PR gold/13850
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list.  Creates a single free list node that
75 // describes the entire region of length LEN.  If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82   this->list_.push_front(Free_list_node(0, len));
83   this->last_remove_ = this->list_.begin();
84   this->extend_ = extend;
85   this->length_ = len;
86   ++Free_list::num_lists;
87   ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list.  Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node.  We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102   if (start == end)
103     return;
104   gold_assert(start < end);
105
106   ++Free_list::num_removes;
107
108   Iterator p = this->last_remove_;
109   if (p->start_ > start)
110     p = this->list_.begin();
111
112   for (; p != this->list_.end(); ++p)
113     {
114       ++Free_list::num_remove_visits;
115       // Find a node that wholly contains the indicated region.
116       if (p->start_ <= start && p->end_ >= end)
117         {
118           // Case 1: the indicated region spans the whole node.
119           // Add some fuzz to avoid creating tiny free chunks.
120           if (p->start_ + 3 >= start && p->end_ <= end + 3)
121             p = this->list_.erase(p);
122           // Case 2: remove a chunk from the start of the node.
123           else if (p->start_ + 3 >= start)
124             p->start_ = end;
125           // Case 3: remove a chunk from the end of the node.
126           else if (p->end_ <= end + 3)
127             p->end_ = start;
128           // Case 4: remove a chunk from the middle, and split
129           // the node into two.
130           else
131             {
132               Free_list_node newnode(p->start_, start);
133               p->start_ = end;
134               this->list_.insert(p, newnode);
135               ++Free_list::num_nodes;
136             }
137           this->last_remove_ = p;
138           return;
139         }
140     }
141
142   // Did not find a node containing the given chunk.  This could happen
143   // because a small chunk was already removed due to the fuzz.
144   gold_debug(DEBUG_INCREMENTAL,
145              "Free_list::remove(%d,%d) not found",
146              static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156   gold_debug(DEBUG_INCREMENTAL,
157              "Free_list::allocate(%08lx, %d, %08lx)",
158              static_cast<long>(len), static_cast<int>(align),
159              static_cast<long>(minoff));
160   if (len == 0)
161     return align_address(minoff, align);
162
163   ++Free_list::num_allocates;
164
165   // We usually want to drop free chunks smaller than 4 bytes.
166   // If we need to guarantee a minimum hole size, though, we need
167   // to keep track of all free chunks.
168   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
169
170   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
171     {
172       ++Free_list::num_allocate_visits;
173       off_t start = p->start_ > minoff ? p->start_ : minoff;
174       start = align_address(start, align);
175       off_t end = start + len;
176       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
177         {
178           this->length_ = end;
179           p->end_ = end;
180         }
181       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
182         {
183           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
184             this->list_.erase(p);
185           else if (p->start_ + fuzz >= start)
186             p->start_ = end;
187           else if (p->end_ <= end + fuzz)
188             p->end_ = start;
189           else
190             {
191               Free_list_node newnode(p->start_, start);
192               p->start_ = end;
193               this->list_.insert(p, newnode);
194               ++Free_list::num_nodes;
195             }
196           return start;
197         }
198     }
199   if (this->extend_)
200     {
201       off_t start = align_address(this->length_, align);
202       this->length_ = start + len;
203       return start;
204     }
205   return -1;
206 }
207
208 // Dump the free list (for debugging).
209 void
210 Free_list::dump()
211 {
212   gold_info("Free list:\n     start      end   length\n");
213   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
214     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
215               static_cast<long>(p->end_),
216               static_cast<long>(p->end_ - p->start_));
217 }
218
219 // Print the statistics for the free lists.
220 void
221 Free_list::print_stats()
222 {
223   fprintf(stderr, _("%s: total free lists: %u\n"),
224           program_name, Free_list::num_lists);
225   fprintf(stderr, _("%s: total free list nodes: %u\n"),
226           program_name, Free_list::num_nodes);
227   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
228           program_name, Free_list::num_removes);
229   fprintf(stderr, _("%s: nodes visited: %u\n"),
230           program_name, Free_list::num_remove_visits);
231   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
232           program_name, Free_list::num_allocates);
233   fprintf(stderr, _("%s: nodes visited: %u\n"),
234           program_name, Free_list::num_allocate_visits);
235 }
236
237 // Layout::Relaxation_debug_check methods.
238
239 // Check that sections and special data are in reset states.
240 // We do not save states for Output_sections and special Output_data.
241 // So we check that they have not assigned any addresses or offsets.
242 // clean_up_after_relaxation simply resets their addresses and offsets.
243 void
244 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
245     const Layout::Section_list& sections,
246     const Layout::Data_list& special_outputs)
247 {
248   for(Layout::Section_list::const_iterator p = sections.begin();
249       p != sections.end();
250       ++p)
251     gold_assert((*p)->address_and_file_offset_have_reset_values());
252
253   for(Layout::Data_list::const_iterator p = special_outputs.begin();
254       p != special_outputs.end();
255       ++p)
256     gold_assert((*p)->address_and_file_offset_have_reset_values());
257 }
258   
259 // Save information of SECTIONS for checking later.
260
261 void
262 Layout::Relaxation_debug_check::read_sections(
263     const Layout::Section_list& sections)
264 {
265   for(Layout::Section_list::const_iterator p = sections.begin();
266       p != sections.end();
267       ++p)
268     {
269       Output_section* os = *p;
270       Section_info info;
271       info.output_section = os;
272       info.address = os->is_address_valid() ? os->address() : 0;
273       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
274       info.offset = os->is_offset_valid()? os->offset() : -1 ;
275       this->section_infos_.push_back(info);
276     }
277 }
278
279 // Verify SECTIONS using previously recorded information.
280
281 void
282 Layout::Relaxation_debug_check::verify_sections(
283     const Layout::Section_list& sections)
284 {
285   size_t i = 0;
286   for(Layout::Section_list::const_iterator p = sections.begin();
287       p != sections.end();
288       ++p, ++i)
289     {
290       Output_section* os = *p;
291       uint64_t address = os->is_address_valid() ? os->address() : 0;
292       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
293       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
294
295       if (i >= this->section_infos_.size())
296         {
297           gold_fatal("Section_info of %s missing.\n", os->name());
298         }
299       const Section_info& info = this->section_infos_[i];
300       if (os != info.output_section)
301         gold_fatal("Section order changed.  Expecting %s but see %s\n",
302                    info.output_section->name(), os->name());
303       if (address != info.address
304           || data_size != info.data_size
305           || offset != info.offset)
306         gold_fatal("Section %s changed.\n", os->name());
307     }
308 }
309
310 // Layout_task_runner methods.
311
312 // Lay out the sections.  This is called after all the input objects
313 // have been read.
314
315 void
316 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
317 {
318   Layout* layout = this->layout_;
319   off_t file_size = layout->finalize(this->input_objects_,
320                                      this->symtab_,
321                                      this->target_,
322                                      task);
323
324   // Now we know the final size of the output file and we know where
325   // each piece of information goes.
326
327   if (this->mapfile_ != NULL)
328     {
329       this->mapfile_->print_discarded_sections(this->input_objects_);
330       layout->print_to_mapfile(this->mapfile_);
331     }
332
333   Output_file* of;
334   if (layout->incremental_base() == NULL)
335     {
336       of = new Output_file(parameters->options().output_file_name());
337       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
338         of->set_is_temporary();
339       of->open(file_size);
340     }
341   else
342     {
343       of = layout->incremental_base()->output_file();
344
345       // Apply the incremental relocations for symbols whose values
346       // have changed.  We do this before we resize the file and start
347       // writing anything else to it, so that we can read the old
348       // incremental information from the file before (possibly)
349       // overwriting it.
350       if (parameters->incremental_update())
351         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
352                                                              this->layout_,
353                                                              of);
354
355       of->resize(file_size);
356     }
357
358   // Queue up the final set of tasks.
359   gold::queue_final_tasks(this->options_, this->input_objects_,
360                           this->symtab_, layout, workqueue, of);
361 }
362
363 // Layout methods.
364
365 Layout::Layout(int number_of_input_files, Script_options* script_options)
366   : number_of_input_files_(number_of_input_files),
367     script_options_(script_options),
368     namepool_(),
369     sympool_(),
370     dynpool_(),
371     signatures_(),
372     section_name_map_(),
373     segment_list_(),
374     section_list_(),
375     unattached_section_list_(),
376     special_output_list_(),
377     section_headers_(NULL),
378     tls_segment_(NULL),
379     relro_segment_(NULL),
380     interp_segment_(NULL),
381     increase_relro_(0),
382     symtab_section_(NULL),
383     symtab_xindex_(NULL),
384     dynsym_section_(NULL),
385     dynsym_xindex_(NULL),
386     dynamic_section_(NULL),
387     dynamic_symbol_(NULL),
388     dynamic_data_(NULL),
389     eh_frame_section_(NULL),
390     eh_frame_data_(NULL),
391     added_eh_frame_data_(false),
392     eh_frame_hdr_section_(NULL),
393     build_id_note_(NULL),
394     debug_abbrev_(NULL),
395     debug_info_(NULL),
396     group_signatures_(),
397     output_file_size_(-1),
398     have_added_input_section_(false),
399     sections_are_attached_(false),
400     input_requires_executable_stack_(false),
401     input_with_gnu_stack_note_(false),
402     input_without_gnu_stack_note_(false),
403     has_static_tls_(false),
404     any_postprocessing_sections_(false),
405     resized_signatures_(false),
406     have_stabstr_section_(false),
407     section_ordering_specified_(false),
408     incremental_inputs_(NULL),
409     record_output_section_data_from_script_(false),
410     script_output_section_data_list_(),
411     segment_states_(NULL),
412     relaxation_debug_check_(NULL),
413     section_order_map_(),
414     input_section_position_(),
415     input_section_glob_(),
416     incremental_base_(NULL),
417     free_list_()
418 {
419   // Make space for more than enough segments for a typical file.
420   // This is just for efficiency--it's OK if we wind up needing more.
421   this->segment_list_.reserve(12);
422
423   // We expect two unattached Output_data objects: the file header and
424   // the segment headers.
425   this->special_output_list_.reserve(2);
426
427   // Initialize structure needed for an incremental build.
428   if (parameters->incremental())
429     this->incremental_inputs_ = new Incremental_inputs;
430
431   // The section name pool is worth optimizing in all cases, because
432   // it is small, but there are often overlaps due to .rel sections.
433   this->namepool_.set_optimize();
434 }
435
436 // For incremental links, record the base file to be modified.
437
438 void
439 Layout::set_incremental_base(Incremental_binary* base)
440 {
441   this->incremental_base_ = base;
442   this->free_list_.init(base->output_file()->filesize(), true);
443 }
444
445 // Hash a key we use to look up an output section mapping.
446
447 size_t
448 Layout::Hash_key::operator()(const Layout::Key& k) const
449 {
450  return k.first + k.second.first + k.second.second;
451 }
452
453 // Returns whether the given section is in the list of
454 // debug-sections-used-by-some-version-of-gdb.  Currently,
455 // we've checked versions of gdb up to and including 6.7.1.
456
457 static const char* gdb_sections[] =
458 { ".debug_abbrev",
459   // ".debug_aranges",   // not used by gdb as of 6.7.1
460   ".debug_frame",
461   ".debug_info",
462   ".debug_types",
463   ".debug_line",
464   ".debug_loc",
465   ".debug_macinfo",
466   // ".debug_pubnames",  // not used by gdb as of 6.7.1
467   ".debug_ranges",
468   ".debug_str",
469 };
470
471 static const char* lines_only_debug_sections[] =
472 { ".debug_abbrev",
473   // ".debug_aranges",   // not used by gdb as of 6.7.1
474   // ".debug_frame",
475   ".debug_info",
476   // ".debug_types",
477   ".debug_line",
478   // ".debug_loc",
479   // ".debug_macinfo",
480   // ".debug_pubnames",  // not used by gdb as of 6.7.1
481   // ".debug_ranges",
482   ".debug_str",
483 };
484
485 static inline bool
486 is_gdb_debug_section(const char* str)
487 {
488   // We can do this faster: binary search or a hashtable.  But why bother?
489   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
490     if (strcmp(str, gdb_sections[i]) == 0)
491       return true;
492   return false;
493 }
494
495 static inline bool
496 is_lines_only_debug_section(const char* str)
497 {
498   // We can do this faster: binary search or a hashtable.  But why bother?
499   for (size_t i = 0;
500        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
501        ++i)
502     if (strcmp(str, lines_only_debug_sections[i]) == 0)
503       return true;
504   return false;
505 }
506
507 // Sometimes we compress sections.  This is typically done for
508 // sections that are not part of normal program execution (such as
509 // .debug_* sections), and where the readers of these sections know
510 // how to deal with compressed sections.  This routine doesn't say for
511 // certain whether we'll compress -- it depends on commandline options
512 // as well -- just whether this section is a candidate for compression.
513 // (The Output_compressed_section class decides whether to compress
514 // a given section, and picks the name of the compressed section.)
515
516 static bool
517 is_compressible_debug_section(const char* secname)
518 {
519   return (is_prefix_of(".debug", secname));
520 }
521
522 // We may see compressed debug sections in input files.  Return TRUE
523 // if this is the name of a compressed debug section.
524
525 bool
526 is_compressed_debug_section(const char* secname)
527 {
528   return (is_prefix_of(".zdebug", secname));
529 }
530
531 // Whether to include this section in the link.
532
533 template<int size, bool big_endian>
534 bool
535 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
536                         const elfcpp::Shdr<size, big_endian>& shdr)
537 {
538   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
539     return false;
540
541   switch (shdr.get_sh_type())
542     {
543     case elfcpp::SHT_NULL:
544     case elfcpp::SHT_SYMTAB:
545     case elfcpp::SHT_DYNSYM:
546     case elfcpp::SHT_HASH:
547     case elfcpp::SHT_DYNAMIC:
548     case elfcpp::SHT_SYMTAB_SHNDX:
549       return false;
550
551     case elfcpp::SHT_STRTAB:
552       // Discard the sections which have special meanings in the ELF
553       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
554       // checking the sh_link fields of the appropriate sections.
555       return (strcmp(name, ".dynstr") != 0
556               && strcmp(name, ".strtab") != 0
557               && strcmp(name, ".shstrtab") != 0);
558
559     case elfcpp::SHT_RELA:
560     case elfcpp::SHT_REL:
561     case elfcpp::SHT_GROUP:
562       // If we are emitting relocations these should be handled
563       // elsewhere.
564       gold_assert(!parameters->options().relocatable()
565                   && !parameters->options().emit_relocs());
566       return false;
567
568     case elfcpp::SHT_PROGBITS:
569       if (parameters->options().strip_debug()
570           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
571         {
572           if (is_debug_info_section(name))
573             return false;
574         }
575       if (parameters->options().strip_debug_non_line()
576           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
577         {
578           // Debugging sections can only be recognized by name.
579           if (is_prefix_of(".debug", name)
580               && !is_lines_only_debug_section(name))
581             return false;
582         }
583       if (parameters->options().strip_debug_gdb()
584           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
585         {
586           // Debugging sections can only be recognized by name.
587           if (is_prefix_of(".debug", name)
588               && !is_gdb_debug_section(name))
589             return false;
590         }
591       if (parameters->options().strip_lto_sections()
592           && !parameters->options().relocatable()
593           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
594         {
595           // Ignore LTO sections containing intermediate code.
596           if (is_prefix_of(".gnu.lto_", name))
597             return false;
598         }
599       // The GNU linker strips .gnu_debuglink sections, so we do too.
600       // This is a feature used to keep debugging information in
601       // separate files.
602       if (strcmp(name, ".gnu_debuglink") == 0)
603         return false;
604       return true;
605
606     default:
607       return true;
608     }
609 }
610
611 // Return an output section named NAME, or NULL if there is none.
612
613 Output_section*
614 Layout::find_output_section(const char* name) const
615 {
616   for (Section_list::const_iterator p = this->section_list_.begin();
617        p != this->section_list_.end();
618        ++p)
619     if (strcmp((*p)->name(), name) == 0)
620       return *p;
621   return NULL;
622 }
623
624 // Return an output segment of type TYPE, with segment flags SET set
625 // and segment flags CLEAR clear.  Return NULL if there is none.
626
627 Output_segment*
628 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
629                             elfcpp::Elf_Word clear) const
630 {
631   for (Segment_list::const_iterator p = this->segment_list_.begin();
632        p != this->segment_list_.end();
633        ++p)
634     if (static_cast<elfcpp::PT>((*p)->type()) == type
635         && ((*p)->flags() & set) == set
636         && ((*p)->flags() & clear) == 0)
637       return *p;
638   return NULL;
639 }
640
641 // When we put a .ctors or .dtors section with more than one word into
642 // a .init_array or .fini_array section, we need to reverse the words
643 // in the .ctors/.dtors section.  This is because .init_array executes
644 // constructors front to back, where .ctors executes them back to
645 // front, and vice-versa for .fini_array/.dtors.  Although we do want
646 // to remap .ctors/.dtors into .init_array/.fini_array because it can
647 // be more efficient, we don't want to change the order in which
648 // constructors/destructors are run.  This set just keeps track of
649 // these sections which need to be reversed.  It is only changed by
650 // Layout::layout.  It should be a private member of Layout, but that
651 // would require layout.h to #include object.h to get the definition
652 // of Section_id.
653 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
654
655 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
656 // .init_array/.fini_array section.
657
658 bool
659 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
660 {
661   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
662           != ctors_sections_in_init_array.end());
663 }
664
665 // Return the output section to use for section NAME with type TYPE
666 // and section flags FLAGS.  NAME must be canonicalized in the string
667 // pool, and NAME_KEY is the key.  ORDER is where this should appear
668 // in the output sections.  IS_RELRO is true for a relro section.
669
670 Output_section*
671 Layout::get_output_section(const char* name, Stringpool::Key name_key,
672                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
673                            Output_section_order order, bool is_relro)
674 {
675   elfcpp::Elf_Word lookup_type = type;
676
677   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
678   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
679   // .init_array, .fini_array, and .preinit_array sections by name
680   // whatever their type in the input file.  We do this because the
681   // types are not always right in the input files.
682   if (lookup_type == elfcpp::SHT_INIT_ARRAY
683       || lookup_type == elfcpp::SHT_FINI_ARRAY
684       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
685     lookup_type = elfcpp::SHT_PROGBITS;
686
687   elfcpp::Elf_Xword lookup_flags = flags;
688
689   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
690   // read-write with read-only sections.  Some other ELF linkers do
691   // not do this.  FIXME: Perhaps there should be an option
692   // controlling this.
693   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
694
695   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
696   const std::pair<Key, Output_section*> v(key, NULL);
697   std::pair<Section_name_map::iterator, bool> ins(
698     this->section_name_map_.insert(v));
699
700   if (!ins.second)
701     return ins.first->second;
702   else
703     {
704       // This is the first time we've seen this name/type/flags
705       // combination.  For compatibility with the GNU linker, we
706       // combine sections with contents and zero flags with sections
707       // with non-zero flags.  This is a workaround for cases where
708       // assembler code forgets to set section flags.  FIXME: Perhaps
709       // there should be an option to control this.
710       Output_section* os = NULL;
711
712       if (lookup_type == elfcpp::SHT_PROGBITS)
713         {
714           if (flags == 0)
715             {
716               Output_section* same_name = this->find_output_section(name);
717               if (same_name != NULL
718                   && (same_name->type() == elfcpp::SHT_PROGBITS
719                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
720                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
721                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
722                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
723                 os = same_name;
724             }
725           else if ((flags & elfcpp::SHF_TLS) == 0)
726             {
727               elfcpp::Elf_Xword zero_flags = 0;
728               const Key zero_key(name_key, std::make_pair(lookup_type,
729                                                           zero_flags));
730               Section_name_map::iterator p =
731                   this->section_name_map_.find(zero_key);
732               if (p != this->section_name_map_.end())
733                 os = p->second;
734             }
735         }
736
737       if (os == NULL)
738         os = this->make_output_section(name, type, flags, order, is_relro);
739
740       ins.first->second = os;
741       return os;
742     }
743 }
744
745 // Pick the output section to use for section NAME, in input file
746 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
747 // linker created section.  IS_INPUT_SECTION is true if we are
748 // choosing an output section for an input section found in a input
749 // file.  ORDER is where this section should appear in the output
750 // sections.  IS_RELRO is true for a relro section.  This will return
751 // NULL if the input section should be discarded.
752
753 Output_section*
754 Layout::choose_output_section(const Relobj* relobj, const char* name,
755                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
756                               bool is_input_section, Output_section_order order,
757                               bool is_relro)
758 {
759   // We should not see any input sections after we have attached
760   // sections to segments.
761   gold_assert(!is_input_section || !this->sections_are_attached_);
762
763   // Some flags in the input section should not be automatically
764   // copied to the output section.
765   flags &= ~ (elfcpp::SHF_INFO_LINK
766               | elfcpp::SHF_GROUP
767               | elfcpp::SHF_MERGE
768               | elfcpp::SHF_STRINGS);
769
770   // We only clear the SHF_LINK_ORDER flag in for
771   // a non-relocatable link.
772   if (!parameters->options().relocatable())
773     flags &= ~elfcpp::SHF_LINK_ORDER;
774
775   if (this->script_options_->saw_sections_clause())
776     {
777       // We are using a SECTIONS clause, so the output section is
778       // chosen based only on the name.
779
780       Script_sections* ss = this->script_options_->script_sections();
781       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
782       Output_section** output_section_slot;
783       Script_sections::Section_type script_section_type;
784       const char* orig_name = name;
785       name = ss->output_section_name(file_name, name, &output_section_slot,
786                                      &script_section_type);
787       if (name == NULL)
788         {
789           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
790                                      "because it is not allowed by the "
791                                      "SECTIONS clause of the linker script"),
792                      orig_name);
793           // The SECTIONS clause says to discard this input section.
794           return NULL;
795         }
796
797       // We can only handle script section types ST_NONE and ST_NOLOAD.
798       switch (script_section_type)
799         {
800         case Script_sections::ST_NONE:
801           break;
802         case Script_sections::ST_NOLOAD:
803           flags &= elfcpp::SHF_ALLOC;
804           break;
805         default:
806           gold_unreachable();
807         }
808
809       // If this is an orphan section--one not mentioned in the linker
810       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
811       // default processing below.
812
813       if (output_section_slot != NULL)
814         {
815           if (*output_section_slot != NULL)
816             {
817               (*output_section_slot)->update_flags_for_input_section(flags);
818               return *output_section_slot;
819             }
820
821           // We don't put sections found in the linker script into
822           // SECTION_NAME_MAP_.  That keeps us from getting confused
823           // if an orphan section is mapped to a section with the same
824           // name as one in the linker script.
825
826           name = this->namepool_.add(name, false, NULL);
827
828           Output_section* os = this->make_output_section(name, type, flags,
829                                                          order, is_relro);
830
831           os->set_found_in_sections_clause();
832
833           // Special handling for NOLOAD sections.
834           if (script_section_type == Script_sections::ST_NOLOAD)
835             {
836               os->set_is_noload();
837
838               // The constructor of Output_section sets addresses of non-ALLOC
839               // sections to 0 by default.  We don't want that for NOLOAD
840               // sections even if they have no SHF_ALLOC flag.
841               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
842                   && os->is_address_valid())
843                 {
844                   gold_assert(os->address() == 0
845                               && !os->is_offset_valid()
846                               && !os->is_data_size_valid());
847                   os->reset_address_and_file_offset();
848                 }
849             }
850
851           *output_section_slot = os;
852           return os;
853         }
854     }
855
856   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
857
858   size_t len = strlen(name);
859   char* uncompressed_name = NULL;
860
861   // Compressed debug sections should be mapped to the corresponding
862   // uncompressed section.
863   if (is_compressed_debug_section(name))
864     {
865       uncompressed_name = new char[len];
866       uncompressed_name[0] = '.';
867       gold_assert(name[0] == '.' && name[1] == 'z');
868       strncpy(&uncompressed_name[1], &name[2], len - 2);
869       uncompressed_name[len - 1] = '\0';
870       len -= 1;
871       name = uncompressed_name;
872     }
873
874   // Turn NAME from the name of the input section into the name of the
875   // output section.
876   if (is_input_section
877       && !this->script_options_->saw_sections_clause()
878       && !parameters->options().relocatable())
879     name = Layout::output_section_name(relobj, name, &len);
880
881   Stringpool::Key name_key;
882   name = this->namepool_.add_with_length(name, len, true, &name_key);
883
884   if (uncompressed_name != NULL)
885     delete[] uncompressed_name;
886
887   // Find or make the output section.  The output section is selected
888   // based on the section name, type, and flags.
889   return this->get_output_section(name, name_key, type, flags, order, is_relro);
890 }
891
892 // For incremental links, record the initial fixed layout of a section
893 // from the base file, and return a pointer to the Output_section.
894
895 template<int size, bool big_endian>
896 Output_section*
897 Layout::init_fixed_output_section(const char* name,
898                                   elfcpp::Shdr<size, big_endian>& shdr)
899 {
900   unsigned int sh_type = shdr.get_sh_type();
901
902   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
903   // PRE_INIT_ARRAY, and NOTE sections.
904   // All others will be created from scratch and reallocated.
905   if (!can_incremental_update(sh_type))
906     return NULL;
907
908   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
909   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
910   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
911   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
912   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
913       shdr.get_sh_addralign();
914
915   // Make the output section.
916   Stringpool::Key name_key;
917   name = this->namepool_.add(name, true, &name_key);
918   Output_section* os = this->get_output_section(name, name_key, sh_type,
919                                                 sh_flags, ORDER_INVALID, false);
920   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
921   if (sh_type != elfcpp::SHT_NOBITS)
922     this->free_list_.remove(sh_offset, sh_offset + sh_size);
923   return os;
924 }
925
926 // Return the output section to use for input section SHNDX, with name
927 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
928 // index of a relocation section which applies to this section, or 0
929 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
930 // relocation section if there is one.  Set *OFF to the offset of this
931 // input section without the output section.  Return NULL if the
932 // section should be discarded.  Set *OFF to -1 if the section
933 // contents should not be written directly to the output file, but
934 // will instead receive special handling.
935
936 template<int size, bool big_endian>
937 Output_section*
938 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
939                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
940                unsigned int reloc_shndx, unsigned int, off_t* off)
941 {
942   *off = 0;
943
944   if (!this->include_section(object, name, shdr))
945     return NULL;
946
947   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
948
949   // In a relocatable link a grouped section must not be combined with
950   // any other sections.
951   Output_section* os;
952   if (parameters->options().relocatable()
953       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
954     {
955       name = this->namepool_.add(name, true, NULL);
956       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
957                                      ORDER_INVALID, false);
958     }
959   else
960     {
961       os = this->choose_output_section(object, name, sh_type,
962                                        shdr.get_sh_flags(), true,
963                                        ORDER_INVALID, false);
964       if (os == NULL)
965         return NULL;
966     }
967
968   // By default the GNU linker sorts input sections whose names match
969   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
970   // sections are sorted by name.  This is used to implement
971   // constructor priority ordering.  We are compatible.  When we put
972   // .ctor sections in .init_array and .dtor sections in .fini_array,
973   // we must also sort plain .ctor and .dtor sections.
974   if (!this->script_options_->saw_sections_clause()
975       && !parameters->options().relocatable()
976       && (is_prefix_of(".ctors.", name)
977           || is_prefix_of(".dtors.", name)
978           || is_prefix_of(".init_array.", name)
979           || is_prefix_of(".fini_array.", name)
980           || (parameters->options().ctors_in_init_array()
981               && (strcmp(name, ".ctors") == 0
982                   || strcmp(name, ".dtors") == 0))))
983     os->set_must_sort_attached_input_sections();
984
985   // If this is a .ctors or .ctors.* section being mapped to a
986   // .init_array section, or a .dtors or .dtors.* section being mapped
987   // to a .fini_array section, we will need to reverse the words if
988   // there is more than one.  Record this section for later.  See
989   // ctors_sections_in_init_array above.
990   if (!this->script_options_->saw_sections_clause()
991       && !parameters->options().relocatable()
992       && shdr.get_sh_size() > size / 8
993       && (((strcmp(name, ".ctors") == 0
994             || is_prefix_of(".ctors.", name))
995            && strcmp(os->name(), ".init_array") == 0)
996           || ((strcmp(name, ".dtors") == 0
997                || is_prefix_of(".dtors.", name))
998               && strcmp(os->name(), ".fini_array") == 0)))
999     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1000
1001   // FIXME: Handle SHF_LINK_ORDER somewhere.
1002
1003   elfcpp::Elf_Xword orig_flags = os->flags();
1004
1005   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1006                                this->script_options_->saw_sections_clause());
1007
1008   // If the flags changed, we may have to change the order.
1009   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1010     {
1011       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1012       elfcpp::Elf_Xword new_flags =
1013         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1014       if (orig_flags != new_flags)
1015         os->set_order(this->default_section_order(os, false));
1016     }
1017
1018   this->have_added_input_section_ = true;
1019
1020   return os;
1021 }
1022
1023 // Handle a relocation section when doing a relocatable link.
1024
1025 template<int size, bool big_endian>
1026 Output_section*
1027 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1028                      unsigned int,
1029                      const elfcpp::Shdr<size, big_endian>& shdr,
1030                      Output_section* data_section,
1031                      Relocatable_relocs* rr)
1032 {
1033   gold_assert(parameters->options().relocatable()
1034               || parameters->options().emit_relocs());
1035
1036   int sh_type = shdr.get_sh_type();
1037
1038   std::string name;
1039   if (sh_type == elfcpp::SHT_REL)
1040     name = ".rel";
1041   else if (sh_type == elfcpp::SHT_RELA)
1042     name = ".rela";
1043   else
1044     gold_unreachable();
1045   name += data_section->name();
1046
1047   // In a relocatable link relocs for a grouped section must not be
1048   // combined with other reloc sections.
1049   Output_section* os;
1050   if (!parameters->options().relocatable()
1051       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1052     os = this->choose_output_section(object, name.c_str(), sh_type,
1053                                      shdr.get_sh_flags(), false,
1054                                      ORDER_INVALID, false);
1055   else
1056     {
1057       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1058       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1059                                      ORDER_INVALID, false);
1060     }
1061
1062   os->set_should_link_to_symtab();
1063   os->set_info_section(data_section);
1064
1065   Output_section_data* posd;
1066   if (sh_type == elfcpp::SHT_REL)
1067     {
1068       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1069       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1070                                            size,
1071                                            big_endian>(rr);
1072     }
1073   else if (sh_type == elfcpp::SHT_RELA)
1074     {
1075       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1076       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1077                                            size,
1078                                            big_endian>(rr);
1079     }
1080   else
1081     gold_unreachable();
1082
1083   os->add_output_section_data(posd);
1084   rr->set_output_data(posd);
1085
1086   return os;
1087 }
1088
1089 // Handle a group section when doing a relocatable link.
1090
1091 template<int size, bool big_endian>
1092 void
1093 Layout::layout_group(Symbol_table* symtab,
1094                      Sized_relobj_file<size, big_endian>* object,
1095                      unsigned int,
1096                      const char* group_section_name,
1097                      const char* signature,
1098                      const elfcpp::Shdr<size, big_endian>& shdr,
1099                      elfcpp::Elf_Word flags,
1100                      std::vector<unsigned int>* shndxes)
1101 {
1102   gold_assert(parameters->options().relocatable());
1103   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1104   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1105   Output_section* os = this->make_output_section(group_section_name,
1106                                                  elfcpp::SHT_GROUP,
1107                                                  shdr.get_sh_flags(),
1108                                                  ORDER_INVALID, false);
1109
1110   // We need to find a symbol with the signature in the symbol table.
1111   // If we don't find one now, we need to look again later.
1112   Symbol* sym = symtab->lookup(signature, NULL);
1113   if (sym != NULL)
1114     os->set_info_symndx(sym);
1115   else
1116     {
1117       // Reserve some space to minimize reallocations.
1118       if (this->group_signatures_.empty())
1119         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1120
1121       // We will wind up using a symbol whose name is the signature.
1122       // So just put the signature in the symbol name pool to save it.
1123       signature = symtab->canonicalize_name(signature);
1124       this->group_signatures_.push_back(Group_signature(os, signature));
1125     }
1126
1127   os->set_should_link_to_symtab();
1128   os->set_entsize(4);
1129
1130   section_size_type entry_count =
1131     convert_to_section_size_type(shdr.get_sh_size() / 4);
1132   Output_section_data* posd =
1133     new Output_data_group<size, big_endian>(object, entry_count, flags,
1134                                             shndxes);
1135   os->add_output_section_data(posd);
1136 }
1137
1138 // Special GNU handling of sections name .eh_frame.  They will
1139 // normally hold exception frame data as defined by the C++ ABI
1140 // (http://codesourcery.com/cxx-abi/).
1141
1142 template<int size, bool big_endian>
1143 Output_section*
1144 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1145                         const unsigned char* symbols,
1146                         off_t symbols_size,
1147                         const unsigned char* symbol_names,
1148                         off_t symbol_names_size,
1149                         unsigned int shndx,
1150                         const elfcpp::Shdr<size, big_endian>& shdr,
1151                         unsigned int reloc_shndx, unsigned int reloc_type,
1152                         off_t* off)
1153 {
1154   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1155               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1156   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1157
1158   Output_section* os = this->make_eh_frame_section(object);
1159   if (os == NULL)
1160     return NULL;
1161
1162   gold_assert(this->eh_frame_section_ == os);
1163
1164   elfcpp::Elf_Xword orig_flags = os->flags();
1165
1166   if (!parameters->incremental()
1167       && this->eh_frame_data_->add_ehframe_input_section(object,
1168                                                          symbols,
1169                                                          symbols_size,
1170                                                          symbol_names,
1171                                                          symbol_names_size,
1172                                                          shndx,
1173                                                          reloc_shndx,
1174                                                          reloc_type))
1175     {
1176       os->update_flags_for_input_section(shdr.get_sh_flags());
1177
1178       // A writable .eh_frame section is a RELRO section.
1179       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1180           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1181         {
1182           os->set_is_relro();
1183           os->set_order(ORDER_RELRO);
1184         }
1185
1186       // We found a .eh_frame section we are going to optimize, so now
1187       // we can add the set of optimized sections to the output
1188       // section.  We need to postpone adding this until we've found a
1189       // section we can optimize so that the .eh_frame section in
1190       // crtbegin.o winds up at the start of the output section.
1191       if (!this->added_eh_frame_data_)
1192         {
1193           os->add_output_section_data(this->eh_frame_data_);
1194           this->added_eh_frame_data_ = true;
1195         }
1196       *off = -1;
1197     }
1198   else
1199     {
1200       // We couldn't handle this .eh_frame section for some reason.
1201       // Add it as a normal section.
1202       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1203       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1204                                    reloc_shndx, saw_sections_clause);
1205       this->have_added_input_section_ = true;
1206
1207       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1208           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1209         os->set_order(this->default_section_order(os, false));
1210     }
1211
1212   return os;
1213 }
1214
1215 // Create and return the magic .eh_frame section.  Create
1216 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1217 // input .eh_frame section; it may be NULL.
1218
1219 Output_section*
1220 Layout::make_eh_frame_section(const Relobj* object)
1221 {
1222   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1223   // SHT_PROGBITS.
1224   Output_section* os = this->choose_output_section(object, ".eh_frame",
1225                                                    elfcpp::SHT_PROGBITS,
1226                                                    elfcpp::SHF_ALLOC, false,
1227                                                    ORDER_EHFRAME, false);
1228   if (os == NULL)
1229     return NULL;
1230
1231   if (this->eh_frame_section_ == NULL)
1232     {
1233       this->eh_frame_section_ = os;
1234       this->eh_frame_data_ = new Eh_frame();
1235
1236       // For incremental linking, we do not optimize .eh_frame sections
1237       // or create a .eh_frame_hdr section.
1238       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1239         {
1240           Output_section* hdr_os =
1241             this->choose_output_section(NULL, ".eh_frame_hdr",
1242                                         elfcpp::SHT_PROGBITS,
1243                                         elfcpp::SHF_ALLOC, false,
1244                                         ORDER_EHFRAME, false);
1245
1246           if (hdr_os != NULL)
1247             {
1248               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1249                                                         this->eh_frame_data_);
1250               hdr_os->add_output_section_data(hdr_posd);
1251
1252               hdr_os->set_after_input_sections();
1253
1254               if (!this->script_options_->saw_phdrs_clause())
1255                 {
1256                   Output_segment* hdr_oseg;
1257                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1258                                                        elfcpp::PF_R);
1259                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1260                                                           elfcpp::PF_R);
1261                 }
1262
1263               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1264             }
1265         }
1266     }
1267
1268   return os;
1269 }
1270
1271 // Add an exception frame for a PLT.  This is called from target code.
1272
1273 void
1274 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1275                              size_t cie_length, const unsigned char* fde_data,
1276                              size_t fde_length)
1277 {
1278   if (parameters->incremental())
1279     {
1280       // FIXME: Maybe this could work some day....
1281       return;
1282     }
1283   Output_section* os = this->make_eh_frame_section(NULL);
1284   if (os == NULL)
1285     return;
1286   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1287                                             fde_data, fde_length);
1288   if (!this->added_eh_frame_data_)
1289     {
1290       os->add_output_section_data(this->eh_frame_data_);
1291       this->added_eh_frame_data_ = true;
1292     }
1293 }
1294
1295 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1296 // the output section.
1297
1298 Output_section*
1299 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1300                                 elfcpp::Elf_Xword flags,
1301                                 Output_section_data* posd,
1302                                 Output_section_order order, bool is_relro)
1303 {
1304   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1305                                                    false, order, is_relro);
1306   if (os != NULL)
1307     os->add_output_section_data(posd);
1308   return os;
1309 }
1310
1311 // Map section flags to segment flags.
1312
1313 elfcpp::Elf_Word
1314 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1315 {
1316   elfcpp::Elf_Word ret = elfcpp::PF_R;
1317   if ((flags & elfcpp::SHF_WRITE) != 0)
1318     ret |= elfcpp::PF_W;
1319   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1320     ret |= elfcpp::PF_X;
1321   return ret;
1322 }
1323
1324 // Make a new Output_section, and attach it to segments as
1325 // appropriate.  ORDER is the order in which this section should
1326 // appear in the output segment.  IS_RELRO is true if this is a relro
1327 // (read-only after relocations) section.
1328
1329 Output_section*
1330 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1331                             elfcpp::Elf_Xword flags,
1332                             Output_section_order order, bool is_relro)
1333 {
1334   Output_section* os;
1335   if ((flags & elfcpp::SHF_ALLOC) == 0
1336       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1337       && is_compressible_debug_section(name))
1338     os = new Output_compressed_section(&parameters->options(), name, type,
1339                                        flags);
1340   else if ((flags & elfcpp::SHF_ALLOC) == 0
1341            && parameters->options().strip_debug_non_line()
1342            && strcmp(".debug_abbrev", name) == 0)
1343     {
1344       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1345           name, type, flags);
1346       if (this->debug_info_)
1347         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1348     }
1349   else if ((flags & elfcpp::SHF_ALLOC) == 0
1350            && parameters->options().strip_debug_non_line()
1351            && strcmp(".debug_info", name) == 0)
1352     {
1353       os = this->debug_info_ = new Output_reduced_debug_info_section(
1354           name, type, flags);
1355       if (this->debug_abbrev_)
1356         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1357     }
1358   else
1359     {
1360       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1361       // not have correct section types.  Force them here.
1362       if (type == elfcpp::SHT_PROGBITS)
1363         {
1364           if (is_prefix_of(".init_array", name))
1365             type = elfcpp::SHT_INIT_ARRAY;
1366           else if (is_prefix_of(".preinit_array", name))
1367             type = elfcpp::SHT_PREINIT_ARRAY;
1368           else if (is_prefix_of(".fini_array", name))
1369             type = elfcpp::SHT_FINI_ARRAY;
1370         }
1371
1372       // FIXME: const_cast is ugly.
1373       Target* target = const_cast<Target*>(&parameters->target());
1374       os = target->make_output_section(name, type, flags);
1375     }
1376
1377   // With -z relro, we have to recognize the special sections by name.
1378   // There is no other way.
1379   bool is_relro_local = false;
1380   if (!this->script_options_->saw_sections_clause()
1381       && parameters->options().relro()
1382       && (flags & elfcpp::SHF_ALLOC) != 0
1383       && (flags & elfcpp::SHF_WRITE) != 0)
1384     {
1385       if (type == elfcpp::SHT_PROGBITS)
1386         {
1387           if (strcmp(name, ".data.rel.ro") == 0)
1388             is_relro = true;
1389           else if (strcmp(name, ".data.rel.ro.local") == 0)
1390             {
1391               is_relro = true;
1392               is_relro_local = true;
1393             }
1394           else if (strcmp(name, ".ctors") == 0
1395                    || strcmp(name, ".dtors") == 0
1396                    || strcmp(name, ".jcr") == 0)
1397             is_relro = true;
1398         }
1399       else if (type == elfcpp::SHT_INIT_ARRAY
1400                || type == elfcpp::SHT_FINI_ARRAY
1401                || type == elfcpp::SHT_PREINIT_ARRAY)
1402         is_relro = true;
1403     }
1404
1405   if (is_relro)
1406     os->set_is_relro();
1407
1408   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1409     order = this->default_section_order(os, is_relro_local);
1410
1411   os->set_order(order);
1412
1413   parameters->target().new_output_section(os);
1414
1415   this->section_list_.push_back(os);
1416
1417   // The GNU linker by default sorts some sections by priority, so we
1418   // do the same.  We need to know that this might happen before we
1419   // attach any input sections.
1420   if (!this->script_options_->saw_sections_clause()
1421       && !parameters->options().relocatable()
1422       && (strcmp(name, ".init_array") == 0
1423           || strcmp(name, ".fini_array") == 0
1424           || (!parameters->options().ctors_in_init_array()
1425               && (strcmp(name, ".ctors") == 0
1426                   || strcmp(name, ".dtors") == 0))))
1427     os->set_may_sort_attached_input_sections();
1428
1429   // Check for .stab*str sections, as .stab* sections need to link to
1430   // them.
1431   if (type == elfcpp::SHT_STRTAB
1432       && !this->have_stabstr_section_
1433       && strncmp(name, ".stab", 5) == 0
1434       && strcmp(name + strlen(name) - 3, "str") == 0)
1435     this->have_stabstr_section_ = true;
1436
1437   // During a full incremental link, we add patch space to most
1438   // PROGBITS and NOBITS sections.  Flag those that may be
1439   // arbitrarily padded.
1440   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1441       && order != ORDER_INTERP
1442       && order != ORDER_INIT
1443       && order != ORDER_PLT
1444       && order != ORDER_FINI
1445       && order != ORDER_RELRO_LAST
1446       && order != ORDER_NON_RELRO_FIRST
1447       && strcmp(name, ".eh_frame") != 0
1448       && strcmp(name, ".ctors") != 0
1449       && strcmp(name, ".dtors") != 0
1450       && strcmp(name, ".jcr") != 0)
1451     {
1452       os->set_is_patch_space_allowed();
1453
1454       // Certain sections require "holes" to be filled with
1455       // specific fill patterns.  These fill patterns may have
1456       // a minimum size, so we must prevent allocations from the
1457       // free list that leave a hole smaller than the minimum.
1458       if (strcmp(name, ".debug_info") == 0)
1459         os->set_free_space_fill(new Output_fill_debug_info(false));
1460       else if (strcmp(name, ".debug_types") == 0)
1461         os->set_free_space_fill(new Output_fill_debug_info(true));
1462       else if (strcmp(name, ".debug_line") == 0)
1463         os->set_free_space_fill(new Output_fill_debug_line());
1464     }
1465
1466   // If we have already attached the sections to segments, then we
1467   // need to attach this one now.  This happens for sections created
1468   // directly by the linker.
1469   if (this->sections_are_attached_)
1470     this->attach_section_to_segment(os);
1471
1472   return os;
1473 }
1474
1475 // Return the default order in which a section should be placed in an
1476 // output segment.  This function captures a lot of the ideas in
1477 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1478 // linker created section is normally set when the section is created;
1479 // this function is used for input sections.
1480
1481 Output_section_order
1482 Layout::default_section_order(Output_section* os, bool is_relro_local)
1483 {
1484   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1485   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1486   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1487   bool is_bss = false;
1488
1489   switch (os->type())
1490     {
1491     default:
1492     case elfcpp::SHT_PROGBITS:
1493       break;
1494     case elfcpp::SHT_NOBITS:
1495       is_bss = true;
1496       break;
1497     case elfcpp::SHT_RELA:
1498     case elfcpp::SHT_REL:
1499       if (!is_write)
1500         return ORDER_DYNAMIC_RELOCS;
1501       break;
1502     case elfcpp::SHT_HASH:
1503     case elfcpp::SHT_DYNAMIC:
1504     case elfcpp::SHT_SHLIB:
1505     case elfcpp::SHT_DYNSYM:
1506     case elfcpp::SHT_GNU_HASH:
1507     case elfcpp::SHT_GNU_verdef:
1508     case elfcpp::SHT_GNU_verneed:
1509     case elfcpp::SHT_GNU_versym:
1510       if (!is_write)
1511         return ORDER_DYNAMIC_LINKER;
1512       break;
1513     case elfcpp::SHT_NOTE:
1514       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1515     }
1516
1517   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1518     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1519
1520   if (!is_bss && !is_write)
1521     {
1522       if (is_execinstr)
1523         {
1524           if (strcmp(os->name(), ".init") == 0)
1525             return ORDER_INIT;
1526           else if (strcmp(os->name(), ".fini") == 0)
1527             return ORDER_FINI;
1528         }
1529       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1530     }
1531
1532   if (os->is_relro())
1533     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1534
1535   if (os->is_small_section())
1536     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1537   if (os->is_large_section())
1538     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1539
1540   return is_bss ? ORDER_BSS : ORDER_DATA;
1541 }
1542
1543 // Attach output sections to segments.  This is called after we have
1544 // seen all the input sections.
1545
1546 void
1547 Layout::attach_sections_to_segments()
1548 {
1549   for (Section_list::iterator p = this->section_list_.begin();
1550        p != this->section_list_.end();
1551        ++p)
1552     this->attach_section_to_segment(*p);
1553
1554   this->sections_are_attached_ = true;
1555 }
1556
1557 // Attach an output section to a segment.
1558
1559 void
1560 Layout::attach_section_to_segment(Output_section* os)
1561 {
1562   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1563     this->unattached_section_list_.push_back(os);
1564   else
1565     this->attach_allocated_section_to_segment(os);
1566 }
1567
1568 // Attach an allocated output section to a segment.
1569
1570 void
1571 Layout::attach_allocated_section_to_segment(Output_section* os)
1572 {
1573   elfcpp::Elf_Xword flags = os->flags();
1574   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1575
1576   if (parameters->options().relocatable())
1577     return;
1578
1579   // If we have a SECTIONS clause, we can't handle the attachment to
1580   // segments until after we've seen all the sections.
1581   if (this->script_options_->saw_sections_clause())
1582     return;
1583
1584   gold_assert(!this->script_options_->saw_phdrs_clause());
1585
1586   // This output section goes into a PT_LOAD segment.
1587
1588   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1589
1590   // Check for --section-start.
1591   uint64_t addr;
1592   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1593
1594   // In general the only thing we really care about for PT_LOAD
1595   // segments is whether or not they are writable or executable,
1596   // so that is how we search for them.
1597   // Large data sections also go into their own PT_LOAD segment.
1598   // People who need segments sorted on some other basis will
1599   // have to use a linker script.
1600
1601   Segment_list::const_iterator p;
1602   for (p = this->segment_list_.begin();
1603        p != this->segment_list_.end();
1604        ++p)
1605     {
1606       if ((*p)->type() != elfcpp::PT_LOAD)
1607         continue;
1608       if (!parameters->options().omagic()
1609           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1610         continue;
1611       if (parameters->options().rosegment()
1612           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1613         continue;
1614       // If -Tbss was specified, we need to separate the data and BSS
1615       // segments.
1616       if (parameters->options().user_set_Tbss())
1617         {
1618           if ((os->type() == elfcpp::SHT_NOBITS)
1619               == (*p)->has_any_data_sections())
1620             continue;
1621         }
1622       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1623         continue;
1624
1625       if (is_address_set)
1626         {
1627           if ((*p)->are_addresses_set())
1628             continue;
1629
1630           (*p)->add_initial_output_data(os);
1631           (*p)->update_flags_for_output_section(seg_flags);
1632           (*p)->set_addresses(addr, addr);
1633           break;
1634         }
1635
1636       (*p)->add_output_section_to_load(this, os, seg_flags);
1637       break;
1638     }
1639
1640   if (p == this->segment_list_.end())
1641     {
1642       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1643                                                        seg_flags);
1644       if (os->is_large_data_section())
1645         oseg->set_is_large_data_segment();
1646       oseg->add_output_section_to_load(this, os, seg_flags);
1647       if (is_address_set)
1648         oseg->set_addresses(addr, addr);
1649     }
1650
1651   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1652   // segment.
1653   if (os->type() == elfcpp::SHT_NOTE)
1654     {
1655       // See if we already have an equivalent PT_NOTE segment.
1656       for (p = this->segment_list_.begin();
1657            p != segment_list_.end();
1658            ++p)
1659         {
1660           if ((*p)->type() == elfcpp::PT_NOTE
1661               && (((*p)->flags() & elfcpp::PF_W)
1662                   == (seg_flags & elfcpp::PF_W)))
1663             {
1664               (*p)->add_output_section_to_nonload(os, seg_flags);
1665               break;
1666             }
1667         }
1668
1669       if (p == this->segment_list_.end())
1670         {
1671           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1672                                                            seg_flags);
1673           oseg->add_output_section_to_nonload(os, seg_flags);
1674         }
1675     }
1676
1677   // If we see a loadable SHF_TLS section, we create a PT_TLS
1678   // segment.  There can only be one such segment.
1679   if ((flags & elfcpp::SHF_TLS) != 0)
1680     {
1681       if (this->tls_segment_ == NULL)
1682         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1683       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1684     }
1685
1686   // If -z relro is in effect, and we see a relro section, we create a
1687   // PT_GNU_RELRO segment.  There can only be one such segment.
1688   if (os->is_relro() && parameters->options().relro())
1689     {
1690       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1691       if (this->relro_segment_ == NULL)
1692         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1693       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1694     }
1695
1696   // If we see a section named .interp, put it into a PT_INTERP
1697   // segment.  This seems broken to me, but this is what GNU ld does,
1698   // and glibc expects it.
1699   if (strcmp(os->name(), ".interp") == 0
1700       && !this->script_options_->saw_phdrs_clause())
1701     {
1702       if (this->interp_segment_ == NULL)
1703         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1704       else
1705         gold_warning(_("multiple '.interp' sections in input files "
1706                        "may cause confusing PT_INTERP segment"));
1707       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1708     }
1709 }
1710
1711 // Make an output section for a script.
1712
1713 Output_section*
1714 Layout::make_output_section_for_script(
1715     const char* name,
1716     Script_sections::Section_type section_type)
1717 {
1718   name = this->namepool_.add(name, false, NULL);
1719   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1720   if (section_type == Script_sections::ST_NOLOAD)
1721     sh_flags = 0;
1722   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1723                                                  sh_flags, ORDER_INVALID,
1724                                                  false);
1725   os->set_found_in_sections_clause();
1726   if (section_type == Script_sections::ST_NOLOAD)
1727     os->set_is_noload();
1728   return os;
1729 }
1730
1731 // Return the number of segments we expect to see.
1732
1733 size_t
1734 Layout::expected_segment_count() const
1735 {
1736   size_t ret = this->segment_list_.size();
1737
1738   // If we didn't see a SECTIONS clause in a linker script, we should
1739   // already have the complete list of segments.  Otherwise we ask the
1740   // SECTIONS clause how many segments it expects, and add in the ones
1741   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1742
1743   if (!this->script_options_->saw_sections_clause())
1744     return ret;
1745   else
1746     {
1747       const Script_sections* ss = this->script_options_->script_sections();
1748       return ret + ss->expected_segment_count(this);
1749     }
1750 }
1751
1752 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1753 // is whether we saw a .note.GNU-stack section in the object file.
1754 // GNU_STACK_FLAGS is the section flags.  The flags give the
1755 // protection required for stack memory.  We record this in an
1756 // executable as a PT_GNU_STACK segment.  If an object file does not
1757 // have a .note.GNU-stack segment, we must assume that it is an old
1758 // object.  On some targets that will force an executable stack.
1759
1760 void
1761 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1762                          const Object* obj)
1763 {
1764   if (!seen_gnu_stack)
1765     {
1766       this->input_without_gnu_stack_note_ = true;
1767       if (parameters->options().warn_execstack()
1768           && parameters->target().is_default_stack_executable())
1769         gold_warning(_("%s: missing .note.GNU-stack section"
1770                        " implies executable stack"),
1771                      obj->name().c_str());
1772     }
1773   else
1774     {
1775       this->input_with_gnu_stack_note_ = true;
1776       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1777         {
1778           this->input_requires_executable_stack_ = true;
1779           if (parameters->options().warn_execstack()
1780               || parameters->options().is_stack_executable())
1781             gold_warning(_("%s: requires executable stack"),
1782                          obj->name().c_str());
1783         }
1784     }
1785 }
1786
1787 // Create automatic note sections.
1788
1789 void
1790 Layout::create_notes()
1791 {
1792   this->create_gold_note();
1793   this->create_executable_stack_info();
1794   this->create_build_id();
1795 }
1796
1797 // Create the dynamic sections which are needed before we read the
1798 // relocs.
1799
1800 void
1801 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1802 {
1803   if (parameters->doing_static_link())
1804     return;
1805
1806   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1807                                                        elfcpp::SHT_DYNAMIC,
1808                                                        (elfcpp::SHF_ALLOC
1809                                                         | elfcpp::SHF_WRITE),
1810                                                        false, ORDER_RELRO,
1811                                                        true);
1812
1813   // A linker script may discard .dynamic, so check for NULL.
1814   if (this->dynamic_section_ != NULL)
1815     {
1816       this->dynamic_symbol_ =
1817         symtab->define_in_output_data("_DYNAMIC", NULL,
1818                                       Symbol_table::PREDEFINED,
1819                                       this->dynamic_section_, 0, 0,
1820                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1821                                       elfcpp::STV_HIDDEN, 0, false, false);
1822
1823       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1824
1825       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1826     }
1827 }
1828
1829 // For each output section whose name can be represented as C symbol,
1830 // define __start and __stop symbols for the section.  This is a GNU
1831 // extension.
1832
1833 void
1834 Layout::define_section_symbols(Symbol_table* symtab)
1835 {
1836   for (Section_list::const_iterator p = this->section_list_.begin();
1837        p != this->section_list_.end();
1838        ++p)
1839     {
1840       const char* const name = (*p)->name();
1841       if (is_cident(name))
1842         {
1843           const std::string name_string(name);
1844           const std::string start_name(cident_section_start_prefix
1845                                        + name_string);
1846           const std::string stop_name(cident_section_stop_prefix
1847                                       + name_string);
1848
1849           symtab->define_in_output_data(start_name.c_str(),
1850                                         NULL, // version
1851                                         Symbol_table::PREDEFINED,
1852                                         *p,
1853                                         0, // value
1854                                         0, // symsize
1855                                         elfcpp::STT_NOTYPE,
1856                                         elfcpp::STB_GLOBAL,
1857                                         elfcpp::STV_DEFAULT,
1858                                         0, // nonvis
1859                                         false, // offset_is_from_end
1860                                         true); // only_if_ref
1861
1862           symtab->define_in_output_data(stop_name.c_str(),
1863                                         NULL, // version
1864                                         Symbol_table::PREDEFINED,
1865                                         *p,
1866                                         0, // value
1867                                         0, // symsize
1868                                         elfcpp::STT_NOTYPE,
1869                                         elfcpp::STB_GLOBAL,
1870                                         elfcpp::STV_DEFAULT,
1871                                         0, // nonvis
1872                                         true, // offset_is_from_end
1873                                         true); // only_if_ref
1874         }
1875     }
1876 }
1877
1878 // Define symbols for group signatures.
1879
1880 void
1881 Layout::define_group_signatures(Symbol_table* symtab)
1882 {
1883   for (Group_signatures::iterator p = this->group_signatures_.begin();
1884        p != this->group_signatures_.end();
1885        ++p)
1886     {
1887       Symbol* sym = symtab->lookup(p->signature, NULL);
1888       if (sym != NULL)
1889         p->section->set_info_symndx(sym);
1890       else
1891         {
1892           // Force the name of the group section to the group
1893           // signature, and use the group's section symbol as the
1894           // signature symbol.
1895           if (strcmp(p->section->name(), p->signature) != 0)
1896             {
1897               const char* name = this->namepool_.add(p->signature,
1898                                                      true, NULL);
1899               p->section->set_name(name);
1900             }
1901           p->section->set_needs_symtab_index();
1902           p->section->set_info_section_symndx(p->section);
1903         }
1904     }
1905
1906   this->group_signatures_.clear();
1907 }
1908
1909 // Find the first read-only PT_LOAD segment, creating one if
1910 // necessary.
1911
1912 Output_segment*
1913 Layout::find_first_load_seg()
1914 {
1915   Output_segment* best = NULL;
1916   for (Segment_list::const_iterator p = this->segment_list_.begin();
1917        p != this->segment_list_.end();
1918        ++p)
1919     {
1920       if ((*p)->type() == elfcpp::PT_LOAD
1921           && ((*p)->flags() & elfcpp::PF_R) != 0
1922           && (parameters->options().omagic()
1923               || ((*p)->flags() & elfcpp::PF_W) == 0))
1924         {
1925           if (best == NULL || this->segment_precedes(*p, best))
1926             best = *p;
1927         }
1928     }
1929   if (best != NULL)
1930     return best;
1931
1932   gold_assert(!this->script_options_->saw_phdrs_clause());
1933
1934   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1935                                                        elfcpp::PF_R);
1936   return load_seg;
1937 }
1938
1939 // Save states of all current output segments.  Store saved states
1940 // in SEGMENT_STATES.
1941
1942 void
1943 Layout::save_segments(Segment_states* segment_states)
1944 {
1945   for (Segment_list::const_iterator p = this->segment_list_.begin();
1946        p != this->segment_list_.end();
1947        ++p)
1948     {
1949       Output_segment* segment = *p;
1950       // Shallow copy.
1951       Output_segment* copy = new Output_segment(*segment);
1952       (*segment_states)[segment] = copy;
1953     }
1954 }
1955
1956 // Restore states of output segments and delete any segment not found in
1957 // SEGMENT_STATES.
1958
1959 void
1960 Layout::restore_segments(const Segment_states* segment_states)
1961 {
1962   // Go through the segment list and remove any segment added in the
1963   // relaxation loop.
1964   this->tls_segment_ = NULL;
1965   this->relro_segment_ = NULL;
1966   Segment_list::iterator list_iter = this->segment_list_.begin();
1967   while (list_iter != this->segment_list_.end())
1968     {
1969       Output_segment* segment = *list_iter;
1970       Segment_states::const_iterator states_iter =
1971           segment_states->find(segment);
1972       if (states_iter != segment_states->end())
1973         {
1974           const Output_segment* copy = states_iter->second;
1975           // Shallow copy to restore states.
1976           *segment = *copy;
1977
1978           // Also fix up TLS and RELRO segment pointers as appropriate.
1979           if (segment->type() == elfcpp::PT_TLS)
1980             this->tls_segment_ = segment;
1981           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1982             this->relro_segment_ = segment;
1983
1984           ++list_iter;
1985         } 
1986       else
1987         {
1988           list_iter = this->segment_list_.erase(list_iter); 
1989           // This is a segment created during section layout.  It should be
1990           // safe to remove it since we should have removed all pointers to it.
1991           delete segment;
1992         }
1993     }
1994 }
1995
1996 // Clean up after relaxation so that sections can be laid out again.
1997
1998 void
1999 Layout::clean_up_after_relaxation()
2000 {
2001   // Restore the segments to point state just prior to the relaxation loop.
2002   Script_sections* script_section = this->script_options_->script_sections();
2003   script_section->release_segments();
2004   this->restore_segments(this->segment_states_);
2005
2006   // Reset section addresses and file offsets
2007   for (Section_list::iterator p = this->section_list_.begin();
2008        p != this->section_list_.end();
2009        ++p)
2010     {
2011       (*p)->restore_states();
2012
2013       // If an input section changes size because of relaxation,
2014       // we need to adjust the section offsets of all input sections.
2015       // after such a section.
2016       if ((*p)->section_offsets_need_adjustment())
2017         (*p)->adjust_section_offsets();
2018
2019       (*p)->reset_address_and_file_offset();
2020     }
2021   
2022   // Reset special output object address and file offsets.
2023   for (Data_list::iterator p = this->special_output_list_.begin();
2024        p != this->special_output_list_.end();
2025        ++p)
2026     (*p)->reset_address_and_file_offset();
2027
2028   // A linker script may have created some output section data objects.
2029   // They are useless now.
2030   for (Output_section_data_list::const_iterator p =
2031          this->script_output_section_data_list_.begin();
2032        p != this->script_output_section_data_list_.end();
2033        ++p)
2034     delete *p;
2035   this->script_output_section_data_list_.clear(); 
2036 }
2037
2038 // Prepare for relaxation.
2039
2040 void
2041 Layout::prepare_for_relaxation()
2042 {
2043   // Create an relaxation debug check if in debugging mode.
2044   if (is_debugging_enabled(DEBUG_RELAXATION))
2045     this->relaxation_debug_check_ = new Relaxation_debug_check();
2046
2047   // Save segment states.
2048   this->segment_states_ = new Segment_states();
2049   this->save_segments(this->segment_states_);
2050
2051   for(Section_list::const_iterator p = this->section_list_.begin();
2052       p != this->section_list_.end();
2053       ++p)
2054     (*p)->save_states();
2055
2056   if (is_debugging_enabled(DEBUG_RELAXATION))
2057     this->relaxation_debug_check_->check_output_data_for_reset_values(
2058         this->section_list_, this->special_output_list_);
2059
2060   // Also enable recording of output section data from scripts.
2061   this->record_output_section_data_from_script_ = true;
2062 }
2063
2064 // Relaxation loop body:  If target has no relaxation, this runs only once
2065 // Otherwise, the target relaxation hook is called at the end of
2066 // each iteration.  If the hook returns true, it means re-layout of
2067 // section is required.  
2068 //
2069 // The number of segments created by a linking script without a PHDRS
2070 // clause may be affected by section sizes and alignments.  There is
2071 // a remote chance that relaxation causes different number of PT_LOAD
2072 // segments are created and sections are attached to different segments.
2073 // Therefore, we always throw away all segments created during section
2074 // layout.  In order to be able to restart the section layout, we keep
2075 // a copy of the segment list right before the relaxation loop and use
2076 // that to restore the segments.
2077 // 
2078 // PASS is the current relaxation pass number. 
2079 // SYMTAB is a symbol table.
2080 // PLOAD_SEG is the address of a pointer for the load segment.
2081 // PHDR_SEG is a pointer to the PHDR segment.
2082 // SEGMENT_HEADERS points to the output segment header.
2083 // FILE_HEADER points to the output file header.
2084 // PSHNDX is the address to store the output section index.
2085
2086 off_t inline
2087 Layout::relaxation_loop_body(
2088     int pass,
2089     Target* target,
2090     Symbol_table* symtab,
2091     Output_segment** pload_seg,
2092     Output_segment* phdr_seg,
2093     Output_segment_headers* segment_headers,
2094     Output_file_header* file_header,
2095     unsigned int* pshndx)
2096 {
2097   // If this is not the first iteration, we need to clean up after
2098   // relaxation so that we can lay out the sections again.
2099   if (pass != 0)
2100     this->clean_up_after_relaxation();
2101
2102   // If there is a SECTIONS clause, put all the input sections into
2103   // the required order.
2104   Output_segment* load_seg;
2105   if (this->script_options_->saw_sections_clause())
2106     load_seg = this->set_section_addresses_from_script(symtab);
2107   else if (parameters->options().relocatable())
2108     load_seg = NULL;
2109   else
2110     load_seg = this->find_first_load_seg();
2111
2112   if (parameters->options().oformat_enum()
2113       != General_options::OBJECT_FORMAT_ELF)
2114     load_seg = NULL;
2115
2116   // If the user set the address of the text segment, that may not be
2117   // compatible with putting the segment headers and file headers into
2118   // that segment.
2119   if (parameters->options().user_set_Ttext()
2120       && parameters->options().Ttext() % target->common_pagesize() != 0)
2121     {
2122       load_seg = NULL;
2123       phdr_seg = NULL;
2124     }
2125
2126   gold_assert(phdr_seg == NULL
2127               || load_seg != NULL
2128               || this->script_options_->saw_sections_clause());
2129
2130   // If the address of the load segment we found has been set by
2131   // --section-start rather than by a script, then adjust the VMA and
2132   // LMA downward if possible to include the file and section headers.
2133   uint64_t header_gap = 0;
2134   if (load_seg != NULL
2135       && load_seg->are_addresses_set()
2136       && !this->script_options_->saw_sections_clause()
2137       && !parameters->options().relocatable())
2138     {
2139       file_header->finalize_data_size();
2140       segment_headers->finalize_data_size();
2141       size_t sizeof_headers = (file_header->data_size()
2142                                + segment_headers->data_size());
2143       const uint64_t abi_pagesize = target->abi_pagesize();
2144       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2145       hdr_paddr &= ~(abi_pagesize - 1);
2146       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2147       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2148         load_seg = NULL;
2149       else
2150         {
2151           load_seg->set_addresses(load_seg->vaddr() - subtract,
2152                                   load_seg->paddr() - subtract);
2153           header_gap = subtract - sizeof_headers;
2154         }
2155     }
2156
2157   // Lay out the segment headers.
2158   if (!parameters->options().relocatable())
2159     {
2160       gold_assert(segment_headers != NULL);
2161       if (header_gap != 0 && load_seg != NULL)
2162         {
2163           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2164           load_seg->add_initial_output_data(z);
2165         }
2166       if (load_seg != NULL)
2167         load_seg->add_initial_output_data(segment_headers);
2168       if (phdr_seg != NULL)
2169         phdr_seg->add_initial_output_data(segment_headers);
2170     }
2171
2172   // Lay out the file header.
2173   if (load_seg != NULL)
2174     load_seg->add_initial_output_data(file_header);
2175
2176   if (this->script_options_->saw_phdrs_clause()
2177       && !parameters->options().relocatable())
2178     {
2179       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2180       // clause in a linker script.
2181       Script_sections* ss = this->script_options_->script_sections();
2182       ss->put_headers_in_phdrs(file_header, segment_headers);
2183     }
2184
2185   // We set the output section indexes in set_segment_offsets and
2186   // set_section_indexes.
2187   *pshndx = 1;
2188
2189   // Set the file offsets of all the segments, and all the sections
2190   // they contain.
2191   off_t off;
2192   if (!parameters->options().relocatable())
2193     off = this->set_segment_offsets(target, load_seg, pshndx);
2194   else
2195     off = this->set_relocatable_section_offsets(file_header, pshndx);
2196
2197    // Verify that the dummy relaxation does not change anything.
2198   if (is_debugging_enabled(DEBUG_RELAXATION))
2199     {
2200       if (pass == 0)
2201         this->relaxation_debug_check_->read_sections(this->section_list_);
2202       else
2203         this->relaxation_debug_check_->verify_sections(this->section_list_);
2204     }
2205
2206   *pload_seg = load_seg;
2207   return off;
2208 }
2209
2210 // Search the list of patterns and find the postion of the given section
2211 // name in the output section.  If the section name matches a glob
2212 // pattern and a non-glob name, then the non-glob position takes
2213 // precedence.  Return 0 if no match is found.
2214
2215 unsigned int
2216 Layout::find_section_order_index(const std::string& section_name)
2217 {
2218   Unordered_map<std::string, unsigned int>::iterator map_it;
2219   map_it = this->input_section_position_.find(section_name);
2220   if (map_it != this->input_section_position_.end())
2221     return map_it->second;
2222
2223   // Absolute match failed.  Linear search the glob patterns.
2224   std::vector<std::string>::iterator it;
2225   for (it = this->input_section_glob_.begin();
2226        it != this->input_section_glob_.end();
2227        ++it)
2228     {
2229        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2230          {
2231            map_it = this->input_section_position_.find(*it);
2232            gold_assert(map_it != this->input_section_position_.end());
2233            return map_it->second;
2234          }
2235     }
2236   return 0;
2237 }
2238
2239 // Read the sequence of input sections from the file specified with
2240 // option --section-ordering-file.
2241
2242 void
2243 Layout::read_layout_from_file()
2244 {
2245   const char* filename = parameters->options().section_ordering_file();
2246   std::ifstream in;
2247   std::string line;
2248
2249   in.open(filename);
2250   if (!in)
2251     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2252                filename, strerror(errno));
2253
2254   std::getline(in, line);   // this chops off the trailing \n, if any
2255   unsigned int position = 1;
2256   this->set_section_ordering_specified();
2257
2258   while (in)
2259     {
2260       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2261         line.resize(line.length() - 1);
2262       // Ignore comments, beginning with '#'
2263       if (line[0] == '#')
2264         {
2265           std::getline(in, line);
2266           continue;
2267         }
2268       this->input_section_position_[line] = position;
2269       // Store all glob patterns in a vector.
2270       if (is_wildcard_string(line.c_str()))
2271         this->input_section_glob_.push_back(line);
2272       position++;
2273       std::getline(in, line);
2274     }
2275 }
2276
2277 // Finalize the layout.  When this is called, we have created all the
2278 // output sections and all the output segments which are based on
2279 // input sections.  We have several things to do, and we have to do
2280 // them in the right order, so that we get the right results correctly
2281 // and efficiently.
2282
2283 // 1) Finalize the list of output segments and create the segment
2284 // table header.
2285
2286 // 2) Finalize the dynamic symbol table and associated sections.
2287
2288 // 3) Determine the final file offset of all the output segments.
2289
2290 // 4) Determine the final file offset of all the SHF_ALLOC output
2291 // sections.
2292
2293 // 5) Create the symbol table sections and the section name table
2294 // section.
2295
2296 // 6) Finalize the symbol table: set symbol values to their final
2297 // value and make a final determination of which symbols are going
2298 // into the output symbol table.
2299
2300 // 7) Create the section table header.
2301
2302 // 8) Determine the final file offset of all the output sections which
2303 // are not SHF_ALLOC, including the section table header.
2304
2305 // 9) Finalize the ELF file header.
2306
2307 // This function returns the size of the output file.
2308
2309 off_t
2310 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2311                  Target* target, const Task* task)
2312 {
2313   target->finalize_sections(this, input_objects, symtab);
2314
2315   this->count_local_symbols(task, input_objects);
2316
2317   this->link_stabs_sections();
2318
2319   Output_segment* phdr_seg = NULL;
2320   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2321     {
2322       // There was a dynamic object in the link.  We need to create
2323       // some information for the dynamic linker.
2324
2325       // Create the PT_PHDR segment which will hold the program
2326       // headers.
2327       if (!this->script_options_->saw_phdrs_clause())
2328         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2329
2330       // Create the dynamic symbol table, including the hash table.
2331       Output_section* dynstr;
2332       std::vector<Symbol*> dynamic_symbols;
2333       unsigned int local_dynamic_count;
2334       Versions versions(*this->script_options()->version_script_info(),
2335                         &this->dynpool_);
2336       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2337                                   &local_dynamic_count, &dynamic_symbols,
2338                                   &versions);
2339
2340       // Create the .interp section to hold the name of the
2341       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2342       // if we saw a .interp section in an input file.
2343       if ((!parameters->options().shared()
2344            || parameters->options().dynamic_linker() != NULL)
2345           && this->interp_segment_ == NULL)
2346         this->create_interp(target);
2347
2348       // Finish the .dynamic section to hold the dynamic data, and put
2349       // it in a PT_DYNAMIC segment.
2350       this->finish_dynamic_section(input_objects, symtab);
2351
2352       // We should have added everything we need to the dynamic string
2353       // table.
2354       this->dynpool_.set_string_offsets();
2355
2356       // Create the version sections.  We can't do this until the
2357       // dynamic string table is complete.
2358       this->create_version_sections(&versions, symtab, local_dynamic_count,
2359                                     dynamic_symbols, dynstr);
2360
2361       // Set the size of the _DYNAMIC symbol.  We can't do this until
2362       // after we call create_version_sections.
2363       this->set_dynamic_symbol_size(symtab);
2364     }
2365   
2366   // Create segment headers.
2367   Output_segment_headers* segment_headers =
2368     (parameters->options().relocatable()
2369      ? NULL
2370      : new Output_segment_headers(this->segment_list_));
2371
2372   // Lay out the file header.
2373   Output_file_header* file_header = new Output_file_header(target, symtab,
2374                                                            segment_headers);
2375
2376   this->special_output_list_.push_back(file_header);
2377   if (segment_headers != NULL)
2378     this->special_output_list_.push_back(segment_headers);
2379
2380   // Find approriate places for orphan output sections if we are using
2381   // a linker script.
2382   if (this->script_options_->saw_sections_clause())
2383     this->place_orphan_sections_in_script();
2384   
2385   Output_segment* load_seg;
2386   off_t off;
2387   unsigned int shndx;
2388   int pass = 0;
2389
2390   // Take a snapshot of the section layout as needed.
2391   if (target->may_relax())
2392     this->prepare_for_relaxation();
2393   
2394   // Run the relaxation loop to lay out sections.
2395   do
2396     {
2397       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2398                                        phdr_seg, segment_headers, file_header,
2399                                        &shndx);
2400       pass++;
2401     }
2402   while (target->may_relax()
2403          && target->relax(pass, input_objects, symtab, this, task));
2404
2405   // Set the file offsets of all the non-data sections we've seen so
2406   // far which don't have to wait for the input sections.  We need
2407   // this in order to finalize local symbols in non-allocated
2408   // sections.
2409   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2410
2411   // Set the section indexes of all unallocated sections seen so far,
2412   // in case any of them are somehow referenced by a symbol.
2413   shndx = this->set_section_indexes(shndx);
2414
2415   // Create the symbol table sections.
2416   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2417   if (!parameters->doing_static_link())
2418     this->assign_local_dynsym_offsets(input_objects);
2419
2420   // Process any symbol assignments from a linker script.  This must
2421   // be called after the symbol table has been finalized.
2422   this->script_options_->finalize_symbols(symtab, this);
2423
2424   // Create the incremental inputs sections.
2425   if (this->incremental_inputs_)
2426     {
2427       this->incremental_inputs_->finalize();
2428       this->create_incremental_info_sections(symtab);
2429     }
2430
2431   // Create the .shstrtab section.
2432   Output_section* shstrtab_section = this->create_shstrtab();
2433
2434   // Set the file offsets of the rest of the non-data sections which
2435   // don't have to wait for the input sections.
2436   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2437
2438   // Now that all sections have been created, set the section indexes
2439   // for any sections which haven't been done yet.
2440   shndx = this->set_section_indexes(shndx);
2441
2442   // Create the section table header.
2443   this->create_shdrs(shstrtab_section, &off);
2444
2445   // If there are no sections which require postprocessing, we can
2446   // handle the section names now, and avoid a resize later.
2447   if (!this->any_postprocessing_sections_)
2448     {
2449       off = this->set_section_offsets(off,
2450                                       POSTPROCESSING_SECTIONS_PASS);
2451       off =
2452           this->set_section_offsets(off,
2453                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2454     }
2455
2456   file_header->set_section_info(this->section_headers_, shstrtab_section);
2457
2458   // Now we know exactly where everything goes in the output file
2459   // (except for non-allocated sections which require postprocessing).
2460   Output_data::layout_complete();
2461
2462   this->output_file_size_ = off;
2463
2464   return off;
2465 }
2466
2467 // Create a note header following the format defined in the ELF ABI.
2468 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2469 // of the section to create, DESCSZ is the size of the descriptor.
2470 // ALLOCATE is true if the section should be allocated in memory.
2471 // This returns the new note section.  It sets *TRAILING_PADDING to
2472 // the number of trailing zero bytes required.
2473
2474 Output_section*
2475 Layout::create_note(const char* name, int note_type,
2476                     const char* section_name, size_t descsz,
2477                     bool allocate, size_t* trailing_padding)
2478 {
2479   // Authorities all agree that the values in a .note field should
2480   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2481   // they differ on what the alignment is for 64-bit binaries.
2482   // The GABI says unambiguously they take 8-byte alignment:
2483   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2484   // Other documentation says alignment should always be 4 bytes:
2485   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2486   // GNU ld and GNU readelf both support the latter (at least as of
2487   // version 2.16.91), and glibc always generates the latter for
2488   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2489   // here.
2490 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2491   const int size = parameters->target().get_size();
2492 #else
2493   const int size = 32;
2494 #endif
2495
2496   // The contents of the .note section.
2497   size_t namesz = strlen(name) + 1;
2498   size_t aligned_namesz = align_address(namesz, size / 8);
2499   size_t aligned_descsz = align_address(descsz, size / 8);
2500
2501   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2502
2503   unsigned char* buffer = new unsigned char[notehdrsz];
2504   memset(buffer, 0, notehdrsz);
2505
2506   bool is_big_endian = parameters->target().is_big_endian();
2507
2508   if (size == 32)
2509     {
2510       if (!is_big_endian)
2511         {
2512           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2513           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2514           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2515         }
2516       else
2517         {
2518           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2519           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2520           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2521         }
2522     }
2523   else if (size == 64)
2524     {
2525       if (!is_big_endian)
2526         {
2527           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2528           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2529           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2530         }
2531       else
2532         {
2533           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2534           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2535           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2536         }
2537     }
2538   else
2539     gold_unreachable();
2540
2541   memcpy(buffer + 3 * (size / 8), name, namesz);
2542
2543   elfcpp::Elf_Xword flags = 0;
2544   Output_section_order order = ORDER_INVALID;
2545   if (allocate)
2546     {
2547       flags = elfcpp::SHF_ALLOC;
2548       order = ORDER_RO_NOTE;
2549     }
2550   Output_section* os = this->choose_output_section(NULL, section_name,
2551                                                    elfcpp::SHT_NOTE,
2552                                                    flags, false, order, false);
2553   if (os == NULL)
2554     return NULL;
2555
2556   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2557                                                            size / 8,
2558                                                            "** note header");
2559   os->add_output_section_data(posd);
2560
2561   *trailing_padding = aligned_descsz - descsz;
2562
2563   return os;
2564 }
2565
2566 // For an executable or shared library, create a note to record the
2567 // version of gold used to create the binary.
2568
2569 void
2570 Layout::create_gold_note()
2571 {
2572   if (parameters->options().relocatable()
2573       || parameters->incremental_update())
2574     return;
2575
2576   std::string desc = std::string("gold ") + gold::get_version_string();
2577
2578   size_t trailing_padding;
2579   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2580                                          ".note.gnu.gold-version", desc.size(),
2581                                          false, &trailing_padding);
2582   if (os == NULL)
2583     return;
2584
2585   Output_section_data* posd = new Output_data_const(desc, 4);
2586   os->add_output_section_data(posd);
2587
2588   if (trailing_padding > 0)
2589     {
2590       posd = new Output_data_zero_fill(trailing_padding, 0);
2591       os->add_output_section_data(posd);
2592     }
2593 }
2594
2595 // Record whether the stack should be executable.  This can be set
2596 // from the command line using the -z execstack or -z noexecstack
2597 // options.  Otherwise, if any input file has a .note.GNU-stack
2598 // section with the SHF_EXECINSTR flag set, the stack should be
2599 // executable.  Otherwise, if at least one input file a
2600 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2601 // section, we use the target default for whether the stack should be
2602 // executable.  Otherwise, we don't generate a stack note.  When
2603 // generating a object file, we create a .note.GNU-stack section with
2604 // the appropriate marking.  When generating an executable or shared
2605 // library, we create a PT_GNU_STACK segment.
2606
2607 void
2608 Layout::create_executable_stack_info()
2609 {
2610   bool is_stack_executable;
2611   if (parameters->options().is_execstack_set())
2612     is_stack_executable = parameters->options().is_stack_executable();
2613   else if (!this->input_with_gnu_stack_note_)
2614     return;
2615   else
2616     {
2617       if (this->input_requires_executable_stack_)
2618         is_stack_executable = true;
2619       else if (this->input_without_gnu_stack_note_)
2620         is_stack_executable =
2621           parameters->target().is_default_stack_executable();
2622       else
2623         is_stack_executable = false;
2624     }
2625
2626   if (parameters->options().relocatable())
2627     {
2628       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2629       elfcpp::Elf_Xword flags = 0;
2630       if (is_stack_executable)
2631         flags |= elfcpp::SHF_EXECINSTR;
2632       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2633                                 ORDER_INVALID, false);
2634     }
2635   else
2636     {
2637       if (this->script_options_->saw_phdrs_clause())
2638         return;
2639       int flags = elfcpp::PF_R | elfcpp::PF_W;
2640       if (is_stack_executable)
2641         flags |= elfcpp::PF_X;
2642       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2643     }
2644 }
2645
2646 // If --build-id was used, set up the build ID note.
2647
2648 void
2649 Layout::create_build_id()
2650 {
2651   if (!parameters->options().user_set_build_id())
2652     return;
2653
2654   const char* style = parameters->options().build_id();
2655   if (strcmp(style, "none") == 0)
2656     return;
2657
2658   // Set DESCSZ to the size of the note descriptor.  When possible,
2659   // set DESC to the note descriptor contents.
2660   size_t descsz;
2661   std::string desc;
2662   if (strcmp(style, "md5") == 0)
2663     descsz = 128 / 8;
2664   else if (strcmp(style, "sha1") == 0)
2665     descsz = 160 / 8;
2666   else if (strcmp(style, "uuid") == 0)
2667     {
2668       const size_t uuidsz = 128 / 8;
2669
2670       char buffer[uuidsz];
2671       memset(buffer, 0, uuidsz);
2672
2673       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2674       if (descriptor < 0)
2675         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2676                    strerror(errno));
2677       else
2678         {
2679           ssize_t got = ::read(descriptor, buffer, uuidsz);
2680           release_descriptor(descriptor, true);
2681           if (got < 0)
2682             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2683           else if (static_cast<size_t>(got) != uuidsz)
2684             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2685                        uuidsz, got);
2686         }
2687
2688       desc.assign(buffer, uuidsz);
2689       descsz = uuidsz;
2690     }
2691   else if (strncmp(style, "0x", 2) == 0)
2692     {
2693       hex_init();
2694       const char* p = style + 2;
2695       while (*p != '\0')
2696         {
2697           if (hex_p(p[0]) && hex_p(p[1]))
2698             {
2699               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2700               desc += c;
2701               p += 2;
2702             }
2703           else if (*p == '-' || *p == ':')
2704             ++p;
2705           else
2706             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2707                        style);
2708         }
2709       descsz = desc.size();
2710     }
2711   else
2712     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2713
2714   // Create the note.
2715   size_t trailing_padding;
2716   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2717                                          ".note.gnu.build-id", descsz, true,
2718                                          &trailing_padding);
2719   if (os == NULL)
2720     return;
2721
2722   if (!desc.empty())
2723     {
2724       // We know the value already, so we fill it in now.
2725       gold_assert(desc.size() == descsz);
2726
2727       Output_section_data* posd = new Output_data_const(desc, 4);
2728       os->add_output_section_data(posd);
2729
2730       if (trailing_padding != 0)
2731         {
2732           posd = new Output_data_zero_fill(trailing_padding, 0);
2733           os->add_output_section_data(posd);
2734         }
2735     }
2736   else
2737     {
2738       // We need to compute a checksum after we have completed the
2739       // link.
2740       gold_assert(trailing_padding == 0);
2741       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2742       os->add_output_section_data(this->build_id_note_);
2743     }
2744 }
2745
2746 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2747 // field of the former should point to the latter.  I'm not sure who
2748 // started this, but the GNU linker does it, and some tools depend
2749 // upon it.
2750
2751 void
2752 Layout::link_stabs_sections()
2753 {
2754   if (!this->have_stabstr_section_)
2755     return;
2756
2757   for (Section_list::iterator p = this->section_list_.begin();
2758        p != this->section_list_.end();
2759        ++p)
2760     {
2761       if ((*p)->type() != elfcpp::SHT_STRTAB)
2762         continue;
2763
2764       const char* name = (*p)->name();
2765       if (strncmp(name, ".stab", 5) != 0)
2766         continue;
2767
2768       size_t len = strlen(name);
2769       if (strcmp(name + len - 3, "str") != 0)
2770         continue;
2771
2772       std::string stab_name(name, len - 3);
2773       Output_section* stab_sec;
2774       stab_sec = this->find_output_section(stab_name.c_str());
2775       if (stab_sec != NULL)
2776         stab_sec->set_link_section(*p);
2777     }
2778 }
2779
2780 // Create .gnu_incremental_inputs and related sections needed
2781 // for the next run of incremental linking to check what has changed.
2782
2783 void
2784 Layout::create_incremental_info_sections(Symbol_table* symtab)
2785 {
2786   Incremental_inputs* incr = this->incremental_inputs_;
2787
2788   gold_assert(incr != NULL);
2789
2790   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2791   incr->create_data_sections(symtab);
2792
2793   // Add the .gnu_incremental_inputs section.
2794   const char* incremental_inputs_name =
2795     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2796   Output_section* incremental_inputs_os =
2797     this->make_output_section(incremental_inputs_name,
2798                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2799                               ORDER_INVALID, false);
2800   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2801
2802   // Add the .gnu_incremental_symtab section.
2803   const char* incremental_symtab_name =
2804     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2805   Output_section* incremental_symtab_os =
2806     this->make_output_section(incremental_symtab_name,
2807                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2808                               ORDER_INVALID, false);
2809   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2810   incremental_symtab_os->set_entsize(4);
2811
2812   // Add the .gnu_incremental_relocs section.
2813   const char* incremental_relocs_name =
2814     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2815   Output_section* incremental_relocs_os =
2816     this->make_output_section(incremental_relocs_name,
2817                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2818                               ORDER_INVALID, false);
2819   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2820   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2821
2822   // Add the .gnu_incremental_got_plt section.
2823   const char* incremental_got_plt_name =
2824     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2825   Output_section* incremental_got_plt_os =
2826     this->make_output_section(incremental_got_plt_name,
2827                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2828                               ORDER_INVALID, false);
2829   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2830
2831   // Add the .gnu_incremental_strtab section.
2832   const char* incremental_strtab_name =
2833     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2834   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2835                                                         elfcpp::SHT_STRTAB, 0,
2836                                                         ORDER_INVALID, false);
2837   Output_data_strtab* strtab_data =
2838       new Output_data_strtab(incr->get_stringpool());
2839   incremental_strtab_os->add_output_section_data(strtab_data);
2840
2841   incremental_inputs_os->set_after_input_sections();
2842   incremental_symtab_os->set_after_input_sections();
2843   incremental_relocs_os->set_after_input_sections();
2844   incremental_got_plt_os->set_after_input_sections();
2845
2846   incremental_inputs_os->set_link_section(incremental_strtab_os);
2847   incremental_symtab_os->set_link_section(incremental_inputs_os);
2848   incremental_relocs_os->set_link_section(incremental_inputs_os);
2849   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2850 }
2851
2852 // Return whether SEG1 should be before SEG2 in the output file.  This
2853 // is based entirely on the segment type and flags.  When this is
2854 // called the segment addresses have normally not yet been set.
2855
2856 bool
2857 Layout::segment_precedes(const Output_segment* seg1,
2858                          const Output_segment* seg2)
2859 {
2860   elfcpp::Elf_Word type1 = seg1->type();
2861   elfcpp::Elf_Word type2 = seg2->type();
2862
2863   // The single PT_PHDR segment is required to precede any loadable
2864   // segment.  We simply make it always first.
2865   if (type1 == elfcpp::PT_PHDR)
2866     {
2867       gold_assert(type2 != elfcpp::PT_PHDR);
2868       return true;
2869     }
2870   if (type2 == elfcpp::PT_PHDR)
2871     return false;
2872
2873   // The single PT_INTERP segment is required to precede any loadable
2874   // segment.  We simply make it always second.
2875   if (type1 == elfcpp::PT_INTERP)
2876     {
2877       gold_assert(type2 != elfcpp::PT_INTERP);
2878       return true;
2879     }
2880   if (type2 == elfcpp::PT_INTERP)
2881     return false;
2882
2883   // We then put PT_LOAD segments before any other segments.
2884   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2885     return true;
2886   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2887     return false;
2888
2889   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2890   // segment, because that is where the dynamic linker expects to find
2891   // it (this is just for efficiency; other positions would also work
2892   // correctly).
2893   if (type1 == elfcpp::PT_TLS
2894       && type2 != elfcpp::PT_TLS
2895       && type2 != elfcpp::PT_GNU_RELRO)
2896     return false;
2897   if (type2 == elfcpp::PT_TLS
2898       && type1 != elfcpp::PT_TLS
2899       && type1 != elfcpp::PT_GNU_RELRO)
2900     return true;
2901
2902   // We put the PT_GNU_RELRO segment last, because that is where the
2903   // dynamic linker expects to find it (as with PT_TLS, this is just
2904   // for efficiency).
2905   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2906     return false;
2907   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2908     return true;
2909
2910   const elfcpp::Elf_Word flags1 = seg1->flags();
2911   const elfcpp::Elf_Word flags2 = seg2->flags();
2912
2913   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2914   // by the numeric segment type and flags values.  There should not
2915   // be more than one segment with the same type and flags.
2916   if (type1 != elfcpp::PT_LOAD)
2917     {
2918       if (type1 != type2)
2919         return type1 < type2;
2920       gold_assert(flags1 != flags2);
2921       return flags1 < flags2;
2922     }
2923
2924   // If the addresses are set already, sort by load address.
2925   if (seg1->are_addresses_set())
2926     {
2927       if (!seg2->are_addresses_set())
2928         return true;
2929
2930       unsigned int section_count1 = seg1->output_section_count();
2931       unsigned int section_count2 = seg2->output_section_count();
2932       if (section_count1 == 0 && section_count2 > 0)
2933         return true;
2934       if (section_count1 > 0 && section_count2 == 0)
2935         return false;
2936
2937       uint64_t paddr1 = (seg1->are_addresses_set()
2938                          ? seg1->paddr()
2939                          : seg1->first_section_load_address());
2940       uint64_t paddr2 = (seg2->are_addresses_set()
2941                          ? seg2->paddr()
2942                          : seg2->first_section_load_address());
2943
2944       if (paddr1 != paddr2)
2945         return paddr1 < paddr2;
2946     }
2947   else if (seg2->are_addresses_set())
2948     return false;
2949
2950   // A segment which holds large data comes after a segment which does
2951   // not hold large data.
2952   if (seg1->is_large_data_segment())
2953     {
2954       if (!seg2->is_large_data_segment())
2955         return false;
2956     }
2957   else if (seg2->is_large_data_segment())
2958     return true;
2959
2960   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2961   // segments come before writable segments.  Then writable segments
2962   // with data come before writable segments without data.  Then
2963   // executable segments come before non-executable segments.  Then
2964   // the unlikely case of a non-readable segment comes before the
2965   // normal case of a readable segment.  If there are multiple
2966   // segments with the same type and flags, we require that the
2967   // address be set, and we sort by virtual address and then physical
2968   // address.
2969   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2970     return (flags1 & elfcpp::PF_W) == 0;
2971   if ((flags1 & elfcpp::PF_W) != 0
2972       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2973     return seg1->has_any_data_sections();
2974   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2975     return (flags1 & elfcpp::PF_X) != 0;
2976   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2977     return (flags1 & elfcpp::PF_R) == 0;
2978
2979   // We shouldn't get here--we shouldn't create segments which we
2980   // can't distinguish.  Unless of course we are using a weird linker
2981   // script or overlapping --section-start options.
2982   gold_assert(this->script_options_->saw_phdrs_clause()
2983               || parameters->options().any_section_start());
2984   return false;
2985 }
2986
2987 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2988
2989 static off_t
2990 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2991 {
2992   uint64_t unsigned_off = off;
2993   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2994                           | (addr & (abi_pagesize - 1)));
2995   if (aligned_off < unsigned_off)
2996     aligned_off += abi_pagesize;
2997   return aligned_off;
2998 }
2999
3000 // Set the file offsets of all the segments, and all the sections they
3001 // contain.  They have all been created.  LOAD_SEG must be be laid out
3002 // first.  Return the offset of the data to follow.
3003
3004 off_t
3005 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3006                             unsigned int* pshndx)
3007 {
3008   // Sort them into the final order.  We use a stable sort so that we
3009   // don't randomize the order of indistinguishable segments created
3010   // by linker scripts.
3011   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3012                    Layout::Compare_segments(this));
3013
3014   // Find the PT_LOAD segments, and set their addresses and offsets
3015   // and their section's addresses and offsets.
3016   uint64_t addr;
3017   if (parameters->options().user_set_Ttext())
3018     addr = parameters->options().Ttext();
3019   else if (parameters->options().output_is_position_independent())
3020     addr = 0;
3021   else
3022     addr = target->default_text_segment_address();
3023   off_t off = 0;
3024
3025   // If LOAD_SEG is NULL, then the file header and segment headers
3026   // will not be loadable.  But they still need to be at offset 0 in
3027   // the file.  Set their offsets now.
3028   if (load_seg == NULL)
3029     {
3030       for (Data_list::iterator p = this->special_output_list_.begin();
3031            p != this->special_output_list_.end();
3032            ++p)
3033         {
3034           off = align_address(off, (*p)->addralign());
3035           (*p)->set_address_and_file_offset(0, off);
3036           off += (*p)->data_size();
3037         }
3038     }
3039
3040   unsigned int increase_relro = this->increase_relro_;
3041   if (this->script_options_->saw_sections_clause())
3042     increase_relro = 0;
3043
3044   const bool check_sections = parameters->options().check_sections();
3045   Output_segment* last_load_segment = NULL;
3046
3047   for (Segment_list::iterator p = this->segment_list_.begin();
3048        p != this->segment_list_.end();
3049        ++p)
3050     {
3051       if ((*p)->type() == elfcpp::PT_LOAD)
3052         {
3053           if (load_seg != NULL && load_seg != *p)
3054             gold_unreachable();
3055           load_seg = NULL;
3056
3057           bool are_addresses_set = (*p)->are_addresses_set();
3058           if (are_addresses_set)
3059             {
3060               // When it comes to setting file offsets, we care about
3061               // the physical address.
3062               addr = (*p)->paddr();
3063             }
3064           else if (parameters->options().user_set_Ttext()
3065                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3066             {
3067               are_addresses_set = true;
3068             }
3069           else if (parameters->options().user_set_Tdata()
3070                    && ((*p)->flags() & elfcpp::PF_W) != 0
3071                    && (!parameters->options().user_set_Tbss()
3072                        || (*p)->has_any_data_sections()))
3073             {
3074               addr = parameters->options().Tdata();
3075               are_addresses_set = true;
3076             }
3077           else if (parameters->options().user_set_Tbss()
3078                    && ((*p)->flags() & elfcpp::PF_W) != 0
3079                    && !(*p)->has_any_data_sections())
3080             {
3081               addr = parameters->options().Tbss();
3082               are_addresses_set = true;
3083             }
3084
3085           uint64_t orig_addr = addr;
3086           uint64_t orig_off = off;
3087
3088           uint64_t aligned_addr = 0;
3089           uint64_t abi_pagesize = target->abi_pagesize();
3090           uint64_t common_pagesize = target->common_pagesize();
3091
3092           if (!parameters->options().nmagic()
3093               && !parameters->options().omagic())
3094             (*p)->set_minimum_p_align(common_pagesize);
3095
3096           if (!are_addresses_set)
3097             {
3098               // Skip the address forward one page, maintaining the same
3099               // position within the page.  This lets us store both segments
3100               // overlapping on a single page in the file, but the loader will
3101               // put them on different pages in memory. We will revisit this
3102               // decision once we know the size of the segment.
3103
3104               addr = align_address(addr, (*p)->maximum_alignment());
3105               aligned_addr = addr;
3106
3107               if ((addr & (abi_pagesize - 1)) != 0)
3108                 addr = addr + abi_pagesize;
3109
3110               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3111             }
3112
3113           if (!parameters->options().nmagic()
3114               && !parameters->options().omagic())
3115             off = align_file_offset(off, addr, abi_pagesize);
3116           else if (load_seg == NULL)
3117             {
3118               // This is -N or -n with a section script which prevents
3119               // us from using a load segment.  We need to ensure that
3120               // the file offset is aligned to the alignment of the
3121               // segment.  This is because the linker script
3122               // implicitly assumed a zero offset.  If we don't align
3123               // here, then the alignment of the sections in the
3124               // linker script may not match the alignment of the
3125               // sections in the set_section_addresses call below,
3126               // causing an error about dot moving backward.
3127               off = align_address(off, (*p)->maximum_alignment());
3128             }
3129
3130           unsigned int shndx_hold = *pshndx;
3131           bool has_relro = false;
3132           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3133                                                           &increase_relro,
3134                                                           &has_relro,
3135                                                           &off, pshndx);
3136
3137           // Now that we know the size of this segment, we may be able
3138           // to save a page in memory, at the cost of wasting some
3139           // file space, by instead aligning to the start of a new
3140           // page.  Here we use the real machine page size rather than
3141           // the ABI mandated page size.  If the segment has been
3142           // aligned so that the relro data ends at a page boundary,
3143           // we do not try to realign it.
3144
3145           if (!are_addresses_set
3146               && !has_relro
3147               && aligned_addr != addr
3148               && !parameters->incremental())
3149             {
3150               uint64_t first_off = (common_pagesize
3151                                     - (aligned_addr
3152                                        & (common_pagesize - 1)));
3153               uint64_t last_off = new_addr & (common_pagesize - 1);
3154               if (first_off > 0
3155                   && last_off > 0
3156                   && ((aligned_addr & ~ (common_pagesize - 1))
3157                       != (new_addr & ~ (common_pagesize - 1)))
3158                   && first_off + last_off <= common_pagesize)
3159                 {
3160                   *pshndx = shndx_hold;
3161                   addr = align_address(aligned_addr, common_pagesize);
3162                   addr = align_address(addr, (*p)->maximum_alignment());
3163                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3164                   off = align_file_offset(off, addr, abi_pagesize);
3165
3166                   increase_relro = this->increase_relro_;
3167                   if (this->script_options_->saw_sections_clause())
3168                     increase_relro = 0;
3169                   has_relro = false;
3170
3171                   new_addr = (*p)->set_section_addresses(this, true, addr,
3172                                                          &increase_relro,
3173                                                          &has_relro,
3174                                                          &off, pshndx);
3175                 }
3176             }
3177
3178           addr = new_addr;
3179
3180           // Implement --check-sections.  We know that the segments
3181           // are sorted by LMA.
3182           if (check_sections && last_load_segment != NULL)
3183             {
3184               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3185               if (last_load_segment->paddr() + last_load_segment->memsz()
3186                   > (*p)->paddr())
3187                 {
3188                   unsigned long long lb1 = last_load_segment->paddr();
3189                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3190                   unsigned long long lb2 = (*p)->paddr();
3191                   unsigned long long le2 = lb2 + (*p)->memsz();
3192                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3193                                "[0x%llx -> 0x%llx]"),
3194                              lb1, le1, lb2, le2);
3195                 }
3196             }
3197           last_load_segment = *p;
3198         }
3199     }
3200
3201   // Handle the non-PT_LOAD segments, setting their offsets from their
3202   // section's offsets.
3203   for (Segment_list::iterator p = this->segment_list_.begin();
3204        p != this->segment_list_.end();
3205        ++p)
3206     {
3207       if ((*p)->type() != elfcpp::PT_LOAD)
3208         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3209                          ? increase_relro
3210                          : 0);
3211     }
3212
3213   // Set the TLS offsets for each section in the PT_TLS segment.
3214   if (this->tls_segment_ != NULL)
3215     this->tls_segment_->set_tls_offsets();
3216
3217   return off;
3218 }
3219
3220 // Set the offsets of all the allocated sections when doing a
3221 // relocatable link.  This does the same jobs as set_segment_offsets,
3222 // only for a relocatable link.
3223
3224 off_t
3225 Layout::set_relocatable_section_offsets(Output_data* file_header,
3226                                         unsigned int* pshndx)
3227 {
3228   off_t off = 0;
3229
3230   file_header->set_address_and_file_offset(0, 0);
3231   off += file_header->data_size();
3232
3233   for (Section_list::iterator p = this->section_list_.begin();
3234        p != this->section_list_.end();
3235        ++p)
3236     {
3237       // We skip unallocated sections here, except that group sections
3238       // have to come first.
3239       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3240           && (*p)->type() != elfcpp::SHT_GROUP)
3241         continue;
3242
3243       off = align_address(off, (*p)->addralign());
3244
3245       // The linker script might have set the address.
3246       if (!(*p)->is_address_valid())
3247         (*p)->set_address(0);
3248       (*p)->set_file_offset(off);
3249       (*p)->finalize_data_size();
3250       off += (*p)->data_size();
3251
3252       (*p)->set_out_shndx(*pshndx);
3253       ++*pshndx;
3254     }
3255
3256   return off;
3257 }
3258
3259 // Set the file offset of all the sections not associated with a
3260 // segment.
3261
3262 off_t
3263 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3264 {
3265   off_t startoff = off;
3266   off_t maxoff = off;
3267
3268   for (Section_list::iterator p = this->unattached_section_list_.begin();
3269        p != this->unattached_section_list_.end();
3270        ++p)
3271     {
3272       // The symtab section is handled in create_symtab_sections.
3273       if (*p == this->symtab_section_)
3274         continue;
3275
3276       // If we've already set the data size, don't set it again.
3277       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3278         continue;
3279
3280       if (pass == BEFORE_INPUT_SECTIONS_PASS
3281           && (*p)->requires_postprocessing())
3282         {
3283           (*p)->create_postprocessing_buffer();
3284           this->any_postprocessing_sections_ = true;
3285         }
3286
3287       if (pass == BEFORE_INPUT_SECTIONS_PASS
3288           && (*p)->after_input_sections())
3289         continue;
3290       else if (pass == POSTPROCESSING_SECTIONS_PASS
3291                && (!(*p)->after_input_sections()
3292                    || (*p)->type() == elfcpp::SHT_STRTAB))
3293         continue;
3294       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3295                && (!(*p)->after_input_sections()
3296                    || (*p)->type() != elfcpp::SHT_STRTAB))
3297         continue;
3298
3299       if (!parameters->incremental_update())
3300         {
3301           off = align_address(off, (*p)->addralign());
3302           (*p)->set_file_offset(off);
3303           (*p)->finalize_data_size();
3304         }
3305       else
3306         {
3307           // Incremental update: allocate file space from free list.
3308           (*p)->pre_finalize_data_size();
3309           off_t current_size = (*p)->current_data_size();
3310           off = this->allocate(current_size, (*p)->addralign(), startoff);
3311           if (off == -1)
3312             {
3313               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3314                 this->free_list_.dump();
3315               gold_assert((*p)->output_section() != NULL);
3316               gold_fallback(_("out of patch space for section %s; "
3317                               "relink with --incremental-full"),
3318                             (*p)->output_section()->name());
3319             }
3320           (*p)->set_file_offset(off);
3321           (*p)->finalize_data_size();
3322           if ((*p)->data_size() > current_size)
3323             {
3324               gold_assert((*p)->output_section() != NULL);
3325               gold_fallback(_("%s: section changed size; "
3326                               "relink with --incremental-full"),
3327                             (*p)->output_section()->name());
3328             }
3329           gold_debug(DEBUG_INCREMENTAL,
3330                      "set_section_offsets: %08lx %08lx %s",
3331                      static_cast<long>(off),
3332                      static_cast<long>((*p)->data_size()),
3333                      ((*p)->output_section() != NULL
3334                       ? (*p)->output_section()->name() : "(special)"));
3335         }
3336
3337       off += (*p)->data_size();
3338       if (off > maxoff)
3339         maxoff = off;
3340
3341       // At this point the name must be set.
3342       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3343         this->namepool_.add((*p)->name(), false, NULL);
3344     }
3345   return maxoff;
3346 }
3347
3348 // Set the section indexes of all the sections not associated with a
3349 // segment.
3350
3351 unsigned int
3352 Layout::set_section_indexes(unsigned int shndx)
3353 {
3354   for (Section_list::iterator p = this->unattached_section_list_.begin();
3355        p != this->unattached_section_list_.end();
3356        ++p)
3357     {
3358       if (!(*p)->has_out_shndx())
3359         {
3360           (*p)->set_out_shndx(shndx);
3361           ++shndx;
3362         }
3363     }
3364   return shndx;
3365 }
3366
3367 // Set the section addresses according to the linker script.  This is
3368 // only called when we see a SECTIONS clause.  This returns the
3369 // program segment which should hold the file header and segment
3370 // headers, if any.  It will return NULL if they should not be in a
3371 // segment.
3372
3373 Output_segment*
3374 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3375 {
3376   Script_sections* ss = this->script_options_->script_sections();
3377   gold_assert(ss->saw_sections_clause());
3378   return this->script_options_->set_section_addresses(symtab, this);
3379 }
3380
3381 // Place the orphan sections in the linker script.
3382
3383 void
3384 Layout::place_orphan_sections_in_script()
3385 {
3386   Script_sections* ss = this->script_options_->script_sections();
3387   gold_assert(ss->saw_sections_clause());
3388
3389   // Place each orphaned output section in the script.
3390   for (Section_list::iterator p = this->section_list_.begin();
3391        p != this->section_list_.end();
3392        ++p)
3393     {
3394       if (!(*p)->found_in_sections_clause())
3395         ss->place_orphan(*p);
3396     }
3397 }
3398
3399 // Count the local symbols in the regular symbol table and the dynamic
3400 // symbol table, and build the respective string pools.
3401
3402 void
3403 Layout::count_local_symbols(const Task* task,
3404                             const Input_objects* input_objects)
3405 {
3406   // First, figure out an upper bound on the number of symbols we'll
3407   // be inserting into each pool.  This helps us create the pools with
3408   // the right size, to avoid unnecessary hashtable resizing.
3409   unsigned int symbol_count = 0;
3410   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3411        p != input_objects->relobj_end();
3412        ++p)
3413     symbol_count += (*p)->local_symbol_count();
3414
3415   // Go from "upper bound" to "estimate."  We overcount for two
3416   // reasons: we double-count symbols that occur in more than one
3417   // object file, and we count symbols that are dropped from the
3418   // output.  Add it all together and assume we overcount by 100%.
3419   symbol_count /= 2;
3420
3421   // We assume all symbols will go into both the sympool and dynpool.
3422   this->sympool_.reserve(symbol_count);
3423   this->dynpool_.reserve(symbol_count);
3424
3425   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3426        p != input_objects->relobj_end();
3427        ++p)
3428     {
3429       Task_lock_obj<Object> tlo(task, *p);
3430       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3431     }
3432 }
3433
3434 // Create the symbol table sections.  Here we also set the final
3435 // values of the symbols.  At this point all the loadable sections are
3436 // fully laid out.  SHNUM is the number of sections so far.
3437
3438 void
3439 Layout::create_symtab_sections(const Input_objects* input_objects,
3440                                Symbol_table* symtab,
3441                                unsigned int shnum,
3442                                off_t* poff)
3443 {
3444   int symsize;
3445   unsigned int align;
3446   if (parameters->target().get_size() == 32)
3447     {
3448       symsize = elfcpp::Elf_sizes<32>::sym_size;
3449       align = 4;
3450     }
3451   else if (parameters->target().get_size() == 64)
3452     {
3453       symsize = elfcpp::Elf_sizes<64>::sym_size;
3454       align = 8;
3455     }
3456   else
3457     gold_unreachable();
3458
3459   // Compute file offsets relative to the start of the symtab section.
3460   off_t off = 0;
3461
3462   // Save space for the dummy symbol at the start of the section.  We
3463   // never bother to write this out--it will just be left as zero.
3464   off += symsize;
3465   unsigned int local_symbol_index = 1;
3466
3467   // Add STT_SECTION symbols for each Output section which needs one.
3468   for (Section_list::iterator p = this->section_list_.begin();
3469        p != this->section_list_.end();
3470        ++p)
3471     {
3472       if (!(*p)->needs_symtab_index())
3473         (*p)->set_symtab_index(-1U);
3474       else
3475         {
3476           (*p)->set_symtab_index(local_symbol_index);
3477           ++local_symbol_index;
3478           off += symsize;
3479         }
3480     }
3481
3482   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3483        p != input_objects->relobj_end();
3484        ++p)
3485     {
3486       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3487                                                         off, symtab);
3488       off += (index - local_symbol_index) * symsize;
3489       local_symbol_index = index;
3490     }
3491
3492   unsigned int local_symcount = local_symbol_index;
3493   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3494
3495   off_t dynoff;
3496   size_t dyn_global_index;
3497   size_t dyncount;
3498   if (this->dynsym_section_ == NULL)
3499     {
3500       dynoff = 0;
3501       dyn_global_index = 0;
3502       dyncount = 0;
3503     }
3504   else
3505     {
3506       dyn_global_index = this->dynsym_section_->info();
3507       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3508       dynoff = this->dynsym_section_->offset() + locsize;
3509       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3510       gold_assert(static_cast<off_t>(dyncount * symsize)
3511                   == this->dynsym_section_->data_size() - locsize);
3512     }
3513
3514   off_t global_off = off;
3515   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3516                          &this->sympool_, &local_symcount);
3517
3518   if (!parameters->options().strip_all())
3519     {
3520       this->sympool_.set_string_offsets();
3521
3522       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3523       Output_section* osymtab = this->make_output_section(symtab_name,
3524                                                           elfcpp::SHT_SYMTAB,
3525                                                           0, ORDER_INVALID,
3526                                                           false);
3527       this->symtab_section_ = osymtab;
3528
3529       Output_section_data* pos = new Output_data_fixed_space(off, align,
3530                                                              "** symtab");
3531       osymtab->add_output_section_data(pos);
3532
3533       // We generate a .symtab_shndx section if we have more than
3534       // SHN_LORESERVE sections.  Technically it is possible that we
3535       // don't need one, because it is possible that there are no
3536       // symbols in any of sections with indexes larger than
3537       // SHN_LORESERVE.  That is probably unusual, though, and it is
3538       // easier to always create one than to compute section indexes
3539       // twice (once here, once when writing out the symbols).
3540       if (shnum >= elfcpp::SHN_LORESERVE)
3541         {
3542           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3543                                                                false, NULL);
3544           Output_section* osymtab_xindex =
3545             this->make_output_section(symtab_xindex_name,
3546                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3547                                       ORDER_INVALID, false);
3548
3549           size_t symcount = off / symsize;
3550           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3551
3552           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3553
3554           osymtab_xindex->set_link_section(osymtab);
3555           osymtab_xindex->set_addralign(4);
3556           osymtab_xindex->set_entsize(4);
3557
3558           osymtab_xindex->set_after_input_sections();
3559
3560           // This tells the driver code to wait until the symbol table
3561           // has written out before writing out the postprocessing
3562           // sections, including the .symtab_shndx section.
3563           this->any_postprocessing_sections_ = true;
3564         }
3565
3566       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3567       Output_section* ostrtab = this->make_output_section(strtab_name,
3568                                                           elfcpp::SHT_STRTAB,
3569                                                           0, ORDER_INVALID,
3570                                                           false);
3571
3572       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3573       ostrtab->add_output_section_data(pstr);
3574
3575       off_t symtab_off;
3576       if (!parameters->incremental_update())
3577         symtab_off = align_address(*poff, align);
3578       else
3579         {
3580           symtab_off = this->allocate(off, align, *poff);
3581           if (off == -1)
3582             gold_fallback(_("out of patch space for symbol table; "
3583                             "relink with --incremental-full"));
3584           gold_debug(DEBUG_INCREMENTAL,
3585                      "create_symtab_sections: %08lx %08lx .symtab",
3586                      static_cast<long>(symtab_off),
3587                      static_cast<long>(off));
3588         }
3589
3590       symtab->set_file_offset(symtab_off + global_off);
3591       osymtab->set_file_offset(symtab_off);
3592       osymtab->finalize_data_size();
3593       osymtab->set_link_section(ostrtab);
3594       osymtab->set_info(local_symcount);
3595       osymtab->set_entsize(symsize);
3596
3597       if (symtab_off + off > *poff)
3598         *poff = symtab_off + off;
3599     }
3600 }
3601
3602 // Create the .shstrtab section, which holds the names of the
3603 // sections.  At the time this is called, we have created all the
3604 // output sections except .shstrtab itself.
3605
3606 Output_section*
3607 Layout::create_shstrtab()
3608 {
3609   // FIXME: We don't need to create a .shstrtab section if we are
3610   // stripping everything.
3611
3612   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3613
3614   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3615                                                  ORDER_INVALID, false);
3616
3617   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3618     {
3619       // We can't write out this section until we've set all the
3620       // section names, and we don't set the names of compressed
3621       // output sections until relocations are complete.  FIXME: With
3622       // the current names we use, this is unnecessary.
3623       os->set_after_input_sections();
3624     }
3625
3626   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3627   os->add_output_section_data(posd);
3628
3629   return os;
3630 }
3631
3632 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3633 // offset.
3634
3635 void
3636 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3637 {
3638   Output_section_headers* oshdrs;
3639   oshdrs = new Output_section_headers(this,
3640                                       &this->segment_list_,
3641                                       &this->section_list_,
3642                                       &this->unattached_section_list_,
3643                                       &this->namepool_,
3644                                       shstrtab_section);
3645   off_t off;
3646   if (!parameters->incremental_update())
3647     off = align_address(*poff, oshdrs->addralign());
3648   else
3649     {
3650       oshdrs->pre_finalize_data_size();
3651       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3652       if (off == -1)
3653           gold_fallback(_("out of patch space for section header table; "
3654                           "relink with --incremental-full"));
3655       gold_debug(DEBUG_INCREMENTAL,
3656                  "create_shdrs: %08lx %08lx (section header table)",
3657                  static_cast<long>(off),
3658                  static_cast<long>(off + oshdrs->data_size()));
3659     }
3660   oshdrs->set_address_and_file_offset(0, off);
3661   off += oshdrs->data_size();
3662   if (off > *poff)
3663     *poff = off;
3664   this->section_headers_ = oshdrs;
3665 }
3666
3667 // Count the allocated sections.
3668
3669 size_t
3670 Layout::allocated_output_section_count() const
3671 {
3672   size_t section_count = 0;
3673   for (Segment_list::const_iterator p = this->segment_list_.begin();
3674        p != this->segment_list_.end();
3675        ++p)
3676     section_count += (*p)->output_section_count();
3677   return section_count;
3678 }
3679
3680 // Create the dynamic symbol table.
3681
3682 void
3683 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3684                               Symbol_table* symtab,
3685                               Output_section** pdynstr,
3686                               unsigned int* plocal_dynamic_count,
3687                               std::vector<Symbol*>* pdynamic_symbols,
3688                               Versions* pversions)
3689 {
3690   // Count all the symbols in the dynamic symbol table, and set the
3691   // dynamic symbol indexes.
3692
3693   // Skip symbol 0, which is always all zeroes.
3694   unsigned int index = 1;
3695
3696   // Add STT_SECTION symbols for each Output section which needs one.
3697   for (Section_list::iterator p = this->section_list_.begin();
3698        p != this->section_list_.end();
3699        ++p)
3700     {
3701       if (!(*p)->needs_dynsym_index())
3702         (*p)->set_dynsym_index(-1U);
3703       else
3704         {
3705           (*p)->set_dynsym_index(index);
3706           ++index;
3707         }
3708     }
3709
3710   // Count the local symbols that need to go in the dynamic symbol table,
3711   // and set the dynamic symbol indexes.
3712   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3713        p != input_objects->relobj_end();
3714        ++p)
3715     {
3716       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3717       index = new_index;
3718     }
3719
3720   unsigned int local_symcount = index;
3721   *plocal_dynamic_count = local_symcount;
3722
3723   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3724                                      &this->dynpool_, pversions);
3725
3726   int symsize;
3727   unsigned int align;
3728   const int size = parameters->target().get_size();
3729   if (size == 32)
3730     {
3731       symsize = elfcpp::Elf_sizes<32>::sym_size;
3732       align = 4;
3733     }
3734   else if (size == 64)
3735     {
3736       symsize = elfcpp::Elf_sizes<64>::sym_size;
3737       align = 8;
3738     }
3739   else
3740     gold_unreachable();
3741
3742   // Create the dynamic symbol table section.
3743
3744   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3745                                                        elfcpp::SHT_DYNSYM,
3746                                                        elfcpp::SHF_ALLOC,
3747                                                        false,
3748                                                        ORDER_DYNAMIC_LINKER,
3749                                                        false);
3750
3751   // Check for NULL as a linker script may discard .dynsym.
3752   if (dynsym != NULL)
3753     {
3754       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3755                                                                align,
3756                                                                "** dynsym");
3757       dynsym->add_output_section_data(odata);
3758
3759       dynsym->set_info(local_symcount);
3760       dynsym->set_entsize(symsize);
3761       dynsym->set_addralign(align);
3762
3763       this->dynsym_section_ = dynsym;
3764     }
3765
3766   Output_data_dynamic* const odyn = this->dynamic_data_;
3767   if (odyn != NULL)
3768     {
3769       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3770       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3771     }
3772
3773   // If there are more than SHN_LORESERVE allocated sections, we
3774   // create a .dynsym_shndx section.  It is possible that we don't
3775   // need one, because it is possible that there are no dynamic
3776   // symbols in any of the sections with indexes larger than
3777   // SHN_LORESERVE.  This is probably unusual, though, and at this
3778   // time we don't know the actual section indexes so it is
3779   // inconvenient to check.
3780   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3781     {
3782       Output_section* dynsym_xindex =
3783         this->choose_output_section(NULL, ".dynsym_shndx",
3784                                     elfcpp::SHT_SYMTAB_SHNDX,
3785                                     elfcpp::SHF_ALLOC,
3786                                     false, ORDER_DYNAMIC_LINKER, false);
3787
3788       if (dynsym_xindex != NULL)
3789         {
3790           this->dynsym_xindex_ = new Output_symtab_xindex(index);
3791
3792           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3793
3794           dynsym_xindex->set_link_section(dynsym);
3795           dynsym_xindex->set_addralign(4);
3796           dynsym_xindex->set_entsize(4);
3797
3798           dynsym_xindex->set_after_input_sections();
3799
3800           // This tells the driver code to wait until the symbol table
3801           // has written out before writing out the postprocessing
3802           // sections, including the .dynsym_shndx section.
3803           this->any_postprocessing_sections_ = true;
3804         }
3805     }
3806
3807   // Create the dynamic string table section.
3808
3809   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3810                                                        elfcpp::SHT_STRTAB,
3811                                                        elfcpp::SHF_ALLOC,
3812                                                        false,
3813                                                        ORDER_DYNAMIC_LINKER,
3814                                                        false);
3815
3816   if (dynstr != NULL)
3817     {
3818       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3819       dynstr->add_output_section_data(strdata);
3820
3821       if (dynsym != NULL)
3822         dynsym->set_link_section(dynstr);
3823       if (this->dynamic_section_ != NULL)
3824         this->dynamic_section_->set_link_section(dynstr);
3825
3826       if (odyn != NULL)
3827         {
3828           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3829           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3830         }
3831
3832       *pdynstr = dynstr;
3833     }
3834
3835   // Create the hash tables.
3836
3837   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3838       || strcmp(parameters->options().hash_style(), "both") == 0)
3839     {
3840       unsigned char* phash;
3841       unsigned int hashlen;
3842       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3843                                     &phash, &hashlen);
3844
3845       Output_section* hashsec =
3846         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3847                                     elfcpp::SHF_ALLOC, false,
3848                                     ORDER_DYNAMIC_LINKER, false);
3849
3850       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3851                                                                    hashlen,
3852                                                                    align,
3853                                                                    "** hash");
3854       if (hashsec != NULL && hashdata != NULL)
3855         hashsec->add_output_section_data(hashdata);
3856
3857       if (hashsec != NULL)
3858         {
3859           if (dynsym != NULL)
3860             hashsec->set_link_section(dynsym);
3861           hashsec->set_entsize(4);
3862         }
3863
3864       if (odyn != NULL)
3865         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3866     }
3867
3868   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3869       || strcmp(parameters->options().hash_style(), "both") == 0)
3870     {
3871       unsigned char* phash;
3872       unsigned int hashlen;
3873       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3874                                     &phash, &hashlen);
3875
3876       Output_section* hashsec =
3877         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3878                                     elfcpp::SHF_ALLOC, false,
3879                                     ORDER_DYNAMIC_LINKER, false);
3880
3881       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3882                                                                    hashlen,
3883                                                                    align,
3884                                                                    "** hash");
3885       if (hashsec != NULL && hashdata != NULL)
3886         hashsec->add_output_section_data(hashdata);
3887
3888       if (hashsec != NULL)
3889         {
3890           if (dynsym != NULL)
3891             hashsec->set_link_section(dynsym);
3892
3893           // For a 64-bit target, the entries in .gnu.hash do not have
3894           // a uniform size, so we only set the entry size for a
3895           // 32-bit target.
3896           if (parameters->target().get_size() == 32)
3897             hashsec->set_entsize(4);
3898
3899           if (odyn != NULL)
3900             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3901         }
3902     }
3903 }
3904
3905 // Assign offsets to each local portion of the dynamic symbol table.
3906
3907 void
3908 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3909 {
3910   Output_section* dynsym = this->dynsym_section_;
3911   if (dynsym == NULL)
3912     return;
3913
3914   off_t off = dynsym->offset();
3915
3916   // Skip the dummy symbol at the start of the section.
3917   off += dynsym->entsize();
3918
3919   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3920        p != input_objects->relobj_end();
3921        ++p)
3922     {
3923       unsigned int count = (*p)->set_local_dynsym_offset(off);
3924       off += count * dynsym->entsize();
3925     }
3926 }
3927
3928 // Create the version sections.
3929
3930 void
3931 Layout::create_version_sections(const Versions* versions,
3932                                 const Symbol_table* symtab,
3933                                 unsigned int local_symcount,
3934                                 const std::vector<Symbol*>& dynamic_symbols,
3935                                 const Output_section* dynstr)
3936 {
3937   if (!versions->any_defs() && !versions->any_needs())
3938     return;
3939
3940   switch (parameters->size_and_endianness())
3941     {
3942 #ifdef HAVE_TARGET_32_LITTLE
3943     case Parameters::TARGET_32_LITTLE:
3944       this->sized_create_version_sections<32, false>(versions, symtab,
3945                                                      local_symcount,
3946                                                      dynamic_symbols, dynstr);
3947       break;
3948 #endif
3949 #ifdef HAVE_TARGET_32_BIG
3950     case Parameters::TARGET_32_BIG:
3951       this->sized_create_version_sections<32, true>(versions, symtab,
3952                                                     local_symcount,
3953                                                     dynamic_symbols, dynstr);
3954       break;
3955 #endif
3956 #ifdef HAVE_TARGET_64_LITTLE
3957     case Parameters::TARGET_64_LITTLE:
3958       this->sized_create_version_sections<64, false>(versions, symtab,
3959                                                      local_symcount,
3960                                                      dynamic_symbols, dynstr);
3961       break;
3962 #endif
3963 #ifdef HAVE_TARGET_64_BIG
3964     case Parameters::TARGET_64_BIG:
3965       this->sized_create_version_sections<64, true>(versions, symtab,
3966                                                     local_symcount,
3967                                                     dynamic_symbols, dynstr);
3968       break;
3969 #endif
3970     default:
3971       gold_unreachable();
3972     }
3973 }
3974
3975 // Create the version sections, sized version.
3976
3977 template<int size, bool big_endian>
3978 void
3979 Layout::sized_create_version_sections(
3980     const Versions* versions,
3981     const Symbol_table* symtab,
3982     unsigned int local_symcount,
3983     const std::vector<Symbol*>& dynamic_symbols,
3984     const Output_section* dynstr)
3985 {
3986   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3987                                                      elfcpp::SHT_GNU_versym,
3988                                                      elfcpp::SHF_ALLOC,
3989                                                      false,
3990                                                      ORDER_DYNAMIC_LINKER,
3991                                                      false);
3992
3993   // Check for NULL since a linker script may discard this section.
3994   if (vsec != NULL)
3995     {
3996       unsigned char* vbuf;
3997       unsigned int vsize;
3998       versions->symbol_section_contents<size, big_endian>(symtab,
3999                                                           &this->dynpool_,
4000                                                           local_symcount,
4001                                                           dynamic_symbols,
4002                                                           &vbuf, &vsize);
4003
4004       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4005                                                                 "** versions");
4006
4007       vsec->add_output_section_data(vdata);
4008       vsec->set_entsize(2);
4009       vsec->set_link_section(this->dynsym_section_);
4010     }
4011
4012   Output_data_dynamic* const odyn = this->dynamic_data_;
4013   if (odyn != NULL && vsec != NULL)
4014     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4015
4016   if (versions->any_defs())
4017     {
4018       Output_section* vdsec;
4019       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4020                                           elfcpp::SHT_GNU_verdef,
4021                                           elfcpp::SHF_ALLOC,
4022                                           false, ORDER_DYNAMIC_LINKER, false);
4023
4024       if (vdsec != NULL)
4025         {
4026           unsigned char* vdbuf;
4027           unsigned int vdsize;
4028           unsigned int vdentries;
4029           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4030                                                            &vdbuf, &vdsize,
4031                                                            &vdentries);
4032
4033           Output_section_data* vddata =
4034             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4035
4036           vdsec->add_output_section_data(vddata);
4037           vdsec->set_link_section(dynstr);
4038           vdsec->set_info(vdentries);
4039
4040           if (odyn != NULL)
4041             {
4042               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4043               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4044             }
4045         }
4046     }
4047
4048   if (versions->any_needs())
4049     {
4050       Output_section* vnsec;
4051       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4052                                           elfcpp::SHT_GNU_verneed,
4053                                           elfcpp::SHF_ALLOC,
4054                                           false, ORDER_DYNAMIC_LINKER, false);
4055
4056       if (vnsec != NULL)
4057         {
4058           unsigned char* vnbuf;
4059           unsigned int vnsize;
4060           unsigned int vnentries;
4061           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4062                                                             &vnbuf, &vnsize,
4063                                                             &vnentries);
4064
4065           Output_section_data* vndata =
4066             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4067
4068           vnsec->add_output_section_data(vndata);
4069           vnsec->set_link_section(dynstr);
4070           vnsec->set_info(vnentries);
4071
4072           if (odyn != NULL)
4073             {
4074               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4075               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4076             }
4077         }
4078     }
4079 }
4080
4081 // Create the .interp section and PT_INTERP segment.
4082
4083 void
4084 Layout::create_interp(const Target* target)
4085 {
4086   gold_assert(this->interp_segment_ == NULL);
4087
4088   const char* interp = parameters->options().dynamic_linker();
4089   if (interp == NULL)
4090     {
4091       interp = target->dynamic_linker();
4092       gold_assert(interp != NULL);
4093     }
4094
4095   size_t len = strlen(interp) + 1;
4096
4097   Output_section_data* odata = new Output_data_const(interp, len, 1);
4098
4099   Output_section* osec = this->choose_output_section(NULL, ".interp",
4100                                                      elfcpp::SHT_PROGBITS,
4101                                                      elfcpp::SHF_ALLOC,
4102                                                      false, ORDER_INTERP,
4103                                                      false);
4104   if (osec != NULL)
4105     osec->add_output_section_data(odata);
4106 }
4107
4108 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4109 // called by the target-specific code.  This does nothing if not doing
4110 // a dynamic link.
4111
4112 // USE_REL is true for REL relocs rather than RELA relocs.
4113
4114 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4115
4116 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4117 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4118 // some targets have multiple reloc sections in PLT_REL.
4119
4120 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4121 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4122 // section.
4123
4124 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4125 // executable.
4126
4127 void
4128 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4129                                 const Output_data* plt_rel,
4130                                 const Output_data_reloc_generic* dyn_rel,
4131                                 bool add_debug, bool dynrel_includes_plt)
4132 {
4133   Output_data_dynamic* odyn = this->dynamic_data_;
4134   if (odyn == NULL)
4135     return;
4136
4137   if (plt_got != NULL && plt_got->output_section() != NULL)
4138     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4139
4140   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4141     {
4142       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4143       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4144       odyn->add_constant(elfcpp::DT_PLTREL,
4145                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4146     }
4147
4148   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4149     {
4150       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4151                                 dyn_rel->output_section());
4152       if (plt_rel != NULL
4153           && plt_rel->output_section() != NULL
4154           && dynrel_includes_plt)
4155         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4156                                dyn_rel->output_section(),
4157                                plt_rel->output_section());
4158       else
4159         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4160                                dyn_rel->output_section());
4161       const int size = parameters->target().get_size();
4162       elfcpp::DT rel_tag;
4163       int rel_size;
4164       if (use_rel)
4165         {
4166           rel_tag = elfcpp::DT_RELENT;
4167           if (size == 32)
4168             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4169           else if (size == 64)
4170             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4171           else
4172             gold_unreachable();
4173         }
4174       else
4175         {
4176           rel_tag = elfcpp::DT_RELAENT;
4177           if (size == 32)
4178             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4179           else if (size == 64)
4180             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4181           else
4182             gold_unreachable();
4183         }
4184       odyn->add_constant(rel_tag, rel_size);
4185
4186       if (parameters->options().combreloc())
4187         {
4188           size_t c = dyn_rel->relative_reloc_count();
4189           if (c > 0)
4190             odyn->add_constant((use_rel
4191                                 ? elfcpp::DT_RELCOUNT
4192                                 : elfcpp::DT_RELACOUNT),
4193                                c);
4194         }
4195     }
4196
4197   if (add_debug && !parameters->options().shared())
4198     {
4199       // The value of the DT_DEBUG tag is filled in by the dynamic
4200       // linker at run time, and used by the debugger.
4201       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4202     }
4203 }
4204
4205 // Finish the .dynamic section and PT_DYNAMIC segment.
4206
4207 void
4208 Layout::finish_dynamic_section(const Input_objects* input_objects,
4209                                const Symbol_table* symtab)
4210 {
4211   if (!this->script_options_->saw_phdrs_clause()
4212       && this->dynamic_section_ != NULL)
4213     {
4214       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4215                                                        (elfcpp::PF_R
4216                                                         | elfcpp::PF_W));
4217       oseg->add_output_section_to_nonload(this->dynamic_section_,
4218                                           elfcpp::PF_R | elfcpp::PF_W);
4219     }
4220
4221   Output_data_dynamic* const odyn = this->dynamic_data_;
4222   if (odyn == NULL)
4223     return;
4224
4225   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4226        p != input_objects->dynobj_end();
4227        ++p)
4228     {
4229       if (!(*p)->is_needed() && (*p)->as_needed())
4230         {
4231           // This dynamic object was linked with --as-needed, but it
4232           // is not needed.
4233           continue;
4234         }
4235
4236       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4237     }
4238
4239   if (parameters->options().shared())
4240     {
4241       const char* soname = parameters->options().soname();
4242       if (soname != NULL)
4243         odyn->add_string(elfcpp::DT_SONAME, soname);
4244     }
4245
4246   Symbol* sym = symtab->lookup(parameters->options().init());
4247   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4248     odyn->add_symbol(elfcpp::DT_INIT, sym);
4249
4250   sym = symtab->lookup(parameters->options().fini());
4251   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4252     odyn->add_symbol(elfcpp::DT_FINI, sym);
4253
4254   // Look for .init_array, .preinit_array and .fini_array by checking
4255   // section types.
4256   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4257       p != this->section_list_.end();
4258       ++p)
4259     switch((*p)->type())
4260       {
4261       case elfcpp::SHT_FINI_ARRAY:
4262         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4263         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4264         break;
4265       case elfcpp::SHT_INIT_ARRAY:
4266         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4267         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4268         break;
4269       case elfcpp::SHT_PREINIT_ARRAY:
4270         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4271         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4272         break;
4273       default:
4274         break;
4275       }
4276   
4277   // Add a DT_RPATH entry if needed.
4278   const General_options::Dir_list& rpath(parameters->options().rpath());
4279   if (!rpath.empty())
4280     {
4281       std::string rpath_val;
4282       for (General_options::Dir_list::const_iterator p = rpath.begin();
4283            p != rpath.end();
4284            ++p)
4285         {
4286           if (rpath_val.empty())
4287             rpath_val = p->name();
4288           else
4289             {
4290               // Eliminate duplicates.
4291               General_options::Dir_list::const_iterator q;
4292               for (q = rpath.begin(); q != p; ++q)
4293                 if (q->name() == p->name())
4294                   break;
4295               if (q == p)
4296                 {
4297                   rpath_val += ':';
4298                   rpath_val += p->name();
4299                 }
4300             }
4301         }
4302
4303       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4304       if (parameters->options().enable_new_dtags())
4305         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4306     }
4307
4308   // Look for text segments that have dynamic relocations.
4309   bool have_textrel = false;
4310   if (!this->script_options_->saw_sections_clause())
4311     {
4312       for (Segment_list::const_iterator p = this->segment_list_.begin();
4313            p != this->segment_list_.end();
4314            ++p)
4315         {
4316           if ((*p)->type() == elfcpp::PT_LOAD
4317               && ((*p)->flags() & elfcpp::PF_W) == 0
4318               && (*p)->has_dynamic_reloc())
4319             {
4320               have_textrel = true;
4321               break;
4322             }
4323         }
4324     }
4325   else
4326     {
4327       // We don't know the section -> segment mapping, so we are
4328       // conservative and just look for readonly sections with
4329       // relocations.  If those sections wind up in writable segments,
4330       // then we have created an unnecessary DT_TEXTREL entry.
4331       for (Section_list::const_iterator p = this->section_list_.begin();
4332            p != this->section_list_.end();
4333            ++p)
4334         {
4335           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4336               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4337               && (*p)->has_dynamic_reloc())
4338             {
4339               have_textrel = true;
4340               break;
4341             }
4342         }
4343     }
4344
4345   if (parameters->options().filter() != NULL)
4346     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4347   if (parameters->options().any_auxiliary())
4348     {
4349       for (options::String_set::const_iterator p =
4350              parameters->options().auxiliary_begin();
4351            p != parameters->options().auxiliary_end();
4352            ++p)
4353         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4354     }
4355
4356   // Add a DT_FLAGS entry if necessary.
4357   unsigned int flags = 0;
4358   if (have_textrel)
4359     {
4360       // Add a DT_TEXTREL for compatibility with older loaders.
4361       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4362       flags |= elfcpp::DF_TEXTREL;
4363
4364       if (parameters->options().text())
4365         gold_error(_("read-only segment has dynamic relocations"));
4366       else if (parameters->options().warn_shared_textrel()
4367                && parameters->options().shared())
4368         gold_warning(_("shared library text segment is not shareable"));
4369     }
4370   if (parameters->options().shared() && this->has_static_tls())
4371     flags |= elfcpp::DF_STATIC_TLS;
4372   if (parameters->options().origin())
4373     flags |= elfcpp::DF_ORIGIN;
4374   if (parameters->options().Bsymbolic())
4375     {
4376       flags |= elfcpp::DF_SYMBOLIC;
4377       // Add DT_SYMBOLIC for compatibility with older loaders.
4378       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4379     }
4380   if (parameters->options().now())
4381     flags |= elfcpp::DF_BIND_NOW;
4382   if (flags != 0)
4383     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4384
4385   flags = 0;
4386   if (parameters->options().initfirst())
4387     flags |= elfcpp::DF_1_INITFIRST;
4388   if (parameters->options().interpose())
4389     flags |= elfcpp::DF_1_INTERPOSE;
4390   if (parameters->options().loadfltr())
4391     flags |= elfcpp::DF_1_LOADFLTR;
4392   if (parameters->options().nodefaultlib())
4393     flags |= elfcpp::DF_1_NODEFLIB;
4394   if (parameters->options().nodelete())
4395     flags |= elfcpp::DF_1_NODELETE;
4396   if (parameters->options().nodlopen())
4397     flags |= elfcpp::DF_1_NOOPEN;
4398   if (parameters->options().nodump())
4399     flags |= elfcpp::DF_1_NODUMP;
4400   if (!parameters->options().shared())
4401     flags &= ~(elfcpp::DF_1_INITFIRST
4402                | elfcpp::DF_1_NODELETE
4403                | elfcpp::DF_1_NOOPEN);
4404   if (parameters->options().origin())
4405     flags |= elfcpp::DF_1_ORIGIN;
4406   if (parameters->options().now())
4407     flags |= elfcpp::DF_1_NOW;
4408   if (parameters->options().Bgroup())
4409     flags |= elfcpp::DF_1_GROUP;
4410   if (flags != 0)
4411     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4412 }
4413
4414 // Set the size of the _DYNAMIC symbol table to be the size of the
4415 // dynamic data.
4416
4417 void
4418 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4419 {
4420   Output_data_dynamic* const odyn = this->dynamic_data_;
4421   if (odyn == NULL)
4422     return;
4423   odyn->finalize_data_size();
4424   if (this->dynamic_symbol_ == NULL)
4425     return;
4426   off_t data_size = odyn->data_size();
4427   const int size = parameters->target().get_size();
4428   if (size == 32)
4429     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4430   else if (size == 64)
4431     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4432   else
4433     gold_unreachable();
4434 }
4435
4436 // The mapping of input section name prefixes to output section names.
4437 // In some cases one prefix is itself a prefix of another prefix; in
4438 // such a case the longer prefix must come first.  These prefixes are
4439 // based on the GNU linker default ELF linker script.
4440
4441 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4442 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4443 {
4444   MAPPING_INIT(".text.", ".text"),
4445   MAPPING_INIT(".rodata.", ".rodata"),
4446   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4447   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4448   MAPPING_INIT(".data.", ".data"),
4449   MAPPING_INIT(".bss.", ".bss"),
4450   MAPPING_INIT(".tdata.", ".tdata"),
4451   MAPPING_INIT(".tbss.", ".tbss"),
4452   MAPPING_INIT(".init_array.", ".init_array"),
4453   MAPPING_INIT(".fini_array.", ".fini_array"),
4454   MAPPING_INIT(".sdata.", ".sdata"),
4455   MAPPING_INIT(".sbss.", ".sbss"),
4456   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4457   // differently depending on whether it is creating a shared library.
4458   MAPPING_INIT(".sdata2.", ".sdata"),
4459   MAPPING_INIT(".sbss2.", ".sbss"),
4460   MAPPING_INIT(".lrodata.", ".lrodata"),
4461   MAPPING_INIT(".ldata.", ".ldata"),
4462   MAPPING_INIT(".lbss.", ".lbss"),
4463   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4464   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4465   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4466   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4467   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4468   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4469   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4470   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4471   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4472   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4473   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4474   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4475   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4476   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4477   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4478   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4479   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4480   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4481   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4482   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4483   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4484 };
4485 #undef MAPPING_INIT
4486
4487 const int Layout::section_name_mapping_count =
4488   (sizeof(Layout::section_name_mapping)
4489    / sizeof(Layout::section_name_mapping[0]));
4490
4491 // Choose the output section name to use given an input section name.
4492 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4493 // length of NAME.
4494
4495 const char*
4496 Layout::output_section_name(const Relobj* relobj, const char* name,
4497                             size_t* plen)
4498 {
4499   // gcc 4.3 generates the following sorts of section names when it
4500   // needs a section name specific to a function:
4501   //   .text.FN
4502   //   .rodata.FN
4503   //   .sdata2.FN
4504   //   .data.FN
4505   //   .data.rel.FN
4506   //   .data.rel.local.FN
4507   //   .data.rel.ro.FN
4508   //   .data.rel.ro.local.FN
4509   //   .sdata.FN
4510   //   .bss.FN
4511   //   .sbss.FN
4512   //   .tdata.FN
4513   //   .tbss.FN
4514
4515   // The GNU linker maps all of those to the part before the .FN,
4516   // except that .data.rel.local.FN is mapped to .data, and
4517   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4518   // beginning with .data.rel.ro.local are grouped together.
4519
4520   // For an anonymous namespace, the string FN can contain a '.'.
4521
4522   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4523   // GNU linker maps to .rodata.
4524
4525   // The .data.rel.ro sections are used with -z relro.  The sections
4526   // are recognized by name.  We use the same names that the GNU
4527   // linker does for these sections.
4528
4529   // It is hard to handle this in a principled way, so we don't even
4530   // try.  We use a table of mappings.  If the input section name is
4531   // not found in the table, we simply use it as the output section
4532   // name.
4533
4534   const Section_name_mapping* psnm = section_name_mapping;
4535   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4536     {
4537       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4538         {
4539           *plen = psnm->tolen;
4540           return psnm->to;
4541         }
4542     }
4543
4544   // As an additional complication, .ctors sections are output in
4545   // either .ctors or .init_array sections, and .dtors sections are
4546   // output in either .dtors or .fini_array sections.
4547   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4548     {
4549       if (parameters->options().ctors_in_init_array())
4550         {
4551           *plen = 11;
4552           return name[1] == 'c' ? ".init_array" : ".fini_array";
4553         }
4554       else
4555         {
4556           *plen = 6;
4557           return name[1] == 'c' ? ".ctors" : ".dtors";
4558         }
4559     }
4560   if (parameters->options().ctors_in_init_array()
4561       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4562     {
4563       // To make .init_array/.fini_array work with gcc we must exclude
4564       // .ctors and .dtors sections from the crtbegin and crtend
4565       // files.
4566       if (relobj == NULL
4567           || (!Layout::match_file_name(relobj, "crtbegin")
4568               && !Layout::match_file_name(relobj, "crtend")))
4569         {
4570           *plen = 11;
4571           return name[1] == 'c' ? ".init_array" : ".fini_array";
4572         }
4573     }
4574
4575   return name;
4576 }
4577
4578 // Return true if RELOBJ is an input file whose base name matches
4579 // FILE_NAME.  The base name must have an extension of ".o", and must
4580 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4581 // to match crtbegin.o as well as crtbeginS.o without getting confused
4582 // by other possibilities.  Overall matching the file name this way is
4583 // a dreadful hack, but the GNU linker does it in order to better
4584 // support gcc, and we need to be compatible.
4585
4586 bool
4587 Layout::match_file_name(const Relobj* relobj, const char* match)
4588 {
4589   const std::string& file_name(relobj->name());
4590   const char* base_name = lbasename(file_name.c_str());
4591   size_t match_len = strlen(match);
4592   if (strncmp(base_name, match, match_len) != 0)
4593     return false;
4594   size_t base_len = strlen(base_name);
4595   if (base_len != match_len + 2 && base_len != match_len + 3)
4596     return false;
4597   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4598 }
4599
4600 // Check if a comdat group or .gnu.linkonce section with the given
4601 // NAME is selected for the link.  If there is already a section,
4602 // *KEPT_SECTION is set to point to the existing section and the
4603 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4604 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4605 // *KEPT_SECTION is set to the internal copy and the function returns
4606 // true.
4607
4608 bool
4609 Layout::find_or_add_kept_section(const std::string& name,
4610                                  Relobj* object,
4611                                  unsigned int shndx,
4612                                  bool is_comdat,
4613                                  bool is_group_name,
4614                                  Kept_section** kept_section)
4615 {
4616   // It's normal to see a couple of entries here, for the x86 thunk
4617   // sections.  If we see more than a few, we're linking a C++
4618   // program, and we resize to get more space to minimize rehashing.
4619   if (this->signatures_.size() > 4
4620       && !this->resized_signatures_)
4621     {
4622       reserve_unordered_map(&this->signatures_,
4623                             this->number_of_input_files_ * 64);
4624       this->resized_signatures_ = true;
4625     }
4626
4627   Kept_section candidate;
4628   std::pair<Signatures::iterator, bool> ins =
4629     this->signatures_.insert(std::make_pair(name, candidate));
4630
4631   if (kept_section != NULL)
4632     *kept_section = &ins.first->second;
4633   if (ins.second)
4634     {
4635       // This is the first time we've seen this signature.
4636       ins.first->second.set_object(object);
4637       ins.first->second.set_shndx(shndx);
4638       if (is_comdat)
4639         ins.first->second.set_is_comdat();
4640       if (is_group_name)
4641         ins.first->second.set_is_group_name();
4642       return true;
4643     }
4644
4645   // We have already seen this signature.
4646
4647   if (ins.first->second.is_group_name())
4648     {
4649       // We've already seen a real section group with this signature.
4650       // If the kept group is from a plugin object, and we're in the
4651       // replacement phase, accept the new one as a replacement.
4652       if (ins.first->second.object() == NULL
4653           && parameters->options().plugins()->in_replacement_phase())
4654         {
4655           ins.first->second.set_object(object);
4656           ins.first->second.set_shndx(shndx);
4657           return true;
4658         }
4659       return false;
4660     }
4661   else if (is_group_name)
4662     {
4663       // This is a real section group, and we've already seen a
4664       // linkonce section with this signature.  Record that we've seen
4665       // a section group, and don't include this section group.
4666       ins.first->second.set_is_group_name();
4667       return false;
4668     }
4669   else
4670     {
4671       // We've already seen a linkonce section and this is a linkonce
4672       // section.  These don't block each other--this may be the same
4673       // symbol name with different section types.
4674       return true;
4675     }
4676 }
4677
4678 // Store the allocated sections into the section list.
4679
4680 void
4681 Layout::get_allocated_sections(Section_list* section_list) const
4682 {
4683   for (Section_list::const_iterator p = this->section_list_.begin();
4684        p != this->section_list_.end();
4685        ++p)
4686     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4687       section_list->push_back(*p);
4688 }
4689
4690 // Create an output segment.
4691
4692 Output_segment*
4693 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4694 {
4695   gold_assert(!parameters->options().relocatable());
4696   Output_segment* oseg = new Output_segment(type, flags);
4697   this->segment_list_.push_back(oseg);
4698
4699   if (type == elfcpp::PT_TLS)
4700     this->tls_segment_ = oseg;
4701   else if (type == elfcpp::PT_GNU_RELRO)
4702     this->relro_segment_ = oseg;
4703   else if (type == elfcpp::PT_INTERP)
4704     this->interp_segment_ = oseg;
4705
4706   return oseg;
4707 }
4708
4709 // Return the file offset of the normal symbol table.
4710
4711 off_t
4712 Layout::symtab_section_offset() const
4713 {
4714   if (this->symtab_section_ != NULL)
4715     return this->symtab_section_->offset();
4716   return 0;
4717 }
4718
4719 // Return the section index of the normal symbol table.  It may have
4720 // been stripped by the -s/--strip-all option.
4721
4722 unsigned int
4723 Layout::symtab_section_shndx() const
4724 {
4725   if (this->symtab_section_ != NULL)
4726     return this->symtab_section_->out_shndx();
4727   return 0;
4728 }
4729
4730 // Write out the Output_sections.  Most won't have anything to write,
4731 // since most of the data will come from input sections which are
4732 // handled elsewhere.  But some Output_sections do have Output_data.
4733
4734 void
4735 Layout::write_output_sections(Output_file* of) const
4736 {
4737   for (Section_list::const_iterator p = this->section_list_.begin();
4738        p != this->section_list_.end();
4739        ++p)
4740     {
4741       if (!(*p)->after_input_sections())
4742         (*p)->write(of);
4743     }
4744 }
4745
4746 // Write out data not associated with a section or the symbol table.
4747
4748 void
4749 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4750 {
4751   if (!parameters->options().strip_all())
4752     {
4753       const Output_section* symtab_section = this->symtab_section_;
4754       for (Section_list::const_iterator p = this->section_list_.begin();
4755            p != this->section_list_.end();
4756            ++p)
4757         {
4758           if ((*p)->needs_symtab_index())
4759             {
4760               gold_assert(symtab_section != NULL);
4761               unsigned int index = (*p)->symtab_index();
4762               gold_assert(index > 0 && index != -1U);
4763               off_t off = (symtab_section->offset()
4764                            + index * symtab_section->entsize());
4765               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4766             }
4767         }
4768     }
4769
4770   const Output_section* dynsym_section = this->dynsym_section_;
4771   for (Section_list::const_iterator p = this->section_list_.begin();
4772        p != this->section_list_.end();
4773        ++p)
4774     {
4775       if ((*p)->needs_dynsym_index())
4776         {
4777           gold_assert(dynsym_section != NULL);
4778           unsigned int index = (*p)->dynsym_index();
4779           gold_assert(index > 0 && index != -1U);
4780           off_t off = (dynsym_section->offset()
4781                        + index * dynsym_section->entsize());
4782           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4783         }
4784     }
4785
4786   // Write out the Output_data which are not in an Output_section.
4787   for (Data_list::const_iterator p = this->special_output_list_.begin();
4788        p != this->special_output_list_.end();
4789        ++p)
4790     (*p)->write(of);
4791 }
4792
4793 // Write out the Output_sections which can only be written after the
4794 // input sections are complete.
4795
4796 void
4797 Layout::write_sections_after_input_sections(Output_file* of)
4798 {
4799   // Determine the final section offsets, and thus the final output
4800   // file size.  Note we finalize the .shstrab last, to allow the
4801   // after_input_section sections to modify their section-names before
4802   // writing.
4803   if (this->any_postprocessing_sections_)
4804     {
4805       off_t off = this->output_file_size_;
4806       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4807
4808       // Now that we've finalized the names, we can finalize the shstrab.
4809       off =
4810         this->set_section_offsets(off,
4811                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4812
4813       if (off > this->output_file_size_)
4814         {
4815           of->resize(off);
4816           this->output_file_size_ = off;
4817         }
4818     }
4819
4820   for (Section_list::const_iterator p = this->section_list_.begin();
4821        p != this->section_list_.end();
4822        ++p)
4823     {
4824       if ((*p)->after_input_sections())
4825         (*p)->write(of);
4826     }
4827
4828   this->section_headers_->write(of);
4829 }
4830
4831 // If the build ID requires computing a checksum, do so here, and
4832 // write it out.  We compute a checksum over the entire file because
4833 // that is simplest.
4834
4835 void
4836 Layout::write_build_id(Output_file* of) const
4837 {
4838   if (this->build_id_note_ == NULL)
4839     return;
4840
4841   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4842
4843   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4844                                           this->build_id_note_->data_size());
4845
4846   const char* style = parameters->options().build_id();
4847   if (strcmp(style, "sha1") == 0)
4848     {
4849       sha1_ctx ctx;
4850       sha1_init_ctx(&ctx);
4851       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4852       sha1_finish_ctx(&ctx, ov);
4853     }
4854   else if (strcmp(style, "md5") == 0)
4855     {
4856       md5_ctx ctx;
4857       md5_init_ctx(&ctx);
4858       md5_process_bytes(iv, this->output_file_size_, &ctx);
4859       md5_finish_ctx(&ctx, ov);
4860     }
4861   else
4862     gold_unreachable();
4863
4864   of->write_output_view(this->build_id_note_->offset(),
4865                         this->build_id_note_->data_size(),
4866                         ov);
4867
4868   of->free_input_view(0, this->output_file_size_, iv);
4869 }
4870
4871 // Write out a binary file.  This is called after the link is
4872 // complete.  IN is the temporary output file we used to generate the
4873 // ELF code.  We simply walk through the segments, read them from
4874 // their file offset in IN, and write them to their load address in
4875 // the output file.  FIXME: with a bit more work, we could support
4876 // S-records and/or Intel hex format here.
4877
4878 void
4879 Layout::write_binary(Output_file* in) const
4880 {
4881   gold_assert(parameters->options().oformat_enum()
4882               == General_options::OBJECT_FORMAT_BINARY);
4883
4884   // Get the size of the binary file.
4885   uint64_t max_load_address = 0;
4886   for (Segment_list::const_iterator p = this->segment_list_.begin();
4887        p != this->segment_list_.end();
4888        ++p)
4889     {
4890       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4891         {
4892           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4893           if (max_paddr > max_load_address)
4894             max_load_address = max_paddr;
4895         }
4896     }
4897
4898   Output_file out(parameters->options().output_file_name());
4899   out.open(max_load_address);
4900
4901   for (Segment_list::const_iterator p = this->segment_list_.begin();
4902        p != this->segment_list_.end();
4903        ++p)
4904     {
4905       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4906         {
4907           const unsigned char* vin = in->get_input_view((*p)->offset(),
4908                                                         (*p)->filesz());
4909           unsigned char* vout = out.get_output_view((*p)->paddr(),
4910                                                     (*p)->filesz());
4911           memcpy(vout, vin, (*p)->filesz());
4912           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4913           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4914         }
4915     }
4916
4917   out.close();
4918 }
4919
4920 // Print the output sections to the map file.
4921
4922 void
4923 Layout::print_to_mapfile(Mapfile* mapfile) const
4924 {
4925   for (Segment_list::const_iterator p = this->segment_list_.begin();
4926        p != this->segment_list_.end();
4927        ++p)
4928     (*p)->print_sections_to_mapfile(mapfile);
4929 }
4930
4931 // Print statistical information to stderr.  This is used for --stats.
4932
4933 void
4934 Layout::print_stats() const
4935 {
4936   this->namepool_.print_stats("section name pool");
4937   this->sympool_.print_stats("output symbol name pool");
4938   this->dynpool_.print_stats("dynamic name pool");
4939
4940   for (Section_list::const_iterator p = this->section_list_.begin();
4941        p != this->section_list_.end();
4942        ++p)
4943     (*p)->print_merge_stats();
4944 }
4945
4946 // Write_sections_task methods.
4947
4948 // We can always run this task.
4949
4950 Task_token*
4951 Write_sections_task::is_runnable()
4952 {
4953   return NULL;
4954 }
4955
4956 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4957 // when finished.
4958
4959 void
4960 Write_sections_task::locks(Task_locker* tl)
4961 {
4962   tl->add(this, this->output_sections_blocker_);
4963   tl->add(this, this->final_blocker_);
4964 }
4965
4966 // Run the task--write out the data.
4967
4968 void
4969 Write_sections_task::run(Workqueue*)
4970 {
4971   this->layout_->write_output_sections(this->of_);
4972 }
4973
4974 // Write_data_task methods.
4975
4976 // We can always run this task.
4977
4978 Task_token*
4979 Write_data_task::is_runnable()
4980 {
4981   return NULL;
4982 }
4983
4984 // We need to unlock FINAL_BLOCKER when finished.
4985
4986 void
4987 Write_data_task::locks(Task_locker* tl)
4988 {
4989   tl->add(this, this->final_blocker_);
4990 }
4991
4992 // Run the task--write out the data.
4993
4994 void
4995 Write_data_task::run(Workqueue*)
4996 {
4997   this->layout_->write_data(this->symtab_, this->of_);
4998 }
4999
5000 // Write_symbols_task methods.
5001
5002 // We can always run this task.
5003
5004 Task_token*
5005 Write_symbols_task::is_runnable()
5006 {
5007   return NULL;
5008 }
5009
5010 // We need to unlock FINAL_BLOCKER when finished.
5011
5012 void
5013 Write_symbols_task::locks(Task_locker* tl)
5014 {
5015   tl->add(this, this->final_blocker_);
5016 }
5017
5018 // Run the task--write out the symbols.
5019
5020 void
5021 Write_symbols_task::run(Workqueue*)
5022 {
5023   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5024                                this->layout_->symtab_xindex(),
5025                                this->layout_->dynsym_xindex(), this->of_);
5026 }
5027
5028 // Write_after_input_sections_task methods.
5029
5030 // We can only run this task after the input sections have completed.
5031
5032 Task_token*
5033 Write_after_input_sections_task::is_runnable()
5034 {
5035   if (this->input_sections_blocker_->is_blocked())
5036     return this->input_sections_blocker_;
5037   return NULL;
5038 }
5039
5040 // We need to unlock FINAL_BLOCKER when finished.
5041
5042 void
5043 Write_after_input_sections_task::locks(Task_locker* tl)
5044 {
5045   tl->add(this, this->final_blocker_);
5046 }
5047
5048 // Run the task.
5049
5050 void
5051 Write_after_input_sections_task::run(Workqueue*)
5052 {
5053   this->layout_->write_sections_after_input_sections(this->of_);
5054 }
5055
5056 // Close_task_runner methods.
5057
5058 // Run the task--close the file.
5059
5060 void
5061 Close_task_runner::run(Workqueue*, const Task*)
5062 {
5063   // If we need to compute a checksum for the BUILD if, we do so here.
5064   this->layout_->write_build_id(this->of_);
5065
5066   // If we've been asked to create a binary file, we do so here.
5067   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5068     this->layout_->write_binary(this->of_);
5069
5070   this->of_->close();
5071 }
5072
5073 // Instantiate the templates we need.  We could use the configure
5074 // script to restrict this to only the ones for implemented targets.
5075
5076 #ifdef HAVE_TARGET_32_LITTLE
5077 template
5078 Output_section*
5079 Layout::init_fixed_output_section<32, false>(
5080     const char* name,
5081     elfcpp::Shdr<32, false>& shdr);
5082 #endif
5083
5084 #ifdef HAVE_TARGET_32_BIG
5085 template
5086 Output_section*
5087 Layout::init_fixed_output_section<32, true>(
5088     const char* name,
5089     elfcpp::Shdr<32, true>& shdr);
5090 #endif
5091
5092 #ifdef HAVE_TARGET_64_LITTLE
5093 template
5094 Output_section*
5095 Layout::init_fixed_output_section<64, false>(
5096     const char* name,
5097     elfcpp::Shdr<64, false>& shdr);
5098 #endif
5099
5100 #ifdef HAVE_TARGET_64_BIG
5101 template
5102 Output_section*
5103 Layout::init_fixed_output_section<64, true>(
5104     const char* name,
5105     elfcpp::Shdr<64, true>& shdr);
5106 #endif
5107
5108 #ifdef HAVE_TARGET_32_LITTLE
5109 template
5110 Output_section*
5111 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5112                           unsigned int shndx,
5113                           const char* name,
5114                           const elfcpp::Shdr<32, false>& shdr,
5115                           unsigned int, unsigned int, off_t*);
5116 #endif
5117
5118 #ifdef HAVE_TARGET_32_BIG
5119 template
5120 Output_section*
5121 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5122                          unsigned int shndx,
5123                          const char* name,
5124                          const elfcpp::Shdr<32, true>& shdr,
5125                          unsigned int, unsigned int, off_t*);
5126 #endif
5127
5128 #ifdef HAVE_TARGET_64_LITTLE
5129 template
5130 Output_section*
5131 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5132                           unsigned int shndx,
5133                           const char* name,
5134                           const elfcpp::Shdr<64, false>& shdr,
5135                           unsigned int, unsigned int, off_t*);
5136 #endif
5137
5138 #ifdef HAVE_TARGET_64_BIG
5139 template
5140 Output_section*
5141 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5142                          unsigned int shndx,
5143                          const char* name,
5144                          const elfcpp::Shdr<64, true>& shdr,
5145                          unsigned int, unsigned int, off_t*);
5146 #endif
5147
5148 #ifdef HAVE_TARGET_32_LITTLE
5149 template
5150 Output_section*
5151 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5152                                 unsigned int reloc_shndx,
5153                                 const elfcpp::Shdr<32, false>& shdr,
5154                                 Output_section* data_section,
5155                                 Relocatable_relocs* rr);
5156 #endif
5157
5158 #ifdef HAVE_TARGET_32_BIG
5159 template
5160 Output_section*
5161 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5162                                unsigned int reloc_shndx,
5163                                const elfcpp::Shdr<32, true>& shdr,
5164                                Output_section* data_section,
5165                                Relocatable_relocs* rr);
5166 #endif
5167
5168 #ifdef HAVE_TARGET_64_LITTLE
5169 template
5170 Output_section*
5171 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5172                                 unsigned int reloc_shndx,
5173                                 const elfcpp::Shdr<64, false>& shdr,
5174                                 Output_section* data_section,
5175                                 Relocatable_relocs* rr);
5176 #endif
5177
5178 #ifdef HAVE_TARGET_64_BIG
5179 template
5180 Output_section*
5181 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5182                                unsigned int reloc_shndx,
5183                                const elfcpp::Shdr<64, true>& shdr,
5184                                Output_section* data_section,
5185                                Relocatable_relocs* rr);
5186 #endif
5187
5188 #ifdef HAVE_TARGET_32_LITTLE
5189 template
5190 void
5191 Layout::layout_group<32, false>(Symbol_table* symtab,
5192                                 Sized_relobj_file<32, false>* object,
5193                                 unsigned int,
5194                                 const char* group_section_name,
5195                                 const char* signature,
5196                                 const elfcpp::Shdr<32, false>& shdr,
5197                                 elfcpp::Elf_Word flags,
5198                                 std::vector<unsigned int>* shndxes);
5199 #endif
5200
5201 #ifdef HAVE_TARGET_32_BIG
5202 template
5203 void
5204 Layout::layout_group<32, true>(Symbol_table* symtab,
5205                                Sized_relobj_file<32, true>* object,
5206                                unsigned int,
5207                                const char* group_section_name,
5208                                const char* signature,
5209                                const elfcpp::Shdr<32, true>& shdr,
5210                                elfcpp::Elf_Word flags,
5211                                std::vector<unsigned int>* shndxes);
5212 #endif
5213
5214 #ifdef HAVE_TARGET_64_LITTLE
5215 template
5216 void
5217 Layout::layout_group<64, false>(Symbol_table* symtab,
5218                                 Sized_relobj_file<64, false>* object,
5219                                 unsigned int,
5220                                 const char* group_section_name,
5221                                 const char* signature,
5222                                 const elfcpp::Shdr<64, false>& shdr,
5223                                 elfcpp::Elf_Word flags,
5224                                 std::vector<unsigned int>* shndxes);
5225 #endif
5226
5227 #ifdef HAVE_TARGET_64_BIG
5228 template
5229 void
5230 Layout::layout_group<64, true>(Symbol_table* symtab,
5231                                Sized_relobj_file<64, true>* object,
5232                                unsigned int,
5233                                const char* group_section_name,
5234                                const char* signature,
5235                                const elfcpp::Shdr<64, true>& shdr,
5236                                elfcpp::Elf_Word flags,
5237                                std::vector<unsigned int>* shndxes);
5238 #endif
5239
5240 #ifdef HAVE_TARGET_32_LITTLE
5241 template
5242 Output_section*
5243 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5244                                    const unsigned char* symbols,
5245                                    off_t symbols_size,
5246                                    const unsigned char* symbol_names,
5247                                    off_t symbol_names_size,
5248                                    unsigned int shndx,
5249                                    const elfcpp::Shdr<32, false>& shdr,
5250                                    unsigned int reloc_shndx,
5251                                    unsigned int reloc_type,
5252                                    off_t* off);
5253 #endif
5254
5255 #ifdef HAVE_TARGET_32_BIG
5256 template
5257 Output_section*
5258 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5259                                   const unsigned char* symbols,
5260                                   off_t symbols_size,
5261                                   const unsigned char* symbol_names,
5262                                   off_t symbol_names_size,
5263                                   unsigned int shndx,
5264                                   const elfcpp::Shdr<32, true>& shdr,
5265                                   unsigned int reloc_shndx,
5266                                   unsigned int reloc_type,
5267                                   off_t* off);
5268 #endif
5269
5270 #ifdef HAVE_TARGET_64_LITTLE
5271 template
5272 Output_section*
5273 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5274                                    const unsigned char* symbols,
5275                                    off_t symbols_size,
5276                                    const unsigned char* symbol_names,
5277                                    off_t symbol_names_size,
5278                                    unsigned int shndx,
5279                                    const elfcpp::Shdr<64, false>& shdr,
5280                                    unsigned int reloc_shndx,
5281                                    unsigned int reloc_type,
5282                                    off_t* off);
5283 #endif
5284
5285 #ifdef HAVE_TARGET_64_BIG
5286 template
5287 Output_section*
5288 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5289                                   const unsigned char* symbols,
5290                                   off_t symbols_size,
5291                                   const unsigned char* symbol_names,
5292                                   off_t symbol_names_size,
5293                                   unsigned int shndx,
5294                                   const elfcpp::Shdr<64, true>& shdr,
5295                                   unsigned int reloc_shndx,
5296                                   unsigned int reloc_type,
5297                                   off_t* off);
5298 #endif
5299
5300 } // End namespace gold.