PR 11712
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Layout::Relaxation_debug_check methods.
59
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
64 void
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66     const Layout::Section_list& sections,
67     const Layout::Data_list& special_outputs)
68 {
69   for(Layout::Section_list::const_iterator p = sections.begin();
70       p != sections.end();
71       ++p)
72     gold_assert((*p)->address_and_file_offset_have_reset_values());
73
74   for(Layout::Data_list::const_iterator p = special_outputs.begin();
75       p != special_outputs.end();
76       ++p)
77     gold_assert((*p)->address_and_file_offset_have_reset_values());
78 }
79   
80 // Save information of SECTIONS for checking later.
81
82 void
83 Layout::Relaxation_debug_check::read_sections(
84     const Layout::Section_list& sections)
85 {
86   for(Layout::Section_list::const_iterator p = sections.begin();
87       p != sections.end();
88       ++p)
89     {
90       Output_section* os = *p;
91       Section_info info;
92       info.output_section = os;
93       info.address = os->is_address_valid() ? os->address() : 0;
94       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
95       info.offset = os->is_offset_valid()? os->offset() : -1 ;
96       this->section_infos_.push_back(info);
97     }
98 }
99
100 // Verify SECTIONS using previously recorded information.
101
102 void
103 Layout::Relaxation_debug_check::verify_sections(
104     const Layout::Section_list& sections)
105 {
106   size_t i = 0;
107   for(Layout::Section_list::const_iterator p = sections.begin();
108       p != sections.end();
109       ++p, ++i)
110     {
111       Output_section* os = *p;
112       uint64_t address = os->is_address_valid() ? os->address() : 0;
113       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
114       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
115
116       if (i >= this->section_infos_.size())
117         {
118           gold_fatal("Section_info of %s missing.\n", os->name());
119         }
120       const Section_info& info = this->section_infos_[i];
121       if (os != info.output_section)
122         gold_fatal("Section order changed.  Expecting %s but see %s\n",
123                    info.output_section->name(), os->name());
124       if (address != info.address
125           || data_size != info.data_size
126           || offset != info.offset)
127         gold_fatal("Section %s changed.\n", os->name());
128     }
129 }
130
131 // Layout_task_runner methods.
132
133 // Lay out the sections.  This is called after all the input objects
134 // have been read.
135
136 void
137 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
138 {
139   off_t file_size = this->layout_->finalize(this->input_objects_,
140                                             this->symtab_,
141                                             this->target_,
142                                             task);
143
144   // Now we know the final size of the output file and we know where
145   // each piece of information goes.
146
147   if (this->mapfile_ != NULL)
148     {
149       this->mapfile_->print_discarded_sections(this->input_objects_);
150       this->layout_->print_to_mapfile(this->mapfile_);
151     }
152
153   Output_file* of = new Output_file(parameters->options().output_file_name());
154   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
155     of->set_is_temporary();
156   of->open(file_size);
157
158   // Queue up the final set of tasks.
159   gold::queue_final_tasks(this->options_, this->input_objects_,
160                           this->symtab_, this->layout_, workqueue, of);
161 }
162
163 // Layout methods.
164
165 Layout::Layout(int number_of_input_files, Script_options* script_options)
166   : number_of_input_files_(number_of_input_files),
167     script_options_(script_options),
168     namepool_(),
169     sympool_(),
170     dynpool_(),
171     signatures_(),
172     section_name_map_(),
173     segment_list_(),
174     section_list_(),
175     unattached_section_list_(),
176     special_output_list_(),
177     section_headers_(NULL),
178     tls_segment_(NULL),
179     relro_segment_(NULL),
180     increase_relro_(0),
181     symtab_section_(NULL),
182     symtab_xindex_(NULL),
183     dynsym_section_(NULL),
184     dynsym_xindex_(NULL),
185     dynamic_section_(NULL),
186     dynamic_symbol_(NULL),
187     dynamic_data_(NULL),
188     eh_frame_section_(NULL),
189     eh_frame_data_(NULL),
190     added_eh_frame_data_(false),
191     eh_frame_hdr_section_(NULL),
192     build_id_note_(NULL),
193     debug_abbrev_(NULL),
194     debug_info_(NULL),
195     group_signatures_(),
196     output_file_size_(-1),
197     have_added_input_section_(false),
198     sections_are_attached_(false),
199     input_requires_executable_stack_(false),
200     input_with_gnu_stack_note_(false),
201     input_without_gnu_stack_note_(false),
202     has_static_tls_(false),
203     any_postprocessing_sections_(false),
204     resized_signatures_(false),
205     have_stabstr_section_(false),
206     incremental_inputs_(NULL),
207     record_output_section_data_from_script_(false),
208     script_output_section_data_list_(),
209     segment_states_(NULL),
210     relaxation_debug_check_(NULL)
211 {
212   // Make space for more than enough segments for a typical file.
213   // This is just for efficiency--it's OK if we wind up needing more.
214   this->segment_list_.reserve(12);
215
216   // We expect two unattached Output_data objects: the file header and
217   // the segment headers.
218   this->special_output_list_.reserve(2);
219
220   // Initialize structure needed for an incremental build.
221   if (parameters->options().incremental())
222     this->incremental_inputs_ = new Incremental_inputs;
223
224   // The section name pool is worth optimizing in all cases, because
225   // it is small, but there are often overlaps due to .rel sections.
226   this->namepool_.set_optimize();
227 }
228
229 // Hash a key we use to look up an output section mapping.
230
231 size_t
232 Layout::Hash_key::operator()(const Layout::Key& k) const
233 {
234  return k.first + k.second.first + k.second.second;
235 }
236
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb.  Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
240
241 static const char* gdb_sections[] =
242 { ".debug_abbrev",
243   // ".debug_aranges",   // not used by gdb as of 6.7.1
244   ".debug_frame",
245   ".debug_info",
246   ".debug_types",
247   ".debug_line",
248   ".debug_loc",
249   ".debug_macinfo",
250   // ".debug_pubnames",  // not used by gdb as of 6.7.1
251   ".debug_ranges",
252   ".debug_str",
253 };
254
255 static const char* lines_only_debug_sections[] =
256 { ".debug_abbrev",
257   // ".debug_aranges",   // not used by gdb as of 6.7.1
258   // ".debug_frame",
259   ".debug_info",
260   // ".debug_types",
261   ".debug_line",
262   // ".debug_loc",
263   // ".debug_macinfo",
264   // ".debug_pubnames",  // not used by gdb as of 6.7.1
265   // ".debug_ranges",
266   ".debug_str",
267 };
268
269 static inline bool
270 is_gdb_debug_section(const char* str)
271 {
272   // We can do this faster: binary search or a hashtable.  But why bother?
273   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
274     if (strcmp(str, gdb_sections[i]) == 0)
275       return true;
276   return false;
277 }
278
279 static inline bool
280 is_lines_only_debug_section(const char* str)
281 {
282   // We can do this faster: binary search or a hashtable.  But why bother?
283   for (size_t i = 0;
284        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
285        ++i)
286     if (strcmp(str, lines_only_debug_sections[i]) == 0)
287       return true;
288   return false;
289 }
290
291 // Whether to include this section in the link.
292
293 template<int size, bool big_endian>
294 bool
295 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
296                         const elfcpp::Shdr<size, big_endian>& shdr)
297 {
298   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
299     return false;
300
301   switch (shdr.get_sh_type())
302     {
303     case elfcpp::SHT_NULL:
304     case elfcpp::SHT_SYMTAB:
305     case elfcpp::SHT_DYNSYM:
306     case elfcpp::SHT_HASH:
307     case elfcpp::SHT_DYNAMIC:
308     case elfcpp::SHT_SYMTAB_SHNDX:
309       return false;
310
311     case elfcpp::SHT_STRTAB:
312       // Discard the sections which have special meanings in the ELF
313       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
314       // checking the sh_link fields of the appropriate sections.
315       return (strcmp(name, ".dynstr") != 0
316               && strcmp(name, ".strtab") != 0
317               && strcmp(name, ".shstrtab") != 0);
318
319     case elfcpp::SHT_RELA:
320     case elfcpp::SHT_REL:
321     case elfcpp::SHT_GROUP:
322       // If we are emitting relocations these should be handled
323       // elsewhere.
324       gold_assert(!parameters->options().relocatable()
325                   && !parameters->options().emit_relocs());
326       return false;
327
328     case elfcpp::SHT_PROGBITS:
329       if (parameters->options().strip_debug()
330           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
331         {
332           if (is_debug_info_section(name))
333             return false;
334         }
335       if (parameters->options().strip_debug_non_line()
336           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
337         {
338           // Debugging sections can only be recognized by name.
339           if (is_prefix_of(".debug", name)
340               && !is_lines_only_debug_section(name))
341             return false;
342         }
343       if (parameters->options().strip_debug_gdb()
344           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
345         {
346           // Debugging sections can only be recognized by name.
347           if (is_prefix_of(".debug", name)
348               && !is_gdb_debug_section(name))
349             return false;
350         }
351       if (parameters->options().strip_lto_sections()
352           && !parameters->options().relocatable()
353           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
354         {
355           // Ignore LTO sections containing intermediate code.
356           if (is_prefix_of(".gnu.lto_", name))
357             return false;
358         }
359       // The GNU linker strips .gnu_debuglink sections, so we do too.
360       // This is a feature used to keep debugging information in
361       // separate files.
362       if (strcmp(name, ".gnu_debuglink") == 0)
363         return false;
364       return true;
365
366     default:
367       return true;
368     }
369 }
370
371 // Return an output section named NAME, or NULL if there is none.
372
373 Output_section*
374 Layout::find_output_section(const char* name) const
375 {
376   for (Section_list::const_iterator p = this->section_list_.begin();
377        p != this->section_list_.end();
378        ++p)
379     if (strcmp((*p)->name(), name) == 0)
380       return *p;
381   return NULL;
382 }
383
384 // Return an output segment of type TYPE, with segment flags SET set
385 // and segment flags CLEAR clear.  Return NULL if there is none.
386
387 Output_segment*
388 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
389                             elfcpp::Elf_Word clear) const
390 {
391   for (Segment_list::const_iterator p = this->segment_list_.begin();
392        p != this->segment_list_.end();
393        ++p)
394     if (static_cast<elfcpp::PT>((*p)->type()) == type
395         && ((*p)->flags() & set) == set
396         && ((*p)->flags() & clear) == 0)
397       return *p;
398   return NULL;
399 }
400
401 // Return the output section to use for section NAME with type TYPE
402 // and section flags FLAGS.  NAME must be canonicalized in the string
403 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
404 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
405 // is used by the dynamic linker.  IS_RELRO is true for a relro
406 // section.  IS_LAST_RELRO is true for the last relro section.
407 // IS_FIRST_NON_RELRO is true for the first non-relro section.
408
409 Output_section*
410 Layout::get_output_section(const char* name, Stringpool::Key name_key,
411                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
412                            Output_section_order order, bool is_relro)
413 {
414   elfcpp::Elf_Xword lookup_flags = flags;
415
416   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
417   // read-write with read-only sections.  Some other ELF linkers do
418   // not do this.  FIXME: Perhaps there should be an option
419   // controlling this.
420   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
421
422   const Key key(name_key, std::make_pair(type, lookup_flags));
423   const std::pair<Key, Output_section*> v(key, NULL);
424   std::pair<Section_name_map::iterator, bool> ins(
425     this->section_name_map_.insert(v));
426
427   if (!ins.second)
428     return ins.first->second;
429   else
430     {
431       // This is the first time we've seen this name/type/flags
432       // combination.  For compatibility with the GNU linker, we
433       // combine sections with contents and zero flags with sections
434       // with non-zero flags.  This is a workaround for cases where
435       // assembler code forgets to set section flags.  FIXME: Perhaps
436       // there should be an option to control this.
437       Output_section* os = NULL;
438
439       if (type == elfcpp::SHT_PROGBITS)
440         {
441           if (flags == 0)
442             {
443               Output_section* same_name = this->find_output_section(name);
444               if (same_name != NULL
445                   && same_name->type() == elfcpp::SHT_PROGBITS
446                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
447                 os = same_name;
448             }
449           else if ((flags & elfcpp::SHF_TLS) == 0)
450             {
451               elfcpp::Elf_Xword zero_flags = 0;
452               const Key zero_key(name_key, std::make_pair(type, zero_flags));
453               Section_name_map::iterator p =
454                   this->section_name_map_.find(zero_key);
455               if (p != this->section_name_map_.end())
456                 os = p->second;
457             }
458         }
459
460       if (os == NULL)
461         os = this->make_output_section(name, type, flags, order, is_relro);
462
463       ins.first->second = os;
464       return os;
465     }
466 }
467
468 // Pick the output section to use for section NAME, in input file
469 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
470 // linker created section.  IS_INPUT_SECTION is true if we are
471 // choosing an output section for an input section found in a input
472 // file.  IS_INTERP is true if this is the .interp section.
473 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
474 // dynamic linker.  IS_RELRO is true for a relro section.
475 // IS_LAST_RELRO is true for the last relro section.
476 // IS_FIRST_NON_RELRO is true for the first non-relro section.  This
477 // will return NULL if the input section should be discarded.
478
479 Output_section*
480 Layout::choose_output_section(const Relobj* relobj, const char* name,
481                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
482                               bool is_input_section, Output_section_order order,
483                               bool is_relro)
484 {
485   // We should not see any input sections after we have attached
486   // sections to segments.
487   gold_assert(!is_input_section || !this->sections_are_attached_);
488
489   // Some flags in the input section should not be automatically
490   // copied to the output section.
491   flags &= ~ (elfcpp::SHF_INFO_LINK
492               | elfcpp::SHF_LINK_ORDER
493               | elfcpp::SHF_GROUP
494               | elfcpp::SHF_MERGE
495               | elfcpp::SHF_STRINGS);
496
497   if (this->script_options_->saw_sections_clause())
498     {
499       // We are using a SECTIONS clause, so the output section is
500       // chosen based only on the name.
501
502       Script_sections* ss = this->script_options_->script_sections();
503       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
504       Output_section** output_section_slot;
505       Script_sections::Section_type script_section_type;
506       name = ss->output_section_name(file_name, name, &output_section_slot,
507                                      &script_section_type);
508       if (name == NULL)
509         {
510           // The SECTIONS clause says to discard this input section.
511           return NULL;
512         }
513
514       // We can only handle script section types ST_NONE and ST_NOLOAD.
515       switch (script_section_type)
516         {
517         case Script_sections::ST_NONE:
518           break;
519         case Script_sections::ST_NOLOAD:
520           flags &= elfcpp::SHF_ALLOC;
521           break;
522         default:
523           gold_unreachable();
524         }
525
526       // If this is an orphan section--one not mentioned in the linker
527       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
528       // default processing below.
529
530       if (output_section_slot != NULL)
531         {
532           if (*output_section_slot != NULL)
533             {
534               (*output_section_slot)->update_flags_for_input_section(flags);
535               return *output_section_slot;
536             }
537
538           // We don't put sections found in the linker script into
539           // SECTION_NAME_MAP_.  That keeps us from getting confused
540           // if an orphan section is mapped to a section with the same
541           // name as one in the linker script.
542
543           name = this->namepool_.add(name, false, NULL);
544
545           Output_section* os = this->make_output_section(name, type, flags,
546                                                          order, is_relro);
547
548           os->set_found_in_sections_clause();
549
550           // Special handling for NOLOAD sections.
551           if (script_section_type == Script_sections::ST_NOLOAD)
552             {
553               os->set_is_noload();
554
555               // The constructor of Output_section sets addresses of non-ALLOC
556               // sections to 0 by default.  We don't want that for NOLOAD
557               // sections even if they have no SHF_ALLOC flag.
558               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
559                   && os->is_address_valid())
560                 {
561                   gold_assert(os->address() == 0
562                               && !os->is_offset_valid()
563                               && !os->is_data_size_valid());
564                   os->reset_address_and_file_offset();
565                 }
566             }
567
568           *output_section_slot = os;
569           return os;
570         }
571     }
572
573   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
574
575   // Turn NAME from the name of the input section into the name of the
576   // output section.
577
578   size_t len = strlen(name);
579   if (is_input_section
580       && !this->script_options_->saw_sections_clause()
581       && !parameters->options().relocatable())
582     name = Layout::output_section_name(name, &len);
583
584   Stringpool::Key name_key;
585   name = this->namepool_.add_with_length(name, len, true, &name_key);
586
587   // Find or make the output section.  The output section is selected
588   // based on the section name, type, and flags.
589   return this->get_output_section(name, name_key, type, flags, order, is_relro);
590 }
591
592 // Return the output section to use for input section SHNDX, with name
593 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
594 // index of a relocation section which applies to this section, or 0
595 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
596 // relocation section if there is one.  Set *OFF to the offset of this
597 // input section without the output section.  Return NULL if the
598 // section should be discarded.  Set *OFF to -1 if the section
599 // contents should not be written directly to the output file, but
600 // will instead receive special handling.
601
602 template<int size, bool big_endian>
603 Output_section*
604 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
605                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
606                unsigned int reloc_shndx, unsigned int, off_t* off)
607 {
608   *off = 0;
609
610   if (!this->include_section(object, name, shdr))
611     return NULL;
612
613   Output_section* os;
614
615   // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
616   // correct section types.  Force them here.
617   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
618   if (sh_type == elfcpp::SHT_PROGBITS)
619     {
620       static const char init_array_prefix[] = ".init_array";
621       static const char preinit_array_prefix[] = ".preinit_array";
622       static const char fini_array_prefix[] = ".fini_array";
623       static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
624       static size_t preinit_array_prefix_size =
625         sizeof(preinit_array_prefix) - 1;
626       static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
627
628       if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
629         sh_type = elfcpp::SHT_INIT_ARRAY;
630       else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
631                == 0)
632         sh_type = elfcpp::SHT_PREINIT_ARRAY;
633       else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
634         sh_type = elfcpp::SHT_FINI_ARRAY;
635     }
636
637   // In a relocatable link a grouped section must not be combined with
638   // any other sections.
639   if (parameters->options().relocatable()
640       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
641     {
642       name = this->namepool_.add(name, true, NULL);
643       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
644                                      ORDER_INVALID, false);
645     }
646   else
647     {
648       os = this->choose_output_section(object, name, sh_type,
649                                        shdr.get_sh_flags(), true,
650                                        ORDER_INVALID, false);
651       if (os == NULL)
652         return NULL;
653     }
654
655   // By default the GNU linker sorts input sections whose names match
656   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
657   // are sorted by name.  This is used to implement constructor
658   // priority ordering.  We are compatible.
659   if (!this->script_options_->saw_sections_clause()
660       && (is_prefix_of(".ctors.", name)
661           || is_prefix_of(".dtors.", name)
662           || is_prefix_of(".init_array.", name)
663           || is_prefix_of(".fini_array.", name)))
664     os->set_must_sort_attached_input_sections();
665
666   // FIXME: Handle SHF_LINK_ORDER somewhere.
667
668   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
669                                this->script_options_->saw_sections_clause());
670   this->have_added_input_section_ = true;
671
672   return os;
673 }
674
675 // Handle a relocation section when doing a relocatable link.
676
677 template<int size, bool big_endian>
678 Output_section*
679 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
680                      unsigned int,
681                      const elfcpp::Shdr<size, big_endian>& shdr,
682                      Output_section* data_section,
683                      Relocatable_relocs* rr)
684 {
685   gold_assert(parameters->options().relocatable()
686               || parameters->options().emit_relocs());
687
688   int sh_type = shdr.get_sh_type();
689
690   std::string name;
691   if (sh_type == elfcpp::SHT_REL)
692     name = ".rel";
693   else if (sh_type == elfcpp::SHT_RELA)
694     name = ".rela";
695   else
696     gold_unreachable();
697   name += data_section->name();
698
699   // In a relocatable link relocs for a grouped section must not be
700   // combined with other reloc sections.
701   Output_section* os;
702   if (!parameters->options().relocatable()
703       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
704     os = this->choose_output_section(object, name.c_str(), sh_type,
705                                      shdr.get_sh_flags(), false,
706                                      ORDER_INVALID, false);
707   else
708     {
709       const char* n = this->namepool_.add(name.c_str(), true, NULL);
710       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
711                                      ORDER_INVALID, false);
712     }
713
714   os->set_should_link_to_symtab();
715   os->set_info_section(data_section);
716
717   Output_section_data* posd;
718   if (sh_type == elfcpp::SHT_REL)
719     {
720       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
721       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
722                                            size,
723                                            big_endian>(rr);
724     }
725   else if (sh_type == elfcpp::SHT_RELA)
726     {
727       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
728       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
729                                            size,
730                                            big_endian>(rr);
731     }
732   else
733     gold_unreachable();
734
735   os->add_output_section_data(posd);
736   rr->set_output_data(posd);
737
738   return os;
739 }
740
741 // Handle a group section when doing a relocatable link.
742
743 template<int size, bool big_endian>
744 void
745 Layout::layout_group(Symbol_table* symtab,
746                      Sized_relobj<size, big_endian>* object,
747                      unsigned int,
748                      const char* group_section_name,
749                      const char* signature,
750                      const elfcpp::Shdr<size, big_endian>& shdr,
751                      elfcpp::Elf_Word flags,
752                      std::vector<unsigned int>* shndxes)
753 {
754   gold_assert(parameters->options().relocatable());
755   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
756   group_section_name = this->namepool_.add(group_section_name, true, NULL);
757   Output_section* os = this->make_output_section(group_section_name,
758                                                  elfcpp::SHT_GROUP,
759                                                  shdr.get_sh_flags(),
760                                                  ORDER_INVALID, false);
761
762   // We need to find a symbol with the signature in the symbol table.
763   // If we don't find one now, we need to look again later.
764   Symbol* sym = symtab->lookup(signature, NULL);
765   if (sym != NULL)
766     os->set_info_symndx(sym);
767   else
768     {
769       // Reserve some space to minimize reallocations.
770       if (this->group_signatures_.empty())
771         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
772
773       // We will wind up using a symbol whose name is the signature.
774       // So just put the signature in the symbol name pool to save it.
775       signature = symtab->canonicalize_name(signature);
776       this->group_signatures_.push_back(Group_signature(os, signature));
777     }
778
779   os->set_should_link_to_symtab();
780   os->set_entsize(4);
781
782   section_size_type entry_count =
783     convert_to_section_size_type(shdr.get_sh_size() / 4);
784   Output_section_data* posd =
785     new Output_data_group<size, big_endian>(object, entry_count, flags,
786                                             shndxes);
787   os->add_output_section_data(posd);
788 }
789
790 // Special GNU handling of sections name .eh_frame.  They will
791 // normally hold exception frame data as defined by the C++ ABI
792 // (http://codesourcery.com/cxx-abi/).
793
794 template<int size, bool big_endian>
795 Output_section*
796 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
797                         const unsigned char* symbols,
798                         off_t symbols_size,
799                         const unsigned char* symbol_names,
800                         off_t symbol_names_size,
801                         unsigned int shndx,
802                         const elfcpp::Shdr<size, big_endian>& shdr,
803                         unsigned int reloc_shndx, unsigned int reloc_type,
804                         off_t* off)
805 {
806   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
807   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
808
809   const char* const name = ".eh_frame";
810   Output_section* os = this->choose_output_section(object, name,
811                                                    elfcpp::SHT_PROGBITS,
812                                                    elfcpp::SHF_ALLOC, false,
813                                                    ORDER_EHFRAME, false);
814   if (os == NULL)
815     return NULL;
816
817   if (this->eh_frame_section_ == NULL)
818     {
819       this->eh_frame_section_ = os;
820       this->eh_frame_data_ = new Eh_frame();
821
822       if (parameters->options().eh_frame_hdr())
823         {
824           Output_section* hdr_os =
825             this->choose_output_section(NULL, ".eh_frame_hdr",
826                                         elfcpp::SHT_PROGBITS,
827                                         elfcpp::SHF_ALLOC, false,
828                                         ORDER_EHFRAME, false);
829
830           if (hdr_os != NULL)
831             {
832               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
833                                                         this->eh_frame_data_);
834               hdr_os->add_output_section_data(hdr_posd);
835
836               hdr_os->set_after_input_sections();
837
838               if (!this->script_options_->saw_phdrs_clause())
839                 {
840                   Output_segment* hdr_oseg;
841                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
842                                                        elfcpp::PF_R);
843                   hdr_oseg->add_output_section_to_nonload(hdr_os,
844                                                           elfcpp::PF_R);
845                 }
846
847               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
848             }
849         }
850     }
851
852   gold_assert(this->eh_frame_section_ == os);
853
854   if (this->eh_frame_data_->add_ehframe_input_section(object,
855                                                       symbols,
856                                                       symbols_size,
857                                                       symbol_names,
858                                                       symbol_names_size,
859                                                       shndx,
860                                                       reloc_shndx,
861                                                       reloc_type))
862     {
863       os->update_flags_for_input_section(shdr.get_sh_flags());
864
865       // We found a .eh_frame section we are going to optimize, so now
866       // we can add the set of optimized sections to the output
867       // section.  We need to postpone adding this until we've found a
868       // section we can optimize so that the .eh_frame section in
869       // crtbegin.o winds up at the start of the output section.
870       if (!this->added_eh_frame_data_)
871         {
872           os->add_output_section_data(this->eh_frame_data_);
873           this->added_eh_frame_data_ = true;
874         }
875       *off = -1;
876     }
877   else
878     {
879       // We couldn't handle this .eh_frame section for some reason.
880       // Add it as a normal section.
881       bool saw_sections_clause = this->script_options_->saw_sections_clause();
882       *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
883                                    saw_sections_clause);
884       this->have_added_input_section_ = true;
885     }
886
887   return os;
888 }
889
890 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
891 // the output section.
892
893 Output_section*
894 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
895                                 elfcpp::Elf_Xword flags,
896                                 Output_section_data* posd,
897                                 Output_section_order order, bool is_relro)
898 {
899   Output_section* os = this->choose_output_section(NULL, name, type, flags,
900                                                    false, order, is_relro);
901   if (os != NULL)
902     os->add_output_section_data(posd);
903   return os;
904 }
905
906 // Map section flags to segment flags.
907
908 elfcpp::Elf_Word
909 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
910 {
911   elfcpp::Elf_Word ret = elfcpp::PF_R;
912   if ((flags & elfcpp::SHF_WRITE) != 0)
913     ret |= elfcpp::PF_W;
914   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
915     ret |= elfcpp::PF_X;
916   return ret;
917 }
918
919 // Sometimes we compress sections.  This is typically done for
920 // sections that are not part of normal program execution (such as
921 // .debug_* sections), and where the readers of these sections know
922 // how to deal with compressed sections.  This routine doesn't say for
923 // certain whether we'll compress -- it depends on commandline options
924 // as well -- just whether this section is a candidate for compression.
925 // (The Output_compressed_section class decides whether to compress
926 // a given section, and picks the name of the compressed section.)
927
928 static bool
929 is_compressible_debug_section(const char* secname)
930 {
931   return (is_prefix_of(".debug", secname));
932 }
933
934 // We may see compressed debug sections in input files.  Return TRUE
935 // if this is the name of a compressed debug section.
936
937 bool
938 is_compressed_debug_section(const char* secname)
939 {
940   return (is_prefix_of(".zdebug", secname));
941 }
942
943 // Make a new Output_section, and attach it to segments as
944 // appropriate.  ORDER is the order in which this section should
945 // appear in the output segment.  IS_RELRO is true if this is a relro
946 // (read-only after relocations) section.
947
948 Output_section*
949 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
950                             elfcpp::Elf_Xword flags,
951                             Output_section_order order, bool is_relro)
952 {
953   Output_section* os;
954   if ((flags & elfcpp::SHF_ALLOC) == 0
955       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
956       && is_compressible_debug_section(name))
957     os = new Output_compressed_section(&parameters->options(), name, type,
958                                        flags);
959   else if ((flags & elfcpp::SHF_ALLOC) == 0
960            && parameters->options().strip_debug_non_line()
961            && strcmp(".debug_abbrev", name) == 0)
962     {
963       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
964           name, type, flags);
965       if (this->debug_info_)
966         this->debug_info_->set_abbreviations(this->debug_abbrev_);
967     }
968   else if ((flags & elfcpp::SHF_ALLOC) == 0
969            && parameters->options().strip_debug_non_line()
970            && strcmp(".debug_info", name) == 0)
971     {
972       os = this->debug_info_ = new Output_reduced_debug_info_section(
973           name, type, flags);
974       if (this->debug_abbrev_)
975         this->debug_info_->set_abbreviations(this->debug_abbrev_);
976     }
977  else
978     {
979       // FIXME: const_cast is ugly.
980       Target* target = const_cast<Target*>(&parameters->target());
981       os = target->make_output_section(name, type, flags);
982     }
983
984   // With -z relro, we have to recognize the special sections by name.
985   // There is no other way.
986   bool is_relro_local = false;
987   if (!this->script_options_->saw_sections_clause()
988       && parameters->options().relro()
989       && type == elfcpp::SHT_PROGBITS
990       && (flags & elfcpp::SHF_ALLOC) != 0
991       && (flags & elfcpp::SHF_WRITE) != 0)
992     {
993       if (strcmp(name, ".data.rel.ro") == 0)
994         is_relro = true;
995       else if (strcmp(name, ".data.rel.ro.local") == 0)
996         {
997           is_relro = true;
998           is_relro_local = true;
999         }
1000       else if (type == elfcpp::SHT_INIT_ARRAY
1001                || type == elfcpp::SHT_FINI_ARRAY
1002                || type == elfcpp::SHT_PREINIT_ARRAY)
1003         is_relro = true;
1004       else if (strcmp(name, ".ctors") == 0
1005                || strcmp(name, ".dtors") == 0
1006                || strcmp(name, ".jcr") == 0)
1007         is_relro = true;
1008     }
1009
1010   if (is_relro)
1011     os->set_is_relro();
1012
1013   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1014     order = this->default_section_order(os, is_relro_local);
1015
1016   os->set_order(order);
1017
1018   parameters->target().new_output_section(os);
1019
1020   this->section_list_.push_back(os);
1021
1022   // The GNU linker by default sorts some sections by priority, so we
1023   // do the same.  We need to know that this might happen before we
1024   // attach any input sections.
1025   if (!this->script_options_->saw_sections_clause()
1026       && (strcmp(name, ".ctors") == 0
1027           || strcmp(name, ".dtors") == 0
1028           || strcmp(name, ".init_array") == 0
1029           || strcmp(name, ".fini_array") == 0))
1030     os->set_may_sort_attached_input_sections();
1031
1032   // Check for .stab*str sections, as .stab* sections need to link to
1033   // them.
1034   if (type == elfcpp::SHT_STRTAB
1035       && !this->have_stabstr_section_
1036       && strncmp(name, ".stab", 5) == 0
1037       && strcmp(name + strlen(name) - 3, "str") == 0)
1038     this->have_stabstr_section_ = true;
1039
1040   // If we have already attached the sections to segments, then we
1041   // need to attach this one now.  This happens for sections created
1042   // directly by the linker.
1043   if (this->sections_are_attached_)
1044     this->attach_section_to_segment(os);
1045
1046   return os;
1047 }
1048
1049 // Return the default order in which a section should be placed in an
1050 // output segment.  This function captures a lot of the ideas in
1051 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1052 // linker created section is normally set when the section is created;
1053 // this function is used for input sections.
1054
1055 Output_section_order
1056 Layout::default_section_order(Output_section* os, bool is_relro_local)
1057 {
1058   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1059   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1060   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1061   bool is_bss = false;
1062
1063   switch (os->type())
1064     {
1065     default:
1066     case elfcpp::SHT_PROGBITS:
1067       break;
1068     case elfcpp::SHT_NOBITS:
1069       is_bss = true;
1070       break;
1071     case elfcpp::SHT_RELA:
1072     case elfcpp::SHT_REL:
1073       if (!is_write)
1074         return ORDER_DYNAMIC_RELOCS;
1075       break;
1076     case elfcpp::SHT_HASH:
1077     case elfcpp::SHT_DYNAMIC:
1078     case elfcpp::SHT_SHLIB:
1079     case elfcpp::SHT_DYNSYM:
1080     case elfcpp::SHT_GNU_HASH:
1081     case elfcpp::SHT_GNU_verdef:
1082     case elfcpp::SHT_GNU_verneed:
1083     case elfcpp::SHT_GNU_versym:
1084       if (!is_write)
1085         return ORDER_DYNAMIC_LINKER;
1086       break;
1087     case elfcpp::SHT_NOTE:
1088       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1089     }
1090
1091   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1092     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1093
1094   if (!is_bss && !is_write)
1095     {
1096       if (is_execinstr)
1097         {
1098           if (strcmp(os->name(), ".init") == 0)
1099             return ORDER_INIT;
1100           else if (strcmp(os->name(), ".fini") == 0)
1101             return ORDER_FINI;
1102         }
1103       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1104     }
1105
1106   if (os->is_relro())
1107     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1108
1109   if (os->is_small_section())
1110     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1111   if (os->is_large_section())
1112     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1113
1114   return is_bss ? ORDER_BSS : ORDER_DATA;
1115 }
1116
1117 // Attach output sections to segments.  This is called after we have
1118 // seen all the input sections.
1119
1120 void
1121 Layout::attach_sections_to_segments()
1122 {
1123   for (Section_list::iterator p = this->section_list_.begin();
1124        p != this->section_list_.end();
1125        ++p)
1126     this->attach_section_to_segment(*p);
1127
1128   this->sections_are_attached_ = true;
1129 }
1130
1131 // Attach an output section to a segment.
1132
1133 void
1134 Layout::attach_section_to_segment(Output_section* os)
1135 {
1136   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1137     this->unattached_section_list_.push_back(os);
1138   else
1139     this->attach_allocated_section_to_segment(os);
1140 }
1141
1142 // Attach an allocated output section to a segment.
1143
1144 void
1145 Layout::attach_allocated_section_to_segment(Output_section* os)
1146 {
1147   elfcpp::Elf_Xword flags = os->flags();
1148   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1149
1150   if (parameters->options().relocatable())
1151     return;
1152
1153   // If we have a SECTIONS clause, we can't handle the attachment to
1154   // segments until after we've seen all the sections.
1155   if (this->script_options_->saw_sections_clause())
1156     return;
1157
1158   gold_assert(!this->script_options_->saw_phdrs_clause());
1159
1160   // This output section goes into a PT_LOAD segment.
1161
1162   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1163
1164   // Check for --section-start.
1165   uint64_t addr;
1166   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1167
1168   // In general the only thing we really care about for PT_LOAD
1169   // segments is whether or not they are writable, so that is how we
1170   // search for them.  Large data sections also go into their own
1171   // PT_LOAD segment.  People who need segments sorted on some other
1172   // basis will have to use a linker script.
1173
1174   Segment_list::const_iterator p;
1175   for (p = this->segment_list_.begin();
1176        p != this->segment_list_.end();
1177        ++p)
1178     {
1179       if ((*p)->type() != elfcpp::PT_LOAD)
1180         continue;
1181       if (!parameters->options().omagic()
1182           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1183         continue;
1184       // If -Tbss was specified, we need to separate the data and BSS
1185       // segments.
1186       if (parameters->options().user_set_Tbss())
1187         {
1188           if ((os->type() == elfcpp::SHT_NOBITS)
1189               == (*p)->has_any_data_sections())
1190             continue;
1191         }
1192       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1193         continue;
1194
1195       if (is_address_set)
1196         {
1197           if ((*p)->are_addresses_set())
1198             continue;
1199
1200           (*p)->add_initial_output_data(os);
1201           (*p)->update_flags_for_output_section(seg_flags);
1202           (*p)->set_addresses(addr, addr);
1203           break;
1204         }
1205
1206       (*p)->add_output_section_to_load(this, os, seg_flags);
1207       break;
1208     }
1209
1210   if (p == this->segment_list_.end())
1211     {
1212       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1213                                                        seg_flags);
1214       if (os->is_large_data_section())
1215         oseg->set_is_large_data_segment();
1216       oseg->add_output_section_to_load(this, os, seg_flags);
1217       if (is_address_set)
1218         oseg->set_addresses(addr, addr);
1219     }
1220
1221   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1222   // segment.
1223   if (os->type() == elfcpp::SHT_NOTE)
1224     {
1225       // See if we already have an equivalent PT_NOTE segment.
1226       for (p = this->segment_list_.begin();
1227            p != segment_list_.end();
1228            ++p)
1229         {
1230           if ((*p)->type() == elfcpp::PT_NOTE
1231               && (((*p)->flags() & elfcpp::PF_W)
1232                   == (seg_flags & elfcpp::PF_W)))
1233             {
1234               (*p)->add_output_section_to_nonload(os, seg_flags);
1235               break;
1236             }
1237         }
1238
1239       if (p == this->segment_list_.end())
1240         {
1241           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1242                                                            seg_flags);
1243           oseg->add_output_section_to_nonload(os, seg_flags);
1244         }
1245     }
1246
1247   // If we see a loadable SHF_TLS section, we create a PT_TLS
1248   // segment.  There can only be one such segment.
1249   if ((flags & elfcpp::SHF_TLS) != 0)
1250     {
1251       if (this->tls_segment_ == NULL)
1252         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1253       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1254     }
1255
1256   // If -z relro is in effect, and we see a relro section, we create a
1257   // PT_GNU_RELRO segment.  There can only be one such segment.
1258   if (os->is_relro() && parameters->options().relro())
1259     {
1260       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1261       if (this->relro_segment_ == NULL)
1262         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1263       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1264     }
1265 }
1266
1267 // Make an output section for a script.
1268
1269 Output_section*
1270 Layout::make_output_section_for_script(
1271     const char* name,
1272     Script_sections::Section_type section_type)
1273 {
1274   name = this->namepool_.add(name, false, NULL);
1275   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1276   if (section_type == Script_sections::ST_NOLOAD)
1277     sh_flags = 0;
1278   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1279                                                  sh_flags, ORDER_INVALID,
1280                                                  false);
1281   os->set_found_in_sections_clause();
1282   if (section_type == Script_sections::ST_NOLOAD)
1283     os->set_is_noload();
1284   return os;
1285 }
1286
1287 // Return the number of segments we expect to see.
1288
1289 size_t
1290 Layout::expected_segment_count() const
1291 {
1292   size_t ret = this->segment_list_.size();
1293
1294   // If we didn't see a SECTIONS clause in a linker script, we should
1295   // already have the complete list of segments.  Otherwise we ask the
1296   // SECTIONS clause how many segments it expects, and add in the ones
1297   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1298
1299   if (!this->script_options_->saw_sections_clause())
1300     return ret;
1301   else
1302     {
1303       const Script_sections* ss = this->script_options_->script_sections();
1304       return ret + ss->expected_segment_count(this);
1305     }
1306 }
1307
1308 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1309 // is whether we saw a .note.GNU-stack section in the object file.
1310 // GNU_STACK_FLAGS is the section flags.  The flags give the
1311 // protection required for stack memory.  We record this in an
1312 // executable as a PT_GNU_STACK segment.  If an object file does not
1313 // have a .note.GNU-stack segment, we must assume that it is an old
1314 // object.  On some targets that will force an executable stack.
1315
1316 void
1317 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1318 {
1319   if (!seen_gnu_stack)
1320     this->input_without_gnu_stack_note_ = true;
1321   else
1322     {
1323       this->input_with_gnu_stack_note_ = true;
1324       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1325         this->input_requires_executable_stack_ = true;
1326     }
1327 }
1328
1329 // Create automatic note sections.
1330
1331 void
1332 Layout::create_notes()
1333 {
1334   this->create_gold_note();
1335   this->create_executable_stack_info();
1336   this->create_build_id();
1337 }
1338
1339 // Create the dynamic sections which are needed before we read the
1340 // relocs.
1341
1342 void
1343 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1344 {
1345   if (parameters->doing_static_link())
1346     return;
1347
1348   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1349                                                        elfcpp::SHT_DYNAMIC,
1350                                                        (elfcpp::SHF_ALLOC
1351                                                         | elfcpp::SHF_WRITE),
1352                                                        false, ORDER_RELRO,
1353                                                        true);
1354
1355   this->dynamic_symbol_ =
1356     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1357                                   this->dynamic_section_, 0, 0,
1358                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1359                                   elfcpp::STV_HIDDEN, 0, false, false);
1360
1361   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1362
1363   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1364 }
1365
1366 // For each output section whose name can be represented as C symbol,
1367 // define __start and __stop symbols for the section.  This is a GNU
1368 // extension.
1369
1370 void
1371 Layout::define_section_symbols(Symbol_table* symtab)
1372 {
1373   for (Section_list::const_iterator p = this->section_list_.begin();
1374        p != this->section_list_.end();
1375        ++p)
1376     {
1377       const char* const name = (*p)->name();
1378       if (is_cident(name))
1379         {
1380           const std::string name_string(name);
1381           const std::string start_name(cident_section_start_prefix
1382                                        + name_string);
1383           const std::string stop_name(cident_section_stop_prefix
1384                                       + name_string);
1385
1386           symtab->define_in_output_data(start_name.c_str(),
1387                                         NULL, // version
1388                                         Symbol_table::PREDEFINED,
1389                                         *p,
1390                                         0, // value
1391                                         0, // symsize
1392                                         elfcpp::STT_NOTYPE,
1393                                         elfcpp::STB_GLOBAL,
1394                                         elfcpp::STV_DEFAULT,
1395                                         0, // nonvis
1396                                         false, // offset_is_from_end
1397                                         true); // only_if_ref
1398
1399           symtab->define_in_output_data(stop_name.c_str(),
1400                                         NULL, // version
1401                                         Symbol_table::PREDEFINED,
1402                                         *p,
1403                                         0, // value
1404                                         0, // symsize
1405                                         elfcpp::STT_NOTYPE,
1406                                         elfcpp::STB_GLOBAL,
1407                                         elfcpp::STV_DEFAULT,
1408                                         0, // nonvis
1409                                         true, // offset_is_from_end
1410                                         true); // only_if_ref
1411         }
1412     }
1413 }
1414
1415 // Define symbols for group signatures.
1416
1417 void
1418 Layout::define_group_signatures(Symbol_table* symtab)
1419 {
1420   for (Group_signatures::iterator p = this->group_signatures_.begin();
1421        p != this->group_signatures_.end();
1422        ++p)
1423     {
1424       Symbol* sym = symtab->lookup(p->signature, NULL);
1425       if (sym != NULL)
1426         p->section->set_info_symndx(sym);
1427       else
1428         {
1429           // Force the name of the group section to the group
1430           // signature, and use the group's section symbol as the
1431           // signature symbol.
1432           if (strcmp(p->section->name(), p->signature) != 0)
1433             {
1434               const char* name = this->namepool_.add(p->signature,
1435                                                      true, NULL);
1436               p->section->set_name(name);
1437             }
1438           p->section->set_needs_symtab_index();
1439           p->section->set_info_section_symndx(p->section);
1440         }
1441     }
1442
1443   this->group_signatures_.clear();
1444 }
1445
1446 // Find the first read-only PT_LOAD segment, creating one if
1447 // necessary.
1448
1449 Output_segment*
1450 Layout::find_first_load_seg()
1451 {
1452   for (Segment_list::const_iterator p = this->segment_list_.begin();
1453        p != this->segment_list_.end();
1454        ++p)
1455     {
1456       if ((*p)->type() == elfcpp::PT_LOAD
1457           && ((*p)->flags() & elfcpp::PF_R) != 0
1458           && (parameters->options().omagic()
1459               || ((*p)->flags() & elfcpp::PF_W) == 0))
1460         return *p;
1461     }
1462
1463   gold_assert(!this->script_options_->saw_phdrs_clause());
1464
1465   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1466                                                        elfcpp::PF_R);
1467   return load_seg;
1468 }
1469
1470 // Save states of all current output segments.  Store saved states
1471 // in SEGMENT_STATES.
1472
1473 void
1474 Layout::save_segments(Segment_states* segment_states)
1475 {
1476   for (Segment_list::const_iterator p = this->segment_list_.begin();
1477        p != this->segment_list_.end();
1478        ++p)
1479     {
1480       Output_segment* segment = *p;
1481       // Shallow copy.
1482       Output_segment* copy = new Output_segment(*segment);
1483       (*segment_states)[segment] = copy;
1484     }
1485 }
1486
1487 // Restore states of output segments and delete any segment not found in
1488 // SEGMENT_STATES.
1489
1490 void
1491 Layout::restore_segments(const Segment_states* segment_states)
1492 {
1493   // Go through the segment list and remove any segment added in the
1494   // relaxation loop.
1495   this->tls_segment_ = NULL;
1496   this->relro_segment_ = NULL;
1497   Segment_list::iterator list_iter = this->segment_list_.begin();
1498   while (list_iter != this->segment_list_.end())
1499     {
1500       Output_segment* segment = *list_iter;
1501       Segment_states::const_iterator states_iter =
1502           segment_states->find(segment);
1503       if (states_iter != segment_states->end())
1504         {
1505           const Output_segment* copy = states_iter->second;
1506           // Shallow copy to restore states.
1507           *segment = *copy;
1508
1509           // Also fix up TLS and RELRO segment pointers as appropriate.
1510           if (segment->type() == elfcpp::PT_TLS)
1511             this->tls_segment_ = segment;
1512           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1513             this->relro_segment_ = segment;
1514
1515           ++list_iter;
1516         } 
1517       else
1518         {
1519           list_iter = this->segment_list_.erase(list_iter); 
1520           // This is a segment created during section layout.  It should be
1521           // safe to remove it since we should have removed all pointers to it.
1522           delete segment;
1523         }
1524     }
1525 }
1526
1527 // Clean up after relaxation so that sections can be laid out again.
1528
1529 void
1530 Layout::clean_up_after_relaxation()
1531 {
1532   // Restore the segments to point state just prior to the relaxation loop.
1533   Script_sections* script_section = this->script_options_->script_sections();
1534   script_section->release_segments();
1535   this->restore_segments(this->segment_states_);
1536
1537   // Reset section addresses and file offsets
1538   for (Section_list::iterator p = this->section_list_.begin();
1539        p != this->section_list_.end();
1540        ++p)
1541     {
1542       (*p)->restore_states();
1543
1544       // If an input section changes size because of relaxation,
1545       // we need to adjust the section offsets of all input sections.
1546       // after such a section.
1547       if ((*p)->section_offsets_need_adjustment())
1548         (*p)->adjust_section_offsets();
1549
1550       (*p)->reset_address_and_file_offset();
1551     }
1552   
1553   // Reset special output object address and file offsets.
1554   for (Data_list::iterator p = this->special_output_list_.begin();
1555        p != this->special_output_list_.end();
1556        ++p)
1557     (*p)->reset_address_and_file_offset();
1558
1559   // A linker script may have created some output section data objects.
1560   // They are useless now.
1561   for (Output_section_data_list::const_iterator p =
1562          this->script_output_section_data_list_.begin();
1563        p != this->script_output_section_data_list_.end();
1564        ++p)
1565     delete *p;
1566   this->script_output_section_data_list_.clear(); 
1567 }
1568
1569 // Prepare for relaxation.
1570
1571 void
1572 Layout::prepare_for_relaxation()
1573 {
1574   // Create an relaxation debug check if in debugging mode.
1575   if (is_debugging_enabled(DEBUG_RELAXATION))
1576     this->relaxation_debug_check_ = new Relaxation_debug_check();
1577
1578   // Save segment states.
1579   this->segment_states_ = new Segment_states();
1580   this->save_segments(this->segment_states_);
1581
1582   for(Section_list::const_iterator p = this->section_list_.begin();
1583       p != this->section_list_.end();
1584       ++p)
1585     (*p)->save_states();
1586
1587   if (is_debugging_enabled(DEBUG_RELAXATION))
1588     this->relaxation_debug_check_->check_output_data_for_reset_values(
1589         this->section_list_, this->special_output_list_);
1590
1591   // Also enable recording of output section data from scripts.
1592   this->record_output_section_data_from_script_ = true;
1593 }
1594
1595 // Relaxation loop body:  If target has no relaxation, this runs only once
1596 // Otherwise, the target relaxation hook is called at the end of
1597 // each iteration.  If the hook returns true, it means re-layout of
1598 // section is required.  
1599 //
1600 // The number of segments created by a linking script without a PHDRS
1601 // clause may be affected by section sizes and alignments.  There is
1602 // a remote chance that relaxation causes different number of PT_LOAD
1603 // segments are created and sections are attached to different segments.
1604 // Therefore, we always throw away all segments created during section
1605 // layout.  In order to be able to restart the section layout, we keep
1606 // a copy of the segment list right before the relaxation loop and use
1607 // that to restore the segments.
1608 // 
1609 // PASS is the current relaxation pass number. 
1610 // SYMTAB is a symbol table.
1611 // PLOAD_SEG is the address of a pointer for the load segment.
1612 // PHDR_SEG is a pointer to the PHDR segment.
1613 // SEGMENT_HEADERS points to the output segment header.
1614 // FILE_HEADER points to the output file header.
1615 // PSHNDX is the address to store the output section index.
1616
1617 off_t inline
1618 Layout::relaxation_loop_body(
1619     int pass,
1620     Target* target,
1621     Symbol_table* symtab,
1622     Output_segment** pload_seg,
1623     Output_segment* phdr_seg,
1624     Output_segment_headers* segment_headers,
1625     Output_file_header* file_header,
1626     unsigned int* pshndx)
1627 {
1628   // If this is not the first iteration, we need to clean up after
1629   // relaxation so that we can lay out the sections again.
1630   if (pass != 0)
1631     this->clean_up_after_relaxation();
1632
1633   // If there is a SECTIONS clause, put all the input sections into
1634   // the required order.
1635   Output_segment* load_seg;
1636   if (this->script_options_->saw_sections_clause())
1637     load_seg = this->set_section_addresses_from_script(symtab);
1638   else if (parameters->options().relocatable())
1639     load_seg = NULL;
1640   else
1641     load_seg = this->find_first_load_seg();
1642
1643   if (parameters->options().oformat_enum()
1644       != General_options::OBJECT_FORMAT_ELF)
1645     load_seg = NULL;
1646
1647   // If the user set the address of the text segment, that may not be
1648   // compatible with putting the segment headers and file headers into
1649   // that segment.
1650   if (parameters->options().user_set_Ttext())
1651     load_seg = NULL;
1652
1653   gold_assert(phdr_seg == NULL
1654               || load_seg != NULL
1655               || this->script_options_->saw_sections_clause());
1656
1657   // If the address of the load segment we found has been set by
1658   // --section-start rather than by a script, then adjust the VMA and
1659   // LMA downward if possible to include the file and section headers.
1660   uint64_t header_gap = 0;
1661   if (load_seg != NULL
1662       && load_seg->are_addresses_set()
1663       && !this->script_options_->saw_sections_clause()
1664       && !parameters->options().relocatable())
1665     {
1666       file_header->finalize_data_size();
1667       segment_headers->finalize_data_size();
1668       size_t sizeof_headers = (file_header->data_size()
1669                                + segment_headers->data_size());
1670       const uint64_t abi_pagesize = target->abi_pagesize();
1671       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1672       hdr_paddr &= ~(abi_pagesize - 1);
1673       uint64_t subtract = load_seg->paddr() - hdr_paddr;
1674       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1675         load_seg = NULL;
1676       else
1677         {
1678           load_seg->set_addresses(load_seg->vaddr() - subtract,
1679                                   load_seg->paddr() - subtract);
1680           header_gap = subtract - sizeof_headers;
1681         }
1682     }
1683
1684   // Lay out the segment headers.
1685   if (!parameters->options().relocatable())
1686     {
1687       gold_assert(segment_headers != NULL);
1688       if (header_gap != 0 && load_seg != NULL)
1689         {
1690           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
1691           load_seg->add_initial_output_data(z);
1692         }
1693       if (load_seg != NULL)
1694         load_seg->add_initial_output_data(segment_headers);
1695       if (phdr_seg != NULL)
1696         phdr_seg->add_initial_output_data(segment_headers);
1697     }
1698
1699   // Lay out the file header.
1700   if (load_seg != NULL)
1701     load_seg->add_initial_output_data(file_header);
1702
1703   if (this->script_options_->saw_phdrs_clause()
1704       && !parameters->options().relocatable())
1705     {
1706       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1707       // clause in a linker script.
1708       Script_sections* ss = this->script_options_->script_sections();
1709       ss->put_headers_in_phdrs(file_header, segment_headers);
1710     }
1711
1712   // We set the output section indexes in set_segment_offsets and
1713   // set_section_indexes.
1714   *pshndx = 1;
1715
1716   // Set the file offsets of all the segments, and all the sections
1717   // they contain.
1718   off_t off;
1719   if (!parameters->options().relocatable())
1720     off = this->set_segment_offsets(target, load_seg, pshndx);
1721   else
1722     off = this->set_relocatable_section_offsets(file_header, pshndx);
1723
1724    // Verify that the dummy relaxation does not change anything.
1725   if (is_debugging_enabled(DEBUG_RELAXATION))
1726     {
1727       if (pass == 0)
1728         this->relaxation_debug_check_->read_sections(this->section_list_);
1729       else
1730         this->relaxation_debug_check_->verify_sections(this->section_list_);
1731     }
1732
1733   *pload_seg = load_seg;
1734   return off;
1735 }
1736
1737 // Search the list of patterns and find the postion of the given section
1738 // name in the output section.  If the section name matches a glob
1739 // pattern and a non-glob name, then the non-glob position takes
1740 // precedence.  Return 0 if no match is found.
1741
1742 unsigned int
1743 Layout::find_section_order_index(const std::string& section_name)
1744 {
1745   Unordered_map<std::string, unsigned int>::iterator map_it;
1746   map_it = this->input_section_position_.find(section_name);
1747   if (map_it != this->input_section_position_.end())
1748     return map_it->second;
1749
1750   // Absolute match failed.  Linear search the glob patterns.
1751   std::vector<std::string>::iterator it;
1752   for (it = this->input_section_glob_.begin();
1753        it != this->input_section_glob_.end();
1754        ++it)
1755     {
1756        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
1757          {
1758            map_it = this->input_section_position_.find(*it);
1759            gold_assert(map_it != this->input_section_position_.end());
1760            return map_it->second;
1761          }
1762     }
1763   return 0;
1764 }
1765
1766 // Read the sequence of input sections from the file specified with
1767 // --section-ordering-file.
1768
1769 void
1770 Layout::read_layout_from_file()
1771 {
1772   const char* filename = parameters->options().section_ordering_file();
1773   std::ifstream in;
1774   std::string line;
1775
1776   in.open(filename);
1777   if (!in)
1778     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1779                filename, strerror(errno));
1780
1781   std::getline(in, line);   // this chops off the trailing \n, if any
1782   unsigned int position = 1;
1783
1784   while (in)
1785     {
1786       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
1787         line.resize(line.length() - 1);
1788       // Ignore comments, beginning with '#'
1789       if (line[0] == '#')
1790         {
1791           std::getline(in, line);
1792           continue;
1793         }
1794       this->input_section_position_[line] = position;
1795       // Store all glob patterns in a vector.
1796       if (is_wildcard_string(line.c_str()))
1797         this->input_section_glob_.push_back(line);
1798       position++;
1799       std::getline(in, line);
1800     }
1801 }
1802
1803 // Finalize the layout.  When this is called, we have created all the
1804 // output sections and all the output segments which are based on
1805 // input sections.  We have several things to do, and we have to do
1806 // them in the right order, so that we get the right results correctly
1807 // and efficiently.
1808
1809 // 1) Finalize the list of output segments and create the segment
1810 // table header.
1811
1812 // 2) Finalize the dynamic symbol table and associated sections.
1813
1814 // 3) Determine the final file offset of all the output segments.
1815
1816 // 4) Determine the final file offset of all the SHF_ALLOC output
1817 // sections.
1818
1819 // 5) Create the symbol table sections and the section name table
1820 // section.
1821
1822 // 6) Finalize the symbol table: set symbol values to their final
1823 // value and make a final determination of which symbols are going
1824 // into the output symbol table.
1825
1826 // 7) Create the section table header.
1827
1828 // 8) Determine the final file offset of all the output sections which
1829 // are not SHF_ALLOC, including the section table header.
1830
1831 // 9) Finalize the ELF file header.
1832
1833 // This function returns the size of the output file.
1834
1835 off_t
1836 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1837                  Target* target, const Task* task)
1838 {
1839   target->finalize_sections(this, input_objects, symtab);
1840
1841   this->count_local_symbols(task, input_objects);
1842
1843   this->link_stabs_sections();
1844
1845   Output_segment* phdr_seg = NULL;
1846   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1847     {
1848       // There was a dynamic object in the link.  We need to create
1849       // some information for the dynamic linker.
1850
1851       // Create the PT_PHDR segment which will hold the program
1852       // headers.
1853       if (!this->script_options_->saw_phdrs_clause())
1854         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1855
1856       // Create the dynamic symbol table, including the hash table.
1857       Output_section* dynstr;
1858       std::vector<Symbol*> dynamic_symbols;
1859       unsigned int local_dynamic_count;
1860       Versions versions(*this->script_options()->version_script_info(),
1861                         &this->dynpool_);
1862       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1863                                   &local_dynamic_count, &dynamic_symbols,
1864                                   &versions);
1865
1866       // Create the .interp section to hold the name of the
1867       // interpreter, and put it in a PT_INTERP segment.
1868       if (!parameters->options().shared())
1869         this->create_interp(target);
1870
1871       // Finish the .dynamic section to hold the dynamic data, and put
1872       // it in a PT_DYNAMIC segment.
1873       this->finish_dynamic_section(input_objects, symtab);
1874
1875       // We should have added everything we need to the dynamic string
1876       // table.
1877       this->dynpool_.set_string_offsets();
1878
1879       // Create the version sections.  We can't do this until the
1880       // dynamic string table is complete.
1881       this->create_version_sections(&versions, symtab, local_dynamic_count,
1882                                     dynamic_symbols, dynstr);
1883
1884       // Set the size of the _DYNAMIC symbol.  We can't do this until
1885       // after we call create_version_sections.
1886       this->set_dynamic_symbol_size(symtab);
1887     }
1888   
1889   if (this->incremental_inputs_)
1890     {
1891       this->incremental_inputs_->finalize();
1892       this->create_incremental_info_sections();
1893     }
1894
1895   // Create segment headers.
1896   Output_segment_headers* segment_headers =
1897     (parameters->options().relocatable()
1898      ? NULL
1899      : new Output_segment_headers(this->segment_list_));
1900
1901   // Lay out the file header.
1902   Output_file_header* file_header
1903     = new Output_file_header(target, symtab, segment_headers,
1904                              parameters->options().entry());
1905
1906   this->special_output_list_.push_back(file_header);
1907   if (segment_headers != NULL)
1908     this->special_output_list_.push_back(segment_headers);
1909
1910   // Find approriate places for orphan output sections if we are using
1911   // a linker script.
1912   if (this->script_options_->saw_sections_clause())
1913     this->place_orphan_sections_in_script();
1914   
1915   Output_segment* load_seg;
1916   off_t off;
1917   unsigned int shndx;
1918   int pass = 0;
1919
1920   // Take a snapshot of the section layout as needed.
1921   if (target->may_relax())
1922     this->prepare_for_relaxation();
1923   
1924   // Run the relaxation loop to lay out sections.
1925   do
1926     {
1927       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1928                                        phdr_seg, segment_headers, file_header,
1929                                        &shndx);
1930       pass++;
1931     }
1932   while (target->may_relax()
1933          && target->relax(pass, input_objects, symtab, this));
1934
1935   // Set the file offsets of all the non-data sections we've seen so
1936   // far which don't have to wait for the input sections.  We need
1937   // this in order to finalize local symbols in non-allocated
1938   // sections.
1939   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1940
1941   // Set the section indexes of all unallocated sections seen so far,
1942   // in case any of them are somehow referenced by a symbol.
1943   shndx = this->set_section_indexes(shndx);
1944
1945   // Create the symbol table sections.
1946   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1947   if (!parameters->doing_static_link())
1948     this->assign_local_dynsym_offsets(input_objects);
1949
1950   // Process any symbol assignments from a linker script.  This must
1951   // be called after the symbol table has been finalized.
1952   this->script_options_->finalize_symbols(symtab, this);
1953
1954   // Create the .shstrtab section.
1955   Output_section* shstrtab_section = this->create_shstrtab();
1956
1957   // Set the file offsets of the rest of the non-data sections which
1958   // don't have to wait for the input sections.
1959   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1960
1961   // Now that all sections have been created, set the section indexes
1962   // for any sections which haven't been done yet.
1963   shndx = this->set_section_indexes(shndx);
1964
1965   // Create the section table header.
1966   this->create_shdrs(shstrtab_section, &off);
1967
1968   // If there are no sections which require postprocessing, we can
1969   // handle the section names now, and avoid a resize later.
1970   if (!this->any_postprocessing_sections_)
1971     off = this->set_section_offsets(off,
1972                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1973
1974   file_header->set_section_info(this->section_headers_, shstrtab_section);
1975
1976   // Now we know exactly where everything goes in the output file
1977   // (except for non-allocated sections which require postprocessing).
1978   Output_data::layout_complete();
1979
1980   this->output_file_size_ = off;
1981
1982   return off;
1983 }
1984
1985 // Create a note header following the format defined in the ELF ABI.
1986 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1987 // of the section to create, DESCSZ is the size of the descriptor.
1988 // ALLOCATE is true if the section should be allocated in memory.
1989 // This returns the new note section.  It sets *TRAILING_PADDING to
1990 // the number of trailing zero bytes required.
1991
1992 Output_section*
1993 Layout::create_note(const char* name, int note_type,
1994                     const char* section_name, size_t descsz,
1995                     bool allocate, size_t* trailing_padding)
1996 {
1997   // Authorities all agree that the values in a .note field should
1998   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1999   // they differ on what the alignment is for 64-bit binaries.
2000   // The GABI says unambiguously they take 8-byte alignment:
2001   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2002   // Other documentation says alignment should always be 4 bytes:
2003   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2004   // GNU ld and GNU readelf both support the latter (at least as of
2005   // version 2.16.91), and glibc always generates the latter for
2006   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2007   // here.
2008 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2009   const int size = parameters->target().get_size();
2010 #else
2011   const int size = 32;
2012 #endif
2013
2014   // The contents of the .note section.
2015   size_t namesz = strlen(name) + 1;
2016   size_t aligned_namesz = align_address(namesz, size / 8);
2017   size_t aligned_descsz = align_address(descsz, size / 8);
2018
2019   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2020
2021   unsigned char* buffer = new unsigned char[notehdrsz];
2022   memset(buffer, 0, notehdrsz);
2023
2024   bool is_big_endian = parameters->target().is_big_endian();
2025
2026   if (size == 32)
2027     {
2028       if (!is_big_endian)
2029         {
2030           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2031           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2032           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2033         }
2034       else
2035         {
2036           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2037           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2038           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2039         }
2040     }
2041   else if (size == 64)
2042     {
2043       if (!is_big_endian)
2044         {
2045           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2046           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2047           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2048         }
2049       else
2050         {
2051           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2052           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2053           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2054         }
2055     }
2056   else
2057     gold_unreachable();
2058
2059   memcpy(buffer + 3 * (size / 8), name, namesz);
2060
2061   elfcpp::Elf_Xword flags = 0;
2062   Output_section_order order = ORDER_INVALID;
2063   if (allocate)
2064     {
2065       flags = elfcpp::SHF_ALLOC;
2066       order = ORDER_RO_NOTE;
2067     }
2068   Output_section* os = this->choose_output_section(NULL, section_name,
2069                                                    elfcpp::SHT_NOTE,
2070                                                    flags, false, order, false);
2071   if (os == NULL)
2072     return NULL;
2073
2074   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2075                                                            size / 8,
2076                                                            "** note header");
2077   os->add_output_section_data(posd);
2078
2079   *trailing_padding = aligned_descsz - descsz;
2080
2081   return os;
2082 }
2083
2084 // For an executable or shared library, create a note to record the
2085 // version of gold used to create the binary.
2086
2087 void
2088 Layout::create_gold_note()
2089 {
2090   if (parameters->options().relocatable())
2091     return;
2092
2093   std::string desc = std::string("gold ") + gold::get_version_string();
2094
2095   size_t trailing_padding;
2096   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2097                                          ".note.gnu.gold-version", desc.size(),
2098                                          false, &trailing_padding);
2099   if (os == NULL)
2100     return;
2101
2102   Output_section_data* posd = new Output_data_const(desc, 4);
2103   os->add_output_section_data(posd);
2104
2105   if (trailing_padding > 0)
2106     {
2107       posd = new Output_data_zero_fill(trailing_padding, 0);
2108       os->add_output_section_data(posd);
2109     }
2110 }
2111
2112 // Record whether the stack should be executable.  This can be set
2113 // from the command line using the -z execstack or -z noexecstack
2114 // options.  Otherwise, if any input file has a .note.GNU-stack
2115 // section with the SHF_EXECINSTR flag set, the stack should be
2116 // executable.  Otherwise, if at least one input file a
2117 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2118 // section, we use the target default for whether the stack should be
2119 // executable.  Otherwise, we don't generate a stack note.  When
2120 // generating a object file, we create a .note.GNU-stack section with
2121 // the appropriate marking.  When generating an executable or shared
2122 // library, we create a PT_GNU_STACK segment.
2123
2124 void
2125 Layout::create_executable_stack_info()
2126 {
2127   bool is_stack_executable;
2128   if (parameters->options().is_execstack_set())
2129     is_stack_executable = parameters->options().is_stack_executable();
2130   else if (!this->input_with_gnu_stack_note_)
2131     return;
2132   else
2133     {
2134       if (this->input_requires_executable_stack_)
2135         is_stack_executable = true;
2136       else if (this->input_without_gnu_stack_note_)
2137         is_stack_executable =
2138           parameters->target().is_default_stack_executable();
2139       else
2140         is_stack_executable = false;
2141     }
2142
2143   if (parameters->options().relocatable())
2144     {
2145       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2146       elfcpp::Elf_Xword flags = 0;
2147       if (is_stack_executable)
2148         flags |= elfcpp::SHF_EXECINSTR;
2149       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2150                                 ORDER_INVALID, false);
2151     }
2152   else
2153     {
2154       if (this->script_options_->saw_phdrs_clause())
2155         return;
2156       int flags = elfcpp::PF_R | elfcpp::PF_W;
2157       if (is_stack_executable)
2158         flags |= elfcpp::PF_X;
2159       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2160     }
2161 }
2162
2163 // If --build-id was used, set up the build ID note.
2164
2165 void
2166 Layout::create_build_id()
2167 {
2168   if (!parameters->options().user_set_build_id())
2169     return;
2170
2171   const char* style = parameters->options().build_id();
2172   if (strcmp(style, "none") == 0)
2173     return;
2174
2175   // Set DESCSZ to the size of the note descriptor.  When possible,
2176   // set DESC to the note descriptor contents.
2177   size_t descsz;
2178   std::string desc;
2179   if (strcmp(style, "md5") == 0)
2180     descsz = 128 / 8;
2181   else if (strcmp(style, "sha1") == 0)
2182     descsz = 160 / 8;
2183   else if (strcmp(style, "uuid") == 0)
2184     {
2185       const size_t uuidsz = 128 / 8;
2186
2187       char buffer[uuidsz];
2188       memset(buffer, 0, uuidsz);
2189
2190       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2191       if (descriptor < 0)
2192         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2193                    strerror(errno));
2194       else
2195         {
2196           ssize_t got = ::read(descriptor, buffer, uuidsz);
2197           release_descriptor(descriptor, true);
2198           if (got < 0)
2199             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2200           else if (static_cast<size_t>(got) != uuidsz)
2201             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2202                        uuidsz, got);
2203         }
2204
2205       desc.assign(buffer, uuidsz);
2206       descsz = uuidsz;
2207     }
2208   else if (strncmp(style, "0x", 2) == 0)
2209     {
2210       hex_init();
2211       const char* p = style + 2;
2212       while (*p != '\0')
2213         {
2214           if (hex_p(p[0]) && hex_p(p[1]))
2215             {
2216               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2217               desc += c;
2218               p += 2;
2219             }
2220           else if (*p == '-' || *p == ':')
2221             ++p;
2222           else
2223             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2224                        style);
2225         }
2226       descsz = desc.size();
2227     }
2228   else
2229     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2230
2231   // Create the note.
2232   size_t trailing_padding;
2233   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2234                                          ".note.gnu.build-id", descsz, true,
2235                                          &trailing_padding);
2236   if (os == NULL)
2237     return;
2238
2239   if (!desc.empty())
2240     {
2241       // We know the value already, so we fill it in now.
2242       gold_assert(desc.size() == descsz);
2243
2244       Output_section_data* posd = new Output_data_const(desc, 4);
2245       os->add_output_section_data(posd);
2246
2247       if (trailing_padding != 0)
2248         {
2249           posd = new Output_data_zero_fill(trailing_padding, 0);
2250           os->add_output_section_data(posd);
2251         }
2252     }
2253   else
2254     {
2255       // We need to compute a checksum after we have completed the
2256       // link.
2257       gold_assert(trailing_padding == 0);
2258       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2259       os->add_output_section_data(this->build_id_note_);
2260     }
2261 }
2262
2263 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2264 // field of the former should point to the latter.  I'm not sure who
2265 // started this, but the GNU linker does it, and some tools depend
2266 // upon it.
2267
2268 void
2269 Layout::link_stabs_sections()
2270 {
2271   if (!this->have_stabstr_section_)
2272     return;
2273
2274   for (Section_list::iterator p = this->section_list_.begin();
2275        p != this->section_list_.end();
2276        ++p)
2277     {
2278       if ((*p)->type() != elfcpp::SHT_STRTAB)
2279         continue;
2280
2281       const char* name = (*p)->name();
2282       if (strncmp(name, ".stab", 5) != 0)
2283         continue;
2284
2285       size_t len = strlen(name);
2286       if (strcmp(name + len - 3, "str") != 0)
2287         continue;
2288
2289       std::string stab_name(name, len - 3);
2290       Output_section* stab_sec;
2291       stab_sec = this->find_output_section(stab_name.c_str());
2292       if (stab_sec != NULL)
2293         stab_sec->set_link_section(*p);
2294     }
2295 }
2296
2297 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2298 // for the next run of incremental linking to check what has changed.
2299
2300 void
2301 Layout::create_incremental_info_sections()
2302 {
2303   gold_assert(this->incremental_inputs_ != NULL);
2304
2305   // Add the .gnu_incremental_inputs section.
2306   const char *incremental_inputs_name =
2307     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2308   Output_section* inputs_os =
2309     this->make_output_section(incremental_inputs_name,
2310                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2311                               ORDER_INVALID, false);
2312   Output_section_data* posd =
2313       this->incremental_inputs_->create_incremental_inputs_section_data();
2314   inputs_os->add_output_section_data(posd);
2315   
2316   // Add the .gnu_incremental_strtab section.
2317   const char *incremental_strtab_name =
2318     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2319   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2320                                                         elfcpp::SHT_STRTAB,
2321                                                         0, ORDER_INVALID,
2322                                                         false);
2323   Output_data_strtab* strtab_data =
2324     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2325   strtab_os->add_output_section_data(strtab_data);
2326   
2327   inputs_os->set_link_section(strtab_data);
2328 }
2329
2330 // Return whether SEG1 should be before SEG2 in the output file.  This
2331 // is based entirely on the segment type and flags.  When this is
2332 // called the segment addresses has normally not yet been set.
2333
2334 bool
2335 Layout::segment_precedes(const Output_segment* seg1,
2336                          const Output_segment* seg2)
2337 {
2338   elfcpp::Elf_Word type1 = seg1->type();
2339   elfcpp::Elf_Word type2 = seg2->type();
2340
2341   // The single PT_PHDR segment is required to precede any loadable
2342   // segment.  We simply make it always first.
2343   if (type1 == elfcpp::PT_PHDR)
2344     {
2345       gold_assert(type2 != elfcpp::PT_PHDR);
2346       return true;
2347     }
2348   if (type2 == elfcpp::PT_PHDR)
2349     return false;
2350
2351   // The single PT_INTERP segment is required to precede any loadable
2352   // segment.  We simply make it always second.
2353   if (type1 == elfcpp::PT_INTERP)
2354     {
2355       gold_assert(type2 != elfcpp::PT_INTERP);
2356       return true;
2357     }
2358   if (type2 == elfcpp::PT_INTERP)
2359     return false;
2360
2361   // We then put PT_LOAD segments before any other segments.
2362   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2363     return true;
2364   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2365     return false;
2366
2367   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2368   // segment, because that is where the dynamic linker expects to find
2369   // it (this is just for efficiency; other positions would also work
2370   // correctly).
2371   if (type1 == elfcpp::PT_TLS
2372       && type2 != elfcpp::PT_TLS
2373       && type2 != elfcpp::PT_GNU_RELRO)
2374     return false;
2375   if (type2 == elfcpp::PT_TLS
2376       && type1 != elfcpp::PT_TLS
2377       && type1 != elfcpp::PT_GNU_RELRO)
2378     return true;
2379
2380   // We put the PT_GNU_RELRO segment last, because that is where the
2381   // dynamic linker expects to find it (as with PT_TLS, this is just
2382   // for efficiency).
2383   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2384     return false;
2385   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2386     return true;
2387
2388   const elfcpp::Elf_Word flags1 = seg1->flags();
2389   const elfcpp::Elf_Word flags2 = seg2->flags();
2390
2391   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2392   // by the numeric segment type and flags values.  There should not
2393   // be more than one segment with the same type and flags.
2394   if (type1 != elfcpp::PT_LOAD)
2395     {
2396       if (type1 != type2)
2397         return type1 < type2;
2398       gold_assert(flags1 != flags2);
2399       return flags1 < flags2;
2400     }
2401
2402   // If the addresses are set already, sort by load address.
2403   if (seg1->are_addresses_set())
2404     {
2405       if (!seg2->are_addresses_set())
2406         return true;
2407
2408       unsigned int section_count1 = seg1->output_section_count();
2409       unsigned int section_count2 = seg2->output_section_count();
2410       if (section_count1 == 0 && section_count2 > 0)
2411         return true;
2412       if (section_count1 > 0 && section_count2 == 0)
2413         return false;
2414
2415       uint64_t paddr1 = seg1->first_section_load_address();
2416       uint64_t paddr2 = seg2->first_section_load_address();
2417       if (paddr1 != paddr2)
2418         return paddr1 < paddr2;
2419     }
2420   else if (seg2->are_addresses_set())
2421     return false;
2422
2423   // A segment which holds large data comes after a segment which does
2424   // not hold large data.
2425   if (seg1->is_large_data_segment())
2426     {
2427       if (!seg2->is_large_data_segment())
2428         return false;
2429     }
2430   else if (seg2->is_large_data_segment())
2431     return true;
2432
2433   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2434   // segments come before writable segments.  Then writable segments
2435   // with data come before writable segments without data.  Then
2436   // executable segments come before non-executable segments.  Then
2437   // the unlikely case of a non-readable segment comes before the
2438   // normal case of a readable segment.  If there are multiple
2439   // segments with the same type and flags, we require that the
2440   // address be set, and we sort by virtual address and then physical
2441   // address.
2442   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2443     return (flags1 & elfcpp::PF_W) == 0;
2444   if ((flags1 & elfcpp::PF_W) != 0
2445       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2446     return seg1->has_any_data_sections();
2447   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2448     return (flags1 & elfcpp::PF_X) != 0;
2449   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2450     return (flags1 & elfcpp::PF_R) == 0;
2451
2452   // We shouldn't get here--we shouldn't create segments which we
2453   // can't distinguish.
2454   gold_unreachable();
2455 }
2456
2457 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2458
2459 static off_t
2460 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2461 {
2462   uint64_t unsigned_off = off;
2463   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2464                           | (addr & (abi_pagesize - 1)));
2465   if (aligned_off < unsigned_off)
2466     aligned_off += abi_pagesize;
2467   return aligned_off;
2468 }
2469
2470 // Set the file offsets of all the segments, and all the sections they
2471 // contain.  They have all been created.  LOAD_SEG must be be laid out
2472 // first.  Return the offset of the data to follow.
2473
2474 off_t
2475 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2476                             unsigned int *pshndx)
2477 {
2478   // Sort them into the final order.
2479   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2480             Layout::Compare_segments());
2481
2482   // Find the PT_LOAD segments, and set their addresses and offsets
2483   // and their section's addresses and offsets.
2484   uint64_t addr;
2485   if (parameters->options().user_set_Ttext())
2486     addr = parameters->options().Ttext();
2487   else if (parameters->options().output_is_position_independent())
2488     addr = 0;
2489   else
2490     addr = target->default_text_segment_address();
2491   off_t off = 0;
2492
2493   // If LOAD_SEG is NULL, then the file header and segment headers
2494   // will not be loadable.  But they still need to be at offset 0 in
2495   // the file.  Set their offsets now.
2496   if (load_seg == NULL)
2497     {
2498       for (Data_list::iterator p = this->special_output_list_.begin();
2499            p != this->special_output_list_.end();
2500            ++p)
2501         {
2502           off = align_address(off, (*p)->addralign());
2503           (*p)->set_address_and_file_offset(0, off);
2504           off += (*p)->data_size();
2505         }
2506     }
2507
2508   unsigned int increase_relro = this->increase_relro_;
2509   if (this->script_options_->saw_sections_clause())
2510     increase_relro = 0;
2511
2512   const bool check_sections = parameters->options().check_sections();
2513   Output_segment* last_load_segment = NULL;
2514
2515   bool was_readonly = false;
2516   for (Segment_list::iterator p = this->segment_list_.begin();
2517        p != this->segment_list_.end();
2518        ++p)
2519     {
2520       if ((*p)->type() == elfcpp::PT_LOAD)
2521         {
2522           if (load_seg != NULL && load_seg != *p)
2523             gold_unreachable();
2524           load_seg = NULL;
2525
2526           bool are_addresses_set = (*p)->are_addresses_set();
2527           if (are_addresses_set)
2528             {
2529               // When it comes to setting file offsets, we care about
2530               // the physical address.
2531               addr = (*p)->paddr();
2532             }
2533           else if (parameters->options().user_set_Tdata()
2534                    && ((*p)->flags() & elfcpp::PF_W) != 0
2535                    && (!parameters->options().user_set_Tbss()
2536                        || (*p)->has_any_data_sections()))
2537             {
2538               addr = parameters->options().Tdata();
2539               are_addresses_set = true;
2540             }
2541           else if (parameters->options().user_set_Tbss()
2542                    && ((*p)->flags() & elfcpp::PF_W) != 0
2543                    && !(*p)->has_any_data_sections())
2544             {
2545               addr = parameters->options().Tbss();
2546               are_addresses_set = true;
2547             }
2548
2549           uint64_t orig_addr = addr;
2550           uint64_t orig_off = off;
2551
2552           uint64_t aligned_addr = 0;
2553           uint64_t abi_pagesize = target->abi_pagesize();
2554           uint64_t common_pagesize = target->common_pagesize();
2555
2556           if (!parameters->options().nmagic()
2557               && !parameters->options().omagic())
2558             (*p)->set_minimum_p_align(common_pagesize);
2559
2560           if (!are_addresses_set)
2561             {
2562               // If the last segment was readonly, and this one is
2563               // not, then skip the address forward one page,
2564               // maintaining the same position within the page.  This
2565               // lets us store both segments overlapping on a single
2566               // page in the file, but the loader will put them on
2567               // different pages in memory.
2568
2569               addr = align_address(addr, (*p)->maximum_alignment());
2570               aligned_addr = addr;
2571
2572               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2573                 {
2574                   if ((addr & (abi_pagesize - 1)) != 0)
2575                     addr = addr + abi_pagesize;
2576                 }
2577
2578               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2579             }
2580
2581           if (!parameters->options().nmagic()
2582               && !parameters->options().omagic())
2583             off = align_file_offset(off, addr, abi_pagesize);
2584           else if (load_seg == NULL)
2585             {
2586               // This is -N or -n with a section script which prevents
2587               // us from using a load segment.  We need to ensure that
2588               // the file offset is aligned to the alignment of the
2589               // segment.  This is because the linker script
2590               // implicitly assumed a zero offset.  If we don't align
2591               // here, then the alignment of the sections in the
2592               // linker script may not match the alignment of the
2593               // sections in the set_section_addresses call below,
2594               // causing an error about dot moving backward.
2595               off = align_address(off, (*p)->maximum_alignment());
2596             }
2597
2598           unsigned int shndx_hold = *pshndx;
2599           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2600                                                           increase_relro,
2601                                                           &off, pshndx);
2602
2603           // Now that we know the size of this segment, we may be able
2604           // to save a page in memory, at the cost of wasting some
2605           // file space, by instead aligning to the start of a new
2606           // page.  Here we use the real machine page size rather than
2607           // the ABI mandated page size.
2608
2609           if (!are_addresses_set && aligned_addr != addr)
2610             {
2611               uint64_t first_off = (common_pagesize
2612                                     - (aligned_addr
2613                                        & (common_pagesize - 1)));
2614               uint64_t last_off = new_addr & (common_pagesize - 1);
2615               if (first_off > 0
2616                   && last_off > 0
2617                   && ((aligned_addr & ~ (common_pagesize - 1))
2618                       != (new_addr & ~ (common_pagesize - 1)))
2619                   && first_off + last_off <= common_pagesize)
2620                 {
2621                   *pshndx = shndx_hold;
2622                   addr = align_address(aligned_addr, common_pagesize);
2623                   addr = align_address(addr, (*p)->maximum_alignment());
2624                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2625                   off = align_file_offset(off, addr, abi_pagesize);
2626                   new_addr = (*p)->set_section_addresses(this, true, addr,
2627                                                          increase_relro,
2628                                                          &off, pshndx);
2629                 }
2630             }
2631
2632           addr = new_addr;
2633
2634           if (((*p)->flags() & elfcpp::PF_W) == 0)
2635             was_readonly = true;
2636
2637           // Implement --check-sections.  We know that the segments
2638           // are sorted by LMA.
2639           if (check_sections && last_load_segment != NULL)
2640             {
2641               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2642               if (last_load_segment->paddr() + last_load_segment->memsz()
2643                   > (*p)->paddr())
2644                 {
2645                   unsigned long long lb1 = last_load_segment->paddr();
2646                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2647                   unsigned long long lb2 = (*p)->paddr();
2648                   unsigned long long le2 = lb2 + (*p)->memsz();
2649                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2650                                "[0x%llx -> 0x%llx]"),
2651                              lb1, le1, lb2, le2);
2652                 }
2653             }
2654           last_load_segment = *p;
2655         }
2656     }
2657
2658   // Handle the non-PT_LOAD segments, setting their offsets from their
2659   // section's offsets.
2660   for (Segment_list::iterator p = this->segment_list_.begin();
2661        p != this->segment_list_.end();
2662        ++p)
2663     {
2664       if ((*p)->type() != elfcpp::PT_LOAD)
2665         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2666                          ? increase_relro
2667                          : 0);
2668     }
2669
2670   // Set the TLS offsets for each section in the PT_TLS segment.
2671   if (this->tls_segment_ != NULL)
2672     this->tls_segment_->set_tls_offsets();
2673
2674   return off;
2675 }
2676
2677 // Set the offsets of all the allocated sections when doing a
2678 // relocatable link.  This does the same jobs as set_segment_offsets,
2679 // only for a relocatable link.
2680
2681 off_t
2682 Layout::set_relocatable_section_offsets(Output_data* file_header,
2683                                         unsigned int *pshndx)
2684 {
2685   off_t off = 0;
2686
2687   file_header->set_address_and_file_offset(0, 0);
2688   off += file_header->data_size();
2689
2690   for (Section_list::iterator p = this->section_list_.begin();
2691        p != this->section_list_.end();
2692        ++p)
2693     {
2694       // We skip unallocated sections here, except that group sections
2695       // have to come first.
2696       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2697           && (*p)->type() != elfcpp::SHT_GROUP)
2698         continue;
2699
2700       off = align_address(off, (*p)->addralign());
2701
2702       // The linker script might have set the address.
2703       if (!(*p)->is_address_valid())
2704         (*p)->set_address(0);
2705       (*p)->set_file_offset(off);
2706       (*p)->finalize_data_size();
2707       off += (*p)->data_size();
2708
2709       (*p)->set_out_shndx(*pshndx);
2710       ++*pshndx;
2711     }
2712
2713   return off;
2714 }
2715
2716 // Set the file offset of all the sections not associated with a
2717 // segment.
2718
2719 off_t
2720 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2721 {
2722   for (Section_list::iterator p = this->unattached_section_list_.begin();
2723        p != this->unattached_section_list_.end();
2724        ++p)
2725     {
2726       // The symtab section is handled in create_symtab_sections.
2727       if (*p == this->symtab_section_)
2728         continue;
2729
2730       // If we've already set the data size, don't set it again.
2731       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2732         continue;
2733
2734       if (pass == BEFORE_INPUT_SECTIONS_PASS
2735           && (*p)->requires_postprocessing())
2736         {
2737           (*p)->create_postprocessing_buffer();
2738           this->any_postprocessing_sections_ = true;
2739         }
2740
2741       if (pass == BEFORE_INPUT_SECTIONS_PASS
2742           && (*p)->after_input_sections())
2743         continue;
2744       else if (pass == POSTPROCESSING_SECTIONS_PASS
2745                && (!(*p)->after_input_sections()
2746                    || (*p)->type() == elfcpp::SHT_STRTAB))
2747         continue;
2748       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2749                && (!(*p)->after_input_sections()
2750                    || (*p)->type() != elfcpp::SHT_STRTAB))
2751         continue;
2752
2753       off = align_address(off, (*p)->addralign());
2754       (*p)->set_file_offset(off);
2755       (*p)->finalize_data_size();
2756       off += (*p)->data_size();
2757
2758       // At this point the name must be set.
2759       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2760         this->namepool_.add((*p)->name(), false, NULL);
2761     }
2762   return off;
2763 }
2764
2765 // Set the section indexes of all the sections not associated with a
2766 // segment.
2767
2768 unsigned int
2769 Layout::set_section_indexes(unsigned int shndx)
2770 {
2771   for (Section_list::iterator p = this->unattached_section_list_.begin();
2772        p != this->unattached_section_list_.end();
2773        ++p)
2774     {
2775       if (!(*p)->has_out_shndx())
2776         {
2777           (*p)->set_out_shndx(shndx);
2778           ++shndx;
2779         }
2780     }
2781   return shndx;
2782 }
2783
2784 // Set the section addresses according to the linker script.  This is
2785 // only called when we see a SECTIONS clause.  This returns the
2786 // program segment which should hold the file header and segment
2787 // headers, if any.  It will return NULL if they should not be in a
2788 // segment.
2789
2790 Output_segment*
2791 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2792 {
2793   Script_sections* ss = this->script_options_->script_sections();
2794   gold_assert(ss->saw_sections_clause());
2795   return this->script_options_->set_section_addresses(symtab, this);
2796 }
2797
2798 // Place the orphan sections in the linker script.
2799
2800 void
2801 Layout::place_orphan_sections_in_script()
2802 {
2803   Script_sections* ss = this->script_options_->script_sections();
2804   gold_assert(ss->saw_sections_clause());
2805
2806   // Place each orphaned output section in the script.
2807   for (Section_list::iterator p = this->section_list_.begin();
2808        p != this->section_list_.end();
2809        ++p)
2810     {
2811       if (!(*p)->found_in_sections_clause())
2812         ss->place_orphan(*p);
2813     }
2814 }
2815
2816 // Count the local symbols in the regular symbol table and the dynamic
2817 // symbol table, and build the respective string pools.
2818
2819 void
2820 Layout::count_local_symbols(const Task* task,
2821                             const Input_objects* input_objects)
2822 {
2823   // First, figure out an upper bound on the number of symbols we'll
2824   // be inserting into each pool.  This helps us create the pools with
2825   // the right size, to avoid unnecessary hashtable resizing.
2826   unsigned int symbol_count = 0;
2827   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2828        p != input_objects->relobj_end();
2829        ++p)
2830     symbol_count += (*p)->local_symbol_count();
2831
2832   // Go from "upper bound" to "estimate."  We overcount for two
2833   // reasons: we double-count symbols that occur in more than one
2834   // object file, and we count symbols that are dropped from the
2835   // output.  Add it all together and assume we overcount by 100%.
2836   symbol_count /= 2;
2837
2838   // We assume all symbols will go into both the sympool and dynpool.
2839   this->sympool_.reserve(symbol_count);
2840   this->dynpool_.reserve(symbol_count);
2841
2842   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2843        p != input_objects->relobj_end();
2844        ++p)
2845     {
2846       Task_lock_obj<Object> tlo(task, *p);
2847       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2848     }
2849 }
2850
2851 // Create the symbol table sections.  Here we also set the final
2852 // values of the symbols.  At this point all the loadable sections are
2853 // fully laid out.  SHNUM is the number of sections so far.
2854
2855 void
2856 Layout::create_symtab_sections(const Input_objects* input_objects,
2857                                Symbol_table* symtab,
2858                                unsigned int shnum,
2859                                off_t* poff)
2860 {
2861   int symsize;
2862   unsigned int align;
2863   if (parameters->target().get_size() == 32)
2864     {
2865       symsize = elfcpp::Elf_sizes<32>::sym_size;
2866       align = 4;
2867     }
2868   else if (parameters->target().get_size() == 64)
2869     {
2870       symsize = elfcpp::Elf_sizes<64>::sym_size;
2871       align = 8;
2872     }
2873   else
2874     gold_unreachable();
2875
2876   off_t off = *poff;
2877   off = align_address(off, align);
2878   off_t startoff = off;
2879
2880   // Save space for the dummy symbol at the start of the section.  We
2881   // never bother to write this out--it will just be left as zero.
2882   off += symsize;
2883   unsigned int local_symbol_index = 1;
2884
2885   // Add STT_SECTION symbols for each Output section which needs one.
2886   for (Section_list::iterator p = this->section_list_.begin();
2887        p != this->section_list_.end();
2888        ++p)
2889     {
2890       if (!(*p)->needs_symtab_index())
2891         (*p)->set_symtab_index(-1U);
2892       else
2893         {
2894           (*p)->set_symtab_index(local_symbol_index);
2895           ++local_symbol_index;
2896           off += symsize;
2897         }
2898     }
2899
2900   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2901        p != input_objects->relobj_end();
2902        ++p)
2903     {
2904       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2905                                                         off, symtab);
2906       off += (index - local_symbol_index) * symsize;
2907       local_symbol_index = index;
2908     }
2909
2910   unsigned int local_symcount = local_symbol_index;
2911   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2912
2913   off_t dynoff;
2914   size_t dyn_global_index;
2915   size_t dyncount;
2916   if (this->dynsym_section_ == NULL)
2917     {
2918       dynoff = 0;
2919       dyn_global_index = 0;
2920       dyncount = 0;
2921     }
2922   else
2923     {
2924       dyn_global_index = this->dynsym_section_->info();
2925       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2926       dynoff = this->dynsym_section_->offset() + locsize;
2927       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2928       gold_assert(static_cast<off_t>(dyncount * symsize)
2929                   == this->dynsym_section_->data_size() - locsize);
2930     }
2931
2932   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2933                          &this->sympool_, &local_symcount);
2934
2935   if (!parameters->options().strip_all())
2936     {
2937       this->sympool_.set_string_offsets();
2938
2939       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2940       Output_section* osymtab = this->make_output_section(symtab_name,
2941                                                           elfcpp::SHT_SYMTAB,
2942                                                           0, ORDER_INVALID,
2943                                                           false);
2944       this->symtab_section_ = osymtab;
2945
2946       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2947                                                              align,
2948                                                              "** symtab");
2949       osymtab->add_output_section_data(pos);
2950
2951       // We generate a .symtab_shndx section if we have more than
2952       // SHN_LORESERVE sections.  Technically it is possible that we
2953       // don't need one, because it is possible that there are no
2954       // symbols in any of sections with indexes larger than
2955       // SHN_LORESERVE.  That is probably unusual, though, and it is
2956       // easier to always create one than to compute section indexes
2957       // twice (once here, once when writing out the symbols).
2958       if (shnum >= elfcpp::SHN_LORESERVE)
2959         {
2960           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2961                                                                false, NULL);
2962           Output_section* osymtab_xindex =
2963             this->make_output_section(symtab_xindex_name,
2964                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
2965                                       ORDER_INVALID, false);
2966
2967           size_t symcount = (off - startoff) / symsize;
2968           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2969
2970           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2971
2972           osymtab_xindex->set_link_section(osymtab);
2973           osymtab_xindex->set_addralign(4);
2974           osymtab_xindex->set_entsize(4);
2975
2976           osymtab_xindex->set_after_input_sections();
2977
2978           // This tells the driver code to wait until the symbol table
2979           // has written out before writing out the postprocessing
2980           // sections, including the .symtab_shndx section.
2981           this->any_postprocessing_sections_ = true;
2982         }
2983
2984       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2985       Output_section* ostrtab = this->make_output_section(strtab_name,
2986                                                           elfcpp::SHT_STRTAB,
2987                                                           0, ORDER_INVALID,
2988                                                           false);
2989
2990       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2991       ostrtab->add_output_section_data(pstr);
2992
2993       osymtab->set_file_offset(startoff);
2994       osymtab->finalize_data_size();
2995       osymtab->set_link_section(ostrtab);
2996       osymtab->set_info(local_symcount);
2997       osymtab->set_entsize(symsize);
2998
2999       *poff = off;
3000     }
3001 }
3002
3003 // Create the .shstrtab section, which holds the names of the
3004 // sections.  At the time this is called, we have created all the
3005 // output sections except .shstrtab itself.
3006
3007 Output_section*
3008 Layout::create_shstrtab()
3009 {
3010   // FIXME: We don't need to create a .shstrtab section if we are
3011   // stripping everything.
3012
3013   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3014
3015   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3016                                                  ORDER_INVALID, false);
3017
3018   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3019     {
3020       // We can't write out this section until we've set all the
3021       // section names, and we don't set the names of compressed
3022       // output sections until relocations are complete.  FIXME: With
3023       // the current names we use, this is unnecessary.
3024       os->set_after_input_sections();
3025     }
3026
3027   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3028   os->add_output_section_data(posd);
3029
3030   return os;
3031 }
3032
3033 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3034 // offset.
3035
3036 void
3037 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3038 {
3039   Output_section_headers* oshdrs;
3040   oshdrs = new Output_section_headers(this,
3041                                       &this->segment_list_,
3042                                       &this->section_list_,
3043                                       &this->unattached_section_list_,
3044                                       &this->namepool_,
3045                                       shstrtab_section);
3046   off_t off = align_address(*poff, oshdrs->addralign());
3047   oshdrs->set_address_and_file_offset(0, off);
3048   off += oshdrs->data_size();
3049   *poff = off;
3050   this->section_headers_ = oshdrs;
3051 }
3052
3053 // Count the allocated sections.
3054
3055 size_t
3056 Layout::allocated_output_section_count() const
3057 {
3058   size_t section_count = 0;
3059   for (Segment_list::const_iterator p = this->segment_list_.begin();
3060        p != this->segment_list_.end();
3061        ++p)
3062     section_count += (*p)->output_section_count();
3063   return section_count;
3064 }
3065
3066 // Create the dynamic symbol table.
3067
3068 void
3069 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3070                               Symbol_table* symtab,
3071                               Output_section **pdynstr,
3072                               unsigned int* plocal_dynamic_count,
3073                               std::vector<Symbol*>* pdynamic_symbols,
3074                               Versions* pversions)
3075 {
3076   // Count all the symbols in the dynamic symbol table, and set the
3077   // dynamic symbol indexes.
3078
3079   // Skip symbol 0, which is always all zeroes.
3080   unsigned int index = 1;
3081
3082   // Add STT_SECTION symbols for each Output section which needs one.
3083   for (Section_list::iterator p = this->section_list_.begin();
3084        p != this->section_list_.end();
3085        ++p)
3086     {
3087       if (!(*p)->needs_dynsym_index())
3088         (*p)->set_dynsym_index(-1U);
3089       else
3090         {
3091           (*p)->set_dynsym_index(index);
3092           ++index;
3093         }
3094     }
3095
3096   // Count the local symbols that need to go in the dynamic symbol table,
3097   // and set the dynamic symbol indexes.
3098   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3099        p != input_objects->relobj_end();
3100        ++p)
3101     {
3102       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3103       index = new_index;
3104     }
3105
3106   unsigned int local_symcount = index;
3107   *plocal_dynamic_count = local_symcount;
3108
3109   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3110                                      &this->dynpool_, pversions);
3111
3112   int symsize;
3113   unsigned int align;
3114   const int size = parameters->target().get_size();
3115   if (size == 32)
3116     {
3117       symsize = elfcpp::Elf_sizes<32>::sym_size;
3118       align = 4;
3119     }
3120   else if (size == 64)
3121     {
3122       symsize = elfcpp::Elf_sizes<64>::sym_size;
3123       align = 8;
3124     }
3125   else
3126     gold_unreachable();
3127
3128   // Create the dynamic symbol table section.
3129
3130   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3131                                                        elfcpp::SHT_DYNSYM,
3132                                                        elfcpp::SHF_ALLOC,
3133                                                        false,
3134                                                        ORDER_DYNAMIC_LINKER,
3135                                                        false);
3136
3137   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3138                                                            align,
3139                                                            "** dynsym");
3140   dynsym->add_output_section_data(odata);
3141
3142   dynsym->set_info(local_symcount);
3143   dynsym->set_entsize(symsize);
3144   dynsym->set_addralign(align);
3145
3146   this->dynsym_section_ = dynsym;
3147
3148   Output_data_dynamic* const odyn = this->dynamic_data_;
3149   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3150   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3151
3152   // If there are more than SHN_LORESERVE allocated sections, we
3153   // create a .dynsym_shndx section.  It is possible that we don't
3154   // need one, because it is possible that there are no dynamic
3155   // symbols in any of the sections with indexes larger than
3156   // SHN_LORESERVE.  This is probably unusual, though, and at this
3157   // time we don't know the actual section indexes so it is
3158   // inconvenient to check.
3159   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3160     {
3161       Output_section* dynsym_xindex =
3162         this->choose_output_section(NULL, ".dynsym_shndx",
3163                                     elfcpp::SHT_SYMTAB_SHNDX,
3164                                     elfcpp::SHF_ALLOC,
3165                                     false, ORDER_DYNAMIC_LINKER, false);
3166
3167       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3168
3169       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3170
3171       dynsym_xindex->set_link_section(dynsym);
3172       dynsym_xindex->set_addralign(4);
3173       dynsym_xindex->set_entsize(4);
3174
3175       dynsym_xindex->set_after_input_sections();
3176
3177       // This tells the driver code to wait until the symbol table has
3178       // written out before writing out the postprocessing sections,
3179       // including the .dynsym_shndx section.
3180       this->any_postprocessing_sections_ = true;
3181     }
3182
3183   // Create the dynamic string table section.
3184
3185   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3186                                                        elfcpp::SHT_STRTAB,
3187                                                        elfcpp::SHF_ALLOC,
3188                                                        false,
3189                                                        ORDER_DYNAMIC_LINKER,
3190                                                        false);
3191
3192   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3193   dynstr->add_output_section_data(strdata);
3194
3195   dynsym->set_link_section(dynstr);
3196   this->dynamic_section_->set_link_section(dynstr);
3197
3198   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3199   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3200
3201   *pdynstr = dynstr;
3202
3203   // Create the hash tables.
3204
3205   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3206       || strcmp(parameters->options().hash_style(), "both") == 0)
3207     {
3208       unsigned char* phash;
3209       unsigned int hashlen;
3210       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3211                                     &phash, &hashlen);
3212
3213       Output_section* hashsec =
3214         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3215                                     elfcpp::SHF_ALLOC, false,
3216                                     ORDER_DYNAMIC_LINKER, false);
3217
3218       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3219                                                                    hashlen,
3220                                                                    align,
3221                                                                    "** hash");
3222       hashsec->add_output_section_data(hashdata);
3223
3224       hashsec->set_link_section(dynsym);
3225       hashsec->set_entsize(4);
3226
3227       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3228     }
3229
3230   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3231       || strcmp(parameters->options().hash_style(), "both") == 0)
3232     {
3233       unsigned char* phash;
3234       unsigned int hashlen;
3235       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3236                                     &phash, &hashlen);
3237
3238       Output_section* hashsec =
3239         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3240                                     elfcpp::SHF_ALLOC, false,
3241                                     ORDER_DYNAMIC_LINKER, false);
3242
3243       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3244                                                                    hashlen,
3245                                                                    align,
3246                                                                    "** hash");
3247       hashsec->add_output_section_data(hashdata);
3248
3249       hashsec->set_link_section(dynsym);
3250
3251       // For a 64-bit target, the entries in .gnu.hash do not have a
3252       // uniform size, so we only set the entry size for a 32-bit
3253       // target.
3254       if (parameters->target().get_size() == 32)
3255         hashsec->set_entsize(4);
3256
3257       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3258     }
3259 }
3260
3261 // Assign offsets to each local portion of the dynamic symbol table.
3262
3263 void
3264 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3265 {
3266   Output_section* dynsym = this->dynsym_section_;
3267   gold_assert(dynsym != NULL);
3268
3269   off_t off = dynsym->offset();
3270
3271   // Skip the dummy symbol at the start of the section.
3272   off += dynsym->entsize();
3273
3274   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3275        p != input_objects->relobj_end();
3276        ++p)
3277     {
3278       unsigned int count = (*p)->set_local_dynsym_offset(off);
3279       off += count * dynsym->entsize();
3280     }
3281 }
3282
3283 // Create the version sections.
3284
3285 void
3286 Layout::create_version_sections(const Versions* versions,
3287                                 const Symbol_table* symtab,
3288                                 unsigned int local_symcount,
3289                                 const std::vector<Symbol*>& dynamic_symbols,
3290                                 const Output_section* dynstr)
3291 {
3292   if (!versions->any_defs() && !versions->any_needs())
3293     return;
3294
3295   switch (parameters->size_and_endianness())
3296     {
3297 #ifdef HAVE_TARGET_32_LITTLE
3298     case Parameters::TARGET_32_LITTLE:
3299       this->sized_create_version_sections<32, false>(versions, symtab,
3300                                                      local_symcount,
3301                                                      dynamic_symbols, dynstr);
3302       break;
3303 #endif
3304 #ifdef HAVE_TARGET_32_BIG
3305     case Parameters::TARGET_32_BIG:
3306       this->sized_create_version_sections<32, true>(versions, symtab,
3307                                                     local_symcount,
3308                                                     dynamic_symbols, dynstr);
3309       break;
3310 #endif
3311 #ifdef HAVE_TARGET_64_LITTLE
3312     case Parameters::TARGET_64_LITTLE:
3313       this->sized_create_version_sections<64, false>(versions, symtab,
3314                                                      local_symcount,
3315                                                      dynamic_symbols, dynstr);
3316       break;
3317 #endif
3318 #ifdef HAVE_TARGET_64_BIG
3319     case Parameters::TARGET_64_BIG:
3320       this->sized_create_version_sections<64, true>(versions, symtab,
3321                                                     local_symcount,
3322                                                     dynamic_symbols, dynstr);
3323       break;
3324 #endif
3325     default:
3326       gold_unreachable();
3327     }
3328 }
3329
3330 // Create the version sections, sized version.
3331
3332 template<int size, bool big_endian>
3333 void
3334 Layout::sized_create_version_sections(
3335     const Versions* versions,
3336     const Symbol_table* symtab,
3337     unsigned int local_symcount,
3338     const std::vector<Symbol*>& dynamic_symbols,
3339     const Output_section* dynstr)
3340 {
3341   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3342                                                      elfcpp::SHT_GNU_versym,
3343                                                      elfcpp::SHF_ALLOC,
3344                                                      false,
3345                                                      ORDER_DYNAMIC_LINKER,
3346                                                      false);
3347
3348   unsigned char* vbuf;
3349   unsigned int vsize;
3350   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3351                                                       local_symcount,
3352                                                       dynamic_symbols,
3353                                                       &vbuf, &vsize);
3354
3355   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3356                                                             "** versions");
3357
3358   vsec->add_output_section_data(vdata);
3359   vsec->set_entsize(2);
3360   vsec->set_link_section(this->dynsym_section_);
3361
3362   Output_data_dynamic* const odyn = this->dynamic_data_;
3363   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3364
3365   if (versions->any_defs())
3366     {
3367       Output_section* vdsec;
3368       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3369                                          elfcpp::SHT_GNU_verdef,
3370                                          elfcpp::SHF_ALLOC,
3371                                          false, ORDER_DYNAMIC_LINKER, false);
3372
3373       unsigned char* vdbuf;
3374       unsigned int vdsize;
3375       unsigned int vdentries;
3376       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3377                                                        &vdsize, &vdentries);
3378
3379       Output_section_data* vddata =
3380         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3381
3382       vdsec->add_output_section_data(vddata);
3383       vdsec->set_link_section(dynstr);
3384       vdsec->set_info(vdentries);
3385
3386       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3387       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3388     }
3389
3390   if (versions->any_needs())
3391     {
3392       Output_section* vnsec;
3393       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3394                                           elfcpp::SHT_GNU_verneed,
3395                                           elfcpp::SHF_ALLOC,
3396                                           false, ORDER_DYNAMIC_LINKER, false);
3397
3398       unsigned char* vnbuf;
3399       unsigned int vnsize;
3400       unsigned int vnentries;
3401       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3402                                                         &vnbuf, &vnsize,
3403                                                         &vnentries);
3404
3405       Output_section_data* vndata =
3406         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3407
3408       vnsec->add_output_section_data(vndata);
3409       vnsec->set_link_section(dynstr);
3410       vnsec->set_info(vnentries);
3411
3412       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3413       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3414     }
3415 }
3416
3417 // Create the .interp section and PT_INTERP segment.
3418
3419 void
3420 Layout::create_interp(const Target* target)
3421 {
3422   const char* interp = parameters->options().dynamic_linker();
3423   if (interp == NULL)
3424     {
3425       interp = target->dynamic_linker();
3426       gold_assert(interp != NULL);
3427     }
3428
3429   size_t len = strlen(interp) + 1;
3430
3431   Output_section_data* odata = new Output_data_const(interp, len, 1);
3432
3433   Output_section* osec = this->choose_output_section(NULL, ".interp",
3434                                                      elfcpp::SHT_PROGBITS,
3435                                                      elfcpp::SHF_ALLOC,
3436                                                      false, ORDER_INTERP,
3437                                                      false);
3438   osec->add_output_section_data(odata);
3439
3440   if (!this->script_options_->saw_phdrs_clause())
3441     {
3442       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3443                                                        elfcpp::PF_R);
3444       oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3445     }
3446 }
3447
3448 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3449 // called by the target-specific code.  This does nothing if not doing
3450 // a dynamic link.
3451
3452 // USE_REL is true for REL relocs rather than RELA relocs.
3453
3454 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3455
3456 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3457 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3458 // some targets have multiple reloc sections in PLT_REL.
3459
3460 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3461 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3462
3463 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3464 // executable.
3465
3466 void
3467 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3468                                 const Output_data* plt_rel,
3469                                 const Output_data_reloc_generic* dyn_rel,
3470                                 bool add_debug, bool dynrel_includes_plt)
3471 {
3472   Output_data_dynamic* odyn = this->dynamic_data_;
3473   if (odyn == NULL)
3474     return;
3475
3476   if (plt_got != NULL && plt_got->output_section() != NULL)
3477     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3478
3479   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3480     {
3481       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3482       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3483       odyn->add_constant(elfcpp::DT_PLTREL,
3484                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3485     }
3486
3487   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3488     {
3489       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3490                                 dyn_rel);
3491       if (plt_rel != NULL && dynrel_includes_plt)
3492         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3493                                dyn_rel, plt_rel);
3494       else
3495         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3496                                dyn_rel);
3497       const int size = parameters->target().get_size();
3498       elfcpp::DT rel_tag;
3499       int rel_size;
3500       if (use_rel)
3501         {
3502           rel_tag = elfcpp::DT_RELENT;
3503           if (size == 32)
3504             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3505           else if (size == 64)
3506             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3507           else
3508             gold_unreachable();
3509         }
3510       else
3511         {
3512           rel_tag = elfcpp::DT_RELAENT;
3513           if (size == 32)
3514             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3515           else if (size == 64)
3516             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3517           else
3518             gold_unreachable();
3519         }
3520       odyn->add_constant(rel_tag, rel_size);
3521
3522       if (parameters->options().combreloc())
3523         {
3524           size_t c = dyn_rel->relative_reloc_count();
3525           if (c > 0)
3526             odyn->add_constant((use_rel
3527                                 ? elfcpp::DT_RELCOUNT
3528                                 : elfcpp::DT_RELACOUNT),
3529                                c);
3530         }
3531     }
3532
3533   if (add_debug && !parameters->options().shared())
3534     {
3535       // The value of the DT_DEBUG tag is filled in by the dynamic
3536       // linker at run time, and used by the debugger.
3537       odyn->add_constant(elfcpp::DT_DEBUG, 0);
3538     }
3539 }
3540
3541 // Finish the .dynamic section and PT_DYNAMIC segment.
3542
3543 void
3544 Layout::finish_dynamic_section(const Input_objects* input_objects,
3545                                const Symbol_table* symtab)
3546 {
3547   if (!this->script_options_->saw_phdrs_clause())
3548     {
3549       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3550                                                        (elfcpp::PF_R
3551                                                         | elfcpp::PF_W));
3552       oseg->add_output_section_to_nonload(this->dynamic_section_,
3553                                           elfcpp::PF_R | elfcpp::PF_W);
3554     }
3555
3556   Output_data_dynamic* const odyn = this->dynamic_data_;
3557
3558   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3559        p != input_objects->dynobj_end();
3560        ++p)
3561     {
3562       if (!(*p)->is_needed()
3563           && (*p)->input_file()->options().as_needed())
3564         {
3565           // This dynamic object was linked with --as-needed, but it
3566           // is not needed.
3567           continue;
3568         }
3569
3570       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3571     }
3572
3573   if (parameters->options().shared())
3574     {
3575       const char* soname = parameters->options().soname();
3576       if (soname != NULL)
3577         odyn->add_string(elfcpp::DT_SONAME, soname);
3578     }
3579
3580   Symbol* sym = symtab->lookup(parameters->options().init());
3581   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3582     odyn->add_symbol(elfcpp::DT_INIT, sym);
3583
3584   sym = symtab->lookup(parameters->options().fini());
3585   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3586     odyn->add_symbol(elfcpp::DT_FINI, sym);
3587
3588   // Look for .init_array, .preinit_array and .fini_array by checking
3589   // section types.
3590   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3591       p != this->section_list_.end();
3592       ++p)
3593     switch((*p)->type())
3594       {
3595       case elfcpp::SHT_FINI_ARRAY:
3596         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3597         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3598         break;
3599       case elfcpp::SHT_INIT_ARRAY:
3600         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3601         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3602         break;
3603       case elfcpp::SHT_PREINIT_ARRAY:
3604         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3605         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3606         break;
3607       default:
3608         break;
3609       }
3610   
3611   // Add a DT_RPATH entry if needed.
3612   const General_options::Dir_list& rpath(parameters->options().rpath());
3613   if (!rpath.empty())
3614     {
3615       std::string rpath_val;
3616       for (General_options::Dir_list::const_iterator p = rpath.begin();
3617            p != rpath.end();
3618            ++p)
3619         {
3620           if (rpath_val.empty())
3621             rpath_val = p->name();
3622           else
3623             {
3624               // Eliminate duplicates.
3625               General_options::Dir_list::const_iterator q;
3626               for (q = rpath.begin(); q != p; ++q)
3627                 if (q->name() == p->name())
3628                   break;
3629               if (q == p)
3630                 {
3631                   rpath_val += ':';
3632                   rpath_val += p->name();
3633                 }
3634             }
3635         }
3636
3637       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3638       if (parameters->options().enable_new_dtags())
3639         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3640     }
3641
3642   // Look for text segments that have dynamic relocations.
3643   bool have_textrel = false;
3644   if (!this->script_options_->saw_sections_clause())
3645     {
3646       for (Segment_list::const_iterator p = this->segment_list_.begin();
3647            p != this->segment_list_.end();
3648            ++p)
3649         {
3650           if (((*p)->flags() & elfcpp::PF_W) == 0
3651               && (*p)->has_dynamic_reloc())
3652             {
3653               have_textrel = true;
3654               break;
3655             }
3656         }
3657     }
3658   else
3659     {
3660       // We don't know the section -> segment mapping, so we are
3661       // conservative and just look for readonly sections with
3662       // relocations.  If those sections wind up in writable segments,
3663       // then we have created an unnecessary DT_TEXTREL entry.
3664       for (Section_list::const_iterator p = this->section_list_.begin();
3665            p != this->section_list_.end();
3666            ++p)
3667         {
3668           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3669               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3670               && ((*p)->has_dynamic_reloc()))
3671             {
3672               have_textrel = true;
3673               break;
3674             }
3675         }
3676     }
3677
3678   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3679   // post-link tools can easily modify these flags if desired.
3680   unsigned int flags = 0;
3681   if (have_textrel)
3682     {
3683       // Add a DT_TEXTREL for compatibility with older loaders.
3684       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3685       flags |= elfcpp::DF_TEXTREL;
3686
3687       if (parameters->options().text())
3688         gold_error(_("read-only segment has dynamic relocations"));
3689       else if (parameters->options().warn_shared_textrel()
3690                && parameters->options().shared())
3691         gold_warning(_("shared library text segment is not shareable"));
3692     }
3693   if (parameters->options().shared() && this->has_static_tls())
3694     flags |= elfcpp::DF_STATIC_TLS;
3695   if (parameters->options().origin())
3696     flags |= elfcpp::DF_ORIGIN;
3697   if (parameters->options().Bsymbolic())
3698     {
3699       flags |= elfcpp::DF_SYMBOLIC;
3700       // Add DT_SYMBOLIC for compatibility with older loaders.
3701       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3702     }
3703   if (parameters->options().now())
3704     flags |= elfcpp::DF_BIND_NOW;
3705   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3706
3707   flags = 0;
3708   if (parameters->options().initfirst())
3709     flags |= elfcpp::DF_1_INITFIRST;
3710   if (parameters->options().interpose())
3711     flags |= elfcpp::DF_1_INTERPOSE;
3712   if (parameters->options().loadfltr())
3713     flags |= elfcpp::DF_1_LOADFLTR;
3714   if (parameters->options().nodefaultlib())
3715     flags |= elfcpp::DF_1_NODEFLIB;
3716   if (parameters->options().nodelete())
3717     flags |= elfcpp::DF_1_NODELETE;
3718   if (parameters->options().nodlopen())
3719     flags |= elfcpp::DF_1_NOOPEN;
3720   if (parameters->options().nodump())
3721     flags |= elfcpp::DF_1_NODUMP;
3722   if (!parameters->options().shared())
3723     flags &= ~(elfcpp::DF_1_INITFIRST
3724                | elfcpp::DF_1_NODELETE
3725                | elfcpp::DF_1_NOOPEN);
3726   if (parameters->options().origin())
3727     flags |= elfcpp::DF_1_ORIGIN;
3728   if (parameters->options().now())
3729     flags |= elfcpp::DF_1_NOW;
3730   if (flags)
3731     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3732 }
3733
3734 // Set the size of the _DYNAMIC symbol table to be the size of the
3735 // dynamic data.
3736
3737 void
3738 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3739 {
3740   Output_data_dynamic* const odyn = this->dynamic_data_;
3741   odyn->finalize_data_size();
3742   off_t data_size = odyn->data_size();
3743   const int size = parameters->target().get_size();
3744   if (size == 32)
3745     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3746   else if (size == 64)
3747     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3748   else
3749     gold_unreachable();
3750 }
3751
3752 // The mapping of input section name prefixes to output section names.
3753 // In some cases one prefix is itself a prefix of another prefix; in
3754 // such a case the longer prefix must come first.  These prefixes are
3755 // based on the GNU linker default ELF linker script.
3756
3757 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3758 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3759 {
3760   MAPPING_INIT(".text.", ".text"),
3761   MAPPING_INIT(".ctors.", ".ctors"),
3762   MAPPING_INIT(".dtors.", ".dtors"),
3763   MAPPING_INIT(".rodata.", ".rodata"),
3764   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3765   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3766   MAPPING_INIT(".data.", ".data"),
3767   MAPPING_INIT(".bss.", ".bss"),
3768   MAPPING_INIT(".tdata.", ".tdata"),
3769   MAPPING_INIT(".tbss.", ".tbss"),
3770   MAPPING_INIT(".init_array.", ".init_array"),
3771   MAPPING_INIT(".fini_array.", ".fini_array"),
3772   MAPPING_INIT(".sdata.", ".sdata"),
3773   MAPPING_INIT(".sbss.", ".sbss"),
3774   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3775   // differently depending on whether it is creating a shared library.
3776   MAPPING_INIT(".sdata2.", ".sdata"),
3777   MAPPING_INIT(".sbss2.", ".sbss"),
3778   MAPPING_INIT(".lrodata.", ".lrodata"),
3779   MAPPING_INIT(".ldata.", ".ldata"),
3780   MAPPING_INIT(".lbss.", ".lbss"),
3781   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3782   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3783   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3784   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3785   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3786   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3787   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3788   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3789   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3790   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3791   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3792   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3793   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3794   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3795   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3796   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3797   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3798   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3799   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3800   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3801   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3802 };
3803 #undef MAPPING_INIT
3804
3805 const int Layout::section_name_mapping_count =
3806   (sizeof(Layout::section_name_mapping)
3807    / sizeof(Layout::section_name_mapping[0]));
3808
3809 // Choose the output section name to use given an input section name.
3810 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3811 // length of NAME.
3812
3813 const char*
3814 Layout::output_section_name(const char* name, size_t* plen)
3815 {
3816   // gcc 4.3 generates the following sorts of section names when it
3817   // needs a section name specific to a function:
3818   //   .text.FN
3819   //   .rodata.FN
3820   //   .sdata2.FN
3821   //   .data.FN
3822   //   .data.rel.FN
3823   //   .data.rel.local.FN
3824   //   .data.rel.ro.FN
3825   //   .data.rel.ro.local.FN
3826   //   .sdata.FN
3827   //   .bss.FN
3828   //   .sbss.FN
3829   //   .tdata.FN
3830   //   .tbss.FN
3831
3832   // The GNU linker maps all of those to the part before the .FN,
3833   // except that .data.rel.local.FN is mapped to .data, and
3834   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3835   // beginning with .data.rel.ro.local are grouped together.
3836
3837   // For an anonymous namespace, the string FN can contain a '.'.
3838
3839   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3840   // GNU linker maps to .rodata.
3841
3842   // The .data.rel.ro sections are used with -z relro.  The sections
3843   // are recognized by name.  We use the same names that the GNU
3844   // linker does for these sections.
3845
3846   // It is hard to handle this in a principled way, so we don't even
3847   // try.  We use a table of mappings.  If the input section name is
3848   // not found in the table, we simply use it as the output section
3849   // name.
3850
3851   const Section_name_mapping* psnm = section_name_mapping;
3852   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3853     {
3854       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3855         {
3856           *plen = psnm->tolen;
3857           return psnm->to;
3858         }
3859     }
3860
3861   // Compressed debug sections should be mapped to the corresponding
3862   // uncompressed section.
3863   if (is_compressed_debug_section(name))
3864     {
3865       size_t len = strlen(name);
3866       char *uncompressed_name = new char[len];
3867       uncompressed_name[0] = '.';
3868       gold_assert(name[0] == '.' && name[1] == 'z');
3869       strncpy(&uncompressed_name[1], &name[2], len - 2);
3870       uncompressed_name[len - 1] = '\0';
3871       *plen = len - 1;
3872       return uncompressed_name;
3873     }
3874
3875   return name;
3876 }
3877
3878 // Check if a comdat group or .gnu.linkonce section with the given
3879 // NAME is selected for the link.  If there is already a section,
3880 // *KEPT_SECTION is set to point to the existing section and the
3881 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3882 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3883 // *KEPT_SECTION is set to the internal copy and the function returns
3884 // true.
3885
3886 bool
3887 Layout::find_or_add_kept_section(const std::string& name,
3888                                  Relobj* object,
3889                                  unsigned int shndx,
3890                                  bool is_comdat,
3891                                  bool is_group_name,
3892                                  Kept_section** kept_section)
3893 {
3894   // It's normal to see a couple of entries here, for the x86 thunk
3895   // sections.  If we see more than a few, we're linking a C++
3896   // program, and we resize to get more space to minimize rehashing.
3897   if (this->signatures_.size() > 4
3898       && !this->resized_signatures_)
3899     {
3900       reserve_unordered_map(&this->signatures_,
3901                             this->number_of_input_files_ * 64);
3902       this->resized_signatures_ = true;
3903     }
3904
3905   Kept_section candidate;
3906   std::pair<Signatures::iterator, bool> ins =
3907     this->signatures_.insert(std::make_pair(name, candidate));
3908
3909   if (kept_section != NULL)
3910     *kept_section = &ins.first->second;
3911   if (ins.second)
3912     {
3913       // This is the first time we've seen this signature.
3914       ins.first->second.set_object(object);
3915       ins.first->second.set_shndx(shndx);
3916       if (is_comdat)
3917         ins.first->second.set_is_comdat();
3918       if (is_group_name)
3919         ins.first->second.set_is_group_name();
3920       return true;
3921     }
3922
3923   // We have already seen this signature.
3924
3925   if (ins.first->second.is_group_name())
3926     {
3927       // We've already seen a real section group with this signature.
3928       // If the kept group is from a plugin object, and we're in the
3929       // replacement phase, accept the new one as a replacement.
3930       if (ins.first->second.object() == NULL
3931           && parameters->options().plugins()->in_replacement_phase())
3932         {
3933           ins.first->second.set_object(object);
3934           ins.first->second.set_shndx(shndx);
3935           return true;
3936         }
3937       return false;
3938     }
3939   else if (is_group_name)
3940     {
3941       // This is a real section group, and we've already seen a
3942       // linkonce section with this signature.  Record that we've seen
3943       // a section group, and don't include this section group.
3944       ins.first->second.set_is_group_name();
3945       return false;
3946     }
3947   else
3948     {
3949       // We've already seen a linkonce section and this is a linkonce
3950       // section.  These don't block each other--this may be the same
3951       // symbol name with different section types.
3952       return true;
3953     }
3954 }
3955
3956 // Store the allocated sections into the section list.
3957
3958 void
3959 Layout::get_allocated_sections(Section_list* section_list) const
3960 {
3961   for (Section_list::const_iterator p = this->section_list_.begin();
3962        p != this->section_list_.end();
3963        ++p)
3964     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3965       section_list->push_back(*p);
3966 }
3967
3968 // Create an output segment.
3969
3970 Output_segment*
3971 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3972 {
3973   gold_assert(!parameters->options().relocatable());
3974   Output_segment* oseg = new Output_segment(type, flags);
3975   this->segment_list_.push_back(oseg);
3976
3977   if (type == elfcpp::PT_TLS)
3978     this->tls_segment_ = oseg;
3979   else if (type == elfcpp::PT_GNU_RELRO)
3980     this->relro_segment_ = oseg;
3981
3982   return oseg;
3983 }
3984
3985 // Write out the Output_sections.  Most won't have anything to write,
3986 // since most of the data will come from input sections which are
3987 // handled elsewhere.  But some Output_sections do have Output_data.
3988
3989 void
3990 Layout::write_output_sections(Output_file* of) const
3991 {
3992   for (Section_list::const_iterator p = this->section_list_.begin();
3993        p != this->section_list_.end();
3994        ++p)
3995     {
3996       if (!(*p)->after_input_sections())
3997         (*p)->write(of);
3998     }
3999 }
4000
4001 // Write out data not associated with a section or the symbol table.
4002
4003 void
4004 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4005 {
4006   if (!parameters->options().strip_all())
4007     {
4008       const Output_section* symtab_section = this->symtab_section_;
4009       for (Section_list::const_iterator p = this->section_list_.begin();
4010            p != this->section_list_.end();
4011            ++p)
4012         {
4013           if ((*p)->needs_symtab_index())
4014             {
4015               gold_assert(symtab_section != NULL);
4016               unsigned int index = (*p)->symtab_index();
4017               gold_assert(index > 0 && index != -1U);
4018               off_t off = (symtab_section->offset()
4019                            + index * symtab_section->entsize());
4020               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4021             }
4022         }
4023     }
4024
4025   const Output_section* dynsym_section = this->dynsym_section_;
4026   for (Section_list::const_iterator p = this->section_list_.begin();
4027        p != this->section_list_.end();
4028        ++p)
4029     {
4030       if ((*p)->needs_dynsym_index())
4031         {
4032           gold_assert(dynsym_section != NULL);
4033           unsigned int index = (*p)->dynsym_index();
4034           gold_assert(index > 0 && index != -1U);
4035           off_t off = (dynsym_section->offset()
4036                        + index * dynsym_section->entsize());
4037           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4038         }
4039     }
4040
4041   // Write out the Output_data which are not in an Output_section.
4042   for (Data_list::const_iterator p = this->special_output_list_.begin();
4043        p != this->special_output_list_.end();
4044        ++p)
4045     (*p)->write(of);
4046 }
4047
4048 // Write out the Output_sections which can only be written after the
4049 // input sections are complete.
4050
4051 void
4052 Layout::write_sections_after_input_sections(Output_file* of)
4053 {
4054   // Determine the final section offsets, and thus the final output
4055   // file size.  Note we finalize the .shstrab last, to allow the
4056   // after_input_section sections to modify their section-names before
4057   // writing.
4058   if (this->any_postprocessing_sections_)
4059     {
4060       off_t off = this->output_file_size_;
4061       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4062
4063       // Now that we've finalized the names, we can finalize the shstrab.
4064       off =
4065         this->set_section_offsets(off,
4066                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4067
4068       if (off > this->output_file_size_)
4069         {
4070           of->resize(off);
4071           this->output_file_size_ = off;
4072         }
4073     }
4074
4075   for (Section_list::const_iterator p = this->section_list_.begin();
4076        p != this->section_list_.end();
4077        ++p)
4078     {
4079       if ((*p)->after_input_sections())
4080         (*p)->write(of);
4081     }
4082
4083   this->section_headers_->write(of);
4084 }
4085
4086 // If the build ID requires computing a checksum, do so here, and
4087 // write it out.  We compute a checksum over the entire file because
4088 // that is simplest.
4089
4090 void
4091 Layout::write_build_id(Output_file* of) const
4092 {
4093   if (this->build_id_note_ == NULL)
4094     return;
4095
4096   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4097
4098   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4099                                           this->build_id_note_->data_size());
4100
4101   const char* style = parameters->options().build_id();
4102   if (strcmp(style, "sha1") == 0)
4103     {
4104       sha1_ctx ctx;
4105       sha1_init_ctx(&ctx);
4106       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4107       sha1_finish_ctx(&ctx, ov);
4108     }
4109   else if (strcmp(style, "md5") == 0)
4110     {
4111       md5_ctx ctx;
4112       md5_init_ctx(&ctx);
4113       md5_process_bytes(iv, this->output_file_size_, &ctx);
4114       md5_finish_ctx(&ctx, ov);
4115     }
4116   else
4117     gold_unreachable();
4118
4119   of->write_output_view(this->build_id_note_->offset(),
4120                         this->build_id_note_->data_size(),
4121                         ov);
4122
4123   of->free_input_view(0, this->output_file_size_, iv);
4124 }
4125
4126 // Write out a binary file.  This is called after the link is
4127 // complete.  IN is the temporary output file we used to generate the
4128 // ELF code.  We simply walk through the segments, read them from
4129 // their file offset in IN, and write them to their load address in
4130 // the output file.  FIXME: with a bit more work, we could support
4131 // S-records and/or Intel hex format here.
4132
4133 void
4134 Layout::write_binary(Output_file* in) const
4135 {
4136   gold_assert(parameters->options().oformat_enum()
4137               == General_options::OBJECT_FORMAT_BINARY);
4138
4139   // Get the size of the binary file.
4140   uint64_t max_load_address = 0;
4141   for (Segment_list::const_iterator p = this->segment_list_.begin();
4142        p != this->segment_list_.end();
4143        ++p)
4144     {
4145       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4146         {
4147           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4148           if (max_paddr > max_load_address)
4149             max_load_address = max_paddr;
4150         }
4151     }
4152
4153   Output_file out(parameters->options().output_file_name());
4154   out.open(max_load_address);
4155
4156   for (Segment_list::const_iterator p = this->segment_list_.begin();
4157        p != this->segment_list_.end();
4158        ++p)
4159     {
4160       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4161         {
4162           const unsigned char* vin = in->get_input_view((*p)->offset(),
4163                                                         (*p)->filesz());
4164           unsigned char* vout = out.get_output_view((*p)->paddr(),
4165                                                     (*p)->filesz());
4166           memcpy(vout, vin, (*p)->filesz());
4167           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4168           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4169         }
4170     }
4171
4172   out.close();
4173 }
4174
4175 // Print the output sections to the map file.
4176
4177 void
4178 Layout::print_to_mapfile(Mapfile* mapfile) const
4179 {
4180   for (Segment_list::const_iterator p = this->segment_list_.begin();
4181        p != this->segment_list_.end();
4182        ++p)
4183     (*p)->print_sections_to_mapfile(mapfile);
4184 }
4185
4186 // Print statistical information to stderr.  This is used for --stats.
4187
4188 void
4189 Layout::print_stats() const
4190 {
4191   this->namepool_.print_stats("section name pool");
4192   this->sympool_.print_stats("output symbol name pool");
4193   this->dynpool_.print_stats("dynamic name pool");
4194
4195   for (Section_list::const_iterator p = this->section_list_.begin();
4196        p != this->section_list_.end();
4197        ++p)
4198     (*p)->print_merge_stats();
4199 }
4200
4201 // Write_sections_task methods.
4202
4203 // We can always run this task.
4204
4205 Task_token*
4206 Write_sections_task::is_runnable()
4207 {
4208   return NULL;
4209 }
4210
4211 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4212 // when finished.
4213
4214 void
4215 Write_sections_task::locks(Task_locker* tl)
4216 {
4217   tl->add(this, this->output_sections_blocker_);
4218   tl->add(this, this->final_blocker_);
4219 }
4220
4221 // Run the task--write out the data.
4222
4223 void
4224 Write_sections_task::run(Workqueue*)
4225 {
4226   this->layout_->write_output_sections(this->of_);
4227 }
4228
4229 // Write_data_task methods.
4230
4231 // We can always run this task.
4232
4233 Task_token*
4234 Write_data_task::is_runnable()
4235 {
4236   return NULL;
4237 }
4238
4239 // We need to unlock FINAL_BLOCKER when finished.
4240
4241 void
4242 Write_data_task::locks(Task_locker* tl)
4243 {
4244   tl->add(this, this->final_blocker_);
4245 }
4246
4247 // Run the task--write out the data.
4248
4249 void
4250 Write_data_task::run(Workqueue*)
4251 {
4252   this->layout_->write_data(this->symtab_, this->of_);
4253 }
4254
4255 // Write_symbols_task methods.
4256
4257 // We can always run this task.
4258
4259 Task_token*
4260 Write_symbols_task::is_runnable()
4261 {
4262   return NULL;
4263 }
4264
4265 // We need to unlock FINAL_BLOCKER when finished.
4266
4267 void
4268 Write_symbols_task::locks(Task_locker* tl)
4269 {
4270   tl->add(this, this->final_blocker_);
4271 }
4272
4273 // Run the task--write out the symbols.
4274
4275 void
4276 Write_symbols_task::run(Workqueue*)
4277 {
4278   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4279                                this->layout_->symtab_xindex(),
4280                                this->layout_->dynsym_xindex(), this->of_);
4281 }
4282
4283 // Write_after_input_sections_task methods.
4284
4285 // We can only run this task after the input sections have completed.
4286
4287 Task_token*
4288 Write_after_input_sections_task::is_runnable()
4289 {
4290   if (this->input_sections_blocker_->is_blocked())
4291     return this->input_sections_blocker_;
4292   return NULL;
4293 }
4294
4295 // We need to unlock FINAL_BLOCKER when finished.
4296
4297 void
4298 Write_after_input_sections_task::locks(Task_locker* tl)
4299 {
4300   tl->add(this, this->final_blocker_);
4301 }
4302
4303 // Run the task.
4304
4305 void
4306 Write_after_input_sections_task::run(Workqueue*)
4307 {
4308   this->layout_->write_sections_after_input_sections(this->of_);
4309 }
4310
4311 // Close_task_runner methods.
4312
4313 // Run the task--close the file.
4314
4315 void
4316 Close_task_runner::run(Workqueue*, const Task*)
4317 {
4318   // If we need to compute a checksum for the BUILD if, we do so here.
4319   this->layout_->write_build_id(this->of_);
4320
4321   // If we've been asked to create a binary file, we do so here.
4322   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4323     this->layout_->write_binary(this->of_);
4324
4325   this->of_->close();
4326 }
4327
4328 // Instantiate the templates we need.  We could use the configure
4329 // script to restrict this to only the ones for implemented targets.
4330
4331 #ifdef HAVE_TARGET_32_LITTLE
4332 template
4333 Output_section*
4334 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4335                           const char* name,
4336                           const elfcpp::Shdr<32, false>& shdr,
4337                           unsigned int, unsigned int, off_t*);
4338 #endif
4339
4340 #ifdef HAVE_TARGET_32_BIG
4341 template
4342 Output_section*
4343 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4344                          const char* name,
4345                          const elfcpp::Shdr<32, true>& shdr,
4346                          unsigned int, unsigned int, off_t*);
4347 #endif
4348
4349 #ifdef HAVE_TARGET_64_LITTLE
4350 template
4351 Output_section*
4352 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4353                           const char* name,
4354                           const elfcpp::Shdr<64, false>& shdr,
4355                           unsigned int, unsigned int, off_t*);
4356 #endif
4357
4358 #ifdef HAVE_TARGET_64_BIG
4359 template
4360 Output_section*
4361 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4362                          const char* name,
4363                          const elfcpp::Shdr<64, true>& shdr,
4364                          unsigned int, unsigned int, off_t*);
4365 #endif
4366
4367 #ifdef HAVE_TARGET_32_LITTLE
4368 template
4369 Output_section*
4370 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4371                                 unsigned int reloc_shndx,
4372                                 const elfcpp::Shdr<32, false>& shdr,
4373                                 Output_section* data_section,
4374                                 Relocatable_relocs* rr);
4375 #endif
4376
4377 #ifdef HAVE_TARGET_32_BIG
4378 template
4379 Output_section*
4380 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4381                                unsigned int reloc_shndx,
4382                                const elfcpp::Shdr<32, true>& shdr,
4383                                Output_section* data_section,
4384                                Relocatable_relocs* rr);
4385 #endif
4386
4387 #ifdef HAVE_TARGET_64_LITTLE
4388 template
4389 Output_section*
4390 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4391                                 unsigned int reloc_shndx,
4392                                 const elfcpp::Shdr<64, false>& shdr,
4393                                 Output_section* data_section,
4394                                 Relocatable_relocs* rr);
4395 #endif
4396
4397 #ifdef HAVE_TARGET_64_BIG
4398 template
4399 Output_section*
4400 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4401                                unsigned int reloc_shndx,
4402                                const elfcpp::Shdr<64, true>& shdr,
4403                                Output_section* data_section,
4404                                Relocatable_relocs* rr);
4405 #endif
4406
4407 #ifdef HAVE_TARGET_32_LITTLE
4408 template
4409 void
4410 Layout::layout_group<32, false>(Symbol_table* symtab,
4411                                 Sized_relobj<32, false>* object,
4412                                 unsigned int,
4413                                 const char* group_section_name,
4414                                 const char* signature,
4415                                 const elfcpp::Shdr<32, false>& shdr,
4416                                 elfcpp::Elf_Word flags,
4417                                 std::vector<unsigned int>* shndxes);
4418 #endif
4419
4420 #ifdef HAVE_TARGET_32_BIG
4421 template
4422 void
4423 Layout::layout_group<32, true>(Symbol_table* symtab,
4424                                Sized_relobj<32, true>* object,
4425                                unsigned int,
4426                                const char* group_section_name,
4427                                const char* signature,
4428                                const elfcpp::Shdr<32, true>& shdr,
4429                                elfcpp::Elf_Word flags,
4430                                std::vector<unsigned int>* shndxes);
4431 #endif
4432
4433 #ifdef HAVE_TARGET_64_LITTLE
4434 template
4435 void
4436 Layout::layout_group<64, false>(Symbol_table* symtab,
4437                                 Sized_relobj<64, false>* object,
4438                                 unsigned int,
4439                                 const char* group_section_name,
4440                                 const char* signature,
4441                                 const elfcpp::Shdr<64, false>& shdr,
4442                                 elfcpp::Elf_Word flags,
4443                                 std::vector<unsigned int>* shndxes);
4444 #endif
4445
4446 #ifdef HAVE_TARGET_64_BIG
4447 template
4448 void
4449 Layout::layout_group<64, true>(Symbol_table* symtab,
4450                                Sized_relobj<64, true>* object,
4451                                unsigned int,
4452                                const char* group_section_name,
4453                                const char* signature,
4454                                const elfcpp::Shdr<64, true>& shdr,
4455                                elfcpp::Elf_Word flags,
4456                                std::vector<unsigned int>* shndxes);
4457 #endif
4458
4459 #ifdef HAVE_TARGET_32_LITTLE
4460 template
4461 Output_section*
4462 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4463                                    const unsigned char* symbols,
4464                                    off_t symbols_size,
4465                                    const unsigned char* symbol_names,
4466                                    off_t symbol_names_size,
4467                                    unsigned int shndx,
4468                                    const elfcpp::Shdr<32, false>& shdr,
4469                                    unsigned int reloc_shndx,
4470                                    unsigned int reloc_type,
4471                                    off_t* off);
4472 #endif
4473
4474 #ifdef HAVE_TARGET_32_BIG
4475 template
4476 Output_section*
4477 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4478                                    const unsigned char* symbols,
4479                                    off_t symbols_size,
4480                                   const unsigned char* symbol_names,
4481                                   off_t symbol_names_size,
4482                                   unsigned int shndx,
4483                                   const elfcpp::Shdr<32, true>& shdr,
4484                                   unsigned int reloc_shndx,
4485                                   unsigned int reloc_type,
4486                                   off_t* off);
4487 #endif
4488
4489 #ifdef HAVE_TARGET_64_LITTLE
4490 template
4491 Output_section*
4492 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4493                                    const unsigned char* symbols,
4494                                    off_t symbols_size,
4495                                    const unsigned char* symbol_names,
4496                                    off_t symbol_names_size,
4497                                    unsigned int shndx,
4498                                    const elfcpp::Shdr<64, false>& shdr,
4499                                    unsigned int reloc_shndx,
4500                                    unsigned int reloc_type,
4501                                    off_t* off);
4502 #endif
4503
4504 #ifdef HAVE_TARGET_64_BIG
4505 template
4506 Output_section*
4507 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4508                                    const unsigned char* symbols,
4509                                    off_t symbols_size,
4510                                   const unsigned char* symbol_names,
4511                                   off_t symbol_names_size,
4512                                   unsigned int shndx,
4513                                   const elfcpp::Shdr<64, true>& shdr,
4514                                   unsigned int reloc_shndx,
4515                                   unsigned int reloc_type,
4516                                   off_t* off);
4517 #endif
4518
4519 } // End namespace gold.