2012-08-22 Cary Coutant <ccoutant@google.com>
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     incremental_inputs_(NULL),
412     record_output_section_data_from_script_(false),
413     script_output_section_data_list_(),
414     segment_states_(NULL),
415     relaxation_debug_check_(NULL),
416     section_order_map_(),
417     input_section_position_(),
418     input_section_glob_(),
419     incremental_base_(NULL),
420     free_list_()
421 {
422   // Make space for more than enough segments for a typical file.
423   // This is just for efficiency--it's OK if we wind up needing more.
424   this->segment_list_.reserve(12);
425
426   // We expect two unattached Output_data objects: the file header and
427   // the segment headers.
428   this->special_output_list_.reserve(2);
429
430   // Initialize structure needed for an incremental build.
431   if (parameters->incremental())
432     this->incremental_inputs_ = new Incremental_inputs;
433
434   // The section name pool is worth optimizing in all cases, because
435   // it is small, but there are often overlaps due to .rel sections.
436   this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444   this->incremental_base_ = base;
445   this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453  return k.first + k.second.first + k.second.second;
454 }
455
456 // These are the debug sections that are actually used by gdb.
457 // Currently, we've checked versions of gdb up to and including 7.4.
458 // We only check the part of the name that follows ".debug_" or
459 // ".zdebug_".
460
461 static const char* gdb_sections[] =
462 {
463   "abbrev",
464   "addr",         // Fission extension
465   // "aranges",   // not used by gdb as of 7.4
466   "frame",
467   "info",
468   "types",
469   "line",
470   "loc",
471   "macinfo",
472   "macro",
473   // "pubnames",  // not used by gdb as of 7.4
474   // "pubtypes",  // not used by gdb as of 7.4
475   "ranges",
476   "str",
477 };
478
479 // This is the minimum set of sections needed for line numbers.
480
481 static const char* lines_only_debug_sections[] =
482 {
483   "abbrev",
484   // "addr",      // Fission extension
485   // "aranges",   // not used by gdb as of 7.4
486   // "frame",
487   "info",
488   // "types",
489   "line",
490   // "loc",
491   // "macinfo",
492   // "macro",
493   // "pubnames",  // not used by gdb as of 7.4
494   // "pubtypes",  // not used by gdb as of 7.4
495   // "ranges",
496   "str",
497 };
498
499 // These sections are the DWARF fast-lookup tables, and are not needed
500 // when building a .gdb_index section.
501
502 static const char* gdb_fast_lookup_sections[] =
503 {
504   "aranges",
505   "pubnames",
506   "pubtypes",
507 };
508
509 // Returns whether the given debug section is in the list of
510 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
511 // portion of the name following ".debug_" or ".zdebug_".
512
513 static inline bool
514 is_gdb_debug_section(const char* suffix)
515 {
516   // We can do this faster: binary search or a hashtable.  But why bother?
517   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
518     if (strcmp(suffix, gdb_sections[i]) == 0)
519       return true;
520   return false;
521 }
522
523 // Returns whether the given section is needed for lines-only debugging.
524
525 static inline bool
526 is_lines_only_debug_section(const char* suffix)
527 {
528   // We can do this faster: binary search or a hashtable.  But why bother?
529   for (size_t i = 0;
530        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
531        ++i)
532     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
533       return true;
534   return false;
535 }
536
537 // Returns whether the given section is a fast-lookup section that
538 // will not be needed when building a .gdb_index section.
539
540 static inline bool
541 is_gdb_fast_lookup_section(const char* suffix)
542 {
543   // We can do this faster: binary search or a hashtable.  But why bother?
544   for (size_t i = 0;
545        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
546        ++i)
547     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
548       return true;
549   return false;
550 }
551
552 // Sometimes we compress sections.  This is typically done for
553 // sections that are not part of normal program execution (such as
554 // .debug_* sections), and where the readers of these sections know
555 // how to deal with compressed sections.  This routine doesn't say for
556 // certain whether we'll compress -- it depends on commandline options
557 // as well -- just whether this section is a candidate for compression.
558 // (The Output_compressed_section class decides whether to compress
559 // a given section, and picks the name of the compressed section.)
560
561 static bool
562 is_compressible_debug_section(const char* secname)
563 {
564   return (is_prefix_of(".debug", secname));
565 }
566
567 // We may see compressed debug sections in input files.  Return TRUE
568 // if this is the name of a compressed debug section.
569
570 bool
571 is_compressed_debug_section(const char* secname)
572 {
573   return (is_prefix_of(".zdebug", secname));
574 }
575
576 // Whether to include this section in the link.
577
578 template<int size, bool big_endian>
579 bool
580 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
581                         const elfcpp::Shdr<size, big_endian>& shdr)
582 {
583   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
584     return false;
585
586   switch (shdr.get_sh_type())
587     {
588     case elfcpp::SHT_NULL:
589     case elfcpp::SHT_SYMTAB:
590     case elfcpp::SHT_DYNSYM:
591     case elfcpp::SHT_HASH:
592     case elfcpp::SHT_DYNAMIC:
593     case elfcpp::SHT_SYMTAB_SHNDX:
594       return false;
595
596     case elfcpp::SHT_STRTAB:
597       // Discard the sections which have special meanings in the ELF
598       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
599       // checking the sh_link fields of the appropriate sections.
600       return (strcmp(name, ".dynstr") != 0
601               && strcmp(name, ".strtab") != 0
602               && strcmp(name, ".shstrtab") != 0);
603
604     case elfcpp::SHT_RELA:
605     case elfcpp::SHT_REL:
606     case elfcpp::SHT_GROUP:
607       // If we are emitting relocations these should be handled
608       // elsewhere.
609       gold_assert(!parameters->options().relocatable());
610       return false;
611
612     case elfcpp::SHT_PROGBITS:
613       if (parameters->options().strip_debug()
614           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
615         {
616           if (is_debug_info_section(name))
617             return false;
618         }
619       if (parameters->options().strip_debug_non_line()
620           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
621         {
622           // Debugging sections can only be recognized by name.
623           if (is_prefix_of(".debug_", name)
624               && !is_lines_only_debug_section(name + 7))
625             return false;
626           if (is_prefix_of(".zdebug_", name)
627               && !is_lines_only_debug_section(name + 8))
628             return false;
629         }
630       if (parameters->options().strip_debug_gdb()
631           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
632         {
633           // Debugging sections can only be recognized by name.
634           if (is_prefix_of(".debug_", name)
635               && !is_gdb_debug_section(name + 7))
636             return false;
637           if (is_prefix_of(".zdebug_", name)
638               && !is_gdb_debug_section(name + 8))
639             return false;
640         }
641       if (parameters->options().gdb_index()
642           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
643         {
644           // When building .gdb_index, we can strip .debug_pubnames,
645           // .debug_pubtypes, and .debug_aranges sections.
646           if (is_prefix_of(".debug_", name)
647               && is_gdb_fast_lookup_section(name + 7))
648             return false;
649           if (is_prefix_of(".zdebug_", name)
650               && is_gdb_fast_lookup_section(name + 8))
651             return false;
652         }
653       if (parameters->options().strip_lto_sections()
654           && !parameters->options().relocatable()
655           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
656         {
657           // Ignore LTO sections containing intermediate code.
658           if (is_prefix_of(".gnu.lto_", name))
659             return false;
660         }
661       // The GNU linker strips .gnu_debuglink sections, so we do too.
662       // This is a feature used to keep debugging information in
663       // separate files.
664       if (strcmp(name, ".gnu_debuglink") == 0)
665         return false;
666       return true;
667
668     default:
669       return true;
670     }
671 }
672
673 // Return an output section named NAME, or NULL if there is none.
674
675 Output_section*
676 Layout::find_output_section(const char* name) const
677 {
678   for (Section_list::const_iterator p = this->section_list_.begin();
679        p != this->section_list_.end();
680        ++p)
681     if (strcmp((*p)->name(), name) == 0)
682       return *p;
683   return NULL;
684 }
685
686 // Return an output segment of type TYPE, with segment flags SET set
687 // and segment flags CLEAR clear.  Return NULL if there is none.
688
689 Output_segment*
690 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
691                             elfcpp::Elf_Word clear) const
692 {
693   for (Segment_list::const_iterator p = this->segment_list_.begin();
694        p != this->segment_list_.end();
695        ++p)
696     if (static_cast<elfcpp::PT>((*p)->type()) == type
697         && ((*p)->flags() & set) == set
698         && ((*p)->flags() & clear) == 0)
699       return *p;
700   return NULL;
701 }
702
703 // When we put a .ctors or .dtors section with more than one word into
704 // a .init_array or .fini_array section, we need to reverse the words
705 // in the .ctors/.dtors section.  This is because .init_array executes
706 // constructors front to back, where .ctors executes them back to
707 // front, and vice-versa for .fini_array/.dtors.  Although we do want
708 // to remap .ctors/.dtors into .init_array/.fini_array because it can
709 // be more efficient, we don't want to change the order in which
710 // constructors/destructors are run.  This set just keeps track of
711 // these sections which need to be reversed.  It is only changed by
712 // Layout::layout.  It should be a private member of Layout, but that
713 // would require layout.h to #include object.h to get the definition
714 // of Section_id.
715 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
716
717 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
718 // .init_array/.fini_array section.
719
720 bool
721 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
722 {
723   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
724           != ctors_sections_in_init_array.end());
725 }
726
727 // Return the output section to use for section NAME with type TYPE
728 // and section flags FLAGS.  NAME must be canonicalized in the string
729 // pool, and NAME_KEY is the key.  ORDER is where this should appear
730 // in the output sections.  IS_RELRO is true for a relro section.
731
732 Output_section*
733 Layout::get_output_section(const char* name, Stringpool::Key name_key,
734                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
735                            Output_section_order order, bool is_relro)
736 {
737   elfcpp::Elf_Word lookup_type = type;
738
739   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
740   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
741   // .init_array, .fini_array, and .preinit_array sections by name
742   // whatever their type in the input file.  We do this because the
743   // types are not always right in the input files.
744   if (lookup_type == elfcpp::SHT_INIT_ARRAY
745       || lookup_type == elfcpp::SHT_FINI_ARRAY
746       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
747     lookup_type = elfcpp::SHT_PROGBITS;
748
749   elfcpp::Elf_Xword lookup_flags = flags;
750
751   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
752   // read-write with read-only sections.  Some other ELF linkers do
753   // not do this.  FIXME: Perhaps there should be an option
754   // controlling this.
755   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
756
757   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
758   const std::pair<Key, Output_section*> v(key, NULL);
759   std::pair<Section_name_map::iterator, bool> ins(
760     this->section_name_map_.insert(v));
761
762   if (!ins.second)
763     return ins.first->second;
764   else
765     {
766       // This is the first time we've seen this name/type/flags
767       // combination.  For compatibility with the GNU linker, we
768       // combine sections with contents and zero flags with sections
769       // with non-zero flags.  This is a workaround for cases where
770       // assembler code forgets to set section flags.  FIXME: Perhaps
771       // there should be an option to control this.
772       Output_section* os = NULL;
773
774       if (lookup_type == elfcpp::SHT_PROGBITS)
775         {
776           if (flags == 0)
777             {
778               Output_section* same_name = this->find_output_section(name);
779               if (same_name != NULL
780                   && (same_name->type() == elfcpp::SHT_PROGBITS
781                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
782                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
783                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
784                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
785                 os = same_name;
786             }
787           else if ((flags & elfcpp::SHF_TLS) == 0)
788             {
789               elfcpp::Elf_Xword zero_flags = 0;
790               const Key zero_key(name_key, std::make_pair(lookup_type,
791                                                           zero_flags));
792               Section_name_map::iterator p =
793                   this->section_name_map_.find(zero_key);
794               if (p != this->section_name_map_.end())
795                 os = p->second;
796             }
797         }
798
799       if (os == NULL)
800         os = this->make_output_section(name, type, flags, order, is_relro);
801
802       ins.first->second = os;
803       return os;
804     }
805 }
806
807 // Returns TRUE iff NAME (an input section from RELOBJ) will
808 // be mapped to an output section that should be KEPT.
809
810 bool
811 Layout::keep_input_section(const Relobj* relobj, const char* name)
812 {
813   if (! this->script_options_->saw_sections_clause())
814     return false;
815
816   Script_sections* ss = this->script_options_->script_sections();
817   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
818   Output_section** output_section_slot;
819   Script_sections::Section_type script_section_type;
820   bool keep;
821
822   name = ss->output_section_name(file_name, name, &output_section_slot,
823                                  &script_section_type, &keep);
824   return name != NULL && keep;
825 }
826
827 // Pick the output section to use for section NAME, in input file
828 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
829 // linker created section.  IS_INPUT_SECTION is true if we are
830 // choosing an output section for an input section found in a input
831 // file.  ORDER is where this section should appear in the output
832 // sections.  IS_RELRO is true for a relro section.  This will return
833 // NULL if the input section should be discarded.
834
835 Output_section*
836 Layout::choose_output_section(const Relobj* relobj, const char* name,
837                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
838                               bool is_input_section, Output_section_order order,
839                               bool is_relro)
840 {
841   // We should not see any input sections after we have attached
842   // sections to segments.
843   gold_assert(!is_input_section || !this->sections_are_attached_);
844
845   // Some flags in the input section should not be automatically
846   // copied to the output section.
847   flags &= ~ (elfcpp::SHF_INFO_LINK
848               | elfcpp::SHF_GROUP
849               | elfcpp::SHF_MERGE
850               | elfcpp::SHF_STRINGS);
851
852   // We only clear the SHF_LINK_ORDER flag in for
853   // a non-relocatable link.
854   if (!parameters->options().relocatable())
855     flags &= ~elfcpp::SHF_LINK_ORDER;
856
857   if (this->script_options_->saw_sections_clause())
858     {
859       // We are using a SECTIONS clause, so the output section is
860       // chosen based only on the name.
861
862       Script_sections* ss = this->script_options_->script_sections();
863       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
864       Output_section** output_section_slot;
865       Script_sections::Section_type script_section_type;
866       const char* orig_name = name;
867       bool keep;
868       name = ss->output_section_name(file_name, name, &output_section_slot,
869                                      &script_section_type, &keep);
870
871       if (name == NULL)
872         {
873           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
874                                      "because it is not allowed by the "
875                                      "SECTIONS clause of the linker script"),
876                      orig_name);
877           // The SECTIONS clause says to discard this input section.
878           return NULL;
879         }
880
881       // We can only handle script section types ST_NONE and ST_NOLOAD.
882       switch (script_section_type)
883         {
884         case Script_sections::ST_NONE:
885           break;
886         case Script_sections::ST_NOLOAD:
887           flags &= elfcpp::SHF_ALLOC;
888           break;
889         default:
890           gold_unreachable();
891         }
892
893       // If this is an orphan section--one not mentioned in the linker
894       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
895       // default processing below.
896
897       if (output_section_slot != NULL)
898         {
899           if (*output_section_slot != NULL)
900             {
901               (*output_section_slot)->update_flags_for_input_section(flags);
902               return *output_section_slot;
903             }
904
905           // We don't put sections found in the linker script into
906           // SECTION_NAME_MAP_.  That keeps us from getting confused
907           // if an orphan section is mapped to a section with the same
908           // name as one in the linker script.
909
910           name = this->namepool_.add(name, false, NULL);
911
912           Output_section* os = this->make_output_section(name, type, flags,
913                                                          order, is_relro);
914
915           os->set_found_in_sections_clause();
916
917           // Special handling for NOLOAD sections.
918           if (script_section_type == Script_sections::ST_NOLOAD)
919             {
920               os->set_is_noload();
921
922               // The constructor of Output_section sets addresses of non-ALLOC
923               // sections to 0 by default.  We don't want that for NOLOAD
924               // sections even if they have no SHF_ALLOC flag.
925               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
926                   && os->is_address_valid())
927                 {
928                   gold_assert(os->address() == 0
929                               && !os->is_offset_valid()
930                               && !os->is_data_size_valid());
931                   os->reset_address_and_file_offset();
932                 }
933             }
934
935           *output_section_slot = os;
936           return os;
937         }
938     }
939
940   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
941
942   size_t len = strlen(name);
943   char* uncompressed_name = NULL;
944
945   // Compressed debug sections should be mapped to the corresponding
946   // uncompressed section.
947   if (is_compressed_debug_section(name))
948     {
949       uncompressed_name = new char[len];
950       uncompressed_name[0] = '.';
951       gold_assert(name[0] == '.' && name[1] == 'z');
952       strncpy(&uncompressed_name[1], &name[2], len - 2);
953       uncompressed_name[len - 1] = '\0';
954       len -= 1;
955       name = uncompressed_name;
956     }
957
958   // Turn NAME from the name of the input section into the name of the
959   // output section.
960   if (is_input_section
961       && !this->script_options_->saw_sections_clause()
962       && !parameters->options().relocatable())
963     {
964       const char *orig_name = name;
965       name = parameters->target().output_section_name(relobj, name, &len);
966       if (name == NULL)
967         name = Layout::output_section_name(relobj, orig_name, &len);
968     }
969
970   Stringpool::Key name_key;
971   name = this->namepool_.add_with_length(name, len, true, &name_key);
972
973   if (uncompressed_name != NULL)
974     delete[] uncompressed_name;
975
976   // Find or make the output section.  The output section is selected
977   // based on the section name, type, and flags.
978   return this->get_output_section(name, name_key, type, flags, order, is_relro);
979 }
980
981 // For incremental links, record the initial fixed layout of a section
982 // from the base file, and return a pointer to the Output_section.
983
984 template<int size, bool big_endian>
985 Output_section*
986 Layout::init_fixed_output_section(const char* name,
987                                   elfcpp::Shdr<size, big_endian>& shdr)
988 {
989   unsigned int sh_type = shdr.get_sh_type();
990
991   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
992   // PRE_INIT_ARRAY, and NOTE sections.
993   // All others will be created from scratch and reallocated.
994   if (!can_incremental_update(sh_type))
995     return NULL;
996
997   // If we're generating a .gdb_index section, we need to regenerate
998   // it from scratch.
999   if (parameters->options().gdb_index()
1000       && sh_type == elfcpp::SHT_PROGBITS
1001       && strcmp(name, ".gdb_index") == 0)
1002     return NULL;
1003
1004   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1005   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1006   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1007   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1008   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1009       shdr.get_sh_addralign();
1010
1011   // Make the output section.
1012   Stringpool::Key name_key;
1013   name = this->namepool_.add(name, true, &name_key);
1014   Output_section* os = this->get_output_section(name, name_key, sh_type,
1015                                                 sh_flags, ORDER_INVALID, false);
1016   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1017   if (sh_type != elfcpp::SHT_NOBITS)
1018     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1019   return os;
1020 }
1021
1022 // Return the output section to use for input section SHNDX, with name
1023 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1024 // index of a relocation section which applies to this section, or 0
1025 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1026 // relocation section if there is one.  Set *OFF to the offset of this
1027 // input section without the output section.  Return NULL if the
1028 // section should be discarded.  Set *OFF to -1 if the section
1029 // contents should not be written directly to the output file, but
1030 // will instead receive special handling.
1031
1032 template<int size, bool big_endian>
1033 Output_section*
1034 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1035                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1036                unsigned int reloc_shndx, unsigned int, off_t* off)
1037 {
1038   *off = 0;
1039
1040   if (!this->include_section(object, name, shdr))
1041     return NULL;
1042
1043   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1044
1045   // In a relocatable link a grouped section must not be combined with
1046   // any other sections.
1047   Output_section* os;
1048   if (parameters->options().relocatable()
1049       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1050     {
1051       name = this->namepool_.add(name, true, NULL);
1052       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1053                                      ORDER_INVALID, false);
1054     }
1055   else
1056     {
1057       os = this->choose_output_section(object, name, sh_type,
1058                                        shdr.get_sh_flags(), true,
1059                                        ORDER_INVALID, false);
1060       if (os == NULL)
1061         return NULL;
1062     }
1063
1064   // By default the GNU linker sorts input sections whose names match
1065   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1066   // sections are sorted by name.  This is used to implement
1067   // constructor priority ordering.  We are compatible.  When we put
1068   // .ctor sections in .init_array and .dtor sections in .fini_array,
1069   // we must also sort plain .ctor and .dtor sections.
1070   if (!this->script_options_->saw_sections_clause()
1071       && !parameters->options().relocatable()
1072       && (is_prefix_of(".ctors.", name)
1073           || is_prefix_of(".dtors.", name)
1074           || is_prefix_of(".init_array.", name)
1075           || is_prefix_of(".fini_array.", name)
1076           || (parameters->options().ctors_in_init_array()
1077               && (strcmp(name, ".ctors") == 0
1078                   || strcmp(name, ".dtors") == 0))))
1079     os->set_must_sort_attached_input_sections();
1080
1081   // If this is a .ctors or .ctors.* section being mapped to a
1082   // .init_array section, or a .dtors or .dtors.* section being mapped
1083   // to a .fini_array section, we will need to reverse the words if
1084   // there is more than one.  Record this section for later.  See
1085   // ctors_sections_in_init_array above.
1086   if (!this->script_options_->saw_sections_clause()
1087       && !parameters->options().relocatable()
1088       && shdr.get_sh_size() > size / 8
1089       && (((strcmp(name, ".ctors") == 0
1090             || is_prefix_of(".ctors.", name))
1091            && strcmp(os->name(), ".init_array") == 0)
1092           || ((strcmp(name, ".dtors") == 0
1093                || is_prefix_of(".dtors.", name))
1094               && strcmp(os->name(), ".fini_array") == 0)))
1095     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1096
1097   // FIXME: Handle SHF_LINK_ORDER somewhere.
1098
1099   elfcpp::Elf_Xword orig_flags = os->flags();
1100
1101   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1102                                this->script_options_->saw_sections_clause());
1103
1104   // If the flags changed, we may have to change the order.
1105   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1106     {
1107       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1108       elfcpp::Elf_Xword new_flags =
1109         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1110       if (orig_flags != new_flags)
1111         os->set_order(this->default_section_order(os, false));
1112     }
1113
1114   this->have_added_input_section_ = true;
1115
1116   return os;
1117 }
1118
1119 // Handle a relocation section when doing a relocatable link.
1120
1121 template<int size, bool big_endian>
1122 Output_section*
1123 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1124                      unsigned int,
1125                      const elfcpp::Shdr<size, big_endian>& shdr,
1126                      Output_section* data_section,
1127                      Relocatable_relocs* rr)
1128 {
1129   gold_assert(parameters->options().relocatable()
1130               || parameters->options().emit_relocs());
1131
1132   int sh_type = shdr.get_sh_type();
1133
1134   std::string name;
1135   if (sh_type == elfcpp::SHT_REL)
1136     name = ".rel";
1137   else if (sh_type == elfcpp::SHT_RELA)
1138     name = ".rela";
1139   else
1140     gold_unreachable();
1141   name += data_section->name();
1142
1143   // In a relocatable link relocs for a grouped section must not be
1144   // combined with other reloc sections.
1145   Output_section* os;
1146   if (!parameters->options().relocatable()
1147       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1148     os = this->choose_output_section(object, name.c_str(), sh_type,
1149                                      shdr.get_sh_flags(), false,
1150                                      ORDER_INVALID, false);
1151   else
1152     {
1153       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1154       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1155                                      ORDER_INVALID, false);
1156     }
1157
1158   os->set_should_link_to_symtab();
1159   os->set_info_section(data_section);
1160
1161   Output_section_data* posd;
1162   if (sh_type == elfcpp::SHT_REL)
1163     {
1164       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1165       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1166                                            size,
1167                                            big_endian>(rr);
1168     }
1169   else if (sh_type == elfcpp::SHT_RELA)
1170     {
1171       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1172       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1173                                            size,
1174                                            big_endian>(rr);
1175     }
1176   else
1177     gold_unreachable();
1178
1179   os->add_output_section_data(posd);
1180   rr->set_output_data(posd);
1181
1182   return os;
1183 }
1184
1185 // Handle a group section when doing a relocatable link.
1186
1187 template<int size, bool big_endian>
1188 void
1189 Layout::layout_group(Symbol_table* symtab,
1190                      Sized_relobj_file<size, big_endian>* object,
1191                      unsigned int,
1192                      const char* group_section_name,
1193                      const char* signature,
1194                      const elfcpp::Shdr<size, big_endian>& shdr,
1195                      elfcpp::Elf_Word flags,
1196                      std::vector<unsigned int>* shndxes)
1197 {
1198   gold_assert(parameters->options().relocatable());
1199   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1200   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1201   Output_section* os = this->make_output_section(group_section_name,
1202                                                  elfcpp::SHT_GROUP,
1203                                                  shdr.get_sh_flags(),
1204                                                  ORDER_INVALID, false);
1205
1206   // We need to find a symbol with the signature in the symbol table.
1207   // If we don't find one now, we need to look again later.
1208   Symbol* sym = symtab->lookup(signature, NULL);
1209   if (sym != NULL)
1210     os->set_info_symndx(sym);
1211   else
1212     {
1213       // Reserve some space to minimize reallocations.
1214       if (this->group_signatures_.empty())
1215         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1216
1217       // We will wind up using a symbol whose name is the signature.
1218       // So just put the signature in the symbol name pool to save it.
1219       signature = symtab->canonicalize_name(signature);
1220       this->group_signatures_.push_back(Group_signature(os, signature));
1221     }
1222
1223   os->set_should_link_to_symtab();
1224   os->set_entsize(4);
1225
1226   section_size_type entry_count =
1227     convert_to_section_size_type(shdr.get_sh_size() / 4);
1228   Output_section_data* posd =
1229     new Output_data_group<size, big_endian>(object, entry_count, flags,
1230                                             shndxes);
1231   os->add_output_section_data(posd);
1232 }
1233
1234 // Special GNU handling of sections name .eh_frame.  They will
1235 // normally hold exception frame data as defined by the C++ ABI
1236 // (http://codesourcery.com/cxx-abi/).
1237
1238 template<int size, bool big_endian>
1239 Output_section*
1240 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1241                         const unsigned char* symbols,
1242                         off_t symbols_size,
1243                         const unsigned char* symbol_names,
1244                         off_t symbol_names_size,
1245                         unsigned int shndx,
1246                         const elfcpp::Shdr<size, big_endian>& shdr,
1247                         unsigned int reloc_shndx, unsigned int reloc_type,
1248                         off_t* off)
1249 {
1250   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1251               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1252   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1253
1254   Output_section* os = this->make_eh_frame_section(object);
1255   if (os == NULL)
1256     return NULL;
1257
1258   gold_assert(this->eh_frame_section_ == os);
1259
1260   elfcpp::Elf_Xword orig_flags = os->flags();
1261
1262   if (!parameters->incremental()
1263       && this->eh_frame_data_->add_ehframe_input_section(object,
1264                                                          symbols,
1265                                                          symbols_size,
1266                                                          symbol_names,
1267                                                          symbol_names_size,
1268                                                          shndx,
1269                                                          reloc_shndx,
1270                                                          reloc_type))
1271     {
1272       os->update_flags_for_input_section(shdr.get_sh_flags());
1273
1274       // A writable .eh_frame section is a RELRO section.
1275       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1276           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1277         {
1278           os->set_is_relro();
1279           os->set_order(ORDER_RELRO);
1280         }
1281
1282       // We found a .eh_frame section we are going to optimize, so now
1283       // we can add the set of optimized sections to the output
1284       // section.  We need to postpone adding this until we've found a
1285       // section we can optimize so that the .eh_frame section in
1286       // crtbegin.o winds up at the start of the output section.
1287       if (!this->added_eh_frame_data_)
1288         {
1289           os->add_output_section_data(this->eh_frame_data_);
1290           this->added_eh_frame_data_ = true;
1291         }
1292       *off = -1;
1293     }
1294   else
1295     {
1296       // We couldn't handle this .eh_frame section for some reason.
1297       // Add it as a normal section.
1298       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1299       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1300                                    reloc_shndx, saw_sections_clause);
1301       this->have_added_input_section_ = true;
1302
1303       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1304           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1305         os->set_order(this->default_section_order(os, false));
1306     }
1307
1308   return os;
1309 }
1310
1311 // Create and return the magic .eh_frame section.  Create
1312 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1313 // input .eh_frame section; it may be NULL.
1314
1315 Output_section*
1316 Layout::make_eh_frame_section(const Relobj* object)
1317 {
1318   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1319   // SHT_PROGBITS.
1320   Output_section* os = this->choose_output_section(object, ".eh_frame",
1321                                                    elfcpp::SHT_PROGBITS,
1322                                                    elfcpp::SHF_ALLOC, false,
1323                                                    ORDER_EHFRAME, false);
1324   if (os == NULL)
1325     return NULL;
1326
1327   if (this->eh_frame_section_ == NULL)
1328     {
1329       this->eh_frame_section_ = os;
1330       this->eh_frame_data_ = new Eh_frame();
1331
1332       // For incremental linking, we do not optimize .eh_frame sections
1333       // or create a .eh_frame_hdr section.
1334       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1335         {
1336           Output_section* hdr_os =
1337             this->choose_output_section(NULL, ".eh_frame_hdr",
1338                                         elfcpp::SHT_PROGBITS,
1339                                         elfcpp::SHF_ALLOC, false,
1340                                         ORDER_EHFRAME, false);
1341
1342           if (hdr_os != NULL)
1343             {
1344               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1345                                                         this->eh_frame_data_);
1346               hdr_os->add_output_section_data(hdr_posd);
1347
1348               hdr_os->set_after_input_sections();
1349
1350               if (!this->script_options_->saw_phdrs_clause())
1351                 {
1352                   Output_segment* hdr_oseg;
1353                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1354                                                        elfcpp::PF_R);
1355                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1356                                                           elfcpp::PF_R);
1357                 }
1358
1359               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1360             }
1361         }
1362     }
1363
1364   return os;
1365 }
1366
1367 // Add an exception frame for a PLT.  This is called from target code.
1368
1369 void
1370 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1371                              size_t cie_length, const unsigned char* fde_data,
1372                              size_t fde_length)
1373 {
1374   if (parameters->incremental())
1375     {
1376       // FIXME: Maybe this could work some day....
1377       return;
1378     }
1379   Output_section* os = this->make_eh_frame_section(NULL);
1380   if (os == NULL)
1381     return;
1382   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1383                                             fde_data, fde_length);
1384   if (!this->added_eh_frame_data_)
1385     {
1386       os->add_output_section_data(this->eh_frame_data_);
1387       this->added_eh_frame_data_ = true;
1388     }
1389 }
1390
1391 // Scan a .debug_info or .debug_types section, and add summary
1392 // information to the .gdb_index section.
1393
1394 template<int size, bool big_endian>
1395 void
1396 Layout::add_to_gdb_index(bool is_type_unit,
1397                          Sized_relobj<size, big_endian>* object,
1398                          const unsigned char* symbols,
1399                          off_t symbols_size,
1400                          unsigned int shndx,
1401                          unsigned int reloc_shndx,
1402                          unsigned int reloc_type)
1403 {
1404   if (this->gdb_index_data_ == NULL)
1405     {
1406       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1407                                                        elfcpp::SHT_PROGBITS, 0,
1408                                                        false, ORDER_INVALID,
1409                                                        false);
1410       if (os == NULL)
1411         return;
1412
1413       this->gdb_index_data_ = new Gdb_index(os);
1414       os->add_output_section_data(this->gdb_index_data_);
1415       os->set_after_input_sections();
1416     }
1417
1418   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1419                                          symbols_size, shndx, reloc_shndx,
1420                                          reloc_type);
1421 }
1422
1423 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1424 // the output section.
1425
1426 Output_section*
1427 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1428                                 elfcpp::Elf_Xword flags,
1429                                 Output_section_data* posd,
1430                                 Output_section_order order, bool is_relro)
1431 {
1432   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1433                                                    false, order, is_relro);
1434   if (os != NULL)
1435     os->add_output_section_data(posd);
1436   return os;
1437 }
1438
1439 // Map section flags to segment flags.
1440
1441 elfcpp::Elf_Word
1442 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1443 {
1444   elfcpp::Elf_Word ret = elfcpp::PF_R;
1445   if ((flags & elfcpp::SHF_WRITE) != 0)
1446     ret |= elfcpp::PF_W;
1447   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1448     ret |= elfcpp::PF_X;
1449   return ret;
1450 }
1451
1452 // Make a new Output_section, and attach it to segments as
1453 // appropriate.  ORDER is the order in which this section should
1454 // appear in the output segment.  IS_RELRO is true if this is a relro
1455 // (read-only after relocations) section.
1456
1457 Output_section*
1458 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1459                             elfcpp::Elf_Xword flags,
1460                             Output_section_order order, bool is_relro)
1461 {
1462   Output_section* os;
1463   if ((flags & elfcpp::SHF_ALLOC) == 0
1464       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1465       && is_compressible_debug_section(name))
1466     os = new Output_compressed_section(&parameters->options(), name, type,
1467                                        flags);
1468   else if ((flags & elfcpp::SHF_ALLOC) == 0
1469            && parameters->options().strip_debug_non_line()
1470            && strcmp(".debug_abbrev", name) == 0)
1471     {
1472       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1473           name, type, flags);
1474       if (this->debug_info_)
1475         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1476     }
1477   else if ((flags & elfcpp::SHF_ALLOC) == 0
1478            && parameters->options().strip_debug_non_line()
1479            && strcmp(".debug_info", name) == 0)
1480     {
1481       os = this->debug_info_ = new Output_reduced_debug_info_section(
1482           name, type, flags);
1483       if (this->debug_abbrev_)
1484         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1485     }
1486   else
1487     {
1488       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1489       // not have correct section types.  Force them here.
1490       if (type == elfcpp::SHT_PROGBITS)
1491         {
1492           if (is_prefix_of(".init_array", name))
1493             type = elfcpp::SHT_INIT_ARRAY;
1494           else if (is_prefix_of(".preinit_array", name))
1495             type = elfcpp::SHT_PREINIT_ARRAY;
1496           else if (is_prefix_of(".fini_array", name))
1497             type = elfcpp::SHT_FINI_ARRAY;
1498         }
1499
1500       // FIXME: const_cast is ugly.
1501       Target* target = const_cast<Target*>(&parameters->target());
1502       os = target->make_output_section(name, type, flags);
1503     }
1504
1505   // With -z relro, we have to recognize the special sections by name.
1506   // There is no other way.
1507   bool is_relro_local = false;
1508   if (!this->script_options_->saw_sections_clause()
1509       && parameters->options().relro()
1510       && (flags & elfcpp::SHF_ALLOC) != 0
1511       && (flags & elfcpp::SHF_WRITE) != 0)
1512     {
1513       if (type == elfcpp::SHT_PROGBITS)
1514         {
1515           if ((flags & elfcpp::SHF_TLS) != 0)
1516             is_relro = true;
1517           else if (strcmp(name, ".data.rel.ro") == 0)
1518             is_relro = true;
1519           else if (strcmp(name, ".data.rel.ro.local") == 0)
1520             {
1521               is_relro = true;
1522               is_relro_local = true;
1523             }
1524           else if (strcmp(name, ".ctors") == 0
1525                    || strcmp(name, ".dtors") == 0
1526                    || strcmp(name, ".jcr") == 0)
1527             is_relro = true;
1528         }
1529       else if (type == elfcpp::SHT_INIT_ARRAY
1530                || type == elfcpp::SHT_FINI_ARRAY
1531                || type == elfcpp::SHT_PREINIT_ARRAY)
1532         is_relro = true;
1533     }
1534
1535   if (is_relro)
1536     os->set_is_relro();
1537
1538   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1539     order = this->default_section_order(os, is_relro_local);
1540
1541   os->set_order(order);
1542
1543   parameters->target().new_output_section(os);
1544
1545   this->section_list_.push_back(os);
1546
1547   // The GNU linker by default sorts some sections by priority, so we
1548   // do the same.  We need to know that this might happen before we
1549   // attach any input sections.
1550   if (!this->script_options_->saw_sections_clause()
1551       && !parameters->options().relocatable()
1552       && (strcmp(name, ".init_array") == 0
1553           || strcmp(name, ".fini_array") == 0
1554           || (!parameters->options().ctors_in_init_array()
1555               && (strcmp(name, ".ctors") == 0
1556                   || strcmp(name, ".dtors") == 0))))
1557     os->set_may_sort_attached_input_sections();
1558
1559   // Check for .stab*str sections, as .stab* sections need to link to
1560   // them.
1561   if (type == elfcpp::SHT_STRTAB
1562       && !this->have_stabstr_section_
1563       && strncmp(name, ".stab", 5) == 0
1564       && strcmp(name + strlen(name) - 3, "str") == 0)
1565     this->have_stabstr_section_ = true;
1566
1567   // During a full incremental link, we add patch space to most
1568   // PROGBITS and NOBITS sections.  Flag those that may be
1569   // arbitrarily padded.
1570   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1571       && order != ORDER_INTERP
1572       && order != ORDER_INIT
1573       && order != ORDER_PLT
1574       && order != ORDER_FINI
1575       && order != ORDER_RELRO_LAST
1576       && order != ORDER_NON_RELRO_FIRST
1577       && strcmp(name, ".eh_frame") != 0
1578       && strcmp(name, ".ctors") != 0
1579       && strcmp(name, ".dtors") != 0
1580       && strcmp(name, ".jcr") != 0)
1581     {
1582       os->set_is_patch_space_allowed();
1583
1584       // Certain sections require "holes" to be filled with
1585       // specific fill patterns.  These fill patterns may have
1586       // a minimum size, so we must prevent allocations from the
1587       // free list that leave a hole smaller than the minimum.
1588       if (strcmp(name, ".debug_info") == 0)
1589         os->set_free_space_fill(new Output_fill_debug_info(false));
1590       else if (strcmp(name, ".debug_types") == 0)
1591         os->set_free_space_fill(new Output_fill_debug_info(true));
1592       else if (strcmp(name, ".debug_line") == 0)
1593         os->set_free_space_fill(new Output_fill_debug_line());
1594     }
1595
1596   // If we have already attached the sections to segments, then we
1597   // need to attach this one now.  This happens for sections created
1598   // directly by the linker.
1599   if (this->sections_are_attached_)
1600     this->attach_section_to_segment(&parameters->target(), os);
1601
1602   return os;
1603 }
1604
1605 // Return the default order in which a section should be placed in an
1606 // output segment.  This function captures a lot of the ideas in
1607 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1608 // linker created section is normally set when the section is created;
1609 // this function is used for input sections.
1610
1611 Output_section_order
1612 Layout::default_section_order(Output_section* os, bool is_relro_local)
1613 {
1614   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1615   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1616   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1617   bool is_bss = false;
1618
1619   switch (os->type())
1620     {
1621     default:
1622     case elfcpp::SHT_PROGBITS:
1623       break;
1624     case elfcpp::SHT_NOBITS:
1625       is_bss = true;
1626       break;
1627     case elfcpp::SHT_RELA:
1628     case elfcpp::SHT_REL:
1629       if (!is_write)
1630         return ORDER_DYNAMIC_RELOCS;
1631       break;
1632     case elfcpp::SHT_HASH:
1633     case elfcpp::SHT_DYNAMIC:
1634     case elfcpp::SHT_SHLIB:
1635     case elfcpp::SHT_DYNSYM:
1636     case elfcpp::SHT_GNU_HASH:
1637     case elfcpp::SHT_GNU_verdef:
1638     case elfcpp::SHT_GNU_verneed:
1639     case elfcpp::SHT_GNU_versym:
1640       if (!is_write)
1641         return ORDER_DYNAMIC_LINKER;
1642       break;
1643     case elfcpp::SHT_NOTE:
1644       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1645     }
1646
1647   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1648     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1649
1650   if (!is_bss && !is_write)
1651     {
1652       if (is_execinstr)
1653         {
1654           if (strcmp(os->name(), ".init") == 0)
1655             return ORDER_INIT;
1656           else if (strcmp(os->name(), ".fini") == 0)
1657             return ORDER_FINI;
1658         }
1659       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1660     }
1661
1662   if (os->is_relro())
1663     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1664
1665   if (os->is_small_section())
1666     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1667   if (os->is_large_section())
1668     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1669
1670   return is_bss ? ORDER_BSS : ORDER_DATA;
1671 }
1672
1673 // Attach output sections to segments.  This is called after we have
1674 // seen all the input sections.
1675
1676 void
1677 Layout::attach_sections_to_segments(const Target* target)
1678 {
1679   for (Section_list::iterator p = this->section_list_.begin();
1680        p != this->section_list_.end();
1681        ++p)
1682     this->attach_section_to_segment(target, *p);
1683
1684   this->sections_are_attached_ = true;
1685 }
1686
1687 // Attach an output section to a segment.
1688
1689 void
1690 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1691 {
1692   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1693     this->unattached_section_list_.push_back(os);
1694   else
1695     this->attach_allocated_section_to_segment(target, os);
1696 }
1697
1698 // Attach an allocated output section to a segment.
1699
1700 void
1701 Layout::attach_allocated_section_to_segment(const Target* target,
1702                                             Output_section* os)
1703 {
1704   elfcpp::Elf_Xword flags = os->flags();
1705   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1706
1707   if (parameters->options().relocatable())
1708     return;
1709
1710   // If we have a SECTIONS clause, we can't handle the attachment to
1711   // segments until after we've seen all the sections.
1712   if (this->script_options_->saw_sections_clause())
1713     return;
1714
1715   gold_assert(!this->script_options_->saw_phdrs_clause());
1716
1717   // This output section goes into a PT_LOAD segment.
1718
1719   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1720
1721   // Check for --section-start.
1722   uint64_t addr;
1723   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1724
1725   // In general the only thing we really care about for PT_LOAD
1726   // segments is whether or not they are writable or executable,
1727   // so that is how we search for them.
1728   // Large data sections also go into their own PT_LOAD segment.
1729   // People who need segments sorted on some other basis will
1730   // have to use a linker script.
1731
1732   Segment_list::const_iterator p;
1733   for (p = this->segment_list_.begin();
1734        p != this->segment_list_.end();
1735        ++p)
1736     {
1737       if ((*p)->type() != elfcpp::PT_LOAD)
1738         continue;
1739       if (!parameters->options().omagic()
1740           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1741         continue;
1742       if ((target->isolate_execinstr() || parameters->options().rosegment())
1743           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1744         continue;
1745       // If -Tbss was specified, we need to separate the data and BSS
1746       // segments.
1747       if (parameters->options().user_set_Tbss())
1748         {
1749           if ((os->type() == elfcpp::SHT_NOBITS)
1750               == (*p)->has_any_data_sections())
1751             continue;
1752         }
1753       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1754         continue;
1755
1756       if (is_address_set)
1757         {
1758           if ((*p)->are_addresses_set())
1759             continue;
1760
1761           (*p)->add_initial_output_data(os);
1762           (*p)->update_flags_for_output_section(seg_flags);
1763           (*p)->set_addresses(addr, addr);
1764           break;
1765         }
1766
1767       (*p)->add_output_section_to_load(this, os, seg_flags);
1768       break;
1769     }
1770
1771   if (p == this->segment_list_.end())
1772     {
1773       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1774                                                        seg_flags);
1775       if (os->is_large_data_section())
1776         oseg->set_is_large_data_segment();
1777       oseg->add_output_section_to_load(this, os, seg_flags);
1778       if (is_address_set)
1779         oseg->set_addresses(addr, addr);
1780     }
1781
1782   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1783   // segment.
1784   if (os->type() == elfcpp::SHT_NOTE)
1785     {
1786       // See if we already have an equivalent PT_NOTE segment.
1787       for (p = this->segment_list_.begin();
1788            p != segment_list_.end();
1789            ++p)
1790         {
1791           if ((*p)->type() == elfcpp::PT_NOTE
1792               && (((*p)->flags() & elfcpp::PF_W)
1793                   == (seg_flags & elfcpp::PF_W)))
1794             {
1795               (*p)->add_output_section_to_nonload(os, seg_flags);
1796               break;
1797             }
1798         }
1799
1800       if (p == this->segment_list_.end())
1801         {
1802           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1803                                                            seg_flags);
1804           oseg->add_output_section_to_nonload(os, seg_flags);
1805         }
1806     }
1807
1808   // If we see a loadable SHF_TLS section, we create a PT_TLS
1809   // segment.  There can only be one such segment.
1810   if ((flags & elfcpp::SHF_TLS) != 0)
1811     {
1812       if (this->tls_segment_ == NULL)
1813         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1814       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1815     }
1816
1817   // If -z relro is in effect, and we see a relro section, we create a
1818   // PT_GNU_RELRO segment.  There can only be one such segment.
1819   if (os->is_relro() && parameters->options().relro())
1820     {
1821       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1822       if (this->relro_segment_ == NULL)
1823         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1824       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1825     }
1826
1827   // If we see a section named .interp, put it into a PT_INTERP
1828   // segment.  This seems broken to me, but this is what GNU ld does,
1829   // and glibc expects it.
1830   if (strcmp(os->name(), ".interp") == 0
1831       && !this->script_options_->saw_phdrs_clause())
1832     {
1833       if (this->interp_segment_ == NULL)
1834         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1835       else
1836         gold_warning(_("multiple '.interp' sections in input files "
1837                        "may cause confusing PT_INTERP segment"));
1838       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1839     }
1840 }
1841
1842 // Make an output section for a script.
1843
1844 Output_section*
1845 Layout::make_output_section_for_script(
1846     const char* name,
1847     Script_sections::Section_type section_type)
1848 {
1849   name = this->namepool_.add(name, false, NULL);
1850   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1851   if (section_type == Script_sections::ST_NOLOAD)
1852     sh_flags = 0;
1853   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1854                                                  sh_flags, ORDER_INVALID,
1855                                                  false);
1856   os->set_found_in_sections_clause();
1857   if (section_type == Script_sections::ST_NOLOAD)
1858     os->set_is_noload();
1859   return os;
1860 }
1861
1862 // Return the number of segments we expect to see.
1863
1864 size_t
1865 Layout::expected_segment_count() const
1866 {
1867   size_t ret = this->segment_list_.size();
1868
1869   // If we didn't see a SECTIONS clause in a linker script, we should
1870   // already have the complete list of segments.  Otherwise we ask the
1871   // SECTIONS clause how many segments it expects, and add in the ones
1872   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1873
1874   if (!this->script_options_->saw_sections_clause())
1875     return ret;
1876   else
1877     {
1878       const Script_sections* ss = this->script_options_->script_sections();
1879       return ret + ss->expected_segment_count(this);
1880     }
1881 }
1882
1883 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1884 // is whether we saw a .note.GNU-stack section in the object file.
1885 // GNU_STACK_FLAGS is the section flags.  The flags give the
1886 // protection required for stack memory.  We record this in an
1887 // executable as a PT_GNU_STACK segment.  If an object file does not
1888 // have a .note.GNU-stack segment, we must assume that it is an old
1889 // object.  On some targets that will force an executable stack.
1890
1891 void
1892 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1893                          const Object* obj)
1894 {
1895   if (!seen_gnu_stack)
1896     {
1897       this->input_without_gnu_stack_note_ = true;
1898       if (parameters->options().warn_execstack()
1899           && parameters->target().is_default_stack_executable())
1900         gold_warning(_("%s: missing .note.GNU-stack section"
1901                        " implies executable stack"),
1902                      obj->name().c_str());
1903     }
1904   else
1905     {
1906       this->input_with_gnu_stack_note_ = true;
1907       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1908         {
1909           this->input_requires_executable_stack_ = true;
1910           if (parameters->options().warn_execstack()
1911               || parameters->options().is_stack_executable())
1912             gold_warning(_("%s: requires executable stack"),
1913                          obj->name().c_str());
1914         }
1915     }
1916 }
1917
1918 // Create automatic note sections.
1919
1920 void
1921 Layout::create_notes()
1922 {
1923   this->create_gold_note();
1924   this->create_executable_stack_info();
1925   this->create_build_id();
1926 }
1927
1928 // Create the dynamic sections which are needed before we read the
1929 // relocs.
1930
1931 void
1932 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1933 {
1934   if (parameters->doing_static_link())
1935     return;
1936
1937   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1938                                                        elfcpp::SHT_DYNAMIC,
1939                                                        (elfcpp::SHF_ALLOC
1940                                                         | elfcpp::SHF_WRITE),
1941                                                        false, ORDER_RELRO,
1942                                                        true);
1943
1944   // A linker script may discard .dynamic, so check for NULL.
1945   if (this->dynamic_section_ != NULL)
1946     {
1947       this->dynamic_symbol_ =
1948         symtab->define_in_output_data("_DYNAMIC", NULL,
1949                                       Symbol_table::PREDEFINED,
1950                                       this->dynamic_section_, 0, 0,
1951                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1952                                       elfcpp::STV_HIDDEN, 0, false, false);
1953
1954       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1955
1956       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1957     }
1958 }
1959
1960 // For each output section whose name can be represented as C symbol,
1961 // define __start and __stop symbols for the section.  This is a GNU
1962 // extension.
1963
1964 void
1965 Layout::define_section_symbols(Symbol_table* symtab)
1966 {
1967   for (Section_list::const_iterator p = this->section_list_.begin();
1968        p != this->section_list_.end();
1969        ++p)
1970     {
1971       const char* const name = (*p)->name();
1972       if (is_cident(name))
1973         {
1974           const std::string name_string(name);
1975           const std::string start_name(cident_section_start_prefix
1976                                        + name_string);
1977           const std::string stop_name(cident_section_stop_prefix
1978                                       + name_string);
1979
1980           symtab->define_in_output_data(start_name.c_str(),
1981                                         NULL, // version
1982                                         Symbol_table::PREDEFINED,
1983                                         *p,
1984                                         0, // value
1985                                         0, // symsize
1986                                         elfcpp::STT_NOTYPE,
1987                                         elfcpp::STB_GLOBAL,
1988                                         elfcpp::STV_DEFAULT,
1989                                         0, // nonvis
1990                                         false, // offset_is_from_end
1991                                         true); // only_if_ref
1992
1993           symtab->define_in_output_data(stop_name.c_str(),
1994                                         NULL, // version
1995                                         Symbol_table::PREDEFINED,
1996                                         *p,
1997                                         0, // value
1998                                         0, // symsize
1999                                         elfcpp::STT_NOTYPE,
2000                                         elfcpp::STB_GLOBAL,
2001                                         elfcpp::STV_DEFAULT,
2002                                         0, // nonvis
2003                                         true, // offset_is_from_end
2004                                         true); // only_if_ref
2005         }
2006     }
2007 }
2008
2009 // Define symbols for group signatures.
2010
2011 void
2012 Layout::define_group_signatures(Symbol_table* symtab)
2013 {
2014   for (Group_signatures::iterator p = this->group_signatures_.begin();
2015        p != this->group_signatures_.end();
2016        ++p)
2017     {
2018       Symbol* sym = symtab->lookup(p->signature, NULL);
2019       if (sym != NULL)
2020         p->section->set_info_symndx(sym);
2021       else
2022         {
2023           // Force the name of the group section to the group
2024           // signature, and use the group's section symbol as the
2025           // signature symbol.
2026           if (strcmp(p->section->name(), p->signature) != 0)
2027             {
2028               const char* name = this->namepool_.add(p->signature,
2029                                                      true, NULL);
2030               p->section->set_name(name);
2031             }
2032           p->section->set_needs_symtab_index();
2033           p->section->set_info_section_symndx(p->section);
2034         }
2035     }
2036
2037   this->group_signatures_.clear();
2038 }
2039
2040 // Find the first read-only PT_LOAD segment, creating one if
2041 // necessary.
2042
2043 Output_segment*
2044 Layout::find_first_load_seg(const Target* target)
2045 {
2046   Output_segment* best = NULL;
2047   for (Segment_list::const_iterator p = this->segment_list_.begin();
2048        p != this->segment_list_.end();
2049        ++p)
2050     {
2051       if ((*p)->type() == elfcpp::PT_LOAD
2052           && ((*p)->flags() & elfcpp::PF_R) != 0
2053           && (parameters->options().omagic()
2054               || ((*p)->flags() & elfcpp::PF_W) == 0)
2055           && (!target->isolate_execinstr()
2056               || ((*p)->flags() & elfcpp::PF_X) == 0))
2057         {
2058           if (best == NULL || this->segment_precedes(*p, best))
2059             best = *p;
2060         }
2061     }
2062   if (best != NULL)
2063     return best;
2064
2065   gold_assert(!this->script_options_->saw_phdrs_clause());
2066
2067   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2068                                                        elfcpp::PF_R);
2069   return load_seg;
2070 }
2071
2072 // Save states of all current output segments.  Store saved states
2073 // in SEGMENT_STATES.
2074
2075 void
2076 Layout::save_segments(Segment_states* segment_states)
2077 {
2078   for (Segment_list::const_iterator p = this->segment_list_.begin();
2079        p != this->segment_list_.end();
2080        ++p)
2081     {
2082       Output_segment* segment = *p;
2083       // Shallow copy.
2084       Output_segment* copy = new Output_segment(*segment);
2085       (*segment_states)[segment] = copy;
2086     }
2087 }
2088
2089 // Restore states of output segments and delete any segment not found in
2090 // SEGMENT_STATES.
2091
2092 void
2093 Layout::restore_segments(const Segment_states* segment_states)
2094 {
2095   // Go through the segment list and remove any segment added in the
2096   // relaxation loop.
2097   this->tls_segment_ = NULL;
2098   this->relro_segment_ = NULL;
2099   Segment_list::iterator list_iter = this->segment_list_.begin();
2100   while (list_iter != this->segment_list_.end())
2101     {
2102       Output_segment* segment = *list_iter;
2103       Segment_states::const_iterator states_iter =
2104           segment_states->find(segment);
2105       if (states_iter != segment_states->end())
2106         {
2107           const Output_segment* copy = states_iter->second;
2108           // Shallow copy to restore states.
2109           *segment = *copy;
2110
2111           // Also fix up TLS and RELRO segment pointers as appropriate.
2112           if (segment->type() == elfcpp::PT_TLS)
2113             this->tls_segment_ = segment;
2114           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2115             this->relro_segment_ = segment;
2116
2117           ++list_iter;
2118         }
2119       else
2120         {
2121           list_iter = this->segment_list_.erase(list_iter);
2122           // This is a segment created during section layout.  It should be
2123           // safe to remove it since we should have removed all pointers to it.
2124           delete segment;
2125         }
2126     }
2127 }
2128
2129 // Clean up after relaxation so that sections can be laid out again.
2130
2131 void
2132 Layout::clean_up_after_relaxation()
2133 {
2134   // Restore the segments to point state just prior to the relaxation loop.
2135   Script_sections* script_section = this->script_options_->script_sections();
2136   script_section->release_segments();
2137   this->restore_segments(this->segment_states_);
2138
2139   // Reset section addresses and file offsets
2140   for (Section_list::iterator p = this->section_list_.begin();
2141        p != this->section_list_.end();
2142        ++p)
2143     {
2144       (*p)->restore_states();
2145
2146       // If an input section changes size because of relaxation,
2147       // we need to adjust the section offsets of all input sections.
2148       // after such a section.
2149       if ((*p)->section_offsets_need_adjustment())
2150         (*p)->adjust_section_offsets();
2151
2152       (*p)->reset_address_and_file_offset();
2153     }
2154
2155   // Reset special output object address and file offsets.
2156   for (Data_list::iterator p = this->special_output_list_.begin();
2157        p != this->special_output_list_.end();
2158        ++p)
2159     (*p)->reset_address_and_file_offset();
2160
2161   // A linker script may have created some output section data objects.
2162   // They are useless now.
2163   for (Output_section_data_list::const_iterator p =
2164          this->script_output_section_data_list_.begin();
2165        p != this->script_output_section_data_list_.end();
2166        ++p)
2167     delete *p;
2168   this->script_output_section_data_list_.clear();
2169 }
2170
2171 // Prepare for relaxation.
2172
2173 void
2174 Layout::prepare_for_relaxation()
2175 {
2176   // Create an relaxation debug check if in debugging mode.
2177   if (is_debugging_enabled(DEBUG_RELAXATION))
2178     this->relaxation_debug_check_ = new Relaxation_debug_check();
2179
2180   // Save segment states.
2181   this->segment_states_ = new Segment_states();
2182   this->save_segments(this->segment_states_);
2183
2184   for(Section_list::const_iterator p = this->section_list_.begin();
2185       p != this->section_list_.end();
2186       ++p)
2187     (*p)->save_states();
2188
2189   if (is_debugging_enabled(DEBUG_RELAXATION))
2190     this->relaxation_debug_check_->check_output_data_for_reset_values(
2191         this->section_list_, this->special_output_list_);
2192
2193   // Also enable recording of output section data from scripts.
2194   this->record_output_section_data_from_script_ = true;
2195 }
2196
2197 // Relaxation loop body:  If target has no relaxation, this runs only once
2198 // Otherwise, the target relaxation hook is called at the end of
2199 // each iteration.  If the hook returns true, it means re-layout of
2200 // section is required.
2201 //
2202 // The number of segments created by a linking script without a PHDRS
2203 // clause may be affected by section sizes and alignments.  There is
2204 // a remote chance that relaxation causes different number of PT_LOAD
2205 // segments are created and sections are attached to different segments.
2206 // Therefore, we always throw away all segments created during section
2207 // layout.  In order to be able to restart the section layout, we keep
2208 // a copy of the segment list right before the relaxation loop and use
2209 // that to restore the segments.
2210 //
2211 // PASS is the current relaxation pass number.
2212 // SYMTAB is a symbol table.
2213 // PLOAD_SEG is the address of a pointer for the load segment.
2214 // PHDR_SEG is a pointer to the PHDR segment.
2215 // SEGMENT_HEADERS points to the output segment header.
2216 // FILE_HEADER points to the output file header.
2217 // PSHNDX is the address to store the output section index.
2218
2219 off_t inline
2220 Layout::relaxation_loop_body(
2221     int pass,
2222     Target* target,
2223     Symbol_table* symtab,
2224     Output_segment** pload_seg,
2225     Output_segment* phdr_seg,
2226     Output_segment_headers* segment_headers,
2227     Output_file_header* file_header,
2228     unsigned int* pshndx)
2229 {
2230   // If this is not the first iteration, we need to clean up after
2231   // relaxation so that we can lay out the sections again.
2232   if (pass != 0)
2233     this->clean_up_after_relaxation();
2234
2235   // If there is a SECTIONS clause, put all the input sections into
2236   // the required order.
2237   Output_segment* load_seg;
2238   if (this->script_options_->saw_sections_clause())
2239     load_seg = this->set_section_addresses_from_script(symtab);
2240   else if (parameters->options().relocatable())
2241     load_seg = NULL;
2242   else
2243     load_seg = this->find_first_load_seg(target);
2244
2245   if (parameters->options().oformat_enum()
2246       != General_options::OBJECT_FORMAT_ELF)
2247     load_seg = NULL;
2248
2249   // If the user set the address of the text segment, that may not be
2250   // compatible with putting the segment headers and file headers into
2251   // that segment.
2252   if (parameters->options().user_set_Ttext()
2253       && parameters->options().Ttext() % target->common_pagesize() != 0)
2254     {
2255       load_seg = NULL;
2256       phdr_seg = NULL;
2257     }
2258
2259   gold_assert(phdr_seg == NULL
2260               || load_seg != NULL
2261               || this->script_options_->saw_sections_clause());
2262
2263   // If the address of the load segment we found has been set by
2264   // --section-start rather than by a script, then adjust the VMA and
2265   // LMA downward if possible to include the file and section headers.
2266   uint64_t header_gap = 0;
2267   if (load_seg != NULL
2268       && load_seg->are_addresses_set()
2269       && !this->script_options_->saw_sections_clause()
2270       && !parameters->options().relocatable())
2271     {
2272       file_header->finalize_data_size();
2273       segment_headers->finalize_data_size();
2274       size_t sizeof_headers = (file_header->data_size()
2275                                + segment_headers->data_size());
2276       const uint64_t abi_pagesize = target->abi_pagesize();
2277       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2278       hdr_paddr &= ~(abi_pagesize - 1);
2279       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2280       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2281         load_seg = NULL;
2282       else
2283         {
2284           load_seg->set_addresses(load_seg->vaddr() - subtract,
2285                                   load_seg->paddr() - subtract);
2286           header_gap = subtract - sizeof_headers;
2287         }
2288     }
2289
2290   // Lay out the segment headers.
2291   if (!parameters->options().relocatable())
2292     {
2293       gold_assert(segment_headers != NULL);
2294       if (header_gap != 0 && load_seg != NULL)
2295         {
2296           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2297           load_seg->add_initial_output_data(z);
2298         }
2299       if (load_seg != NULL)
2300         load_seg->add_initial_output_data(segment_headers);
2301       if (phdr_seg != NULL)
2302         phdr_seg->add_initial_output_data(segment_headers);
2303     }
2304
2305   // Lay out the file header.
2306   if (load_seg != NULL)
2307     load_seg->add_initial_output_data(file_header);
2308
2309   if (this->script_options_->saw_phdrs_clause()
2310       && !parameters->options().relocatable())
2311     {
2312       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2313       // clause in a linker script.
2314       Script_sections* ss = this->script_options_->script_sections();
2315       ss->put_headers_in_phdrs(file_header, segment_headers);
2316     }
2317
2318   // We set the output section indexes in set_segment_offsets and
2319   // set_section_indexes.
2320   *pshndx = 1;
2321
2322   // Set the file offsets of all the segments, and all the sections
2323   // they contain.
2324   off_t off;
2325   if (!parameters->options().relocatable())
2326     off = this->set_segment_offsets(target, load_seg, pshndx);
2327   else
2328     off = this->set_relocatable_section_offsets(file_header, pshndx);
2329
2330    // Verify that the dummy relaxation does not change anything.
2331   if (is_debugging_enabled(DEBUG_RELAXATION))
2332     {
2333       if (pass == 0)
2334         this->relaxation_debug_check_->read_sections(this->section_list_);
2335       else
2336         this->relaxation_debug_check_->verify_sections(this->section_list_);
2337     }
2338
2339   *pload_seg = load_seg;
2340   return off;
2341 }
2342
2343 // Search the list of patterns and find the postion of the given section
2344 // name in the output section.  If the section name matches a glob
2345 // pattern and a non-glob name, then the non-glob position takes
2346 // precedence.  Return 0 if no match is found.
2347
2348 unsigned int
2349 Layout::find_section_order_index(const std::string& section_name)
2350 {
2351   Unordered_map<std::string, unsigned int>::iterator map_it;
2352   map_it = this->input_section_position_.find(section_name);
2353   if (map_it != this->input_section_position_.end())
2354     return map_it->second;
2355
2356   // Absolute match failed.  Linear search the glob patterns.
2357   std::vector<std::string>::iterator it;
2358   for (it = this->input_section_glob_.begin();
2359        it != this->input_section_glob_.end();
2360        ++it)
2361     {
2362        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2363          {
2364            map_it = this->input_section_position_.find(*it);
2365            gold_assert(map_it != this->input_section_position_.end());
2366            return map_it->second;
2367          }
2368     }
2369   return 0;
2370 }
2371
2372 // Read the sequence of input sections from the file specified with
2373 // option --section-ordering-file.
2374
2375 void
2376 Layout::read_layout_from_file()
2377 {
2378   const char* filename = parameters->options().section_ordering_file();
2379   std::ifstream in;
2380   std::string line;
2381
2382   in.open(filename);
2383   if (!in)
2384     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2385                filename, strerror(errno));
2386
2387   std::getline(in, line);   // this chops off the trailing \n, if any
2388   unsigned int position = 1;
2389   this->set_section_ordering_specified();
2390
2391   while (in)
2392     {
2393       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2394         line.resize(line.length() - 1);
2395       // Ignore comments, beginning with '#'
2396       if (line[0] == '#')
2397         {
2398           std::getline(in, line);
2399           continue;
2400         }
2401       this->input_section_position_[line] = position;
2402       // Store all glob patterns in a vector.
2403       if (is_wildcard_string(line.c_str()))
2404         this->input_section_glob_.push_back(line);
2405       position++;
2406       std::getline(in, line);
2407     }
2408 }
2409
2410 // Finalize the layout.  When this is called, we have created all the
2411 // output sections and all the output segments which are based on
2412 // input sections.  We have several things to do, and we have to do
2413 // them in the right order, so that we get the right results correctly
2414 // and efficiently.
2415
2416 // 1) Finalize the list of output segments and create the segment
2417 // table header.
2418
2419 // 2) Finalize the dynamic symbol table and associated sections.
2420
2421 // 3) Determine the final file offset of all the output segments.
2422
2423 // 4) Determine the final file offset of all the SHF_ALLOC output
2424 // sections.
2425
2426 // 5) Create the symbol table sections and the section name table
2427 // section.
2428
2429 // 6) Finalize the symbol table: set symbol values to their final
2430 // value and make a final determination of which symbols are going
2431 // into the output symbol table.
2432
2433 // 7) Create the section table header.
2434
2435 // 8) Determine the final file offset of all the output sections which
2436 // are not SHF_ALLOC, including the section table header.
2437
2438 // 9) Finalize the ELF file header.
2439
2440 // This function returns the size of the output file.
2441
2442 off_t
2443 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2444                  Target* target, const Task* task)
2445 {
2446   target->finalize_sections(this, input_objects, symtab);
2447
2448   this->count_local_symbols(task, input_objects);
2449
2450   this->link_stabs_sections();
2451
2452   Output_segment* phdr_seg = NULL;
2453   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2454     {
2455       // There was a dynamic object in the link.  We need to create
2456       // some information for the dynamic linker.
2457
2458       // Create the PT_PHDR segment which will hold the program
2459       // headers.
2460       if (!this->script_options_->saw_phdrs_clause())
2461         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2462
2463       // Create the dynamic symbol table, including the hash table.
2464       Output_section* dynstr;
2465       std::vector<Symbol*> dynamic_symbols;
2466       unsigned int local_dynamic_count;
2467       Versions versions(*this->script_options()->version_script_info(),
2468                         &this->dynpool_);
2469       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2470                                   &local_dynamic_count, &dynamic_symbols,
2471                                   &versions);
2472
2473       // Create the .interp section to hold the name of the
2474       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2475       // if we saw a .interp section in an input file.
2476       if ((!parameters->options().shared()
2477            || parameters->options().dynamic_linker() != NULL)
2478           && this->interp_segment_ == NULL)
2479         this->create_interp(target);
2480
2481       // Finish the .dynamic section to hold the dynamic data, and put
2482       // it in a PT_DYNAMIC segment.
2483       this->finish_dynamic_section(input_objects, symtab);
2484
2485       // We should have added everything we need to the dynamic string
2486       // table.
2487       this->dynpool_.set_string_offsets();
2488
2489       // Create the version sections.  We can't do this until the
2490       // dynamic string table is complete.
2491       this->create_version_sections(&versions, symtab, local_dynamic_count,
2492                                     dynamic_symbols, dynstr);
2493
2494       // Set the size of the _DYNAMIC symbol.  We can't do this until
2495       // after we call create_version_sections.
2496       this->set_dynamic_symbol_size(symtab);
2497     }
2498
2499   // Create segment headers.
2500   Output_segment_headers* segment_headers =
2501     (parameters->options().relocatable()
2502      ? NULL
2503      : new Output_segment_headers(this->segment_list_));
2504
2505   // Lay out the file header.
2506   Output_file_header* file_header = new Output_file_header(target, symtab,
2507                                                            segment_headers);
2508
2509   this->special_output_list_.push_back(file_header);
2510   if (segment_headers != NULL)
2511     this->special_output_list_.push_back(segment_headers);
2512
2513   // Find approriate places for orphan output sections if we are using
2514   // a linker script.
2515   if (this->script_options_->saw_sections_clause())
2516     this->place_orphan_sections_in_script();
2517
2518   Output_segment* load_seg;
2519   off_t off;
2520   unsigned int shndx;
2521   int pass = 0;
2522
2523   // Take a snapshot of the section layout as needed.
2524   if (target->may_relax())
2525     this->prepare_for_relaxation();
2526
2527   // Run the relaxation loop to lay out sections.
2528   do
2529     {
2530       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2531                                        phdr_seg, segment_headers, file_header,
2532                                        &shndx);
2533       pass++;
2534     }
2535   while (target->may_relax()
2536          && target->relax(pass, input_objects, symtab, this, task));
2537
2538   // If there is a load segment that contains the file and program headers,
2539   // provide a symbol __ehdr_start pointing there.
2540   // A program can use this to examine itself robustly.
2541   if (load_seg != NULL)
2542     symtab->define_in_output_segment("__ehdr_start", NULL,
2543                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2544                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2545                                      elfcpp::STV_DEFAULT, 0,
2546                                      Symbol::SEGMENT_START, true);
2547
2548   // Set the file offsets of all the non-data sections we've seen so
2549   // far which don't have to wait for the input sections.  We need
2550   // this in order to finalize local symbols in non-allocated
2551   // sections.
2552   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2553
2554   // Set the section indexes of all unallocated sections seen so far,
2555   // in case any of them are somehow referenced by a symbol.
2556   shndx = this->set_section_indexes(shndx);
2557
2558   // Create the symbol table sections.
2559   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2560   if (!parameters->doing_static_link())
2561     this->assign_local_dynsym_offsets(input_objects);
2562
2563   // Process any symbol assignments from a linker script.  This must
2564   // be called after the symbol table has been finalized.
2565   this->script_options_->finalize_symbols(symtab, this);
2566
2567   // Create the incremental inputs sections.
2568   if (this->incremental_inputs_)
2569     {
2570       this->incremental_inputs_->finalize();
2571       this->create_incremental_info_sections(symtab);
2572     }
2573
2574   // Create the .shstrtab section.
2575   Output_section* shstrtab_section = this->create_shstrtab();
2576
2577   // Set the file offsets of the rest of the non-data sections which
2578   // don't have to wait for the input sections.
2579   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2580
2581   // Now that all sections have been created, set the section indexes
2582   // for any sections which haven't been done yet.
2583   shndx = this->set_section_indexes(shndx);
2584
2585   // Create the section table header.
2586   this->create_shdrs(shstrtab_section, &off);
2587
2588   // If there are no sections which require postprocessing, we can
2589   // handle the section names now, and avoid a resize later.
2590   if (!this->any_postprocessing_sections_)
2591     {
2592       off = this->set_section_offsets(off,
2593                                       POSTPROCESSING_SECTIONS_PASS);
2594       off =
2595           this->set_section_offsets(off,
2596                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2597     }
2598
2599   file_header->set_section_info(this->section_headers_, shstrtab_section);
2600
2601   // Now we know exactly where everything goes in the output file
2602   // (except for non-allocated sections which require postprocessing).
2603   Output_data::layout_complete();
2604
2605   this->output_file_size_ = off;
2606
2607   return off;
2608 }
2609
2610 // Create a note header following the format defined in the ELF ABI.
2611 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2612 // of the section to create, DESCSZ is the size of the descriptor.
2613 // ALLOCATE is true if the section should be allocated in memory.
2614 // This returns the new note section.  It sets *TRAILING_PADDING to
2615 // the number of trailing zero bytes required.
2616
2617 Output_section*
2618 Layout::create_note(const char* name, int note_type,
2619                     const char* section_name, size_t descsz,
2620                     bool allocate, size_t* trailing_padding)
2621 {
2622   // Authorities all agree that the values in a .note field should
2623   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2624   // they differ on what the alignment is for 64-bit binaries.
2625   // The GABI says unambiguously they take 8-byte alignment:
2626   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2627   // Other documentation says alignment should always be 4 bytes:
2628   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2629   // GNU ld and GNU readelf both support the latter (at least as of
2630   // version 2.16.91), and glibc always generates the latter for
2631   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2632   // here.
2633 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2634   const int size = parameters->target().get_size();
2635 #else
2636   const int size = 32;
2637 #endif
2638
2639   // The contents of the .note section.
2640   size_t namesz = strlen(name) + 1;
2641   size_t aligned_namesz = align_address(namesz, size / 8);
2642   size_t aligned_descsz = align_address(descsz, size / 8);
2643
2644   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2645
2646   unsigned char* buffer = new unsigned char[notehdrsz];
2647   memset(buffer, 0, notehdrsz);
2648
2649   bool is_big_endian = parameters->target().is_big_endian();
2650
2651   if (size == 32)
2652     {
2653       if (!is_big_endian)
2654         {
2655           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2656           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2657           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2658         }
2659       else
2660         {
2661           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2662           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2663           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2664         }
2665     }
2666   else if (size == 64)
2667     {
2668       if (!is_big_endian)
2669         {
2670           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2671           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2672           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2673         }
2674       else
2675         {
2676           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2677           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2678           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2679         }
2680     }
2681   else
2682     gold_unreachable();
2683
2684   memcpy(buffer + 3 * (size / 8), name, namesz);
2685
2686   elfcpp::Elf_Xword flags = 0;
2687   Output_section_order order = ORDER_INVALID;
2688   if (allocate)
2689     {
2690       flags = elfcpp::SHF_ALLOC;
2691       order = ORDER_RO_NOTE;
2692     }
2693   Output_section* os = this->choose_output_section(NULL, section_name,
2694                                                    elfcpp::SHT_NOTE,
2695                                                    flags, false, order, false);
2696   if (os == NULL)
2697     return NULL;
2698
2699   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2700                                                            size / 8,
2701                                                            "** note header");
2702   os->add_output_section_data(posd);
2703
2704   *trailing_padding = aligned_descsz - descsz;
2705
2706   return os;
2707 }
2708
2709 // For an executable or shared library, create a note to record the
2710 // version of gold used to create the binary.
2711
2712 void
2713 Layout::create_gold_note()
2714 {
2715   if (parameters->options().relocatable()
2716       || parameters->incremental_update())
2717     return;
2718
2719   std::string desc = std::string("gold ") + gold::get_version_string();
2720
2721   size_t trailing_padding;
2722   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2723                                          ".note.gnu.gold-version", desc.size(),
2724                                          false, &trailing_padding);
2725   if (os == NULL)
2726     return;
2727
2728   Output_section_data* posd = new Output_data_const(desc, 4);
2729   os->add_output_section_data(posd);
2730
2731   if (trailing_padding > 0)
2732     {
2733       posd = new Output_data_zero_fill(trailing_padding, 0);
2734       os->add_output_section_data(posd);
2735     }
2736 }
2737
2738 // Record whether the stack should be executable.  This can be set
2739 // from the command line using the -z execstack or -z noexecstack
2740 // options.  Otherwise, if any input file has a .note.GNU-stack
2741 // section with the SHF_EXECINSTR flag set, the stack should be
2742 // executable.  Otherwise, if at least one input file a
2743 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2744 // section, we use the target default for whether the stack should be
2745 // executable.  Otherwise, we don't generate a stack note.  When
2746 // generating a object file, we create a .note.GNU-stack section with
2747 // the appropriate marking.  When generating an executable or shared
2748 // library, we create a PT_GNU_STACK segment.
2749
2750 void
2751 Layout::create_executable_stack_info()
2752 {
2753   bool is_stack_executable;
2754   if (parameters->options().is_execstack_set())
2755     is_stack_executable = parameters->options().is_stack_executable();
2756   else if (!this->input_with_gnu_stack_note_)
2757     return;
2758   else
2759     {
2760       if (this->input_requires_executable_stack_)
2761         is_stack_executable = true;
2762       else if (this->input_without_gnu_stack_note_)
2763         is_stack_executable =
2764           parameters->target().is_default_stack_executable();
2765       else
2766         is_stack_executable = false;
2767     }
2768
2769   if (parameters->options().relocatable())
2770     {
2771       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2772       elfcpp::Elf_Xword flags = 0;
2773       if (is_stack_executable)
2774         flags |= elfcpp::SHF_EXECINSTR;
2775       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2776                                 ORDER_INVALID, false);
2777     }
2778   else
2779     {
2780       if (this->script_options_->saw_phdrs_clause())
2781         return;
2782       int flags = elfcpp::PF_R | elfcpp::PF_W;
2783       if (is_stack_executable)
2784         flags |= elfcpp::PF_X;
2785       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2786     }
2787 }
2788
2789 // If --build-id was used, set up the build ID note.
2790
2791 void
2792 Layout::create_build_id()
2793 {
2794   if (!parameters->options().user_set_build_id())
2795     return;
2796
2797   const char* style = parameters->options().build_id();
2798   if (strcmp(style, "none") == 0)
2799     return;
2800
2801   // Set DESCSZ to the size of the note descriptor.  When possible,
2802   // set DESC to the note descriptor contents.
2803   size_t descsz;
2804   std::string desc;
2805   if (strcmp(style, "md5") == 0)
2806     descsz = 128 / 8;
2807   else if (strcmp(style, "sha1") == 0)
2808     descsz = 160 / 8;
2809   else if (strcmp(style, "uuid") == 0)
2810     {
2811       const size_t uuidsz = 128 / 8;
2812
2813       char buffer[uuidsz];
2814       memset(buffer, 0, uuidsz);
2815
2816       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2817       if (descriptor < 0)
2818         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2819                    strerror(errno));
2820       else
2821         {
2822           ssize_t got = ::read(descriptor, buffer, uuidsz);
2823           release_descriptor(descriptor, true);
2824           if (got < 0)
2825             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2826           else if (static_cast<size_t>(got) != uuidsz)
2827             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2828                        uuidsz, got);
2829         }
2830
2831       desc.assign(buffer, uuidsz);
2832       descsz = uuidsz;
2833     }
2834   else if (strncmp(style, "0x", 2) == 0)
2835     {
2836       hex_init();
2837       const char* p = style + 2;
2838       while (*p != '\0')
2839         {
2840           if (hex_p(p[0]) && hex_p(p[1]))
2841             {
2842               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2843               desc += c;
2844               p += 2;
2845             }
2846           else if (*p == '-' || *p == ':')
2847             ++p;
2848           else
2849             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2850                        style);
2851         }
2852       descsz = desc.size();
2853     }
2854   else
2855     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2856
2857   // Create the note.
2858   size_t trailing_padding;
2859   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2860                                          ".note.gnu.build-id", descsz, true,
2861                                          &trailing_padding);
2862   if (os == NULL)
2863     return;
2864
2865   if (!desc.empty())
2866     {
2867       // We know the value already, so we fill it in now.
2868       gold_assert(desc.size() == descsz);
2869
2870       Output_section_data* posd = new Output_data_const(desc, 4);
2871       os->add_output_section_data(posd);
2872
2873       if (trailing_padding != 0)
2874         {
2875           posd = new Output_data_zero_fill(trailing_padding, 0);
2876           os->add_output_section_data(posd);
2877         }
2878     }
2879   else
2880     {
2881       // We need to compute a checksum after we have completed the
2882       // link.
2883       gold_assert(trailing_padding == 0);
2884       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2885       os->add_output_section_data(this->build_id_note_);
2886     }
2887 }
2888
2889 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2890 // field of the former should point to the latter.  I'm not sure who
2891 // started this, but the GNU linker does it, and some tools depend
2892 // upon it.
2893
2894 void
2895 Layout::link_stabs_sections()
2896 {
2897   if (!this->have_stabstr_section_)
2898     return;
2899
2900   for (Section_list::iterator p = this->section_list_.begin();
2901        p != this->section_list_.end();
2902        ++p)
2903     {
2904       if ((*p)->type() != elfcpp::SHT_STRTAB)
2905         continue;
2906
2907       const char* name = (*p)->name();
2908       if (strncmp(name, ".stab", 5) != 0)
2909         continue;
2910
2911       size_t len = strlen(name);
2912       if (strcmp(name + len - 3, "str") != 0)
2913         continue;
2914
2915       std::string stab_name(name, len - 3);
2916       Output_section* stab_sec;
2917       stab_sec = this->find_output_section(stab_name.c_str());
2918       if (stab_sec != NULL)
2919         stab_sec->set_link_section(*p);
2920     }
2921 }
2922
2923 // Create .gnu_incremental_inputs and related sections needed
2924 // for the next run of incremental linking to check what has changed.
2925
2926 void
2927 Layout::create_incremental_info_sections(Symbol_table* symtab)
2928 {
2929   Incremental_inputs* incr = this->incremental_inputs_;
2930
2931   gold_assert(incr != NULL);
2932
2933   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2934   incr->create_data_sections(symtab);
2935
2936   // Add the .gnu_incremental_inputs section.
2937   const char* incremental_inputs_name =
2938     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2939   Output_section* incremental_inputs_os =
2940     this->make_output_section(incremental_inputs_name,
2941                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2942                               ORDER_INVALID, false);
2943   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2944
2945   // Add the .gnu_incremental_symtab section.
2946   const char* incremental_symtab_name =
2947     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2948   Output_section* incremental_symtab_os =
2949     this->make_output_section(incremental_symtab_name,
2950                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2951                               ORDER_INVALID, false);
2952   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2953   incremental_symtab_os->set_entsize(4);
2954
2955   // Add the .gnu_incremental_relocs section.
2956   const char* incremental_relocs_name =
2957     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2958   Output_section* incremental_relocs_os =
2959     this->make_output_section(incremental_relocs_name,
2960                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2961                               ORDER_INVALID, false);
2962   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2963   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2964
2965   // Add the .gnu_incremental_got_plt section.
2966   const char* incremental_got_plt_name =
2967     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2968   Output_section* incremental_got_plt_os =
2969     this->make_output_section(incremental_got_plt_name,
2970                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2971                               ORDER_INVALID, false);
2972   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2973
2974   // Add the .gnu_incremental_strtab section.
2975   const char* incremental_strtab_name =
2976     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2977   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2978                                                         elfcpp::SHT_STRTAB, 0,
2979                                                         ORDER_INVALID, false);
2980   Output_data_strtab* strtab_data =
2981       new Output_data_strtab(incr->get_stringpool());
2982   incremental_strtab_os->add_output_section_data(strtab_data);
2983
2984   incremental_inputs_os->set_after_input_sections();
2985   incremental_symtab_os->set_after_input_sections();
2986   incremental_relocs_os->set_after_input_sections();
2987   incremental_got_plt_os->set_after_input_sections();
2988
2989   incremental_inputs_os->set_link_section(incremental_strtab_os);
2990   incremental_symtab_os->set_link_section(incremental_inputs_os);
2991   incremental_relocs_os->set_link_section(incremental_inputs_os);
2992   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2993 }
2994
2995 // Return whether SEG1 should be before SEG2 in the output file.  This
2996 // is based entirely on the segment type and flags.  When this is
2997 // called the segment addresses have normally not yet been set.
2998
2999 bool
3000 Layout::segment_precedes(const Output_segment* seg1,
3001                          const Output_segment* seg2)
3002 {
3003   elfcpp::Elf_Word type1 = seg1->type();
3004   elfcpp::Elf_Word type2 = seg2->type();
3005
3006   // The single PT_PHDR segment is required to precede any loadable
3007   // segment.  We simply make it always first.
3008   if (type1 == elfcpp::PT_PHDR)
3009     {
3010       gold_assert(type2 != elfcpp::PT_PHDR);
3011       return true;
3012     }
3013   if (type2 == elfcpp::PT_PHDR)
3014     return false;
3015
3016   // The single PT_INTERP segment is required to precede any loadable
3017   // segment.  We simply make it always second.
3018   if (type1 == elfcpp::PT_INTERP)
3019     {
3020       gold_assert(type2 != elfcpp::PT_INTERP);
3021       return true;
3022     }
3023   if (type2 == elfcpp::PT_INTERP)
3024     return false;
3025
3026   // We then put PT_LOAD segments before any other segments.
3027   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3028     return true;
3029   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3030     return false;
3031
3032   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3033   // segment, because that is where the dynamic linker expects to find
3034   // it (this is just for efficiency; other positions would also work
3035   // correctly).
3036   if (type1 == elfcpp::PT_TLS
3037       && type2 != elfcpp::PT_TLS
3038       && type2 != elfcpp::PT_GNU_RELRO)
3039     return false;
3040   if (type2 == elfcpp::PT_TLS
3041       && type1 != elfcpp::PT_TLS
3042       && type1 != elfcpp::PT_GNU_RELRO)
3043     return true;
3044
3045   // We put the PT_GNU_RELRO segment last, because that is where the
3046   // dynamic linker expects to find it (as with PT_TLS, this is just
3047   // for efficiency).
3048   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3049     return false;
3050   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3051     return true;
3052
3053   const elfcpp::Elf_Word flags1 = seg1->flags();
3054   const elfcpp::Elf_Word flags2 = seg2->flags();
3055
3056   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3057   // by the numeric segment type and flags values.  There should not
3058   // be more than one segment with the same type and flags.
3059   if (type1 != elfcpp::PT_LOAD)
3060     {
3061       if (type1 != type2)
3062         return type1 < type2;
3063       gold_assert(flags1 != flags2);
3064       return flags1 < flags2;
3065     }
3066
3067   // If the addresses are set already, sort by load address.
3068   if (seg1->are_addresses_set())
3069     {
3070       if (!seg2->are_addresses_set())
3071         return true;
3072
3073       unsigned int section_count1 = seg1->output_section_count();
3074       unsigned int section_count2 = seg2->output_section_count();
3075       if (section_count1 == 0 && section_count2 > 0)
3076         return true;
3077       if (section_count1 > 0 && section_count2 == 0)
3078         return false;
3079
3080       uint64_t paddr1 = (seg1->are_addresses_set()
3081                          ? seg1->paddr()
3082                          : seg1->first_section_load_address());
3083       uint64_t paddr2 = (seg2->are_addresses_set()
3084                          ? seg2->paddr()
3085                          : seg2->first_section_load_address());
3086
3087       if (paddr1 != paddr2)
3088         return paddr1 < paddr2;
3089     }
3090   else if (seg2->are_addresses_set())
3091     return false;
3092
3093   // A segment which holds large data comes after a segment which does
3094   // not hold large data.
3095   if (seg1->is_large_data_segment())
3096     {
3097       if (!seg2->is_large_data_segment())
3098         return false;
3099     }
3100   else if (seg2->is_large_data_segment())
3101     return true;
3102
3103   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3104   // segments come before writable segments.  Then writable segments
3105   // with data come before writable segments without data.  Then
3106   // executable segments come before non-executable segments.  Then
3107   // the unlikely case of a non-readable segment comes before the
3108   // normal case of a readable segment.  If there are multiple
3109   // segments with the same type and flags, we require that the
3110   // address be set, and we sort by virtual address and then physical
3111   // address.
3112   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3113     return (flags1 & elfcpp::PF_W) == 0;
3114   if ((flags1 & elfcpp::PF_W) != 0
3115       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3116     return seg1->has_any_data_sections();
3117   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3118     return (flags1 & elfcpp::PF_X) != 0;
3119   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3120     return (flags1 & elfcpp::PF_R) == 0;
3121
3122   // We shouldn't get here--we shouldn't create segments which we
3123   // can't distinguish.  Unless of course we are using a weird linker
3124   // script or overlapping --section-start options.
3125   gold_assert(this->script_options_->saw_phdrs_clause()
3126               || parameters->options().any_section_start());
3127   return false;
3128 }
3129
3130 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3131
3132 static off_t
3133 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3134 {
3135   uint64_t unsigned_off = off;
3136   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3137                           | (addr & (abi_pagesize - 1)));
3138   if (aligned_off < unsigned_off)
3139     aligned_off += abi_pagesize;
3140   return aligned_off;
3141 }
3142
3143 // Set the file offsets of all the segments, and all the sections they
3144 // contain.  They have all been created.  LOAD_SEG must be be laid out
3145 // first.  Return the offset of the data to follow.
3146
3147 off_t
3148 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3149                             unsigned int* pshndx)
3150 {
3151   // Sort them into the final order.  We use a stable sort so that we
3152   // don't randomize the order of indistinguishable segments created
3153   // by linker scripts.
3154   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3155                    Layout::Compare_segments(this));
3156
3157   // Find the PT_LOAD segments, and set their addresses and offsets
3158   // and their section's addresses and offsets.
3159   uint64_t start_addr;
3160   if (parameters->options().user_set_Ttext())
3161     start_addr = parameters->options().Ttext();
3162   else if (parameters->options().output_is_position_independent())
3163     start_addr = 0;
3164   else
3165     start_addr = target->default_text_segment_address();
3166
3167   uint64_t addr = start_addr;
3168   off_t off = 0;
3169
3170   // If LOAD_SEG is NULL, then the file header and segment headers
3171   // will not be loadable.  But they still need to be at offset 0 in
3172   // the file.  Set their offsets now.
3173   if (load_seg == NULL)
3174     {
3175       for (Data_list::iterator p = this->special_output_list_.begin();
3176            p != this->special_output_list_.end();
3177            ++p)
3178         {
3179           off = align_address(off, (*p)->addralign());
3180           (*p)->set_address_and_file_offset(0, off);
3181           off += (*p)->data_size();
3182         }
3183     }
3184
3185   unsigned int increase_relro = this->increase_relro_;
3186   if (this->script_options_->saw_sections_clause())
3187     increase_relro = 0;
3188
3189   const bool check_sections = parameters->options().check_sections();
3190   Output_segment* last_load_segment = NULL;
3191
3192   unsigned int shndx_begin = *pshndx;
3193   unsigned int shndx_load_seg = *pshndx;
3194
3195   for (Segment_list::iterator p = this->segment_list_.begin();
3196        p != this->segment_list_.end();
3197        ++p)
3198     {
3199       if ((*p)->type() == elfcpp::PT_LOAD)
3200         {
3201           if (target->isolate_execinstr())
3202             {
3203               // When we hit the segment that should contain the
3204               // file headers, reset the file offset so we place
3205               // it and subsequent segments appropriately.
3206               // We'll fix up the preceding segments below.
3207               if (load_seg == *p)
3208                 {
3209                   if (off == 0)
3210                     load_seg = NULL;
3211                   else
3212                     {
3213                       off = 0;
3214                       shndx_load_seg = *pshndx;
3215                     }
3216                 }
3217             }
3218           else
3219             {
3220               // Verify that the file headers fall into the first segment.
3221               if (load_seg != NULL && load_seg != *p)
3222                 gold_unreachable();
3223               load_seg = NULL;
3224             }
3225
3226           bool are_addresses_set = (*p)->are_addresses_set();
3227           if (are_addresses_set)
3228             {
3229               // When it comes to setting file offsets, we care about
3230               // the physical address.
3231               addr = (*p)->paddr();
3232             }
3233           else if (parameters->options().user_set_Ttext()
3234                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3235             {
3236               are_addresses_set = true;
3237             }
3238           else if (parameters->options().user_set_Tdata()
3239                    && ((*p)->flags() & elfcpp::PF_W) != 0
3240                    && (!parameters->options().user_set_Tbss()
3241                        || (*p)->has_any_data_sections()))
3242             {
3243               addr = parameters->options().Tdata();
3244               are_addresses_set = true;
3245             }
3246           else if (parameters->options().user_set_Tbss()
3247                    && ((*p)->flags() & elfcpp::PF_W) != 0
3248                    && !(*p)->has_any_data_sections())
3249             {
3250               addr = parameters->options().Tbss();
3251               are_addresses_set = true;
3252             }
3253
3254           uint64_t orig_addr = addr;
3255           uint64_t orig_off = off;
3256
3257           uint64_t aligned_addr = 0;
3258           uint64_t abi_pagesize = target->abi_pagesize();
3259           uint64_t common_pagesize = target->common_pagesize();
3260
3261           if (!parameters->options().nmagic()
3262               && !parameters->options().omagic())
3263             (*p)->set_minimum_p_align(common_pagesize);
3264
3265           if (!are_addresses_set)
3266             {
3267               // Skip the address forward one page, maintaining the same
3268               // position within the page.  This lets us store both segments
3269               // overlapping on a single page in the file, but the loader will
3270               // put them on different pages in memory. We will revisit this
3271               // decision once we know the size of the segment.
3272
3273               addr = align_address(addr, (*p)->maximum_alignment());
3274               aligned_addr = addr;
3275
3276               if (load_seg == *p)
3277                 {
3278                   // This is the segment that will contain the file
3279                   // headers, so its offset will have to be exactly zero.
3280                   gold_assert(orig_off == 0);
3281
3282                   // If the target wants a fixed minimum distance from the
3283                   // text segment to the read-only segment, move up now.
3284                   uint64_t min_addr = start_addr + target->rosegment_gap();
3285                   if (addr < min_addr)
3286                     addr = min_addr;
3287
3288                   // But this is not the first segment!  To make its
3289                   // address congruent with its offset, that address better
3290                   // be aligned to the ABI-mandated page size.
3291                   addr = align_address(addr, abi_pagesize);
3292                   aligned_addr = addr;
3293                 }
3294               else
3295                 {
3296                   if ((addr & (abi_pagesize - 1)) != 0)
3297                     addr = addr + abi_pagesize;
3298
3299                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3300                 }
3301             }
3302
3303           if (!parameters->options().nmagic()
3304               && !parameters->options().omagic())
3305             off = align_file_offset(off, addr, abi_pagesize);
3306           else
3307             {
3308               // This is -N or -n with a section script which prevents
3309               // us from using a load segment.  We need to ensure that
3310               // the file offset is aligned to the alignment of the
3311               // segment.  This is because the linker script
3312               // implicitly assumed a zero offset.  If we don't align
3313               // here, then the alignment of the sections in the
3314               // linker script may not match the alignment of the
3315               // sections in the set_section_addresses call below,
3316               // causing an error about dot moving backward.
3317               off = align_address(off, (*p)->maximum_alignment());
3318             }
3319
3320           unsigned int shndx_hold = *pshndx;
3321           bool has_relro = false;
3322           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3323                                                           &increase_relro,
3324                                                           &has_relro,
3325                                                           &off, pshndx);
3326
3327           // Now that we know the size of this segment, we may be able
3328           // to save a page in memory, at the cost of wasting some
3329           // file space, by instead aligning to the start of a new
3330           // page.  Here we use the real machine page size rather than
3331           // the ABI mandated page size.  If the segment has been
3332           // aligned so that the relro data ends at a page boundary,
3333           // we do not try to realign it.
3334
3335           if (!are_addresses_set
3336               && !has_relro
3337               && aligned_addr != addr
3338               && !parameters->incremental())
3339             {
3340               uint64_t first_off = (common_pagesize
3341                                     - (aligned_addr
3342                                        & (common_pagesize - 1)));
3343               uint64_t last_off = new_addr & (common_pagesize - 1);
3344               if (first_off > 0
3345                   && last_off > 0
3346                   && ((aligned_addr & ~ (common_pagesize - 1))
3347                       != (new_addr & ~ (common_pagesize - 1)))
3348                   && first_off + last_off <= common_pagesize)
3349                 {
3350                   *pshndx = shndx_hold;
3351                   addr = align_address(aligned_addr, common_pagesize);
3352                   addr = align_address(addr, (*p)->maximum_alignment());
3353                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3354                   off = align_file_offset(off, addr, abi_pagesize);
3355
3356                   increase_relro = this->increase_relro_;
3357                   if (this->script_options_->saw_sections_clause())
3358                     increase_relro = 0;
3359                   has_relro = false;
3360
3361                   new_addr = (*p)->set_section_addresses(this, true, addr,
3362                                                          &increase_relro,
3363                                                          &has_relro,
3364                                                          &off, pshndx);
3365                 }
3366             }
3367
3368           addr = new_addr;
3369
3370           // Implement --check-sections.  We know that the segments
3371           // are sorted by LMA.
3372           if (check_sections && last_load_segment != NULL)
3373             {
3374               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3375               if (last_load_segment->paddr() + last_load_segment->memsz()
3376                   > (*p)->paddr())
3377                 {
3378                   unsigned long long lb1 = last_load_segment->paddr();
3379                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3380                   unsigned long long lb2 = (*p)->paddr();
3381                   unsigned long long le2 = lb2 + (*p)->memsz();
3382                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3383                                "[0x%llx -> 0x%llx]"),
3384                              lb1, le1, lb2, le2);
3385                 }
3386             }
3387           last_load_segment = *p;
3388         }
3389     }
3390
3391   if (load_seg != NULL && target->isolate_execinstr())
3392     {
3393       // Process the early segments again, setting their file offsets
3394       // so they land after the segments starting at LOAD_SEG.
3395       off = align_file_offset(off, 0, target->abi_pagesize());
3396
3397       for (Segment_list::iterator p = this->segment_list_.begin();
3398            *p != load_seg;
3399            ++p)
3400         {
3401           if ((*p)->type() == elfcpp::PT_LOAD)
3402             {
3403               // We repeat the whole job of assigning addresses and
3404               // offsets, but we really only want to change the offsets and
3405               // must ensure that the addresses all come out the same as
3406               // they did the first time through.
3407               bool has_relro = false;
3408               const uint64_t old_addr = (*p)->vaddr();
3409               const uint64_t old_end = old_addr + (*p)->memsz();
3410               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3411                                                               old_addr,
3412                                                               &increase_relro,
3413                                                               &has_relro,
3414                                                               &off,
3415                                                               &shndx_begin);
3416               gold_assert(new_addr == old_end);
3417             }
3418         }
3419
3420       gold_assert(shndx_begin == shndx_load_seg);
3421     }
3422
3423   // Handle the non-PT_LOAD segments, setting their offsets from their
3424   // section's offsets.
3425   for (Segment_list::iterator p = this->segment_list_.begin();
3426        p != this->segment_list_.end();
3427        ++p)
3428     {
3429       if ((*p)->type() != elfcpp::PT_LOAD)
3430         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3431                          ? increase_relro
3432                          : 0);
3433     }
3434
3435   // Set the TLS offsets for each section in the PT_TLS segment.
3436   if (this->tls_segment_ != NULL)
3437     this->tls_segment_->set_tls_offsets();
3438
3439   return off;
3440 }
3441
3442 // Set the offsets of all the allocated sections when doing a
3443 // relocatable link.  This does the same jobs as set_segment_offsets,
3444 // only for a relocatable link.
3445
3446 off_t
3447 Layout::set_relocatable_section_offsets(Output_data* file_header,
3448                                         unsigned int* pshndx)
3449 {
3450   off_t off = 0;
3451
3452   file_header->set_address_and_file_offset(0, 0);
3453   off += file_header->data_size();
3454
3455   for (Section_list::iterator p = this->section_list_.begin();
3456        p != this->section_list_.end();
3457        ++p)
3458     {
3459       // We skip unallocated sections here, except that group sections
3460       // have to come first.
3461       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3462           && (*p)->type() != elfcpp::SHT_GROUP)
3463         continue;
3464
3465       off = align_address(off, (*p)->addralign());
3466
3467       // The linker script might have set the address.
3468       if (!(*p)->is_address_valid())
3469         (*p)->set_address(0);
3470       (*p)->set_file_offset(off);
3471       (*p)->finalize_data_size();
3472       off += (*p)->data_size();
3473
3474       (*p)->set_out_shndx(*pshndx);
3475       ++*pshndx;
3476     }
3477
3478   return off;
3479 }
3480
3481 // Set the file offset of all the sections not associated with a
3482 // segment.
3483
3484 off_t
3485 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3486 {
3487   off_t startoff = off;
3488   off_t maxoff = off;
3489
3490   for (Section_list::iterator p = this->unattached_section_list_.begin();
3491        p != this->unattached_section_list_.end();
3492        ++p)
3493     {
3494       // The symtab section is handled in create_symtab_sections.
3495       if (*p == this->symtab_section_)
3496         continue;
3497
3498       // If we've already set the data size, don't set it again.
3499       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3500         continue;
3501
3502       if (pass == BEFORE_INPUT_SECTIONS_PASS
3503           && (*p)->requires_postprocessing())
3504         {
3505           (*p)->create_postprocessing_buffer();
3506           this->any_postprocessing_sections_ = true;
3507         }
3508
3509       if (pass == BEFORE_INPUT_SECTIONS_PASS
3510           && (*p)->after_input_sections())
3511         continue;
3512       else if (pass == POSTPROCESSING_SECTIONS_PASS
3513                && (!(*p)->after_input_sections()
3514                    || (*p)->type() == elfcpp::SHT_STRTAB))
3515         continue;
3516       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3517                && (!(*p)->after_input_sections()
3518                    || (*p)->type() != elfcpp::SHT_STRTAB))
3519         continue;
3520
3521       if (!parameters->incremental_update())
3522         {
3523           off = align_address(off, (*p)->addralign());
3524           (*p)->set_file_offset(off);
3525           (*p)->finalize_data_size();
3526         }
3527       else
3528         {
3529           // Incremental update: allocate file space from free list.
3530           (*p)->pre_finalize_data_size();
3531           off_t current_size = (*p)->current_data_size();
3532           off = this->allocate(current_size, (*p)->addralign(), startoff);
3533           if (off == -1)
3534             {
3535               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3536                 this->free_list_.dump();
3537               gold_assert((*p)->output_section() != NULL);
3538               gold_fallback(_("out of patch space for section %s; "
3539                               "relink with --incremental-full"),
3540                             (*p)->output_section()->name());
3541             }
3542           (*p)->set_file_offset(off);
3543           (*p)->finalize_data_size();
3544           if ((*p)->data_size() > current_size)
3545             {
3546               gold_assert((*p)->output_section() != NULL);
3547               gold_fallback(_("%s: section changed size; "
3548                               "relink with --incremental-full"),
3549                             (*p)->output_section()->name());
3550             }
3551           gold_debug(DEBUG_INCREMENTAL,
3552                      "set_section_offsets: %08lx %08lx %s",
3553                      static_cast<long>(off),
3554                      static_cast<long>((*p)->data_size()),
3555                      ((*p)->output_section() != NULL
3556                       ? (*p)->output_section()->name() : "(special)"));
3557         }
3558
3559       off += (*p)->data_size();
3560       if (off > maxoff)
3561         maxoff = off;
3562
3563       // At this point the name must be set.
3564       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3565         this->namepool_.add((*p)->name(), false, NULL);
3566     }
3567   return maxoff;
3568 }
3569
3570 // Set the section indexes of all the sections not associated with a
3571 // segment.
3572
3573 unsigned int
3574 Layout::set_section_indexes(unsigned int shndx)
3575 {
3576   for (Section_list::iterator p = this->unattached_section_list_.begin();
3577        p != this->unattached_section_list_.end();
3578        ++p)
3579     {
3580       if (!(*p)->has_out_shndx())
3581         {
3582           (*p)->set_out_shndx(shndx);
3583           ++shndx;
3584         }
3585     }
3586   return shndx;
3587 }
3588
3589 // Set the section addresses according to the linker script.  This is
3590 // only called when we see a SECTIONS clause.  This returns the
3591 // program segment which should hold the file header and segment
3592 // headers, if any.  It will return NULL if they should not be in a
3593 // segment.
3594
3595 Output_segment*
3596 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3597 {
3598   Script_sections* ss = this->script_options_->script_sections();
3599   gold_assert(ss->saw_sections_clause());
3600   return this->script_options_->set_section_addresses(symtab, this);
3601 }
3602
3603 // Place the orphan sections in the linker script.
3604
3605 void
3606 Layout::place_orphan_sections_in_script()
3607 {
3608   Script_sections* ss = this->script_options_->script_sections();
3609   gold_assert(ss->saw_sections_clause());
3610
3611   // Place each orphaned output section in the script.
3612   for (Section_list::iterator p = this->section_list_.begin();
3613        p != this->section_list_.end();
3614        ++p)
3615     {
3616       if (!(*p)->found_in_sections_clause())
3617         ss->place_orphan(*p);
3618     }
3619 }
3620
3621 // Count the local symbols in the regular symbol table and the dynamic
3622 // symbol table, and build the respective string pools.
3623
3624 void
3625 Layout::count_local_symbols(const Task* task,
3626                             const Input_objects* input_objects)
3627 {
3628   // First, figure out an upper bound on the number of symbols we'll
3629   // be inserting into each pool.  This helps us create the pools with
3630   // the right size, to avoid unnecessary hashtable resizing.
3631   unsigned int symbol_count = 0;
3632   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3633        p != input_objects->relobj_end();
3634        ++p)
3635     symbol_count += (*p)->local_symbol_count();
3636
3637   // Go from "upper bound" to "estimate."  We overcount for two
3638   // reasons: we double-count symbols that occur in more than one
3639   // object file, and we count symbols that are dropped from the
3640   // output.  Add it all together and assume we overcount by 100%.
3641   symbol_count /= 2;
3642
3643   // We assume all symbols will go into both the sympool and dynpool.
3644   this->sympool_.reserve(symbol_count);
3645   this->dynpool_.reserve(symbol_count);
3646
3647   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3648        p != input_objects->relobj_end();
3649        ++p)
3650     {
3651       Task_lock_obj<Object> tlo(task, *p);
3652       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3653     }
3654 }
3655
3656 // Create the symbol table sections.  Here we also set the final
3657 // values of the symbols.  At this point all the loadable sections are
3658 // fully laid out.  SHNUM is the number of sections so far.
3659
3660 void
3661 Layout::create_symtab_sections(const Input_objects* input_objects,
3662                                Symbol_table* symtab,
3663                                unsigned int shnum,
3664                                off_t* poff)
3665 {
3666   int symsize;
3667   unsigned int align;
3668   if (parameters->target().get_size() == 32)
3669     {
3670       symsize = elfcpp::Elf_sizes<32>::sym_size;
3671       align = 4;
3672     }
3673   else if (parameters->target().get_size() == 64)
3674     {
3675       symsize = elfcpp::Elf_sizes<64>::sym_size;
3676       align = 8;
3677     }
3678   else
3679     gold_unreachable();
3680
3681   // Compute file offsets relative to the start of the symtab section.
3682   off_t off = 0;
3683
3684   // Save space for the dummy symbol at the start of the section.  We
3685   // never bother to write this out--it will just be left as zero.
3686   off += symsize;
3687   unsigned int local_symbol_index = 1;
3688
3689   // Add STT_SECTION symbols for each Output section which needs one.
3690   for (Section_list::iterator p = this->section_list_.begin();
3691        p != this->section_list_.end();
3692        ++p)
3693     {
3694       if (!(*p)->needs_symtab_index())
3695         (*p)->set_symtab_index(-1U);
3696       else
3697         {
3698           (*p)->set_symtab_index(local_symbol_index);
3699           ++local_symbol_index;
3700           off += symsize;
3701         }
3702     }
3703
3704   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3705        p != input_objects->relobj_end();
3706        ++p)
3707     {
3708       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3709                                                         off, symtab);
3710       off += (index - local_symbol_index) * symsize;
3711       local_symbol_index = index;
3712     }
3713
3714   unsigned int local_symcount = local_symbol_index;
3715   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3716
3717   off_t dynoff;
3718   size_t dyn_global_index;
3719   size_t dyncount;
3720   if (this->dynsym_section_ == NULL)
3721     {
3722       dynoff = 0;
3723       dyn_global_index = 0;
3724       dyncount = 0;
3725     }
3726   else
3727     {
3728       dyn_global_index = this->dynsym_section_->info();
3729       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3730       dynoff = this->dynsym_section_->offset() + locsize;
3731       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3732       gold_assert(static_cast<off_t>(dyncount * symsize)
3733                   == this->dynsym_section_->data_size() - locsize);
3734     }
3735
3736   off_t global_off = off;
3737   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3738                          &this->sympool_, &local_symcount);
3739
3740   if (!parameters->options().strip_all())
3741     {
3742       this->sympool_.set_string_offsets();
3743
3744       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3745       Output_section* osymtab = this->make_output_section(symtab_name,
3746                                                           elfcpp::SHT_SYMTAB,
3747                                                           0, ORDER_INVALID,
3748                                                           false);
3749       this->symtab_section_ = osymtab;
3750
3751       Output_section_data* pos = new Output_data_fixed_space(off, align,
3752                                                              "** symtab");
3753       osymtab->add_output_section_data(pos);
3754
3755       // We generate a .symtab_shndx section if we have more than
3756       // SHN_LORESERVE sections.  Technically it is possible that we
3757       // don't need one, because it is possible that there are no
3758       // symbols in any of sections with indexes larger than
3759       // SHN_LORESERVE.  That is probably unusual, though, and it is
3760       // easier to always create one than to compute section indexes
3761       // twice (once here, once when writing out the symbols).
3762       if (shnum >= elfcpp::SHN_LORESERVE)
3763         {
3764           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3765                                                                false, NULL);
3766           Output_section* osymtab_xindex =
3767             this->make_output_section(symtab_xindex_name,
3768                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3769                                       ORDER_INVALID, false);
3770
3771           size_t symcount = off / symsize;
3772           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3773
3774           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3775
3776           osymtab_xindex->set_link_section(osymtab);
3777           osymtab_xindex->set_addralign(4);
3778           osymtab_xindex->set_entsize(4);
3779
3780           osymtab_xindex->set_after_input_sections();
3781
3782           // This tells the driver code to wait until the symbol table
3783           // has written out before writing out the postprocessing
3784           // sections, including the .symtab_shndx section.
3785           this->any_postprocessing_sections_ = true;
3786         }
3787
3788       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3789       Output_section* ostrtab = this->make_output_section(strtab_name,
3790                                                           elfcpp::SHT_STRTAB,
3791                                                           0, ORDER_INVALID,
3792                                                           false);
3793
3794       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3795       ostrtab->add_output_section_data(pstr);
3796
3797       off_t symtab_off;
3798       if (!parameters->incremental_update())
3799         symtab_off = align_address(*poff, align);
3800       else
3801         {
3802           symtab_off = this->allocate(off, align, *poff);
3803           if (off == -1)
3804             gold_fallback(_("out of patch space for symbol table; "
3805                             "relink with --incremental-full"));
3806           gold_debug(DEBUG_INCREMENTAL,
3807                      "create_symtab_sections: %08lx %08lx .symtab",
3808                      static_cast<long>(symtab_off),
3809                      static_cast<long>(off));
3810         }
3811
3812       symtab->set_file_offset(symtab_off + global_off);
3813       osymtab->set_file_offset(symtab_off);
3814       osymtab->finalize_data_size();
3815       osymtab->set_link_section(ostrtab);
3816       osymtab->set_info(local_symcount);
3817       osymtab->set_entsize(symsize);
3818
3819       if (symtab_off + off > *poff)
3820         *poff = symtab_off + off;
3821     }
3822 }
3823
3824 // Create the .shstrtab section, which holds the names of the
3825 // sections.  At the time this is called, we have created all the
3826 // output sections except .shstrtab itself.
3827
3828 Output_section*
3829 Layout::create_shstrtab()
3830 {
3831   // FIXME: We don't need to create a .shstrtab section if we are
3832   // stripping everything.
3833
3834   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3835
3836   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3837                                                  ORDER_INVALID, false);
3838
3839   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3840     {
3841       // We can't write out this section until we've set all the
3842       // section names, and we don't set the names of compressed
3843       // output sections until relocations are complete.  FIXME: With
3844       // the current names we use, this is unnecessary.
3845       os->set_after_input_sections();
3846     }
3847
3848   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3849   os->add_output_section_data(posd);
3850
3851   return os;
3852 }
3853
3854 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3855 // offset.
3856
3857 void
3858 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3859 {
3860   Output_section_headers* oshdrs;
3861   oshdrs = new Output_section_headers(this,
3862                                       &this->segment_list_,
3863                                       &this->section_list_,
3864                                       &this->unattached_section_list_,
3865                                       &this->namepool_,
3866                                       shstrtab_section);
3867   off_t off;
3868   if (!parameters->incremental_update())
3869     off = align_address(*poff, oshdrs->addralign());
3870   else
3871     {
3872       oshdrs->pre_finalize_data_size();
3873       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3874       if (off == -1)
3875           gold_fallback(_("out of patch space for section header table; "
3876                           "relink with --incremental-full"));
3877       gold_debug(DEBUG_INCREMENTAL,
3878                  "create_shdrs: %08lx %08lx (section header table)",
3879                  static_cast<long>(off),
3880                  static_cast<long>(off + oshdrs->data_size()));
3881     }
3882   oshdrs->set_address_and_file_offset(0, off);
3883   off += oshdrs->data_size();
3884   if (off > *poff)
3885     *poff = off;
3886   this->section_headers_ = oshdrs;
3887 }
3888
3889 // Count the allocated sections.
3890
3891 size_t
3892 Layout::allocated_output_section_count() const
3893 {
3894   size_t section_count = 0;
3895   for (Segment_list::const_iterator p = this->segment_list_.begin();
3896        p != this->segment_list_.end();
3897        ++p)
3898     section_count += (*p)->output_section_count();
3899   return section_count;
3900 }
3901
3902 // Create the dynamic symbol table.
3903
3904 void
3905 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3906                               Symbol_table* symtab,
3907                               Output_section** pdynstr,
3908                               unsigned int* plocal_dynamic_count,
3909                               std::vector<Symbol*>* pdynamic_symbols,
3910                               Versions* pversions)
3911 {
3912   // Count all the symbols in the dynamic symbol table, and set the
3913   // dynamic symbol indexes.
3914
3915   // Skip symbol 0, which is always all zeroes.
3916   unsigned int index = 1;
3917
3918   // Add STT_SECTION symbols for each Output section which needs one.
3919   for (Section_list::iterator p = this->section_list_.begin();
3920        p != this->section_list_.end();
3921        ++p)
3922     {
3923       if (!(*p)->needs_dynsym_index())
3924         (*p)->set_dynsym_index(-1U);
3925       else
3926         {
3927           (*p)->set_dynsym_index(index);
3928           ++index;
3929         }
3930     }
3931
3932   // Count the local symbols that need to go in the dynamic symbol table,
3933   // and set the dynamic symbol indexes.
3934   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3935        p != input_objects->relobj_end();
3936        ++p)
3937     {
3938       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3939       index = new_index;
3940     }
3941
3942   unsigned int local_symcount = index;
3943   *plocal_dynamic_count = local_symcount;
3944
3945   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3946                                      &this->dynpool_, pversions);
3947
3948   int symsize;
3949   unsigned int align;
3950   const int size = parameters->target().get_size();
3951   if (size == 32)
3952     {
3953       symsize = elfcpp::Elf_sizes<32>::sym_size;
3954       align = 4;
3955     }
3956   else if (size == 64)
3957     {
3958       symsize = elfcpp::Elf_sizes<64>::sym_size;
3959       align = 8;
3960     }
3961   else
3962     gold_unreachable();
3963
3964   // Create the dynamic symbol table section.
3965
3966   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3967                                                        elfcpp::SHT_DYNSYM,
3968                                                        elfcpp::SHF_ALLOC,
3969                                                        false,
3970                                                        ORDER_DYNAMIC_LINKER,
3971                                                        false);
3972
3973   // Check for NULL as a linker script may discard .dynsym.
3974   if (dynsym != NULL)
3975     {
3976       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3977                                                                align,
3978                                                                "** dynsym");
3979       dynsym->add_output_section_data(odata);
3980
3981       dynsym->set_info(local_symcount);
3982       dynsym->set_entsize(symsize);
3983       dynsym->set_addralign(align);
3984
3985       this->dynsym_section_ = dynsym;
3986     }
3987
3988   Output_data_dynamic* const odyn = this->dynamic_data_;
3989   if (odyn != NULL)
3990     {
3991       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3992       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3993     }
3994
3995   // If there are more than SHN_LORESERVE allocated sections, we
3996   // create a .dynsym_shndx section.  It is possible that we don't
3997   // need one, because it is possible that there are no dynamic
3998   // symbols in any of the sections with indexes larger than
3999   // SHN_LORESERVE.  This is probably unusual, though, and at this
4000   // time we don't know the actual section indexes so it is
4001   // inconvenient to check.
4002   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4003     {
4004       Output_section* dynsym_xindex =
4005         this->choose_output_section(NULL, ".dynsym_shndx",
4006                                     elfcpp::SHT_SYMTAB_SHNDX,
4007                                     elfcpp::SHF_ALLOC,
4008                                     false, ORDER_DYNAMIC_LINKER, false);
4009
4010       if (dynsym_xindex != NULL)
4011         {
4012           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4013
4014           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4015
4016           dynsym_xindex->set_link_section(dynsym);
4017           dynsym_xindex->set_addralign(4);
4018           dynsym_xindex->set_entsize(4);
4019
4020           dynsym_xindex->set_after_input_sections();
4021
4022           // This tells the driver code to wait until the symbol table
4023           // has written out before writing out the postprocessing
4024           // sections, including the .dynsym_shndx section.
4025           this->any_postprocessing_sections_ = true;
4026         }
4027     }
4028
4029   // Create the dynamic string table section.
4030
4031   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4032                                                        elfcpp::SHT_STRTAB,
4033                                                        elfcpp::SHF_ALLOC,
4034                                                        false,
4035                                                        ORDER_DYNAMIC_LINKER,
4036                                                        false);
4037
4038   if (dynstr != NULL)
4039     {
4040       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4041       dynstr->add_output_section_data(strdata);
4042
4043       if (dynsym != NULL)
4044         dynsym->set_link_section(dynstr);
4045       if (this->dynamic_section_ != NULL)
4046         this->dynamic_section_->set_link_section(dynstr);
4047
4048       if (odyn != NULL)
4049         {
4050           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4051           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4052         }
4053
4054       *pdynstr = dynstr;
4055     }
4056
4057   // Create the hash tables.
4058
4059   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4060       || strcmp(parameters->options().hash_style(), "both") == 0)
4061     {
4062       unsigned char* phash;
4063       unsigned int hashlen;
4064       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4065                                     &phash, &hashlen);
4066
4067       Output_section* hashsec =
4068         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4069                                     elfcpp::SHF_ALLOC, false,
4070                                     ORDER_DYNAMIC_LINKER, false);
4071
4072       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4073                                                                    hashlen,
4074                                                                    align,
4075                                                                    "** hash");
4076       if (hashsec != NULL && hashdata != NULL)
4077         hashsec->add_output_section_data(hashdata);
4078
4079       if (hashsec != NULL)
4080         {
4081           if (dynsym != NULL)
4082             hashsec->set_link_section(dynsym);
4083           hashsec->set_entsize(4);
4084         }
4085
4086       if (odyn != NULL)
4087         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4088     }
4089
4090   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4091       || strcmp(parameters->options().hash_style(), "both") == 0)
4092     {
4093       unsigned char* phash;
4094       unsigned int hashlen;
4095       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4096                                     &phash, &hashlen);
4097
4098       Output_section* hashsec =
4099         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4100                                     elfcpp::SHF_ALLOC, false,
4101                                     ORDER_DYNAMIC_LINKER, false);
4102
4103       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4104                                                                    hashlen,
4105                                                                    align,
4106                                                                    "** hash");
4107       if (hashsec != NULL && hashdata != NULL)
4108         hashsec->add_output_section_data(hashdata);
4109
4110       if (hashsec != NULL)
4111         {
4112           if (dynsym != NULL)
4113             hashsec->set_link_section(dynsym);
4114
4115           // For a 64-bit target, the entries in .gnu.hash do not have
4116           // a uniform size, so we only set the entry size for a
4117           // 32-bit target.
4118           if (parameters->target().get_size() == 32)
4119             hashsec->set_entsize(4);
4120
4121           if (odyn != NULL)
4122             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4123         }
4124     }
4125 }
4126
4127 // Assign offsets to each local portion of the dynamic symbol table.
4128
4129 void
4130 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4131 {
4132   Output_section* dynsym = this->dynsym_section_;
4133   if (dynsym == NULL)
4134     return;
4135
4136   off_t off = dynsym->offset();
4137
4138   // Skip the dummy symbol at the start of the section.
4139   off += dynsym->entsize();
4140
4141   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4142        p != input_objects->relobj_end();
4143        ++p)
4144     {
4145       unsigned int count = (*p)->set_local_dynsym_offset(off);
4146       off += count * dynsym->entsize();
4147     }
4148 }
4149
4150 // Create the version sections.
4151
4152 void
4153 Layout::create_version_sections(const Versions* versions,
4154                                 const Symbol_table* symtab,
4155                                 unsigned int local_symcount,
4156                                 const std::vector<Symbol*>& dynamic_symbols,
4157                                 const Output_section* dynstr)
4158 {
4159   if (!versions->any_defs() && !versions->any_needs())
4160     return;
4161
4162   switch (parameters->size_and_endianness())
4163     {
4164 #ifdef HAVE_TARGET_32_LITTLE
4165     case Parameters::TARGET_32_LITTLE:
4166       this->sized_create_version_sections<32, false>(versions, symtab,
4167                                                      local_symcount,
4168                                                      dynamic_symbols, dynstr);
4169       break;
4170 #endif
4171 #ifdef HAVE_TARGET_32_BIG
4172     case Parameters::TARGET_32_BIG:
4173       this->sized_create_version_sections<32, true>(versions, symtab,
4174                                                     local_symcount,
4175                                                     dynamic_symbols, dynstr);
4176       break;
4177 #endif
4178 #ifdef HAVE_TARGET_64_LITTLE
4179     case Parameters::TARGET_64_LITTLE:
4180       this->sized_create_version_sections<64, false>(versions, symtab,
4181                                                      local_symcount,
4182                                                      dynamic_symbols, dynstr);
4183       break;
4184 #endif
4185 #ifdef HAVE_TARGET_64_BIG
4186     case Parameters::TARGET_64_BIG:
4187       this->sized_create_version_sections<64, true>(versions, symtab,
4188                                                     local_symcount,
4189                                                     dynamic_symbols, dynstr);
4190       break;
4191 #endif
4192     default:
4193       gold_unreachable();
4194     }
4195 }
4196
4197 // Create the version sections, sized version.
4198
4199 template<int size, bool big_endian>
4200 void
4201 Layout::sized_create_version_sections(
4202     const Versions* versions,
4203     const Symbol_table* symtab,
4204     unsigned int local_symcount,
4205     const std::vector<Symbol*>& dynamic_symbols,
4206     const Output_section* dynstr)
4207 {
4208   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4209                                                      elfcpp::SHT_GNU_versym,
4210                                                      elfcpp::SHF_ALLOC,
4211                                                      false,
4212                                                      ORDER_DYNAMIC_LINKER,
4213                                                      false);
4214
4215   // Check for NULL since a linker script may discard this section.
4216   if (vsec != NULL)
4217     {
4218       unsigned char* vbuf;
4219       unsigned int vsize;
4220       versions->symbol_section_contents<size, big_endian>(symtab,
4221                                                           &this->dynpool_,
4222                                                           local_symcount,
4223                                                           dynamic_symbols,
4224                                                           &vbuf, &vsize);
4225
4226       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4227                                                                 "** versions");
4228
4229       vsec->add_output_section_data(vdata);
4230       vsec->set_entsize(2);
4231       vsec->set_link_section(this->dynsym_section_);
4232     }
4233
4234   Output_data_dynamic* const odyn = this->dynamic_data_;
4235   if (odyn != NULL && vsec != NULL)
4236     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4237
4238   if (versions->any_defs())
4239     {
4240       Output_section* vdsec;
4241       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4242                                           elfcpp::SHT_GNU_verdef,
4243                                           elfcpp::SHF_ALLOC,
4244                                           false, ORDER_DYNAMIC_LINKER, false);
4245
4246       if (vdsec != NULL)
4247         {
4248           unsigned char* vdbuf;
4249           unsigned int vdsize;
4250           unsigned int vdentries;
4251           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4252                                                            &vdbuf, &vdsize,
4253                                                            &vdentries);
4254
4255           Output_section_data* vddata =
4256             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4257
4258           vdsec->add_output_section_data(vddata);
4259           vdsec->set_link_section(dynstr);
4260           vdsec->set_info(vdentries);
4261
4262           if (odyn != NULL)
4263             {
4264               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4265               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4266             }
4267         }
4268     }
4269
4270   if (versions->any_needs())
4271     {
4272       Output_section* vnsec;
4273       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4274                                           elfcpp::SHT_GNU_verneed,
4275                                           elfcpp::SHF_ALLOC,
4276                                           false, ORDER_DYNAMIC_LINKER, false);
4277
4278       if (vnsec != NULL)
4279         {
4280           unsigned char* vnbuf;
4281           unsigned int vnsize;
4282           unsigned int vnentries;
4283           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4284                                                             &vnbuf, &vnsize,
4285                                                             &vnentries);
4286
4287           Output_section_data* vndata =
4288             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4289
4290           vnsec->add_output_section_data(vndata);
4291           vnsec->set_link_section(dynstr);
4292           vnsec->set_info(vnentries);
4293
4294           if (odyn != NULL)
4295             {
4296               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4297               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4298             }
4299         }
4300     }
4301 }
4302
4303 // Create the .interp section and PT_INTERP segment.
4304
4305 void
4306 Layout::create_interp(const Target* target)
4307 {
4308   gold_assert(this->interp_segment_ == NULL);
4309
4310   const char* interp = parameters->options().dynamic_linker();
4311   if (interp == NULL)
4312     {
4313       interp = target->dynamic_linker();
4314       gold_assert(interp != NULL);
4315     }
4316
4317   size_t len = strlen(interp) + 1;
4318
4319   Output_section_data* odata = new Output_data_const(interp, len, 1);
4320
4321   Output_section* osec = this->choose_output_section(NULL, ".interp",
4322                                                      elfcpp::SHT_PROGBITS,
4323                                                      elfcpp::SHF_ALLOC,
4324                                                      false, ORDER_INTERP,
4325                                                      false);
4326   if (osec != NULL)
4327     osec->add_output_section_data(odata);
4328 }
4329
4330 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4331 // called by the target-specific code.  This does nothing if not doing
4332 // a dynamic link.
4333
4334 // USE_REL is true for REL relocs rather than RELA relocs.
4335
4336 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4337
4338 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4339 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4340 // some targets have multiple reloc sections in PLT_REL.
4341
4342 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4343 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4344 // section.
4345
4346 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4347 // executable.
4348
4349 void
4350 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4351                                 const Output_data* plt_rel,
4352                                 const Output_data_reloc_generic* dyn_rel,
4353                                 bool add_debug, bool dynrel_includes_plt)
4354 {
4355   Output_data_dynamic* odyn = this->dynamic_data_;
4356   if (odyn == NULL)
4357     return;
4358
4359   if (plt_got != NULL && plt_got->output_section() != NULL)
4360     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4361
4362   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4363     {
4364       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4365       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4366       odyn->add_constant(elfcpp::DT_PLTREL,
4367                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4368     }
4369
4370   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4371       || (dynrel_includes_plt
4372           && plt_rel != NULL
4373           && plt_rel->output_section() != NULL))
4374     {
4375       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4376       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4377       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4378                                 (have_dyn_rel
4379                                  ? dyn_rel->output_section()
4380                                  : plt_rel->output_section()));
4381       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4382       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4383         odyn->add_section_size(size_tag,
4384                                dyn_rel->output_section(),
4385                                plt_rel->output_section());
4386       else if (have_dyn_rel)
4387         odyn->add_section_size(size_tag, dyn_rel->output_section());
4388       else
4389         odyn->add_section_size(size_tag, plt_rel->output_section());
4390       const int size = parameters->target().get_size();
4391       elfcpp::DT rel_tag;
4392       int rel_size;
4393       if (use_rel)
4394         {
4395           rel_tag = elfcpp::DT_RELENT;
4396           if (size == 32)
4397             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4398           else if (size == 64)
4399             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4400           else
4401             gold_unreachable();
4402         }
4403       else
4404         {
4405           rel_tag = elfcpp::DT_RELAENT;
4406           if (size == 32)
4407             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4408           else if (size == 64)
4409             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4410           else
4411             gold_unreachable();
4412         }
4413       odyn->add_constant(rel_tag, rel_size);
4414
4415       if (parameters->options().combreloc() && have_dyn_rel)
4416         {
4417           size_t c = dyn_rel->relative_reloc_count();
4418           if (c > 0)
4419             odyn->add_constant((use_rel
4420                                 ? elfcpp::DT_RELCOUNT
4421                                 : elfcpp::DT_RELACOUNT),
4422                                c);
4423         }
4424     }
4425
4426   if (add_debug && !parameters->options().shared())
4427     {
4428       // The value of the DT_DEBUG tag is filled in by the dynamic
4429       // linker at run time, and used by the debugger.
4430       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4431     }
4432 }
4433
4434 // Finish the .dynamic section and PT_DYNAMIC segment.
4435
4436 void
4437 Layout::finish_dynamic_section(const Input_objects* input_objects,
4438                                const Symbol_table* symtab)
4439 {
4440   if (!this->script_options_->saw_phdrs_clause()
4441       && this->dynamic_section_ != NULL)
4442     {
4443       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4444                                                        (elfcpp::PF_R
4445                                                         | elfcpp::PF_W));
4446       oseg->add_output_section_to_nonload(this->dynamic_section_,
4447                                           elfcpp::PF_R | elfcpp::PF_W);
4448     }
4449
4450   Output_data_dynamic* const odyn = this->dynamic_data_;
4451   if (odyn == NULL)
4452     return;
4453
4454   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4455        p != input_objects->dynobj_end();
4456        ++p)
4457     {
4458       if (!(*p)->is_needed() && (*p)->as_needed())
4459         {
4460           // This dynamic object was linked with --as-needed, but it
4461           // is not needed.
4462           continue;
4463         }
4464
4465       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4466     }
4467
4468   if (parameters->options().shared())
4469     {
4470       const char* soname = parameters->options().soname();
4471       if (soname != NULL)
4472         odyn->add_string(elfcpp::DT_SONAME, soname);
4473     }
4474
4475   Symbol* sym = symtab->lookup(parameters->options().init());
4476   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4477     odyn->add_symbol(elfcpp::DT_INIT, sym);
4478
4479   sym = symtab->lookup(parameters->options().fini());
4480   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4481     odyn->add_symbol(elfcpp::DT_FINI, sym);
4482
4483   // Look for .init_array, .preinit_array and .fini_array by checking
4484   // section types.
4485   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4486       p != this->section_list_.end();
4487       ++p)
4488     switch((*p)->type())
4489       {
4490       case elfcpp::SHT_FINI_ARRAY:
4491         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4492         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4493         break;
4494       case elfcpp::SHT_INIT_ARRAY:
4495         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4496         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4497         break;
4498       case elfcpp::SHT_PREINIT_ARRAY:
4499         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4500         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4501         break;
4502       default:
4503         break;
4504       }
4505
4506   // Add a DT_RPATH entry if needed.
4507   const General_options::Dir_list& rpath(parameters->options().rpath());
4508   if (!rpath.empty())
4509     {
4510       std::string rpath_val;
4511       for (General_options::Dir_list::const_iterator p = rpath.begin();
4512            p != rpath.end();
4513            ++p)
4514         {
4515           if (rpath_val.empty())
4516             rpath_val = p->name();
4517           else
4518             {
4519               // Eliminate duplicates.
4520               General_options::Dir_list::const_iterator q;
4521               for (q = rpath.begin(); q != p; ++q)
4522                 if (q->name() == p->name())
4523                   break;
4524               if (q == p)
4525                 {
4526                   rpath_val += ':';
4527                   rpath_val += p->name();
4528                 }
4529             }
4530         }
4531
4532       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4533       if (parameters->options().enable_new_dtags())
4534         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4535     }
4536
4537   // Look for text segments that have dynamic relocations.
4538   bool have_textrel = false;
4539   if (!this->script_options_->saw_sections_clause())
4540     {
4541       for (Segment_list::const_iterator p = this->segment_list_.begin();
4542            p != this->segment_list_.end();
4543            ++p)
4544         {
4545           if ((*p)->type() == elfcpp::PT_LOAD
4546               && ((*p)->flags() & elfcpp::PF_W) == 0
4547               && (*p)->has_dynamic_reloc())
4548             {
4549               have_textrel = true;
4550               break;
4551             }
4552         }
4553     }
4554   else
4555     {
4556       // We don't know the section -> segment mapping, so we are
4557       // conservative and just look for readonly sections with
4558       // relocations.  If those sections wind up in writable segments,
4559       // then we have created an unnecessary DT_TEXTREL entry.
4560       for (Section_list::const_iterator p = this->section_list_.begin();
4561            p != this->section_list_.end();
4562            ++p)
4563         {
4564           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4565               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4566               && (*p)->has_dynamic_reloc())
4567             {
4568               have_textrel = true;
4569               break;
4570             }
4571         }
4572     }
4573
4574   if (parameters->options().filter() != NULL)
4575     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4576   if (parameters->options().any_auxiliary())
4577     {
4578       for (options::String_set::const_iterator p =
4579              parameters->options().auxiliary_begin();
4580            p != parameters->options().auxiliary_end();
4581            ++p)
4582         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4583     }
4584
4585   // Add a DT_FLAGS entry if necessary.
4586   unsigned int flags = 0;
4587   if (have_textrel)
4588     {
4589       // Add a DT_TEXTREL for compatibility with older loaders.
4590       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4591       flags |= elfcpp::DF_TEXTREL;
4592
4593       if (parameters->options().text())
4594         gold_error(_("read-only segment has dynamic relocations"));
4595       else if (parameters->options().warn_shared_textrel()
4596                && parameters->options().shared())
4597         gold_warning(_("shared library text segment is not shareable"));
4598     }
4599   if (parameters->options().shared() && this->has_static_tls())
4600     flags |= elfcpp::DF_STATIC_TLS;
4601   if (parameters->options().origin())
4602     flags |= elfcpp::DF_ORIGIN;
4603   if (parameters->options().Bsymbolic())
4604     {
4605       flags |= elfcpp::DF_SYMBOLIC;
4606       // Add DT_SYMBOLIC for compatibility with older loaders.
4607       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4608     }
4609   if (parameters->options().now())
4610     flags |= elfcpp::DF_BIND_NOW;
4611   if (flags != 0)
4612     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4613
4614   flags = 0;
4615   if (parameters->options().initfirst())
4616     flags |= elfcpp::DF_1_INITFIRST;
4617   if (parameters->options().interpose())
4618     flags |= elfcpp::DF_1_INTERPOSE;
4619   if (parameters->options().loadfltr())
4620     flags |= elfcpp::DF_1_LOADFLTR;
4621   if (parameters->options().nodefaultlib())
4622     flags |= elfcpp::DF_1_NODEFLIB;
4623   if (parameters->options().nodelete())
4624     flags |= elfcpp::DF_1_NODELETE;
4625   if (parameters->options().nodlopen())
4626     flags |= elfcpp::DF_1_NOOPEN;
4627   if (parameters->options().nodump())
4628     flags |= elfcpp::DF_1_NODUMP;
4629   if (!parameters->options().shared())
4630     flags &= ~(elfcpp::DF_1_INITFIRST
4631                | elfcpp::DF_1_NODELETE
4632                | elfcpp::DF_1_NOOPEN);
4633   if (parameters->options().origin())
4634     flags |= elfcpp::DF_1_ORIGIN;
4635   if (parameters->options().now())
4636     flags |= elfcpp::DF_1_NOW;
4637   if (parameters->options().Bgroup())
4638     flags |= elfcpp::DF_1_GROUP;
4639   if (flags != 0)
4640     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4641 }
4642
4643 // Set the size of the _DYNAMIC symbol table to be the size of the
4644 // dynamic data.
4645
4646 void
4647 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4648 {
4649   Output_data_dynamic* const odyn = this->dynamic_data_;
4650   if (odyn == NULL)
4651     return;
4652   odyn->finalize_data_size();
4653   if (this->dynamic_symbol_ == NULL)
4654     return;
4655   off_t data_size = odyn->data_size();
4656   const int size = parameters->target().get_size();
4657   if (size == 32)
4658     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4659   else if (size == 64)
4660     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4661   else
4662     gold_unreachable();
4663 }
4664
4665 // The mapping of input section name prefixes to output section names.
4666 // In some cases one prefix is itself a prefix of another prefix; in
4667 // such a case the longer prefix must come first.  These prefixes are
4668 // based on the GNU linker default ELF linker script.
4669
4670 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4671 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4672 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4673 {
4674   MAPPING_INIT(".text.", ".text"),
4675   MAPPING_INIT(".rodata.", ".rodata"),
4676   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4677   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4678   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4679   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4680   MAPPING_INIT(".data.", ".data"),
4681   MAPPING_INIT(".bss.", ".bss"),
4682   MAPPING_INIT(".tdata.", ".tdata"),
4683   MAPPING_INIT(".tbss.", ".tbss"),
4684   MAPPING_INIT(".init_array.", ".init_array"),
4685   MAPPING_INIT(".fini_array.", ".fini_array"),
4686   MAPPING_INIT(".sdata.", ".sdata"),
4687   MAPPING_INIT(".sbss.", ".sbss"),
4688   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4689   // differently depending on whether it is creating a shared library.
4690   MAPPING_INIT(".sdata2.", ".sdata"),
4691   MAPPING_INIT(".sbss2.", ".sbss"),
4692   MAPPING_INIT(".lrodata.", ".lrodata"),
4693   MAPPING_INIT(".ldata.", ".ldata"),
4694   MAPPING_INIT(".lbss.", ".lbss"),
4695   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4696   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4697   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4698   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4699   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4700   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4701   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4702   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4703   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4704   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4705   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4706   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4707   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4708   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4709   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4710   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4711   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4712   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4713   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4714   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4715   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4716 };
4717 #undef MAPPING_INIT
4718 #undef MAPPING_INIT_EXACT
4719
4720 const int Layout::section_name_mapping_count =
4721   (sizeof(Layout::section_name_mapping)
4722    / sizeof(Layout::section_name_mapping[0]));
4723
4724 // Choose the output section name to use given an input section name.
4725 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4726 // length of NAME.
4727
4728 const char*
4729 Layout::output_section_name(const Relobj* relobj, const char* name,
4730                             size_t* plen)
4731 {
4732   // gcc 4.3 generates the following sorts of section names when it
4733   // needs a section name specific to a function:
4734   //   .text.FN
4735   //   .rodata.FN
4736   //   .sdata2.FN
4737   //   .data.FN
4738   //   .data.rel.FN
4739   //   .data.rel.local.FN
4740   //   .data.rel.ro.FN
4741   //   .data.rel.ro.local.FN
4742   //   .sdata.FN
4743   //   .bss.FN
4744   //   .sbss.FN
4745   //   .tdata.FN
4746   //   .tbss.FN
4747
4748   // The GNU linker maps all of those to the part before the .FN,
4749   // except that .data.rel.local.FN is mapped to .data, and
4750   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4751   // beginning with .data.rel.ro.local are grouped together.
4752
4753   // For an anonymous namespace, the string FN can contain a '.'.
4754
4755   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4756   // GNU linker maps to .rodata.
4757
4758   // The .data.rel.ro sections are used with -z relro.  The sections
4759   // are recognized by name.  We use the same names that the GNU
4760   // linker does for these sections.
4761
4762   // It is hard to handle this in a principled way, so we don't even
4763   // try.  We use a table of mappings.  If the input section name is
4764   // not found in the table, we simply use it as the output section
4765   // name.
4766
4767   const Section_name_mapping* psnm = section_name_mapping;
4768   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4769     {
4770       if (psnm->fromlen > 0)
4771         {
4772           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4773             {
4774               *plen = psnm->tolen;
4775               return psnm->to;
4776             }
4777         }
4778       else
4779         {
4780           if (strcmp(name, psnm->from) == 0)
4781             {
4782               *plen = psnm->tolen;
4783               return psnm->to;
4784             }
4785         }
4786     }
4787
4788   // As an additional complication, .ctors sections are output in
4789   // either .ctors or .init_array sections, and .dtors sections are
4790   // output in either .dtors or .fini_array sections.
4791   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4792     {
4793       if (parameters->options().ctors_in_init_array())
4794         {
4795           *plen = 11;
4796           return name[1] == 'c' ? ".init_array" : ".fini_array";
4797         }
4798       else
4799         {
4800           *plen = 6;
4801           return name[1] == 'c' ? ".ctors" : ".dtors";
4802         }
4803     }
4804   if (parameters->options().ctors_in_init_array()
4805       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4806     {
4807       // To make .init_array/.fini_array work with gcc we must exclude
4808       // .ctors and .dtors sections from the crtbegin and crtend
4809       // files.
4810       if (relobj == NULL
4811           || (!Layout::match_file_name(relobj, "crtbegin")
4812               && !Layout::match_file_name(relobj, "crtend")))
4813         {
4814           *plen = 11;
4815           return name[1] == 'c' ? ".init_array" : ".fini_array";
4816         }
4817     }
4818
4819   return name;
4820 }
4821
4822 // Return true if RELOBJ is an input file whose base name matches
4823 // FILE_NAME.  The base name must have an extension of ".o", and must
4824 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4825 // to match crtbegin.o as well as crtbeginS.o without getting confused
4826 // by other possibilities.  Overall matching the file name this way is
4827 // a dreadful hack, but the GNU linker does it in order to better
4828 // support gcc, and we need to be compatible.
4829
4830 bool
4831 Layout::match_file_name(const Relobj* relobj, const char* match)
4832 {
4833   const std::string& file_name(relobj->name());
4834   const char* base_name = lbasename(file_name.c_str());
4835   size_t match_len = strlen(match);
4836   if (strncmp(base_name, match, match_len) != 0)
4837     return false;
4838   size_t base_len = strlen(base_name);
4839   if (base_len != match_len + 2 && base_len != match_len + 3)
4840     return false;
4841   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4842 }
4843
4844 // Check if a comdat group or .gnu.linkonce section with the given
4845 // NAME is selected for the link.  If there is already a section,
4846 // *KEPT_SECTION is set to point to the existing section and the
4847 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4848 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4849 // *KEPT_SECTION is set to the internal copy and the function returns
4850 // true.
4851
4852 bool
4853 Layout::find_or_add_kept_section(const std::string& name,
4854                                  Relobj* object,
4855                                  unsigned int shndx,
4856                                  bool is_comdat,
4857                                  bool is_group_name,
4858                                  Kept_section** kept_section)
4859 {
4860   // It's normal to see a couple of entries here, for the x86 thunk
4861   // sections.  If we see more than a few, we're linking a C++
4862   // program, and we resize to get more space to minimize rehashing.
4863   if (this->signatures_.size() > 4
4864       && !this->resized_signatures_)
4865     {
4866       reserve_unordered_map(&this->signatures_,
4867                             this->number_of_input_files_ * 64);
4868       this->resized_signatures_ = true;
4869     }
4870
4871   Kept_section candidate;
4872   std::pair<Signatures::iterator, bool> ins =
4873     this->signatures_.insert(std::make_pair(name, candidate));
4874
4875   if (kept_section != NULL)
4876     *kept_section = &ins.first->second;
4877   if (ins.second)
4878     {
4879       // This is the first time we've seen this signature.
4880       ins.first->second.set_object(object);
4881       ins.first->second.set_shndx(shndx);
4882       if (is_comdat)
4883         ins.first->second.set_is_comdat();
4884       if (is_group_name)
4885         ins.first->second.set_is_group_name();
4886       return true;
4887     }
4888
4889   // We have already seen this signature.
4890
4891   if (ins.first->second.is_group_name())
4892     {
4893       // We've already seen a real section group with this signature.
4894       // If the kept group is from a plugin object, and we're in the
4895       // replacement phase, accept the new one as a replacement.
4896       if (ins.first->second.object() == NULL
4897           && parameters->options().plugins()->in_replacement_phase())
4898         {
4899           ins.first->second.set_object(object);
4900           ins.first->second.set_shndx(shndx);
4901           return true;
4902         }
4903       return false;
4904     }
4905   else if (is_group_name)
4906     {
4907       // This is a real section group, and we've already seen a
4908       // linkonce section with this signature.  Record that we've seen
4909       // a section group, and don't include this section group.
4910       ins.first->second.set_is_group_name();
4911       return false;
4912     }
4913   else
4914     {
4915       // We've already seen a linkonce section and this is a linkonce
4916       // section.  These don't block each other--this may be the same
4917       // symbol name with different section types.
4918       return true;
4919     }
4920 }
4921
4922 // Store the allocated sections into the section list.
4923
4924 void
4925 Layout::get_allocated_sections(Section_list* section_list) const
4926 {
4927   for (Section_list::const_iterator p = this->section_list_.begin();
4928        p != this->section_list_.end();
4929        ++p)
4930     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4931       section_list->push_back(*p);
4932 }
4933
4934 // Create an output segment.
4935
4936 Output_segment*
4937 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4938 {
4939   gold_assert(!parameters->options().relocatable());
4940   Output_segment* oseg = new Output_segment(type, flags);
4941   this->segment_list_.push_back(oseg);
4942
4943   if (type == elfcpp::PT_TLS)
4944     this->tls_segment_ = oseg;
4945   else if (type == elfcpp::PT_GNU_RELRO)
4946     this->relro_segment_ = oseg;
4947   else if (type == elfcpp::PT_INTERP)
4948     this->interp_segment_ = oseg;
4949
4950   return oseg;
4951 }
4952
4953 // Return the file offset of the normal symbol table.
4954
4955 off_t
4956 Layout::symtab_section_offset() const
4957 {
4958   if (this->symtab_section_ != NULL)
4959     return this->symtab_section_->offset();
4960   return 0;
4961 }
4962
4963 // Return the section index of the normal symbol table.  It may have
4964 // been stripped by the -s/--strip-all option.
4965
4966 unsigned int
4967 Layout::symtab_section_shndx() const
4968 {
4969   if (this->symtab_section_ != NULL)
4970     return this->symtab_section_->out_shndx();
4971   return 0;
4972 }
4973
4974 // Write out the Output_sections.  Most won't have anything to write,
4975 // since most of the data will come from input sections which are
4976 // handled elsewhere.  But some Output_sections do have Output_data.
4977
4978 void
4979 Layout::write_output_sections(Output_file* of) const
4980 {
4981   for (Section_list::const_iterator p = this->section_list_.begin();
4982        p != this->section_list_.end();
4983        ++p)
4984     {
4985       if (!(*p)->after_input_sections())
4986         (*p)->write(of);
4987     }
4988 }
4989
4990 // Write out data not associated with a section or the symbol table.
4991
4992 void
4993 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4994 {
4995   if (!parameters->options().strip_all())
4996     {
4997       const Output_section* symtab_section = this->symtab_section_;
4998       for (Section_list::const_iterator p = this->section_list_.begin();
4999            p != this->section_list_.end();
5000            ++p)
5001         {
5002           if ((*p)->needs_symtab_index())
5003             {
5004               gold_assert(symtab_section != NULL);
5005               unsigned int index = (*p)->symtab_index();
5006               gold_assert(index > 0 && index != -1U);
5007               off_t off = (symtab_section->offset()
5008                            + index * symtab_section->entsize());
5009               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5010             }
5011         }
5012     }
5013
5014   const Output_section* dynsym_section = this->dynsym_section_;
5015   for (Section_list::const_iterator p = this->section_list_.begin();
5016        p != this->section_list_.end();
5017        ++p)
5018     {
5019       if ((*p)->needs_dynsym_index())
5020         {
5021           gold_assert(dynsym_section != NULL);
5022           unsigned int index = (*p)->dynsym_index();
5023           gold_assert(index > 0 && index != -1U);
5024           off_t off = (dynsym_section->offset()
5025                        + index * dynsym_section->entsize());
5026           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5027         }
5028     }
5029
5030   // Write out the Output_data which are not in an Output_section.
5031   for (Data_list::const_iterator p = this->special_output_list_.begin();
5032        p != this->special_output_list_.end();
5033        ++p)
5034     (*p)->write(of);
5035 }
5036
5037 // Write out the Output_sections which can only be written after the
5038 // input sections are complete.
5039
5040 void
5041 Layout::write_sections_after_input_sections(Output_file* of)
5042 {
5043   // Determine the final section offsets, and thus the final output
5044   // file size.  Note we finalize the .shstrab last, to allow the
5045   // after_input_section sections to modify their section-names before
5046   // writing.
5047   if (this->any_postprocessing_sections_)
5048     {
5049       off_t off = this->output_file_size_;
5050       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5051
5052       // Now that we've finalized the names, we can finalize the shstrab.
5053       off =
5054         this->set_section_offsets(off,
5055                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5056
5057       if (off > this->output_file_size_)
5058         {
5059           of->resize(off);
5060           this->output_file_size_ = off;
5061         }
5062     }
5063
5064   for (Section_list::const_iterator p = this->section_list_.begin();
5065        p != this->section_list_.end();
5066        ++p)
5067     {
5068       if ((*p)->after_input_sections())
5069         (*p)->write(of);
5070     }
5071
5072   this->section_headers_->write(of);
5073 }
5074
5075 // If the build ID requires computing a checksum, do so here, and
5076 // write it out.  We compute a checksum over the entire file because
5077 // that is simplest.
5078
5079 void
5080 Layout::write_build_id(Output_file* of) const
5081 {
5082   if (this->build_id_note_ == NULL)
5083     return;
5084
5085   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5086
5087   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5088                                           this->build_id_note_->data_size());
5089
5090   const char* style = parameters->options().build_id();
5091   if (strcmp(style, "sha1") == 0)
5092     {
5093       sha1_ctx ctx;
5094       sha1_init_ctx(&ctx);
5095       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5096       sha1_finish_ctx(&ctx, ov);
5097     }
5098   else if (strcmp(style, "md5") == 0)
5099     {
5100       md5_ctx ctx;
5101       md5_init_ctx(&ctx);
5102       md5_process_bytes(iv, this->output_file_size_, &ctx);
5103       md5_finish_ctx(&ctx, ov);
5104     }
5105   else
5106     gold_unreachable();
5107
5108   of->write_output_view(this->build_id_note_->offset(),
5109                         this->build_id_note_->data_size(),
5110                         ov);
5111
5112   of->free_input_view(0, this->output_file_size_, iv);
5113 }
5114
5115 // Write out a binary file.  This is called after the link is
5116 // complete.  IN is the temporary output file we used to generate the
5117 // ELF code.  We simply walk through the segments, read them from
5118 // their file offset in IN, and write them to their load address in
5119 // the output file.  FIXME: with a bit more work, we could support
5120 // S-records and/or Intel hex format here.
5121
5122 void
5123 Layout::write_binary(Output_file* in) const
5124 {
5125   gold_assert(parameters->options().oformat_enum()
5126               == General_options::OBJECT_FORMAT_BINARY);
5127
5128   // Get the size of the binary file.
5129   uint64_t max_load_address = 0;
5130   for (Segment_list::const_iterator p = this->segment_list_.begin();
5131        p != this->segment_list_.end();
5132        ++p)
5133     {
5134       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5135         {
5136           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5137           if (max_paddr > max_load_address)
5138             max_load_address = max_paddr;
5139         }
5140     }
5141
5142   Output_file out(parameters->options().output_file_name());
5143   out.open(max_load_address);
5144
5145   for (Segment_list::const_iterator p = this->segment_list_.begin();
5146        p != this->segment_list_.end();
5147        ++p)
5148     {
5149       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5150         {
5151           const unsigned char* vin = in->get_input_view((*p)->offset(),
5152                                                         (*p)->filesz());
5153           unsigned char* vout = out.get_output_view((*p)->paddr(),
5154                                                     (*p)->filesz());
5155           memcpy(vout, vin, (*p)->filesz());
5156           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5157           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5158         }
5159     }
5160
5161   out.close();
5162 }
5163
5164 // Print the output sections to the map file.
5165
5166 void
5167 Layout::print_to_mapfile(Mapfile* mapfile) const
5168 {
5169   for (Segment_list::const_iterator p = this->segment_list_.begin();
5170        p != this->segment_list_.end();
5171        ++p)
5172     (*p)->print_sections_to_mapfile(mapfile);
5173 }
5174
5175 // Print statistical information to stderr.  This is used for --stats.
5176
5177 void
5178 Layout::print_stats() const
5179 {
5180   this->namepool_.print_stats("section name pool");
5181   this->sympool_.print_stats("output symbol name pool");
5182   this->dynpool_.print_stats("dynamic name pool");
5183
5184   for (Section_list::const_iterator p = this->section_list_.begin();
5185        p != this->section_list_.end();
5186        ++p)
5187     (*p)->print_merge_stats();
5188 }
5189
5190 // Write_sections_task methods.
5191
5192 // We can always run this task.
5193
5194 Task_token*
5195 Write_sections_task::is_runnable()
5196 {
5197   return NULL;
5198 }
5199
5200 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5201 // when finished.
5202
5203 void
5204 Write_sections_task::locks(Task_locker* tl)
5205 {
5206   tl->add(this, this->output_sections_blocker_);
5207   tl->add(this, this->final_blocker_);
5208 }
5209
5210 // Run the task--write out the data.
5211
5212 void
5213 Write_sections_task::run(Workqueue*)
5214 {
5215   this->layout_->write_output_sections(this->of_);
5216 }
5217
5218 // Write_data_task methods.
5219
5220 // We can always run this task.
5221
5222 Task_token*
5223 Write_data_task::is_runnable()
5224 {
5225   return NULL;
5226 }
5227
5228 // We need to unlock FINAL_BLOCKER when finished.
5229
5230 void
5231 Write_data_task::locks(Task_locker* tl)
5232 {
5233   tl->add(this, this->final_blocker_);
5234 }
5235
5236 // Run the task--write out the data.
5237
5238 void
5239 Write_data_task::run(Workqueue*)
5240 {
5241   this->layout_->write_data(this->symtab_, this->of_);
5242 }
5243
5244 // Write_symbols_task methods.
5245
5246 // We can always run this task.
5247
5248 Task_token*
5249 Write_symbols_task::is_runnable()
5250 {
5251   return NULL;
5252 }
5253
5254 // We need to unlock FINAL_BLOCKER when finished.
5255
5256 void
5257 Write_symbols_task::locks(Task_locker* tl)
5258 {
5259   tl->add(this, this->final_blocker_);
5260 }
5261
5262 // Run the task--write out the symbols.
5263
5264 void
5265 Write_symbols_task::run(Workqueue*)
5266 {
5267   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5268                                this->layout_->symtab_xindex(),
5269                                this->layout_->dynsym_xindex(), this->of_);
5270 }
5271
5272 // Write_after_input_sections_task methods.
5273
5274 // We can only run this task after the input sections have completed.
5275
5276 Task_token*
5277 Write_after_input_sections_task::is_runnable()
5278 {
5279   if (this->input_sections_blocker_->is_blocked())
5280     return this->input_sections_blocker_;
5281   return NULL;
5282 }
5283
5284 // We need to unlock FINAL_BLOCKER when finished.
5285
5286 void
5287 Write_after_input_sections_task::locks(Task_locker* tl)
5288 {
5289   tl->add(this, this->final_blocker_);
5290 }
5291
5292 // Run the task.
5293
5294 void
5295 Write_after_input_sections_task::run(Workqueue*)
5296 {
5297   this->layout_->write_sections_after_input_sections(this->of_);
5298 }
5299
5300 // Close_task_runner methods.
5301
5302 // Run the task--close the file.
5303
5304 void
5305 Close_task_runner::run(Workqueue*, const Task*)
5306 {
5307   // If we need to compute a checksum for the BUILD if, we do so here.
5308   this->layout_->write_build_id(this->of_);
5309
5310   // If we've been asked to create a binary file, we do so here.
5311   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5312     this->layout_->write_binary(this->of_);
5313
5314   this->of_->close();
5315 }
5316
5317 // Instantiate the templates we need.  We could use the configure
5318 // script to restrict this to only the ones for implemented targets.
5319
5320 #ifdef HAVE_TARGET_32_LITTLE
5321 template
5322 Output_section*
5323 Layout::init_fixed_output_section<32, false>(
5324     const char* name,
5325     elfcpp::Shdr<32, false>& shdr);
5326 #endif
5327
5328 #ifdef HAVE_TARGET_32_BIG
5329 template
5330 Output_section*
5331 Layout::init_fixed_output_section<32, true>(
5332     const char* name,
5333     elfcpp::Shdr<32, true>& shdr);
5334 #endif
5335
5336 #ifdef HAVE_TARGET_64_LITTLE
5337 template
5338 Output_section*
5339 Layout::init_fixed_output_section<64, false>(
5340     const char* name,
5341     elfcpp::Shdr<64, false>& shdr);
5342 #endif
5343
5344 #ifdef HAVE_TARGET_64_BIG
5345 template
5346 Output_section*
5347 Layout::init_fixed_output_section<64, true>(
5348     const char* name,
5349     elfcpp::Shdr<64, true>& shdr);
5350 #endif
5351
5352 #ifdef HAVE_TARGET_32_LITTLE
5353 template
5354 Output_section*
5355 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5356                           unsigned int shndx,
5357                           const char* name,
5358                           const elfcpp::Shdr<32, false>& shdr,
5359                           unsigned int, unsigned int, off_t*);
5360 #endif
5361
5362 #ifdef HAVE_TARGET_32_BIG
5363 template
5364 Output_section*
5365 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5366                          unsigned int shndx,
5367                          const char* name,
5368                          const elfcpp::Shdr<32, true>& shdr,
5369                          unsigned int, unsigned int, off_t*);
5370 #endif
5371
5372 #ifdef HAVE_TARGET_64_LITTLE
5373 template
5374 Output_section*
5375 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5376                           unsigned int shndx,
5377                           const char* name,
5378                           const elfcpp::Shdr<64, false>& shdr,
5379                           unsigned int, unsigned int, off_t*);
5380 #endif
5381
5382 #ifdef HAVE_TARGET_64_BIG
5383 template
5384 Output_section*
5385 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5386                          unsigned int shndx,
5387                          const char* name,
5388                          const elfcpp::Shdr<64, true>& shdr,
5389                          unsigned int, unsigned int, off_t*);
5390 #endif
5391
5392 #ifdef HAVE_TARGET_32_LITTLE
5393 template
5394 Output_section*
5395 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5396                                 unsigned int reloc_shndx,
5397                                 const elfcpp::Shdr<32, false>& shdr,
5398                                 Output_section* data_section,
5399                                 Relocatable_relocs* rr);
5400 #endif
5401
5402 #ifdef HAVE_TARGET_32_BIG
5403 template
5404 Output_section*
5405 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5406                                unsigned int reloc_shndx,
5407                                const elfcpp::Shdr<32, true>& shdr,
5408                                Output_section* data_section,
5409                                Relocatable_relocs* rr);
5410 #endif
5411
5412 #ifdef HAVE_TARGET_64_LITTLE
5413 template
5414 Output_section*
5415 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5416                                 unsigned int reloc_shndx,
5417                                 const elfcpp::Shdr<64, false>& shdr,
5418                                 Output_section* data_section,
5419                                 Relocatable_relocs* rr);
5420 #endif
5421
5422 #ifdef HAVE_TARGET_64_BIG
5423 template
5424 Output_section*
5425 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5426                                unsigned int reloc_shndx,
5427                                const elfcpp::Shdr<64, true>& shdr,
5428                                Output_section* data_section,
5429                                Relocatable_relocs* rr);
5430 #endif
5431
5432 #ifdef HAVE_TARGET_32_LITTLE
5433 template
5434 void
5435 Layout::layout_group<32, false>(Symbol_table* symtab,
5436                                 Sized_relobj_file<32, false>* object,
5437                                 unsigned int,
5438                                 const char* group_section_name,
5439                                 const char* signature,
5440                                 const elfcpp::Shdr<32, false>& shdr,
5441                                 elfcpp::Elf_Word flags,
5442                                 std::vector<unsigned int>* shndxes);
5443 #endif
5444
5445 #ifdef HAVE_TARGET_32_BIG
5446 template
5447 void
5448 Layout::layout_group<32, true>(Symbol_table* symtab,
5449                                Sized_relobj_file<32, true>* object,
5450                                unsigned int,
5451                                const char* group_section_name,
5452                                const char* signature,
5453                                const elfcpp::Shdr<32, true>& shdr,
5454                                elfcpp::Elf_Word flags,
5455                                std::vector<unsigned int>* shndxes);
5456 #endif
5457
5458 #ifdef HAVE_TARGET_64_LITTLE
5459 template
5460 void
5461 Layout::layout_group<64, false>(Symbol_table* symtab,
5462                                 Sized_relobj_file<64, false>* object,
5463                                 unsigned int,
5464                                 const char* group_section_name,
5465                                 const char* signature,
5466                                 const elfcpp::Shdr<64, false>& shdr,
5467                                 elfcpp::Elf_Word flags,
5468                                 std::vector<unsigned int>* shndxes);
5469 #endif
5470
5471 #ifdef HAVE_TARGET_64_BIG
5472 template
5473 void
5474 Layout::layout_group<64, true>(Symbol_table* symtab,
5475                                Sized_relobj_file<64, true>* object,
5476                                unsigned int,
5477                                const char* group_section_name,
5478                                const char* signature,
5479                                const elfcpp::Shdr<64, true>& shdr,
5480                                elfcpp::Elf_Word flags,
5481                                std::vector<unsigned int>* shndxes);
5482 #endif
5483
5484 #ifdef HAVE_TARGET_32_LITTLE
5485 template
5486 Output_section*
5487 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5488                                    const unsigned char* symbols,
5489                                    off_t symbols_size,
5490                                    const unsigned char* symbol_names,
5491                                    off_t symbol_names_size,
5492                                    unsigned int shndx,
5493                                    const elfcpp::Shdr<32, false>& shdr,
5494                                    unsigned int reloc_shndx,
5495                                    unsigned int reloc_type,
5496                                    off_t* off);
5497 #endif
5498
5499 #ifdef HAVE_TARGET_32_BIG
5500 template
5501 Output_section*
5502 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5503                                   const unsigned char* symbols,
5504                                   off_t symbols_size,
5505                                   const unsigned char* symbol_names,
5506                                   off_t symbol_names_size,
5507                                   unsigned int shndx,
5508                                   const elfcpp::Shdr<32, true>& shdr,
5509                                   unsigned int reloc_shndx,
5510                                   unsigned int reloc_type,
5511                                   off_t* off);
5512 #endif
5513
5514 #ifdef HAVE_TARGET_64_LITTLE
5515 template
5516 Output_section*
5517 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5518                                    const unsigned char* symbols,
5519                                    off_t symbols_size,
5520                                    const unsigned char* symbol_names,
5521                                    off_t symbol_names_size,
5522                                    unsigned int shndx,
5523                                    const elfcpp::Shdr<64, false>& shdr,
5524                                    unsigned int reloc_shndx,
5525                                    unsigned int reloc_type,
5526                                    off_t* off);
5527 #endif
5528
5529 #ifdef HAVE_TARGET_64_BIG
5530 template
5531 Output_section*
5532 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5533                                   const unsigned char* symbols,
5534                                   off_t symbols_size,
5535                                   const unsigned char* symbol_names,
5536                                   off_t symbol_names_size,
5537                                   unsigned int shndx,
5538                                   const elfcpp::Shdr<64, true>& shdr,
5539                                   unsigned int reloc_shndx,
5540                                   unsigned int reloc_type,
5541                                   off_t* off);
5542 #endif
5543
5544 #ifdef HAVE_TARGET_32_LITTLE
5545 template
5546 void
5547 Layout::add_to_gdb_index(bool is_type_unit,
5548                          Sized_relobj<32, false>* object,
5549                          const unsigned char* symbols,
5550                          off_t symbols_size,
5551                          unsigned int shndx,
5552                          unsigned int reloc_shndx,
5553                          unsigned int reloc_type);
5554 #endif
5555
5556 #ifdef HAVE_TARGET_32_BIG
5557 template
5558 void
5559 Layout::add_to_gdb_index(bool is_type_unit,
5560                          Sized_relobj<32, true>* object,
5561                          const unsigned char* symbols,
5562                          off_t symbols_size,
5563                          unsigned int shndx,
5564                          unsigned int reloc_shndx,
5565                          unsigned int reloc_type);
5566 #endif
5567
5568 #ifdef HAVE_TARGET_64_LITTLE
5569 template
5570 void
5571 Layout::add_to_gdb_index(bool is_type_unit,
5572                          Sized_relobj<64, false>* object,
5573                          const unsigned char* symbols,
5574                          off_t symbols_size,
5575                          unsigned int shndx,
5576                          unsigned int reloc_shndx,
5577                          unsigned int reloc_type);
5578 #endif
5579
5580 #ifdef HAVE_TARGET_64_BIG
5581 template
5582 void
5583 Layout::add_to_gdb_index(bool is_type_unit,
5584                          Sized_relobj<64, true>* object,
5585                          const unsigned char* symbols,
5586                          off_t symbols_size,
5587                          unsigned int shndx,
5588                          unsigned int reloc_shndx,
5589                          unsigned int reloc_type);
5590 #endif
5591
5592 } // End namespace gold.