Put input sections with no flags in output sections with the same name.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "reloc.h"
40 #include "layout.h"
41
42 namespace gold
43 {
44
45 // Layout_task_runner methods.
46
47 // Lay out the sections.  This is called after all the input objects
48 // have been read.
49
50 void
51 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
52 {
53   off_t file_size = this->layout_->finalize(this->input_objects_,
54                                             this->symtab_,
55                                             this->target_,
56                                             task);
57
58   // Now we know the final size of the output file and we know where
59   // each piece of information goes.
60   Output_file* of = new Output_file(parameters->options().output_file_name());
61   if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
62     of->set_is_temporary();
63   of->open(file_size);
64
65   // Queue up the final set of tasks.
66   gold::queue_final_tasks(this->options_, this->input_objects_,
67                           this->symtab_, this->layout_, workqueue, of);
68 }
69
70 // Layout methods.
71
72 Layout::Layout(const General_options& options, Script_options* script_options)
73   : options_(options), script_options_(script_options), namepool_(),
74     sympool_(), dynpool_(), signatures_(),
75     section_name_map_(), segment_list_(), section_list_(),
76     unattached_section_list_(), special_output_list_(),
77     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
78     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
79     eh_frame_section_(NULL), group_signatures_(), output_file_size_(-1),
80     input_requires_executable_stack_(false),
81     input_with_gnu_stack_note_(false),
82     input_without_gnu_stack_note_(false),
83     has_static_tls_(false),
84     any_postprocessing_sections_(false)
85 {
86   // Make space for more than enough segments for a typical file.
87   // This is just for efficiency--it's OK if we wind up needing more.
88   this->segment_list_.reserve(12);
89
90   // We expect two unattached Output_data objects: the file header and
91   // the segment headers.
92   this->special_output_list_.reserve(2);
93 }
94
95 // Hash a key we use to look up an output section mapping.
96
97 size_t
98 Layout::Hash_key::operator()(const Layout::Key& k) const
99 {
100  return k.first + k.second.first + k.second.second;
101 }
102
103 // Return whether PREFIX is a prefix of STR.
104
105 static inline bool
106 is_prefix_of(const char* prefix, const char* str)
107 {
108   return strncmp(prefix, str, strlen(prefix)) == 0;
109 }
110
111 // Returns whether the given section is in the list of
112 // debug-sections-used-by-some-version-of-gdb.  Currently,
113 // we've checked versions of gdb up to and including 6.7.1.
114
115 static const char* gdb_sections[] =
116 { ".debug_abbrev",
117   // ".debug_aranges",   // not used by gdb as of 6.7.1
118   ".debug_frame",
119   ".debug_info",
120   ".debug_line",
121   ".debug_loc",
122   ".debug_macinfo",
123   // ".debug_pubnames",  // not used by gdb as of 6.7.1
124   ".debug_ranges",
125   ".debug_str",
126 };
127
128 static inline bool
129 is_gdb_debug_section(const char* str)
130 {
131   // We can do this faster: binary search or a hashtable.  But why bother?
132   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
133     if (strcmp(str, gdb_sections[i]) == 0)
134       return true;
135   return false;
136 }
137
138 // Whether to include this section in the link.
139
140 template<int size, bool big_endian>
141 bool
142 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
143                         const elfcpp::Shdr<size, big_endian>& shdr)
144 {
145   switch (shdr.get_sh_type())
146     {
147     case elfcpp::SHT_NULL:
148     case elfcpp::SHT_SYMTAB:
149     case elfcpp::SHT_DYNSYM:
150     case elfcpp::SHT_STRTAB:
151     case elfcpp::SHT_HASH:
152     case elfcpp::SHT_DYNAMIC:
153     case elfcpp::SHT_SYMTAB_SHNDX:
154       return false;
155
156     case elfcpp::SHT_RELA:
157     case elfcpp::SHT_REL:
158     case elfcpp::SHT_GROUP:
159       // If we are emitting relocations these should be handled
160       // elsewhere.
161       gold_assert(!parameters->options().relocatable()
162                   && !parameters->options().emit_relocs());
163       return false;
164
165     case elfcpp::SHT_PROGBITS:
166       if (parameters->options().strip_debug()
167           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
168         {
169           // Debugging sections can only be recognized by name.
170           if (is_prefix_of(".debug", name)
171               || is_prefix_of(".gnu.linkonce.wi.", name)
172               || is_prefix_of(".line", name)
173               || is_prefix_of(".stab", name))
174             return false;
175         }
176       if (parameters->options().strip_debug_gdb()
177           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
178         {
179           // Debugging sections can only be recognized by name.
180           if (is_prefix_of(".debug", name)
181               && !is_gdb_debug_section(name))
182             return false;
183         }
184       return true;
185
186     default:
187       return true;
188     }
189 }
190
191 // Return an output section named NAME, or NULL if there is none.
192
193 Output_section*
194 Layout::find_output_section(const char* name) const
195 {
196   for (Section_list::const_iterator p = this->section_list_.begin();
197        p != this->section_list_.end();
198        ++p)
199     if (strcmp((*p)->name(), name) == 0)
200       return *p;
201   return NULL;
202 }
203
204 // Return an output segment of type TYPE, with segment flags SET set
205 // and segment flags CLEAR clear.  Return NULL if there is none.
206
207 Output_segment*
208 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
209                             elfcpp::Elf_Word clear) const
210 {
211   for (Segment_list::const_iterator p = this->segment_list_.begin();
212        p != this->segment_list_.end();
213        ++p)
214     if (static_cast<elfcpp::PT>((*p)->type()) == type
215         && ((*p)->flags() & set) == set
216         && ((*p)->flags() & clear) == 0)
217       return *p;
218   return NULL;
219 }
220
221 // Return the output section to use for section NAME with type TYPE
222 // and section flags FLAGS.  NAME must be canonicalized in the string
223 // pool, and NAME_KEY is the key.
224
225 Output_section*
226 Layout::get_output_section(const char* name, Stringpool::Key name_key,
227                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
228 {
229   const Key key(name_key, std::make_pair(type, flags));
230   const std::pair<Key, Output_section*> v(key, NULL);
231   std::pair<Section_name_map::iterator, bool> ins(
232     this->section_name_map_.insert(v));
233
234   if (!ins.second)
235     return ins.first->second;
236   else
237     {
238       // This is the first time we've seen this name/type/flags
239       // combination.  If the section has contents but no flags, then
240       // see whether we have an existing section with the same name.
241       // This is a workaround for cases where assembler code forgets
242       // to set section flags, and the GNU linker would simply pick an
243       // existing section with the same name.  FIXME: Perhaps there
244       // should be an option to control this.
245       Output_section* os = NULL;
246       if (type == elfcpp::SHT_PROGBITS && flags == 0)
247         {
248           os = this->find_output_section(name);
249           if (os != NULL && os->type() != elfcpp::SHT_PROGBITS)
250             os = NULL;
251         }
252       if (os == NULL)
253         os = this->make_output_section(name, type, flags);
254       ins.first->second = os;
255       return os;
256     }
257 }
258
259 // Pick the output section to use for section NAME, in input file
260 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
261 // linker created section.  ADJUST_NAME is true if we should apply the
262 // standard name mappings in Layout::output_section_name.  This will
263 // return NULL if the input section should be discarded.
264
265 Output_section*
266 Layout::choose_output_section(const Relobj* relobj, const char* name,
267                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
268                               bool adjust_name)
269 {
270   // We should ignore some flags.  FIXME: This will need some
271   // adjustment for ld -r.
272   flags &= ~ (elfcpp::SHF_INFO_LINK
273               | elfcpp::SHF_LINK_ORDER
274               | elfcpp::SHF_GROUP
275               | elfcpp::SHF_MERGE
276               | elfcpp::SHF_STRINGS);
277
278   if (this->script_options_->saw_sections_clause())
279     {
280       // We are using a SECTIONS clause, so the output section is
281       // chosen based only on the name.
282
283       Script_sections* ss = this->script_options_->script_sections();
284       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
285       Output_section** output_section_slot;
286       name = ss->output_section_name(file_name, name, &output_section_slot);
287       if (name == NULL)
288         {
289           // The SECTIONS clause says to discard this input section.
290           return NULL;
291         }
292
293       // If this is an orphan section--one not mentioned in the linker
294       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
295       // default processing below.
296
297       if (output_section_slot != NULL)
298         {
299           if (*output_section_slot != NULL)
300             return *output_section_slot;
301
302           // We don't put sections found in the linker script into
303           // SECTION_NAME_MAP_.  That keeps us from getting confused
304           // if an orphan section is mapped to a section with the same
305           // name as one in the linker script.
306
307           name = this->namepool_.add(name, false, NULL);
308
309           Output_section* os = this->make_output_section(name, type, flags);
310           os->set_found_in_sections_clause();
311           *output_section_slot = os;
312           return os;
313         }
314     }
315
316   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
317
318   // Turn NAME from the name of the input section into the name of the
319   // output section.
320
321   size_t len = strlen(name);
322   if (adjust_name && !parameters->options().relocatable())
323     name = Layout::output_section_name(name, &len);
324
325   Stringpool::Key name_key;
326   name = this->namepool_.add_with_length(name, len, true, &name_key);
327
328   // Find or make the output section.  The output section is selected
329   // based on the section name, type, and flags.
330   return this->get_output_section(name, name_key, type, flags);
331 }
332
333 // Return the output section to use for input section SHNDX, with name
334 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
335 // index of a relocation section which applies to this section, or 0
336 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
337 // relocation section if there is one.  Set *OFF to the offset of this
338 // input section without the output section.  Return NULL if the
339 // section should be discarded.  Set *OFF to -1 if the section
340 // contents should not be written directly to the output file, but
341 // will instead receive special handling.
342
343 template<int size, bool big_endian>
344 Output_section*
345 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
346                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
347                unsigned int reloc_shndx, unsigned int, off_t* off)
348 {
349   if (!this->include_section(object, name, shdr))
350     return NULL;
351
352   Output_section* os;
353
354   // In a relocatable link a grouped section must not be combined with
355   // any other sections.
356   if (parameters->options().relocatable()
357       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
358     {
359       name = this->namepool_.add(name, true, NULL);
360       os = this->make_output_section(name, shdr.get_sh_type(),
361                                      shdr.get_sh_flags());
362     }
363   else
364     {
365       os = this->choose_output_section(object, name, shdr.get_sh_type(),
366                                        shdr.get_sh_flags(), true);
367       if (os == NULL)
368         return NULL;
369     }
370
371   // FIXME: Handle SHF_LINK_ORDER somewhere.
372
373   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
374                                this->script_options_->saw_sections_clause());
375
376   return os;
377 }
378
379 // Handle a relocation section when doing a relocatable link.
380
381 template<int size, bool big_endian>
382 Output_section*
383 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
384                      unsigned int,
385                      const elfcpp::Shdr<size, big_endian>& shdr,
386                      Output_section* data_section,
387                      Relocatable_relocs* rr)
388 {
389   gold_assert(parameters->options().relocatable()
390               || parameters->options().emit_relocs());
391
392   int sh_type = shdr.get_sh_type();
393
394   std::string name;
395   if (sh_type == elfcpp::SHT_REL)
396     name = ".rel";
397   else if (sh_type == elfcpp::SHT_RELA)
398     name = ".rela";
399   else
400     gold_unreachable();
401   name += data_section->name();
402
403   Output_section* os = this->choose_output_section(object, name.c_str(),
404                                                    sh_type,
405                                                    shdr.get_sh_flags(),
406                                                    false);
407
408   os->set_should_link_to_symtab();
409   os->set_info_section(data_section);
410
411   Output_section_data* posd;
412   if (sh_type == elfcpp::SHT_REL)
413     {
414       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
415       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
416                                            size,
417                                            big_endian>(rr);
418     }
419   else if (sh_type == elfcpp::SHT_RELA)
420     {
421       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
422       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
423                                            size,
424                                            big_endian>(rr);
425     }
426   else
427     gold_unreachable();
428
429   os->add_output_section_data(posd);
430   rr->set_output_data(posd);
431
432   return os;
433 }
434
435 // Handle a group section when doing a relocatable link.
436
437 template<int size, bool big_endian>
438 void
439 Layout::layout_group(Symbol_table* symtab,
440                      Sized_relobj<size, big_endian>* object,
441                      unsigned int,
442                      const char* group_section_name,
443                      const char* signature,
444                      const elfcpp::Shdr<size, big_endian>& shdr,
445                      const elfcpp::Elf_Word* contents)
446 {
447   gold_assert(parameters->options().relocatable());
448   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
449   group_section_name = this->namepool_.add(group_section_name, true, NULL);
450   Output_section* os = this->make_output_section(group_section_name,
451                                                  elfcpp::SHT_GROUP,
452                                                  shdr.get_sh_flags());
453
454   // We need to find a symbol with the signature in the symbol table.
455   // If we don't find one now, we need to look again later.
456   Symbol* sym = symtab->lookup(signature, NULL);
457   if (sym != NULL)
458     os->set_info_symndx(sym);
459   else
460     {
461       // We will wind up using a symbol whose name is the signature.
462       // So just put the signature in the symbol name pool to save it.
463       signature = symtab->canonicalize_name(signature);
464       this->group_signatures_.push_back(Group_signature(os, signature));
465     }
466
467   os->set_should_link_to_symtab();
468   os->set_entsize(4);
469
470   section_size_type entry_count =
471     convert_to_section_size_type(shdr.get_sh_size() / 4);
472   Output_section_data* posd =
473     new Output_data_group<size, big_endian>(object, entry_count, contents);
474   os->add_output_section_data(posd);
475 }
476
477 // Special GNU handling of sections name .eh_frame.  They will
478 // normally hold exception frame data as defined by the C++ ABI
479 // (http://codesourcery.com/cxx-abi/).
480
481 template<int size, bool big_endian>
482 Output_section*
483 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
484                         const unsigned char* symbols,
485                         off_t symbols_size,
486                         const unsigned char* symbol_names,
487                         off_t symbol_names_size,
488                         unsigned int shndx,
489                         const elfcpp::Shdr<size, big_endian>& shdr,
490                         unsigned int reloc_shndx, unsigned int reloc_type,
491                         off_t* off)
492 {
493   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
494   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
495
496   const char* const name = ".eh_frame";
497   Output_section* os = this->choose_output_section(object,
498                                                    name,
499                                                    elfcpp::SHT_PROGBITS,
500                                                    elfcpp::SHF_ALLOC,
501                                                    false);
502   if (os == NULL)
503     return NULL;
504
505   if (this->eh_frame_section_ == NULL)
506     {
507       this->eh_frame_section_ = os;
508       this->eh_frame_data_ = new Eh_frame();
509       os->add_output_section_data(this->eh_frame_data_);
510
511       if (this->options_.eh_frame_hdr())
512         {
513           Output_section* hdr_os =
514             this->choose_output_section(NULL,
515                                         ".eh_frame_hdr",
516                                         elfcpp::SHT_PROGBITS,
517                                         elfcpp::SHF_ALLOC,
518                                         false);
519
520           if (hdr_os != NULL)
521             {
522               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
523                                                         this->eh_frame_data_);
524               hdr_os->add_output_section_data(hdr_posd);
525
526               hdr_os->set_after_input_sections();
527
528               if (!this->script_options_->saw_phdrs_clause())
529                 {
530                   Output_segment* hdr_oseg;
531                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
532                                                        elfcpp::PF_R);
533                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
534                 }
535
536               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
537             }
538         }
539     }
540
541   gold_assert(this->eh_frame_section_ == os);
542
543   if (this->eh_frame_data_->add_ehframe_input_section(object,
544                                                       symbols,
545                                                       symbols_size,
546                                                       symbol_names,
547                                                       symbol_names_size,
548                                                       shndx,
549                                                       reloc_shndx,
550                                                       reloc_type))
551     *off = -1;
552   else
553     {
554       // We couldn't handle this .eh_frame section for some reason.
555       // Add it as a normal section.
556       bool saw_sections_clause = this->script_options_->saw_sections_clause();
557       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
558                                    saw_sections_clause);
559     }
560
561   return os;
562 }
563
564 // Add POSD to an output section using NAME, TYPE, and FLAGS.
565
566 void
567 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
568                                 elfcpp::Elf_Xword flags,
569                                 Output_section_data* posd)
570 {
571   Output_section* os = this->choose_output_section(NULL, name, type, flags,
572                                                    false);
573   if (os != NULL)
574     os->add_output_section_data(posd);
575 }
576
577 // Map section flags to segment flags.
578
579 elfcpp::Elf_Word
580 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
581 {
582   elfcpp::Elf_Word ret = elfcpp::PF_R;
583   if ((flags & elfcpp::SHF_WRITE) != 0)
584     ret |= elfcpp::PF_W;
585   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
586     ret |= elfcpp::PF_X;
587   return ret;
588 }
589
590 // Sometimes we compress sections.  This is typically done for
591 // sections that are not part of normal program execution (such as
592 // .debug_* sections), and where the readers of these sections know
593 // how to deal with compressed sections.  (To make it easier for them,
594 // we will rename the ouput section in such cases from .foo to
595 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
596 // doesn't say for certain whether we'll compress -- it depends on
597 // commandline options as well -- just whether this section is a
598 // candidate for compression.
599
600 static bool
601 is_compressible_debug_section(const char* secname)
602 {
603   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
604 }
605
606 // Make a new Output_section, and attach it to segments as
607 // appropriate.
608
609 Output_section*
610 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
611                             elfcpp::Elf_Xword flags)
612 {
613   Output_section* os;
614   if ((flags & elfcpp::SHF_ALLOC) == 0
615       && this->options_.compress_debug_sections()
616       && is_compressible_debug_section(name))
617     os = new Output_compressed_section(&this->options_, name, type, flags);
618   else
619     os = new Output_section(name, type, flags);
620
621   this->section_list_.push_back(os);
622
623   if ((flags & elfcpp::SHF_ALLOC) == 0)
624     this->unattached_section_list_.push_back(os);
625   else
626     {
627       if (parameters->options().relocatable())
628         return os;
629
630       // If we have a SECTIONS clause, we can't handle the attachment
631       // to segments until after we've seen all the sections.
632       if (this->script_options_->saw_sections_clause())
633         return os;
634
635       gold_assert(!this->script_options_->saw_phdrs_clause());
636
637       // This output section goes into a PT_LOAD segment.
638
639       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
640
641       // In general the only thing we really care about for PT_LOAD
642       // segments is whether or not they are writable, so that is how
643       // we search for them.  People who need segments sorted on some
644       // other basis will have to use a linker script.
645
646       Segment_list::const_iterator p;
647       for (p = this->segment_list_.begin();
648            p != this->segment_list_.end();
649            ++p)
650         {
651           if ((*p)->type() == elfcpp::PT_LOAD
652               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
653             {
654               // If -Tbss was specified, we need to separate the data
655               // and BSS segments.
656               if (this->options_.user_set_Tbss())
657                 {
658                   if ((type == elfcpp::SHT_NOBITS)
659                       == (*p)->has_any_data_sections())
660                     continue;
661                 }
662
663               (*p)->add_output_section(os, seg_flags);
664               break;
665             }
666         }
667
668       if (p == this->segment_list_.end())
669         {
670           Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
671                                                            seg_flags);
672           oseg->add_output_section(os, seg_flags);
673         }
674
675       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
676       // segment.
677       if (type == elfcpp::SHT_NOTE)
678         {
679           // See if we already have an equivalent PT_NOTE segment.
680           for (p = this->segment_list_.begin();
681                p != segment_list_.end();
682                ++p)
683             {
684               if ((*p)->type() == elfcpp::PT_NOTE
685                   && (((*p)->flags() & elfcpp::PF_W)
686                       == (seg_flags & elfcpp::PF_W)))
687                 {
688                   (*p)->add_output_section(os, seg_flags);
689                   break;
690                 }
691             }
692
693           if (p == this->segment_list_.end())
694             {
695               Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
696                                                                seg_flags);
697               oseg->add_output_section(os, seg_flags);
698             }
699         }
700
701       // If we see a loadable SHF_TLS section, we create a PT_TLS
702       // segment.  There can only be one such segment.
703       if ((flags & elfcpp::SHF_TLS) != 0)
704         {
705           if (this->tls_segment_ == NULL)
706             this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
707                                                            seg_flags);
708           this->tls_segment_->add_output_section(os, seg_flags);
709         }
710     }
711
712   return os;
713 }
714
715 // Return the number of segments we expect to see.
716
717 size_t
718 Layout::expected_segment_count() const
719 {
720   size_t ret = this->segment_list_.size();
721
722   // If we didn't see a SECTIONS clause in a linker script, we should
723   // already have the complete list of segments.  Otherwise we ask the
724   // SECTIONS clause how many segments it expects, and add in the ones
725   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
726
727   if (!this->script_options_->saw_sections_clause())
728     return ret;
729   else
730     {
731       const Script_sections* ss = this->script_options_->script_sections();
732       return ret + ss->expected_segment_count(this);
733     }
734 }
735
736 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
737 // is whether we saw a .note.GNU-stack section in the object file.
738 // GNU_STACK_FLAGS is the section flags.  The flags give the
739 // protection required for stack memory.  We record this in an
740 // executable as a PT_GNU_STACK segment.  If an object file does not
741 // have a .note.GNU-stack segment, we must assume that it is an old
742 // object.  On some targets that will force an executable stack.
743
744 void
745 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
746 {
747   if (!seen_gnu_stack)
748     this->input_without_gnu_stack_note_ = true;
749   else
750     {
751       this->input_with_gnu_stack_note_ = true;
752       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
753         this->input_requires_executable_stack_ = true;
754     }
755 }
756
757 // Create the dynamic sections which are needed before we read the
758 // relocs.
759
760 void
761 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
762 {
763   if (parameters->doing_static_link())
764     return;
765
766   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
767                                                        elfcpp::SHT_DYNAMIC,
768                                                        (elfcpp::SHF_ALLOC
769                                                         | elfcpp::SHF_WRITE),
770                                                        false);
771
772   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
773                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
774                                 elfcpp::STV_HIDDEN, 0, false, false);
775
776   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
777
778   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
779 }
780
781 // For each output section whose name can be represented as C symbol,
782 // define __start and __stop symbols for the section.  This is a GNU
783 // extension.
784
785 void
786 Layout::define_section_symbols(Symbol_table* symtab)
787 {
788   for (Section_list::const_iterator p = this->section_list_.begin();
789        p != this->section_list_.end();
790        ++p)
791     {
792       const char* const name = (*p)->name();
793       if (name[strspn(name,
794                       ("0123456789"
795                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
796                        "abcdefghijklmnopqrstuvwxyz"
797                        "_"))]
798           == '\0')
799         {
800           const std::string name_string(name);
801           const std::string start_name("__start_" + name_string);
802           const std::string stop_name("__stop_" + name_string);
803
804           symtab->define_in_output_data(start_name.c_str(),
805                                         NULL, // version
806                                         *p,
807                                         0, // value
808                                         0, // symsize
809                                         elfcpp::STT_NOTYPE,
810                                         elfcpp::STB_GLOBAL,
811                                         elfcpp::STV_DEFAULT,
812                                         0, // nonvis
813                                         false, // offset_is_from_end
814                                         true); // only_if_ref
815
816           symtab->define_in_output_data(stop_name.c_str(),
817                                         NULL, // version
818                                         *p,
819                                         0, // value
820                                         0, // symsize
821                                         elfcpp::STT_NOTYPE,
822                                         elfcpp::STB_GLOBAL,
823                                         elfcpp::STV_DEFAULT,
824                                         0, // nonvis
825                                         true, // offset_is_from_end
826                                         true); // only_if_ref
827         }
828     }
829 }
830
831 // Define symbols for group signatures.
832
833 void
834 Layout::define_group_signatures(Symbol_table* symtab)
835 {
836   for (Group_signatures::iterator p = this->group_signatures_.begin();
837        p != this->group_signatures_.end();
838        ++p)
839     {
840       Symbol* sym = symtab->lookup(p->signature, NULL);
841       if (sym != NULL)
842         p->section->set_info_symndx(sym);
843       else
844         {
845           // Force the name of the group section to the group
846           // signature, and use the group's section symbol as the
847           // signature symbol.
848           if (strcmp(p->section->name(), p->signature) != 0)
849             {
850               const char* name = this->namepool_.add(p->signature,
851                                                      true, NULL);
852               p->section->set_name(name);
853             }
854           p->section->set_needs_symtab_index();
855           p->section->set_info_section_symndx(p->section);
856         }
857     }
858
859   this->group_signatures_.clear();
860 }
861
862 // Find the first read-only PT_LOAD segment, creating one if
863 // necessary.
864
865 Output_segment*
866 Layout::find_first_load_seg()
867 {
868   for (Segment_list::const_iterator p = this->segment_list_.begin();
869        p != this->segment_list_.end();
870        ++p)
871     {
872       if ((*p)->type() == elfcpp::PT_LOAD
873           && ((*p)->flags() & elfcpp::PF_R) != 0
874           && ((*p)->flags() & elfcpp::PF_W) == 0)
875         return *p;
876     }
877
878   gold_assert(!this->script_options_->saw_phdrs_clause());
879
880   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
881                                                        elfcpp::PF_R);
882   return load_seg;
883 }
884
885 // Finalize the layout.  When this is called, we have created all the
886 // output sections and all the output segments which are based on
887 // input sections.  We have several things to do, and we have to do
888 // them in the right order, so that we get the right results correctly
889 // and efficiently.
890
891 // 1) Finalize the list of output segments and create the segment
892 // table header.
893
894 // 2) Finalize the dynamic symbol table and associated sections.
895
896 // 3) Determine the final file offset of all the output segments.
897
898 // 4) Determine the final file offset of all the SHF_ALLOC output
899 // sections.
900
901 // 5) Create the symbol table sections and the section name table
902 // section.
903
904 // 6) Finalize the symbol table: set symbol values to their final
905 // value and make a final determination of which symbols are going
906 // into the output symbol table.
907
908 // 7) Create the section table header.
909
910 // 8) Determine the final file offset of all the output sections which
911 // are not SHF_ALLOC, including the section table header.
912
913 // 9) Finalize the ELF file header.
914
915 // This function returns the size of the output file.
916
917 off_t
918 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
919                  Target* target, const Task* task)
920 {
921   target->finalize_sections(this);
922
923   this->count_local_symbols(task, input_objects);
924
925   this->create_gold_note();
926   this->create_executable_stack_info(target);
927
928   Output_segment* phdr_seg = NULL;
929   if (!parameters->options().relocatable() && !parameters->doing_static_link())
930     {
931       // There was a dynamic object in the link.  We need to create
932       // some information for the dynamic linker.
933
934       // Create the PT_PHDR segment which will hold the program
935       // headers.
936       if (!this->script_options_->saw_phdrs_clause())
937         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
938
939       // Create the dynamic symbol table, including the hash table.
940       Output_section* dynstr;
941       std::vector<Symbol*> dynamic_symbols;
942       unsigned int local_dynamic_count;
943       Versions versions(*this->script_options()->version_script_info(),
944                         &this->dynpool_);
945       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
946                                   &local_dynamic_count, &dynamic_symbols,
947                                   &versions);
948
949       // Create the .interp section to hold the name of the
950       // interpreter, and put it in a PT_INTERP segment.
951       if (!parameters->options().shared())
952         this->create_interp(target);
953
954       // Finish the .dynamic section to hold the dynamic data, and put
955       // it in a PT_DYNAMIC segment.
956       this->finish_dynamic_section(input_objects, symtab);
957
958       // We should have added everything we need to the dynamic string
959       // table.
960       this->dynpool_.set_string_offsets();
961
962       // Create the version sections.  We can't do this until the
963       // dynamic string table is complete.
964       this->create_version_sections(&versions, symtab, local_dynamic_count,
965                                     dynamic_symbols, dynstr);
966     }
967
968   // If there is a SECTIONS clause, put all the input sections into
969   // the required order.
970   Output_segment* load_seg;
971   if (this->script_options_->saw_sections_clause())
972     load_seg = this->set_section_addresses_from_script(symtab);
973   else if (parameters->options().relocatable())
974     load_seg = NULL;
975   else
976     load_seg = this->find_first_load_seg();
977
978   if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
979     load_seg = NULL;
980
981   gold_assert(phdr_seg == NULL || load_seg != NULL);
982
983   // Lay out the segment headers.
984   Output_segment_headers* segment_headers;
985   if (parameters->options().relocatable())
986     segment_headers = NULL;
987   else
988     {
989       segment_headers = new Output_segment_headers(this->segment_list_);
990       if (load_seg != NULL)
991         load_seg->add_initial_output_data(segment_headers);
992       if (phdr_seg != NULL)
993         phdr_seg->add_initial_output_data(segment_headers);
994     }
995
996   // Lay out the file header.
997   Output_file_header* file_header;
998   file_header = new Output_file_header(target, symtab, segment_headers,
999                                        this->options_.entry());
1000   if (load_seg != NULL)
1001     load_seg->add_initial_output_data(file_header);
1002
1003   this->special_output_list_.push_back(file_header);
1004   if (segment_headers != NULL)
1005     this->special_output_list_.push_back(segment_headers);
1006
1007   if (this->script_options_->saw_phdrs_clause()
1008       && !parameters->options().relocatable())
1009     {
1010       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1011       // clause in a linker script.
1012       Script_sections* ss = this->script_options_->script_sections();
1013       ss->put_headers_in_phdrs(file_header, segment_headers);
1014     }
1015
1016   // We set the output section indexes in set_segment_offsets and
1017   // set_section_indexes.
1018   unsigned int shndx = 1;
1019
1020   // Set the file offsets of all the segments, and all the sections
1021   // they contain.
1022   off_t off;
1023   if (!parameters->options().relocatable())
1024     off = this->set_segment_offsets(target, load_seg, &shndx);
1025   else
1026     off = this->set_relocatable_section_offsets(file_header, &shndx);
1027
1028   // Set the file offsets of all the non-data sections we've seen so
1029   // far which don't have to wait for the input sections.  We need
1030   // this in order to finalize local symbols in non-allocated
1031   // sections.
1032   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1033
1034   // Create the symbol table sections.
1035   this->create_symtab_sections(input_objects, symtab, &off);
1036   if (!parameters->doing_static_link())
1037     this->assign_local_dynsym_offsets(input_objects);
1038
1039   // Process any symbol assignments from a linker script.  This must
1040   // be called after the symbol table has been finalized.
1041   this->script_options_->finalize_symbols(symtab, this);
1042
1043   // Create the .shstrtab section.
1044   Output_section* shstrtab_section = this->create_shstrtab();
1045
1046   // Set the file offsets of the rest of the non-data sections which
1047   // don't have to wait for the input sections.
1048   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1049
1050   // Now that all sections have been created, set the section indexes.
1051   shndx = this->set_section_indexes(shndx);
1052
1053   // Create the section table header.
1054   this->create_shdrs(&off);
1055
1056   // If there are no sections which require postprocessing, we can
1057   // handle the section names now, and avoid a resize later.
1058   if (!this->any_postprocessing_sections_)
1059     off = this->set_section_offsets(off,
1060                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1061
1062   file_header->set_section_info(this->section_headers_, shstrtab_section);
1063
1064   // Now we know exactly where everything goes in the output file
1065   // (except for non-allocated sections which require postprocessing).
1066   Output_data::layout_complete();
1067
1068   this->output_file_size_ = off;
1069
1070   return off;
1071 }
1072
1073 // Create a .note section for an executable or shared library.  This
1074 // records the version of gold used to create the binary.
1075
1076 void
1077 Layout::create_gold_note()
1078 {
1079   if (parameters->options().relocatable())
1080     return;
1081
1082   // Authorities all agree that the values in a .note field should
1083   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1084   // they differ on what the alignment is for 64-bit binaries.
1085   // The GABI says unambiguously they take 8-byte alignment:
1086   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1087   // Other documentation says alignment should always be 4 bytes:
1088   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1089   // GNU ld and GNU readelf both support the latter (at least as of
1090   // version 2.16.91), and glibc always generates the latter for
1091   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1092   // here.
1093 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1094   const int size = parameters->target().get_size();
1095 #else
1096   const int size = 32;
1097 #endif
1098
1099   // The contents of the .note section.
1100   const char* name = "GNU";
1101   std::string desc(std::string("gold ") + gold::get_version_string());
1102   size_t namesz = strlen(name) + 1;
1103   size_t aligned_namesz = align_address(namesz, size / 8);
1104   size_t descsz = desc.length() + 1;
1105   size_t aligned_descsz = align_address(descsz, size / 8);
1106   const int note_type = 4;
1107
1108   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
1109
1110   unsigned char buffer[128];
1111   gold_assert(sizeof buffer >= notesz);
1112   memset(buffer, 0, notesz);
1113
1114   bool is_big_endian = parameters->target().is_big_endian();
1115
1116   if (size == 32)
1117     {
1118       if (!is_big_endian)
1119         {
1120           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1121           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1122           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1123         }
1124       else
1125         {
1126           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1127           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1128           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1129         }
1130     }
1131   else if (size == 64)
1132     {
1133       if (!is_big_endian)
1134         {
1135           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1136           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1137           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1138         }
1139       else
1140         {
1141           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1142           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1143           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1144         }
1145     }
1146   else
1147     gold_unreachable();
1148
1149   memcpy(buffer + 3 * (size / 8), name, namesz);
1150   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
1151
1152   const char* note_name = this->namepool_.add(".note", false, NULL);
1153   Output_section* os = this->make_output_section(note_name,
1154                                                  elfcpp::SHT_NOTE,
1155                                                  0);
1156   Output_section_data* posd = new Output_data_const(buffer, notesz,
1157                                                     size / 8);
1158   os->add_output_section_data(posd);
1159 }
1160
1161 // Record whether the stack should be executable.  This can be set
1162 // from the command line using the -z execstack or -z noexecstack
1163 // options.  Otherwise, if any input file has a .note.GNU-stack
1164 // section with the SHF_EXECINSTR flag set, the stack should be
1165 // executable.  Otherwise, if at least one input file a
1166 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1167 // section, we use the target default for whether the stack should be
1168 // executable.  Otherwise, we don't generate a stack note.  When
1169 // generating a object file, we create a .note.GNU-stack section with
1170 // the appropriate marking.  When generating an executable or shared
1171 // library, we create a PT_GNU_STACK segment.
1172
1173 void
1174 Layout::create_executable_stack_info(const Target* target)
1175 {
1176   bool is_stack_executable;
1177   if (this->options_.is_execstack_set())
1178     is_stack_executable = this->options_.is_stack_executable();
1179   else if (!this->input_with_gnu_stack_note_)
1180     return;
1181   else
1182     {
1183       if (this->input_requires_executable_stack_)
1184         is_stack_executable = true;
1185       else if (this->input_without_gnu_stack_note_)
1186         is_stack_executable = target->is_default_stack_executable();
1187       else
1188         is_stack_executable = false;
1189     }
1190
1191   if (parameters->options().relocatable())
1192     {
1193       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1194       elfcpp::Elf_Xword flags = 0;
1195       if (is_stack_executable)
1196         flags |= elfcpp::SHF_EXECINSTR;
1197       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1198     }
1199   else
1200     {
1201       if (this->script_options_->saw_phdrs_clause())
1202         return;
1203       int flags = elfcpp::PF_R | elfcpp::PF_W;
1204       if (is_stack_executable)
1205         flags |= elfcpp::PF_X;
1206       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1207     }
1208 }
1209
1210 // Return whether SEG1 should be before SEG2 in the output file.  This
1211 // is based entirely on the segment type and flags.  When this is
1212 // called the segment addresses has normally not yet been set.
1213
1214 bool
1215 Layout::segment_precedes(const Output_segment* seg1,
1216                          const Output_segment* seg2)
1217 {
1218   elfcpp::Elf_Word type1 = seg1->type();
1219   elfcpp::Elf_Word type2 = seg2->type();
1220
1221   // The single PT_PHDR segment is required to precede any loadable
1222   // segment.  We simply make it always first.
1223   if (type1 == elfcpp::PT_PHDR)
1224     {
1225       gold_assert(type2 != elfcpp::PT_PHDR);
1226       return true;
1227     }
1228   if (type2 == elfcpp::PT_PHDR)
1229     return false;
1230
1231   // The single PT_INTERP segment is required to precede any loadable
1232   // segment.  We simply make it always second.
1233   if (type1 == elfcpp::PT_INTERP)
1234     {
1235       gold_assert(type2 != elfcpp::PT_INTERP);
1236       return true;
1237     }
1238   if (type2 == elfcpp::PT_INTERP)
1239     return false;
1240
1241   // We then put PT_LOAD segments before any other segments.
1242   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1243     return true;
1244   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1245     return false;
1246
1247   // We put the PT_TLS segment last, because that is where the dynamic
1248   // linker expects to find it (this is just for efficiency; other
1249   // positions would also work correctly).
1250   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1251     return false;
1252   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1253     return true;
1254
1255   const elfcpp::Elf_Word flags1 = seg1->flags();
1256   const elfcpp::Elf_Word flags2 = seg2->flags();
1257
1258   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1259   // by the numeric segment type and flags values.  There should not
1260   // be more than one segment with the same type and flags.
1261   if (type1 != elfcpp::PT_LOAD)
1262     {
1263       if (type1 != type2)
1264         return type1 < type2;
1265       gold_assert(flags1 != flags2);
1266       return flags1 < flags2;
1267     }
1268
1269   // If the addresses are set already, sort by load address.
1270   if (seg1->are_addresses_set())
1271     {
1272       if (!seg2->are_addresses_set())
1273         return true;
1274
1275       unsigned int section_count1 = seg1->output_section_count();
1276       unsigned int section_count2 = seg2->output_section_count();
1277       if (section_count1 == 0 && section_count2 > 0)
1278         return true;
1279       if (section_count1 > 0 && section_count2 == 0)
1280         return false;
1281
1282       uint64_t paddr1 = seg1->first_section_load_address();
1283       uint64_t paddr2 = seg2->first_section_load_address();
1284       if (paddr1 != paddr2)
1285         return paddr1 < paddr2;
1286     }
1287   else if (seg2->are_addresses_set())
1288     return false;
1289
1290   // We sort PT_LOAD segments based on the flags.  Readonly segments
1291   // come before writable segments.  Then writable segments with data
1292   // come before writable segments without data.  Then executable
1293   // segments come before non-executable segments.  Then the unlikely
1294   // case of a non-readable segment comes before the normal case of a
1295   // readable segment.  If there are multiple segments with the same
1296   // type and flags, we require that the address be set, and we sort
1297   // by virtual address and then physical address.
1298   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1299     return (flags1 & elfcpp::PF_W) == 0;
1300   if ((flags1 & elfcpp::PF_W) != 0
1301       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1302     return seg1->has_any_data_sections();
1303   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1304     return (flags1 & elfcpp::PF_X) != 0;
1305   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1306     return (flags1 & elfcpp::PF_R) == 0;
1307
1308   // We shouldn't get here--we shouldn't create segments which we
1309   // can't distinguish.
1310   gold_unreachable();
1311 }
1312
1313 // Set the file offsets of all the segments, and all the sections they
1314 // contain.  They have all been created.  LOAD_SEG must be be laid out
1315 // first.  Return the offset of the data to follow.
1316
1317 off_t
1318 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1319                             unsigned int *pshndx)
1320 {
1321   // Sort them into the final order.
1322   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1323             Layout::Compare_segments());
1324
1325   // Find the PT_LOAD segments, and set their addresses and offsets
1326   // and their section's addresses and offsets.
1327   uint64_t addr;
1328   if (this->options_.user_set_Ttext())
1329     addr = this->options_.Ttext();
1330   else if (parameters->options().shared())
1331     addr = 0;
1332   else
1333     addr = target->default_text_segment_address();
1334   off_t off = 0;
1335
1336   // If LOAD_SEG is NULL, then the file header and segment headers
1337   // will not be loadable.  But they still need to be at offset 0 in
1338   // the file.  Set their offsets now.
1339   if (load_seg == NULL)
1340     {
1341       for (Data_list::iterator p = this->special_output_list_.begin();
1342            p != this->special_output_list_.end();
1343            ++p)
1344         {
1345           off = align_address(off, (*p)->addralign());
1346           (*p)->set_address_and_file_offset(0, off);
1347           off += (*p)->data_size();
1348         }
1349     }
1350
1351   bool was_readonly = false;
1352   for (Segment_list::iterator p = this->segment_list_.begin();
1353        p != this->segment_list_.end();
1354        ++p)
1355     {
1356       if ((*p)->type() == elfcpp::PT_LOAD)
1357         {
1358           if (load_seg != NULL && load_seg != *p)
1359             gold_unreachable();
1360           load_seg = NULL;
1361
1362           bool are_addresses_set = (*p)->are_addresses_set();
1363           if (are_addresses_set)
1364             {
1365               // When it comes to setting file offsets, we care about
1366               // the physical address.
1367               addr = (*p)->paddr();
1368             }
1369           else if (this->options_.user_set_Tdata()
1370                    && ((*p)->flags() & elfcpp::PF_W) != 0
1371                    && (!this->options_.user_set_Tbss()
1372                        || (*p)->has_any_data_sections()))
1373             {
1374               addr = this->options_.Tdata();
1375               are_addresses_set = true;
1376             }
1377           else if (this->options_.user_set_Tbss()
1378                    && ((*p)->flags() & elfcpp::PF_W) != 0
1379                    && !(*p)->has_any_data_sections())
1380             {
1381               addr = this->options_.Tbss();
1382               are_addresses_set = true;
1383             }
1384
1385           uint64_t orig_addr = addr;
1386           uint64_t orig_off = off;
1387
1388           uint64_t aligned_addr = 0;
1389           uint64_t abi_pagesize = target->abi_pagesize();
1390
1391           // FIXME: This should depend on the -n and -N options.
1392           (*p)->set_minimum_p_align(target->common_pagesize());
1393
1394           if (are_addresses_set)
1395             {
1396               // Adjust the file offset to the same address modulo the
1397               // page size.
1398               uint64_t unsigned_off = off;
1399               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1400                                       | (addr & (abi_pagesize - 1)));
1401               if (aligned_off < unsigned_off)
1402                 aligned_off += abi_pagesize;
1403               off = aligned_off;
1404             }
1405           else
1406             {
1407               // If the last segment was readonly, and this one is
1408               // not, then skip the address forward one page,
1409               // maintaining the same position within the page.  This
1410               // lets us store both segments overlapping on a single
1411               // page in the file, but the loader will put them on
1412               // different pages in memory.
1413
1414               addr = align_address(addr, (*p)->maximum_alignment());
1415               aligned_addr = addr;
1416
1417               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1418                 {
1419                   if ((addr & (abi_pagesize - 1)) != 0)
1420                     addr = addr + abi_pagesize;
1421                 }
1422
1423               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1424             }
1425
1426           unsigned int shndx_hold = *pshndx;
1427           uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1428                                                           pshndx);
1429
1430           // Now that we know the size of this segment, we may be able
1431           // to save a page in memory, at the cost of wasting some
1432           // file space, by instead aligning to the start of a new
1433           // page.  Here we use the real machine page size rather than
1434           // the ABI mandated page size.
1435
1436           if (!are_addresses_set && aligned_addr != addr)
1437             {
1438               uint64_t common_pagesize = target->common_pagesize();
1439               uint64_t first_off = (common_pagesize
1440                                     - (aligned_addr
1441                                        & (common_pagesize - 1)));
1442               uint64_t last_off = new_addr & (common_pagesize - 1);
1443               if (first_off > 0
1444                   && last_off > 0
1445                   && ((aligned_addr & ~ (common_pagesize - 1))
1446                       != (new_addr & ~ (common_pagesize - 1)))
1447                   && first_off + last_off <= common_pagesize)
1448                 {
1449                   *pshndx = shndx_hold;
1450                   addr = align_address(aligned_addr, common_pagesize);
1451                   addr = align_address(addr, (*p)->maximum_alignment());
1452                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1453                   new_addr = (*p)->set_section_addresses(true, addr, &off,
1454                                                          pshndx);
1455                 }
1456             }
1457
1458           addr = new_addr;
1459
1460           if (((*p)->flags() & elfcpp::PF_W) == 0)
1461             was_readonly = true;
1462         }
1463     }
1464
1465   // Handle the non-PT_LOAD segments, setting their offsets from their
1466   // section's offsets.
1467   for (Segment_list::iterator p = this->segment_list_.begin();
1468        p != this->segment_list_.end();
1469        ++p)
1470     {
1471       if ((*p)->type() != elfcpp::PT_LOAD)
1472         (*p)->set_offset();
1473     }
1474
1475   // Set the TLS offsets for each section in the PT_TLS segment.
1476   if (this->tls_segment_ != NULL)
1477     this->tls_segment_->set_tls_offsets();
1478
1479   return off;
1480 }
1481
1482 // Set the offsets of all the allocated sections when doing a
1483 // relocatable link.  This does the same jobs as set_segment_offsets,
1484 // only for a relocatable link.
1485
1486 off_t
1487 Layout::set_relocatable_section_offsets(Output_data* file_header,
1488                                         unsigned int *pshndx)
1489 {
1490   off_t off = 0;
1491
1492   file_header->set_address_and_file_offset(0, 0);
1493   off += file_header->data_size();
1494
1495   for (Section_list::iterator p = this->section_list_.begin();
1496        p != this->section_list_.end();
1497        ++p)
1498     {
1499       // We skip unallocated sections here, except that group sections
1500       // have to come first.
1501       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1502           && (*p)->type() != elfcpp::SHT_GROUP)
1503         continue;
1504
1505       off = align_address(off, (*p)->addralign());
1506
1507       // The linker script might have set the address.
1508       if (!(*p)->is_address_valid())
1509         (*p)->set_address(0);
1510       (*p)->set_file_offset(off);
1511       (*p)->finalize_data_size();
1512       off += (*p)->data_size();
1513
1514       (*p)->set_out_shndx(*pshndx);
1515       ++*pshndx;
1516     }
1517
1518   return off;
1519 }
1520
1521 // Set the file offset of all the sections not associated with a
1522 // segment.
1523
1524 off_t
1525 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1526 {
1527   for (Section_list::iterator p = this->unattached_section_list_.begin();
1528        p != this->unattached_section_list_.end();
1529        ++p)
1530     {
1531       // The symtab section is handled in create_symtab_sections.
1532       if (*p == this->symtab_section_)
1533         continue;
1534
1535       // If we've already set the data size, don't set it again.
1536       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1537         continue;
1538
1539       if (pass == BEFORE_INPUT_SECTIONS_PASS
1540           && (*p)->requires_postprocessing())
1541         {
1542           (*p)->create_postprocessing_buffer();
1543           this->any_postprocessing_sections_ = true;
1544         }
1545
1546       if (pass == BEFORE_INPUT_SECTIONS_PASS
1547           && (*p)->after_input_sections())
1548         continue;
1549       else if (pass == POSTPROCESSING_SECTIONS_PASS
1550                && (!(*p)->after_input_sections()
1551                    || (*p)->type() == elfcpp::SHT_STRTAB))
1552         continue;
1553       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1554                && (!(*p)->after_input_sections()
1555                    || (*p)->type() != elfcpp::SHT_STRTAB))
1556         continue;
1557
1558       off = align_address(off, (*p)->addralign());
1559       (*p)->set_file_offset(off);
1560       (*p)->finalize_data_size();
1561       off += (*p)->data_size();
1562
1563       // At this point the name must be set.
1564       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1565         this->namepool_.add((*p)->name(), false, NULL);
1566     }
1567   return off;
1568 }
1569
1570 // Set the section indexes of all the sections not associated with a
1571 // segment.
1572
1573 unsigned int
1574 Layout::set_section_indexes(unsigned int shndx)
1575 {
1576   const bool output_is_object = parameters->options().relocatable();
1577   for (Section_list::iterator p = this->unattached_section_list_.begin();
1578        p != this->unattached_section_list_.end();
1579        ++p)
1580     {
1581       // In a relocatable link, we already did group sections.
1582       if (output_is_object
1583           && (*p)->type() == elfcpp::SHT_GROUP)
1584         continue;
1585
1586       (*p)->set_out_shndx(shndx);
1587       ++shndx;
1588     }
1589   return shndx;
1590 }
1591
1592 // Set the section addresses according to the linker script.  This is
1593 // only called when we see a SECTIONS clause.  This returns the
1594 // program segment which should hold the file header and segment
1595 // headers, if any.  It will return NULL if they should not be in a
1596 // segment.
1597
1598 Output_segment*
1599 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1600 {
1601   Script_sections* ss = this->script_options_->script_sections();
1602   gold_assert(ss->saw_sections_clause());
1603
1604   // Place each orphaned output section in the script.
1605   for (Section_list::iterator p = this->section_list_.begin();
1606        p != this->section_list_.end();
1607        ++p)
1608     {
1609       if (!(*p)->found_in_sections_clause())
1610         ss->place_orphan(*p);
1611     }
1612
1613   return this->script_options_->set_section_addresses(symtab, this);
1614 }
1615
1616 // Count the local symbols in the regular symbol table and the dynamic
1617 // symbol table, and build the respective string pools.
1618
1619 void
1620 Layout::count_local_symbols(const Task* task,
1621                             const Input_objects* input_objects)
1622 {
1623   // First, figure out an upper bound on the number of symbols we'll
1624   // be inserting into each pool.  This helps us create the pools with
1625   // the right size, to avoid unnecessary hashtable resizing.
1626   unsigned int symbol_count = 0;
1627   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1628        p != input_objects->relobj_end();
1629        ++p)
1630     symbol_count += (*p)->local_symbol_count();
1631
1632   // Go from "upper bound" to "estimate."  We overcount for two
1633   // reasons: we double-count symbols that occur in more than one
1634   // object file, and we count symbols that are dropped from the
1635   // output.  Add it all together and assume we overcount by 100%.
1636   symbol_count /= 2;
1637
1638   // We assume all symbols will go into both the sympool and dynpool.
1639   this->sympool_.reserve(symbol_count);
1640   this->dynpool_.reserve(symbol_count);
1641
1642   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1643        p != input_objects->relobj_end();
1644        ++p)
1645     {
1646       Task_lock_obj<Object> tlo(task, *p);
1647       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1648     }
1649 }
1650
1651 // Create the symbol table sections.  Here we also set the final
1652 // values of the symbols.  At this point all the loadable sections are
1653 // fully laid out.
1654
1655 void
1656 Layout::create_symtab_sections(const Input_objects* input_objects,
1657                                Symbol_table* symtab,
1658                                off_t* poff)
1659 {
1660   int symsize;
1661   unsigned int align;
1662   if (parameters->target().get_size() == 32)
1663     {
1664       symsize = elfcpp::Elf_sizes<32>::sym_size;
1665       align = 4;
1666     }
1667   else if (parameters->target().get_size() == 64)
1668     {
1669       symsize = elfcpp::Elf_sizes<64>::sym_size;
1670       align = 8;
1671     }
1672   else
1673     gold_unreachable();
1674
1675   off_t off = *poff;
1676   off = align_address(off, align);
1677   off_t startoff = off;
1678
1679   // Save space for the dummy symbol at the start of the section.  We
1680   // never bother to write this out--it will just be left as zero.
1681   off += symsize;
1682   unsigned int local_symbol_index = 1;
1683
1684   // Add STT_SECTION symbols for each Output section which needs one.
1685   for (Section_list::iterator p = this->section_list_.begin();
1686        p != this->section_list_.end();
1687        ++p)
1688     {
1689       if (!(*p)->needs_symtab_index())
1690         (*p)->set_symtab_index(-1U);
1691       else
1692         {
1693           (*p)->set_symtab_index(local_symbol_index);
1694           ++local_symbol_index;
1695           off += symsize;
1696         }
1697     }
1698
1699   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1700        p != input_objects->relobj_end();
1701        ++p)
1702     {
1703       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1704                                                         off);
1705       off += (index - local_symbol_index) * symsize;
1706       local_symbol_index = index;
1707     }
1708
1709   unsigned int local_symcount = local_symbol_index;
1710   gold_assert(local_symcount * symsize == off - startoff);
1711
1712   off_t dynoff;
1713   size_t dyn_global_index;
1714   size_t dyncount;
1715   if (this->dynsym_section_ == NULL)
1716     {
1717       dynoff = 0;
1718       dyn_global_index = 0;
1719       dyncount = 0;
1720     }
1721   else
1722     {
1723       dyn_global_index = this->dynsym_section_->info();
1724       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1725       dynoff = this->dynsym_section_->offset() + locsize;
1726       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1727       gold_assert(static_cast<off_t>(dyncount * symsize)
1728                   == this->dynsym_section_->data_size() - locsize);
1729     }
1730
1731   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1732                          &this->sympool_, &local_symcount);
1733
1734   if (!parameters->options().strip_all())
1735     {
1736       this->sympool_.set_string_offsets();
1737
1738       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1739       Output_section* osymtab = this->make_output_section(symtab_name,
1740                                                           elfcpp::SHT_SYMTAB,
1741                                                           0);
1742       this->symtab_section_ = osymtab;
1743
1744       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1745                                                              align);
1746       osymtab->add_output_section_data(pos);
1747
1748       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1749       Output_section* ostrtab = this->make_output_section(strtab_name,
1750                                                           elfcpp::SHT_STRTAB,
1751                                                           0);
1752
1753       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1754       ostrtab->add_output_section_data(pstr);
1755
1756       osymtab->set_file_offset(startoff);
1757       osymtab->finalize_data_size();
1758       osymtab->set_link_section(ostrtab);
1759       osymtab->set_info(local_symcount);
1760       osymtab->set_entsize(symsize);
1761
1762       *poff = off;
1763     }
1764 }
1765
1766 // Create the .shstrtab section, which holds the names of the
1767 // sections.  At the time this is called, we have created all the
1768 // output sections except .shstrtab itself.
1769
1770 Output_section*
1771 Layout::create_shstrtab()
1772 {
1773   // FIXME: We don't need to create a .shstrtab section if we are
1774   // stripping everything.
1775
1776   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1777
1778   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1779
1780   // We can't write out this section until we've set all the section
1781   // names, and we don't set the names of compressed output sections
1782   // until relocations are complete.
1783   os->set_after_input_sections();
1784
1785   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1786   os->add_output_section_data(posd);
1787
1788   return os;
1789 }
1790
1791 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1792 // offset.
1793
1794 void
1795 Layout::create_shdrs(off_t* poff)
1796 {
1797   Output_section_headers* oshdrs;
1798   oshdrs = new Output_section_headers(this,
1799                                       &this->segment_list_,
1800                                       &this->section_list_,
1801                                       &this->unattached_section_list_,
1802                                       &this->namepool_);
1803   off_t off = align_address(*poff, oshdrs->addralign());
1804   oshdrs->set_address_and_file_offset(0, off);
1805   off += oshdrs->data_size();
1806   *poff = off;
1807   this->section_headers_ = oshdrs;
1808 }
1809
1810 // Create the dynamic symbol table.
1811
1812 void
1813 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1814                               Symbol_table* symtab,
1815                               Output_section **pdynstr,
1816                               unsigned int* plocal_dynamic_count,
1817                               std::vector<Symbol*>* pdynamic_symbols,
1818                               Versions* pversions)
1819 {
1820   // Count all the symbols in the dynamic symbol table, and set the
1821   // dynamic symbol indexes.
1822
1823   // Skip symbol 0, which is always all zeroes.
1824   unsigned int index = 1;
1825
1826   // Add STT_SECTION symbols for each Output section which needs one.
1827   for (Section_list::iterator p = this->section_list_.begin();
1828        p != this->section_list_.end();
1829        ++p)
1830     {
1831       if (!(*p)->needs_dynsym_index())
1832         (*p)->set_dynsym_index(-1U);
1833       else
1834         {
1835           (*p)->set_dynsym_index(index);
1836           ++index;
1837         }
1838     }
1839
1840   // Count the local symbols that need to go in the dynamic symbol table,
1841   // and set the dynamic symbol indexes.
1842   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1843        p != input_objects->relobj_end();
1844        ++p)
1845     {
1846       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1847       index = new_index;
1848     }
1849
1850   unsigned int local_symcount = index;
1851   *plocal_dynamic_count = local_symcount;
1852
1853   // FIXME: We have to tell set_dynsym_indexes whether the
1854   // -E/--export-dynamic option was used.
1855   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1856                                      &this->dynpool_, pversions);
1857
1858   int symsize;
1859   unsigned int align;
1860   const int size = parameters->target().get_size();
1861   if (size == 32)
1862     {
1863       symsize = elfcpp::Elf_sizes<32>::sym_size;
1864       align = 4;
1865     }
1866   else if (size == 64)
1867     {
1868       symsize = elfcpp::Elf_sizes<64>::sym_size;
1869       align = 8;
1870     }
1871   else
1872     gold_unreachable();
1873
1874   // Create the dynamic symbol table section.
1875
1876   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1877                                                        elfcpp::SHT_DYNSYM,
1878                                                        elfcpp::SHF_ALLOC,
1879                                                        false);
1880
1881   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1882                                                            align);
1883   dynsym->add_output_section_data(odata);
1884
1885   dynsym->set_info(local_symcount);
1886   dynsym->set_entsize(symsize);
1887   dynsym->set_addralign(align);
1888
1889   this->dynsym_section_ = dynsym;
1890
1891   Output_data_dynamic* const odyn = this->dynamic_data_;
1892   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1893   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1894
1895   // Create the dynamic string table section.
1896
1897   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1898                                                        elfcpp::SHT_STRTAB,
1899                                                        elfcpp::SHF_ALLOC,
1900                                                        false);
1901
1902   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1903   dynstr->add_output_section_data(strdata);
1904
1905   dynsym->set_link_section(dynstr);
1906   this->dynamic_section_->set_link_section(dynstr);
1907
1908   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1909   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1910
1911   *pdynstr = dynstr;
1912
1913   // Create the hash tables.
1914
1915   // FIXME: We need an option to create a GNU hash table.
1916
1917   unsigned char* phash;
1918   unsigned int hashlen;
1919   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1920                                 &phash, &hashlen);
1921
1922   Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1923                                                         elfcpp::SHT_HASH,
1924                                                         elfcpp::SHF_ALLOC,
1925                                                         false);
1926
1927   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1928                                                                hashlen,
1929                                                                align);
1930   hashsec->add_output_section_data(hashdata);
1931
1932   hashsec->set_link_section(dynsym);
1933   hashsec->set_entsize(4);
1934
1935   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1936 }
1937
1938 // Assign offsets to each local portion of the dynamic symbol table.
1939
1940 void
1941 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1942 {
1943   Output_section* dynsym = this->dynsym_section_;
1944   gold_assert(dynsym != NULL);
1945
1946   off_t off = dynsym->offset();
1947
1948   // Skip the dummy symbol at the start of the section.
1949   off += dynsym->entsize();
1950
1951   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1952        p != input_objects->relobj_end();
1953        ++p)
1954     {
1955       unsigned int count = (*p)->set_local_dynsym_offset(off);
1956       off += count * dynsym->entsize();
1957     }
1958 }
1959
1960 // Create the version sections.
1961
1962 void
1963 Layout::create_version_sections(const Versions* versions,
1964                                 const Symbol_table* symtab,
1965                                 unsigned int local_symcount,
1966                                 const std::vector<Symbol*>& dynamic_symbols,
1967                                 const Output_section* dynstr)
1968 {
1969   if (!versions->any_defs() && !versions->any_needs())
1970     return;
1971
1972   switch (parameters->size_and_endianness())
1973     {
1974 #ifdef HAVE_TARGET_32_LITTLE
1975     case Parameters::TARGET_32_LITTLE:
1976       this->sized_create_version_sections
1977           SELECT_SIZE_ENDIAN_NAME(32, false)(
1978               versions, symtab, local_symcount, dynamic_symbols, dynstr
1979               SELECT_SIZE_ENDIAN(32, false));
1980       break;
1981 #endif
1982 #ifdef HAVE_TARGET_32_BIG
1983     case Parameters::TARGET_32_BIG:
1984       this->sized_create_version_sections
1985           SELECT_SIZE_ENDIAN_NAME(32, true)(
1986               versions, symtab, local_symcount, dynamic_symbols, dynstr
1987               SELECT_SIZE_ENDIAN(32, true));
1988       break;
1989 #endif
1990 #ifdef HAVE_TARGET_64_LITTLE
1991     case Parameters::TARGET_64_LITTLE:
1992       this->sized_create_version_sections
1993           SELECT_SIZE_ENDIAN_NAME(64, false)(
1994               versions, symtab, local_symcount, dynamic_symbols, dynstr
1995               SELECT_SIZE_ENDIAN(64, false));
1996       break;
1997 #endif
1998 #ifdef HAVE_TARGET_64_BIG
1999     case Parameters::TARGET_64_BIG:
2000       this->sized_create_version_sections
2001           SELECT_SIZE_ENDIAN_NAME(64, true)(
2002               versions, symtab, local_symcount, dynamic_symbols, dynstr
2003               SELECT_SIZE_ENDIAN(64, true));
2004       break;
2005 #endif
2006     default:
2007       gold_unreachable();
2008     }
2009 }
2010
2011 // Create the version sections, sized version.
2012
2013 template<int size, bool big_endian>
2014 void
2015 Layout::sized_create_version_sections(
2016     const Versions* versions,
2017     const Symbol_table* symtab,
2018     unsigned int local_symcount,
2019     const std::vector<Symbol*>& dynamic_symbols,
2020     const Output_section* dynstr
2021     ACCEPT_SIZE_ENDIAN)
2022 {
2023   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2024                                                      elfcpp::SHT_GNU_versym,
2025                                                      elfcpp::SHF_ALLOC,
2026                                                      false);
2027
2028   unsigned char* vbuf;
2029   unsigned int vsize;
2030   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2031       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
2032       SELECT_SIZE_ENDIAN(size, big_endian));
2033
2034   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2035
2036   vsec->add_output_section_data(vdata);
2037   vsec->set_entsize(2);
2038   vsec->set_link_section(this->dynsym_section_);
2039
2040   Output_data_dynamic* const odyn = this->dynamic_data_;
2041   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2042
2043   if (versions->any_defs())
2044     {
2045       Output_section* vdsec;
2046       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2047                                          elfcpp::SHT_GNU_verdef,
2048                                          elfcpp::SHF_ALLOC,
2049                                          false);
2050
2051       unsigned char* vdbuf;
2052       unsigned int vdsize;
2053       unsigned int vdentries;
2054       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2055           &this->dynpool_, &vdbuf, &vdsize, &vdentries
2056           SELECT_SIZE_ENDIAN(size, big_endian));
2057
2058       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2059                                                                  vdsize,
2060                                                                  4);
2061
2062       vdsec->add_output_section_data(vddata);
2063       vdsec->set_link_section(dynstr);
2064       vdsec->set_info(vdentries);
2065
2066       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2067       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2068     }
2069
2070   if (versions->any_needs())
2071     {
2072       Output_section* vnsec;
2073       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2074                                           elfcpp::SHT_GNU_verneed,
2075                                           elfcpp::SHF_ALLOC,
2076                                           false);
2077
2078       unsigned char* vnbuf;
2079       unsigned int vnsize;
2080       unsigned int vnentries;
2081       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
2082         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
2083          SELECT_SIZE_ENDIAN(size, big_endian));
2084
2085       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2086                                                                  vnsize,
2087                                                                  4);
2088
2089       vnsec->add_output_section_data(vndata);
2090       vnsec->set_link_section(dynstr);
2091       vnsec->set_info(vnentries);
2092
2093       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2094       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2095     }
2096 }
2097
2098 // Create the .interp section and PT_INTERP segment.
2099
2100 void
2101 Layout::create_interp(const Target* target)
2102 {
2103   const char* interp = this->options_.dynamic_linker();
2104   if (interp == NULL)
2105     {
2106       interp = target->dynamic_linker();
2107       gold_assert(interp != NULL);
2108     }
2109
2110   size_t len = strlen(interp) + 1;
2111
2112   Output_section_data* odata = new Output_data_const(interp, len, 1);
2113
2114   Output_section* osec = this->choose_output_section(NULL, ".interp",
2115                                                      elfcpp::SHT_PROGBITS,
2116                                                      elfcpp::SHF_ALLOC,
2117                                                      false);
2118   osec->add_output_section_data(odata);
2119
2120   if (!this->script_options_->saw_phdrs_clause())
2121     {
2122       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2123                                                        elfcpp::PF_R);
2124       oseg->add_initial_output_section(osec, elfcpp::PF_R);
2125     }
2126 }
2127
2128 // Finish the .dynamic section and PT_DYNAMIC segment.
2129
2130 void
2131 Layout::finish_dynamic_section(const Input_objects* input_objects,
2132                                const Symbol_table* symtab)
2133 {
2134   if (!this->script_options_->saw_phdrs_clause())
2135     {
2136       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2137                                                        (elfcpp::PF_R
2138                                                         | elfcpp::PF_W));
2139       oseg->add_initial_output_section(this->dynamic_section_,
2140                                        elfcpp::PF_R | elfcpp::PF_W);
2141     }
2142
2143   Output_data_dynamic* const odyn = this->dynamic_data_;
2144
2145   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2146        p != input_objects->dynobj_end();
2147        ++p)
2148     {
2149       // FIXME: Handle --as-needed.
2150       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2151     }
2152
2153   if (parameters->options().shared())
2154     {
2155       const char* soname = this->options_.soname();
2156       if (soname != NULL)
2157         odyn->add_string(elfcpp::DT_SONAME, soname);
2158     }
2159
2160   // FIXME: Support --init and --fini.
2161   Symbol* sym = symtab->lookup("_init");
2162   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2163     odyn->add_symbol(elfcpp::DT_INIT, sym);
2164
2165   sym = symtab->lookup("_fini");
2166   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2167     odyn->add_symbol(elfcpp::DT_FINI, sym);
2168
2169   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2170
2171   // Add a DT_RPATH entry if needed.
2172   const General_options::Dir_list& rpath(this->options_.rpath());
2173   if (!rpath.empty())
2174     {
2175       std::string rpath_val;
2176       for (General_options::Dir_list::const_iterator p = rpath.begin();
2177            p != rpath.end();
2178            ++p)
2179         {
2180           if (rpath_val.empty())
2181             rpath_val = p->name();
2182           else
2183             {
2184               // Eliminate duplicates.
2185               General_options::Dir_list::const_iterator q;
2186               for (q = rpath.begin(); q != p; ++q)
2187                 if (q->name() == p->name())
2188                   break;
2189               if (q == p)
2190                 {
2191                   rpath_val += ':';
2192                   rpath_val += p->name();
2193                 }
2194             }
2195         }
2196
2197       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2198     }
2199
2200   // Look for text segments that have dynamic relocations.
2201   bool have_textrel = false;
2202   if (!this->script_options_->saw_sections_clause())
2203     {
2204       for (Segment_list::const_iterator p = this->segment_list_.begin();
2205            p != this->segment_list_.end();
2206            ++p)
2207         {
2208           if (((*p)->flags() & elfcpp::PF_W) == 0
2209               && (*p)->dynamic_reloc_count() > 0)
2210             {
2211               have_textrel = true;
2212               break;
2213             }
2214         }
2215     }
2216   else
2217     {
2218       // We don't know the section -> segment mapping, so we are
2219       // conservative and just look for readonly sections with
2220       // relocations.  If those sections wind up in writable segments,
2221       // then we have created an unnecessary DT_TEXTREL entry.
2222       for (Section_list::const_iterator p = this->section_list_.begin();
2223            p != this->section_list_.end();
2224            ++p)
2225         {
2226           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2227               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2228               && ((*p)->dynamic_reloc_count() > 0))
2229             {
2230               have_textrel = true;
2231               break;
2232             }
2233         }
2234     }
2235
2236   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2237   // post-link tools can easily modify these flags if desired.
2238   unsigned int flags = 0;
2239   if (have_textrel)
2240     {
2241       // Add a DT_TEXTREL for compatibility with older loaders.
2242       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2243       flags |= elfcpp::DF_TEXTREL;
2244     }
2245   if (parameters->options().shared() && this->has_static_tls())
2246     flags |= elfcpp::DF_STATIC_TLS;
2247   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2248 }
2249
2250 // The mapping of .gnu.linkonce section names to real section names.
2251
2252 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2253 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2254 {
2255   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
2256   MAPPING_INIT("t", ".text"),
2257   MAPPING_INIT("r", ".rodata"),
2258   MAPPING_INIT("d", ".data"),
2259   MAPPING_INIT("b", ".bss"),
2260   MAPPING_INIT("s", ".sdata"),
2261   MAPPING_INIT("sb", ".sbss"),
2262   MAPPING_INIT("s2", ".sdata2"),
2263   MAPPING_INIT("sb2", ".sbss2"),
2264   MAPPING_INIT("wi", ".debug_info"),
2265   MAPPING_INIT("td", ".tdata"),
2266   MAPPING_INIT("tb", ".tbss"),
2267   MAPPING_INIT("lr", ".lrodata"),
2268   MAPPING_INIT("l", ".ldata"),
2269   MAPPING_INIT("lb", ".lbss"),
2270 };
2271 #undef MAPPING_INIT
2272
2273 const int Layout::linkonce_mapping_count =
2274   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2275
2276 // Return the name of the output section to use for a .gnu.linkonce
2277 // section.  This is based on the default ELF linker script of the old
2278 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2279 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2280 // initialized to the length of NAME.
2281
2282 const char*
2283 Layout::linkonce_output_name(const char* name, size_t *plen)
2284 {
2285   const char* s = name + sizeof(".gnu.linkonce") - 1;
2286   if (*s != '.')
2287     return name;
2288   ++s;
2289   const Linkonce_mapping* plm = linkonce_mapping;
2290   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2291     {
2292       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2293         {
2294           *plen = plm->tolen;
2295           return plm->to;
2296         }
2297     }
2298   return name;
2299 }
2300
2301 // Choose the output section name to use given an input section name.
2302 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2303 // length of NAME.
2304
2305 const char*
2306 Layout::output_section_name(const char* name, size_t* plen)
2307 {
2308   if (Layout::is_linkonce(name))
2309     {
2310       // .gnu.linkonce sections are laid out as though they were named
2311       // for the sections are placed into.
2312       return Layout::linkonce_output_name(name, plen);
2313     }
2314
2315   // gcc 4.3 generates the following sorts of section names when it
2316   // needs a section name specific to a function:
2317   //   .text.FN
2318   //   .rodata.FN
2319   //   .sdata2.FN
2320   //   .data.FN
2321   //   .data.rel.FN
2322   //   .data.rel.local.FN
2323   //   .data.rel.ro.FN
2324   //   .data.rel.ro.local.FN
2325   //   .sdata.FN
2326   //   .bss.FN
2327   //   .sbss.FN
2328   //   .tdata.FN
2329   //   .tbss.FN
2330
2331   // The GNU linker maps all of those to the part before the .FN,
2332   // except that .data.rel.local.FN is mapped to .data, and
2333   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2334   // beginning with .data.rel.ro.local are grouped together.
2335
2336   // For an anonymous namespace, the string FN can contain a '.'.
2337
2338   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2339   // GNU linker maps to .rodata.
2340
2341   // The .data.rel.ro sections enable a security feature triggered by
2342   // the -z relro option.  Section which need to be relocated at
2343   // program startup time but which may be readonly after startup are
2344   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2345   // segment.  The dynamic linker will make that segment writable,
2346   // perform relocations, and then make it read-only.  FIXME: We do
2347   // not yet implement this optimization.
2348
2349   // It is hard to handle this in a principled way.
2350
2351   // These are the rules we follow:
2352
2353   // If the section name has no initial '.', or no dot other than an
2354   // initial '.', we use the name unchanged (i.e., "mysection" and
2355   // ".text" are unchanged).
2356
2357   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2358
2359   // Otherwise, we drop the second '.' and everything that comes after
2360   // it (i.e., ".text.XXX" becomes ".text").
2361
2362   const char* s = name;
2363   if (*s != '.')
2364     return name;
2365   ++s;
2366   const char* sdot = strchr(s, '.');
2367   if (sdot == NULL)
2368     return name;
2369
2370   const char* const data_rel_ro = ".data.rel.ro";
2371   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2372     {
2373       *plen = strlen(data_rel_ro);
2374       return data_rel_ro;
2375     }
2376
2377   *plen = sdot - name;
2378   return name;
2379 }
2380
2381 // Record the signature of a comdat section, and return whether to
2382 // include it in the link.  If GROUP is true, this is a regular
2383 // section group.  If GROUP is false, this is a group signature
2384 // derived from the name of a linkonce section.  We want linkonce
2385 // signatures and group signatures to block each other, but we don't
2386 // want a linkonce signature to block another linkonce signature.
2387
2388 bool
2389 Layout::add_comdat(const char* signature, bool group)
2390 {
2391   std::string sig(signature);
2392   std::pair<Signatures::iterator, bool> ins(
2393     this->signatures_.insert(std::make_pair(sig, group)));
2394
2395   if (ins.second)
2396     {
2397       // This is the first time we've seen this signature.
2398       return true;
2399     }
2400
2401   if (ins.first->second)
2402     {
2403       // We've already seen a real section group with this signature.
2404       return false;
2405     }
2406   else if (group)
2407     {
2408       // This is a real section group, and we've already seen a
2409       // linkonce section with this signature.  Record that we've seen
2410       // a section group, and don't include this section group.
2411       ins.first->second = true;
2412       return false;
2413     }
2414   else
2415     {
2416       // We've already seen a linkonce section and this is a linkonce
2417       // section.  These don't block each other--this may be the same
2418       // symbol name with different section types.
2419       return true;
2420     }
2421 }
2422
2423 // Store the allocated sections into the section list.
2424
2425 void
2426 Layout::get_allocated_sections(Section_list* section_list) const
2427 {
2428   for (Section_list::const_iterator p = this->section_list_.begin();
2429        p != this->section_list_.end();
2430        ++p)
2431     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2432       section_list->push_back(*p);
2433 }
2434
2435 // Create an output segment.
2436
2437 Output_segment*
2438 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2439 {
2440   gold_assert(!parameters->options().relocatable());
2441   Output_segment* oseg = new Output_segment(type, flags);
2442   this->segment_list_.push_back(oseg);
2443   return oseg;
2444 }
2445
2446 // Write out the Output_sections.  Most won't have anything to write,
2447 // since most of the data will come from input sections which are
2448 // handled elsewhere.  But some Output_sections do have Output_data.
2449
2450 void
2451 Layout::write_output_sections(Output_file* of) const
2452 {
2453   for (Section_list::const_iterator p = this->section_list_.begin();
2454        p != this->section_list_.end();
2455        ++p)
2456     {
2457       if (!(*p)->after_input_sections())
2458         (*p)->write(of);
2459     }
2460 }
2461
2462 // Write out data not associated with a section or the symbol table.
2463
2464 void
2465 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2466 {
2467   if (!parameters->options().strip_all())
2468     {
2469       const Output_section* symtab_section = this->symtab_section_;
2470       for (Section_list::const_iterator p = this->section_list_.begin();
2471            p != this->section_list_.end();
2472            ++p)
2473         {
2474           if ((*p)->needs_symtab_index())
2475             {
2476               gold_assert(symtab_section != NULL);
2477               unsigned int index = (*p)->symtab_index();
2478               gold_assert(index > 0 && index != -1U);
2479               off_t off = (symtab_section->offset()
2480                            + index * symtab_section->entsize());
2481               symtab->write_section_symbol(*p, of, off);
2482             }
2483         }
2484     }
2485
2486   const Output_section* dynsym_section = this->dynsym_section_;
2487   for (Section_list::const_iterator p = this->section_list_.begin();
2488        p != this->section_list_.end();
2489        ++p)
2490     {
2491       if ((*p)->needs_dynsym_index())
2492         {
2493           gold_assert(dynsym_section != NULL);
2494           unsigned int index = (*p)->dynsym_index();
2495           gold_assert(index > 0 && index != -1U);
2496           off_t off = (dynsym_section->offset()
2497                        + index * dynsym_section->entsize());
2498           symtab->write_section_symbol(*p, of, off);
2499         }
2500     }
2501
2502   // Write out the Output_data which are not in an Output_section.
2503   for (Data_list::const_iterator p = this->special_output_list_.begin();
2504        p != this->special_output_list_.end();
2505        ++p)
2506     (*p)->write(of);
2507 }
2508
2509 // Write out the Output_sections which can only be written after the
2510 // input sections are complete.
2511
2512 void
2513 Layout::write_sections_after_input_sections(Output_file* of)
2514 {
2515   // Determine the final section offsets, and thus the final output
2516   // file size.  Note we finalize the .shstrab last, to allow the
2517   // after_input_section sections to modify their section-names before
2518   // writing.
2519   if (this->any_postprocessing_sections_)
2520     {
2521       off_t off = this->output_file_size_;
2522       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2523       
2524       // Now that we've finalized the names, we can finalize the shstrab.
2525       off =
2526         this->set_section_offsets(off,
2527                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2528
2529       if (off > this->output_file_size_)
2530         {
2531           of->resize(off);
2532           this->output_file_size_ = off;
2533         }
2534     }
2535
2536   for (Section_list::const_iterator p = this->section_list_.begin();
2537        p != this->section_list_.end();
2538        ++p)
2539     {
2540       if ((*p)->after_input_sections())
2541         (*p)->write(of);
2542     }
2543
2544   this->section_headers_->write(of);
2545 }
2546
2547 // Write out a binary file.  This is called after the link is
2548 // complete.  IN is the temporary output file we used to generate the
2549 // ELF code.  We simply walk through the segments, read them from
2550 // their file offset in IN, and write them to their load address in
2551 // the output file.  FIXME: with a bit more work, we could support
2552 // S-records and/or Intel hex format here.
2553
2554 void
2555 Layout::write_binary(Output_file* in) const
2556 {
2557   gold_assert(this->options_.oformat()
2558               == General_options::OBJECT_FORMAT_BINARY);
2559
2560   // Get the size of the binary file.
2561   uint64_t max_load_address = 0;
2562   for (Segment_list::const_iterator p = this->segment_list_.begin();
2563        p != this->segment_list_.end();
2564        ++p)
2565     {
2566       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2567         {
2568           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
2569           if (max_paddr > max_load_address)
2570             max_load_address = max_paddr;
2571         }
2572     }
2573
2574   Output_file out(parameters->options().output_file_name());
2575   out.open(max_load_address);
2576
2577   for (Segment_list::const_iterator p = this->segment_list_.begin();
2578        p != this->segment_list_.end();
2579        ++p)
2580     {
2581       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2582         {
2583           const unsigned char* vin = in->get_input_view((*p)->offset(),
2584                                                         (*p)->filesz());
2585           unsigned char* vout = out.get_output_view((*p)->paddr(),
2586                                                     (*p)->filesz());
2587           memcpy(vout, vin, (*p)->filesz());
2588           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
2589           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
2590         }
2591     }
2592
2593   out.close();
2594 }
2595
2596 // Print statistical information to stderr.  This is used for --stats.
2597
2598 void
2599 Layout::print_stats() const
2600 {
2601   this->namepool_.print_stats("section name pool");
2602   this->sympool_.print_stats("output symbol name pool");
2603   this->dynpool_.print_stats("dynamic name pool");
2604
2605   for (Section_list::const_iterator p = this->section_list_.begin();
2606        p != this->section_list_.end();
2607        ++p)
2608     (*p)->print_merge_stats();
2609 }
2610
2611 // Write_sections_task methods.
2612
2613 // We can always run this task.
2614
2615 Task_token*
2616 Write_sections_task::is_runnable()
2617 {
2618   return NULL;
2619 }
2620
2621 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2622 // when finished.
2623
2624 void
2625 Write_sections_task::locks(Task_locker* tl)
2626 {
2627   tl->add(this, this->output_sections_blocker_);
2628   tl->add(this, this->final_blocker_);
2629 }
2630
2631 // Run the task--write out the data.
2632
2633 void
2634 Write_sections_task::run(Workqueue*)
2635 {
2636   this->layout_->write_output_sections(this->of_);
2637 }
2638
2639 // Write_data_task methods.
2640
2641 // We can always run this task.
2642
2643 Task_token*
2644 Write_data_task::is_runnable()
2645 {
2646   return NULL;
2647 }
2648
2649 // We need to unlock FINAL_BLOCKER when finished.
2650
2651 void
2652 Write_data_task::locks(Task_locker* tl)
2653 {
2654   tl->add(this, this->final_blocker_);
2655 }
2656
2657 // Run the task--write out the data.
2658
2659 void
2660 Write_data_task::run(Workqueue*)
2661 {
2662   this->layout_->write_data(this->symtab_, this->of_);
2663 }
2664
2665 // Write_symbols_task methods.
2666
2667 // We can always run this task.
2668
2669 Task_token*
2670 Write_symbols_task::is_runnable()
2671 {
2672   return NULL;
2673 }
2674
2675 // We need to unlock FINAL_BLOCKER when finished.
2676
2677 void
2678 Write_symbols_task::locks(Task_locker* tl)
2679 {
2680   tl->add(this, this->final_blocker_);
2681 }
2682
2683 // Run the task--write out the symbols.
2684
2685 void
2686 Write_symbols_task::run(Workqueue*)
2687 {
2688   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2689                                this->dynpool_, this->of_);
2690 }
2691
2692 // Write_after_input_sections_task methods.
2693
2694 // We can only run this task after the input sections have completed.
2695
2696 Task_token*
2697 Write_after_input_sections_task::is_runnable()
2698 {
2699   if (this->input_sections_blocker_->is_blocked())
2700     return this->input_sections_blocker_;
2701   return NULL;
2702 }
2703
2704 // We need to unlock FINAL_BLOCKER when finished.
2705
2706 void
2707 Write_after_input_sections_task::locks(Task_locker* tl)
2708 {
2709   tl->add(this, this->final_blocker_);
2710 }
2711
2712 // Run the task.
2713
2714 void
2715 Write_after_input_sections_task::run(Workqueue*)
2716 {
2717   this->layout_->write_sections_after_input_sections(this->of_);
2718 }
2719
2720 // Close_task_runner methods.
2721
2722 // Run the task--close the file.
2723
2724 void
2725 Close_task_runner::run(Workqueue*, const Task*)
2726 {
2727   // If we've been asked to create a binary file, we do so here.
2728   if (this->options_->oformat() != General_options::OBJECT_FORMAT_ELF)
2729     this->layout_->write_binary(this->of_);
2730
2731   this->of_->close();
2732 }
2733
2734 // Instantiate the templates we need.  We could use the configure
2735 // script to restrict this to only the ones for implemented targets.
2736
2737 #ifdef HAVE_TARGET_32_LITTLE
2738 template
2739 Output_section*
2740 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2741                           const char* name,
2742                           const elfcpp::Shdr<32, false>& shdr,
2743                           unsigned int, unsigned int, off_t*);
2744 #endif
2745
2746 #ifdef HAVE_TARGET_32_BIG
2747 template
2748 Output_section*
2749 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2750                          const char* name,
2751                          const elfcpp::Shdr<32, true>& shdr,
2752                          unsigned int, unsigned int, off_t*);
2753 #endif
2754
2755 #ifdef HAVE_TARGET_64_LITTLE
2756 template
2757 Output_section*
2758 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2759                           const char* name,
2760                           const elfcpp::Shdr<64, false>& shdr,
2761                           unsigned int, unsigned int, off_t*);
2762 #endif
2763
2764 #ifdef HAVE_TARGET_64_BIG
2765 template
2766 Output_section*
2767 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2768                          const char* name,
2769                          const elfcpp::Shdr<64, true>& shdr,
2770                          unsigned int, unsigned int, off_t*);
2771 #endif
2772
2773 #ifdef HAVE_TARGET_32_LITTLE
2774 template
2775 Output_section*
2776 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
2777                                 unsigned int reloc_shndx,
2778                                 const elfcpp::Shdr<32, false>& shdr,
2779                                 Output_section* data_section,
2780                                 Relocatable_relocs* rr);
2781 #endif
2782
2783 #ifdef HAVE_TARGET_32_BIG
2784 template
2785 Output_section*
2786 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
2787                                unsigned int reloc_shndx,
2788                                const elfcpp::Shdr<32, true>& shdr,
2789                                Output_section* data_section,
2790                                Relocatable_relocs* rr);
2791 #endif
2792
2793 #ifdef HAVE_TARGET_64_LITTLE
2794 template
2795 Output_section*
2796 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
2797                                 unsigned int reloc_shndx,
2798                                 const elfcpp::Shdr<64, false>& shdr,
2799                                 Output_section* data_section,
2800                                 Relocatable_relocs* rr);
2801 #endif
2802
2803 #ifdef HAVE_TARGET_64_BIG
2804 template
2805 Output_section*
2806 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
2807                                unsigned int reloc_shndx,
2808                                const elfcpp::Shdr<64, true>& shdr,
2809                                Output_section* data_section,
2810                                Relocatable_relocs* rr);
2811 #endif
2812
2813 #ifdef HAVE_TARGET_32_LITTLE
2814 template
2815 void
2816 Layout::layout_group<32, false>(Symbol_table* symtab,
2817                                 Sized_relobj<32, false>* object,
2818                                 unsigned int,
2819                                 const char* group_section_name,
2820                                 const char* signature,
2821                                 const elfcpp::Shdr<32, false>& shdr,
2822                                 const elfcpp::Elf_Word* contents);
2823 #endif
2824
2825 #ifdef HAVE_TARGET_32_BIG
2826 template
2827 void
2828 Layout::layout_group<32, true>(Symbol_table* symtab,
2829                                Sized_relobj<32, true>* object,
2830                                unsigned int,
2831                                const char* group_section_name,
2832                                const char* signature,
2833                                const elfcpp::Shdr<32, true>& shdr,
2834                                const elfcpp::Elf_Word* contents);
2835 #endif
2836
2837 #ifdef HAVE_TARGET_64_LITTLE
2838 template
2839 void
2840 Layout::layout_group<64, false>(Symbol_table* symtab,
2841                                 Sized_relobj<64, false>* object,
2842                                 unsigned int,
2843                                 const char* group_section_name,
2844                                 const char* signature,
2845                                 const elfcpp::Shdr<64, false>& shdr,
2846                                 const elfcpp::Elf_Word* contents);
2847 #endif
2848
2849 #ifdef HAVE_TARGET_64_BIG
2850 template
2851 void
2852 Layout::layout_group<64, true>(Symbol_table* symtab,
2853                                Sized_relobj<64, true>* object,
2854                                unsigned int,
2855                                const char* group_section_name,
2856                                const char* signature,
2857                                const elfcpp::Shdr<64, true>& shdr,
2858                                const elfcpp::Elf_Word* contents);
2859 #endif
2860
2861 #ifdef HAVE_TARGET_32_LITTLE
2862 template
2863 Output_section*
2864 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2865                                    const unsigned char* symbols,
2866                                    off_t symbols_size,
2867                                    const unsigned char* symbol_names,
2868                                    off_t symbol_names_size,
2869                                    unsigned int shndx,
2870                                    const elfcpp::Shdr<32, false>& shdr,
2871                                    unsigned int reloc_shndx,
2872                                    unsigned int reloc_type,
2873                                    off_t* off);
2874 #endif
2875
2876 #ifdef HAVE_TARGET_32_BIG
2877 template
2878 Output_section*
2879 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2880                                    const unsigned char* symbols,
2881                                    off_t symbols_size,
2882                                   const unsigned char* symbol_names,
2883                                   off_t symbol_names_size,
2884                                   unsigned int shndx,
2885                                   const elfcpp::Shdr<32, true>& shdr,
2886                                   unsigned int reloc_shndx,
2887                                   unsigned int reloc_type,
2888                                   off_t* off);
2889 #endif
2890
2891 #ifdef HAVE_TARGET_64_LITTLE
2892 template
2893 Output_section*
2894 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2895                                    const unsigned char* symbols,
2896                                    off_t symbols_size,
2897                                    const unsigned char* symbol_names,
2898                                    off_t symbol_names_size,
2899                                    unsigned int shndx,
2900                                    const elfcpp::Shdr<64, false>& shdr,
2901                                    unsigned int reloc_shndx,
2902                                    unsigned int reloc_type,
2903                                    off_t* off);
2904 #endif
2905
2906 #ifdef HAVE_TARGET_64_BIG
2907 template
2908 Output_section*
2909 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2910                                    const unsigned char* symbols,
2911                                    off_t symbols_size,
2912                                   const unsigned char* symbol_names,
2913                                   off_t symbol_names_size,
2914                                   unsigned int shndx,
2915                                   const elfcpp::Shdr<64, true>& shdr,
2916                                   unsigned int reloc_shndx,
2917                                   unsigned int reloc_type,
2918                                   off_t* off);
2919 #endif
2920
2921 } // End namespace gold.