gold/
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     incremental_inputs_(NULL),
412     record_output_section_data_from_script_(false),
413     script_output_section_data_list_(),
414     segment_states_(NULL),
415     relaxation_debug_check_(NULL),
416     section_order_map_(),
417     input_section_position_(),
418     input_section_glob_(),
419     incremental_base_(NULL),
420     free_list_()
421 {
422   // Make space for more than enough segments for a typical file.
423   // This is just for efficiency--it's OK if we wind up needing more.
424   this->segment_list_.reserve(12);
425
426   // We expect two unattached Output_data objects: the file header and
427   // the segment headers.
428   this->special_output_list_.reserve(2);
429
430   // Initialize structure needed for an incremental build.
431   if (parameters->incremental())
432     this->incremental_inputs_ = new Incremental_inputs;
433
434   // The section name pool is worth optimizing in all cases, because
435   // it is small, but there are often overlaps due to .rel sections.
436   this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444   this->incremental_base_ = base;
445   this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453  return k.first + k.second.first + k.second.second;
454 }
455
456 // Returns whether the given section is in the list of
457 // debug-sections-used-by-some-version-of-gdb.  Currently,
458 // we've checked versions of gdb up to and including 7.4.
459
460 static const char* gdb_sections[] =
461 { ".debug_abbrev",
462   ".debug_addr",         // Fission extension
463   // ".debug_aranges",   // not used by gdb as of 7.4
464   ".debug_frame",
465   ".debug_info",
466   ".debug_types",
467   ".debug_line",
468   ".debug_loc",
469   ".debug_macinfo",
470   // ".debug_pubnames",  // not used by gdb as of 7.4
471   // ".debug_pubtypes",  // not used by gdb as of 7.4
472   ".debug_ranges",
473   ".debug_str",
474 };
475
476 static const char* lines_only_debug_sections[] =
477 { ".debug_abbrev",
478   // ".debug_addr",      // Fission extension
479   // ".debug_aranges",   // not used by gdb as of 7.4
480   // ".debug_frame",
481   ".debug_info",
482   // ".debug_types",
483   ".debug_line",
484   // ".debug_loc",
485   // ".debug_macinfo",
486   // ".debug_pubnames",  // not used by gdb as of 7.4
487   // ".debug_pubtypes",  // not used by gdb as of 7.4
488   // ".debug_ranges",
489   ".debug_str",
490 };
491
492 static inline bool
493 is_gdb_debug_section(const char* str)
494 {
495   // We can do this faster: binary search or a hashtable.  But why bother?
496   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
497     if (strcmp(str, gdb_sections[i]) == 0)
498       return true;
499   return false;
500 }
501
502 static inline bool
503 is_lines_only_debug_section(const char* str)
504 {
505   // We can do this faster: binary search or a hashtable.  But why bother?
506   for (size_t i = 0;
507        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
508        ++i)
509     if (strcmp(str, lines_only_debug_sections[i]) == 0)
510       return true;
511   return false;
512 }
513
514 // Sometimes we compress sections.  This is typically done for
515 // sections that are not part of normal program execution (such as
516 // .debug_* sections), and where the readers of these sections know
517 // how to deal with compressed sections.  This routine doesn't say for
518 // certain whether we'll compress -- it depends on commandline options
519 // as well -- just whether this section is a candidate for compression.
520 // (The Output_compressed_section class decides whether to compress
521 // a given section, and picks the name of the compressed section.)
522
523 static bool
524 is_compressible_debug_section(const char* secname)
525 {
526   return (is_prefix_of(".debug", secname));
527 }
528
529 // We may see compressed debug sections in input files.  Return TRUE
530 // if this is the name of a compressed debug section.
531
532 bool
533 is_compressed_debug_section(const char* secname)
534 {
535   return (is_prefix_of(".zdebug", secname));
536 }
537
538 // Whether to include this section in the link.
539
540 template<int size, bool big_endian>
541 bool
542 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
543                         const elfcpp::Shdr<size, big_endian>& shdr)
544 {
545   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
546     return false;
547
548   switch (shdr.get_sh_type())
549     {
550     case elfcpp::SHT_NULL:
551     case elfcpp::SHT_SYMTAB:
552     case elfcpp::SHT_DYNSYM:
553     case elfcpp::SHT_HASH:
554     case elfcpp::SHT_DYNAMIC:
555     case elfcpp::SHT_SYMTAB_SHNDX:
556       return false;
557
558     case elfcpp::SHT_STRTAB:
559       // Discard the sections which have special meanings in the ELF
560       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
561       // checking the sh_link fields of the appropriate sections.
562       return (strcmp(name, ".dynstr") != 0
563               && strcmp(name, ".strtab") != 0
564               && strcmp(name, ".shstrtab") != 0);
565
566     case elfcpp::SHT_RELA:
567     case elfcpp::SHT_REL:
568     case elfcpp::SHT_GROUP:
569       // If we are emitting relocations these should be handled
570       // elsewhere.
571       gold_assert(!parameters->options().relocatable()
572                   && !parameters->options().emit_relocs());
573       return false;
574
575     case elfcpp::SHT_PROGBITS:
576       if (parameters->options().strip_debug()
577           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
578         {
579           if (is_debug_info_section(name))
580             return false;
581         }
582       if (parameters->options().strip_debug_non_line()
583           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
584         {
585           // Debugging sections can only be recognized by name.
586           if (is_prefix_of(".debug", name)
587               && !is_lines_only_debug_section(name))
588             return false;
589         }
590       if (parameters->options().strip_debug_gdb()
591           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
592         {
593           // Debugging sections can only be recognized by name.
594           if (is_prefix_of(".debug", name)
595               && !is_gdb_debug_section(name))
596             return false;
597         }
598       if (parameters->options().strip_lto_sections()
599           && !parameters->options().relocatable()
600           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
601         {
602           // Ignore LTO sections containing intermediate code.
603           if (is_prefix_of(".gnu.lto_", name))
604             return false;
605         }
606       // The GNU linker strips .gnu_debuglink sections, so we do too.
607       // This is a feature used to keep debugging information in
608       // separate files.
609       if (strcmp(name, ".gnu_debuglink") == 0)
610         return false;
611       return true;
612
613     default:
614       return true;
615     }
616 }
617
618 // Return an output section named NAME, or NULL if there is none.
619
620 Output_section*
621 Layout::find_output_section(const char* name) const
622 {
623   for (Section_list::const_iterator p = this->section_list_.begin();
624        p != this->section_list_.end();
625        ++p)
626     if (strcmp((*p)->name(), name) == 0)
627       return *p;
628   return NULL;
629 }
630
631 // Return an output segment of type TYPE, with segment flags SET set
632 // and segment flags CLEAR clear.  Return NULL if there is none.
633
634 Output_segment*
635 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
636                             elfcpp::Elf_Word clear) const
637 {
638   for (Segment_list::const_iterator p = this->segment_list_.begin();
639        p != this->segment_list_.end();
640        ++p)
641     if (static_cast<elfcpp::PT>((*p)->type()) == type
642         && ((*p)->flags() & set) == set
643         && ((*p)->flags() & clear) == 0)
644       return *p;
645   return NULL;
646 }
647
648 // When we put a .ctors or .dtors section with more than one word into
649 // a .init_array or .fini_array section, we need to reverse the words
650 // in the .ctors/.dtors section.  This is because .init_array executes
651 // constructors front to back, where .ctors executes them back to
652 // front, and vice-versa for .fini_array/.dtors.  Although we do want
653 // to remap .ctors/.dtors into .init_array/.fini_array because it can
654 // be more efficient, we don't want to change the order in which
655 // constructors/destructors are run.  This set just keeps track of
656 // these sections which need to be reversed.  It is only changed by
657 // Layout::layout.  It should be a private member of Layout, but that
658 // would require layout.h to #include object.h to get the definition
659 // of Section_id.
660 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
661
662 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
663 // .init_array/.fini_array section.
664
665 bool
666 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
667 {
668   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
669           != ctors_sections_in_init_array.end());
670 }
671
672 // Return the output section to use for section NAME with type TYPE
673 // and section flags FLAGS.  NAME must be canonicalized in the string
674 // pool, and NAME_KEY is the key.  ORDER is where this should appear
675 // in the output sections.  IS_RELRO is true for a relro section.
676
677 Output_section*
678 Layout::get_output_section(const char* name, Stringpool::Key name_key,
679                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
680                            Output_section_order order, bool is_relro)
681 {
682   elfcpp::Elf_Word lookup_type = type;
683
684   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
685   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
686   // .init_array, .fini_array, and .preinit_array sections by name
687   // whatever their type in the input file.  We do this because the
688   // types are not always right in the input files.
689   if (lookup_type == elfcpp::SHT_INIT_ARRAY
690       || lookup_type == elfcpp::SHT_FINI_ARRAY
691       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
692     lookup_type = elfcpp::SHT_PROGBITS;
693
694   elfcpp::Elf_Xword lookup_flags = flags;
695
696   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
697   // read-write with read-only sections.  Some other ELF linkers do
698   // not do this.  FIXME: Perhaps there should be an option
699   // controlling this.
700   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
701
702   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
703   const std::pair<Key, Output_section*> v(key, NULL);
704   std::pair<Section_name_map::iterator, bool> ins(
705     this->section_name_map_.insert(v));
706
707   if (!ins.second)
708     return ins.first->second;
709   else
710     {
711       // This is the first time we've seen this name/type/flags
712       // combination.  For compatibility with the GNU linker, we
713       // combine sections with contents and zero flags with sections
714       // with non-zero flags.  This is a workaround for cases where
715       // assembler code forgets to set section flags.  FIXME: Perhaps
716       // there should be an option to control this.
717       Output_section* os = NULL;
718
719       if (lookup_type == elfcpp::SHT_PROGBITS)
720         {
721           if (flags == 0)
722             {
723               Output_section* same_name = this->find_output_section(name);
724               if (same_name != NULL
725                   && (same_name->type() == elfcpp::SHT_PROGBITS
726                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
727                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
728                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
729                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
730                 os = same_name;
731             }
732           else if ((flags & elfcpp::SHF_TLS) == 0)
733             {
734               elfcpp::Elf_Xword zero_flags = 0;
735               const Key zero_key(name_key, std::make_pair(lookup_type,
736                                                           zero_flags));
737               Section_name_map::iterator p =
738                   this->section_name_map_.find(zero_key);
739               if (p != this->section_name_map_.end())
740                 os = p->second;
741             }
742         }
743
744       if (os == NULL)
745         os = this->make_output_section(name, type, flags, order, is_relro);
746
747       ins.first->second = os;
748       return os;
749     }
750 }
751
752 // Pick the output section to use for section NAME, in input file
753 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
754 // linker created section.  IS_INPUT_SECTION is true if we are
755 // choosing an output section for an input section found in a input
756 // file.  ORDER is where this section should appear in the output
757 // sections.  IS_RELRO is true for a relro section.  This will return
758 // NULL if the input section should be discarded.
759
760 Output_section*
761 Layout::choose_output_section(const Relobj* relobj, const char* name,
762                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
763                               bool is_input_section, Output_section_order order,
764                               bool is_relro)
765 {
766   // We should not see any input sections after we have attached
767   // sections to segments.
768   gold_assert(!is_input_section || !this->sections_are_attached_);
769
770   // Some flags in the input section should not be automatically
771   // copied to the output section.
772   flags &= ~ (elfcpp::SHF_INFO_LINK
773               | elfcpp::SHF_GROUP
774               | elfcpp::SHF_MERGE
775               | elfcpp::SHF_STRINGS);
776
777   // We only clear the SHF_LINK_ORDER flag in for
778   // a non-relocatable link.
779   if (!parameters->options().relocatable())
780     flags &= ~elfcpp::SHF_LINK_ORDER;
781
782   if (this->script_options_->saw_sections_clause())
783     {
784       // We are using a SECTIONS clause, so the output section is
785       // chosen based only on the name.
786
787       Script_sections* ss = this->script_options_->script_sections();
788       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
789       Output_section** output_section_slot;
790       Script_sections::Section_type script_section_type;
791       const char* orig_name = name;
792       name = ss->output_section_name(file_name, name, &output_section_slot,
793                                      &script_section_type);
794       if (name == NULL)
795         {
796           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
797                                      "because it is not allowed by the "
798                                      "SECTIONS clause of the linker script"),
799                      orig_name);
800           // The SECTIONS clause says to discard this input section.
801           return NULL;
802         }
803
804       // We can only handle script section types ST_NONE and ST_NOLOAD.
805       switch (script_section_type)
806         {
807         case Script_sections::ST_NONE:
808           break;
809         case Script_sections::ST_NOLOAD:
810           flags &= elfcpp::SHF_ALLOC;
811           break;
812         default:
813           gold_unreachable();
814         }
815
816       // If this is an orphan section--one not mentioned in the linker
817       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
818       // default processing below.
819
820       if (output_section_slot != NULL)
821         {
822           if (*output_section_slot != NULL)
823             {
824               (*output_section_slot)->update_flags_for_input_section(flags);
825               return *output_section_slot;
826             }
827
828           // We don't put sections found in the linker script into
829           // SECTION_NAME_MAP_.  That keeps us from getting confused
830           // if an orphan section is mapped to a section with the same
831           // name as one in the linker script.
832
833           name = this->namepool_.add(name, false, NULL);
834
835           Output_section* os = this->make_output_section(name, type, flags,
836                                                          order, is_relro);
837
838           os->set_found_in_sections_clause();
839
840           // Special handling for NOLOAD sections.
841           if (script_section_type == Script_sections::ST_NOLOAD)
842             {
843               os->set_is_noload();
844
845               // The constructor of Output_section sets addresses of non-ALLOC
846               // sections to 0 by default.  We don't want that for NOLOAD
847               // sections even if they have no SHF_ALLOC flag.
848               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
849                   && os->is_address_valid())
850                 {
851                   gold_assert(os->address() == 0
852                               && !os->is_offset_valid()
853                               && !os->is_data_size_valid());
854                   os->reset_address_and_file_offset();
855                 }
856             }
857
858           *output_section_slot = os;
859           return os;
860         }
861     }
862
863   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
864
865   size_t len = strlen(name);
866   char* uncompressed_name = NULL;
867
868   // Compressed debug sections should be mapped to the corresponding
869   // uncompressed section.
870   if (is_compressed_debug_section(name))
871     {
872       uncompressed_name = new char[len];
873       uncompressed_name[0] = '.';
874       gold_assert(name[0] == '.' && name[1] == 'z');
875       strncpy(&uncompressed_name[1], &name[2], len - 2);
876       uncompressed_name[len - 1] = '\0';
877       len -= 1;
878       name = uncompressed_name;
879     }
880
881   // Turn NAME from the name of the input section into the name of the
882   // output section.
883   if (is_input_section
884       && !this->script_options_->saw_sections_clause()
885       && !parameters->options().relocatable())
886     name = Layout::output_section_name(relobj, name, &len);
887
888   Stringpool::Key name_key;
889   name = this->namepool_.add_with_length(name, len, true, &name_key);
890
891   if (uncompressed_name != NULL)
892     delete[] uncompressed_name;
893
894   // Find or make the output section.  The output section is selected
895   // based on the section name, type, and flags.
896   return this->get_output_section(name, name_key, type, flags, order, is_relro);
897 }
898
899 // For incremental links, record the initial fixed layout of a section
900 // from the base file, and return a pointer to the Output_section.
901
902 template<int size, bool big_endian>
903 Output_section*
904 Layout::init_fixed_output_section(const char* name,
905                                   elfcpp::Shdr<size, big_endian>& shdr)
906 {
907   unsigned int sh_type = shdr.get_sh_type();
908
909   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
910   // PRE_INIT_ARRAY, and NOTE sections.
911   // All others will be created from scratch and reallocated.
912   if (!can_incremental_update(sh_type))
913     return NULL;
914
915   // If we're generating a .gdb_index section, we need to regenerate
916   // it from scratch.
917   if (parameters->options().gdb_index()
918       && sh_type == elfcpp::SHT_PROGBITS
919       && strcmp(name, ".gdb_index") == 0)
920     return NULL;
921
922   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
923   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
924   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
925   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
926   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
927       shdr.get_sh_addralign();
928
929   // Make the output section.
930   Stringpool::Key name_key;
931   name = this->namepool_.add(name, true, &name_key);
932   Output_section* os = this->get_output_section(name, name_key, sh_type,
933                                                 sh_flags, ORDER_INVALID, false);
934   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
935   if (sh_type != elfcpp::SHT_NOBITS)
936     this->free_list_.remove(sh_offset, sh_offset + sh_size);
937   return os;
938 }
939
940 // Return the output section to use for input section SHNDX, with name
941 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
942 // index of a relocation section which applies to this section, or 0
943 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
944 // relocation section if there is one.  Set *OFF to the offset of this
945 // input section without the output section.  Return NULL if the
946 // section should be discarded.  Set *OFF to -1 if the section
947 // contents should not be written directly to the output file, but
948 // will instead receive special handling.
949
950 template<int size, bool big_endian>
951 Output_section*
952 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
953                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
954                unsigned int reloc_shndx, unsigned int, off_t* off)
955 {
956   *off = 0;
957
958   if (!this->include_section(object, name, shdr))
959     return NULL;
960
961   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
962
963   // In a relocatable link a grouped section must not be combined with
964   // any other sections.
965   Output_section* os;
966   if (parameters->options().relocatable()
967       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
968     {
969       name = this->namepool_.add(name, true, NULL);
970       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
971                                      ORDER_INVALID, false);
972     }
973   else
974     {
975       os = this->choose_output_section(object, name, sh_type,
976                                        shdr.get_sh_flags(), true,
977                                        ORDER_INVALID, false);
978       if (os == NULL)
979         return NULL;
980     }
981
982   // By default the GNU linker sorts input sections whose names match
983   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
984   // sections are sorted by name.  This is used to implement
985   // constructor priority ordering.  We are compatible.  When we put
986   // .ctor sections in .init_array and .dtor sections in .fini_array,
987   // we must also sort plain .ctor and .dtor sections.
988   if (!this->script_options_->saw_sections_clause()
989       && !parameters->options().relocatable()
990       && (is_prefix_of(".ctors.", name)
991           || is_prefix_of(".dtors.", name)
992           || is_prefix_of(".init_array.", name)
993           || is_prefix_of(".fini_array.", name)
994           || (parameters->options().ctors_in_init_array()
995               && (strcmp(name, ".ctors") == 0
996                   || strcmp(name, ".dtors") == 0))))
997     os->set_must_sort_attached_input_sections();
998
999   // If this is a .ctors or .ctors.* section being mapped to a
1000   // .init_array section, or a .dtors or .dtors.* section being mapped
1001   // to a .fini_array section, we will need to reverse the words if
1002   // there is more than one.  Record this section for later.  See
1003   // ctors_sections_in_init_array above.
1004   if (!this->script_options_->saw_sections_clause()
1005       && !parameters->options().relocatable()
1006       && shdr.get_sh_size() > size / 8
1007       && (((strcmp(name, ".ctors") == 0
1008             || is_prefix_of(".ctors.", name))
1009            && strcmp(os->name(), ".init_array") == 0)
1010           || ((strcmp(name, ".dtors") == 0
1011                || is_prefix_of(".dtors.", name))
1012               && strcmp(os->name(), ".fini_array") == 0)))
1013     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1014
1015   // FIXME: Handle SHF_LINK_ORDER somewhere.
1016
1017   elfcpp::Elf_Xword orig_flags = os->flags();
1018
1019   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1020                                this->script_options_->saw_sections_clause());
1021
1022   // If the flags changed, we may have to change the order.
1023   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1024     {
1025       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1026       elfcpp::Elf_Xword new_flags =
1027         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1028       if (orig_flags != new_flags)
1029         os->set_order(this->default_section_order(os, false));
1030     }
1031
1032   this->have_added_input_section_ = true;
1033
1034   return os;
1035 }
1036
1037 // Handle a relocation section when doing a relocatable link.
1038
1039 template<int size, bool big_endian>
1040 Output_section*
1041 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1042                      unsigned int,
1043                      const elfcpp::Shdr<size, big_endian>& shdr,
1044                      Output_section* data_section,
1045                      Relocatable_relocs* rr)
1046 {
1047   gold_assert(parameters->options().relocatable()
1048               || parameters->options().emit_relocs());
1049
1050   int sh_type = shdr.get_sh_type();
1051
1052   std::string name;
1053   if (sh_type == elfcpp::SHT_REL)
1054     name = ".rel";
1055   else if (sh_type == elfcpp::SHT_RELA)
1056     name = ".rela";
1057   else
1058     gold_unreachable();
1059   name += data_section->name();
1060
1061   // In a relocatable link relocs for a grouped section must not be
1062   // combined with other reloc sections.
1063   Output_section* os;
1064   if (!parameters->options().relocatable()
1065       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1066     os = this->choose_output_section(object, name.c_str(), sh_type,
1067                                      shdr.get_sh_flags(), false,
1068                                      ORDER_INVALID, false);
1069   else
1070     {
1071       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1072       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1073                                      ORDER_INVALID, false);
1074     }
1075
1076   os->set_should_link_to_symtab();
1077   os->set_info_section(data_section);
1078
1079   Output_section_data* posd;
1080   if (sh_type == elfcpp::SHT_REL)
1081     {
1082       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1083       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1084                                            size,
1085                                            big_endian>(rr);
1086     }
1087   else if (sh_type == elfcpp::SHT_RELA)
1088     {
1089       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1090       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1091                                            size,
1092                                            big_endian>(rr);
1093     }
1094   else
1095     gold_unreachable();
1096
1097   os->add_output_section_data(posd);
1098   rr->set_output_data(posd);
1099
1100   return os;
1101 }
1102
1103 // Handle a group section when doing a relocatable link.
1104
1105 template<int size, bool big_endian>
1106 void
1107 Layout::layout_group(Symbol_table* symtab,
1108                      Sized_relobj_file<size, big_endian>* object,
1109                      unsigned int,
1110                      const char* group_section_name,
1111                      const char* signature,
1112                      const elfcpp::Shdr<size, big_endian>& shdr,
1113                      elfcpp::Elf_Word flags,
1114                      std::vector<unsigned int>* shndxes)
1115 {
1116   gold_assert(parameters->options().relocatable());
1117   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1118   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1119   Output_section* os = this->make_output_section(group_section_name,
1120                                                  elfcpp::SHT_GROUP,
1121                                                  shdr.get_sh_flags(),
1122                                                  ORDER_INVALID, false);
1123
1124   // We need to find a symbol with the signature in the symbol table.
1125   // If we don't find one now, we need to look again later.
1126   Symbol* sym = symtab->lookup(signature, NULL);
1127   if (sym != NULL)
1128     os->set_info_symndx(sym);
1129   else
1130     {
1131       // Reserve some space to minimize reallocations.
1132       if (this->group_signatures_.empty())
1133         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1134
1135       // We will wind up using a symbol whose name is the signature.
1136       // So just put the signature in the symbol name pool to save it.
1137       signature = symtab->canonicalize_name(signature);
1138       this->group_signatures_.push_back(Group_signature(os, signature));
1139     }
1140
1141   os->set_should_link_to_symtab();
1142   os->set_entsize(4);
1143
1144   section_size_type entry_count =
1145     convert_to_section_size_type(shdr.get_sh_size() / 4);
1146   Output_section_data* posd =
1147     new Output_data_group<size, big_endian>(object, entry_count, flags,
1148                                             shndxes);
1149   os->add_output_section_data(posd);
1150 }
1151
1152 // Special GNU handling of sections name .eh_frame.  They will
1153 // normally hold exception frame data as defined by the C++ ABI
1154 // (http://codesourcery.com/cxx-abi/).
1155
1156 template<int size, bool big_endian>
1157 Output_section*
1158 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1159                         const unsigned char* symbols,
1160                         off_t symbols_size,
1161                         const unsigned char* symbol_names,
1162                         off_t symbol_names_size,
1163                         unsigned int shndx,
1164                         const elfcpp::Shdr<size, big_endian>& shdr,
1165                         unsigned int reloc_shndx, unsigned int reloc_type,
1166                         off_t* off)
1167 {
1168   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1169               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1170   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1171
1172   Output_section* os = this->make_eh_frame_section(object);
1173   if (os == NULL)
1174     return NULL;
1175
1176   gold_assert(this->eh_frame_section_ == os);
1177
1178   elfcpp::Elf_Xword orig_flags = os->flags();
1179
1180   if (!parameters->incremental()
1181       && this->eh_frame_data_->add_ehframe_input_section(object,
1182                                                          symbols,
1183                                                          symbols_size,
1184                                                          symbol_names,
1185                                                          symbol_names_size,
1186                                                          shndx,
1187                                                          reloc_shndx,
1188                                                          reloc_type))
1189     {
1190       os->update_flags_for_input_section(shdr.get_sh_flags());
1191
1192       // A writable .eh_frame section is a RELRO section.
1193       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1194           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1195         {
1196           os->set_is_relro();
1197           os->set_order(ORDER_RELRO);
1198         }
1199
1200       // We found a .eh_frame section we are going to optimize, so now
1201       // we can add the set of optimized sections to the output
1202       // section.  We need to postpone adding this until we've found a
1203       // section we can optimize so that the .eh_frame section in
1204       // crtbegin.o winds up at the start of the output section.
1205       if (!this->added_eh_frame_data_)
1206         {
1207           os->add_output_section_data(this->eh_frame_data_);
1208           this->added_eh_frame_data_ = true;
1209         }
1210       *off = -1;
1211     }
1212   else
1213     {
1214       // We couldn't handle this .eh_frame section for some reason.
1215       // Add it as a normal section.
1216       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1217       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1218                                    reloc_shndx, saw_sections_clause);
1219       this->have_added_input_section_ = true;
1220
1221       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1222           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1223         os->set_order(this->default_section_order(os, false));
1224     }
1225
1226   return os;
1227 }
1228
1229 // Create and return the magic .eh_frame section.  Create
1230 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1231 // input .eh_frame section; it may be NULL.
1232
1233 Output_section*
1234 Layout::make_eh_frame_section(const Relobj* object)
1235 {
1236   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1237   // SHT_PROGBITS.
1238   Output_section* os = this->choose_output_section(object, ".eh_frame",
1239                                                    elfcpp::SHT_PROGBITS,
1240                                                    elfcpp::SHF_ALLOC, false,
1241                                                    ORDER_EHFRAME, false);
1242   if (os == NULL)
1243     return NULL;
1244
1245   if (this->eh_frame_section_ == NULL)
1246     {
1247       this->eh_frame_section_ = os;
1248       this->eh_frame_data_ = new Eh_frame();
1249
1250       // For incremental linking, we do not optimize .eh_frame sections
1251       // or create a .eh_frame_hdr section.
1252       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1253         {
1254           Output_section* hdr_os =
1255             this->choose_output_section(NULL, ".eh_frame_hdr",
1256                                         elfcpp::SHT_PROGBITS,
1257                                         elfcpp::SHF_ALLOC, false,
1258                                         ORDER_EHFRAME, false);
1259
1260           if (hdr_os != NULL)
1261             {
1262               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1263                                                         this->eh_frame_data_);
1264               hdr_os->add_output_section_data(hdr_posd);
1265
1266               hdr_os->set_after_input_sections();
1267
1268               if (!this->script_options_->saw_phdrs_clause())
1269                 {
1270                   Output_segment* hdr_oseg;
1271                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1272                                                        elfcpp::PF_R);
1273                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1274                                                           elfcpp::PF_R);
1275                 }
1276
1277               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1278             }
1279         }
1280     }
1281
1282   return os;
1283 }
1284
1285 // Add an exception frame for a PLT.  This is called from target code.
1286
1287 void
1288 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1289                              size_t cie_length, const unsigned char* fde_data,
1290                              size_t fde_length)
1291 {
1292   if (parameters->incremental())
1293     {
1294       // FIXME: Maybe this could work some day....
1295       return;
1296     }
1297   Output_section* os = this->make_eh_frame_section(NULL);
1298   if (os == NULL)
1299     return;
1300   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1301                                             fde_data, fde_length);
1302   if (!this->added_eh_frame_data_)
1303     {
1304       os->add_output_section_data(this->eh_frame_data_);
1305       this->added_eh_frame_data_ = true;
1306     }
1307 }
1308
1309 // Scan a .debug_info or .debug_types section, and add summary
1310 // information to the .gdb_index section.
1311
1312 template<int size, bool big_endian>
1313 void
1314 Layout::add_to_gdb_index(bool is_type_unit,
1315                          Sized_relobj<size, big_endian>* object,
1316                          const unsigned char* symbols,
1317                          off_t symbols_size,
1318                          unsigned int shndx,
1319                          unsigned int reloc_shndx,
1320                          unsigned int reloc_type)
1321 {
1322   if (this->gdb_index_data_ == NULL)
1323     {
1324       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1325                                                        elfcpp::SHT_PROGBITS, 0,
1326                                                        false, ORDER_INVALID,
1327                                                        false);
1328       if (os == NULL)
1329         return;
1330
1331       this->gdb_index_data_ = new Gdb_index(os);
1332       os->add_output_section_data(this->gdb_index_data_);
1333       os->set_after_input_sections();
1334     }
1335
1336   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1337                                          symbols_size, shndx, reloc_shndx,
1338                                          reloc_type);
1339 }
1340
1341 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1342 // the output section.
1343
1344 Output_section*
1345 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1346                                 elfcpp::Elf_Xword flags,
1347                                 Output_section_data* posd,
1348                                 Output_section_order order, bool is_relro)
1349 {
1350   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1351                                                    false, order, is_relro);
1352   if (os != NULL)
1353     os->add_output_section_data(posd);
1354   return os;
1355 }
1356
1357 // Map section flags to segment flags.
1358
1359 elfcpp::Elf_Word
1360 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1361 {
1362   elfcpp::Elf_Word ret = elfcpp::PF_R;
1363   if ((flags & elfcpp::SHF_WRITE) != 0)
1364     ret |= elfcpp::PF_W;
1365   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1366     ret |= elfcpp::PF_X;
1367   return ret;
1368 }
1369
1370 // Make a new Output_section, and attach it to segments as
1371 // appropriate.  ORDER is the order in which this section should
1372 // appear in the output segment.  IS_RELRO is true if this is a relro
1373 // (read-only after relocations) section.
1374
1375 Output_section*
1376 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1377                             elfcpp::Elf_Xword flags,
1378                             Output_section_order order, bool is_relro)
1379 {
1380   Output_section* os;
1381   if ((flags & elfcpp::SHF_ALLOC) == 0
1382       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1383       && is_compressible_debug_section(name))
1384     os = new Output_compressed_section(&parameters->options(), name, type,
1385                                        flags);
1386   else if ((flags & elfcpp::SHF_ALLOC) == 0
1387            && parameters->options().strip_debug_non_line()
1388            && strcmp(".debug_abbrev", name) == 0)
1389     {
1390       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1391           name, type, flags);
1392       if (this->debug_info_)
1393         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1394     }
1395   else if ((flags & elfcpp::SHF_ALLOC) == 0
1396            && parameters->options().strip_debug_non_line()
1397            && strcmp(".debug_info", name) == 0)
1398     {
1399       os = this->debug_info_ = new Output_reduced_debug_info_section(
1400           name, type, flags);
1401       if (this->debug_abbrev_)
1402         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1403     }
1404   else
1405     {
1406       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1407       // not have correct section types.  Force them here.
1408       if (type == elfcpp::SHT_PROGBITS)
1409         {
1410           if (is_prefix_of(".init_array", name))
1411             type = elfcpp::SHT_INIT_ARRAY;
1412           else if (is_prefix_of(".preinit_array", name))
1413             type = elfcpp::SHT_PREINIT_ARRAY;
1414           else if (is_prefix_of(".fini_array", name))
1415             type = elfcpp::SHT_FINI_ARRAY;
1416         }
1417
1418       // FIXME: const_cast is ugly.
1419       Target* target = const_cast<Target*>(&parameters->target());
1420       os = target->make_output_section(name, type, flags);
1421     }
1422
1423   // With -z relro, we have to recognize the special sections by name.
1424   // There is no other way.
1425   bool is_relro_local = false;
1426   if (!this->script_options_->saw_sections_clause()
1427       && parameters->options().relro()
1428       && (flags & elfcpp::SHF_ALLOC) != 0
1429       && (flags & elfcpp::SHF_WRITE) != 0)
1430     {
1431       if (type == elfcpp::SHT_PROGBITS)
1432         {
1433           if ((flags & elfcpp::SHF_TLS) != 0)
1434             is_relro = true;
1435           else if (strcmp(name, ".data.rel.ro") == 0)
1436             is_relro = true;
1437           else if (strcmp(name, ".data.rel.ro.local") == 0)
1438             {
1439               is_relro = true;
1440               is_relro_local = true;
1441             }
1442           else if (strcmp(name, ".ctors") == 0
1443                    || strcmp(name, ".dtors") == 0
1444                    || strcmp(name, ".jcr") == 0)
1445             is_relro = true;
1446         }
1447       else if (type == elfcpp::SHT_INIT_ARRAY
1448                || type == elfcpp::SHT_FINI_ARRAY
1449                || type == elfcpp::SHT_PREINIT_ARRAY)
1450         is_relro = true;
1451     }
1452
1453   if (is_relro)
1454     os->set_is_relro();
1455
1456   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1457     order = this->default_section_order(os, is_relro_local);
1458
1459   os->set_order(order);
1460
1461   parameters->target().new_output_section(os);
1462
1463   this->section_list_.push_back(os);
1464
1465   // The GNU linker by default sorts some sections by priority, so we
1466   // do the same.  We need to know that this might happen before we
1467   // attach any input sections.
1468   if (!this->script_options_->saw_sections_clause()
1469       && !parameters->options().relocatable()
1470       && (strcmp(name, ".init_array") == 0
1471           || strcmp(name, ".fini_array") == 0
1472           || (!parameters->options().ctors_in_init_array()
1473               && (strcmp(name, ".ctors") == 0
1474                   || strcmp(name, ".dtors") == 0))))
1475     os->set_may_sort_attached_input_sections();
1476
1477   // Check for .stab*str sections, as .stab* sections need to link to
1478   // them.
1479   if (type == elfcpp::SHT_STRTAB
1480       && !this->have_stabstr_section_
1481       && strncmp(name, ".stab", 5) == 0
1482       && strcmp(name + strlen(name) - 3, "str") == 0)
1483     this->have_stabstr_section_ = true;
1484
1485   // During a full incremental link, we add patch space to most
1486   // PROGBITS and NOBITS sections.  Flag those that may be
1487   // arbitrarily padded.
1488   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1489       && order != ORDER_INTERP
1490       && order != ORDER_INIT
1491       && order != ORDER_PLT
1492       && order != ORDER_FINI
1493       && order != ORDER_RELRO_LAST
1494       && order != ORDER_NON_RELRO_FIRST
1495       && strcmp(name, ".eh_frame") != 0
1496       && strcmp(name, ".ctors") != 0
1497       && strcmp(name, ".dtors") != 0
1498       && strcmp(name, ".jcr") != 0)
1499     {
1500       os->set_is_patch_space_allowed();
1501
1502       // Certain sections require "holes" to be filled with
1503       // specific fill patterns.  These fill patterns may have
1504       // a minimum size, so we must prevent allocations from the
1505       // free list that leave a hole smaller than the minimum.
1506       if (strcmp(name, ".debug_info") == 0)
1507         os->set_free_space_fill(new Output_fill_debug_info(false));
1508       else if (strcmp(name, ".debug_types") == 0)
1509         os->set_free_space_fill(new Output_fill_debug_info(true));
1510       else if (strcmp(name, ".debug_line") == 0)
1511         os->set_free_space_fill(new Output_fill_debug_line());
1512     }
1513
1514   // If we have already attached the sections to segments, then we
1515   // need to attach this one now.  This happens for sections created
1516   // directly by the linker.
1517   if (this->sections_are_attached_)
1518     this->attach_section_to_segment(&parameters->target(), os);
1519
1520   return os;
1521 }
1522
1523 // Return the default order in which a section should be placed in an
1524 // output segment.  This function captures a lot of the ideas in
1525 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1526 // linker created section is normally set when the section is created;
1527 // this function is used for input sections.
1528
1529 Output_section_order
1530 Layout::default_section_order(Output_section* os, bool is_relro_local)
1531 {
1532   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1533   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1534   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1535   bool is_bss = false;
1536
1537   switch (os->type())
1538     {
1539     default:
1540     case elfcpp::SHT_PROGBITS:
1541       break;
1542     case elfcpp::SHT_NOBITS:
1543       is_bss = true;
1544       break;
1545     case elfcpp::SHT_RELA:
1546     case elfcpp::SHT_REL:
1547       if (!is_write)
1548         return ORDER_DYNAMIC_RELOCS;
1549       break;
1550     case elfcpp::SHT_HASH:
1551     case elfcpp::SHT_DYNAMIC:
1552     case elfcpp::SHT_SHLIB:
1553     case elfcpp::SHT_DYNSYM:
1554     case elfcpp::SHT_GNU_HASH:
1555     case elfcpp::SHT_GNU_verdef:
1556     case elfcpp::SHT_GNU_verneed:
1557     case elfcpp::SHT_GNU_versym:
1558       if (!is_write)
1559         return ORDER_DYNAMIC_LINKER;
1560       break;
1561     case elfcpp::SHT_NOTE:
1562       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1563     }
1564
1565   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1566     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1567
1568   if (!is_bss && !is_write)
1569     {
1570       if (is_execinstr)
1571         {
1572           if (strcmp(os->name(), ".init") == 0)
1573             return ORDER_INIT;
1574           else if (strcmp(os->name(), ".fini") == 0)
1575             return ORDER_FINI;
1576         }
1577       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1578     }
1579
1580   if (os->is_relro())
1581     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1582
1583   if (os->is_small_section())
1584     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1585   if (os->is_large_section())
1586     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1587
1588   return is_bss ? ORDER_BSS : ORDER_DATA;
1589 }
1590
1591 // Attach output sections to segments.  This is called after we have
1592 // seen all the input sections.
1593
1594 void
1595 Layout::attach_sections_to_segments(const Target* target)
1596 {
1597   for (Section_list::iterator p = this->section_list_.begin();
1598        p != this->section_list_.end();
1599        ++p)
1600     this->attach_section_to_segment(target, *p);
1601
1602   this->sections_are_attached_ = true;
1603 }
1604
1605 // Attach an output section to a segment.
1606
1607 void
1608 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1609 {
1610   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1611     this->unattached_section_list_.push_back(os);
1612   else
1613     this->attach_allocated_section_to_segment(target, os);
1614 }
1615
1616 // Attach an allocated output section to a segment.
1617
1618 void
1619 Layout::attach_allocated_section_to_segment(const Target* target,
1620                                             Output_section* os)
1621 {
1622   elfcpp::Elf_Xword flags = os->flags();
1623   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1624
1625   if (parameters->options().relocatable())
1626     return;
1627
1628   // If we have a SECTIONS clause, we can't handle the attachment to
1629   // segments until after we've seen all the sections.
1630   if (this->script_options_->saw_sections_clause())
1631     return;
1632
1633   gold_assert(!this->script_options_->saw_phdrs_clause());
1634
1635   // This output section goes into a PT_LOAD segment.
1636
1637   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1638
1639   // Check for --section-start.
1640   uint64_t addr;
1641   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1642
1643   // In general the only thing we really care about for PT_LOAD
1644   // segments is whether or not they are writable or executable,
1645   // so that is how we search for them.
1646   // Large data sections also go into their own PT_LOAD segment.
1647   // People who need segments sorted on some other basis will
1648   // have to use a linker script.
1649
1650   Segment_list::const_iterator p;
1651   for (p = this->segment_list_.begin();
1652        p != this->segment_list_.end();
1653        ++p)
1654     {
1655       if ((*p)->type() != elfcpp::PT_LOAD)
1656         continue;
1657       if (!parameters->options().omagic()
1658           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1659         continue;
1660       if ((target->isolate_execinstr() || parameters->options().rosegment())
1661           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1662         continue;
1663       // If -Tbss was specified, we need to separate the data and BSS
1664       // segments.
1665       if (parameters->options().user_set_Tbss())
1666         {
1667           if ((os->type() == elfcpp::SHT_NOBITS)
1668               == (*p)->has_any_data_sections())
1669             continue;
1670         }
1671       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1672         continue;
1673
1674       if (is_address_set)
1675         {
1676           if ((*p)->are_addresses_set())
1677             continue;
1678
1679           (*p)->add_initial_output_data(os);
1680           (*p)->update_flags_for_output_section(seg_flags);
1681           (*p)->set_addresses(addr, addr);
1682           break;
1683         }
1684
1685       (*p)->add_output_section_to_load(this, os, seg_flags);
1686       break;
1687     }
1688
1689   if (p == this->segment_list_.end())
1690     {
1691       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1692                                                        seg_flags);
1693       if (os->is_large_data_section())
1694         oseg->set_is_large_data_segment();
1695       oseg->add_output_section_to_load(this, os, seg_flags);
1696       if (is_address_set)
1697         oseg->set_addresses(addr, addr);
1698     }
1699
1700   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1701   // segment.
1702   if (os->type() == elfcpp::SHT_NOTE)
1703     {
1704       // See if we already have an equivalent PT_NOTE segment.
1705       for (p = this->segment_list_.begin();
1706            p != segment_list_.end();
1707            ++p)
1708         {
1709           if ((*p)->type() == elfcpp::PT_NOTE
1710               && (((*p)->flags() & elfcpp::PF_W)
1711                   == (seg_flags & elfcpp::PF_W)))
1712             {
1713               (*p)->add_output_section_to_nonload(os, seg_flags);
1714               break;
1715             }
1716         }
1717
1718       if (p == this->segment_list_.end())
1719         {
1720           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1721                                                            seg_flags);
1722           oseg->add_output_section_to_nonload(os, seg_flags);
1723         }
1724     }
1725
1726   // If we see a loadable SHF_TLS section, we create a PT_TLS
1727   // segment.  There can only be one such segment.
1728   if ((flags & elfcpp::SHF_TLS) != 0)
1729     {
1730       if (this->tls_segment_ == NULL)
1731         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1732       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1733     }
1734
1735   // If -z relro is in effect, and we see a relro section, we create a
1736   // PT_GNU_RELRO segment.  There can only be one such segment.
1737   if (os->is_relro() && parameters->options().relro())
1738     {
1739       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1740       if (this->relro_segment_ == NULL)
1741         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1742       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1743     }
1744
1745   // If we see a section named .interp, put it into a PT_INTERP
1746   // segment.  This seems broken to me, but this is what GNU ld does,
1747   // and glibc expects it.
1748   if (strcmp(os->name(), ".interp") == 0
1749       && !this->script_options_->saw_phdrs_clause())
1750     {
1751       if (this->interp_segment_ == NULL)
1752         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1753       else
1754         gold_warning(_("multiple '.interp' sections in input files "
1755                        "may cause confusing PT_INTERP segment"));
1756       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1757     }
1758 }
1759
1760 // Make an output section for a script.
1761
1762 Output_section*
1763 Layout::make_output_section_for_script(
1764     const char* name,
1765     Script_sections::Section_type section_type)
1766 {
1767   name = this->namepool_.add(name, false, NULL);
1768   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1769   if (section_type == Script_sections::ST_NOLOAD)
1770     sh_flags = 0;
1771   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1772                                                  sh_flags, ORDER_INVALID,
1773                                                  false);
1774   os->set_found_in_sections_clause();
1775   if (section_type == Script_sections::ST_NOLOAD)
1776     os->set_is_noload();
1777   return os;
1778 }
1779
1780 // Return the number of segments we expect to see.
1781
1782 size_t
1783 Layout::expected_segment_count() const
1784 {
1785   size_t ret = this->segment_list_.size();
1786
1787   // If we didn't see a SECTIONS clause in a linker script, we should
1788   // already have the complete list of segments.  Otherwise we ask the
1789   // SECTIONS clause how many segments it expects, and add in the ones
1790   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1791
1792   if (!this->script_options_->saw_sections_clause())
1793     return ret;
1794   else
1795     {
1796       const Script_sections* ss = this->script_options_->script_sections();
1797       return ret + ss->expected_segment_count(this);
1798     }
1799 }
1800
1801 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1802 // is whether we saw a .note.GNU-stack section in the object file.
1803 // GNU_STACK_FLAGS is the section flags.  The flags give the
1804 // protection required for stack memory.  We record this in an
1805 // executable as a PT_GNU_STACK segment.  If an object file does not
1806 // have a .note.GNU-stack segment, we must assume that it is an old
1807 // object.  On some targets that will force an executable stack.
1808
1809 void
1810 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1811                          const Object* obj)
1812 {
1813   if (!seen_gnu_stack)
1814     {
1815       this->input_without_gnu_stack_note_ = true;
1816       if (parameters->options().warn_execstack()
1817           && parameters->target().is_default_stack_executable())
1818         gold_warning(_("%s: missing .note.GNU-stack section"
1819                        " implies executable stack"),
1820                      obj->name().c_str());
1821     }
1822   else
1823     {
1824       this->input_with_gnu_stack_note_ = true;
1825       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1826         {
1827           this->input_requires_executable_stack_ = true;
1828           if (parameters->options().warn_execstack()
1829               || parameters->options().is_stack_executable())
1830             gold_warning(_("%s: requires executable stack"),
1831                          obj->name().c_str());
1832         }
1833     }
1834 }
1835
1836 // Create automatic note sections.
1837
1838 void
1839 Layout::create_notes()
1840 {
1841   this->create_gold_note();
1842   this->create_executable_stack_info();
1843   this->create_build_id();
1844 }
1845
1846 // Create the dynamic sections which are needed before we read the
1847 // relocs.
1848
1849 void
1850 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1851 {
1852   if (parameters->doing_static_link())
1853     return;
1854
1855   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1856                                                        elfcpp::SHT_DYNAMIC,
1857                                                        (elfcpp::SHF_ALLOC
1858                                                         | elfcpp::SHF_WRITE),
1859                                                        false, ORDER_RELRO,
1860                                                        true);
1861
1862   // A linker script may discard .dynamic, so check for NULL.
1863   if (this->dynamic_section_ != NULL)
1864     {
1865       this->dynamic_symbol_ =
1866         symtab->define_in_output_data("_DYNAMIC", NULL,
1867                                       Symbol_table::PREDEFINED,
1868                                       this->dynamic_section_, 0, 0,
1869                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1870                                       elfcpp::STV_HIDDEN, 0, false, false);
1871
1872       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1873
1874       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1875     }
1876 }
1877
1878 // For each output section whose name can be represented as C symbol,
1879 // define __start and __stop symbols for the section.  This is a GNU
1880 // extension.
1881
1882 void
1883 Layout::define_section_symbols(Symbol_table* symtab)
1884 {
1885   for (Section_list::const_iterator p = this->section_list_.begin();
1886        p != this->section_list_.end();
1887        ++p)
1888     {
1889       const char* const name = (*p)->name();
1890       if (is_cident(name))
1891         {
1892           const std::string name_string(name);
1893           const std::string start_name(cident_section_start_prefix
1894                                        + name_string);
1895           const std::string stop_name(cident_section_stop_prefix
1896                                       + name_string);
1897
1898           symtab->define_in_output_data(start_name.c_str(),
1899                                         NULL, // version
1900                                         Symbol_table::PREDEFINED,
1901                                         *p,
1902                                         0, // value
1903                                         0, // symsize
1904                                         elfcpp::STT_NOTYPE,
1905                                         elfcpp::STB_GLOBAL,
1906                                         elfcpp::STV_DEFAULT,
1907                                         0, // nonvis
1908                                         false, // offset_is_from_end
1909                                         true); // only_if_ref
1910
1911           symtab->define_in_output_data(stop_name.c_str(),
1912                                         NULL, // version
1913                                         Symbol_table::PREDEFINED,
1914                                         *p,
1915                                         0, // value
1916                                         0, // symsize
1917                                         elfcpp::STT_NOTYPE,
1918                                         elfcpp::STB_GLOBAL,
1919                                         elfcpp::STV_DEFAULT,
1920                                         0, // nonvis
1921                                         true, // offset_is_from_end
1922                                         true); // only_if_ref
1923         }
1924     }
1925 }
1926
1927 // Define symbols for group signatures.
1928
1929 void
1930 Layout::define_group_signatures(Symbol_table* symtab)
1931 {
1932   for (Group_signatures::iterator p = this->group_signatures_.begin();
1933        p != this->group_signatures_.end();
1934        ++p)
1935     {
1936       Symbol* sym = symtab->lookup(p->signature, NULL);
1937       if (sym != NULL)
1938         p->section->set_info_symndx(sym);
1939       else
1940         {
1941           // Force the name of the group section to the group
1942           // signature, and use the group's section symbol as the
1943           // signature symbol.
1944           if (strcmp(p->section->name(), p->signature) != 0)
1945             {
1946               const char* name = this->namepool_.add(p->signature,
1947                                                      true, NULL);
1948               p->section->set_name(name);
1949             }
1950           p->section->set_needs_symtab_index();
1951           p->section->set_info_section_symndx(p->section);
1952         }
1953     }
1954
1955   this->group_signatures_.clear();
1956 }
1957
1958 // Find the first read-only PT_LOAD segment, creating one if
1959 // necessary.
1960
1961 Output_segment*
1962 Layout::find_first_load_seg(const Target* target)
1963 {
1964   Output_segment* best = NULL;
1965   for (Segment_list::const_iterator p = this->segment_list_.begin();
1966        p != this->segment_list_.end();
1967        ++p)
1968     {
1969       if ((*p)->type() == elfcpp::PT_LOAD
1970           && ((*p)->flags() & elfcpp::PF_R) != 0
1971           && (parameters->options().omagic()
1972               || ((*p)->flags() & elfcpp::PF_W) == 0)
1973           && (!target->isolate_execinstr()
1974               || ((*p)->flags() & elfcpp::PF_X) == 0))
1975         {
1976           if (best == NULL || this->segment_precedes(*p, best))
1977             best = *p;
1978         }
1979     }
1980   if (best != NULL)
1981     return best;
1982
1983   gold_assert(!this->script_options_->saw_phdrs_clause());
1984
1985   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1986                                                        elfcpp::PF_R);
1987   return load_seg;
1988 }
1989
1990 // Save states of all current output segments.  Store saved states
1991 // in SEGMENT_STATES.
1992
1993 void
1994 Layout::save_segments(Segment_states* segment_states)
1995 {
1996   for (Segment_list::const_iterator p = this->segment_list_.begin();
1997        p != this->segment_list_.end();
1998        ++p)
1999     {
2000       Output_segment* segment = *p;
2001       // Shallow copy.
2002       Output_segment* copy = new Output_segment(*segment);
2003       (*segment_states)[segment] = copy;
2004     }
2005 }
2006
2007 // Restore states of output segments and delete any segment not found in
2008 // SEGMENT_STATES.
2009
2010 void
2011 Layout::restore_segments(const Segment_states* segment_states)
2012 {
2013   // Go through the segment list and remove any segment added in the
2014   // relaxation loop.
2015   this->tls_segment_ = NULL;
2016   this->relro_segment_ = NULL;
2017   Segment_list::iterator list_iter = this->segment_list_.begin();
2018   while (list_iter != this->segment_list_.end())
2019     {
2020       Output_segment* segment = *list_iter;
2021       Segment_states::const_iterator states_iter =
2022           segment_states->find(segment);
2023       if (states_iter != segment_states->end())
2024         {
2025           const Output_segment* copy = states_iter->second;
2026           // Shallow copy to restore states.
2027           *segment = *copy;
2028
2029           // Also fix up TLS and RELRO segment pointers as appropriate.
2030           if (segment->type() == elfcpp::PT_TLS)
2031             this->tls_segment_ = segment;
2032           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2033             this->relro_segment_ = segment;
2034
2035           ++list_iter;
2036         }
2037       else
2038         {
2039           list_iter = this->segment_list_.erase(list_iter);
2040           // This is a segment created during section layout.  It should be
2041           // safe to remove it since we should have removed all pointers to it.
2042           delete segment;
2043         }
2044     }
2045 }
2046
2047 // Clean up after relaxation so that sections can be laid out again.
2048
2049 void
2050 Layout::clean_up_after_relaxation()
2051 {
2052   // Restore the segments to point state just prior to the relaxation loop.
2053   Script_sections* script_section = this->script_options_->script_sections();
2054   script_section->release_segments();
2055   this->restore_segments(this->segment_states_);
2056
2057   // Reset section addresses and file offsets
2058   for (Section_list::iterator p = this->section_list_.begin();
2059        p != this->section_list_.end();
2060        ++p)
2061     {
2062       (*p)->restore_states();
2063
2064       // If an input section changes size because of relaxation,
2065       // we need to adjust the section offsets of all input sections.
2066       // after such a section.
2067       if ((*p)->section_offsets_need_adjustment())
2068         (*p)->adjust_section_offsets();
2069
2070       (*p)->reset_address_and_file_offset();
2071     }
2072
2073   // Reset special output object address and file offsets.
2074   for (Data_list::iterator p = this->special_output_list_.begin();
2075        p != this->special_output_list_.end();
2076        ++p)
2077     (*p)->reset_address_and_file_offset();
2078
2079   // A linker script may have created some output section data objects.
2080   // They are useless now.
2081   for (Output_section_data_list::const_iterator p =
2082          this->script_output_section_data_list_.begin();
2083        p != this->script_output_section_data_list_.end();
2084        ++p)
2085     delete *p;
2086   this->script_output_section_data_list_.clear();
2087 }
2088
2089 // Prepare for relaxation.
2090
2091 void
2092 Layout::prepare_for_relaxation()
2093 {
2094   // Create an relaxation debug check if in debugging mode.
2095   if (is_debugging_enabled(DEBUG_RELAXATION))
2096     this->relaxation_debug_check_ = new Relaxation_debug_check();
2097
2098   // Save segment states.
2099   this->segment_states_ = new Segment_states();
2100   this->save_segments(this->segment_states_);
2101
2102   for(Section_list::const_iterator p = this->section_list_.begin();
2103       p != this->section_list_.end();
2104       ++p)
2105     (*p)->save_states();
2106
2107   if (is_debugging_enabled(DEBUG_RELAXATION))
2108     this->relaxation_debug_check_->check_output_data_for_reset_values(
2109         this->section_list_, this->special_output_list_);
2110
2111   // Also enable recording of output section data from scripts.
2112   this->record_output_section_data_from_script_ = true;
2113 }
2114
2115 // Relaxation loop body:  If target has no relaxation, this runs only once
2116 // Otherwise, the target relaxation hook is called at the end of
2117 // each iteration.  If the hook returns true, it means re-layout of
2118 // section is required.
2119 //
2120 // The number of segments created by a linking script without a PHDRS
2121 // clause may be affected by section sizes and alignments.  There is
2122 // a remote chance that relaxation causes different number of PT_LOAD
2123 // segments are created and sections are attached to different segments.
2124 // Therefore, we always throw away all segments created during section
2125 // layout.  In order to be able to restart the section layout, we keep
2126 // a copy of the segment list right before the relaxation loop and use
2127 // that to restore the segments.
2128 //
2129 // PASS is the current relaxation pass number.
2130 // SYMTAB is a symbol table.
2131 // PLOAD_SEG is the address of a pointer for the load segment.
2132 // PHDR_SEG is a pointer to the PHDR segment.
2133 // SEGMENT_HEADERS points to the output segment header.
2134 // FILE_HEADER points to the output file header.
2135 // PSHNDX is the address to store the output section index.
2136
2137 off_t inline
2138 Layout::relaxation_loop_body(
2139     int pass,
2140     Target* target,
2141     Symbol_table* symtab,
2142     Output_segment** pload_seg,
2143     Output_segment* phdr_seg,
2144     Output_segment_headers* segment_headers,
2145     Output_file_header* file_header,
2146     unsigned int* pshndx)
2147 {
2148   // If this is not the first iteration, we need to clean up after
2149   // relaxation so that we can lay out the sections again.
2150   if (pass != 0)
2151     this->clean_up_after_relaxation();
2152
2153   // If there is a SECTIONS clause, put all the input sections into
2154   // the required order.
2155   Output_segment* load_seg;
2156   if (this->script_options_->saw_sections_clause())
2157     load_seg = this->set_section_addresses_from_script(symtab);
2158   else if (parameters->options().relocatable())
2159     load_seg = NULL;
2160   else
2161     load_seg = this->find_first_load_seg(target);
2162
2163   if (parameters->options().oformat_enum()
2164       != General_options::OBJECT_FORMAT_ELF)
2165     load_seg = NULL;
2166
2167   // If the user set the address of the text segment, that may not be
2168   // compatible with putting the segment headers and file headers into
2169   // that segment.
2170   if (parameters->options().user_set_Ttext()
2171       && parameters->options().Ttext() % target->common_pagesize() != 0)
2172     {
2173       load_seg = NULL;
2174       phdr_seg = NULL;
2175     }
2176
2177   gold_assert(phdr_seg == NULL
2178               || load_seg != NULL
2179               || this->script_options_->saw_sections_clause());
2180
2181   // If the address of the load segment we found has been set by
2182   // --section-start rather than by a script, then adjust the VMA and
2183   // LMA downward if possible to include the file and section headers.
2184   uint64_t header_gap = 0;
2185   if (load_seg != NULL
2186       && load_seg->are_addresses_set()
2187       && !this->script_options_->saw_sections_clause()
2188       && !parameters->options().relocatable())
2189     {
2190       file_header->finalize_data_size();
2191       segment_headers->finalize_data_size();
2192       size_t sizeof_headers = (file_header->data_size()
2193                                + segment_headers->data_size());
2194       const uint64_t abi_pagesize = target->abi_pagesize();
2195       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2196       hdr_paddr &= ~(abi_pagesize - 1);
2197       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2198       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2199         load_seg = NULL;
2200       else
2201         {
2202           load_seg->set_addresses(load_seg->vaddr() - subtract,
2203                                   load_seg->paddr() - subtract);
2204           header_gap = subtract - sizeof_headers;
2205         }
2206     }
2207
2208   // Lay out the segment headers.
2209   if (!parameters->options().relocatable())
2210     {
2211       gold_assert(segment_headers != NULL);
2212       if (header_gap != 0 && load_seg != NULL)
2213         {
2214           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2215           load_seg->add_initial_output_data(z);
2216         }
2217       if (load_seg != NULL)
2218         load_seg->add_initial_output_data(segment_headers);
2219       if (phdr_seg != NULL)
2220         phdr_seg->add_initial_output_data(segment_headers);
2221     }
2222
2223   // Lay out the file header.
2224   if (load_seg != NULL)
2225     load_seg->add_initial_output_data(file_header);
2226
2227   if (this->script_options_->saw_phdrs_clause()
2228       && !parameters->options().relocatable())
2229     {
2230       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2231       // clause in a linker script.
2232       Script_sections* ss = this->script_options_->script_sections();
2233       ss->put_headers_in_phdrs(file_header, segment_headers);
2234     }
2235
2236   // We set the output section indexes in set_segment_offsets and
2237   // set_section_indexes.
2238   *pshndx = 1;
2239
2240   // Set the file offsets of all the segments, and all the sections
2241   // they contain.
2242   off_t off;
2243   if (!parameters->options().relocatable())
2244     off = this->set_segment_offsets(target, load_seg, pshndx);
2245   else
2246     off = this->set_relocatable_section_offsets(file_header, pshndx);
2247
2248    // Verify that the dummy relaxation does not change anything.
2249   if (is_debugging_enabled(DEBUG_RELAXATION))
2250     {
2251       if (pass == 0)
2252         this->relaxation_debug_check_->read_sections(this->section_list_);
2253       else
2254         this->relaxation_debug_check_->verify_sections(this->section_list_);
2255     }
2256
2257   *pload_seg = load_seg;
2258   return off;
2259 }
2260
2261 // Search the list of patterns and find the postion of the given section
2262 // name in the output section.  If the section name matches a glob
2263 // pattern and a non-glob name, then the non-glob position takes
2264 // precedence.  Return 0 if no match is found.
2265
2266 unsigned int
2267 Layout::find_section_order_index(const std::string& section_name)
2268 {
2269   Unordered_map<std::string, unsigned int>::iterator map_it;
2270   map_it = this->input_section_position_.find(section_name);
2271   if (map_it != this->input_section_position_.end())
2272     return map_it->second;
2273
2274   // Absolute match failed.  Linear search the glob patterns.
2275   std::vector<std::string>::iterator it;
2276   for (it = this->input_section_glob_.begin();
2277        it != this->input_section_glob_.end();
2278        ++it)
2279     {
2280        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2281          {
2282            map_it = this->input_section_position_.find(*it);
2283            gold_assert(map_it != this->input_section_position_.end());
2284            return map_it->second;
2285          }
2286     }
2287   return 0;
2288 }
2289
2290 // Read the sequence of input sections from the file specified with
2291 // option --section-ordering-file.
2292
2293 void
2294 Layout::read_layout_from_file()
2295 {
2296   const char* filename = parameters->options().section_ordering_file();
2297   std::ifstream in;
2298   std::string line;
2299
2300   in.open(filename);
2301   if (!in)
2302     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2303                filename, strerror(errno));
2304
2305   std::getline(in, line);   // this chops off the trailing \n, if any
2306   unsigned int position = 1;
2307   this->set_section_ordering_specified();
2308
2309   while (in)
2310     {
2311       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2312         line.resize(line.length() - 1);
2313       // Ignore comments, beginning with '#'
2314       if (line[0] == '#')
2315         {
2316           std::getline(in, line);
2317           continue;
2318         }
2319       this->input_section_position_[line] = position;
2320       // Store all glob patterns in a vector.
2321       if (is_wildcard_string(line.c_str()))
2322         this->input_section_glob_.push_back(line);
2323       position++;
2324       std::getline(in, line);
2325     }
2326 }
2327
2328 // Finalize the layout.  When this is called, we have created all the
2329 // output sections and all the output segments which are based on
2330 // input sections.  We have several things to do, and we have to do
2331 // them in the right order, so that we get the right results correctly
2332 // and efficiently.
2333
2334 // 1) Finalize the list of output segments and create the segment
2335 // table header.
2336
2337 // 2) Finalize the dynamic symbol table and associated sections.
2338
2339 // 3) Determine the final file offset of all the output segments.
2340
2341 // 4) Determine the final file offset of all the SHF_ALLOC output
2342 // sections.
2343
2344 // 5) Create the symbol table sections and the section name table
2345 // section.
2346
2347 // 6) Finalize the symbol table: set symbol values to their final
2348 // value and make a final determination of which symbols are going
2349 // into the output symbol table.
2350
2351 // 7) Create the section table header.
2352
2353 // 8) Determine the final file offset of all the output sections which
2354 // are not SHF_ALLOC, including the section table header.
2355
2356 // 9) Finalize the ELF file header.
2357
2358 // This function returns the size of the output file.
2359
2360 off_t
2361 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2362                  Target* target, const Task* task)
2363 {
2364   target->finalize_sections(this, input_objects, symtab);
2365
2366   this->count_local_symbols(task, input_objects);
2367
2368   this->link_stabs_sections();
2369
2370   Output_segment* phdr_seg = NULL;
2371   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2372     {
2373       // There was a dynamic object in the link.  We need to create
2374       // some information for the dynamic linker.
2375
2376       // Create the PT_PHDR segment which will hold the program
2377       // headers.
2378       if (!this->script_options_->saw_phdrs_clause())
2379         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2380
2381       // Create the dynamic symbol table, including the hash table.
2382       Output_section* dynstr;
2383       std::vector<Symbol*> dynamic_symbols;
2384       unsigned int local_dynamic_count;
2385       Versions versions(*this->script_options()->version_script_info(),
2386                         &this->dynpool_);
2387       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2388                                   &local_dynamic_count, &dynamic_symbols,
2389                                   &versions);
2390
2391       // Create the .interp section to hold the name of the
2392       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2393       // if we saw a .interp section in an input file.
2394       if ((!parameters->options().shared()
2395            || parameters->options().dynamic_linker() != NULL)
2396           && this->interp_segment_ == NULL)
2397         this->create_interp(target);
2398
2399       // Finish the .dynamic section to hold the dynamic data, and put
2400       // it in a PT_DYNAMIC segment.
2401       this->finish_dynamic_section(input_objects, symtab);
2402
2403       // We should have added everything we need to the dynamic string
2404       // table.
2405       this->dynpool_.set_string_offsets();
2406
2407       // Create the version sections.  We can't do this until the
2408       // dynamic string table is complete.
2409       this->create_version_sections(&versions, symtab, local_dynamic_count,
2410                                     dynamic_symbols, dynstr);
2411
2412       // Set the size of the _DYNAMIC symbol.  We can't do this until
2413       // after we call create_version_sections.
2414       this->set_dynamic_symbol_size(symtab);
2415     }
2416
2417   // Create segment headers.
2418   Output_segment_headers* segment_headers =
2419     (parameters->options().relocatable()
2420      ? NULL
2421      : new Output_segment_headers(this->segment_list_));
2422
2423   // Lay out the file header.
2424   Output_file_header* file_header = new Output_file_header(target, symtab,
2425                                                            segment_headers);
2426
2427   this->special_output_list_.push_back(file_header);
2428   if (segment_headers != NULL)
2429     this->special_output_list_.push_back(segment_headers);
2430
2431   // Find approriate places for orphan output sections if we are using
2432   // a linker script.
2433   if (this->script_options_->saw_sections_clause())
2434     this->place_orphan_sections_in_script();
2435
2436   Output_segment* load_seg;
2437   off_t off;
2438   unsigned int shndx;
2439   int pass = 0;
2440
2441   // Take a snapshot of the section layout as needed.
2442   if (target->may_relax())
2443     this->prepare_for_relaxation();
2444
2445   // Run the relaxation loop to lay out sections.
2446   do
2447     {
2448       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2449                                        phdr_seg, segment_headers, file_header,
2450                                        &shndx);
2451       pass++;
2452     }
2453   while (target->may_relax()
2454          && target->relax(pass, input_objects, symtab, this, task));
2455
2456   // Set the file offsets of all the non-data sections we've seen so
2457   // far which don't have to wait for the input sections.  We need
2458   // this in order to finalize local symbols in non-allocated
2459   // sections.
2460   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2461
2462   // Set the section indexes of all unallocated sections seen so far,
2463   // in case any of them are somehow referenced by a symbol.
2464   shndx = this->set_section_indexes(shndx);
2465
2466   // Create the symbol table sections.
2467   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2468   if (!parameters->doing_static_link())
2469     this->assign_local_dynsym_offsets(input_objects);
2470
2471   // Process any symbol assignments from a linker script.  This must
2472   // be called after the symbol table has been finalized.
2473   this->script_options_->finalize_symbols(symtab, this);
2474
2475   // Create the incremental inputs sections.
2476   if (this->incremental_inputs_)
2477     {
2478       this->incremental_inputs_->finalize();
2479       this->create_incremental_info_sections(symtab);
2480     }
2481
2482   // Create the .shstrtab section.
2483   Output_section* shstrtab_section = this->create_shstrtab();
2484
2485   // Set the file offsets of the rest of the non-data sections which
2486   // don't have to wait for the input sections.
2487   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2488
2489   // Now that all sections have been created, set the section indexes
2490   // for any sections which haven't been done yet.
2491   shndx = this->set_section_indexes(shndx);
2492
2493   // Create the section table header.
2494   this->create_shdrs(shstrtab_section, &off);
2495
2496   // If there are no sections which require postprocessing, we can
2497   // handle the section names now, and avoid a resize later.
2498   if (!this->any_postprocessing_sections_)
2499     {
2500       off = this->set_section_offsets(off,
2501                                       POSTPROCESSING_SECTIONS_PASS);
2502       off =
2503           this->set_section_offsets(off,
2504                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2505     }
2506
2507   file_header->set_section_info(this->section_headers_, shstrtab_section);
2508
2509   // Now we know exactly where everything goes in the output file
2510   // (except for non-allocated sections which require postprocessing).
2511   Output_data::layout_complete();
2512
2513   this->output_file_size_ = off;
2514
2515   return off;
2516 }
2517
2518 // Create a note header following the format defined in the ELF ABI.
2519 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2520 // of the section to create, DESCSZ is the size of the descriptor.
2521 // ALLOCATE is true if the section should be allocated in memory.
2522 // This returns the new note section.  It sets *TRAILING_PADDING to
2523 // the number of trailing zero bytes required.
2524
2525 Output_section*
2526 Layout::create_note(const char* name, int note_type,
2527                     const char* section_name, size_t descsz,
2528                     bool allocate, size_t* trailing_padding)
2529 {
2530   // Authorities all agree that the values in a .note field should
2531   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2532   // they differ on what the alignment is for 64-bit binaries.
2533   // The GABI says unambiguously they take 8-byte alignment:
2534   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2535   // Other documentation says alignment should always be 4 bytes:
2536   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2537   // GNU ld and GNU readelf both support the latter (at least as of
2538   // version 2.16.91), and glibc always generates the latter for
2539   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2540   // here.
2541 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2542   const int size = parameters->target().get_size();
2543 #else
2544   const int size = 32;
2545 #endif
2546
2547   // The contents of the .note section.
2548   size_t namesz = strlen(name) + 1;
2549   size_t aligned_namesz = align_address(namesz, size / 8);
2550   size_t aligned_descsz = align_address(descsz, size / 8);
2551
2552   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2553
2554   unsigned char* buffer = new unsigned char[notehdrsz];
2555   memset(buffer, 0, notehdrsz);
2556
2557   bool is_big_endian = parameters->target().is_big_endian();
2558
2559   if (size == 32)
2560     {
2561       if (!is_big_endian)
2562         {
2563           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2564           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2565           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2566         }
2567       else
2568         {
2569           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2570           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2571           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2572         }
2573     }
2574   else if (size == 64)
2575     {
2576       if (!is_big_endian)
2577         {
2578           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2579           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2580           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2581         }
2582       else
2583         {
2584           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2585           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2586           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2587         }
2588     }
2589   else
2590     gold_unreachable();
2591
2592   memcpy(buffer + 3 * (size / 8), name, namesz);
2593
2594   elfcpp::Elf_Xword flags = 0;
2595   Output_section_order order = ORDER_INVALID;
2596   if (allocate)
2597     {
2598       flags = elfcpp::SHF_ALLOC;
2599       order = ORDER_RO_NOTE;
2600     }
2601   Output_section* os = this->choose_output_section(NULL, section_name,
2602                                                    elfcpp::SHT_NOTE,
2603                                                    flags, false, order, false);
2604   if (os == NULL)
2605     return NULL;
2606
2607   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2608                                                            size / 8,
2609                                                            "** note header");
2610   os->add_output_section_data(posd);
2611
2612   *trailing_padding = aligned_descsz - descsz;
2613
2614   return os;
2615 }
2616
2617 // For an executable or shared library, create a note to record the
2618 // version of gold used to create the binary.
2619
2620 void
2621 Layout::create_gold_note()
2622 {
2623   if (parameters->options().relocatable()
2624       || parameters->incremental_update())
2625     return;
2626
2627   std::string desc = std::string("gold ") + gold::get_version_string();
2628
2629   size_t trailing_padding;
2630   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2631                                          ".note.gnu.gold-version", desc.size(),
2632                                          false, &trailing_padding);
2633   if (os == NULL)
2634     return;
2635
2636   Output_section_data* posd = new Output_data_const(desc, 4);
2637   os->add_output_section_data(posd);
2638
2639   if (trailing_padding > 0)
2640     {
2641       posd = new Output_data_zero_fill(trailing_padding, 0);
2642       os->add_output_section_data(posd);
2643     }
2644 }
2645
2646 // Record whether the stack should be executable.  This can be set
2647 // from the command line using the -z execstack or -z noexecstack
2648 // options.  Otherwise, if any input file has a .note.GNU-stack
2649 // section with the SHF_EXECINSTR flag set, the stack should be
2650 // executable.  Otherwise, if at least one input file a
2651 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2652 // section, we use the target default for whether the stack should be
2653 // executable.  Otherwise, we don't generate a stack note.  When
2654 // generating a object file, we create a .note.GNU-stack section with
2655 // the appropriate marking.  When generating an executable or shared
2656 // library, we create a PT_GNU_STACK segment.
2657
2658 void
2659 Layout::create_executable_stack_info()
2660 {
2661   bool is_stack_executable;
2662   if (parameters->options().is_execstack_set())
2663     is_stack_executable = parameters->options().is_stack_executable();
2664   else if (!this->input_with_gnu_stack_note_)
2665     return;
2666   else
2667     {
2668       if (this->input_requires_executable_stack_)
2669         is_stack_executable = true;
2670       else if (this->input_without_gnu_stack_note_)
2671         is_stack_executable =
2672           parameters->target().is_default_stack_executable();
2673       else
2674         is_stack_executable = false;
2675     }
2676
2677   if (parameters->options().relocatable())
2678     {
2679       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2680       elfcpp::Elf_Xword flags = 0;
2681       if (is_stack_executable)
2682         flags |= elfcpp::SHF_EXECINSTR;
2683       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2684                                 ORDER_INVALID, false);
2685     }
2686   else
2687     {
2688       if (this->script_options_->saw_phdrs_clause())
2689         return;
2690       int flags = elfcpp::PF_R | elfcpp::PF_W;
2691       if (is_stack_executable)
2692         flags |= elfcpp::PF_X;
2693       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2694     }
2695 }
2696
2697 // If --build-id was used, set up the build ID note.
2698
2699 void
2700 Layout::create_build_id()
2701 {
2702   if (!parameters->options().user_set_build_id())
2703     return;
2704
2705   const char* style = parameters->options().build_id();
2706   if (strcmp(style, "none") == 0)
2707     return;
2708
2709   // Set DESCSZ to the size of the note descriptor.  When possible,
2710   // set DESC to the note descriptor contents.
2711   size_t descsz;
2712   std::string desc;
2713   if (strcmp(style, "md5") == 0)
2714     descsz = 128 / 8;
2715   else if (strcmp(style, "sha1") == 0)
2716     descsz = 160 / 8;
2717   else if (strcmp(style, "uuid") == 0)
2718     {
2719       const size_t uuidsz = 128 / 8;
2720
2721       char buffer[uuidsz];
2722       memset(buffer, 0, uuidsz);
2723
2724       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2725       if (descriptor < 0)
2726         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2727                    strerror(errno));
2728       else
2729         {
2730           ssize_t got = ::read(descriptor, buffer, uuidsz);
2731           release_descriptor(descriptor, true);
2732           if (got < 0)
2733             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2734           else if (static_cast<size_t>(got) != uuidsz)
2735             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2736                        uuidsz, got);
2737         }
2738
2739       desc.assign(buffer, uuidsz);
2740       descsz = uuidsz;
2741     }
2742   else if (strncmp(style, "0x", 2) == 0)
2743     {
2744       hex_init();
2745       const char* p = style + 2;
2746       while (*p != '\0')
2747         {
2748           if (hex_p(p[0]) && hex_p(p[1]))
2749             {
2750               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2751               desc += c;
2752               p += 2;
2753             }
2754           else if (*p == '-' || *p == ':')
2755             ++p;
2756           else
2757             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2758                        style);
2759         }
2760       descsz = desc.size();
2761     }
2762   else
2763     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2764
2765   // Create the note.
2766   size_t trailing_padding;
2767   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2768                                          ".note.gnu.build-id", descsz, true,
2769                                          &trailing_padding);
2770   if (os == NULL)
2771     return;
2772
2773   if (!desc.empty())
2774     {
2775       // We know the value already, so we fill it in now.
2776       gold_assert(desc.size() == descsz);
2777
2778       Output_section_data* posd = new Output_data_const(desc, 4);
2779       os->add_output_section_data(posd);
2780
2781       if (trailing_padding != 0)
2782         {
2783           posd = new Output_data_zero_fill(trailing_padding, 0);
2784           os->add_output_section_data(posd);
2785         }
2786     }
2787   else
2788     {
2789       // We need to compute a checksum after we have completed the
2790       // link.
2791       gold_assert(trailing_padding == 0);
2792       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2793       os->add_output_section_data(this->build_id_note_);
2794     }
2795 }
2796
2797 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2798 // field of the former should point to the latter.  I'm not sure who
2799 // started this, but the GNU linker does it, and some tools depend
2800 // upon it.
2801
2802 void
2803 Layout::link_stabs_sections()
2804 {
2805   if (!this->have_stabstr_section_)
2806     return;
2807
2808   for (Section_list::iterator p = this->section_list_.begin();
2809        p != this->section_list_.end();
2810        ++p)
2811     {
2812       if ((*p)->type() != elfcpp::SHT_STRTAB)
2813         continue;
2814
2815       const char* name = (*p)->name();
2816       if (strncmp(name, ".stab", 5) != 0)
2817         continue;
2818
2819       size_t len = strlen(name);
2820       if (strcmp(name + len - 3, "str") != 0)
2821         continue;
2822
2823       std::string stab_name(name, len - 3);
2824       Output_section* stab_sec;
2825       stab_sec = this->find_output_section(stab_name.c_str());
2826       if (stab_sec != NULL)
2827         stab_sec->set_link_section(*p);
2828     }
2829 }
2830
2831 // Create .gnu_incremental_inputs and related sections needed
2832 // for the next run of incremental linking to check what has changed.
2833
2834 void
2835 Layout::create_incremental_info_sections(Symbol_table* symtab)
2836 {
2837   Incremental_inputs* incr = this->incremental_inputs_;
2838
2839   gold_assert(incr != NULL);
2840
2841   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2842   incr->create_data_sections(symtab);
2843
2844   // Add the .gnu_incremental_inputs section.
2845   const char* incremental_inputs_name =
2846     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2847   Output_section* incremental_inputs_os =
2848     this->make_output_section(incremental_inputs_name,
2849                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2850                               ORDER_INVALID, false);
2851   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2852
2853   // Add the .gnu_incremental_symtab section.
2854   const char* incremental_symtab_name =
2855     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2856   Output_section* incremental_symtab_os =
2857     this->make_output_section(incremental_symtab_name,
2858                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2859                               ORDER_INVALID, false);
2860   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2861   incremental_symtab_os->set_entsize(4);
2862
2863   // Add the .gnu_incremental_relocs section.
2864   const char* incremental_relocs_name =
2865     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2866   Output_section* incremental_relocs_os =
2867     this->make_output_section(incremental_relocs_name,
2868                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2869                               ORDER_INVALID, false);
2870   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2871   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2872
2873   // Add the .gnu_incremental_got_plt section.
2874   const char* incremental_got_plt_name =
2875     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2876   Output_section* incremental_got_plt_os =
2877     this->make_output_section(incremental_got_plt_name,
2878                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2879                               ORDER_INVALID, false);
2880   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2881
2882   // Add the .gnu_incremental_strtab section.
2883   const char* incremental_strtab_name =
2884     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2885   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2886                                                         elfcpp::SHT_STRTAB, 0,
2887                                                         ORDER_INVALID, false);
2888   Output_data_strtab* strtab_data =
2889       new Output_data_strtab(incr->get_stringpool());
2890   incremental_strtab_os->add_output_section_data(strtab_data);
2891
2892   incremental_inputs_os->set_after_input_sections();
2893   incremental_symtab_os->set_after_input_sections();
2894   incremental_relocs_os->set_after_input_sections();
2895   incremental_got_plt_os->set_after_input_sections();
2896
2897   incremental_inputs_os->set_link_section(incremental_strtab_os);
2898   incremental_symtab_os->set_link_section(incremental_inputs_os);
2899   incremental_relocs_os->set_link_section(incremental_inputs_os);
2900   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2901 }
2902
2903 // Return whether SEG1 should be before SEG2 in the output file.  This
2904 // is based entirely on the segment type and flags.  When this is
2905 // called the segment addresses have normally not yet been set.
2906
2907 bool
2908 Layout::segment_precedes(const Output_segment* seg1,
2909                          const Output_segment* seg2)
2910 {
2911   elfcpp::Elf_Word type1 = seg1->type();
2912   elfcpp::Elf_Word type2 = seg2->type();
2913
2914   // The single PT_PHDR segment is required to precede any loadable
2915   // segment.  We simply make it always first.
2916   if (type1 == elfcpp::PT_PHDR)
2917     {
2918       gold_assert(type2 != elfcpp::PT_PHDR);
2919       return true;
2920     }
2921   if (type2 == elfcpp::PT_PHDR)
2922     return false;
2923
2924   // The single PT_INTERP segment is required to precede any loadable
2925   // segment.  We simply make it always second.
2926   if (type1 == elfcpp::PT_INTERP)
2927     {
2928       gold_assert(type2 != elfcpp::PT_INTERP);
2929       return true;
2930     }
2931   if (type2 == elfcpp::PT_INTERP)
2932     return false;
2933
2934   // We then put PT_LOAD segments before any other segments.
2935   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2936     return true;
2937   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2938     return false;
2939
2940   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2941   // segment, because that is where the dynamic linker expects to find
2942   // it (this is just for efficiency; other positions would also work
2943   // correctly).
2944   if (type1 == elfcpp::PT_TLS
2945       && type2 != elfcpp::PT_TLS
2946       && type2 != elfcpp::PT_GNU_RELRO)
2947     return false;
2948   if (type2 == elfcpp::PT_TLS
2949       && type1 != elfcpp::PT_TLS
2950       && type1 != elfcpp::PT_GNU_RELRO)
2951     return true;
2952
2953   // We put the PT_GNU_RELRO segment last, because that is where the
2954   // dynamic linker expects to find it (as with PT_TLS, this is just
2955   // for efficiency).
2956   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2957     return false;
2958   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2959     return true;
2960
2961   const elfcpp::Elf_Word flags1 = seg1->flags();
2962   const elfcpp::Elf_Word flags2 = seg2->flags();
2963
2964   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2965   // by the numeric segment type and flags values.  There should not
2966   // be more than one segment with the same type and flags.
2967   if (type1 != elfcpp::PT_LOAD)
2968     {
2969       if (type1 != type2)
2970         return type1 < type2;
2971       gold_assert(flags1 != flags2);
2972       return flags1 < flags2;
2973     }
2974
2975   // If the addresses are set already, sort by load address.
2976   if (seg1->are_addresses_set())
2977     {
2978       if (!seg2->are_addresses_set())
2979         return true;
2980
2981       unsigned int section_count1 = seg1->output_section_count();
2982       unsigned int section_count2 = seg2->output_section_count();
2983       if (section_count1 == 0 && section_count2 > 0)
2984         return true;
2985       if (section_count1 > 0 && section_count2 == 0)
2986         return false;
2987
2988       uint64_t paddr1 = (seg1->are_addresses_set()
2989                          ? seg1->paddr()
2990                          : seg1->first_section_load_address());
2991       uint64_t paddr2 = (seg2->are_addresses_set()
2992                          ? seg2->paddr()
2993                          : seg2->first_section_load_address());
2994
2995       if (paddr1 != paddr2)
2996         return paddr1 < paddr2;
2997     }
2998   else if (seg2->are_addresses_set())
2999     return false;
3000
3001   // A segment which holds large data comes after a segment which does
3002   // not hold large data.
3003   if (seg1->is_large_data_segment())
3004     {
3005       if (!seg2->is_large_data_segment())
3006         return false;
3007     }
3008   else if (seg2->is_large_data_segment())
3009     return true;
3010
3011   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3012   // segments come before writable segments.  Then writable segments
3013   // with data come before writable segments without data.  Then
3014   // executable segments come before non-executable segments.  Then
3015   // the unlikely case of a non-readable segment comes before the
3016   // normal case of a readable segment.  If there are multiple
3017   // segments with the same type and flags, we require that the
3018   // address be set, and we sort by virtual address and then physical
3019   // address.
3020   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3021     return (flags1 & elfcpp::PF_W) == 0;
3022   if ((flags1 & elfcpp::PF_W) != 0
3023       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3024     return seg1->has_any_data_sections();
3025   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3026     return (flags1 & elfcpp::PF_X) != 0;
3027   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3028     return (flags1 & elfcpp::PF_R) == 0;
3029
3030   // We shouldn't get here--we shouldn't create segments which we
3031   // can't distinguish.  Unless of course we are using a weird linker
3032   // script or overlapping --section-start options.
3033   gold_assert(this->script_options_->saw_phdrs_clause()
3034               || parameters->options().any_section_start());
3035   return false;
3036 }
3037
3038 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3039
3040 static off_t
3041 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3042 {
3043   uint64_t unsigned_off = off;
3044   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3045                           | (addr & (abi_pagesize - 1)));
3046   if (aligned_off < unsigned_off)
3047     aligned_off += abi_pagesize;
3048   return aligned_off;
3049 }
3050
3051 // Set the file offsets of all the segments, and all the sections they
3052 // contain.  They have all been created.  LOAD_SEG must be be laid out
3053 // first.  Return the offset of the data to follow.
3054
3055 off_t
3056 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3057                             unsigned int* pshndx)
3058 {
3059   // Sort them into the final order.  We use a stable sort so that we
3060   // don't randomize the order of indistinguishable segments created
3061   // by linker scripts.
3062   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3063                    Layout::Compare_segments(this));
3064
3065   // Find the PT_LOAD segments, and set their addresses and offsets
3066   // and their section's addresses and offsets.
3067   uint64_t start_addr;
3068   if (parameters->options().user_set_Ttext())
3069     start_addr = parameters->options().Ttext();
3070   else if (parameters->options().output_is_position_independent())
3071     start_addr = 0;
3072   else
3073     start_addr = target->default_text_segment_address();
3074
3075   uint64_t addr = start_addr;
3076   off_t off = 0;
3077
3078   // If LOAD_SEG is NULL, then the file header and segment headers
3079   // will not be loadable.  But they still need to be at offset 0 in
3080   // the file.  Set their offsets now.
3081   if (load_seg == NULL)
3082     {
3083       for (Data_list::iterator p = this->special_output_list_.begin();
3084            p != this->special_output_list_.end();
3085            ++p)
3086         {
3087           off = align_address(off, (*p)->addralign());
3088           (*p)->set_address_and_file_offset(0, off);
3089           off += (*p)->data_size();
3090         }
3091     }
3092
3093   unsigned int increase_relro = this->increase_relro_;
3094   if (this->script_options_->saw_sections_clause())
3095     increase_relro = 0;
3096
3097   const bool check_sections = parameters->options().check_sections();
3098   Output_segment* last_load_segment = NULL;
3099
3100   unsigned int shndx_begin = *pshndx;
3101   unsigned int shndx_load_seg = *pshndx;
3102
3103   for (Segment_list::iterator p = this->segment_list_.begin();
3104        p != this->segment_list_.end();
3105        ++p)
3106     {
3107       if ((*p)->type() == elfcpp::PT_LOAD)
3108         {
3109           if (target->isolate_execinstr())
3110             {
3111               // When we hit the segment that should contain the
3112               // file headers, reset the file offset so we place
3113               // it and subsequent segments appropriately.
3114               // We'll fix up the preceding segments below.
3115               if (load_seg == *p)
3116                 {
3117                   if (off == 0)
3118                     load_seg = NULL;
3119                   else
3120                     {
3121                       off = 0;
3122                       shndx_load_seg = *pshndx;
3123                     }
3124                 }
3125             }
3126           else
3127             {
3128               // Verify that the file headers fall into the first segment.
3129               if (load_seg != NULL && load_seg != *p)
3130                 gold_unreachable();
3131               load_seg = NULL;
3132             }
3133
3134           bool are_addresses_set = (*p)->are_addresses_set();
3135           if (are_addresses_set)
3136             {
3137               // When it comes to setting file offsets, we care about
3138               // the physical address.
3139               addr = (*p)->paddr();
3140             }
3141           else if (parameters->options().user_set_Ttext()
3142                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3143             {
3144               are_addresses_set = true;
3145             }
3146           else if (parameters->options().user_set_Tdata()
3147                    && ((*p)->flags() & elfcpp::PF_W) != 0
3148                    && (!parameters->options().user_set_Tbss()
3149                        || (*p)->has_any_data_sections()))
3150             {
3151               addr = parameters->options().Tdata();
3152               are_addresses_set = true;
3153             }
3154           else if (parameters->options().user_set_Tbss()
3155                    && ((*p)->flags() & elfcpp::PF_W) != 0
3156                    && !(*p)->has_any_data_sections())
3157             {
3158               addr = parameters->options().Tbss();
3159               are_addresses_set = true;
3160             }
3161
3162           uint64_t orig_addr = addr;
3163           uint64_t orig_off = off;
3164
3165           uint64_t aligned_addr = 0;
3166           uint64_t abi_pagesize = target->abi_pagesize();
3167           uint64_t common_pagesize = target->common_pagesize();
3168
3169           if (!parameters->options().nmagic()
3170               && !parameters->options().omagic())
3171             (*p)->set_minimum_p_align(common_pagesize);
3172
3173           if (!are_addresses_set)
3174             {
3175               // Skip the address forward one page, maintaining the same
3176               // position within the page.  This lets us store both segments
3177               // overlapping on a single page in the file, but the loader will
3178               // put them on different pages in memory. We will revisit this
3179               // decision once we know the size of the segment.
3180
3181               addr = align_address(addr, (*p)->maximum_alignment());
3182               aligned_addr = addr;
3183
3184               if (load_seg == *p)
3185                 {
3186                   // This is the segment that will contain the file
3187                   // headers, so its offset will have to be exactly zero.
3188                   gold_assert(orig_off == 0);
3189
3190                   // If the target wants a fixed minimum distance from the
3191                   // text segment to the read-only segment, move up now.
3192                   uint64_t min_addr = start_addr + target->rosegment_gap();
3193                   if (addr < min_addr)
3194                     addr = min_addr;
3195
3196                   // But this is not the first segment!  To make its
3197                   // address congruent with its offset, that address better
3198                   // be aligned to the ABI-mandated page size.
3199                   addr = align_address(addr, abi_pagesize);
3200                   aligned_addr = addr;
3201                 }
3202               else
3203                 {
3204                   if ((addr & (abi_pagesize - 1)) != 0)
3205                     addr = addr + abi_pagesize;
3206
3207                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3208                 }
3209             }
3210
3211           if (!parameters->options().nmagic()
3212               && !parameters->options().omagic())
3213             off = align_file_offset(off, addr, abi_pagesize);
3214           else
3215             {
3216               // This is -N or -n with a section script which prevents
3217               // us from using a load segment.  We need to ensure that
3218               // the file offset is aligned to the alignment of the
3219               // segment.  This is because the linker script
3220               // implicitly assumed a zero offset.  If we don't align
3221               // here, then the alignment of the sections in the
3222               // linker script may not match the alignment of the
3223               // sections in the set_section_addresses call below,
3224               // causing an error about dot moving backward.
3225               off = align_address(off, (*p)->maximum_alignment());
3226             }
3227
3228           unsigned int shndx_hold = *pshndx;
3229           bool has_relro = false;
3230           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3231                                                           &increase_relro,
3232                                                           &has_relro,
3233                                                           &off, pshndx);
3234
3235           // Now that we know the size of this segment, we may be able
3236           // to save a page in memory, at the cost of wasting some
3237           // file space, by instead aligning to the start of a new
3238           // page.  Here we use the real machine page size rather than
3239           // the ABI mandated page size.  If the segment has been
3240           // aligned so that the relro data ends at a page boundary,
3241           // we do not try to realign it.
3242
3243           if (!are_addresses_set
3244               && !has_relro
3245               && aligned_addr != addr
3246               && !parameters->incremental())
3247             {
3248               uint64_t first_off = (common_pagesize
3249                                     - (aligned_addr
3250                                        & (common_pagesize - 1)));
3251               uint64_t last_off = new_addr & (common_pagesize - 1);
3252               if (first_off > 0
3253                   && last_off > 0
3254                   && ((aligned_addr & ~ (common_pagesize - 1))
3255                       != (new_addr & ~ (common_pagesize - 1)))
3256                   && first_off + last_off <= common_pagesize)
3257                 {
3258                   *pshndx = shndx_hold;
3259                   addr = align_address(aligned_addr, common_pagesize);
3260                   addr = align_address(addr, (*p)->maximum_alignment());
3261                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3262                   off = align_file_offset(off, addr, abi_pagesize);
3263
3264                   increase_relro = this->increase_relro_;
3265                   if (this->script_options_->saw_sections_clause())
3266                     increase_relro = 0;
3267                   has_relro = false;
3268
3269                   new_addr = (*p)->set_section_addresses(this, true, addr,
3270                                                          &increase_relro,
3271                                                          &has_relro,
3272                                                          &off, pshndx);
3273                 }
3274             }
3275
3276           addr = new_addr;
3277
3278           // Implement --check-sections.  We know that the segments
3279           // are sorted by LMA.
3280           if (check_sections && last_load_segment != NULL)
3281             {
3282               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3283               if (last_load_segment->paddr() + last_load_segment->memsz()
3284                   > (*p)->paddr())
3285                 {
3286                   unsigned long long lb1 = last_load_segment->paddr();
3287                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3288                   unsigned long long lb2 = (*p)->paddr();
3289                   unsigned long long le2 = lb2 + (*p)->memsz();
3290                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3291                                "[0x%llx -> 0x%llx]"),
3292                              lb1, le1, lb2, le2);
3293                 }
3294             }
3295           last_load_segment = *p;
3296         }
3297     }
3298
3299   if (load_seg != NULL && target->isolate_execinstr())
3300     {
3301       // Process the early segments again, setting their file offsets
3302       // so they land after the segments starting at LOAD_SEG.
3303       off = align_file_offset(off, 0, target->abi_pagesize());
3304
3305       for (Segment_list::iterator p = this->segment_list_.begin();
3306            *p != load_seg;
3307            ++p)
3308         {
3309           if ((*p)->type() == elfcpp::PT_LOAD)
3310             {
3311               // We repeat the whole job of assigning addresses and
3312               // offsets, but we really only want to change the offsets and
3313               // must ensure that the addresses all come out the same as
3314               // they did the first time through.
3315               bool has_relro = false;
3316               const uint64_t old_addr = (*p)->vaddr();
3317               const uint64_t old_end = old_addr + (*p)->memsz();
3318               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3319                                                               old_addr,
3320                                                               &increase_relro,
3321                                                               &has_relro,
3322                                                               &off,
3323                                                               &shndx_begin);
3324               gold_assert(new_addr == old_end);
3325             }
3326         }
3327
3328       gold_assert(shndx_begin == shndx_load_seg);
3329     }
3330
3331   // Handle the non-PT_LOAD segments, setting their offsets from their
3332   // section's offsets.
3333   for (Segment_list::iterator p = this->segment_list_.begin();
3334        p != this->segment_list_.end();
3335        ++p)
3336     {
3337       if ((*p)->type() != elfcpp::PT_LOAD)
3338         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3339                          ? increase_relro
3340                          : 0);
3341     }
3342
3343   // Set the TLS offsets for each section in the PT_TLS segment.
3344   if (this->tls_segment_ != NULL)
3345     this->tls_segment_->set_tls_offsets();
3346
3347   return off;
3348 }
3349
3350 // Set the offsets of all the allocated sections when doing a
3351 // relocatable link.  This does the same jobs as set_segment_offsets,
3352 // only for a relocatable link.
3353
3354 off_t
3355 Layout::set_relocatable_section_offsets(Output_data* file_header,
3356                                         unsigned int* pshndx)
3357 {
3358   off_t off = 0;
3359
3360   file_header->set_address_and_file_offset(0, 0);
3361   off += file_header->data_size();
3362
3363   for (Section_list::iterator p = this->section_list_.begin();
3364        p != this->section_list_.end();
3365        ++p)
3366     {
3367       // We skip unallocated sections here, except that group sections
3368       // have to come first.
3369       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3370           && (*p)->type() != elfcpp::SHT_GROUP)
3371         continue;
3372
3373       off = align_address(off, (*p)->addralign());
3374
3375       // The linker script might have set the address.
3376       if (!(*p)->is_address_valid())
3377         (*p)->set_address(0);
3378       (*p)->set_file_offset(off);
3379       (*p)->finalize_data_size();
3380       off += (*p)->data_size();
3381
3382       (*p)->set_out_shndx(*pshndx);
3383       ++*pshndx;
3384     }
3385
3386   return off;
3387 }
3388
3389 // Set the file offset of all the sections not associated with a
3390 // segment.
3391
3392 off_t
3393 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3394 {
3395   off_t startoff = off;
3396   off_t maxoff = off;
3397
3398   for (Section_list::iterator p = this->unattached_section_list_.begin();
3399        p != this->unattached_section_list_.end();
3400        ++p)
3401     {
3402       // The symtab section is handled in create_symtab_sections.
3403       if (*p == this->symtab_section_)
3404         continue;
3405
3406       // If we've already set the data size, don't set it again.
3407       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3408         continue;
3409
3410       if (pass == BEFORE_INPUT_SECTIONS_PASS
3411           && (*p)->requires_postprocessing())
3412         {
3413           (*p)->create_postprocessing_buffer();
3414           this->any_postprocessing_sections_ = true;
3415         }
3416
3417       if (pass == BEFORE_INPUT_SECTIONS_PASS
3418           && (*p)->after_input_sections())
3419         continue;
3420       else if (pass == POSTPROCESSING_SECTIONS_PASS
3421                && (!(*p)->after_input_sections()
3422                    || (*p)->type() == elfcpp::SHT_STRTAB))
3423         continue;
3424       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3425                && (!(*p)->after_input_sections()
3426                    || (*p)->type() != elfcpp::SHT_STRTAB))
3427         continue;
3428
3429       if (!parameters->incremental_update())
3430         {
3431           off = align_address(off, (*p)->addralign());
3432           (*p)->set_file_offset(off);
3433           (*p)->finalize_data_size();
3434         }
3435       else
3436         {
3437           // Incremental update: allocate file space from free list.
3438           (*p)->pre_finalize_data_size();
3439           off_t current_size = (*p)->current_data_size();
3440           off = this->allocate(current_size, (*p)->addralign(), startoff);
3441           if (off == -1)
3442             {
3443               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3444                 this->free_list_.dump();
3445               gold_assert((*p)->output_section() != NULL);
3446               gold_fallback(_("out of patch space for section %s; "
3447                               "relink with --incremental-full"),
3448                             (*p)->output_section()->name());
3449             }
3450           (*p)->set_file_offset(off);
3451           (*p)->finalize_data_size();
3452           if ((*p)->data_size() > current_size)
3453             {
3454               gold_assert((*p)->output_section() != NULL);
3455               gold_fallback(_("%s: section changed size; "
3456                               "relink with --incremental-full"),
3457                             (*p)->output_section()->name());
3458             }
3459           gold_debug(DEBUG_INCREMENTAL,
3460                      "set_section_offsets: %08lx %08lx %s",
3461                      static_cast<long>(off),
3462                      static_cast<long>((*p)->data_size()),
3463                      ((*p)->output_section() != NULL
3464                       ? (*p)->output_section()->name() : "(special)"));
3465         }
3466
3467       off += (*p)->data_size();
3468       if (off > maxoff)
3469         maxoff = off;
3470
3471       // At this point the name must be set.
3472       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3473         this->namepool_.add((*p)->name(), false, NULL);
3474     }
3475   return maxoff;
3476 }
3477
3478 // Set the section indexes of all the sections not associated with a
3479 // segment.
3480
3481 unsigned int
3482 Layout::set_section_indexes(unsigned int shndx)
3483 {
3484   for (Section_list::iterator p = this->unattached_section_list_.begin();
3485        p != this->unattached_section_list_.end();
3486        ++p)
3487     {
3488       if (!(*p)->has_out_shndx())
3489         {
3490           (*p)->set_out_shndx(shndx);
3491           ++shndx;
3492         }
3493     }
3494   return shndx;
3495 }
3496
3497 // Set the section addresses according to the linker script.  This is
3498 // only called when we see a SECTIONS clause.  This returns the
3499 // program segment which should hold the file header and segment
3500 // headers, if any.  It will return NULL if they should not be in a
3501 // segment.
3502
3503 Output_segment*
3504 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3505 {
3506   Script_sections* ss = this->script_options_->script_sections();
3507   gold_assert(ss->saw_sections_clause());
3508   return this->script_options_->set_section_addresses(symtab, this);
3509 }
3510
3511 // Place the orphan sections in the linker script.
3512
3513 void
3514 Layout::place_orphan_sections_in_script()
3515 {
3516   Script_sections* ss = this->script_options_->script_sections();
3517   gold_assert(ss->saw_sections_clause());
3518
3519   // Place each orphaned output section in the script.
3520   for (Section_list::iterator p = this->section_list_.begin();
3521        p != this->section_list_.end();
3522        ++p)
3523     {
3524       if (!(*p)->found_in_sections_clause())
3525         ss->place_orphan(*p);
3526     }
3527 }
3528
3529 // Count the local symbols in the regular symbol table and the dynamic
3530 // symbol table, and build the respective string pools.
3531
3532 void
3533 Layout::count_local_symbols(const Task* task,
3534                             const Input_objects* input_objects)
3535 {
3536   // First, figure out an upper bound on the number of symbols we'll
3537   // be inserting into each pool.  This helps us create the pools with
3538   // the right size, to avoid unnecessary hashtable resizing.
3539   unsigned int symbol_count = 0;
3540   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3541        p != input_objects->relobj_end();
3542        ++p)
3543     symbol_count += (*p)->local_symbol_count();
3544
3545   // Go from "upper bound" to "estimate."  We overcount for two
3546   // reasons: we double-count symbols that occur in more than one
3547   // object file, and we count symbols that are dropped from the
3548   // output.  Add it all together and assume we overcount by 100%.
3549   symbol_count /= 2;
3550
3551   // We assume all symbols will go into both the sympool and dynpool.
3552   this->sympool_.reserve(symbol_count);
3553   this->dynpool_.reserve(symbol_count);
3554
3555   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3556        p != input_objects->relobj_end();
3557        ++p)
3558     {
3559       Task_lock_obj<Object> tlo(task, *p);
3560       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3561     }
3562 }
3563
3564 // Create the symbol table sections.  Here we also set the final
3565 // values of the symbols.  At this point all the loadable sections are
3566 // fully laid out.  SHNUM is the number of sections so far.
3567
3568 void
3569 Layout::create_symtab_sections(const Input_objects* input_objects,
3570                                Symbol_table* symtab,
3571                                unsigned int shnum,
3572                                off_t* poff)
3573 {
3574   int symsize;
3575   unsigned int align;
3576   if (parameters->target().get_size() == 32)
3577     {
3578       symsize = elfcpp::Elf_sizes<32>::sym_size;
3579       align = 4;
3580     }
3581   else if (parameters->target().get_size() == 64)
3582     {
3583       symsize = elfcpp::Elf_sizes<64>::sym_size;
3584       align = 8;
3585     }
3586   else
3587     gold_unreachable();
3588
3589   // Compute file offsets relative to the start of the symtab section.
3590   off_t off = 0;
3591
3592   // Save space for the dummy symbol at the start of the section.  We
3593   // never bother to write this out--it will just be left as zero.
3594   off += symsize;
3595   unsigned int local_symbol_index = 1;
3596
3597   // Add STT_SECTION symbols for each Output section which needs one.
3598   for (Section_list::iterator p = this->section_list_.begin();
3599        p != this->section_list_.end();
3600        ++p)
3601     {
3602       if (!(*p)->needs_symtab_index())
3603         (*p)->set_symtab_index(-1U);
3604       else
3605         {
3606           (*p)->set_symtab_index(local_symbol_index);
3607           ++local_symbol_index;
3608           off += symsize;
3609         }
3610     }
3611
3612   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3613        p != input_objects->relobj_end();
3614        ++p)
3615     {
3616       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3617                                                         off, symtab);
3618       off += (index - local_symbol_index) * symsize;
3619       local_symbol_index = index;
3620     }
3621
3622   unsigned int local_symcount = local_symbol_index;
3623   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3624
3625   off_t dynoff;
3626   size_t dyn_global_index;
3627   size_t dyncount;
3628   if (this->dynsym_section_ == NULL)
3629     {
3630       dynoff = 0;
3631       dyn_global_index = 0;
3632       dyncount = 0;
3633     }
3634   else
3635     {
3636       dyn_global_index = this->dynsym_section_->info();
3637       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3638       dynoff = this->dynsym_section_->offset() + locsize;
3639       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3640       gold_assert(static_cast<off_t>(dyncount * symsize)
3641                   == this->dynsym_section_->data_size() - locsize);
3642     }
3643
3644   off_t global_off = off;
3645   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3646                          &this->sympool_, &local_symcount);
3647
3648   if (!parameters->options().strip_all())
3649     {
3650       this->sympool_.set_string_offsets();
3651
3652       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3653       Output_section* osymtab = this->make_output_section(symtab_name,
3654                                                           elfcpp::SHT_SYMTAB,
3655                                                           0, ORDER_INVALID,
3656                                                           false);
3657       this->symtab_section_ = osymtab;
3658
3659       Output_section_data* pos = new Output_data_fixed_space(off, align,
3660                                                              "** symtab");
3661       osymtab->add_output_section_data(pos);
3662
3663       // We generate a .symtab_shndx section if we have more than
3664       // SHN_LORESERVE sections.  Technically it is possible that we
3665       // don't need one, because it is possible that there are no
3666       // symbols in any of sections with indexes larger than
3667       // SHN_LORESERVE.  That is probably unusual, though, and it is
3668       // easier to always create one than to compute section indexes
3669       // twice (once here, once when writing out the symbols).
3670       if (shnum >= elfcpp::SHN_LORESERVE)
3671         {
3672           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3673                                                                false, NULL);
3674           Output_section* osymtab_xindex =
3675             this->make_output_section(symtab_xindex_name,
3676                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3677                                       ORDER_INVALID, false);
3678
3679           size_t symcount = off / symsize;
3680           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3681
3682           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3683
3684           osymtab_xindex->set_link_section(osymtab);
3685           osymtab_xindex->set_addralign(4);
3686           osymtab_xindex->set_entsize(4);
3687
3688           osymtab_xindex->set_after_input_sections();
3689
3690           // This tells the driver code to wait until the symbol table
3691           // has written out before writing out the postprocessing
3692           // sections, including the .symtab_shndx section.
3693           this->any_postprocessing_sections_ = true;
3694         }
3695
3696       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3697       Output_section* ostrtab = this->make_output_section(strtab_name,
3698                                                           elfcpp::SHT_STRTAB,
3699                                                           0, ORDER_INVALID,
3700                                                           false);
3701
3702       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3703       ostrtab->add_output_section_data(pstr);
3704
3705       off_t symtab_off;
3706       if (!parameters->incremental_update())
3707         symtab_off = align_address(*poff, align);
3708       else
3709         {
3710           symtab_off = this->allocate(off, align, *poff);
3711           if (off == -1)
3712             gold_fallback(_("out of patch space for symbol table; "
3713                             "relink with --incremental-full"));
3714           gold_debug(DEBUG_INCREMENTAL,
3715                      "create_symtab_sections: %08lx %08lx .symtab",
3716                      static_cast<long>(symtab_off),
3717                      static_cast<long>(off));
3718         }
3719
3720       symtab->set_file_offset(symtab_off + global_off);
3721       osymtab->set_file_offset(symtab_off);
3722       osymtab->finalize_data_size();
3723       osymtab->set_link_section(ostrtab);
3724       osymtab->set_info(local_symcount);
3725       osymtab->set_entsize(symsize);
3726
3727       if (symtab_off + off > *poff)
3728         *poff = symtab_off + off;
3729     }
3730 }
3731
3732 // Create the .shstrtab section, which holds the names of the
3733 // sections.  At the time this is called, we have created all the
3734 // output sections except .shstrtab itself.
3735
3736 Output_section*
3737 Layout::create_shstrtab()
3738 {
3739   // FIXME: We don't need to create a .shstrtab section if we are
3740   // stripping everything.
3741
3742   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3743
3744   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3745                                                  ORDER_INVALID, false);
3746
3747   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3748     {
3749       // We can't write out this section until we've set all the
3750       // section names, and we don't set the names of compressed
3751       // output sections until relocations are complete.  FIXME: With
3752       // the current names we use, this is unnecessary.
3753       os->set_after_input_sections();
3754     }
3755
3756   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3757   os->add_output_section_data(posd);
3758
3759   return os;
3760 }
3761
3762 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3763 // offset.
3764
3765 void
3766 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3767 {
3768   Output_section_headers* oshdrs;
3769   oshdrs = new Output_section_headers(this,
3770                                       &this->segment_list_,
3771                                       &this->section_list_,
3772                                       &this->unattached_section_list_,
3773                                       &this->namepool_,
3774                                       shstrtab_section);
3775   off_t off;
3776   if (!parameters->incremental_update())
3777     off = align_address(*poff, oshdrs->addralign());
3778   else
3779     {
3780       oshdrs->pre_finalize_data_size();
3781       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3782       if (off == -1)
3783           gold_fallback(_("out of patch space for section header table; "
3784                           "relink with --incremental-full"));
3785       gold_debug(DEBUG_INCREMENTAL,
3786                  "create_shdrs: %08lx %08lx (section header table)",
3787                  static_cast<long>(off),
3788                  static_cast<long>(off + oshdrs->data_size()));
3789     }
3790   oshdrs->set_address_and_file_offset(0, off);
3791   off += oshdrs->data_size();
3792   if (off > *poff)
3793     *poff = off;
3794   this->section_headers_ = oshdrs;
3795 }
3796
3797 // Count the allocated sections.
3798
3799 size_t
3800 Layout::allocated_output_section_count() const
3801 {
3802   size_t section_count = 0;
3803   for (Segment_list::const_iterator p = this->segment_list_.begin();
3804        p != this->segment_list_.end();
3805        ++p)
3806     section_count += (*p)->output_section_count();
3807   return section_count;
3808 }
3809
3810 // Create the dynamic symbol table.
3811
3812 void
3813 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3814                               Symbol_table* symtab,
3815                               Output_section** pdynstr,
3816                               unsigned int* plocal_dynamic_count,
3817                               std::vector<Symbol*>* pdynamic_symbols,
3818                               Versions* pversions)
3819 {
3820   // Count all the symbols in the dynamic symbol table, and set the
3821   // dynamic symbol indexes.
3822
3823   // Skip symbol 0, which is always all zeroes.
3824   unsigned int index = 1;
3825
3826   // Add STT_SECTION symbols for each Output section which needs one.
3827   for (Section_list::iterator p = this->section_list_.begin();
3828        p != this->section_list_.end();
3829        ++p)
3830     {
3831       if (!(*p)->needs_dynsym_index())
3832         (*p)->set_dynsym_index(-1U);
3833       else
3834         {
3835           (*p)->set_dynsym_index(index);
3836           ++index;
3837         }
3838     }
3839
3840   // Count the local symbols that need to go in the dynamic symbol table,
3841   // and set the dynamic symbol indexes.
3842   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3843        p != input_objects->relobj_end();
3844        ++p)
3845     {
3846       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3847       index = new_index;
3848     }
3849
3850   unsigned int local_symcount = index;
3851   *plocal_dynamic_count = local_symcount;
3852
3853   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3854                                      &this->dynpool_, pversions);
3855
3856   int symsize;
3857   unsigned int align;
3858   const int size = parameters->target().get_size();
3859   if (size == 32)
3860     {
3861       symsize = elfcpp::Elf_sizes<32>::sym_size;
3862       align = 4;
3863     }
3864   else if (size == 64)
3865     {
3866       symsize = elfcpp::Elf_sizes<64>::sym_size;
3867       align = 8;
3868     }
3869   else
3870     gold_unreachable();
3871
3872   // Create the dynamic symbol table section.
3873
3874   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3875                                                        elfcpp::SHT_DYNSYM,
3876                                                        elfcpp::SHF_ALLOC,
3877                                                        false,
3878                                                        ORDER_DYNAMIC_LINKER,
3879                                                        false);
3880
3881   // Check for NULL as a linker script may discard .dynsym.
3882   if (dynsym != NULL)
3883     {
3884       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3885                                                                align,
3886                                                                "** dynsym");
3887       dynsym->add_output_section_data(odata);
3888
3889       dynsym->set_info(local_symcount);
3890       dynsym->set_entsize(symsize);
3891       dynsym->set_addralign(align);
3892
3893       this->dynsym_section_ = dynsym;
3894     }
3895
3896   Output_data_dynamic* const odyn = this->dynamic_data_;
3897   if (odyn != NULL)
3898     {
3899       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3900       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3901     }
3902
3903   // If there are more than SHN_LORESERVE allocated sections, we
3904   // create a .dynsym_shndx section.  It is possible that we don't
3905   // need one, because it is possible that there are no dynamic
3906   // symbols in any of the sections with indexes larger than
3907   // SHN_LORESERVE.  This is probably unusual, though, and at this
3908   // time we don't know the actual section indexes so it is
3909   // inconvenient to check.
3910   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3911     {
3912       Output_section* dynsym_xindex =
3913         this->choose_output_section(NULL, ".dynsym_shndx",
3914                                     elfcpp::SHT_SYMTAB_SHNDX,
3915                                     elfcpp::SHF_ALLOC,
3916                                     false, ORDER_DYNAMIC_LINKER, false);
3917
3918       if (dynsym_xindex != NULL)
3919         {
3920           this->dynsym_xindex_ = new Output_symtab_xindex(index);
3921
3922           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3923
3924           dynsym_xindex->set_link_section(dynsym);
3925           dynsym_xindex->set_addralign(4);
3926           dynsym_xindex->set_entsize(4);
3927
3928           dynsym_xindex->set_after_input_sections();
3929
3930           // This tells the driver code to wait until the symbol table
3931           // has written out before writing out the postprocessing
3932           // sections, including the .dynsym_shndx section.
3933           this->any_postprocessing_sections_ = true;
3934         }
3935     }
3936
3937   // Create the dynamic string table section.
3938
3939   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3940                                                        elfcpp::SHT_STRTAB,
3941                                                        elfcpp::SHF_ALLOC,
3942                                                        false,
3943                                                        ORDER_DYNAMIC_LINKER,
3944                                                        false);
3945
3946   if (dynstr != NULL)
3947     {
3948       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3949       dynstr->add_output_section_data(strdata);
3950
3951       if (dynsym != NULL)
3952         dynsym->set_link_section(dynstr);
3953       if (this->dynamic_section_ != NULL)
3954         this->dynamic_section_->set_link_section(dynstr);
3955
3956       if (odyn != NULL)
3957         {
3958           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3959           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3960         }
3961
3962       *pdynstr = dynstr;
3963     }
3964
3965   // Create the hash tables.
3966
3967   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3968       || strcmp(parameters->options().hash_style(), "both") == 0)
3969     {
3970       unsigned char* phash;
3971       unsigned int hashlen;
3972       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3973                                     &phash, &hashlen);
3974
3975       Output_section* hashsec =
3976         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3977                                     elfcpp::SHF_ALLOC, false,
3978                                     ORDER_DYNAMIC_LINKER, false);
3979
3980       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3981                                                                    hashlen,
3982                                                                    align,
3983                                                                    "** hash");
3984       if (hashsec != NULL && hashdata != NULL)
3985         hashsec->add_output_section_data(hashdata);
3986
3987       if (hashsec != NULL)
3988         {
3989           if (dynsym != NULL)
3990             hashsec->set_link_section(dynsym);
3991           hashsec->set_entsize(4);
3992         }
3993
3994       if (odyn != NULL)
3995         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3996     }
3997
3998   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3999       || strcmp(parameters->options().hash_style(), "both") == 0)
4000     {
4001       unsigned char* phash;
4002       unsigned int hashlen;
4003       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4004                                     &phash, &hashlen);
4005
4006       Output_section* hashsec =
4007         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4008                                     elfcpp::SHF_ALLOC, false,
4009                                     ORDER_DYNAMIC_LINKER, false);
4010
4011       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4012                                                                    hashlen,
4013                                                                    align,
4014                                                                    "** hash");
4015       if (hashsec != NULL && hashdata != NULL)
4016         hashsec->add_output_section_data(hashdata);
4017
4018       if (hashsec != NULL)
4019         {
4020           if (dynsym != NULL)
4021             hashsec->set_link_section(dynsym);
4022
4023           // For a 64-bit target, the entries in .gnu.hash do not have
4024           // a uniform size, so we only set the entry size for a
4025           // 32-bit target.
4026           if (parameters->target().get_size() == 32)
4027             hashsec->set_entsize(4);
4028
4029           if (odyn != NULL)
4030             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4031         }
4032     }
4033 }
4034
4035 // Assign offsets to each local portion of the dynamic symbol table.
4036
4037 void
4038 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4039 {
4040   Output_section* dynsym = this->dynsym_section_;
4041   if (dynsym == NULL)
4042     return;
4043
4044   off_t off = dynsym->offset();
4045
4046   // Skip the dummy symbol at the start of the section.
4047   off += dynsym->entsize();
4048
4049   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4050        p != input_objects->relobj_end();
4051        ++p)
4052     {
4053       unsigned int count = (*p)->set_local_dynsym_offset(off);
4054       off += count * dynsym->entsize();
4055     }
4056 }
4057
4058 // Create the version sections.
4059
4060 void
4061 Layout::create_version_sections(const Versions* versions,
4062                                 const Symbol_table* symtab,
4063                                 unsigned int local_symcount,
4064                                 const std::vector<Symbol*>& dynamic_symbols,
4065                                 const Output_section* dynstr)
4066 {
4067   if (!versions->any_defs() && !versions->any_needs())
4068     return;
4069
4070   switch (parameters->size_and_endianness())
4071     {
4072 #ifdef HAVE_TARGET_32_LITTLE
4073     case Parameters::TARGET_32_LITTLE:
4074       this->sized_create_version_sections<32, false>(versions, symtab,
4075                                                      local_symcount,
4076                                                      dynamic_symbols, dynstr);
4077       break;
4078 #endif
4079 #ifdef HAVE_TARGET_32_BIG
4080     case Parameters::TARGET_32_BIG:
4081       this->sized_create_version_sections<32, true>(versions, symtab,
4082                                                     local_symcount,
4083                                                     dynamic_symbols, dynstr);
4084       break;
4085 #endif
4086 #ifdef HAVE_TARGET_64_LITTLE
4087     case Parameters::TARGET_64_LITTLE:
4088       this->sized_create_version_sections<64, false>(versions, symtab,
4089                                                      local_symcount,
4090                                                      dynamic_symbols, dynstr);
4091       break;
4092 #endif
4093 #ifdef HAVE_TARGET_64_BIG
4094     case Parameters::TARGET_64_BIG:
4095       this->sized_create_version_sections<64, true>(versions, symtab,
4096                                                     local_symcount,
4097                                                     dynamic_symbols, dynstr);
4098       break;
4099 #endif
4100     default:
4101       gold_unreachable();
4102     }
4103 }
4104
4105 // Create the version sections, sized version.
4106
4107 template<int size, bool big_endian>
4108 void
4109 Layout::sized_create_version_sections(
4110     const Versions* versions,
4111     const Symbol_table* symtab,
4112     unsigned int local_symcount,
4113     const std::vector<Symbol*>& dynamic_symbols,
4114     const Output_section* dynstr)
4115 {
4116   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4117                                                      elfcpp::SHT_GNU_versym,
4118                                                      elfcpp::SHF_ALLOC,
4119                                                      false,
4120                                                      ORDER_DYNAMIC_LINKER,
4121                                                      false);
4122
4123   // Check for NULL since a linker script may discard this section.
4124   if (vsec != NULL)
4125     {
4126       unsigned char* vbuf;
4127       unsigned int vsize;
4128       versions->symbol_section_contents<size, big_endian>(symtab,
4129                                                           &this->dynpool_,
4130                                                           local_symcount,
4131                                                           dynamic_symbols,
4132                                                           &vbuf, &vsize);
4133
4134       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4135                                                                 "** versions");
4136
4137       vsec->add_output_section_data(vdata);
4138       vsec->set_entsize(2);
4139       vsec->set_link_section(this->dynsym_section_);
4140     }
4141
4142   Output_data_dynamic* const odyn = this->dynamic_data_;
4143   if (odyn != NULL && vsec != NULL)
4144     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4145
4146   if (versions->any_defs())
4147     {
4148       Output_section* vdsec;
4149       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4150                                           elfcpp::SHT_GNU_verdef,
4151                                           elfcpp::SHF_ALLOC,
4152                                           false, ORDER_DYNAMIC_LINKER, false);
4153
4154       if (vdsec != NULL)
4155         {
4156           unsigned char* vdbuf;
4157           unsigned int vdsize;
4158           unsigned int vdentries;
4159           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4160                                                            &vdbuf, &vdsize,
4161                                                            &vdentries);
4162
4163           Output_section_data* vddata =
4164             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4165
4166           vdsec->add_output_section_data(vddata);
4167           vdsec->set_link_section(dynstr);
4168           vdsec->set_info(vdentries);
4169
4170           if (odyn != NULL)
4171             {
4172               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4173               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4174             }
4175         }
4176     }
4177
4178   if (versions->any_needs())
4179     {
4180       Output_section* vnsec;
4181       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4182                                           elfcpp::SHT_GNU_verneed,
4183                                           elfcpp::SHF_ALLOC,
4184                                           false, ORDER_DYNAMIC_LINKER, false);
4185
4186       if (vnsec != NULL)
4187         {
4188           unsigned char* vnbuf;
4189           unsigned int vnsize;
4190           unsigned int vnentries;
4191           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4192                                                             &vnbuf, &vnsize,
4193                                                             &vnentries);
4194
4195           Output_section_data* vndata =
4196             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4197
4198           vnsec->add_output_section_data(vndata);
4199           vnsec->set_link_section(dynstr);
4200           vnsec->set_info(vnentries);
4201
4202           if (odyn != NULL)
4203             {
4204               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4205               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4206             }
4207         }
4208     }
4209 }
4210
4211 // Create the .interp section and PT_INTERP segment.
4212
4213 void
4214 Layout::create_interp(const Target* target)
4215 {
4216   gold_assert(this->interp_segment_ == NULL);
4217
4218   const char* interp = parameters->options().dynamic_linker();
4219   if (interp == NULL)
4220     {
4221       interp = target->dynamic_linker();
4222       gold_assert(interp != NULL);
4223     }
4224
4225   size_t len = strlen(interp) + 1;
4226
4227   Output_section_data* odata = new Output_data_const(interp, len, 1);
4228
4229   Output_section* osec = this->choose_output_section(NULL, ".interp",
4230                                                      elfcpp::SHT_PROGBITS,
4231                                                      elfcpp::SHF_ALLOC,
4232                                                      false, ORDER_INTERP,
4233                                                      false);
4234   if (osec != NULL)
4235     osec->add_output_section_data(odata);
4236 }
4237
4238 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4239 // called by the target-specific code.  This does nothing if not doing
4240 // a dynamic link.
4241
4242 // USE_REL is true for REL relocs rather than RELA relocs.
4243
4244 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4245
4246 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4247 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4248 // some targets have multiple reloc sections in PLT_REL.
4249
4250 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4251 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4252 // section.
4253
4254 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4255 // executable.
4256
4257 void
4258 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4259                                 const Output_data* plt_rel,
4260                                 const Output_data_reloc_generic* dyn_rel,
4261                                 bool add_debug, bool dynrel_includes_plt)
4262 {
4263   Output_data_dynamic* odyn = this->dynamic_data_;
4264   if (odyn == NULL)
4265     return;
4266
4267   if (plt_got != NULL && plt_got->output_section() != NULL)
4268     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4269
4270   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4271     {
4272       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4273       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4274       odyn->add_constant(elfcpp::DT_PLTREL,
4275                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4276     }
4277
4278   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4279     {
4280       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4281                                 dyn_rel->output_section());
4282       if (plt_rel != NULL
4283           && plt_rel->output_section() != NULL
4284           && dynrel_includes_plt)
4285         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4286                                dyn_rel->output_section(),
4287                                plt_rel->output_section());
4288       else
4289         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4290                                dyn_rel->output_section());
4291       const int size = parameters->target().get_size();
4292       elfcpp::DT rel_tag;
4293       int rel_size;
4294       if (use_rel)
4295         {
4296           rel_tag = elfcpp::DT_RELENT;
4297           if (size == 32)
4298             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4299           else if (size == 64)
4300             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4301           else
4302             gold_unreachable();
4303         }
4304       else
4305         {
4306           rel_tag = elfcpp::DT_RELAENT;
4307           if (size == 32)
4308             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4309           else if (size == 64)
4310             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4311           else
4312             gold_unreachable();
4313         }
4314       odyn->add_constant(rel_tag, rel_size);
4315
4316       if (parameters->options().combreloc())
4317         {
4318           size_t c = dyn_rel->relative_reloc_count();
4319           if (c > 0)
4320             odyn->add_constant((use_rel
4321                                 ? elfcpp::DT_RELCOUNT
4322                                 : elfcpp::DT_RELACOUNT),
4323                                c);
4324         }
4325     }
4326
4327   if (add_debug && !parameters->options().shared())
4328     {
4329       // The value of the DT_DEBUG tag is filled in by the dynamic
4330       // linker at run time, and used by the debugger.
4331       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4332     }
4333 }
4334
4335 // Finish the .dynamic section and PT_DYNAMIC segment.
4336
4337 void
4338 Layout::finish_dynamic_section(const Input_objects* input_objects,
4339                                const Symbol_table* symtab)
4340 {
4341   if (!this->script_options_->saw_phdrs_clause()
4342       && this->dynamic_section_ != NULL)
4343     {
4344       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4345                                                        (elfcpp::PF_R
4346                                                         | elfcpp::PF_W));
4347       oseg->add_output_section_to_nonload(this->dynamic_section_,
4348                                           elfcpp::PF_R | elfcpp::PF_W);
4349     }
4350
4351   Output_data_dynamic* const odyn = this->dynamic_data_;
4352   if (odyn == NULL)
4353     return;
4354
4355   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4356        p != input_objects->dynobj_end();
4357        ++p)
4358     {
4359       if (!(*p)->is_needed() && (*p)->as_needed())
4360         {
4361           // This dynamic object was linked with --as-needed, but it
4362           // is not needed.
4363           continue;
4364         }
4365
4366       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4367     }
4368
4369   if (parameters->options().shared())
4370     {
4371       const char* soname = parameters->options().soname();
4372       if (soname != NULL)
4373         odyn->add_string(elfcpp::DT_SONAME, soname);
4374     }
4375
4376   Symbol* sym = symtab->lookup(parameters->options().init());
4377   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4378     odyn->add_symbol(elfcpp::DT_INIT, sym);
4379
4380   sym = symtab->lookup(parameters->options().fini());
4381   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4382     odyn->add_symbol(elfcpp::DT_FINI, sym);
4383
4384   // Look for .init_array, .preinit_array and .fini_array by checking
4385   // section types.
4386   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4387       p != this->section_list_.end();
4388       ++p)
4389     switch((*p)->type())
4390       {
4391       case elfcpp::SHT_FINI_ARRAY:
4392         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4393         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4394         break;
4395       case elfcpp::SHT_INIT_ARRAY:
4396         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4397         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4398         break;
4399       case elfcpp::SHT_PREINIT_ARRAY:
4400         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4401         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4402         break;
4403       default:
4404         break;
4405       }
4406
4407   // Add a DT_RPATH entry if needed.
4408   const General_options::Dir_list& rpath(parameters->options().rpath());
4409   if (!rpath.empty())
4410     {
4411       std::string rpath_val;
4412       for (General_options::Dir_list::const_iterator p = rpath.begin();
4413            p != rpath.end();
4414            ++p)
4415         {
4416           if (rpath_val.empty())
4417             rpath_val = p->name();
4418           else
4419             {
4420               // Eliminate duplicates.
4421               General_options::Dir_list::const_iterator q;
4422               for (q = rpath.begin(); q != p; ++q)
4423                 if (q->name() == p->name())
4424                   break;
4425               if (q == p)
4426                 {
4427                   rpath_val += ':';
4428                   rpath_val += p->name();
4429                 }
4430             }
4431         }
4432
4433       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4434       if (parameters->options().enable_new_dtags())
4435         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4436     }
4437
4438   // Look for text segments that have dynamic relocations.
4439   bool have_textrel = false;
4440   if (!this->script_options_->saw_sections_clause())
4441     {
4442       for (Segment_list::const_iterator p = this->segment_list_.begin();
4443            p != this->segment_list_.end();
4444            ++p)
4445         {
4446           if ((*p)->type() == elfcpp::PT_LOAD
4447               && ((*p)->flags() & elfcpp::PF_W) == 0
4448               && (*p)->has_dynamic_reloc())
4449             {
4450               have_textrel = true;
4451               break;
4452             }
4453         }
4454     }
4455   else
4456     {
4457       // We don't know the section -> segment mapping, so we are
4458       // conservative and just look for readonly sections with
4459       // relocations.  If those sections wind up in writable segments,
4460       // then we have created an unnecessary DT_TEXTREL entry.
4461       for (Section_list::const_iterator p = this->section_list_.begin();
4462            p != this->section_list_.end();
4463            ++p)
4464         {
4465           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4466               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4467               && (*p)->has_dynamic_reloc())
4468             {
4469               have_textrel = true;
4470               break;
4471             }
4472         }
4473     }
4474
4475   if (parameters->options().filter() != NULL)
4476     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4477   if (parameters->options().any_auxiliary())
4478     {
4479       for (options::String_set::const_iterator p =
4480              parameters->options().auxiliary_begin();
4481            p != parameters->options().auxiliary_end();
4482            ++p)
4483         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4484     }
4485
4486   // Add a DT_FLAGS entry if necessary.
4487   unsigned int flags = 0;
4488   if (have_textrel)
4489     {
4490       // Add a DT_TEXTREL for compatibility with older loaders.
4491       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4492       flags |= elfcpp::DF_TEXTREL;
4493
4494       if (parameters->options().text())
4495         gold_error(_("read-only segment has dynamic relocations"));
4496       else if (parameters->options().warn_shared_textrel()
4497                && parameters->options().shared())
4498         gold_warning(_("shared library text segment is not shareable"));
4499     }
4500   if (parameters->options().shared() && this->has_static_tls())
4501     flags |= elfcpp::DF_STATIC_TLS;
4502   if (parameters->options().origin())
4503     flags |= elfcpp::DF_ORIGIN;
4504   if (parameters->options().Bsymbolic())
4505     {
4506       flags |= elfcpp::DF_SYMBOLIC;
4507       // Add DT_SYMBOLIC for compatibility with older loaders.
4508       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4509     }
4510   if (parameters->options().now())
4511     flags |= elfcpp::DF_BIND_NOW;
4512   if (flags != 0)
4513     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4514
4515   flags = 0;
4516   if (parameters->options().initfirst())
4517     flags |= elfcpp::DF_1_INITFIRST;
4518   if (parameters->options().interpose())
4519     flags |= elfcpp::DF_1_INTERPOSE;
4520   if (parameters->options().loadfltr())
4521     flags |= elfcpp::DF_1_LOADFLTR;
4522   if (parameters->options().nodefaultlib())
4523     flags |= elfcpp::DF_1_NODEFLIB;
4524   if (parameters->options().nodelete())
4525     flags |= elfcpp::DF_1_NODELETE;
4526   if (parameters->options().nodlopen())
4527     flags |= elfcpp::DF_1_NOOPEN;
4528   if (parameters->options().nodump())
4529     flags |= elfcpp::DF_1_NODUMP;
4530   if (!parameters->options().shared())
4531     flags &= ~(elfcpp::DF_1_INITFIRST
4532                | elfcpp::DF_1_NODELETE
4533                | elfcpp::DF_1_NOOPEN);
4534   if (parameters->options().origin())
4535     flags |= elfcpp::DF_1_ORIGIN;
4536   if (parameters->options().now())
4537     flags |= elfcpp::DF_1_NOW;
4538   if (parameters->options().Bgroup())
4539     flags |= elfcpp::DF_1_GROUP;
4540   if (flags != 0)
4541     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4542 }
4543
4544 // Set the size of the _DYNAMIC symbol table to be the size of the
4545 // dynamic data.
4546
4547 void
4548 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4549 {
4550   Output_data_dynamic* const odyn = this->dynamic_data_;
4551   if (odyn == NULL)
4552     return;
4553   odyn->finalize_data_size();
4554   if (this->dynamic_symbol_ == NULL)
4555     return;
4556   off_t data_size = odyn->data_size();
4557   const int size = parameters->target().get_size();
4558   if (size == 32)
4559     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4560   else if (size == 64)
4561     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4562   else
4563     gold_unreachable();
4564 }
4565
4566 // The mapping of input section name prefixes to output section names.
4567 // In some cases one prefix is itself a prefix of another prefix; in
4568 // such a case the longer prefix must come first.  These prefixes are
4569 // based on the GNU linker default ELF linker script.
4570
4571 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4572 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4573 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4574 {
4575   MAPPING_INIT(".text.", ".text"),
4576   MAPPING_INIT(".rodata.", ".rodata"),
4577   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4578   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4579   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4580   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4581   MAPPING_INIT(".data.", ".data"),
4582   MAPPING_INIT(".bss.", ".bss"),
4583   MAPPING_INIT(".tdata.", ".tdata"),
4584   MAPPING_INIT(".tbss.", ".tbss"),
4585   MAPPING_INIT(".init_array.", ".init_array"),
4586   MAPPING_INIT(".fini_array.", ".fini_array"),
4587   MAPPING_INIT(".sdata.", ".sdata"),
4588   MAPPING_INIT(".sbss.", ".sbss"),
4589   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4590   // differently depending on whether it is creating a shared library.
4591   MAPPING_INIT(".sdata2.", ".sdata"),
4592   MAPPING_INIT(".sbss2.", ".sbss"),
4593   MAPPING_INIT(".lrodata.", ".lrodata"),
4594   MAPPING_INIT(".ldata.", ".ldata"),
4595   MAPPING_INIT(".lbss.", ".lbss"),
4596   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4597   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4598   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4599   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4600   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4601   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4602   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4603   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4604   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4605   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4606   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4607   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4608   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4609   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4610   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4611   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4612   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4613   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4614   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4615   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4616   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4617 };
4618 #undef MAPPING_INIT
4619 #undef MAPPING_INIT_EXACT
4620
4621 const int Layout::section_name_mapping_count =
4622   (sizeof(Layout::section_name_mapping)
4623    / sizeof(Layout::section_name_mapping[0]));
4624
4625 // Choose the output section name to use given an input section name.
4626 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4627 // length of NAME.
4628
4629 const char*
4630 Layout::output_section_name(const Relobj* relobj, const char* name,
4631                             size_t* plen)
4632 {
4633   // gcc 4.3 generates the following sorts of section names when it
4634   // needs a section name specific to a function:
4635   //   .text.FN
4636   //   .rodata.FN
4637   //   .sdata2.FN
4638   //   .data.FN
4639   //   .data.rel.FN
4640   //   .data.rel.local.FN
4641   //   .data.rel.ro.FN
4642   //   .data.rel.ro.local.FN
4643   //   .sdata.FN
4644   //   .bss.FN
4645   //   .sbss.FN
4646   //   .tdata.FN
4647   //   .tbss.FN
4648
4649   // The GNU linker maps all of those to the part before the .FN,
4650   // except that .data.rel.local.FN is mapped to .data, and
4651   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4652   // beginning with .data.rel.ro.local are grouped together.
4653
4654   // For an anonymous namespace, the string FN can contain a '.'.
4655
4656   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4657   // GNU linker maps to .rodata.
4658
4659   // The .data.rel.ro sections are used with -z relro.  The sections
4660   // are recognized by name.  We use the same names that the GNU
4661   // linker does for these sections.
4662
4663   // It is hard to handle this in a principled way, so we don't even
4664   // try.  We use a table of mappings.  If the input section name is
4665   // not found in the table, we simply use it as the output section
4666   // name.
4667
4668   const Section_name_mapping* psnm = section_name_mapping;
4669   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4670     {
4671       if (psnm->fromlen > 0)
4672         {
4673           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4674             {
4675               *plen = psnm->tolen;
4676               return psnm->to;
4677             }
4678         }
4679       else
4680         {
4681           if (strcmp(name, psnm->from) == 0)
4682             {
4683               *plen = psnm->tolen;
4684               return psnm->to;
4685             }
4686         }
4687     }
4688
4689   // As an additional complication, .ctors sections are output in
4690   // either .ctors or .init_array sections, and .dtors sections are
4691   // output in either .dtors or .fini_array sections.
4692   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4693     {
4694       if (parameters->options().ctors_in_init_array())
4695         {
4696           *plen = 11;
4697           return name[1] == 'c' ? ".init_array" : ".fini_array";
4698         }
4699       else
4700         {
4701           *plen = 6;
4702           return name[1] == 'c' ? ".ctors" : ".dtors";
4703         }
4704     }
4705   if (parameters->options().ctors_in_init_array()
4706       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4707     {
4708       // To make .init_array/.fini_array work with gcc we must exclude
4709       // .ctors and .dtors sections from the crtbegin and crtend
4710       // files.
4711       if (relobj == NULL
4712           || (!Layout::match_file_name(relobj, "crtbegin")
4713               && !Layout::match_file_name(relobj, "crtend")))
4714         {
4715           *plen = 11;
4716           return name[1] == 'c' ? ".init_array" : ".fini_array";
4717         }
4718     }
4719
4720   return name;
4721 }
4722
4723 // Return true if RELOBJ is an input file whose base name matches
4724 // FILE_NAME.  The base name must have an extension of ".o", and must
4725 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4726 // to match crtbegin.o as well as crtbeginS.o without getting confused
4727 // by other possibilities.  Overall matching the file name this way is
4728 // a dreadful hack, but the GNU linker does it in order to better
4729 // support gcc, and we need to be compatible.
4730
4731 bool
4732 Layout::match_file_name(const Relobj* relobj, const char* match)
4733 {
4734   const std::string& file_name(relobj->name());
4735   const char* base_name = lbasename(file_name.c_str());
4736   size_t match_len = strlen(match);
4737   if (strncmp(base_name, match, match_len) != 0)
4738     return false;
4739   size_t base_len = strlen(base_name);
4740   if (base_len != match_len + 2 && base_len != match_len + 3)
4741     return false;
4742   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4743 }
4744
4745 // Check if a comdat group or .gnu.linkonce section with the given
4746 // NAME is selected for the link.  If there is already a section,
4747 // *KEPT_SECTION is set to point to the existing section and the
4748 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4749 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4750 // *KEPT_SECTION is set to the internal copy and the function returns
4751 // true.
4752
4753 bool
4754 Layout::find_or_add_kept_section(const std::string& name,
4755                                  Relobj* object,
4756                                  unsigned int shndx,
4757                                  bool is_comdat,
4758                                  bool is_group_name,
4759                                  Kept_section** kept_section)
4760 {
4761   // It's normal to see a couple of entries here, for the x86 thunk
4762   // sections.  If we see more than a few, we're linking a C++
4763   // program, and we resize to get more space to minimize rehashing.
4764   if (this->signatures_.size() > 4
4765       && !this->resized_signatures_)
4766     {
4767       reserve_unordered_map(&this->signatures_,
4768                             this->number_of_input_files_ * 64);
4769       this->resized_signatures_ = true;
4770     }
4771
4772   Kept_section candidate;
4773   std::pair<Signatures::iterator, bool> ins =
4774     this->signatures_.insert(std::make_pair(name, candidate));
4775
4776   if (kept_section != NULL)
4777     *kept_section = &ins.first->second;
4778   if (ins.second)
4779     {
4780       // This is the first time we've seen this signature.
4781       ins.first->second.set_object(object);
4782       ins.first->second.set_shndx(shndx);
4783       if (is_comdat)
4784         ins.first->second.set_is_comdat();
4785       if (is_group_name)
4786         ins.first->second.set_is_group_name();
4787       return true;
4788     }
4789
4790   // We have already seen this signature.
4791
4792   if (ins.first->second.is_group_name())
4793     {
4794       // We've already seen a real section group with this signature.
4795       // If the kept group is from a plugin object, and we're in the
4796       // replacement phase, accept the new one as a replacement.
4797       if (ins.first->second.object() == NULL
4798           && parameters->options().plugins()->in_replacement_phase())
4799         {
4800           ins.first->second.set_object(object);
4801           ins.first->second.set_shndx(shndx);
4802           return true;
4803         }
4804       return false;
4805     }
4806   else if (is_group_name)
4807     {
4808       // This is a real section group, and we've already seen a
4809       // linkonce section with this signature.  Record that we've seen
4810       // a section group, and don't include this section group.
4811       ins.first->second.set_is_group_name();
4812       return false;
4813     }
4814   else
4815     {
4816       // We've already seen a linkonce section and this is a linkonce
4817       // section.  These don't block each other--this may be the same
4818       // symbol name with different section types.
4819       return true;
4820     }
4821 }
4822
4823 // Store the allocated sections into the section list.
4824
4825 void
4826 Layout::get_allocated_sections(Section_list* section_list) const
4827 {
4828   for (Section_list::const_iterator p = this->section_list_.begin();
4829        p != this->section_list_.end();
4830        ++p)
4831     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4832       section_list->push_back(*p);
4833 }
4834
4835 // Create an output segment.
4836
4837 Output_segment*
4838 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4839 {
4840   gold_assert(!parameters->options().relocatable());
4841   Output_segment* oseg = new Output_segment(type, flags);
4842   this->segment_list_.push_back(oseg);
4843
4844   if (type == elfcpp::PT_TLS)
4845     this->tls_segment_ = oseg;
4846   else if (type == elfcpp::PT_GNU_RELRO)
4847     this->relro_segment_ = oseg;
4848   else if (type == elfcpp::PT_INTERP)
4849     this->interp_segment_ = oseg;
4850
4851   return oseg;
4852 }
4853
4854 // Return the file offset of the normal symbol table.
4855
4856 off_t
4857 Layout::symtab_section_offset() const
4858 {
4859   if (this->symtab_section_ != NULL)
4860     return this->symtab_section_->offset();
4861   return 0;
4862 }
4863
4864 // Return the section index of the normal symbol table.  It may have
4865 // been stripped by the -s/--strip-all option.
4866
4867 unsigned int
4868 Layout::symtab_section_shndx() const
4869 {
4870   if (this->symtab_section_ != NULL)
4871     return this->symtab_section_->out_shndx();
4872   return 0;
4873 }
4874
4875 // Write out the Output_sections.  Most won't have anything to write,
4876 // since most of the data will come from input sections which are
4877 // handled elsewhere.  But some Output_sections do have Output_data.
4878
4879 void
4880 Layout::write_output_sections(Output_file* of) const
4881 {
4882   for (Section_list::const_iterator p = this->section_list_.begin();
4883        p != this->section_list_.end();
4884        ++p)
4885     {
4886       if (!(*p)->after_input_sections())
4887         (*p)->write(of);
4888     }
4889 }
4890
4891 // Write out data not associated with a section or the symbol table.
4892
4893 void
4894 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4895 {
4896   if (!parameters->options().strip_all())
4897     {
4898       const Output_section* symtab_section = this->symtab_section_;
4899       for (Section_list::const_iterator p = this->section_list_.begin();
4900            p != this->section_list_.end();
4901            ++p)
4902         {
4903           if ((*p)->needs_symtab_index())
4904             {
4905               gold_assert(symtab_section != NULL);
4906               unsigned int index = (*p)->symtab_index();
4907               gold_assert(index > 0 && index != -1U);
4908               off_t off = (symtab_section->offset()
4909                            + index * symtab_section->entsize());
4910               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4911             }
4912         }
4913     }
4914
4915   const Output_section* dynsym_section = this->dynsym_section_;
4916   for (Section_list::const_iterator p = this->section_list_.begin();
4917        p != this->section_list_.end();
4918        ++p)
4919     {
4920       if ((*p)->needs_dynsym_index())
4921         {
4922           gold_assert(dynsym_section != NULL);
4923           unsigned int index = (*p)->dynsym_index();
4924           gold_assert(index > 0 && index != -1U);
4925           off_t off = (dynsym_section->offset()
4926                        + index * dynsym_section->entsize());
4927           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4928         }
4929     }
4930
4931   // Write out the Output_data which are not in an Output_section.
4932   for (Data_list::const_iterator p = this->special_output_list_.begin();
4933        p != this->special_output_list_.end();
4934        ++p)
4935     (*p)->write(of);
4936 }
4937
4938 // Write out the Output_sections which can only be written after the
4939 // input sections are complete.
4940
4941 void
4942 Layout::write_sections_after_input_sections(Output_file* of)
4943 {
4944   // Determine the final section offsets, and thus the final output
4945   // file size.  Note we finalize the .shstrab last, to allow the
4946   // after_input_section sections to modify their section-names before
4947   // writing.
4948   if (this->any_postprocessing_sections_)
4949     {
4950       off_t off = this->output_file_size_;
4951       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4952
4953       // Now that we've finalized the names, we can finalize the shstrab.
4954       off =
4955         this->set_section_offsets(off,
4956                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4957
4958       if (off > this->output_file_size_)
4959         {
4960           of->resize(off);
4961           this->output_file_size_ = off;
4962         }
4963     }
4964
4965   for (Section_list::const_iterator p = this->section_list_.begin();
4966        p != this->section_list_.end();
4967        ++p)
4968     {
4969       if ((*p)->after_input_sections())
4970         (*p)->write(of);
4971     }
4972
4973   this->section_headers_->write(of);
4974 }
4975
4976 // If the build ID requires computing a checksum, do so here, and
4977 // write it out.  We compute a checksum over the entire file because
4978 // that is simplest.
4979
4980 void
4981 Layout::write_build_id(Output_file* of) const
4982 {
4983   if (this->build_id_note_ == NULL)
4984     return;
4985
4986   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4987
4988   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4989                                           this->build_id_note_->data_size());
4990
4991   const char* style = parameters->options().build_id();
4992   if (strcmp(style, "sha1") == 0)
4993     {
4994       sha1_ctx ctx;
4995       sha1_init_ctx(&ctx);
4996       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4997       sha1_finish_ctx(&ctx, ov);
4998     }
4999   else if (strcmp(style, "md5") == 0)
5000     {
5001       md5_ctx ctx;
5002       md5_init_ctx(&ctx);
5003       md5_process_bytes(iv, this->output_file_size_, &ctx);
5004       md5_finish_ctx(&ctx, ov);
5005     }
5006   else
5007     gold_unreachable();
5008
5009   of->write_output_view(this->build_id_note_->offset(),
5010                         this->build_id_note_->data_size(),
5011                         ov);
5012
5013   of->free_input_view(0, this->output_file_size_, iv);
5014 }
5015
5016 // Write out a binary file.  This is called after the link is
5017 // complete.  IN is the temporary output file we used to generate the
5018 // ELF code.  We simply walk through the segments, read them from
5019 // their file offset in IN, and write them to their load address in
5020 // the output file.  FIXME: with a bit more work, we could support
5021 // S-records and/or Intel hex format here.
5022
5023 void
5024 Layout::write_binary(Output_file* in) const
5025 {
5026   gold_assert(parameters->options().oformat_enum()
5027               == General_options::OBJECT_FORMAT_BINARY);
5028
5029   // Get the size of the binary file.
5030   uint64_t max_load_address = 0;
5031   for (Segment_list::const_iterator p = this->segment_list_.begin();
5032        p != this->segment_list_.end();
5033        ++p)
5034     {
5035       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5036         {
5037           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5038           if (max_paddr > max_load_address)
5039             max_load_address = max_paddr;
5040         }
5041     }
5042
5043   Output_file out(parameters->options().output_file_name());
5044   out.open(max_load_address);
5045
5046   for (Segment_list::const_iterator p = this->segment_list_.begin();
5047        p != this->segment_list_.end();
5048        ++p)
5049     {
5050       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5051         {
5052           const unsigned char* vin = in->get_input_view((*p)->offset(),
5053                                                         (*p)->filesz());
5054           unsigned char* vout = out.get_output_view((*p)->paddr(),
5055                                                     (*p)->filesz());
5056           memcpy(vout, vin, (*p)->filesz());
5057           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5058           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5059         }
5060     }
5061
5062   out.close();
5063 }
5064
5065 // Print the output sections to the map file.
5066
5067 void
5068 Layout::print_to_mapfile(Mapfile* mapfile) const
5069 {
5070   for (Segment_list::const_iterator p = this->segment_list_.begin();
5071        p != this->segment_list_.end();
5072        ++p)
5073     (*p)->print_sections_to_mapfile(mapfile);
5074 }
5075
5076 // Print statistical information to stderr.  This is used for --stats.
5077
5078 void
5079 Layout::print_stats() const
5080 {
5081   this->namepool_.print_stats("section name pool");
5082   this->sympool_.print_stats("output symbol name pool");
5083   this->dynpool_.print_stats("dynamic name pool");
5084
5085   for (Section_list::const_iterator p = this->section_list_.begin();
5086        p != this->section_list_.end();
5087        ++p)
5088     (*p)->print_merge_stats();
5089 }
5090
5091 // Write_sections_task methods.
5092
5093 // We can always run this task.
5094
5095 Task_token*
5096 Write_sections_task::is_runnable()
5097 {
5098   return NULL;
5099 }
5100
5101 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5102 // when finished.
5103
5104 void
5105 Write_sections_task::locks(Task_locker* tl)
5106 {
5107   tl->add(this, this->output_sections_blocker_);
5108   tl->add(this, this->final_blocker_);
5109 }
5110
5111 // Run the task--write out the data.
5112
5113 void
5114 Write_sections_task::run(Workqueue*)
5115 {
5116   this->layout_->write_output_sections(this->of_);
5117 }
5118
5119 // Write_data_task methods.
5120
5121 // We can always run this task.
5122
5123 Task_token*
5124 Write_data_task::is_runnable()
5125 {
5126   return NULL;
5127 }
5128
5129 // We need to unlock FINAL_BLOCKER when finished.
5130
5131 void
5132 Write_data_task::locks(Task_locker* tl)
5133 {
5134   tl->add(this, this->final_blocker_);
5135 }
5136
5137 // Run the task--write out the data.
5138
5139 void
5140 Write_data_task::run(Workqueue*)
5141 {
5142   this->layout_->write_data(this->symtab_, this->of_);
5143 }
5144
5145 // Write_symbols_task methods.
5146
5147 // We can always run this task.
5148
5149 Task_token*
5150 Write_symbols_task::is_runnable()
5151 {
5152   return NULL;
5153 }
5154
5155 // We need to unlock FINAL_BLOCKER when finished.
5156
5157 void
5158 Write_symbols_task::locks(Task_locker* tl)
5159 {
5160   tl->add(this, this->final_blocker_);
5161 }
5162
5163 // Run the task--write out the symbols.
5164
5165 void
5166 Write_symbols_task::run(Workqueue*)
5167 {
5168   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5169                                this->layout_->symtab_xindex(),
5170                                this->layout_->dynsym_xindex(), this->of_);
5171 }
5172
5173 // Write_after_input_sections_task methods.
5174
5175 // We can only run this task after the input sections have completed.
5176
5177 Task_token*
5178 Write_after_input_sections_task::is_runnable()
5179 {
5180   if (this->input_sections_blocker_->is_blocked())
5181     return this->input_sections_blocker_;
5182   return NULL;
5183 }
5184
5185 // We need to unlock FINAL_BLOCKER when finished.
5186
5187 void
5188 Write_after_input_sections_task::locks(Task_locker* tl)
5189 {
5190   tl->add(this, this->final_blocker_);
5191 }
5192
5193 // Run the task.
5194
5195 void
5196 Write_after_input_sections_task::run(Workqueue*)
5197 {
5198   this->layout_->write_sections_after_input_sections(this->of_);
5199 }
5200
5201 // Close_task_runner methods.
5202
5203 // Run the task--close the file.
5204
5205 void
5206 Close_task_runner::run(Workqueue*, const Task*)
5207 {
5208   // If we need to compute a checksum for the BUILD if, we do so here.
5209   this->layout_->write_build_id(this->of_);
5210
5211   // If we've been asked to create a binary file, we do so here.
5212   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5213     this->layout_->write_binary(this->of_);
5214
5215   this->of_->close();
5216 }
5217
5218 // Instantiate the templates we need.  We could use the configure
5219 // script to restrict this to only the ones for implemented targets.
5220
5221 #ifdef HAVE_TARGET_32_LITTLE
5222 template
5223 Output_section*
5224 Layout::init_fixed_output_section<32, false>(
5225     const char* name,
5226     elfcpp::Shdr<32, false>& shdr);
5227 #endif
5228
5229 #ifdef HAVE_TARGET_32_BIG
5230 template
5231 Output_section*
5232 Layout::init_fixed_output_section<32, true>(
5233     const char* name,
5234     elfcpp::Shdr<32, true>& shdr);
5235 #endif
5236
5237 #ifdef HAVE_TARGET_64_LITTLE
5238 template
5239 Output_section*
5240 Layout::init_fixed_output_section<64, false>(
5241     const char* name,
5242     elfcpp::Shdr<64, false>& shdr);
5243 #endif
5244
5245 #ifdef HAVE_TARGET_64_BIG
5246 template
5247 Output_section*
5248 Layout::init_fixed_output_section<64, true>(
5249     const char* name,
5250     elfcpp::Shdr<64, true>& shdr);
5251 #endif
5252
5253 #ifdef HAVE_TARGET_32_LITTLE
5254 template
5255 Output_section*
5256 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5257                           unsigned int shndx,
5258                           const char* name,
5259                           const elfcpp::Shdr<32, false>& shdr,
5260                           unsigned int, unsigned int, off_t*);
5261 #endif
5262
5263 #ifdef HAVE_TARGET_32_BIG
5264 template
5265 Output_section*
5266 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5267                          unsigned int shndx,
5268                          const char* name,
5269                          const elfcpp::Shdr<32, true>& shdr,
5270                          unsigned int, unsigned int, off_t*);
5271 #endif
5272
5273 #ifdef HAVE_TARGET_64_LITTLE
5274 template
5275 Output_section*
5276 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5277                           unsigned int shndx,
5278                           const char* name,
5279                           const elfcpp::Shdr<64, false>& shdr,
5280                           unsigned int, unsigned int, off_t*);
5281 #endif
5282
5283 #ifdef HAVE_TARGET_64_BIG
5284 template
5285 Output_section*
5286 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5287                          unsigned int shndx,
5288                          const char* name,
5289                          const elfcpp::Shdr<64, true>& shdr,
5290                          unsigned int, unsigned int, off_t*);
5291 #endif
5292
5293 #ifdef HAVE_TARGET_32_LITTLE
5294 template
5295 Output_section*
5296 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5297                                 unsigned int reloc_shndx,
5298                                 const elfcpp::Shdr<32, false>& shdr,
5299                                 Output_section* data_section,
5300                                 Relocatable_relocs* rr);
5301 #endif
5302
5303 #ifdef HAVE_TARGET_32_BIG
5304 template
5305 Output_section*
5306 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5307                                unsigned int reloc_shndx,
5308                                const elfcpp::Shdr<32, true>& shdr,
5309                                Output_section* data_section,
5310                                Relocatable_relocs* rr);
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_LITTLE
5314 template
5315 Output_section*
5316 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5317                                 unsigned int reloc_shndx,
5318                                 const elfcpp::Shdr<64, false>& shdr,
5319                                 Output_section* data_section,
5320                                 Relocatable_relocs* rr);
5321 #endif
5322
5323 #ifdef HAVE_TARGET_64_BIG
5324 template
5325 Output_section*
5326 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5327                                unsigned int reloc_shndx,
5328                                const elfcpp::Shdr<64, true>& shdr,
5329                                Output_section* data_section,
5330                                Relocatable_relocs* rr);
5331 #endif
5332
5333 #ifdef HAVE_TARGET_32_LITTLE
5334 template
5335 void
5336 Layout::layout_group<32, false>(Symbol_table* symtab,
5337                                 Sized_relobj_file<32, false>* object,
5338                                 unsigned int,
5339                                 const char* group_section_name,
5340                                 const char* signature,
5341                                 const elfcpp::Shdr<32, false>& shdr,
5342                                 elfcpp::Elf_Word flags,
5343                                 std::vector<unsigned int>* shndxes);
5344 #endif
5345
5346 #ifdef HAVE_TARGET_32_BIG
5347 template
5348 void
5349 Layout::layout_group<32, true>(Symbol_table* symtab,
5350                                Sized_relobj_file<32, true>* object,
5351                                unsigned int,
5352                                const char* group_section_name,
5353                                const char* signature,
5354                                const elfcpp::Shdr<32, true>& shdr,
5355                                elfcpp::Elf_Word flags,
5356                                std::vector<unsigned int>* shndxes);
5357 #endif
5358
5359 #ifdef HAVE_TARGET_64_LITTLE
5360 template
5361 void
5362 Layout::layout_group<64, false>(Symbol_table* symtab,
5363                                 Sized_relobj_file<64, false>* object,
5364                                 unsigned int,
5365                                 const char* group_section_name,
5366                                 const char* signature,
5367                                 const elfcpp::Shdr<64, false>& shdr,
5368                                 elfcpp::Elf_Word flags,
5369                                 std::vector<unsigned int>* shndxes);
5370 #endif
5371
5372 #ifdef HAVE_TARGET_64_BIG
5373 template
5374 void
5375 Layout::layout_group<64, true>(Symbol_table* symtab,
5376                                Sized_relobj_file<64, true>* object,
5377                                unsigned int,
5378                                const char* group_section_name,
5379                                const char* signature,
5380                                const elfcpp::Shdr<64, true>& shdr,
5381                                elfcpp::Elf_Word flags,
5382                                std::vector<unsigned int>* shndxes);
5383 #endif
5384
5385 #ifdef HAVE_TARGET_32_LITTLE
5386 template
5387 Output_section*
5388 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5389                                    const unsigned char* symbols,
5390                                    off_t symbols_size,
5391                                    const unsigned char* symbol_names,
5392                                    off_t symbol_names_size,
5393                                    unsigned int shndx,
5394                                    const elfcpp::Shdr<32, false>& shdr,
5395                                    unsigned int reloc_shndx,
5396                                    unsigned int reloc_type,
5397                                    off_t* off);
5398 #endif
5399
5400 #ifdef HAVE_TARGET_32_BIG
5401 template
5402 Output_section*
5403 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5404                                   const unsigned char* symbols,
5405                                   off_t symbols_size,
5406                                   const unsigned char* symbol_names,
5407                                   off_t symbol_names_size,
5408                                   unsigned int shndx,
5409                                   const elfcpp::Shdr<32, true>& shdr,
5410                                   unsigned int reloc_shndx,
5411                                   unsigned int reloc_type,
5412                                   off_t* off);
5413 #endif
5414
5415 #ifdef HAVE_TARGET_64_LITTLE
5416 template
5417 Output_section*
5418 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5419                                    const unsigned char* symbols,
5420                                    off_t symbols_size,
5421                                    const unsigned char* symbol_names,
5422                                    off_t symbol_names_size,
5423                                    unsigned int shndx,
5424                                    const elfcpp::Shdr<64, false>& shdr,
5425                                    unsigned int reloc_shndx,
5426                                    unsigned int reloc_type,
5427                                    off_t* off);
5428 #endif
5429
5430 #ifdef HAVE_TARGET_64_BIG
5431 template
5432 Output_section*
5433 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5434                                   const unsigned char* symbols,
5435                                   off_t symbols_size,
5436                                   const unsigned char* symbol_names,
5437                                   off_t symbol_names_size,
5438                                   unsigned int shndx,
5439                                   const elfcpp::Shdr<64, true>& shdr,
5440                                   unsigned int reloc_shndx,
5441                                   unsigned int reloc_type,
5442                                   off_t* off);
5443 #endif
5444
5445 #ifdef HAVE_TARGET_32_LITTLE
5446 template
5447 void
5448 Layout::add_to_gdb_index(bool is_type_unit,
5449                          Sized_relobj<32, false>* object,
5450                          const unsigned char* symbols,
5451                          off_t symbols_size,
5452                          unsigned int shndx,
5453                          unsigned int reloc_shndx,
5454                          unsigned int reloc_type);
5455 #endif
5456
5457 #ifdef HAVE_TARGET_32_BIG
5458 template
5459 void
5460 Layout::add_to_gdb_index(bool is_type_unit,
5461                          Sized_relobj<32, true>* object,
5462                          const unsigned char* symbols,
5463                          off_t symbols_size,
5464                          unsigned int shndx,
5465                          unsigned int reloc_shndx,
5466                          unsigned int reloc_type);
5467 #endif
5468
5469 #ifdef HAVE_TARGET_64_LITTLE
5470 template
5471 void
5472 Layout::add_to_gdb_index(bool is_type_unit,
5473                          Sized_relobj<64, false>* object,
5474                          const unsigned char* symbols,
5475                          off_t symbols_size,
5476                          unsigned int shndx,
5477                          unsigned int reloc_shndx,
5478                          unsigned int reloc_type);
5479 #endif
5480
5481 #ifdef HAVE_TARGET_64_BIG
5482 template
5483 void
5484 Layout::add_to_gdb_index(bool is_type_unit,
5485                          Sized_relobj<64, true>* object,
5486                          const unsigned char* symbols,
5487                          off_t symbols_size,
5488                          unsigned int shndx,
5489                          unsigned int reloc_shndx,
5490                          unsigned int reloc_type);
5491 #endif
5492
5493 } // End namespace gold.