701 // *KEPT_SECTION is set to point to the existing section and the
3702 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3703 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3704 // *KEPT_SECTION is set to the internal copy and the function returns
3705 // true.
3706
3707 bool
3708 Layout::find_or_add_kept_section(const std::string& name,
3709                                  Relobj* object,
3710                                  unsigned int shndx,
3711                                  bool is_comdat,
3712                                  bool is_group_name,
3713                                  Kept_section** kept_section)
3714 {
3715   // It's normal to see a couple of entries here, for the x86 thunk
3716   // sections.  If we see more than a few, we're linking a C++
3717   // program, and we resize to get more space to minimize rehashing.
3718   if (this->signatures_.size() > 4
3719       && !this->resized_signatures_)
3720     {
3721       reserve_unordered_map(&this->signatures_,
3722                             this->number_of_input_files_ * 64);
3723       this->resized_signatures_ = true;
3724     }
3725
3726   Kept_section candidate;
3727   std::pair<Signatures::iterator, bool> ins =
3728     this->signatures_.insert(std::make_pair(name, candidate));
3729
3730   if (kept_section != NULL)
3731     *kept_section = &ins.first->second;
3732   if (ins.second)
3733     {
3734       // This is the first time we've seen this signature.
3735       ins.first->second.set_object(object);
3736       ins.first->second.set_shndx(shndx);
3737       if (is_comdat)
3738         ins.first->second.set_is_comdat();
3739       if (is_group_name)
3740         ins.first->second.set_is_group_name();
3741       return true;
3742     }
3743
3744   // We have already seen this signature.
3745
3746   if (ins.first->second.is_group_name())
3747     {
3748       // We've already seen a real section group with this signature.
3749       // If the kept group is from a plugin object, and we're in the
3750       // replacement phase, accept the new one as a replacement.
3751       if (ins.first->second.object() == NULL
3752           && parameters->options().plugins()->in_replacement_phase())
3753         {
3754           ins.first->second.set_object(object);
3755           ins.first->second.set_shndx(shndx);
3756           return true;
3757         }
3758       return false;
3759     }
3760   else if (is_group_name)
3761     {
3762       // This is a real section group, and we've already seen a
3763       // linkonce section with this signature.  Record that we've seen
3764       // a section group, and don't include this section group.
3765       ins.first->second.set_is_group_name();
3766       return false;
3767     }
3768   else
3769     {
3770       // We've already seen a linkonce section and this is a linkonce
3771       // section.  These don't block each other--this may be the same
3772       // symbol name with different section types.
3773       return true;
3774     }
3775 }
3776
3777 // Store the allocated sections into the section list.
3778
3779 void
3780 Layout::get_allocated_sections(Section_list* section_list) const
3781 {
3782   for (Section_list::const_iterator p = this->section_list_.begin();
3783        p != this->section_list_.end();
3784        ++p)
3785     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3786       section_list->push_back(*p);
3787 }
3788
3789 // Create an output segment.
3790
3791 Output_segment*
3792 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3793 {
3794   gold_assert(!parameters->options().relocatable());
3795   Output_segment* oseg = new Output_segment(type, flags);
3796   this->segment_list_.push_back(oseg);
3797
3798   if (type == elfcpp::PT_TLS)
3799     this->tls_segment_ = oseg;
3800   else if (type == elfcpp::PT_GNU_RELRO)
3801     this->relro_segment_ = oseg;
3802
3803   return oseg;
3804 }
3805
3806 // Write out the Output_sections.  Most won't have anything to write,
3807 // since most of the data will come from input sections which are
3808 // handled elsewhere.  But some Output_sections do have Output_data.
3809
3810 void
3811 Layout::write_output_sections(Output_file* of) const
3812 {
3813   for (Section_list::const_iterator p = this->section_list_.begin();
3814        p != this->section_list_.end();
3815        ++p)
3816     {
3817       if (!(*p)->after_input_sections())
3818         (*p)->write(of);
3819     }
3820 }
3821
3822 // Write out data not associated with a section or the symbol table.
3823
3824 void
3825 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3826 {
3827   if (!parameters->options().strip_all())
3828     {
3829       const Output_section* symtab_section = this->symtab_section_;
3830       for (Section_list::const_iterator p = this->section_list_.begin();
3831            p != this->section_list_.end();
3832            ++p)
3833         {
3834           if ((*p)->needs_symtab_index())
3835             {
3836               gold_assert(symtab_section != NULL);
3837               unsigned int index = (*p)->symtab_index();
3838               gold_assert(index > 0 && index != -1U);
3839               off_t off = (symtab_section->offset()
3840                            + index * symtab_section->entsize());
3841               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3842             }
3843         }
3844     }
3845
3846   const Output_section* dynsym_section = this->dynsym_section_;
3847   for (Section_list::const_iterator p = this->section_list_.begin();
3848        p != this->section_list_.end();
3849        ++p)
3850     {
3851       if ((*p)->needs_dynsym_index())
3852         {
3853           gold_assert(dynsym_section != NULL);
3854           unsigned int index = (*p)->dynsym_index();
3855           gold_assert(index > 0 && index != -1U);
3856           off_t off = (dynsym_section->offset()
3857                        + index * dynsym_section->entsize());
3858           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3859         }
3860     }
3861
3862   // Write out the Output_data which are not in an Output_section.
3863   for (Data_list::const_iterator p = this->special_output_list_.begin();
3864        p != this->special_output_list_.end();
3865        ++p)
3866     (*p)->write(of);
3867 }
3868
3869 // Write out the Output_sections which can only be written after the
3870 // input sections are complete.
3871
3872 void
3873 Layout::write_sections_after_input_sections(Output_file* of)
3874 {
3875   // Determine the final section offsets, and thus the final output
3876   // file size.  Note we finalize the .shstrab last, to allow the
3877   // after_input_section sections to modify their section-names before
3878   // writing.
3879   if (this->any_postprocessing_sections_)
3880     {
3881       off_t off = this->output_file_size_;
3882       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3883
3884       // Now that we've finalized the names, we can finalize the shstrab.
3885       off =
3886         this->set_section_offsets(off,
3887                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3888
3889       if (off > this->output_file_size_)
3890         {
3891           of->resize(off);
3892           this->output_file_size_ = off;
3893         }
3894     }
3895
3896   for (Section_list::const_iterator p = this->section_list_.begin();
3897        p != this->section_list_.end();
3898        ++p)
3899     {
3900       if ((*p)->after_input_sections())
3901         (*p)->write(of);
3902     }
3903
3904   this->section_headers_->write(of);
3905 }
3906
3907 // If the build ID requires computing a checksum, do so here, and
3908 // write it out.  We compute a checksum over the entire file because
3909 // that is simplest.
3910
3911 void
3912 Layout::write_build_id(Output_file* of) const
3913 {
3914   if (this->build_id_note_ == NULL)
3915     return;
3916
3917   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3918
3919   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3920                                           this->build_id_note_->data_size());
3921
3922   const char* style = parameters->options().build_id();
3923   if (strcmp(style, "sha1") == 0)
3924     {
3925       sha1_ctx ctx;
3926       sha1_init_ctx(&ctx);
3927       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3928       sha1_finish_ctx(&ctx, ov);
3929     }
3930   else if (strcmp(style, "md5") == 0)
3931     {
3932       md5_ctx ctx;
3933       md5_init_ctx(&ctx);
3934       md5_process_bytes(iv, this->output_file_size_, &ctx);
3935       md5_finish_ctx(&ctx, ov);
3936     }
3937   else
3938     gold_unreachable();
3939
3940   of->write_output_view(this->build_id_note_->offset(),
3941                         this->build_id_note_->data_size(),
3942                         ov);
3943
3944   of->free_input_view(0, this->output_file_size_, iv);
3945 }
3946
3947 // Write out a binary file.  This is called after the link is
3948 // complete.  IN is the temporary output file we used to generate the
3949 // ELF code.  We simply walk through the segments, read them from
3950 // their file offset in IN, and write them to their load address in
3951 // the output file.  FIXME: with a bit more work, we could support
3952 // S-records and/or Intel hex format here.
3953
3954 void
3955 Layout::write_binary(Output_file* in) const
3956 {
3957   gold_assert(parameters->options().oformat_enum()
3958               == General_options::OBJECT_FORMAT_BINARY);
3959
3960   // Get the size of the binary file.
3961   uint64_t max_load_address = 0;
3962   for (Segment_list::const_iterator p = this->segment_list_.begin();
3963        p != this->segment_list_.end();
3964        ++p)
3965     {
3966       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3967         {
3968           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3969           if (max_paddr > max_load_address)
3970             max_load_address = max_paddr;
3971         }
3972     }
3973
3974   Output_file out(parameters->options().output_file_name());
3975   out.open(max_load_address);
3976
3977   for (Segment_list::const_iterator p = this->segment_list_.begin();
3978        p != this->segment_list_.end();
3979        ++p)
3980     {
3981       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3982         {
3983           const unsigned char* vin = in->get_input_view((*p)->offset(),
3984                                                         (*p)->filesz());
3985           unsigned char* vout = out.get_output_view((*p)->paddr(),
3986                                                     (*p)->filesz());
3987           memcpy(vout, vin, (*p)->filesz());
3988           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3989           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3990         }
3991     }
3992
3993   out.close();
3994 }
3995
3996 // Print the output sections to the map file.
3997
3998 void
3999 Layout::print_to_mapfile(Mapfile* mapfile) const
4000 {
4001   for (Segment_list::const_iterator p = this->segment_list_.begin();
4002        p != this->segment_list_.end();
4003        ++p)
4004     (*p)->print_sections_to_mapfile(mapfile);
4005 }
4006
4007 // Print statistical information to stderr.  This is used for --stats.
4008
4009 void
4010 Layout::print_stats() const
4011 {
4012   this->namepool_.print_stats("section name pool");
4013   this->sympool_.print_stats("output symbol name pool");
4014   this->dynpool_.print_stats("dynamic name pool");
4015
4016   for (Section_list::const_iterator p = this->section_list_.begin();
4017        p != this->section_list_.end();
4018        ++p)
4019     (*p)->print_merge_stats();
4020 }
4021
4022 // Write_sections_task methods.
4023
4024 // We can always run this task.
4025
4026 Task_token*
4027 Write_sections_task::is_runnable()
4028 {
4029   return NULL;
4030 }
4031
4032 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4033 // when finished.
4034
4035 void
4036 Write_sections_task::locks(Task_locker* tl)
4037 {
4038   tl->add(this, this->output_sections_blocker_);
4039   tl->add(this, this->final_blocker_);
4040 }
4041
4042 // Run the task--write out the data.
4043
4044 void
4045 Write_sections_task::run(Workqueue*)
4046 {
4047   this->layout_->write_output_sections(this->of_);
4048 }
4049
4050 // Write_data_task methods.
4051
4052 // We can always run this task.
4053
4054 Task_token*
4055 Write_data_task::is_runnable()
4056 {
4057   return NULL;
4058 }
4059
4060 // We need to unlock FINAL_BLOCKER when finished.
4061
4062 void
4063 Write_data_task::locks(Task_locker* tl)
4064 {
4065   tl->add(this, this->final_blocker_);
4066 }
4067
4068 // Run the task--write out the data.
4069
4070 void
4071 Write_data_task::run(Workqueue*)
4072 {
4073   this->layout_->write_data(this->symtab_, this->of_);
4074 }
4075
4076 // Write_symbols_task methods.
4077
4078 // We can always run this task.
4079
4080 Task_token*
4081 Write_symbols_task::is_runnable()
4082 {
4083   return NULL;
4084 }
4085
4086 // We need to unlock FINAL_BLOCKER when finished.
4087
4088 void
4089 Write_symbols_task::locks(Task_locker* tl)
4090 {
4091   tl->add(this, this->final_blocker_);
4092 }
4093
4094 // Run the task--write out the symbols.
4095
4096 void
4097 Write_symbols_task::run(Workqueue*)
4098 {
4099   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4100                                this->layout_->symtab_xindex(),
4101                                this->layout_->dynsym_xindex(), this->of_);
4102 }
4103
4104 // Write_after_input_sections_task methods.
4105
4106 // We can only run this task after the input sections have completed.
4107
4108 Task_token*
4109 Write_after_input_sections_task::is_runnable()
4110 {
4111   if (this->input_sections_blocker_->is_blocked())
4112     return this->input_sections_blocker_;
4113   return NULL;
4114 }
4115
4116 // We need to unlock FINAL_BLOCKER when finished.
4117
4118 void
4119 Write_after_input_sections_task::locks(Task_locker* tl)
4120 {
4121   tl->add(this, this->final_blocker_);
4122 }
4123
4124 // Run the task.
4125
4126 void
4127 Write_after_input_sections_task::run(Workqueue*)
4128 {
4129   this->layout_->write_sections_after_input_sections(this->of_);
4130 }
4131
4132 // Close_task_runner methods.
4133
4134 // Run the task--close the file.
4135
4136 void
4137 Close_task_runner::run(Workqueue*, const Task*)
4138 {
4139   // If we need to compute a checksum for the BUILD if, we do so here.
4140   this->layout_->write_build_id(this->of_);
4141
4142   // If we've been asked to create a binary file, we do so here.
4143   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4144     this->layout_->write_binary(this->of_);
4145
4146   this->of_->close();
4147 }
4148
4149 // Instantiate the templates we need.  We could use the configure
4150 // script to restrict this to only the ones for implemented targets.
4151
4152 #ifdef HAVE_TARGET_32_LITTLE
4153 template
4154 Output_section*
4155 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4156                           const char* name,
4157                           const elfcpp::Shdr<32, false>& shdr,
4158                           unsigned int, unsigned int, off_t*);
4159 #endif
4160
4161 #ifdef HAVE_TARGET_32_BIG
4162 template
4163 Output_section*
4164 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4165                          const char* name,
4166                          const elfcpp::Shdr<32, true>& shdr,
4167                          unsigned int, unsigned int, off_t*);
4168 #endif
4169
4170 #ifdef HAVE_TARGET_64_LITTLE
4171 template
4172 Output_section*
4173 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4174                           const char* name,
4175                           const elfcpp::Shdr<64, false>& shdr,
4176                           unsigned int, unsigned int, off_t*);
4177 #endif
4178
4179 #ifdef HAVE_TARGET_64_BIG
4180 template
4181 Output_section*
4182 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4183                          const char* name,
4184                          const elfcpp::Shdr<64, true>& shdr,
4185                          unsigned int, unsigned int, off_t*);
4186 #endif
4187
4188 #ifdef HAVE_TARGET_32_LITTLE
4189 template
4190 Output_section*
4191 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4192                                 unsigned int reloc_shndx,
4193                                 const elfcpp::Shdr<32, false>& shdr,
4194                                 Output_section* data_section,
4195                                 Relocatable_relocs* rr);
4196 #endif
4197
4198 #ifdef HAVE_TARGET_32_BIG
4199 template
4200 Output_section*
4201 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4202                                unsigned int reloc_shndx,
4203                                const elfcpp::Shdr<32, true>& shdr,
4204                                Output_section* data_section,
4205                                Relocatable_relocs* rr);
4206 #endif
4207
4208 #ifdef HAVE_TARGET_64_LITTLE
4209 template
4210 Output_section*
4211 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4212                                 unsigned int reloc_shndx,
4213                                 const elfcpp::Shdr<64, false>& shdr,
4214                                 Output_section* data_section,
4215                                 Relocatable_relocs* rr);
4216 #endif
4217
4218 #ifdef HAVE_TARGET_64_BIG
4219 template
4220 Output_section*
4221 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4222                                unsigned int reloc_shndx,
4223                                const elfcpp::Shdr<64, true>& shdr,
4224                                Output_section* data_section,
4225                                Relocatable_relocs* rr);
4226 #endif
4227
4228 #ifdef HAVE_TARGET_32_LITTLE
4229 template
4230 void
4231 Layout::layout_group<32, false>(Symbol_table* symtab,
4232                                 Sized_relobj<32, false>* object,
4233                                 unsigned int,
4234                                 const char* group_section_name,
4235                                 const char* signature,
4236                                 const elfcpp::Shdr<32, false>& shdr,
4237                                 elfcpp::Elf_Word flags,
4238                                 std::vector<unsigned int>* shndxes);
4239 #endif
4240
4241 #ifdef HAVE_TARGET_32_BIG
4242 template
4243 void
4244 Layout::layout_group<32, true>(Symbol_table* symtab,
4245                                Sized_relobj<32, true>* object,
4246                                unsigned int,
4247                                const char* group_section_name,
4248                                const char* signature,
4249                                const elfcpp::Shdr<32, true>& shdr,
4250                                elfcpp::Elf_Word flags,
4251                                std::vector<unsigned int>* shndxes);
4252 #endif
4253
4254 #ifdef HAVE_TARGET_64_LITTLE
4255 template
4256 void
4257 Layout::layout_group<64, false>(Symbol_table* symtab,
4258                                 Sized_relobj<64, false>* object,
4259                                 unsigned int,
4260                                 const char* group_section_name,
4261                                 const char* signature,
4262                                 const elfcpp::Shdr<64, false>& shdr,
4263                                 elfcpp::Elf_Word flags,
4264                                 std::vector<unsigned int>* shndxes);
4265 #endif
4266
4267 #ifdef HAVE_TARGET_64_BIG
4268 template
4269 void
4270 Layout::layout_group<64, true>(Symbol_table* symtab,
4271                                Sized_relobj<64, true>* object,
4272                                unsigned int,
4273                                const char* group_section_name,
4274                                const char* signature,
4275                                const elfcpp::Shdr<64, true>& shdr,
4276                                elfcpp::Elf_Word flags,
4277                                std::vector<unsigned int>* shndxes);
4278 #endif
4279
4280 #ifdef HAVE_TARGET_32_LITTLE
4281 template
4282 Output_section*
4283 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4284                                    const unsigned char* symbols,
4285                                    off_t symbols_size,
4286                                    const unsigned char* symbol_names,
4287                                    off_t symbol_names_size,
4288                                    unsigned int shndx,
4289                                    const elfcpp::Shdr<32, false>& shdr,
4290                                    unsigned int reloc_shndx,
4291                                    unsigned int reloc_type,
4292                                    off_t* off);
4293 #endif
4294
4295 #ifdef HAVE_TARGET_32_BIG
4296 template
4297 Output_section*
4298 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4299                                    const unsigned char* symbols,
4300                                    off_t symbols_size,
4301                                   const unsigned char* symbol_names,
4302                                   off_t symbol_names_size,
4303                                   unsigned int shndx,
4304                                   const elfcpp::Shdr<32, true>& shdr,
4305                                   unsigned int reloc_shndx,
4306                                   unsigned int reloc_type,
4307                                   off_t* off);
4308 #endif
4309
4310 #ifdef HAVE_TARGET_64_LITTLE
4311 template
4312 Output_section*
4313 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4314                                    const unsigned char* symbols,
4315                                    off_t symbols_size,
4316                                    const unsigned char* symbol_names,
4317                                    off_t symbol_names_size,
4318                                    unsigned int shndx,
4319                                    const elfcpp::Shdr<64, false>& shdr,
4320                                    unsigned int reloc_shndx,
4321                                    unsigned int reloc_type,
4322                                    off_t* off);
4323 #endif
4324
4325 #ifdef HAVE_TARGET_64_BIG
4326 template
4327 Output_section*
4328 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4329                                    const unsigned char* symbols,
4330                                    off_t symbols_size,
4331                                   const unsigned char* symbol_names,
4332                                   off_t symbol_names_size,
4333                                   unsigned int shndx,
4334                                   const elfcpp::Shdr<64, true>& shdr,
4335                                   unsigned int reloc_shndx,
4336                                   unsigned int reloc_type,
4337                                   off_t* off);
4338 #endif
4339
4340 } // End namespace gold.