[gold] Implement -z stack-size option
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list.  Creates a single free list node that
76 // describes the entire region of length LEN.  If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83   this->list_.push_front(Free_list_node(0, len));
84   this->last_remove_ = this->list_.begin();
85   this->extend_ = extend;
86   this->length_ = len;
87   ++Free_list::num_lists;
88   ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list.  Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node.  We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103   if (start == end)
104     return;
105   gold_assert(start < end);
106
107   ++Free_list::num_removes;
108
109   Iterator p = this->last_remove_;
110   if (p->start_ > start)
111     p = this->list_.begin();
112
113   for (; p != this->list_.end(); ++p)
114     {
115       ++Free_list::num_remove_visits;
116       // Find a node that wholly contains the indicated region.
117       if (p->start_ <= start && p->end_ >= end)
118         {
119           // Case 1: the indicated region spans the whole node.
120           // Add some fuzz to avoid creating tiny free chunks.
121           if (p->start_ + 3 >= start && p->end_ <= end + 3)
122             p = this->list_.erase(p);
123           // Case 2: remove a chunk from the start of the node.
124           else if (p->start_ + 3 >= start)
125             p->start_ = end;
126           // Case 3: remove a chunk from the end of the node.
127           else if (p->end_ <= end + 3)
128             p->end_ = start;
129           // Case 4: remove a chunk from the middle, and split
130           // the node into two.
131           else
132             {
133               Free_list_node newnode(p->start_, start);
134               p->start_ = end;
135               this->list_.insert(p, newnode);
136               ++Free_list::num_nodes;
137             }
138           this->last_remove_ = p;
139           return;
140         }
141     }
142
143   // Did not find a node containing the given chunk.  This could happen
144   // because a small chunk was already removed due to the fuzz.
145   gold_debug(DEBUG_INCREMENTAL,
146              "Free_list::remove(%d,%d) not found",
147              static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157   gold_debug(DEBUG_INCREMENTAL,
158              "Free_list::allocate(%08lx, %d, %08lx)",
159              static_cast<long>(len), static_cast<int>(align),
160              static_cast<long>(minoff));
161   if (len == 0)
162     return align_address(minoff, align);
163
164   ++Free_list::num_allocates;
165
166   // We usually want to drop free chunks smaller than 4 bytes.
167   // If we need to guarantee a minimum hole size, though, we need
168   // to keep track of all free chunks.
169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172     {
173       ++Free_list::num_allocate_visits;
174       off_t start = p->start_ > minoff ? p->start_ : minoff;
175       start = align_address(start, align);
176       off_t end = start + len;
177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178         {
179           this->length_ = end;
180           p->end_ = end;
181         }
182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183         {
184           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185             this->list_.erase(p);
186           else if (p->start_ + fuzz >= start)
187             p->start_ = end;
188           else if (p->end_ <= end + fuzz)
189             p->end_ = start;
190           else
191             {
192               Free_list_node newnode(p->start_, start);
193               p->start_ = end;
194               this->list_.insert(p, newnode);
195               ++Free_list::num_nodes;
196             }
197           return start;
198         }
199     }
200   if (this->extend_)
201     {
202       off_t start = align_address(this->length_, align);
203       this->length_ = start + len;
204       return start;
205     }
206   return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213   gold_info("Free list:\n     start      end   length\n");
214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
216               static_cast<long>(p->end_),
217               static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224   fprintf(stderr, _("%s: total free lists: %u\n"),
225           program_name, Free_list::num_lists);
226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
227           program_name, Free_list::num_nodes);
228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229           program_name, Free_list::num_removes);
230   fprintf(stderr, _("%s: nodes visited: %u\n"),
231           program_name, Free_list::num_remove_visits);
232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233           program_name, Free_list::num_allocates);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239
240 class Hash_task : public Task
241 {
242  public:
243   Hash_task(Output_file* of,
244             size_t offset,
245             size_t size,
246             unsigned char* dst,
247             Task_token* final_blocker)
248     : of_(of), offset_(offset), size_(size), dst_(dst),
249       final_blocker_(final_blocker)
250   { }
251
252   void
253   run(Workqueue*)
254   {
255     const unsigned char* iv =
256         this->of_->get_input_view(this->offset_, this->size_);
257     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
258     this->of_->free_input_view(this->offset_, this->size_, iv);
259   }
260
261   Task_token*
262   is_runnable()
263   { return NULL; }
264
265   // Unblock FINAL_BLOCKER_ when done.
266   void
267   locks(Task_locker* tl)
268   { tl->add(this, this->final_blocker_); }
269
270   std::string
271   get_name() const
272   { return "Hash_task"; }
273
274  private:
275   Output_file* of_;
276   const size_t offset_;
277   const size_t size_;
278   unsigned char* const dst_;
279   Task_token* const final_blocker_;
280 };
281
282 // Layout::Relaxation_debug_check methods.
283
284 // Check that sections and special data are in reset states.
285 // We do not save states for Output_sections and special Output_data.
286 // So we check that they have not assigned any addresses or offsets.
287 // clean_up_after_relaxation simply resets their addresses and offsets.
288 void
289 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
290     const Layout::Section_list& sections,
291     const Layout::Data_list& special_outputs,
292     const Layout::Data_list& relax_outputs)
293 {
294   for(Layout::Section_list::const_iterator p = sections.begin();
295       p != sections.end();
296       ++p)
297     gold_assert((*p)->address_and_file_offset_have_reset_values());
298
299   for(Layout::Data_list::const_iterator p = special_outputs.begin();
300       p != special_outputs.end();
301       ++p)
302     gold_assert((*p)->address_and_file_offset_have_reset_values());
303
304   gold_assert(relax_outputs.empty());
305 }
306
307 // Save information of SECTIONS for checking later.
308
309 void
310 Layout::Relaxation_debug_check::read_sections(
311     const Layout::Section_list& sections)
312 {
313   for(Layout::Section_list::const_iterator p = sections.begin();
314       p != sections.end();
315       ++p)
316     {
317       Output_section* os = *p;
318       Section_info info;
319       info.output_section = os;
320       info.address = os->is_address_valid() ? os->address() : 0;
321       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
322       info.offset = os->is_offset_valid()? os->offset() : -1 ;
323       this->section_infos_.push_back(info);
324     }
325 }
326
327 // Verify SECTIONS using previously recorded information.
328
329 void
330 Layout::Relaxation_debug_check::verify_sections(
331     const Layout::Section_list& sections)
332 {
333   size_t i = 0;
334   for(Layout::Section_list::const_iterator p = sections.begin();
335       p != sections.end();
336       ++p, ++i)
337     {
338       Output_section* os = *p;
339       uint64_t address = os->is_address_valid() ? os->address() : 0;
340       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
341       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
342
343       if (i >= this->section_infos_.size())
344         {
345           gold_fatal("Section_info of %s missing.\n", os->name());
346         }
347       const Section_info& info = this->section_infos_[i];
348       if (os != info.output_section)
349         gold_fatal("Section order changed.  Expecting %s but see %s\n",
350                    info.output_section->name(), os->name());
351       if (address != info.address
352           || data_size != info.data_size
353           || offset != info.offset)
354         gold_fatal("Section %s changed.\n", os->name());
355     }
356 }
357
358 // Layout_task_runner methods.
359
360 // Lay out the sections.  This is called after all the input objects
361 // have been read.
362
363 void
364 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
365 {
366   // See if any of the input definitions violate the One Definition Rule.
367   // TODO: if this is too slow, do this as a task, rather than inline.
368   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
369
370   Layout* layout = this->layout_;
371   off_t file_size = layout->finalize(this->input_objects_,
372                                      this->symtab_,
373                                      this->target_,
374                                      task);
375
376   // Now we know the final size of the output file and we know where
377   // each piece of information goes.
378
379   if (this->mapfile_ != NULL)
380     {
381       this->mapfile_->print_discarded_sections(this->input_objects_);
382       layout->print_to_mapfile(this->mapfile_);
383     }
384
385   Output_file* of;
386   if (layout->incremental_base() == NULL)
387     {
388       of = new Output_file(parameters->options().output_file_name());
389       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
390         of->set_is_temporary();
391       of->open(file_size);
392     }
393   else
394     {
395       of = layout->incremental_base()->output_file();
396
397       // Apply the incremental relocations for symbols whose values
398       // have changed.  We do this before we resize the file and start
399       // writing anything else to it, so that we can read the old
400       // incremental information from the file before (possibly)
401       // overwriting it.
402       if (parameters->incremental_update())
403         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
404                                                              this->layout_,
405                                                              of);
406
407       of->resize(file_size);
408     }
409
410   // Queue up the final set of tasks.
411   gold::queue_final_tasks(this->options_, this->input_objects_,
412                           this->symtab_, layout, workqueue, of);
413 }
414
415 // Layout methods.
416
417 Layout::Layout(int number_of_input_files, Script_options* script_options)
418   : number_of_input_files_(number_of_input_files),
419     script_options_(script_options),
420     namepool_(),
421     sympool_(),
422     dynpool_(),
423     signatures_(),
424     section_name_map_(),
425     segment_list_(),
426     section_list_(),
427     unattached_section_list_(),
428     special_output_list_(),
429     relax_output_list_(),
430     section_headers_(NULL),
431     tls_segment_(NULL),
432     relro_segment_(NULL),
433     interp_segment_(NULL),
434     increase_relro_(0),
435     symtab_section_(NULL),
436     symtab_xindex_(NULL),
437     dynsym_section_(NULL),
438     dynsym_xindex_(NULL),
439     dynamic_section_(NULL),
440     dynamic_symbol_(NULL),
441     dynamic_data_(NULL),
442     eh_frame_section_(NULL),
443     eh_frame_data_(NULL),
444     added_eh_frame_data_(false),
445     eh_frame_hdr_section_(NULL),
446     gdb_index_data_(NULL),
447     build_id_note_(NULL),
448     debug_abbrev_(NULL),
449     debug_info_(NULL),
450     group_signatures_(),
451     output_file_size_(-1),
452     have_added_input_section_(false),
453     sections_are_attached_(false),
454     input_requires_executable_stack_(false),
455     input_with_gnu_stack_note_(false),
456     input_without_gnu_stack_note_(false),
457     has_static_tls_(false),
458     any_postprocessing_sections_(false),
459     resized_signatures_(false),
460     have_stabstr_section_(false),
461     section_ordering_specified_(false),
462     unique_segment_for_sections_specified_(false),
463     incremental_inputs_(NULL),
464     record_output_section_data_from_script_(false),
465     script_output_section_data_list_(),
466     segment_states_(NULL),
467     relaxation_debug_check_(NULL),
468     section_order_map_(),
469     section_segment_map_(),
470     input_section_position_(),
471     input_section_glob_(),
472     incremental_base_(NULL),
473     free_list_()
474 {
475   // Make space for more than enough segments for a typical file.
476   // This is just for efficiency--it's OK if we wind up needing more.
477   this->segment_list_.reserve(12);
478
479   // We expect two unattached Output_data objects: the file header and
480   // the segment headers.
481   this->special_output_list_.reserve(2);
482
483   // Initialize structure needed for an incremental build.
484   if (parameters->incremental())
485     this->incremental_inputs_ = new Incremental_inputs;
486
487   // The section name pool is worth optimizing in all cases, because
488   // it is small, but there are often overlaps due to .rel sections.
489   this->namepool_.set_optimize();
490 }
491
492 // For incremental links, record the base file to be modified.
493
494 void
495 Layout::set_incremental_base(Incremental_binary* base)
496 {
497   this->incremental_base_ = base;
498   this->free_list_.init(base->output_file()->filesize(), true);
499 }
500
501 // Hash a key we use to look up an output section mapping.
502
503 size_t
504 Layout::Hash_key::operator()(const Layout::Key& k) const
505 {
506  return k.first + k.second.first + k.second.second;
507 }
508
509 // These are the debug sections that are actually used by gdb.
510 // Currently, we've checked versions of gdb up to and including 7.4.
511 // We only check the part of the name that follows ".debug_" or
512 // ".zdebug_".
513
514 static const char* gdb_sections[] =
515 {
516   "abbrev",
517   "addr",         // Fission extension
518   // "aranges",   // not used by gdb as of 7.4
519   "frame",
520   "gdb_scripts",
521   "info",
522   "types",
523   "line",
524   "loc",
525   "macinfo",
526   "macro",
527   // "pubnames",  // not used by gdb as of 7.4
528   // "pubtypes",  // not used by gdb as of 7.4
529   // "gnu_pubnames",  // Fission extension
530   // "gnu_pubtypes",  // Fission extension
531   "ranges",
532   "str",
533   "str_offsets",
534 };
535
536 // This is the minimum set of sections needed for line numbers.
537
538 static const char* lines_only_debug_sections[] =
539 {
540   "abbrev",
541   // "addr",      // Fission extension
542   // "aranges",   // not used by gdb as of 7.4
543   // "frame",
544   // "gdb_scripts",
545   "info",
546   // "types",
547   "line",
548   // "loc",
549   // "macinfo",
550   // "macro",
551   // "pubnames",  // not used by gdb as of 7.4
552   // "pubtypes",  // not used by gdb as of 7.4
553   // "gnu_pubnames",  // Fission extension
554   // "gnu_pubtypes",  // Fission extension
555   // "ranges",
556   "str",
557   "str_offsets",  // Fission extension
558 };
559
560 // These sections are the DWARF fast-lookup tables, and are not needed
561 // when building a .gdb_index section.
562
563 static const char* gdb_fast_lookup_sections[] =
564 {
565   "aranges",
566   "pubnames",
567   "gnu_pubnames",
568   "pubtypes",
569   "gnu_pubtypes",
570 };
571
572 // Returns whether the given debug section is in the list of
573 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
574 // portion of the name following ".debug_" or ".zdebug_".
575
576 static inline bool
577 is_gdb_debug_section(const char* suffix)
578 {
579   // We can do this faster: binary search or a hashtable.  But why bother?
580   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
581     if (strcmp(suffix, gdb_sections[i]) == 0)
582       return true;
583   return false;
584 }
585
586 // Returns whether the given section is needed for lines-only debugging.
587
588 static inline bool
589 is_lines_only_debug_section(const char* suffix)
590 {
591   // We can do this faster: binary search or a hashtable.  But why bother?
592   for (size_t i = 0;
593        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
594        ++i)
595     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
596       return true;
597   return false;
598 }
599
600 // Returns whether the given section is a fast-lookup section that
601 // will not be needed when building a .gdb_index section.
602
603 static inline bool
604 is_gdb_fast_lookup_section(const char* suffix)
605 {
606   // We can do this faster: binary search or a hashtable.  But why bother?
607   for (size_t i = 0;
608        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
609        ++i)
610     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
611       return true;
612   return false;
613 }
614
615 // Sometimes we compress sections.  This is typically done for
616 // sections that are not part of normal program execution (such as
617 // .debug_* sections), and where the readers of these sections know
618 // how to deal with compressed sections.  This routine doesn't say for
619 // certain whether we'll compress -- it depends on commandline options
620 // as well -- just whether this section is a candidate for compression.
621 // (The Output_compressed_section class decides whether to compress
622 // a given section, and picks the name of the compressed section.)
623
624 static bool
625 is_compressible_debug_section(const char* secname)
626 {
627   return (is_prefix_of(".debug", secname));
628 }
629
630 // We may see compressed debug sections in input files.  Return TRUE
631 // if this is the name of a compressed debug section.
632
633 bool
634 is_compressed_debug_section(const char* secname)
635 {
636   return (is_prefix_of(".zdebug", secname));
637 }
638
639 std::string
640 corresponding_uncompressed_section_name(std::string secname)
641 {
642   gold_assert(secname[0] == '.' && secname[1] == 'z');
643   std::string ret(".");
644   ret.append(secname, 2, std::string::npos);
645   return ret;
646 }
647
648 // Whether to include this section in the link.
649
650 template<int size, bool big_endian>
651 bool
652 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
653                         const elfcpp::Shdr<size, big_endian>& shdr)
654 {
655   if (!parameters->options().relocatable()
656       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
657     return false;
658
659   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
660
661   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
662       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
663     return parameters->target().should_include_section(sh_type);
664
665   switch (sh_type)
666     {
667     case elfcpp::SHT_NULL:
668     case elfcpp::SHT_SYMTAB:
669     case elfcpp::SHT_DYNSYM:
670     case elfcpp::SHT_HASH:
671     case elfcpp::SHT_DYNAMIC:
672     case elfcpp::SHT_SYMTAB_SHNDX:
673       return false;
674
675     case elfcpp::SHT_STRTAB:
676       // Discard the sections which have special meanings in the ELF
677       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
678       // checking the sh_link fields of the appropriate sections.
679       return (strcmp(name, ".dynstr") != 0
680               && strcmp(name, ".strtab") != 0
681               && strcmp(name, ".shstrtab") != 0);
682
683     case elfcpp::SHT_RELA:
684     case elfcpp::SHT_REL:
685     case elfcpp::SHT_GROUP:
686       // If we are emitting relocations these should be handled
687       // elsewhere.
688       gold_assert(!parameters->options().relocatable());
689       return false;
690
691     case elfcpp::SHT_PROGBITS:
692       if (parameters->options().strip_debug()
693           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
694         {
695           if (is_debug_info_section(name))
696             return false;
697         }
698       if (parameters->options().strip_debug_non_line()
699           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700         {
701           // Debugging sections can only be recognized by name.
702           if (is_prefix_of(".debug_", name)
703               && !is_lines_only_debug_section(name + 7))
704             return false;
705           if (is_prefix_of(".zdebug_", name)
706               && !is_lines_only_debug_section(name + 8))
707             return false;
708         }
709       if (parameters->options().strip_debug_gdb()
710           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
711         {
712           // Debugging sections can only be recognized by name.
713           if (is_prefix_of(".debug_", name)
714               && !is_gdb_debug_section(name + 7))
715             return false;
716           if (is_prefix_of(".zdebug_", name)
717               && !is_gdb_debug_section(name + 8))
718             return false;
719         }
720       if (parameters->options().gdb_index()
721           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
722         {
723           // When building .gdb_index, we can strip .debug_pubnames,
724           // .debug_pubtypes, and .debug_aranges sections.
725           if (is_prefix_of(".debug_", name)
726               && is_gdb_fast_lookup_section(name + 7))
727             return false;
728           if (is_prefix_of(".zdebug_", name)
729               && is_gdb_fast_lookup_section(name + 8))
730             return false;
731         }
732       if (parameters->options().strip_lto_sections()
733           && !parameters->options().relocatable()
734           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735         {
736           // Ignore LTO sections containing intermediate code.
737           if (is_prefix_of(".gnu.lto_", name))
738             return false;
739         }
740       // The GNU linker strips .gnu_debuglink sections, so we do too.
741       // This is a feature used to keep debugging information in
742       // separate files.
743       if (strcmp(name, ".gnu_debuglink") == 0)
744         return false;
745       return true;
746
747     default:
748       return true;
749     }
750 }
751
752 // Return an output section named NAME, or NULL if there is none.
753
754 Output_section*
755 Layout::find_output_section(const char* name) const
756 {
757   for (Section_list::const_iterator p = this->section_list_.begin();
758        p != this->section_list_.end();
759        ++p)
760     if (strcmp((*p)->name(), name) == 0)
761       return *p;
762   return NULL;
763 }
764
765 // Return an output segment of type TYPE, with segment flags SET set
766 // and segment flags CLEAR clear.  Return NULL if there is none.
767
768 Output_segment*
769 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
770                             elfcpp::Elf_Word clear) const
771 {
772   for (Segment_list::const_iterator p = this->segment_list_.begin();
773        p != this->segment_list_.end();
774        ++p)
775     if (static_cast<elfcpp::PT>((*p)->type()) == type
776         && ((*p)->flags() & set) == set
777         && ((*p)->flags() & clear) == 0)
778       return *p;
779   return NULL;
780 }
781
782 // When we put a .ctors or .dtors section with more than one word into
783 // a .init_array or .fini_array section, we need to reverse the words
784 // in the .ctors/.dtors section.  This is because .init_array executes
785 // constructors front to back, where .ctors executes them back to
786 // front, and vice-versa for .fini_array/.dtors.  Although we do want
787 // to remap .ctors/.dtors into .init_array/.fini_array because it can
788 // be more efficient, we don't want to change the order in which
789 // constructors/destructors are run.  This set just keeps track of
790 // these sections which need to be reversed.  It is only changed by
791 // Layout::layout.  It should be a private member of Layout, but that
792 // would require layout.h to #include object.h to get the definition
793 // of Section_id.
794 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
795
796 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
797 // .init_array/.fini_array section.
798
799 bool
800 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
801 {
802   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
803           != ctors_sections_in_init_array.end());
804 }
805
806 // Return the output section to use for section NAME with type TYPE
807 // and section flags FLAGS.  NAME must be canonicalized in the string
808 // pool, and NAME_KEY is the key.  ORDER is where this should appear
809 // in the output sections.  IS_RELRO is true for a relro section.
810
811 Output_section*
812 Layout::get_output_section(const char* name, Stringpool::Key name_key,
813                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
814                            Output_section_order order, bool is_relro)
815 {
816   elfcpp::Elf_Word lookup_type = type;
817
818   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
819   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
820   // .init_array, .fini_array, and .preinit_array sections by name
821   // whatever their type in the input file.  We do this because the
822   // types are not always right in the input files.
823   if (lookup_type == elfcpp::SHT_INIT_ARRAY
824       || lookup_type == elfcpp::SHT_FINI_ARRAY
825       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
826     lookup_type = elfcpp::SHT_PROGBITS;
827
828   elfcpp::Elf_Xword lookup_flags = flags;
829
830   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
831   // read-write with read-only sections.  Some other ELF linkers do
832   // not do this.  FIXME: Perhaps there should be an option
833   // controlling this.
834   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
835
836   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
837   const std::pair<Key, Output_section*> v(key, NULL);
838   std::pair<Section_name_map::iterator, bool> ins(
839     this->section_name_map_.insert(v));
840
841   if (!ins.second)
842     return ins.first->second;
843   else
844     {
845       // This is the first time we've seen this name/type/flags
846       // combination.  For compatibility with the GNU linker, we
847       // combine sections with contents and zero flags with sections
848       // with non-zero flags.  This is a workaround for cases where
849       // assembler code forgets to set section flags.  FIXME: Perhaps
850       // there should be an option to control this.
851       Output_section* os = NULL;
852
853       if (lookup_type == elfcpp::SHT_PROGBITS)
854         {
855           if (flags == 0)
856             {
857               Output_section* same_name = this->find_output_section(name);
858               if (same_name != NULL
859                   && (same_name->type() == elfcpp::SHT_PROGBITS
860                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
861                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
862                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
863                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
864                 os = same_name;
865             }
866           else if ((flags & elfcpp::SHF_TLS) == 0)
867             {
868               elfcpp::Elf_Xword zero_flags = 0;
869               const Key zero_key(name_key, std::make_pair(lookup_type,
870                                                           zero_flags));
871               Section_name_map::iterator p =
872                   this->section_name_map_.find(zero_key);
873               if (p != this->section_name_map_.end())
874                 os = p->second;
875             }
876         }
877
878       if (os == NULL)
879         os = this->make_output_section(name, type, flags, order, is_relro);
880
881       ins.first->second = os;
882       return os;
883     }
884 }
885
886 // Returns TRUE iff NAME (an input section from RELOBJ) will
887 // be mapped to an output section that should be KEPT.
888
889 bool
890 Layout::keep_input_section(const Relobj* relobj, const char* name)
891 {
892   if (! this->script_options_->saw_sections_clause())
893     return false;
894
895   Script_sections* ss = this->script_options_->script_sections();
896   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
897   Output_section** output_section_slot;
898   Script_sections::Section_type script_section_type;
899   bool keep;
900
901   name = ss->output_section_name(file_name, name, &output_section_slot,
902                                  &script_section_type, &keep);
903   return name != NULL && keep;
904 }
905
906 // Clear the input section flags that should not be copied to the
907 // output section.
908
909 elfcpp::Elf_Xword
910 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
911 {
912   // Some flags in the input section should not be automatically
913   // copied to the output section.
914   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
915                             | elfcpp::SHF_GROUP
916                             | elfcpp::SHF_COMPRESSED
917                             | elfcpp::SHF_MERGE
918                             | elfcpp::SHF_STRINGS);
919
920   // We only clear the SHF_LINK_ORDER flag in for
921   // a non-relocatable link.
922   if (!parameters->options().relocatable())
923     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
924
925   return input_section_flags;
926 }
927
928 // Pick the output section to use for section NAME, in input file
929 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
930 // linker created section.  IS_INPUT_SECTION is true if we are
931 // choosing an output section for an input section found in a input
932 // file.  ORDER is where this section should appear in the output
933 // sections.  IS_RELRO is true for a relro section.  This will return
934 // NULL if the input section should be discarded.
935
936 Output_section*
937 Layout::choose_output_section(const Relobj* relobj, const char* name,
938                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
939                               bool is_input_section, Output_section_order order,
940                               bool is_relro)
941 {
942   // We should not see any input sections after we have attached
943   // sections to segments.
944   gold_assert(!is_input_section || !this->sections_are_attached_);
945
946   flags = this->get_output_section_flags(flags);
947
948   if (this->script_options_->saw_sections_clause())
949     {
950       // We are using a SECTIONS clause, so the output section is
951       // chosen based only on the name.
952
953       Script_sections* ss = this->script_options_->script_sections();
954       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
955       Output_section** output_section_slot;
956       Script_sections::Section_type script_section_type;
957       const char* orig_name = name;
958       bool keep;
959       name = ss->output_section_name(file_name, name, &output_section_slot,
960                                      &script_section_type, &keep);
961
962       if (name == NULL)
963         {
964           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
965                                      "because it is not allowed by the "
966                                      "SECTIONS clause of the linker script"),
967                      orig_name);
968           // The SECTIONS clause says to discard this input section.
969           return NULL;
970         }
971
972       // We can only handle script section types ST_NONE and ST_NOLOAD.
973       switch (script_section_type)
974         {
975         case Script_sections::ST_NONE:
976           break;
977         case Script_sections::ST_NOLOAD:
978           flags &= elfcpp::SHF_ALLOC;
979           break;
980         default:
981           gold_unreachable();
982         }
983
984       // If this is an orphan section--one not mentioned in the linker
985       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
986       // default processing below.
987
988       if (output_section_slot != NULL)
989         {
990           if (*output_section_slot != NULL)
991             {
992               (*output_section_slot)->update_flags_for_input_section(flags);
993               return *output_section_slot;
994             }
995
996           // We don't put sections found in the linker script into
997           // SECTION_NAME_MAP_.  That keeps us from getting confused
998           // if an orphan section is mapped to a section with the same
999           // name as one in the linker script.
1000
1001           name = this->namepool_.add(name, false, NULL);
1002
1003           Output_section* os = this->make_output_section(name, type, flags,
1004                                                          order, is_relro);
1005
1006           os->set_found_in_sections_clause();
1007
1008           // Special handling for NOLOAD sections.
1009           if (script_section_type == Script_sections::ST_NOLOAD)
1010             {
1011               os->set_is_noload();
1012
1013               // The constructor of Output_section sets addresses of non-ALLOC
1014               // sections to 0 by default.  We don't want that for NOLOAD
1015               // sections even if they have no SHF_ALLOC flag.
1016               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1017                   && os->is_address_valid())
1018                 {
1019                   gold_assert(os->address() == 0
1020                               && !os->is_offset_valid()
1021                               && !os->is_data_size_valid());
1022                   os->reset_address_and_file_offset();
1023                 }
1024             }
1025
1026           *output_section_slot = os;
1027           return os;
1028         }
1029     }
1030
1031   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1032
1033   size_t len = strlen(name);
1034   std::string uncompressed_name;
1035
1036   // Compressed debug sections should be mapped to the corresponding
1037   // uncompressed section.
1038   if (is_compressed_debug_section(name))
1039     {
1040       uncompressed_name =
1041           corresponding_uncompressed_section_name(std::string(name, len));
1042       name = uncompressed_name.c_str();
1043       len = uncompressed_name.length();
1044     }
1045
1046   // Turn NAME from the name of the input section into the name of the
1047   // output section.
1048   if (is_input_section
1049       && !this->script_options_->saw_sections_clause()
1050       && !parameters->options().relocatable())
1051     {
1052       const char *orig_name = name;
1053       name = parameters->target().output_section_name(relobj, name, &len);
1054       if (name == NULL)
1055         name = Layout::output_section_name(relobj, orig_name, &len);
1056     }
1057
1058   Stringpool::Key name_key;
1059   name = this->namepool_.add_with_length(name, len, true, &name_key);
1060
1061   // Find or make the output section.  The output section is selected
1062   // based on the section name, type, and flags.
1063   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1064 }
1065
1066 // For incremental links, record the initial fixed layout of a section
1067 // from the base file, and return a pointer to the Output_section.
1068
1069 template<int size, bool big_endian>
1070 Output_section*
1071 Layout::init_fixed_output_section(const char* name,
1072                                   elfcpp::Shdr<size, big_endian>& shdr)
1073 {
1074   unsigned int sh_type = shdr.get_sh_type();
1075
1076   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1077   // PRE_INIT_ARRAY, and NOTE sections.
1078   // All others will be created from scratch and reallocated.
1079   if (!can_incremental_update(sh_type))
1080     return NULL;
1081
1082   // If we're generating a .gdb_index section, we need to regenerate
1083   // it from scratch.
1084   if (parameters->options().gdb_index()
1085       && sh_type == elfcpp::SHT_PROGBITS
1086       && strcmp(name, ".gdb_index") == 0)
1087     return NULL;
1088
1089   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1090   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1091   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1092   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1093   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1094       shdr.get_sh_addralign();
1095
1096   // Make the output section.
1097   Stringpool::Key name_key;
1098   name = this->namepool_.add(name, true, &name_key);
1099   Output_section* os = this->get_output_section(name, name_key, sh_type,
1100                                                 sh_flags, ORDER_INVALID, false);
1101   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1102   if (sh_type != elfcpp::SHT_NOBITS)
1103     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1104   return os;
1105 }
1106
1107 // Return the index by which an input section should be ordered.  This
1108 // is used to sort some .text sections, for compatibility with GNU ld.
1109
1110 int
1111 Layout::special_ordering_of_input_section(const char* name)
1112 {
1113   // The GNU linker has some special handling for some sections that
1114   // wind up in the .text section.  Sections that start with these
1115   // prefixes must appear first, and must appear in the order listed
1116   // here.
1117   static const char* const text_section_sort[] =
1118   {
1119     ".text.unlikely",
1120     ".text.exit",
1121     ".text.startup",
1122     ".text.hot"
1123   };
1124
1125   for (size_t i = 0;
1126        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1127        i++)
1128     if (is_prefix_of(text_section_sort[i], name))
1129       return i;
1130
1131   return -1;
1132 }
1133
1134 // Return the output section to use for input section SHNDX, with name
1135 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1136 // index of a relocation section which applies to this section, or 0
1137 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1138 // relocation section if there is one.  Set *OFF to the offset of this
1139 // input section without the output section.  Return NULL if the
1140 // section should be discarded.  Set *OFF to -1 if the section
1141 // contents should not be written directly to the output file, but
1142 // will instead receive special handling.
1143
1144 template<int size, bool big_endian>
1145 Output_section*
1146 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1147                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1148                unsigned int reloc_shndx, unsigned int, off_t* off)
1149 {
1150   *off = 0;
1151
1152   if (!this->include_section(object, name, shdr))
1153     return NULL;
1154
1155   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1156
1157   // In a relocatable link a grouped section must not be combined with
1158   // any other sections.
1159   Output_section* os;
1160   if (parameters->options().relocatable()
1161       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1162     {
1163       // Some flags in the input section should not be automatically
1164       // copied to the output section.
1165       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1166                                  & ~ elfcpp::SHF_COMPRESSED);
1167       name = this->namepool_.add(name, true, NULL);
1168       os = this->make_output_section(name, sh_type, flags,
1169                                      ORDER_INVALID, false);
1170     }
1171   else
1172     {
1173       // Plugins can choose to place one or more subsets of sections in
1174       // unique segments and this is done by mapping these section subsets
1175       // to unique output sections.  Check if this section needs to be
1176       // remapped to a unique output section.
1177       Section_segment_map::iterator it
1178           = this->section_segment_map_.find(Const_section_id(object, shndx));
1179       if (it == this->section_segment_map_.end())
1180         {
1181           os = this->choose_output_section(object, name, sh_type,
1182                                            shdr.get_sh_flags(), true,
1183                                            ORDER_INVALID, false);
1184         }
1185       else
1186         {
1187           // We know the name of the output section, directly call
1188           // get_output_section here by-passing choose_output_section.
1189           elfcpp::Elf_Xword flags
1190             = this->get_output_section_flags(shdr.get_sh_flags());
1191
1192           const char* os_name = it->second->name;
1193           Stringpool::Key name_key;
1194           os_name = this->namepool_.add(os_name, true, &name_key);
1195           os = this->get_output_section(os_name, name_key, sh_type, flags,
1196                                         ORDER_INVALID, false);
1197           if (!os->is_unique_segment())
1198             {
1199               os->set_is_unique_segment();
1200               os->set_extra_segment_flags(it->second->flags);
1201               os->set_segment_alignment(it->second->align);
1202             }
1203         }
1204       if (os == NULL)
1205         return NULL;
1206     }
1207
1208   // By default the GNU linker sorts input sections whose names match
1209   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1210   // sections are sorted by name.  This is used to implement
1211   // constructor priority ordering.  We are compatible.  When we put
1212   // .ctor sections in .init_array and .dtor sections in .fini_array,
1213   // we must also sort plain .ctor and .dtor sections.
1214   if (!this->script_options_->saw_sections_clause()
1215       && !parameters->options().relocatable()
1216       && (is_prefix_of(".ctors.", name)
1217           || is_prefix_of(".dtors.", name)
1218           || is_prefix_of(".init_array.", name)
1219           || is_prefix_of(".fini_array.", name)
1220           || (parameters->options().ctors_in_init_array()
1221               && (strcmp(name, ".ctors") == 0
1222                   || strcmp(name, ".dtors") == 0))))
1223     os->set_must_sort_attached_input_sections();
1224
1225   // By default the GNU linker sorts some special text sections ahead
1226   // of others.  We are compatible.
1227   if (parameters->options().text_reorder()
1228       && !this->script_options_->saw_sections_clause()
1229       && !this->is_section_ordering_specified()
1230       && !parameters->options().relocatable()
1231       && Layout::special_ordering_of_input_section(name) >= 0)
1232     os->set_must_sort_attached_input_sections();
1233
1234   // If this is a .ctors or .ctors.* section being mapped to a
1235   // .init_array section, or a .dtors or .dtors.* section being mapped
1236   // to a .fini_array section, we will need to reverse the words if
1237   // there is more than one.  Record this section for later.  See
1238   // ctors_sections_in_init_array above.
1239   if (!this->script_options_->saw_sections_clause()
1240       && !parameters->options().relocatable()
1241       && shdr.get_sh_size() > size / 8
1242       && (((strcmp(name, ".ctors") == 0
1243             || is_prefix_of(".ctors.", name))
1244            && strcmp(os->name(), ".init_array") == 0)
1245           || ((strcmp(name, ".dtors") == 0
1246                || is_prefix_of(".dtors.", name))
1247               && strcmp(os->name(), ".fini_array") == 0)))
1248     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1249
1250   // FIXME: Handle SHF_LINK_ORDER somewhere.
1251
1252   elfcpp::Elf_Xword orig_flags = os->flags();
1253
1254   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1255                                this->script_options_->saw_sections_clause());
1256
1257   // If the flags changed, we may have to change the order.
1258   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1259     {
1260       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1261       elfcpp::Elf_Xword new_flags =
1262         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1263       if (orig_flags != new_flags)
1264         os->set_order(this->default_section_order(os, false));
1265     }
1266
1267   this->have_added_input_section_ = true;
1268
1269   return os;
1270 }
1271
1272 // Maps section SECN to SEGMENT s.
1273 void
1274 Layout::insert_section_segment_map(Const_section_id secn,
1275                                    Unique_segment_info *s)
1276 {
1277   gold_assert(this->unique_segment_for_sections_specified_);
1278   this->section_segment_map_[secn] = s;
1279 }
1280
1281 // Handle a relocation section when doing a relocatable link.
1282
1283 template<int size, bool big_endian>
1284 Output_section*
1285 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1286                      unsigned int,
1287                      const elfcpp::Shdr<size, big_endian>& shdr,
1288                      Output_section* data_section,
1289                      Relocatable_relocs* rr)
1290 {
1291   gold_assert(parameters->options().relocatable()
1292               || parameters->options().emit_relocs());
1293
1294   int sh_type = shdr.get_sh_type();
1295
1296   std::string name;
1297   if (sh_type == elfcpp::SHT_REL)
1298     name = ".rel";
1299   else if (sh_type == elfcpp::SHT_RELA)
1300     name = ".rela";
1301   else
1302     gold_unreachable();
1303   name += data_section->name();
1304
1305   // In a relocatable link relocs for a grouped section must not be
1306   // combined with other reloc sections.
1307   Output_section* os;
1308   if (!parameters->options().relocatable()
1309       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1310     os = this->choose_output_section(object, name.c_str(), sh_type,
1311                                      shdr.get_sh_flags(), false,
1312                                      ORDER_INVALID, false);
1313   else
1314     {
1315       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1316       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1317                                      ORDER_INVALID, false);
1318     }
1319
1320   os->set_should_link_to_symtab();
1321   os->set_info_section(data_section);
1322
1323   Output_section_data* posd;
1324   if (sh_type == elfcpp::SHT_REL)
1325     {
1326       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1327       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1328                                            size,
1329                                            big_endian>(rr);
1330     }
1331   else if (sh_type == elfcpp::SHT_RELA)
1332     {
1333       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1334       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1335                                            size,
1336                                            big_endian>(rr);
1337     }
1338   else
1339     gold_unreachable();
1340
1341   os->add_output_section_data(posd);
1342   rr->set_output_data(posd);
1343
1344   return os;
1345 }
1346
1347 // Handle a group section when doing a relocatable link.
1348
1349 template<int size, bool big_endian>
1350 void
1351 Layout::layout_group(Symbol_table* symtab,
1352                      Sized_relobj_file<size, big_endian>* object,
1353                      unsigned int,
1354                      const char* group_section_name,
1355                      const char* signature,
1356                      const elfcpp::Shdr<size, big_endian>& shdr,
1357                      elfcpp::Elf_Word flags,
1358                      std::vector<unsigned int>* shndxes)
1359 {
1360   gold_assert(parameters->options().relocatable());
1361   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1362   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1363   Output_section* os = this->make_output_section(group_section_name,
1364                                                  elfcpp::SHT_GROUP,
1365                                                  shdr.get_sh_flags(),
1366                                                  ORDER_INVALID, false);
1367
1368   // We need to find a symbol with the signature in the symbol table.
1369   // If we don't find one now, we need to look again later.
1370   Symbol* sym = symtab->lookup(signature, NULL);
1371   if (sym != NULL)
1372     os->set_info_symndx(sym);
1373   else
1374     {
1375       // Reserve some space to minimize reallocations.
1376       if (this->group_signatures_.empty())
1377         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1378
1379       // We will wind up using a symbol whose name is the signature.
1380       // So just put the signature in the symbol name pool to save it.
1381       signature = symtab->canonicalize_name(signature);
1382       this->group_signatures_.push_back(Group_signature(os, signature));
1383     }
1384
1385   os->set_should_link_to_symtab();
1386   os->set_entsize(4);
1387
1388   section_size_type entry_count =
1389     convert_to_section_size_type(shdr.get_sh_size() / 4);
1390   Output_section_data* posd =
1391     new Output_data_group<size, big_endian>(object, entry_count, flags,
1392                                             shndxes);
1393   os->add_output_section_data(posd);
1394 }
1395
1396 // Special GNU handling of sections name .eh_frame.  They will
1397 // normally hold exception frame data as defined by the C++ ABI
1398 // (http://codesourcery.com/cxx-abi/).
1399
1400 template<int size, bool big_endian>
1401 Output_section*
1402 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1403                         const unsigned char* symbols,
1404                         off_t symbols_size,
1405                         const unsigned char* symbol_names,
1406                         off_t symbol_names_size,
1407                         unsigned int shndx,
1408                         const elfcpp::Shdr<size, big_endian>& shdr,
1409                         unsigned int reloc_shndx, unsigned int reloc_type,
1410                         off_t* off)
1411 {
1412   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1413               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1414   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1415
1416   Output_section* os = this->make_eh_frame_section(object);
1417   if (os == NULL)
1418     return NULL;
1419
1420   gold_assert(this->eh_frame_section_ == os);
1421
1422   elfcpp::Elf_Xword orig_flags = os->flags();
1423
1424   Eh_frame::Eh_frame_section_disposition disp =
1425       Eh_frame::EH_UNRECOGNIZED_SECTION;
1426   if (!parameters->incremental())
1427     {
1428       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1429                                                              symbols,
1430                                                              symbols_size,
1431                                                              symbol_names,
1432                                                              symbol_names_size,
1433                                                              shndx,
1434                                                              reloc_shndx,
1435                                                              reloc_type);
1436     }
1437
1438   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1439     {
1440       os->update_flags_for_input_section(shdr.get_sh_flags());
1441
1442       // A writable .eh_frame section is a RELRO section.
1443       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1444           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1445         {
1446           os->set_is_relro();
1447           os->set_order(ORDER_RELRO);
1448         }
1449
1450       *off = -1;
1451       return os;
1452     }
1453
1454   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1455     {
1456       // We found the end marker section, so now we can add the set of
1457       // optimized sections to the output section.  We need to postpone
1458       // adding this until we've found a section we can optimize so that
1459       // the .eh_frame section in crtbeginT.o winds up at the start of
1460       // the output section.
1461       os->add_output_section_data(this->eh_frame_data_);
1462       this->added_eh_frame_data_ = true;
1463      }
1464
1465   // We couldn't handle this .eh_frame section for some reason.
1466   // Add it as a normal section.
1467   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1468   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1469                                reloc_shndx, saw_sections_clause);
1470   this->have_added_input_section_ = true;
1471
1472   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1473       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1474     os->set_order(this->default_section_order(os, false));
1475
1476   return os;
1477 }
1478
1479 void
1480 Layout::finalize_eh_frame_section()
1481 {
1482   // If we never found an end marker section, we need to add the
1483   // optimized eh sections to the output section now.
1484   if (!parameters->incremental()
1485       && this->eh_frame_section_ != NULL
1486       && !this->added_eh_frame_data_)
1487     {
1488       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1489       this->added_eh_frame_data_ = true;
1490     }
1491 }
1492
1493 // Create and return the magic .eh_frame section.  Create
1494 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1495 // input .eh_frame section; it may be NULL.
1496
1497 Output_section*
1498 Layout::make_eh_frame_section(const Relobj* object)
1499 {
1500   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1501   // SHT_PROGBITS.
1502   Output_section* os = this->choose_output_section(object, ".eh_frame",
1503                                                    elfcpp::SHT_PROGBITS,
1504                                                    elfcpp::SHF_ALLOC, false,
1505                                                    ORDER_EHFRAME, false);
1506   if (os == NULL)
1507     return NULL;
1508
1509   if (this->eh_frame_section_ == NULL)
1510     {
1511       this->eh_frame_section_ = os;
1512       this->eh_frame_data_ = new Eh_frame();
1513
1514       // For incremental linking, we do not optimize .eh_frame sections
1515       // or create a .eh_frame_hdr section.
1516       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1517         {
1518           Output_section* hdr_os =
1519             this->choose_output_section(NULL, ".eh_frame_hdr",
1520                                         elfcpp::SHT_PROGBITS,
1521                                         elfcpp::SHF_ALLOC, false,
1522                                         ORDER_EHFRAME, false);
1523
1524           if (hdr_os != NULL)
1525             {
1526               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1527                                                         this->eh_frame_data_);
1528               hdr_os->add_output_section_data(hdr_posd);
1529
1530               hdr_os->set_after_input_sections();
1531
1532               if (!this->script_options_->saw_phdrs_clause())
1533                 {
1534                   Output_segment* hdr_oseg;
1535                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1536                                                        elfcpp::PF_R);
1537                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1538                                                           elfcpp::PF_R);
1539                 }
1540
1541               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1542             }
1543         }
1544     }
1545
1546   return os;
1547 }
1548
1549 // Add an exception frame for a PLT.  This is called from target code.
1550
1551 void
1552 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1553                              size_t cie_length, const unsigned char* fde_data,
1554                              size_t fde_length)
1555 {
1556   if (parameters->incremental())
1557     {
1558       // FIXME: Maybe this could work some day....
1559       return;
1560     }
1561   Output_section* os = this->make_eh_frame_section(NULL);
1562   if (os == NULL)
1563     return;
1564   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1565                                             fde_data, fde_length);
1566   if (!this->added_eh_frame_data_)
1567     {
1568       os->add_output_section_data(this->eh_frame_data_);
1569       this->added_eh_frame_data_ = true;
1570     }
1571 }
1572
1573 // Scan a .debug_info or .debug_types section, and add summary
1574 // information to the .gdb_index section.
1575
1576 template<int size, bool big_endian>
1577 void
1578 Layout::add_to_gdb_index(bool is_type_unit,
1579                          Sized_relobj<size, big_endian>* object,
1580                          const unsigned char* symbols,
1581                          off_t symbols_size,
1582                          unsigned int shndx,
1583                          unsigned int reloc_shndx,
1584                          unsigned int reloc_type)
1585 {
1586   if (this->gdb_index_data_ == NULL)
1587     {
1588       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1589                                                        elfcpp::SHT_PROGBITS, 0,
1590                                                        false, ORDER_INVALID,
1591                                                        false);
1592       if (os == NULL)
1593         return;
1594
1595       this->gdb_index_data_ = new Gdb_index(os);
1596       os->add_output_section_data(this->gdb_index_data_);
1597       os->set_after_input_sections();
1598     }
1599
1600   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1601                                          symbols_size, shndx, reloc_shndx,
1602                                          reloc_type);
1603 }
1604
1605 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1606 // the output section.
1607
1608 Output_section*
1609 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1610                                 elfcpp::Elf_Xword flags,
1611                                 Output_section_data* posd,
1612                                 Output_section_order order, bool is_relro)
1613 {
1614   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1615                                                    false, order, is_relro);
1616   if (os != NULL)
1617     os->add_output_section_data(posd);
1618   return os;
1619 }
1620
1621 // Map section flags to segment flags.
1622
1623 elfcpp::Elf_Word
1624 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1625 {
1626   elfcpp::Elf_Word ret = elfcpp::PF_R;
1627   if ((flags & elfcpp::SHF_WRITE) != 0)
1628     ret |= elfcpp::PF_W;
1629   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1630     ret |= elfcpp::PF_X;
1631   return ret;
1632 }
1633
1634 // Make a new Output_section, and attach it to segments as
1635 // appropriate.  ORDER is the order in which this section should
1636 // appear in the output segment.  IS_RELRO is true if this is a relro
1637 // (read-only after relocations) section.
1638
1639 Output_section*
1640 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1641                             elfcpp::Elf_Xword flags,
1642                             Output_section_order order, bool is_relro)
1643 {
1644   Output_section* os;
1645   if ((flags & elfcpp::SHF_ALLOC) == 0
1646       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1647       && is_compressible_debug_section(name))
1648     os = new Output_compressed_section(&parameters->options(), name, type,
1649                                        flags);
1650   else if ((flags & elfcpp::SHF_ALLOC) == 0
1651            && parameters->options().strip_debug_non_line()
1652            && strcmp(".debug_abbrev", name) == 0)
1653     {
1654       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1655           name, type, flags);
1656       if (this->debug_info_)
1657         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1658     }
1659   else if ((flags & elfcpp::SHF_ALLOC) == 0
1660            && parameters->options().strip_debug_non_line()
1661            && strcmp(".debug_info", name) == 0)
1662     {
1663       os = this->debug_info_ = new Output_reduced_debug_info_section(
1664           name, type, flags);
1665       if (this->debug_abbrev_)
1666         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1667     }
1668   else
1669     {
1670       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1671       // not have correct section types.  Force them here.
1672       if (type == elfcpp::SHT_PROGBITS)
1673         {
1674           if (is_prefix_of(".init_array", name))
1675             type = elfcpp::SHT_INIT_ARRAY;
1676           else if (is_prefix_of(".preinit_array", name))
1677             type = elfcpp::SHT_PREINIT_ARRAY;
1678           else if (is_prefix_of(".fini_array", name))
1679             type = elfcpp::SHT_FINI_ARRAY;
1680         }
1681
1682       // FIXME: const_cast is ugly.
1683       Target* target = const_cast<Target*>(&parameters->target());
1684       os = target->make_output_section(name, type, flags);
1685     }
1686
1687   // With -z relro, we have to recognize the special sections by name.
1688   // There is no other way.
1689   bool is_relro_local = false;
1690   if (!this->script_options_->saw_sections_clause()
1691       && parameters->options().relro()
1692       && (flags & elfcpp::SHF_ALLOC) != 0
1693       && (flags & elfcpp::SHF_WRITE) != 0)
1694     {
1695       if (type == elfcpp::SHT_PROGBITS)
1696         {
1697           if ((flags & elfcpp::SHF_TLS) != 0)
1698             is_relro = true;
1699           else if (strcmp(name, ".data.rel.ro") == 0)
1700             is_relro = true;
1701           else if (strcmp(name, ".data.rel.ro.local") == 0)
1702             {
1703               is_relro = true;
1704               is_relro_local = true;
1705             }
1706           else if (strcmp(name, ".ctors") == 0
1707                    || strcmp(name, ".dtors") == 0
1708                    || strcmp(name, ".jcr") == 0)
1709             is_relro = true;
1710         }
1711       else if (type == elfcpp::SHT_INIT_ARRAY
1712                || type == elfcpp::SHT_FINI_ARRAY
1713                || type == elfcpp::SHT_PREINIT_ARRAY)
1714         is_relro = true;
1715     }
1716
1717   if (is_relro)
1718     os->set_is_relro();
1719
1720   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1721     order = this->default_section_order(os, is_relro_local);
1722
1723   os->set_order(order);
1724
1725   parameters->target().new_output_section(os);
1726
1727   this->section_list_.push_back(os);
1728
1729   // The GNU linker by default sorts some sections by priority, so we
1730   // do the same.  We need to know that this might happen before we
1731   // attach any input sections.
1732   if (!this->script_options_->saw_sections_clause()
1733       && !parameters->options().relocatable()
1734       && (strcmp(name, ".init_array") == 0
1735           || strcmp(name, ".fini_array") == 0
1736           || (!parameters->options().ctors_in_init_array()
1737               && (strcmp(name, ".ctors") == 0
1738                   || strcmp(name, ".dtors") == 0))))
1739     os->set_may_sort_attached_input_sections();
1740
1741   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1742   // sections before other .text sections.  We are compatible.  We
1743   // need to know that this might happen before we attach any input
1744   // sections.
1745   if (parameters->options().text_reorder()
1746       && !this->script_options_->saw_sections_clause()
1747       && !this->is_section_ordering_specified()
1748       && !parameters->options().relocatable()
1749       && strcmp(name, ".text") == 0)
1750     os->set_may_sort_attached_input_sections();
1751
1752   // GNU linker sorts section by name with --sort-section=name.
1753   if (strcmp(parameters->options().sort_section(), "name") == 0)
1754       os->set_must_sort_attached_input_sections();
1755
1756   // Check for .stab*str sections, as .stab* sections need to link to
1757   // them.
1758   if (type == elfcpp::SHT_STRTAB
1759       && !this->have_stabstr_section_
1760       && strncmp(name, ".stab", 5) == 0
1761       && strcmp(name + strlen(name) - 3, "str") == 0)
1762     this->have_stabstr_section_ = true;
1763
1764   // During a full incremental link, we add patch space to most
1765   // PROGBITS and NOBITS sections.  Flag those that may be
1766   // arbitrarily padded.
1767   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1768       && order != ORDER_INTERP
1769       && order != ORDER_INIT
1770       && order != ORDER_PLT
1771       && order != ORDER_FINI
1772       && order != ORDER_RELRO_LAST
1773       && order != ORDER_NON_RELRO_FIRST
1774       && strcmp(name, ".eh_frame") != 0
1775       && strcmp(name, ".ctors") != 0
1776       && strcmp(name, ".dtors") != 0
1777       && strcmp(name, ".jcr") != 0)
1778     {
1779       os->set_is_patch_space_allowed();
1780
1781       // Certain sections require "holes" to be filled with
1782       // specific fill patterns.  These fill patterns may have
1783       // a minimum size, so we must prevent allocations from the
1784       // free list that leave a hole smaller than the minimum.
1785       if (strcmp(name, ".debug_info") == 0)
1786         os->set_free_space_fill(new Output_fill_debug_info(false));
1787       else if (strcmp(name, ".debug_types") == 0)
1788         os->set_free_space_fill(new Output_fill_debug_info(true));
1789       else if (strcmp(name, ".debug_line") == 0)
1790         os->set_free_space_fill(new Output_fill_debug_line());
1791     }
1792
1793   // If we have already attached the sections to segments, then we
1794   // need to attach this one now.  This happens for sections created
1795   // directly by the linker.
1796   if (this->sections_are_attached_)
1797     this->attach_section_to_segment(&parameters->target(), os);
1798
1799   return os;
1800 }
1801
1802 // Return the default order in which a section should be placed in an
1803 // output segment.  This function captures a lot of the ideas in
1804 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1805 // linker created section is normally set when the section is created;
1806 // this function is used for input sections.
1807
1808 Output_section_order
1809 Layout::default_section_order(Output_section* os, bool is_relro_local)
1810 {
1811   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1812   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1813   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1814   bool is_bss = false;
1815
1816   switch (os->type())
1817     {
1818     default:
1819     case elfcpp::SHT_PROGBITS:
1820       break;
1821     case elfcpp::SHT_NOBITS:
1822       is_bss = true;
1823       break;
1824     case elfcpp::SHT_RELA:
1825     case elfcpp::SHT_REL:
1826       if (!is_write)
1827         return ORDER_DYNAMIC_RELOCS;
1828       break;
1829     case elfcpp::SHT_HASH:
1830     case elfcpp::SHT_DYNAMIC:
1831     case elfcpp::SHT_SHLIB:
1832     case elfcpp::SHT_DYNSYM:
1833     case elfcpp::SHT_GNU_HASH:
1834     case elfcpp::SHT_GNU_verdef:
1835     case elfcpp::SHT_GNU_verneed:
1836     case elfcpp::SHT_GNU_versym:
1837       if (!is_write)
1838         return ORDER_DYNAMIC_LINKER;
1839       break;
1840     case elfcpp::SHT_NOTE:
1841       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1842     }
1843
1844   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1845     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1846
1847   if (!is_bss && !is_write)
1848     {
1849       if (is_execinstr)
1850         {
1851           if (strcmp(os->name(), ".init") == 0)
1852             return ORDER_INIT;
1853           else if (strcmp(os->name(), ".fini") == 0)
1854             return ORDER_FINI;
1855         }
1856       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1857     }
1858
1859   if (os->is_relro())
1860     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1861
1862   if (os->is_small_section())
1863     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1864   if (os->is_large_section())
1865     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1866
1867   return is_bss ? ORDER_BSS : ORDER_DATA;
1868 }
1869
1870 // Attach output sections to segments.  This is called after we have
1871 // seen all the input sections.
1872
1873 void
1874 Layout::attach_sections_to_segments(const Target* target)
1875 {
1876   for (Section_list::iterator p = this->section_list_.begin();
1877        p != this->section_list_.end();
1878        ++p)
1879     this->attach_section_to_segment(target, *p);
1880
1881   this->sections_are_attached_ = true;
1882 }
1883
1884 // Attach an output section to a segment.
1885
1886 void
1887 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1888 {
1889   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1890     this->unattached_section_list_.push_back(os);
1891   else
1892     this->attach_allocated_section_to_segment(target, os);
1893 }
1894
1895 // Attach an allocated output section to a segment.
1896
1897 void
1898 Layout::attach_allocated_section_to_segment(const Target* target,
1899                                             Output_section* os)
1900 {
1901   elfcpp::Elf_Xword flags = os->flags();
1902   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1903
1904   if (parameters->options().relocatable())
1905     return;
1906
1907   // If we have a SECTIONS clause, we can't handle the attachment to
1908   // segments until after we've seen all the sections.
1909   if (this->script_options_->saw_sections_clause())
1910     return;
1911
1912   gold_assert(!this->script_options_->saw_phdrs_clause());
1913
1914   // This output section goes into a PT_LOAD segment.
1915
1916   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1917
1918   // If this output section's segment has extra flags that need to be set,
1919   // coming from a linker plugin, do that.
1920   seg_flags |= os->extra_segment_flags();
1921
1922   // Check for --section-start.
1923   uint64_t addr;
1924   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1925
1926   // In general the only thing we really care about for PT_LOAD
1927   // segments is whether or not they are writable or executable,
1928   // so that is how we search for them.
1929   // Large data sections also go into their own PT_LOAD segment.
1930   // People who need segments sorted on some other basis will
1931   // have to use a linker script.
1932
1933   Segment_list::const_iterator p;
1934   if (!os->is_unique_segment())
1935     {
1936       for (p = this->segment_list_.begin();
1937            p != this->segment_list_.end();
1938            ++p)
1939         {
1940           if ((*p)->type() != elfcpp::PT_LOAD)
1941             continue;
1942           if ((*p)->is_unique_segment())
1943             continue;
1944           if (!parameters->options().omagic()
1945               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1946             continue;
1947           if ((target->isolate_execinstr() || parameters->options().rosegment())
1948               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1949             continue;
1950           // If -Tbss was specified, we need to separate the data and BSS
1951           // segments.
1952           if (parameters->options().user_set_Tbss())
1953             {
1954               if ((os->type() == elfcpp::SHT_NOBITS)
1955                   == (*p)->has_any_data_sections())
1956                 continue;
1957             }
1958           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1959             continue;
1960
1961           if (is_address_set)
1962             {
1963               if ((*p)->are_addresses_set())
1964                 continue;
1965
1966               (*p)->add_initial_output_data(os);
1967               (*p)->update_flags_for_output_section(seg_flags);
1968               (*p)->set_addresses(addr, addr);
1969               break;
1970             }
1971
1972           (*p)->add_output_section_to_load(this, os, seg_flags);
1973           break;
1974         }
1975     }
1976
1977   if (p == this->segment_list_.end()
1978       || os->is_unique_segment())
1979     {
1980       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1981                                                        seg_flags);
1982       if (os->is_large_data_section())
1983         oseg->set_is_large_data_segment();
1984       oseg->add_output_section_to_load(this, os, seg_flags);
1985       if (is_address_set)
1986         oseg->set_addresses(addr, addr);
1987       // Check if segment should be marked unique.  For segments marked
1988       // unique by linker plugins, set the new alignment if specified.
1989       if (os->is_unique_segment())
1990         {
1991           oseg->set_is_unique_segment();
1992           if (os->segment_alignment() != 0)
1993             oseg->set_minimum_p_align(os->segment_alignment());
1994         }
1995     }
1996
1997   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1998   // segment.
1999   if (os->type() == elfcpp::SHT_NOTE)
2000     {
2001       // See if we already have an equivalent PT_NOTE segment.
2002       for (p = this->segment_list_.begin();
2003            p != segment_list_.end();
2004            ++p)
2005         {
2006           if ((*p)->type() == elfcpp::PT_NOTE
2007               && (((*p)->flags() & elfcpp::PF_W)
2008                   == (seg_flags & elfcpp::PF_W)))
2009             {
2010               (*p)->add_output_section_to_nonload(os, seg_flags);
2011               break;
2012             }
2013         }
2014
2015       if (p == this->segment_list_.end())
2016         {
2017           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2018                                                            seg_flags);
2019           oseg->add_output_section_to_nonload(os, seg_flags);
2020         }
2021     }
2022
2023   // If we see a loadable SHF_TLS section, we create a PT_TLS
2024   // segment.  There can only be one such segment.
2025   if ((flags & elfcpp::SHF_TLS) != 0)
2026     {
2027       if (this->tls_segment_ == NULL)
2028         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2029       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2030     }
2031
2032   // If -z relro is in effect, and we see a relro section, we create a
2033   // PT_GNU_RELRO segment.  There can only be one such segment.
2034   if (os->is_relro() && parameters->options().relro())
2035     {
2036       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2037       if (this->relro_segment_ == NULL)
2038         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2039       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2040     }
2041
2042   // If we see a section named .interp, put it into a PT_INTERP
2043   // segment.  This seems broken to me, but this is what GNU ld does,
2044   // and glibc expects it.
2045   if (strcmp(os->name(), ".interp") == 0
2046       && !this->script_options_->saw_phdrs_clause())
2047     {
2048       if (this->interp_segment_ == NULL)
2049         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2050       else
2051         gold_warning(_("multiple '.interp' sections in input files "
2052                        "may cause confusing PT_INTERP segment"));
2053       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2054     }
2055 }
2056
2057 // Make an output section for a script.
2058
2059 Output_section*
2060 Layout::make_output_section_for_script(
2061     const char* name,
2062     Script_sections::Section_type section_type)
2063 {
2064   name = this->namepool_.add(name, false, NULL);
2065   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2066   if (section_type == Script_sections::ST_NOLOAD)
2067     sh_flags = 0;
2068   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2069                                                  sh_flags, ORDER_INVALID,
2070                                                  false);
2071   os->set_found_in_sections_clause();
2072   if (section_type == Script_sections::ST_NOLOAD)
2073     os->set_is_noload();
2074   return os;
2075 }
2076
2077 // Return the number of segments we expect to see.
2078
2079 size_t
2080 Layout::expected_segment_count() const
2081 {
2082   size_t ret = this->segment_list_.size();
2083
2084   // If we didn't see a SECTIONS clause in a linker script, we should
2085   // already have the complete list of segments.  Otherwise we ask the
2086   // SECTIONS clause how many segments it expects, and add in the ones
2087   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2088
2089   if (!this->script_options_->saw_sections_clause())
2090     return ret;
2091   else
2092     {
2093       const Script_sections* ss = this->script_options_->script_sections();
2094       return ret + ss->expected_segment_count(this);
2095     }
2096 }
2097
2098 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2099 // is whether we saw a .note.GNU-stack section in the object file.
2100 // GNU_STACK_FLAGS is the section flags.  The flags give the
2101 // protection required for stack memory.  We record this in an
2102 // executable as a PT_GNU_STACK segment.  If an object file does not
2103 // have a .note.GNU-stack segment, we must assume that it is an old
2104 // object.  On some targets that will force an executable stack.
2105
2106 void
2107 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2108                          const Object* obj)
2109 {
2110   if (!seen_gnu_stack)
2111     {
2112       this->input_without_gnu_stack_note_ = true;
2113       if (parameters->options().warn_execstack()
2114           && parameters->target().is_default_stack_executable())
2115         gold_warning(_("%s: missing .note.GNU-stack section"
2116                        " implies executable stack"),
2117                      obj->name().c_str());
2118     }
2119   else
2120     {
2121       this->input_with_gnu_stack_note_ = true;
2122       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2123         {
2124           this->input_requires_executable_stack_ = true;
2125           if (parameters->options().warn_execstack())
2126             gold_warning(_("%s: requires executable stack"),
2127                          obj->name().c_str());
2128         }
2129     }
2130 }
2131
2132 // Create automatic note sections.
2133
2134 void
2135 Layout::create_notes()
2136 {
2137   this->create_gold_note();
2138   this->create_stack_segment();
2139   this->create_build_id();
2140 }
2141
2142 // Create the dynamic sections which are needed before we read the
2143 // relocs.
2144
2145 void
2146 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2147 {
2148   if (parameters->doing_static_link())
2149     return;
2150
2151   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2152                                                        elfcpp::SHT_DYNAMIC,
2153                                                        (elfcpp::SHF_ALLOC
2154                                                         | elfcpp::SHF_WRITE),
2155                                                        false, ORDER_RELRO,
2156                                                        true);
2157
2158   // A linker script may discard .dynamic, so check for NULL.
2159   if (this->dynamic_section_ != NULL)
2160     {
2161       this->dynamic_symbol_ =
2162         symtab->define_in_output_data("_DYNAMIC", NULL,
2163                                       Symbol_table::PREDEFINED,
2164                                       this->dynamic_section_, 0, 0,
2165                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2166                                       elfcpp::STV_HIDDEN, 0, false, false);
2167
2168       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2169
2170       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2171     }
2172 }
2173
2174 // For each output section whose name can be represented as C symbol,
2175 // define __start and __stop symbols for the section.  This is a GNU
2176 // extension.
2177
2178 void
2179 Layout::define_section_symbols(Symbol_table* symtab)
2180 {
2181   for (Section_list::const_iterator p = this->section_list_.begin();
2182        p != this->section_list_.end();
2183        ++p)
2184     {
2185       const char* const name = (*p)->name();
2186       if (is_cident(name))
2187         {
2188           const std::string name_string(name);
2189           const std::string start_name(cident_section_start_prefix
2190                                        + name_string);
2191           const std::string stop_name(cident_section_stop_prefix
2192                                       + name_string);
2193
2194           symtab->define_in_output_data(start_name.c_str(),
2195                                         NULL, // version
2196                                         Symbol_table::PREDEFINED,
2197                                         *p,
2198                                         0, // value
2199                                         0, // symsize
2200                                         elfcpp::STT_NOTYPE,
2201                                         elfcpp::STB_GLOBAL,
2202                                         elfcpp::STV_DEFAULT,
2203                                         0, // nonvis
2204                                         false, // offset_is_from_end
2205                                         true); // only_if_ref
2206
2207           symtab->define_in_output_data(stop_name.c_str(),
2208                                         NULL, // version
2209                                         Symbol_table::PREDEFINED,
2210                                         *p,
2211                                         0, // value
2212                                         0, // symsize
2213                                         elfcpp::STT_NOTYPE,
2214                                         elfcpp::STB_GLOBAL,
2215                                         elfcpp::STV_DEFAULT,
2216                                         0, // nonvis
2217                                         true, // offset_is_from_end
2218                                         true); // only_if_ref
2219         }
2220     }
2221 }
2222
2223 // Define symbols for group signatures.
2224
2225 void
2226 Layout::define_group_signatures(Symbol_table* symtab)
2227 {
2228   for (Group_signatures::iterator p = this->group_signatures_.begin();
2229        p != this->group_signatures_.end();
2230        ++p)
2231     {
2232       Symbol* sym = symtab->lookup(p->signature, NULL);
2233       if (sym != NULL)
2234         p->section->set_info_symndx(sym);
2235       else
2236         {
2237           // Force the name of the group section to the group
2238           // signature, and use the group's section symbol as the
2239           // signature symbol.
2240           if (strcmp(p->section->name(), p->signature) != 0)
2241             {
2242               const char* name = this->namepool_.add(p->signature,
2243                                                      true, NULL);
2244               p->section->set_name(name);
2245             }
2246           p->section->set_needs_symtab_index();
2247           p->section->set_info_section_symndx(p->section);
2248         }
2249     }
2250
2251   this->group_signatures_.clear();
2252 }
2253
2254 // Find the first read-only PT_LOAD segment, creating one if
2255 // necessary.
2256
2257 Output_segment*
2258 Layout::find_first_load_seg(const Target* target)
2259 {
2260   Output_segment* best = NULL;
2261   for (Segment_list::const_iterator p = this->segment_list_.begin();
2262        p != this->segment_list_.end();
2263        ++p)
2264     {
2265       if ((*p)->type() == elfcpp::PT_LOAD
2266           && ((*p)->flags() & elfcpp::PF_R) != 0
2267           && (parameters->options().omagic()
2268               || ((*p)->flags() & elfcpp::PF_W) == 0)
2269           && (!target->isolate_execinstr()
2270               || ((*p)->flags() & elfcpp::PF_X) == 0))
2271         {
2272           if (best == NULL || this->segment_precedes(*p, best))
2273             best = *p;
2274         }
2275     }
2276   if (best != NULL)
2277     return best;
2278
2279   gold_assert(!this->script_options_->saw_phdrs_clause());
2280
2281   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2282                                                        elfcpp::PF_R);
2283   return load_seg;
2284 }
2285
2286 // Save states of all current output segments.  Store saved states
2287 // in SEGMENT_STATES.
2288
2289 void
2290 Layout::save_segments(Segment_states* segment_states)
2291 {
2292   for (Segment_list::const_iterator p = this->segment_list_.begin();
2293        p != this->segment_list_.end();
2294        ++p)
2295     {
2296       Output_segment* segment = *p;
2297       // Shallow copy.
2298       Output_segment* copy = new Output_segment(*segment);
2299       (*segment_states)[segment] = copy;
2300     }
2301 }
2302
2303 // Restore states of output segments and delete any segment not found in
2304 // SEGMENT_STATES.
2305
2306 void
2307 Layout::restore_segments(const Segment_states* segment_states)
2308 {
2309   // Go through the segment list and remove any segment added in the
2310   // relaxation loop.
2311   this->tls_segment_ = NULL;
2312   this->relro_segment_ = NULL;
2313   Segment_list::iterator list_iter = this->segment_list_.begin();
2314   while (list_iter != this->segment_list_.end())
2315     {
2316       Output_segment* segment = *list_iter;
2317       Segment_states::const_iterator states_iter =
2318           segment_states->find(segment);
2319       if (states_iter != segment_states->end())
2320         {
2321           const Output_segment* copy = states_iter->second;
2322           // Shallow copy to restore states.
2323           *segment = *copy;
2324
2325           // Also fix up TLS and RELRO segment pointers as appropriate.
2326           if (segment->type() == elfcpp::PT_TLS)
2327             this->tls_segment_ = segment;
2328           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2329             this->relro_segment_ = segment;
2330
2331           ++list_iter;
2332         }
2333       else
2334         {
2335           list_iter = this->segment_list_.erase(list_iter);
2336           // This is a segment created during section layout.  It should be
2337           // safe to remove it since we should have removed all pointers to it.
2338           delete segment;
2339         }
2340     }
2341 }
2342
2343 // Clean up after relaxation so that sections can be laid out again.
2344
2345 void
2346 Layout::clean_up_after_relaxation()
2347 {
2348   // Restore the segments to point state just prior to the relaxation loop.
2349   Script_sections* script_section = this->script_options_->script_sections();
2350   script_section->release_segments();
2351   this->restore_segments(this->segment_states_);
2352
2353   // Reset section addresses and file offsets
2354   for (Section_list::iterator p = this->section_list_.begin();
2355        p != this->section_list_.end();
2356        ++p)
2357     {
2358       (*p)->restore_states();
2359
2360       // If an input section changes size because of relaxation,
2361       // we need to adjust the section offsets of all input sections.
2362       // after such a section.
2363       if ((*p)->section_offsets_need_adjustment())
2364         (*p)->adjust_section_offsets();
2365
2366       (*p)->reset_address_and_file_offset();
2367     }
2368
2369   // Reset special output object address and file offsets.
2370   for (Data_list::iterator p = this->special_output_list_.begin();
2371        p != this->special_output_list_.end();
2372        ++p)
2373     (*p)->reset_address_and_file_offset();
2374
2375   // A linker script may have created some output section data objects.
2376   // They are useless now.
2377   for (Output_section_data_list::const_iterator p =
2378          this->script_output_section_data_list_.begin();
2379        p != this->script_output_section_data_list_.end();
2380        ++p)
2381     delete *p;
2382   this->script_output_section_data_list_.clear();
2383
2384   // Special-case fill output objects are recreated each time through
2385   // the relaxation loop.
2386   this->reset_relax_output();
2387 }
2388
2389 void
2390 Layout::reset_relax_output()
2391 {
2392   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2393        p != this->relax_output_list_.end();
2394        ++p)
2395     delete *p;
2396   this->relax_output_list_.clear();
2397 }
2398
2399 // Prepare for relaxation.
2400
2401 void
2402 Layout::prepare_for_relaxation()
2403 {
2404   // Create an relaxation debug check if in debugging mode.
2405   if (is_debugging_enabled(DEBUG_RELAXATION))
2406     this->relaxation_debug_check_ = new Relaxation_debug_check();
2407
2408   // Save segment states.
2409   this->segment_states_ = new Segment_states();
2410   this->save_segments(this->segment_states_);
2411
2412   for(Section_list::const_iterator p = this->section_list_.begin();
2413       p != this->section_list_.end();
2414       ++p)
2415     (*p)->save_states();
2416
2417   if (is_debugging_enabled(DEBUG_RELAXATION))
2418     this->relaxation_debug_check_->check_output_data_for_reset_values(
2419         this->section_list_, this->special_output_list_,
2420         this->relax_output_list_);
2421
2422   // Also enable recording of output section data from scripts.
2423   this->record_output_section_data_from_script_ = true;
2424 }
2425
2426 // If the user set the address of the text segment, that may not be
2427 // compatible with putting the segment headers and file headers into
2428 // that segment.  For isolate_execinstr() targets, it's the rodata
2429 // segment rather than text where we might put the headers.
2430 static inline bool
2431 load_seg_unusable_for_headers(const Target* target)
2432 {
2433   const General_options& options = parameters->options();
2434   if (target->isolate_execinstr())
2435     return (options.user_set_Trodata_segment()
2436             && options.Trodata_segment() % target->abi_pagesize() != 0);
2437   else
2438     return (options.user_set_Ttext()
2439             && options.Ttext() % target->abi_pagesize() != 0);
2440 }
2441
2442 // Relaxation loop body:  If target has no relaxation, this runs only once
2443 // Otherwise, the target relaxation hook is called at the end of
2444 // each iteration.  If the hook returns true, it means re-layout of
2445 // section is required.
2446 //
2447 // The number of segments created by a linking script without a PHDRS
2448 // clause may be affected by section sizes and alignments.  There is
2449 // a remote chance that relaxation causes different number of PT_LOAD
2450 // segments are created and sections are attached to different segments.
2451 // Therefore, we always throw away all segments created during section
2452 // layout.  In order to be able to restart the section layout, we keep
2453 // a copy of the segment list right before the relaxation loop and use
2454 // that to restore the segments.
2455 //
2456 // PASS is the current relaxation pass number.
2457 // SYMTAB is a symbol table.
2458 // PLOAD_SEG is the address of a pointer for the load segment.
2459 // PHDR_SEG is a pointer to the PHDR segment.
2460 // SEGMENT_HEADERS points to the output segment header.
2461 // FILE_HEADER points to the output file header.
2462 // PSHNDX is the address to store the output section index.
2463
2464 off_t inline
2465 Layout::relaxation_loop_body(
2466     int pass,
2467     Target* target,
2468     Symbol_table* symtab,
2469     Output_segment** pload_seg,
2470     Output_segment* phdr_seg,
2471     Output_segment_headers* segment_headers,
2472     Output_file_header* file_header,
2473     unsigned int* pshndx)
2474 {
2475   // If this is not the first iteration, we need to clean up after
2476   // relaxation so that we can lay out the sections again.
2477   if (pass != 0)
2478     this->clean_up_after_relaxation();
2479
2480   // If there is a SECTIONS clause, put all the input sections into
2481   // the required order.
2482   Output_segment* load_seg;
2483   if (this->script_options_->saw_sections_clause())
2484     load_seg = this->set_section_addresses_from_script(symtab);
2485   else if (parameters->options().relocatable())
2486     load_seg = NULL;
2487   else
2488     load_seg = this->find_first_load_seg(target);
2489
2490   if (parameters->options().oformat_enum()
2491       != General_options::OBJECT_FORMAT_ELF)
2492     load_seg = NULL;
2493
2494   if (load_seg_unusable_for_headers(target))
2495     {
2496       load_seg = NULL;
2497       phdr_seg = NULL;
2498     }
2499
2500   gold_assert(phdr_seg == NULL
2501               || load_seg != NULL
2502               || this->script_options_->saw_sections_clause());
2503
2504   // If the address of the load segment we found has been set by
2505   // --section-start rather than by a script, then adjust the VMA and
2506   // LMA downward if possible to include the file and section headers.
2507   uint64_t header_gap = 0;
2508   if (load_seg != NULL
2509       && load_seg->are_addresses_set()
2510       && !this->script_options_->saw_sections_clause()
2511       && !parameters->options().relocatable())
2512     {
2513       file_header->finalize_data_size();
2514       segment_headers->finalize_data_size();
2515       size_t sizeof_headers = (file_header->data_size()
2516                                + segment_headers->data_size());
2517       const uint64_t abi_pagesize = target->abi_pagesize();
2518       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2519       hdr_paddr &= ~(abi_pagesize - 1);
2520       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2521       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2522         load_seg = NULL;
2523       else
2524         {
2525           load_seg->set_addresses(load_seg->vaddr() - subtract,
2526                                   load_seg->paddr() - subtract);
2527           header_gap = subtract - sizeof_headers;
2528         }
2529     }
2530
2531   // Lay out the segment headers.
2532   if (!parameters->options().relocatable())
2533     {
2534       gold_assert(segment_headers != NULL);
2535       if (header_gap != 0 && load_seg != NULL)
2536         {
2537           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2538           load_seg->add_initial_output_data(z);
2539         }
2540       if (load_seg != NULL)
2541         load_seg->add_initial_output_data(segment_headers);
2542       if (phdr_seg != NULL)
2543         phdr_seg->add_initial_output_data(segment_headers);
2544     }
2545
2546   // Lay out the file header.
2547   if (load_seg != NULL)
2548     load_seg->add_initial_output_data(file_header);
2549
2550   if (this->script_options_->saw_phdrs_clause()
2551       && !parameters->options().relocatable())
2552     {
2553       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2554       // clause in a linker script.
2555       Script_sections* ss = this->script_options_->script_sections();
2556       ss->put_headers_in_phdrs(file_header, segment_headers);
2557     }
2558
2559   // We set the output section indexes in set_segment_offsets and
2560   // set_section_indexes.
2561   *pshndx = 1;
2562
2563   // Set the file offsets of all the segments, and all the sections
2564   // they contain.
2565   off_t off;
2566   if (!parameters->options().relocatable())
2567     off = this->set_segment_offsets(target, load_seg, pshndx);
2568   else
2569     off = this->set_relocatable_section_offsets(file_header, pshndx);
2570
2571    // Verify that the dummy relaxation does not change anything.
2572   if (is_debugging_enabled(DEBUG_RELAXATION))
2573     {
2574       if (pass == 0)
2575         this->relaxation_debug_check_->read_sections(this->section_list_);
2576       else
2577         this->relaxation_debug_check_->verify_sections(this->section_list_);
2578     }
2579
2580   *pload_seg = load_seg;
2581   return off;
2582 }
2583
2584 // Search the list of patterns and find the postion of the given section
2585 // name in the output section.  If the section name matches a glob
2586 // pattern and a non-glob name, then the non-glob position takes
2587 // precedence.  Return 0 if no match is found.
2588
2589 unsigned int
2590 Layout::find_section_order_index(const std::string& section_name)
2591 {
2592   Unordered_map<std::string, unsigned int>::iterator map_it;
2593   map_it = this->input_section_position_.find(section_name);
2594   if (map_it != this->input_section_position_.end())
2595     return map_it->second;
2596
2597   // Absolute match failed.  Linear search the glob patterns.
2598   std::vector<std::string>::iterator it;
2599   for (it = this->input_section_glob_.begin();
2600        it != this->input_section_glob_.end();
2601        ++it)
2602     {
2603        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2604          {
2605            map_it = this->input_section_position_.find(*it);
2606            gold_assert(map_it != this->input_section_position_.end());
2607            return map_it->second;
2608          }
2609     }
2610   return 0;
2611 }
2612
2613 // Read the sequence of input sections from the file specified with
2614 // option --section-ordering-file.
2615
2616 void
2617 Layout::read_layout_from_file()
2618 {
2619   const char* filename = parameters->options().section_ordering_file();
2620   std::ifstream in;
2621   std::string line;
2622
2623   in.open(filename);
2624   if (!in)
2625     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2626                filename, strerror(errno));
2627
2628   std::getline(in, line);   // this chops off the trailing \n, if any
2629   unsigned int position = 1;
2630   this->set_section_ordering_specified();
2631
2632   while (in)
2633     {
2634       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2635         line.resize(line.length() - 1);
2636       // Ignore comments, beginning with '#'
2637       if (line[0] == '#')
2638         {
2639           std::getline(in, line);
2640           continue;
2641         }
2642       this->input_section_position_[line] = position;
2643       // Store all glob patterns in a vector.
2644       if (is_wildcard_string(line.c_str()))
2645         this->input_section_glob_.push_back(line);
2646       position++;
2647       std::getline(in, line);
2648     }
2649 }
2650
2651 // Finalize the layout.  When this is called, we have created all the
2652 // output sections and all the output segments which are based on
2653 // input sections.  We have several things to do, and we have to do
2654 // them in the right order, so that we get the right results correctly
2655 // and efficiently.
2656
2657 // 1) Finalize the list of output segments and create the segment
2658 // table header.
2659
2660 // 2) Finalize the dynamic symbol table and associated sections.
2661
2662 // 3) Determine the final file offset of all the output segments.
2663
2664 // 4) Determine the final file offset of all the SHF_ALLOC output
2665 // sections.
2666
2667 // 5) Create the symbol table sections and the section name table
2668 // section.
2669
2670 // 6) Finalize the symbol table: set symbol values to their final
2671 // value and make a final determination of which symbols are going
2672 // into the output symbol table.
2673
2674 // 7) Create the section table header.
2675
2676 // 8) Determine the final file offset of all the output sections which
2677 // are not SHF_ALLOC, including the section table header.
2678
2679 // 9) Finalize the ELF file header.
2680
2681 // This function returns the size of the output file.
2682
2683 off_t
2684 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2685                  Target* target, const Task* task)
2686 {
2687   target->finalize_sections(this, input_objects, symtab);
2688
2689   this->count_local_symbols(task, input_objects);
2690
2691   this->link_stabs_sections();
2692
2693   Output_segment* phdr_seg = NULL;
2694   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2695     {
2696       // There was a dynamic object in the link.  We need to create
2697       // some information for the dynamic linker.
2698
2699       // Create the PT_PHDR segment which will hold the program
2700       // headers.
2701       if (!this->script_options_->saw_phdrs_clause())
2702         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2703
2704       // Create the dynamic symbol table, including the hash table.
2705       Output_section* dynstr;
2706       std::vector<Symbol*> dynamic_symbols;
2707       unsigned int local_dynamic_count;
2708       Versions versions(*this->script_options()->version_script_info(),
2709                         &this->dynpool_);
2710       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2711                                   &local_dynamic_count, &dynamic_symbols,
2712                                   &versions);
2713
2714       // Create the .interp section to hold the name of the
2715       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2716       // if we saw a .interp section in an input file.
2717       if ((!parameters->options().shared()
2718            || parameters->options().dynamic_linker() != NULL)
2719           && this->interp_segment_ == NULL)
2720         this->create_interp(target);
2721
2722       // Finish the .dynamic section to hold the dynamic data, and put
2723       // it in a PT_DYNAMIC segment.
2724       this->finish_dynamic_section(input_objects, symtab);
2725
2726       // We should have added everything we need to the dynamic string
2727       // table.
2728       this->dynpool_.set_string_offsets();
2729
2730       // Create the version sections.  We can't do this until the
2731       // dynamic string table is complete.
2732       this->create_version_sections(&versions, symtab, local_dynamic_count,
2733                                     dynamic_symbols, dynstr);
2734
2735       // Set the size of the _DYNAMIC symbol.  We can't do this until
2736       // after we call create_version_sections.
2737       this->set_dynamic_symbol_size(symtab);
2738     }
2739
2740   // Create segment headers.
2741   Output_segment_headers* segment_headers =
2742     (parameters->options().relocatable()
2743      ? NULL
2744      : new Output_segment_headers(this->segment_list_));
2745
2746   // Lay out the file header.
2747   Output_file_header* file_header = new Output_file_header(target, symtab,
2748                                                            segment_headers);
2749
2750   this->special_output_list_.push_back(file_header);
2751   if (segment_headers != NULL)
2752     this->special_output_list_.push_back(segment_headers);
2753
2754   // Find approriate places for orphan output sections if we are using
2755   // a linker script.
2756   if (this->script_options_->saw_sections_clause())
2757     this->place_orphan_sections_in_script();
2758
2759   Output_segment* load_seg;
2760   off_t off;
2761   unsigned int shndx;
2762   int pass = 0;
2763
2764   // Take a snapshot of the section layout as needed.
2765   if (target->may_relax())
2766     this->prepare_for_relaxation();
2767
2768   // Run the relaxation loop to lay out sections.
2769   do
2770     {
2771       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2772                                        phdr_seg, segment_headers, file_header,
2773                                        &shndx);
2774       pass++;
2775     }
2776   while (target->may_relax()
2777          && target->relax(pass, input_objects, symtab, this, task));
2778
2779   // If there is a load segment that contains the file and program headers,
2780   // provide a symbol __ehdr_start pointing there.
2781   // A program can use this to examine itself robustly.
2782   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2783   if (ehdr_start != NULL && ehdr_start->is_predefined())
2784     {
2785       if (load_seg != NULL)
2786         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2787       else
2788         ehdr_start->set_undefined();
2789     }
2790
2791   // Set the file offsets of all the non-data sections we've seen so
2792   // far which don't have to wait for the input sections.  We need
2793   // this in order to finalize local symbols in non-allocated
2794   // sections.
2795   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2796
2797   // Set the section indexes of all unallocated sections seen so far,
2798   // in case any of them are somehow referenced by a symbol.
2799   shndx = this->set_section_indexes(shndx);
2800
2801   // Create the symbol table sections.
2802   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2803   if (!parameters->doing_static_link())
2804     this->assign_local_dynsym_offsets(input_objects);
2805
2806   // Process any symbol assignments from a linker script.  This must
2807   // be called after the symbol table has been finalized.
2808   this->script_options_->finalize_symbols(symtab, this);
2809
2810   // Create the incremental inputs sections.
2811   if (this->incremental_inputs_)
2812     {
2813       this->incremental_inputs_->finalize();
2814       this->create_incremental_info_sections(symtab);
2815     }
2816
2817   // Create the .shstrtab section.
2818   Output_section* shstrtab_section = this->create_shstrtab();
2819
2820   // Set the file offsets of the rest of the non-data sections which
2821   // don't have to wait for the input sections.
2822   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2823
2824   // Now that all sections have been created, set the section indexes
2825   // for any sections which haven't been done yet.
2826   shndx = this->set_section_indexes(shndx);
2827
2828   // Create the section table header.
2829   this->create_shdrs(shstrtab_section, &off);
2830
2831   // If there are no sections which require postprocessing, we can
2832   // handle the section names now, and avoid a resize later.
2833   if (!this->any_postprocessing_sections_)
2834     {
2835       off = this->set_section_offsets(off,
2836                                       POSTPROCESSING_SECTIONS_PASS);
2837       off =
2838           this->set_section_offsets(off,
2839                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2840     }
2841
2842   file_header->set_section_info(this->section_headers_, shstrtab_section);
2843
2844   // Now we know exactly where everything goes in the output file
2845   // (except for non-allocated sections which require postprocessing).
2846   Output_data::layout_complete();
2847
2848   this->output_file_size_ = off;
2849
2850   return off;
2851 }
2852
2853 // Create a note header following the format defined in the ELF ABI.
2854 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2855 // of the section to create, DESCSZ is the size of the descriptor.
2856 // ALLOCATE is true if the section should be allocated in memory.
2857 // This returns the new note section.  It sets *TRAILING_PADDING to
2858 // the number of trailing zero bytes required.
2859
2860 Output_section*
2861 Layout::create_note(const char* name, int note_type,
2862                     const char* section_name, size_t descsz,
2863                     bool allocate, size_t* trailing_padding)
2864 {
2865   // Authorities all agree that the values in a .note field should
2866   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2867   // they differ on what the alignment is for 64-bit binaries.
2868   // The GABI says unambiguously they take 8-byte alignment:
2869   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2870   // Other documentation says alignment should always be 4 bytes:
2871   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2872   // GNU ld and GNU readelf both support the latter (at least as of
2873   // version 2.16.91), and glibc always generates the latter for
2874   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2875   // here.
2876 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2877   const int size = parameters->target().get_size();
2878 #else
2879   const int size = 32;
2880 #endif
2881
2882   // The contents of the .note section.
2883   size_t namesz = strlen(name) + 1;
2884   size_t aligned_namesz = align_address(namesz, size / 8);
2885   size_t aligned_descsz = align_address(descsz, size / 8);
2886
2887   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2888
2889   unsigned char* buffer = new unsigned char[notehdrsz];
2890   memset(buffer, 0, notehdrsz);
2891
2892   bool is_big_endian = parameters->target().is_big_endian();
2893
2894   if (size == 32)
2895     {
2896       if (!is_big_endian)
2897         {
2898           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2899           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2900           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2901         }
2902       else
2903         {
2904           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2905           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2906           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2907         }
2908     }
2909   else if (size == 64)
2910     {
2911       if (!is_big_endian)
2912         {
2913           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2914           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2915           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2916         }
2917       else
2918         {
2919           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2920           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2921           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2922         }
2923     }
2924   else
2925     gold_unreachable();
2926
2927   memcpy(buffer + 3 * (size / 8), name, namesz);
2928
2929   elfcpp::Elf_Xword flags = 0;
2930   Output_section_order order = ORDER_INVALID;
2931   if (allocate)
2932     {
2933       flags = elfcpp::SHF_ALLOC;
2934       order = ORDER_RO_NOTE;
2935     }
2936   Output_section* os = this->choose_output_section(NULL, section_name,
2937                                                    elfcpp::SHT_NOTE,
2938                                                    flags, false, order, false);
2939   if (os == NULL)
2940     return NULL;
2941
2942   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2943                                                            size / 8,
2944                                                            "** note header");
2945   os->add_output_section_data(posd);
2946
2947   *trailing_padding = aligned_descsz - descsz;
2948
2949   return os;
2950 }
2951
2952 // For an executable or shared library, create a note to record the
2953 // version of gold used to create the binary.
2954
2955 void
2956 Layout::create_gold_note()
2957 {
2958   if (parameters->options().relocatable()
2959       || parameters->incremental_update())
2960     return;
2961
2962   std::string desc = std::string("gold ") + gold::get_version_string();
2963
2964   size_t trailing_padding;
2965   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2966                                          ".note.gnu.gold-version", desc.size(),
2967                                          false, &trailing_padding);
2968   if (os == NULL)
2969     return;
2970
2971   Output_section_data* posd = new Output_data_const(desc, 4);
2972   os->add_output_section_data(posd);
2973
2974   if (trailing_padding > 0)
2975     {
2976       posd = new Output_data_zero_fill(trailing_padding, 0);
2977       os->add_output_section_data(posd);
2978     }
2979 }
2980
2981 // Record whether the stack should be executable.  This can be set
2982 // from the command line using the -z execstack or -z noexecstack
2983 // options.  Otherwise, if any input file has a .note.GNU-stack
2984 // section with the SHF_EXECINSTR flag set, the stack should be
2985 // executable.  Otherwise, if at least one input file a
2986 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2987 // section, we use the target default for whether the stack should be
2988 // executable.  If -z stack-size was used to set a p_memsz value for
2989 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
2990 // don't generate a stack note.  When generating a object file, we
2991 // create a .note.GNU-stack section with the appropriate marking.
2992 // When generating an executable or shared library, we create a
2993 // PT_GNU_STACK segment.
2994
2995 void
2996 Layout::create_stack_segment()
2997 {
2998   bool is_stack_executable;
2999   if (parameters->options().is_execstack_set())
3000     {
3001       is_stack_executable = parameters->options().is_stack_executable();
3002       if (!is_stack_executable
3003           && this->input_requires_executable_stack_
3004           && parameters->options().warn_execstack())
3005         gold_warning(_("one or more inputs require executable stack, "
3006                        "but -z noexecstack was given"));
3007     }
3008   else if (!this->input_with_gnu_stack_note_
3009            && (!parameters->options().user_set_stack_size()
3010                || parameters->options().relocatable()))
3011     return;
3012   else
3013     {
3014       if (this->input_requires_executable_stack_)
3015         is_stack_executable = true;
3016       else if (this->input_without_gnu_stack_note_)
3017         is_stack_executable =
3018           parameters->target().is_default_stack_executable();
3019       else
3020         is_stack_executable = false;
3021     }
3022
3023   if (parameters->options().relocatable())
3024     {
3025       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3026       elfcpp::Elf_Xword flags = 0;
3027       if (is_stack_executable)
3028         flags |= elfcpp::SHF_EXECINSTR;
3029       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3030                                 ORDER_INVALID, false);
3031     }
3032   else
3033     {
3034       if (this->script_options_->saw_phdrs_clause())
3035         return;
3036       int flags = elfcpp::PF_R | elfcpp::PF_W;
3037       if (is_stack_executable)
3038         flags |= elfcpp::PF_X;
3039       Output_segment* seg =
3040         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3041       seg->set_size(parameters->options().stack_size());
3042       // BFD lets targets override this default alignment, but the only
3043       // targets that do so are ones that Gold does not support so far.
3044       seg->set_minimum_p_align(16);
3045     }
3046 }
3047
3048 // If --build-id was used, set up the build ID note.
3049
3050 void
3051 Layout::create_build_id()
3052 {
3053   if (!parameters->options().user_set_build_id())
3054     return;
3055
3056   const char* style = parameters->options().build_id();
3057   if (strcmp(style, "none") == 0)
3058     return;
3059
3060   // Set DESCSZ to the size of the note descriptor.  When possible,
3061   // set DESC to the note descriptor contents.
3062   size_t descsz;
3063   std::string desc;
3064   if (strcmp(style, "md5") == 0)
3065     descsz = 128 / 8;
3066   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3067     descsz = 160 / 8;
3068   else if (strcmp(style, "uuid") == 0)
3069     {
3070       const size_t uuidsz = 128 / 8;
3071
3072       char buffer[uuidsz];
3073       memset(buffer, 0, uuidsz);
3074
3075       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3076       if (descriptor < 0)
3077         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3078                    strerror(errno));
3079       else
3080         {
3081           ssize_t got = ::read(descriptor, buffer, uuidsz);
3082           release_descriptor(descriptor, true);
3083           if (got < 0)
3084             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3085           else if (static_cast<size_t>(got) != uuidsz)
3086             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3087                        uuidsz, got);
3088         }
3089
3090       desc.assign(buffer, uuidsz);
3091       descsz = uuidsz;
3092     }
3093   else if (strncmp(style, "0x", 2) == 0)
3094     {
3095       hex_init();
3096       const char* p = style + 2;
3097       while (*p != '\0')
3098         {
3099           if (hex_p(p[0]) && hex_p(p[1]))
3100             {
3101               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3102               desc += c;
3103               p += 2;
3104             }
3105           else if (*p == '-' || *p == ':')
3106             ++p;
3107           else
3108             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3109                        style);
3110         }
3111       descsz = desc.size();
3112     }
3113   else
3114     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3115
3116   // Create the note.
3117   size_t trailing_padding;
3118   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3119                                          ".note.gnu.build-id", descsz, true,
3120                                          &trailing_padding);
3121   if (os == NULL)
3122     return;
3123
3124   if (!desc.empty())
3125     {
3126       // We know the value already, so we fill it in now.
3127       gold_assert(desc.size() == descsz);
3128
3129       Output_section_data* posd = new Output_data_const(desc, 4);
3130       os->add_output_section_data(posd);
3131
3132       if (trailing_padding != 0)
3133         {
3134           posd = new Output_data_zero_fill(trailing_padding, 0);
3135           os->add_output_section_data(posd);
3136         }
3137     }
3138   else
3139     {
3140       // We need to compute a checksum after we have completed the
3141       // link.
3142       gold_assert(trailing_padding == 0);
3143       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3144       os->add_output_section_data(this->build_id_note_);
3145     }
3146 }
3147
3148 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3149 // field of the former should point to the latter.  I'm not sure who
3150 // started this, but the GNU linker does it, and some tools depend
3151 // upon it.
3152
3153 void
3154 Layout::link_stabs_sections()
3155 {
3156   if (!this->have_stabstr_section_)
3157     return;
3158
3159   for (Section_list::iterator p = this->section_list_.begin();
3160        p != this->section_list_.end();
3161        ++p)
3162     {
3163       if ((*p)->type() != elfcpp::SHT_STRTAB)
3164         continue;
3165
3166       const char* name = (*p)->name();
3167       if (strncmp(name, ".stab", 5) != 0)
3168         continue;
3169
3170       size_t len = strlen(name);
3171       if (strcmp(name + len - 3, "str") != 0)
3172         continue;
3173
3174       std::string stab_name(name, len - 3);
3175       Output_section* stab_sec;
3176       stab_sec = this->find_output_section(stab_name.c_str());
3177       if (stab_sec != NULL)
3178         stab_sec->set_link_section(*p);
3179     }
3180 }
3181
3182 // Create .gnu_incremental_inputs and related sections needed
3183 // for the next run of incremental linking to check what has changed.
3184
3185 void
3186 Layout::create_incremental_info_sections(Symbol_table* symtab)
3187 {
3188   Incremental_inputs* incr = this->incremental_inputs_;
3189
3190   gold_assert(incr != NULL);
3191
3192   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3193   incr->create_data_sections(symtab);
3194
3195   // Add the .gnu_incremental_inputs section.
3196   const char* incremental_inputs_name =
3197     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3198   Output_section* incremental_inputs_os =
3199     this->make_output_section(incremental_inputs_name,
3200                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3201                               ORDER_INVALID, false);
3202   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3203
3204   // Add the .gnu_incremental_symtab section.
3205   const char* incremental_symtab_name =
3206     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3207   Output_section* incremental_symtab_os =
3208     this->make_output_section(incremental_symtab_name,
3209                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3210                               ORDER_INVALID, false);
3211   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3212   incremental_symtab_os->set_entsize(4);
3213
3214   // Add the .gnu_incremental_relocs section.
3215   const char* incremental_relocs_name =
3216     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3217   Output_section* incremental_relocs_os =
3218     this->make_output_section(incremental_relocs_name,
3219                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3220                               ORDER_INVALID, false);
3221   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3222   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3223
3224   // Add the .gnu_incremental_got_plt section.
3225   const char* incremental_got_plt_name =
3226     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3227   Output_section* incremental_got_plt_os =
3228     this->make_output_section(incremental_got_plt_name,
3229                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3230                               ORDER_INVALID, false);
3231   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3232
3233   // Add the .gnu_incremental_strtab section.
3234   const char* incremental_strtab_name =
3235     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3236   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3237                                                         elfcpp::SHT_STRTAB, 0,
3238                                                         ORDER_INVALID, false);
3239   Output_data_strtab* strtab_data =
3240       new Output_data_strtab(incr->get_stringpool());
3241   incremental_strtab_os->add_output_section_data(strtab_data);
3242
3243   incremental_inputs_os->set_after_input_sections();
3244   incremental_symtab_os->set_after_input_sections();
3245   incremental_relocs_os->set_after_input_sections();
3246   incremental_got_plt_os->set_after_input_sections();
3247
3248   incremental_inputs_os->set_link_section(incremental_strtab_os);
3249   incremental_symtab_os->set_link_section(incremental_inputs_os);
3250   incremental_relocs_os->set_link_section(incremental_inputs_os);
3251   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3252 }
3253
3254 // Return whether SEG1 should be before SEG2 in the output file.  This
3255 // is based entirely on the segment type and flags.  When this is
3256 // called the segment addresses have normally not yet been set.
3257
3258 bool
3259 Layout::segment_precedes(const Output_segment* seg1,
3260                          const Output_segment* seg2)
3261 {
3262   elfcpp::Elf_Word type1 = seg1->type();
3263   elfcpp::Elf_Word type2 = seg2->type();
3264
3265   // The single PT_PHDR segment is required to precede any loadable
3266   // segment.  We simply make it always first.
3267   if (type1 == elfcpp::PT_PHDR)
3268     {
3269       gold_assert(type2 != elfcpp::PT_PHDR);
3270       return true;
3271     }
3272   if (type2 == elfcpp::PT_PHDR)
3273     return false;
3274
3275   // The single PT_INTERP segment is required to precede any loadable
3276   // segment.  We simply make it always second.
3277   if (type1 == elfcpp::PT_INTERP)
3278     {
3279       gold_assert(type2 != elfcpp::PT_INTERP);
3280       return true;
3281     }
3282   if (type2 == elfcpp::PT_INTERP)
3283     return false;
3284
3285   // We then put PT_LOAD segments before any other segments.
3286   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3287     return true;
3288   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3289     return false;
3290
3291   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3292   // segment, because that is where the dynamic linker expects to find
3293   // it (this is just for efficiency; other positions would also work
3294   // correctly).
3295   if (type1 == elfcpp::PT_TLS
3296       && type2 != elfcpp::PT_TLS
3297       && type2 != elfcpp::PT_GNU_RELRO)
3298     return false;
3299   if (type2 == elfcpp::PT_TLS
3300       && type1 != elfcpp::PT_TLS
3301       && type1 != elfcpp::PT_GNU_RELRO)
3302     return true;
3303
3304   // We put the PT_GNU_RELRO segment last, because that is where the
3305   // dynamic linker expects to find it (as with PT_TLS, this is just
3306   // for efficiency).
3307   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3308     return false;
3309   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3310     return true;
3311
3312   const elfcpp::Elf_Word flags1 = seg1->flags();
3313   const elfcpp::Elf_Word flags2 = seg2->flags();
3314
3315   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3316   // by the numeric segment type and flags values.  There should not
3317   // be more than one segment with the same type and flags, except
3318   // when a linker script specifies such.
3319   if (type1 != elfcpp::PT_LOAD)
3320     {
3321       if (type1 != type2)
3322         return type1 < type2;
3323       gold_assert(flags1 != flags2
3324                   || this->script_options_->saw_phdrs_clause());
3325       return flags1 < flags2;
3326     }
3327
3328   // If the addresses are set already, sort by load address.
3329   if (seg1->are_addresses_set())
3330     {
3331       if (!seg2->are_addresses_set())
3332         return true;
3333
3334       unsigned int section_count1 = seg1->output_section_count();
3335       unsigned int section_count2 = seg2->output_section_count();
3336       if (section_count1 == 0 && section_count2 > 0)
3337         return true;
3338       if (section_count1 > 0 && section_count2 == 0)
3339         return false;
3340
3341       uint64_t paddr1 = (seg1->are_addresses_set()
3342                          ? seg1->paddr()
3343                          : seg1->first_section_load_address());
3344       uint64_t paddr2 = (seg2->are_addresses_set()
3345                          ? seg2->paddr()
3346                          : seg2->first_section_load_address());
3347
3348       if (paddr1 != paddr2)
3349         return paddr1 < paddr2;
3350     }
3351   else if (seg2->are_addresses_set())
3352     return false;
3353
3354   // A segment which holds large data comes after a segment which does
3355   // not hold large data.
3356   if (seg1->is_large_data_segment())
3357     {
3358       if (!seg2->is_large_data_segment())
3359         return false;
3360     }
3361   else if (seg2->is_large_data_segment())
3362     return true;
3363
3364   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3365   // segments come before writable segments.  Then writable segments
3366   // with data come before writable segments without data.  Then
3367   // executable segments come before non-executable segments.  Then
3368   // the unlikely case of a non-readable segment comes before the
3369   // normal case of a readable segment.  If there are multiple
3370   // segments with the same type and flags, we require that the
3371   // address be set, and we sort by virtual address and then physical
3372   // address.
3373   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3374     return (flags1 & elfcpp::PF_W) == 0;
3375   if ((flags1 & elfcpp::PF_W) != 0
3376       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3377     return seg1->has_any_data_sections();
3378   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3379     return (flags1 & elfcpp::PF_X) != 0;
3380   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3381     return (flags1 & elfcpp::PF_R) == 0;
3382
3383   // We shouldn't get here--we shouldn't create segments which we
3384   // can't distinguish.  Unless of course we are using a weird linker
3385   // script or overlapping --section-start options.  We could also get
3386   // here if plugins want unique segments for subsets of sections.
3387   gold_assert(this->script_options_->saw_phdrs_clause()
3388               || parameters->options().any_section_start()
3389               || this->is_unique_segment_for_sections_specified());
3390   return false;
3391 }
3392
3393 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3394
3395 static off_t
3396 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3397 {
3398   uint64_t unsigned_off = off;
3399   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3400                           | (addr & (abi_pagesize - 1)));
3401   if (aligned_off < unsigned_off)
3402     aligned_off += abi_pagesize;
3403   return aligned_off;
3404 }
3405
3406 // On targets where the text segment contains only executable code,
3407 // a non-executable segment is never the text segment.
3408
3409 static inline bool
3410 is_text_segment(const Target* target, const Output_segment* seg)
3411 {
3412   elfcpp::Elf_Xword flags = seg->flags();
3413   if ((flags & elfcpp::PF_W) != 0)
3414     return false;
3415   if ((flags & elfcpp::PF_X) == 0)
3416     return !target->isolate_execinstr();
3417   return true;
3418 }
3419
3420 // Set the file offsets of all the segments, and all the sections they
3421 // contain.  They have all been created.  LOAD_SEG must be be laid out
3422 // first.  Return the offset of the data to follow.
3423
3424 off_t
3425 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3426                             unsigned int* pshndx)
3427 {
3428   // Sort them into the final order.  We use a stable sort so that we
3429   // don't randomize the order of indistinguishable segments created
3430   // by linker scripts.
3431   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3432                    Layout::Compare_segments(this));
3433
3434   // Find the PT_LOAD segments, and set their addresses and offsets
3435   // and their section's addresses and offsets.
3436   uint64_t start_addr;
3437   if (parameters->options().user_set_Ttext())
3438     start_addr = parameters->options().Ttext();
3439   else if (parameters->options().output_is_position_independent())
3440     start_addr = 0;
3441   else
3442     start_addr = target->default_text_segment_address();
3443
3444   uint64_t addr = start_addr;
3445   off_t off = 0;
3446
3447   // If LOAD_SEG is NULL, then the file header and segment headers
3448   // will not be loadable.  But they still need to be at offset 0 in
3449   // the file.  Set their offsets now.
3450   if (load_seg == NULL)
3451     {
3452       for (Data_list::iterator p = this->special_output_list_.begin();
3453            p != this->special_output_list_.end();
3454            ++p)
3455         {
3456           off = align_address(off, (*p)->addralign());
3457           (*p)->set_address_and_file_offset(0, off);
3458           off += (*p)->data_size();
3459         }
3460     }
3461
3462   unsigned int increase_relro = this->increase_relro_;
3463   if (this->script_options_->saw_sections_clause())
3464     increase_relro = 0;
3465
3466   const bool check_sections = parameters->options().check_sections();
3467   Output_segment* last_load_segment = NULL;
3468
3469   unsigned int shndx_begin = *pshndx;
3470   unsigned int shndx_load_seg = *pshndx;
3471
3472   for (Segment_list::iterator p = this->segment_list_.begin();
3473        p != this->segment_list_.end();
3474        ++p)
3475     {
3476       if ((*p)->type() == elfcpp::PT_LOAD)
3477         {
3478           if (target->isolate_execinstr())
3479             {
3480               // When we hit the segment that should contain the
3481               // file headers, reset the file offset so we place
3482               // it and subsequent segments appropriately.
3483               // We'll fix up the preceding segments below.
3484               if (load_seg == *p)
3485                 {
3486                   if (off == 0)
3487                     load_seg = NULL;
3488                   else
3489                     {
3490                       off = 0;
3491                       shndx_load_seg = *pshndx;
3492                     }
3493                 }
3494             }
3495           else
3496             {
3497               // Verify that the file headers fall into the first segment.
3498               if (load_seg != NULL && load_seg != *p)
3499                 gold_unreachable();
3500               load_seg = NULL;
3501             }
3502
3503           bool are_addresses_set = (*p)->are_addresses_set();
3504           if (are_addresses_set)
3505             {
3506               // When it comes to setting file offsets, we care about
3507               // the physical address.
3508               addr = (*p)->paddr();
3509             }
3510           else if (parameters->options().user_set_Ttext()
3511                    && (parameters->options().omagic()
3512                        || is_text_segment(target, *p)))
3513             {
3514               are_addresses_set = true;
3515             }
3516           else if (parameters->options().user_set_Trodata_segment()
3517                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3518             {
3519               addr = parameters->options().Trodata_segment();
3520               are_addresses_set = true;
3521             }
3522           else if (parameters->options().user_set_Tdata()
3523                    && ((*p)->flags() & elfcpp::PF_W) != 0
3524                    && (!parameters->options().user_set_Tbss()
3525                        || (*p)->has_any_data_sections()))
3526             {
3527               addr = parameters->options().Tdata();
3528               are_addresses_set = true;
3529             }
3530           else if (parameters->options().user_set_Tbss()
3531                    && ((*p)->flags() & elfcpp::PF_W) != 0
3532                    && !(*p)->has_any_data_sections())
3533             {
3534               addr = parameters->options().Tbss();
3535               are_addresses_set = true;
3536             }
3537
3538           uint64_t orig_addr = addr;
3539           uint64_t orig_off = off;
3540
3541           uint64_t aligned_addr = 0;
3542           uint64_t abi_pagesize = target->abi_pagesize();
3543           uint64_t common_pagesize = target->common_pagesize();
3544
3545           if (!parameters->options().nmagic()
3546               && !parameters->options().omagic())
3547             (*p)->set_minimum_p_align(abi_pagesize);
3548
3549           if (!are_addresses_set)
3550             {
3551               // Skip the address forward one page, maintaining the same
3552               // position within the page.  This lets us store both segments
3553               // overlapping on a single page in the file, but the loader will
3554               // put them on different pages in memory. We will revisit this
3555               // decision once we know the size of the segment.
3556
3557               uint64_t max_align = (*p)->maximum_alignment();
3558               if (max_align > abi_pagesize)
3559                 addr = align_address(addr, max_align);
3560               aligned_addr = addr;
3561
3562               if (load_seg == *p)
3563                 {
3564                   // This is the segment that will contain the file
3565                   // headers, so its offset will have to be exactly zero.
3566                   gold_assert(orig_off == 0);
3567
3568                   // If the target wants a fixed minimum distance from the
3569                   // text segment to the read-only segment, move up now.
3570                   uint64_t min_addr =
3571                     start_addr + (parameters->options().user_set_rosegment_gap()
3572                                   ? parameters->options().rosegment_gap()
3573                                   : target->rosegment_gap());
3574                   if (addr < min_addr)
3575                     addr = min_addr;
3576
3577                   // But this is not the first segment!  To make its
3578                   // address congruent with its offset, that address better
3579                   // be aligned to the ABI-mandated page size.
3580                   addr = align_address(addr, abi_pagesize);
3581                   aligned_addr = addr;
3582                 }
3583               else
3584                 {
3585                   if ((addr & (abi_pagesize - 1)) != 0)
3586                     addr = addr + abi_pagesize;
3587
3588                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3589                 }
3590             }
3591
3592           if (!parameters->options().nmagic()
3593               && !parameters->options().omagic())
3594             {
3595               // Here we are also taking care of the case when
3596               // the maximum segment alignment is larger than the page size.
3597               off = align_file_offset(off, addr,
3598                                       std::max(abi_pagesize,
3599                                                (*p)->maximum_alignment()));
3600             }
3601           else
3602             {
3603               // This is -N or -n with a section script which prevents
3604               // us from using a load segment.  We need to ensure that
3605               // the file offset is aligned to the alignment of the
3606               // segment.  This is because the linker script
3607               // implicitly assumed a zero offset.  If we don't align
3608               // here, then the alignment of the sections in the
3609               // linker script may not match the alignment of the
3610               // sections in the set_section_addresses call below,
3611               // causing an error about dot moving backward.
3612               off = align_address(off, (*p)->maximum_alignment());
3613             }
3614
3615           unsigned int shndx_hold = *pshndx;
3616           bool has_relro = false;
3617           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3618                                                           false, addr,
3619                                                           &increase_relro,
3620                                                           &has_relro,
3621                                                           &off, pshndx);
3622
3623           // Now that we know the size of this segment, we may be able
3624           // to save a page in memory, at the cost of wasting some
3625           // file space, by instead aligning to the start of a new
3626           // page.  Here we use the real machine page size rather than
3627           // the ABI mandated page size.  If the segment has been
3628           // aligned so that the relro data ends at a page boundary,
3629           // we do not try to realign it.
3630
3631           if (!are_addresses_set
3632               && !has_relro
3633               && aligned_addr != addr
3634               && !parameters->incremental())
3635             {
3636               uint64_t first_off = (common_pagesize
3637                                     - (aligned_addr
3638                                        & (common_pagesize - 1)));
3639               uint64_t last_off = new_addr & (common_pagesize - 1);
3640               if (first_off > 0
3641                   && last_off > 0
3642                   && ((aligned_addr & ~ (common_pagesize - 1))
3643                       != (new_addr & ~ (common_pagesize - 1)))
3644                   && first_off + last_off <= common_pagesize)
3645                 {
3646                   *pshndx = shndx_hold;
3647                   addr = align_address(aligned_addr, common_pagesize);
3648                   addr = align_address(addr, (*p)->maximum_alignment());
3649                   if ((addr & (abi_pagesize - 1)) != 0)
3650                     addr = addr + abi_pagesize;
3651                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3652                   off = align_file_offset(off, addr, abi_pagesize);
3653
3654                   increase_relro = this->increase_relro_;
3655                   if (this->script_options_->saw_sections_clause())
3656                     increase_relro = 0;
3657                   has_relro = false;
3658
3659                   new_addr = (*p)->set_section_addresses(target, this,
3660                                                          true, addr,
3661                                                          &increase_relro,
3662                                                          &has_relro,
3663                                                          &off, pshndx);
3664                 }
3665             }
3666
3667           addr = new_addr;
3668
3669           // Implement --check-sections.  We know that the segments
3670           // are sorted by LMA.
3671           if (check_sections && last_load_segment != NULL)
3672             {
3673               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3674               if (last_load_segment->paddr() + last_load_segment->memsz()
3675                   > (*p)->paddr())
3676                 {
3677                   unsigned long long lb1 = last_load_segment->paddr();
3678                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3679                   unsigned long long lb2 = (*p)->paddr();
3680                   unsigned long long le2 = lb2 + (*p)->memsz();
3681                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3682                                "[0x%llx -> 0x%llx]"),
3683                              lb1, le1, lb2, le2);
3684                 }
3685             }
3686           last_load_segment = *p;
3687         }
3688     }
3689
3690   if (load_seg != NULL && target->isolate_execinstr())
3691     {
3692       // Process the early segments again, setting their file offsets
3693       // so they land after the segments starting at LOAD_SEG.
3694       off = align_file_offset(off, 0, target->abi_pagesize());
3695
3696       this->reset_relax_output();
3697
3698       for (Segment_list::iterator p = this->segment_list_.begin();
3699            *p != load_seg;
3700            ++p)
3701         {
3702           if ((*p)->type() == elfcpp::PT_LOAD)
3703             {
3704               // We repeat the whole job of assigning addresses and
3705               // offsets, but we really only want to change the offsets and
3706               // must ensure that the addresses all come out the same as
3707               // they did the first time through.
3708               bool has_relro = false;
3709               const uint64_t old_addr = (*p)->vaddr();
3710               const uint64_t old_end = old_addr + (*p)->memsz();
3711               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3712                                                               true, old_addr,
3713                                                               &increase_relro,
3714                                                               &has_relro,
3715                                                               &off,
3716                                                               &shndx_begin);
3717               gold_assert(new_addr == old_end);
3718             }
3719         }
3720
3721       gold_assert(shndx_begin == shndx_load_seg);
3722     }
3723
3724   // Handle the non-PT_LOAD segments, setting their offsets from their
3725   // section's offsets.
3726   for (Segment_list::iterator p = this->segment_list_.begin();
3727        p != this->segment_list_.end();
3728        ++p)
3729     {
3730       // PT_GNU_STACK was set up correctly when it was created.
3731       if ((*p)->type() != elfcpp::PT_LOAD
3732           && (*p)->type() != elfcpp::PT_GNU_STACK)
3733         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3734                          ? increase_relro
3735                          : 0);
3736     }
3737
3738   // Set the TLS offsets for each section in the PT_TLS segment.
3739   if (this->tls_segment_ != NULL)
3740     this->tls_segment_->set_tls_offsets();
3741
3742   return off;
3743 }
3744
3745 // Set the offsets of all the allocated sections when doing a
3746 // relocatable link.  This does the same jobs as set_segment_offsets,
3747 // only for a relocatable link.
3748
3749 off_t
3750 Layout::set_relocatable_section_offsets(Output_data* file_header,
3751                                         unsigned int* pshndx)
3752 {
3753   off_t off = 0;
3754
3755   file_header->set_address_and_file_offset(0, 0);
3756   off += file_header->data_size();
3757
3758   for (Section_list::iterator p = this->section_list_.begin();
3759        p != this->section_list_.end();
3760        ++p)
3761     {
3762       // We skip unallocated sections here, except that group sections
3763       // have to come first.
3764       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3765           && (*p)->type() != elfcpp::SHT_GROUP)
3766         continue;
3767
3768       off = align_address(off, (*p)->addralign());
3769
3770       // The linker script might have set the address.
3771       if (!(*p)->is_address_valid())
3772         (*p)->set_address(0);
3773       (*p)->set_file_offset(off);
3774       (*p)->finalize_data_size();
3775       if ((*p)->type() != elfcpp::SHT_NOBITS)
3776         off += (*p)->data_size();
3777
3778       (*p)->set_out_shndx(*pshndx);
3779       ++*pshndx;
3780     }
3781
3782   return off;
3783 }
3784
3785 // Set the file offset of all the sections not associated with a
3786 // segment.
3787
3788 off_t
3789 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3790 {
3791   off_t startoff = off;
3792   off_t maxoff = off;
3793
3794   for (Section_list::iterator p = this->unattached_section_list_.begin();
3795        p != this->unattached_section_list_.end();
3796        ++p)
3797     {
3798       // The symtab section is handled in create_symtab_sections.
3799       if (*p == this->symtab_section_)
3800         continue;
3801
3802       // If we've already set the data size, don't set it again.
3803       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3804         continue;
3805
3806       if (pass == BEFORE_INPUT_SECTIONS_PASS
3807           && (*p)->requires_postprocessing())
3808         {
3809           (*p)->create_postprocessing_buffer();
3810           this->any_postprocessing_sections_ = true;
3811         }
3812
3813       if (pass == BEFORE_INPUT_SECTIONS_PASS
3814           && (*p)->after_input_sections())
3815         continue;
3816       else if (pass == POSTPROCESSING_SECTIONS_PASS
3817                && (!(*p)->after_input_sections()
3818                    || (*p)->type() == elfcpp::SHT_STRTAB))
3819         continue;
3820       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3821                && (!(*p)->after_input_sections()
3822                    || (*p)->type() != elfcpp::SHT_STRTAB))
3823         continue;
3824
3825       if (!parameters->incremental_update())
3826         {
3827           off = align_address(off, (*p)->addralign());
3828           (*p)->set_file_offset(off);
3829           (*p)->finalize_data_size();
3830         }
3831       else
3832         {
3833           // Incremental update: allocate file space from free list.
3834           (*p)->pre_finalize_data_size();
3835           off_t current_size = (*p)->current_data_size();
3836           off = this->allocate(current_size, (*p)->addralign(), startoff);
3837           if (off == -1)
3838             {
3839               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3840                 this->free_list_.dump();
3841               gold_assert((*p)->output_section() != NULL);
3842               gold_fallback(_("out of patch space for section %s; "
3843                               "relink with --incremental-full"),
3844                             (*p)->output_section()->name());
3845             }
3846           (*p)->set_file_offset(off);
3847           (*p)->finalize_data_size();
3848           if ((*p)->data_size() > current_size)
3849             {
3850               gold_assert((*p)->output_section() != NULL);
3851               gold_fallback(_("%s: section changed size; "
3852                               "relink with --incremental-full"),
3853                             (*p)->output_section()->name());
3854             }
3855           gold_debug(DEBUG_INCREMENTAL,
3856                      "set_section_offsets: %08lx %08lx %s",
3857                      static_cast<long>(off),
3858                      static_cast<long>((*p)->data_size()),
3859                      ((*p)->output_section() != NULL
3860                       ? (*p)->output_section()->name() : "(special)"));
3861         }
3862
3863       off += (*p)->data_size();
3864       if (off > maxoff)
3865         maxoff = off;
3866
3867       // At this point the name must be set.
3868       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3869         this->namepool_.add((*p)->name(), false, NULL);
3870     }
3871   return maxoff;
3872 }
3873
3874 // Set the section indexes of all the sections not associated with a
3875 // segment.
3876
3877 unsigned int
3878 Layout::set_section_indexes(unsigned int shndx)
3879 {
3880   for (Section_list::iterator p = this->unattached_section_list_.begin();
3881        p != this->unattached_section_list_.end();
3882        ++p)
3883     {
3884       if (!(*p)->has_out_shndx())
3885         {
3886           (*p)->set_out_shndx(shndx);
3887           ++shndx;
3888         }
3889     }
3890   return shndx;
3891 }
3892
3893 // Set the section addresses according to the linker script.  This is
3894 // only called when we see a SECTIONS clause.  This returns the
3895 // program segment which should hold the file header and segment
3896 // headers, if any.  It will return NULL if they should not be in a
3897 // segment.
3898
3899 Output_segment*
3900 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3901 {
3902   Script_sections* ss = this->script_options_->script_sections();
3903   gold_assert(ss->saw_sections_clause());
3904   return this->script_options_->set_section_addresses(symtab, this);
3905 }
3906
3907 // Place the orphan sections in the linker script.
3908
3909 void
3910 Layout::place_orphan_sections_in_script()
3911 {
3912   Script_sections* ss = this->script_options_->script_sections();
3913   gold_assert(ss->saw_sections_clause());
3914
3915   // Place each orphaned output section in the script.
3916   for (Section_list::iterator p = this->section_list_.begin();
3917        p != this->section_list_.end();
3918        ++p)
3919     {
3920       if (!(*p)->found_in_sections_clause())
3921         ss->place_orphan(*p);
3922     }
3923 }
3924
3925 // Count the local symbols in the regular symbol table and the dynamic
3926 // symbol table, and build the respective string pools.
3927
3928 void
3929 Layout::count_local_symbols(const Task* task,
3930                             const Input_objects* input_objects)
3931 {
3932   // First, figure out an upper bound on the number of symbols we'll
3933   // be inserting into each pool.  This helps us create the pools with
3934   // the right size, to avoid unnecessary hashtable resizing.
3935   unsigned int symbol_count = 0;
3936   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3937        p != input_objects->relobj_end();
3938        ++p)
3939     symbol_count += (*p)->local_symbol_count();
3940
3941   // Go from "upper bound" to "estimate."  We overcount for two
3942   // reasons: we double-count symbols that occur in more than one
3943   // object file, and we count symbols that are dropped from the
3944   // output.  Add it all together and assume we overcount by 100%.
3945   symbol_count /= 2;
3946
3947   // We assume all symbols will go into both the sympool and dynpool.
3948   this->sympool_.reserve(symbol_count);
3949   this->dynpool_.reserve(symbol_count);
3950
3951   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3952        p != input_objects->relobj_end();
3953        ++p)
3954     {
3955       Task_lock_obj<Object> tlo(task, *p);
3956       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3957     }
3958 }
3959
3960 // Create the symbol table sections.  Here we also set the final
3961 // values of the symbols.  At this point all the loadable sections are
3962 // fully laid out.  SHNUM is the number of sections so far.
3963
3964 void
3965 Layout::create_symtab_sections(const Input_objects* input_objects,
3966                                Symbol_table* symtab,
3967                                unsigned int shnum,
3968                                off_t* poff)
3969 {
3970   int symsize;
3971   unsigned int align;
3972   if (parameters->target().get_size() == 32)
3973     {
3974       symsize = elfcpp::Elf_sizes<32>::sym_size;
3975       align = 4;
3976     }
3977   else if (parameters->target().get_size() == 64)
3978     {
3979       symsize = elfcpp::Elf_sizes<64>::sym_size;
3980       align = 8;
3981     }
3982   else
3983     gold_unreachable();
3984
3985   // Compute file offsets relative to the start of the symtab section.
3986   off_t off = 0;
3987
3988   // Save space for the dummy symbol at the start of the section.  We
3989   // never bother to write this out--it will just be left as zero.
3990   off += symsize;
3991   unsigned int local_symbol_index = 1;
3992
3993   // Add STT_SECTION symbols for each Output section which needs one.
3994   for (Section_list::iterator p = this->section_list_.begin();
3995        p != this->section_list_.end();
3996        ++p)
3997     {
3998       if (!(*p)->needs_symtab_index())
3999         (*p)->set_symtab_index(-1U);
4000       else
4001         {
4002           (*p)->set_symtab_index(local_symbol_index);
4003           ++local_symbol_index;
4004           off += symsize;
4005         }
4006     }
4007
4008   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4009        p != input_objects->relobj_end();
4010        ++p)
4011     {
4012       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4013                                                         off, symtab);
4014       off += (index - local_symbol_index) * symsize;
4015       local_symbol_index = index;
4016     }
4017
4018   unsigned int local_symcount = local_symbol_index;
4019   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4020
4021   off_t dynoff;
4022   size_t dyn_global_index;
4023   size_t dyncount;
4024   if (this->dynsym_section_ == NULL)
4025     {
4026       dynoff = 0;
4027       dyn_global_index = 0;
4028       dyncount = 0;
4029     }
4030   else
4031     {
4032       dyn_global_index = this->dynsym_section_->info();
4033       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4034       dynoff = this->dynsym_section_->offset() + locsize;
4035       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4036       gold_assert(static_cast<off_t>(dyncount * symsize)
4037                   == this->dynsym_section_->data_size() - locsize);
4038     }
4039
4040   off_t global_off = off;
4041   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4042                          &this->sympool_, &local_symcount);
4043
4044   if (!parameters->options().strip_all())
4045     {
4046       this->sympool_.set_string_offsets();
4047
4048       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4049       Output_section* osymtab = this->make_output_section(symtab_name,
4050                                                           elfcpp::SHT_SYMTAB,
4051                                                           0, ORDER_INVALID,
4052                                                           false);
4053       this->symtab_section_ = osymtab;
4054
4055       Output_section_data* pos = new Output_data_fixed_space(off, align,
4056                                                              "** symtab");
4057       osymtab->add_output_section_data(pos);
4058
4059       // We generate a .symtab_shndx section if we have more than
4060       // SHN_LORESERVE sections.  Technically it is possible that we
4061       // don't need one, because it is possible that there are no
4062       // symbols in any of sections with indexes larger than
4063       // SHN_LORESERVE.  That is probably unusual, though, and it is
4064       // easier to always create one than to compute section indexes
4065       // twice (once here, once when writing out the symbols).
4066       if (shnum >= elfcpp::SHN_LORESERVE)
4067         {
4068           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4069                                                                false, NULL);
4070           Output_section* osymtab_xindex =
4071             this->make_output_section(symtab_xindex_name,
4072                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4073                                       ORDER_INVALID, false);
4074
4075           size_t symcount = off / symsize;
4076           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4077
4078           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4079
4080           osymtab_xindex->set_link_section(osymtab);
4081           osymtab_xindex->set_addralign(4);
4082           osymtab_xindex->set_entsize(4);
4083
4084           osymtab_xindex->set_after_input_sections();
4085
4086           // This tells the driver code to wait until the symbol table
4087           // has written out before writing out the postprocessing
4088           // sections, including the .symtab_shndx section.
4089           this->any_postprocessing_sections_ = true;
4090         }
4091
4092       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4093       Output_section* ostrtab = this->make_output_section(strtab_name,
4094                                                           elfcpp::SHT_STRTAB,
4095                                                           0, ORDER_INVALID,
4096                                                           false);
4097
4098       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4099       ostrtab->add_output_section_data(pstr);
4100
4101       off_t symtab_off;
4102       if (!parameters->incremental_update())
4103         symtab_off = align_address(*poff, align);
4104       else
4105         {
4106           symtab_off = this->allocate(off, align, *poff);
4107           if (off == -1)
4108             gold_fallback(_("out of patch space for symbol table; "
4109                             "relink with --incremental-full"));
4110           gold_debug(DEBUG_INCREMENTAL,
4111                      "create_symtab_sections: %08lx %08lx .symtab",
4112                      static_cast<long>(symtab_off),
4113                      static_cast<long>(off));
4114         }
4115
4116       symtab->set_file_offset(symtab_off + global_off);
4117       osymtab->set_file_offset(symtab_off);
4118       osymtab->finalize_data_size();
4119       osymtab->set_link_section(ostrtab);
4120       osymtab->set_info(local_symcount);
4121       osymtab->set_entsize(symsize);
4122
4123       if (symtab_off + off > *poff)
4124         *poff = symtab_off + off;
4125     }
4126 }
4127
4128 // Create the .shstrtab section, which holds the names of the
4129 // sections.  At the time this is called, we have created all the
4130 // output sections except .shstrtab itself.
4131
4132 Output_section*
4133 Layout::create_shstrtab()
4134 {
4135   // FIXME: We don't need to create a .shstrtab section if we are
4136   // stripping everything.
4137
4138   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4139
4140   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4141                                                  ORDER_INVALID, false);
4142
4143   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4144     {
4145       // We can't write out this section until we've set all the
4146       // section names, and we don't set the names of compressed
4147       // output sections until relocations are complete.  FIXME: With
4148       // the current names we use, this is unnecessary.
4149       os->set_after_input_sections();
4150     }
4151
4152   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4153   os->add_output_section_data(posd);
4154
4155   return os;
4156 }
4157
4158 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4159 // offset.
4160
4161 void
4162 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4163 {
4164   Output_section_headers* oshdrs;
4165   oshdrs = new Output_section_headers(this,
4166                                       &this->segment_list_,
4167                                       &this->section_list_,
4168                                       &this->unattached_section_list_,
4169                                       &this->namepool_,
4170                                       shstrtab_section);
4171   off_t off;
4172   if (!parameters->incremental_update())
4173     off = align_address(*poff, oshdrs->addralign());
4174   else
4175     {
4176       oshdrs->pre_finalize_data_size();
4177       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4178       if (off == -1)
4179           gold_fallback(_("out of patch space for section header table; "
4180                           "relink with --incremental-full"));
4181       gold_debug(DEBUG_INCREMENTAL,
4182                  "create_shdrs: %08lx %08lx (section header table)",
4183                  static_cast<long>(off),
4184                  static_cast<long>(off + oshdrs->data_size()));
4185     }
4186   oshdrs->set_address_and_file_offset(0, off);
4187   off += oshdrs->data_size();
4188   if (off > *poff)
4189     *poff = off;
4190   this->section_headers_ = oshdrs;
4191 }
4192
4193 // Count the allocated sections.
4194
4195 size_t
4196 Layout::allocated_output_section_count() const
4197 {
4198   size_t section_count = 0;
4199   for (Segment_list::const_iterator p = this->segment_list_.begin();
4200        p != this->segment_list_.end();
4201        ++p)
4202     section_count += (*p)->output_section_count();
4203   return section_count;
4204 }
4205
4206 // Create the dynamic symbol table.
4207
4208 void
4209 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4210                               Symbol_table* symtab,
4211                               Output_section** pdynstr,
4212                               unsigned int* plocal_dynamic_count,
4213                               std::vector<Symbol*>* pdynamic_symbols,
4214                               Versions* pversions)
4215 {
4216   // Count all the symbols in the dynamic symbol table, and set the
4217   // dynamic symbol indexes.
4218
4219   // Skip symbol 0, which is always all zeroes.
4220   unsigned int index = 1;
4221
4222   // Add STT_SECTION symbols for each Output section which needs one.
4223   for (Section_list::iterator p = this->section_list_.begin();
4224        p != this->section_list_.end();
4225        ++p)
4226     {
4227       if (!(*p)->needs_dynsym_index())
4228         (*p)->set_dynsym_index(-1U);
4229       else
4230         {
4231           (*p)->set_dynsym_index(index);
4232           ++index;
4233         }
4234     }
4235
4236   // Count the local symbols that need to go in the dynamic symbol table,
4237   // and set the dynamic symbol indexes.
4238   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4239        p != input_objects->relobj_end();
4240        ++p)
4241     {
4242       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4243       index = new_index;
4244     }
4245
4246   unsigned int local_symcount = index;
4247   *plocal_dynamic_count = local_symcount;
4248
4249   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4250                                      &this->dynpool_, pversions);
4251
4252   int symsize;
4253   unsigned int align;
4254   const int size = parameters->target().get_size();
4255   if (size == 32)
4256     {
4257       symsize = elfcpp::Elf_sizes<32>::sym_size;
4258       align = 4;
4259     }
4260   else if (size == 64)
4261     {
4262       symsize = elfcpp::Elf_sizes<64>::sym_size;
4263       align = 8;
4264     }
4265   else
4266     gold_unreachable();
4267
4268   // Create the dynamic symbol table section.
4269
4270   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4271                                                        elfcpp::SHT_DYNSYM,
4272                                                        elfcpp::SHF_ALLOC,
4273                                                        false,
4274                                                        ORDER_DYNAMIC_LINKER,
4275                                                        false);
4276
4277   // Check for NULL as a linker script may discard .dynsym.
4278   if (dynsym != NULL)
4279     {
4280       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4281                                                                align,
4282                                                                "** dynsym");
4283       dynsym->add_output_section_data(odata);
4284
4285       dynsym->set_info(local_symcount);
4286       dynsym->set_entsize(symsize);
4287       dynsym->set_addralign(align);
4288
4289       this->dynsym_section_ = dynsym;
4290     }
4291
4292   Output_data_dynamic* const odyn = this->dynamic_data_;
4293   if (odyn != NULL)
4294     {
4295       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4296       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4297     }
4298
4299   // If there are more than SHN_LORESERVE allocated sections, we
4300   // create a .dynsym_shndx section.  It is possible that we don't
4301   // need one, because it is possible that there are no dynamic
4302   // symbols in any of the sections with indexes larger than
4303   // SHN_LORESERVE.  This is probably unusual, though, and at this
4304   // time we don't know the actual section indexes so it is
4305   // inconvenient to check.
4306   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4307     {
4308       Output_section* dynsym_xindex =
4309         this->choose_output_section(NULL, ".dynsym_shndx",
4310                                     elfcpp::SHT_SYMTAB_SHNDX,
4311                                     elfcpp::SHF_ALLOC,
4312                                     false, ORDER_DYNAMIC_LINKER, false);
4313
4314       if (dynsym_xindex != NULL)
4315         {
4316           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4317
4318           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4319
4320           dynsym_xindex->set_link_section(dynsym);
4321           dynsym_xindex->set_addralign(4);
4322           dynsym_xindex->set_entsize(4);
4323
4324           dynsym_xindex->set_after_input_sections();
4325
4326           // This tells the driver code to wait until the symbol table
4327           // has written out before writing out the postprocessing
4328           // sections, including the .dynsym_shndx section.
4329           this->any_postprocessing_sections_ = true;
4330         }
4331     }
4332
4333   // Create the dynamic string table section.
4334
4335   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4336                                                        elfcpp::SHT_STRTAB,
4337                                                        elfcpp::SHF_ALLOC,
4338                                                        false,
4339                                                        ORDER_DYNAMIC_LINKER,
4340                                                        false);
4341   *pdynstr = dynstr;
4342   if (dynstr != NULL)
4343     {
4344       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4345       dynstr->add_output_section_data(strdata);
4346
4347       if (dynsym != NULL)
4348         dynsym->set_link_section(dynstr);
4349       if (this->dynamic_section_ != NULL)
4350         this->dynamic_section_->set_link_section(dynstr);
4351
4352       if (odyn != NULL)
4353         {
4354           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4355           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4356         }
4357     }
4358
4359   // Create the hash tables.  The Gnu-style hash table must be
4360   // built first, because it changes the order of the symbols
4361   // in the dynamic symbol table.
4362
4363   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4364       || strcmp(parameters->options().hash_style(), "both") == 0)
4365     {
4366       unsigned char* phash;
4367       unsigned int hashlen;
4368       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4369                                     &phash, &hashlen);
4370
4371       Output_section* hashsec =
4372         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4373                                     elfcpp::SHF_ALLOC, false,
4374                                     ORDER_DYNAMIC_LINKER, false);
4375
4376       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4377                                                                    hashlen,
4378                                                                    align,
4379                                                                    "** hash");
4380       if (hashsec != NULL && hashdata != NULL)
4381         hashsec->add_output_section_data(hashdata);
4382
4383       if (hashsec != NULL)
4384         {
4385           if (dynsym != NULL)
4386             hashsec->set_link_section(dynsym);
4387
4388           // For a 64-bit target, the entries in .gnu.hash do not have
4389           // a uniform size, so we only set the entry size for a
4390           // 32-bit target.
4391           if (parameters->target().get_size() == 32)
4392             hashsec->set_entsize(4);
4393
4394           if (odyn != NULL)
4395             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4396         }
4397     }
4398
4399   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4400       || strcmp(parameters->options().hash_style(), "both") == 0)
4401     {
4402       unsigned char* phash;
4403       unsigned int hashlen;
4404       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4405                                     &phash, &hashlen);
4406
4407       Output_section* hashsec =
4408         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4409                                     elfcpp::SHF_ALLOC, false,
4410                                     ORDER_DYNAMIC_LINKER, false);
4411
4412       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4413                                                                    hashlen,
4414                                                                    align,
4415                                                                    "** hash");
4416       if (hashsec != NULL && hashdata != NULL)
4417         hashsec->add_output_section_data(hashdata);
4418
4419       if (hashsec != NULL)
4420         {
4421           if (dynsym != NULL)
4422             hashsec->set_link_section(dynsym);
4423           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4424         }
4425
4426       if (odyn != NULL)
4427         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4428     }
4429 }
4430
4431 // Assign offsets to each local portion of the dynamic symbol table.
4432
4433 void
4434 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4435 {
4436   Output_section* dynsym = this->dynsym_section_;
4437   if (dynsym == NULL)
4438     return;
4439
4440   off_t off = dynsym->offset();
4441
4442   // Skip the dummy symbol at the start of the section.
4443   off += dynsym->entsize();
4444
4445   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4446        p != input_objects->relobj_end();
4447        ++p)
4448     {
4449       unsigned int count = (*p)->set_local_dynsym_offset(off);
4450       off += count * dynsym->entsize();
4451     }
4452 }
4453
4454 // Create the version sections.
4455
4456 void
4457 Layout::create_version_sections(const Versions* versions,
4458                                 const Symbol_table* symtab,
4459                                 unsigned int local_symcount,
4460                                 const std::vector<Symbol*>& dynamic_symbols,
4461                                 const Output_section* dynstr)
4462 {
4463   if (!versions->any_defs() && !versions->any_needs())
4464     return;
4465
4466   switch (parameters->size_and_endianness())
4467     {
4468 #ifdef HAVE_TARGET_32_LITTLE
4469     case Parameters::TARGET_32_LITTLE:
4470       this->sized_create_version_sections<32, false>(versions, symtab,
4471                                                      local_symcount,
4472                                                      dynamic_symbols, dynstr);
4473       break;
4474 #endif
4475 #ifdef HAVE_TARGET_32_BIG
4476     case Parameters::TARGET_32_BIG:
4477       this->sized_create_version_sections<32, true>(versions, symtab,
4478                                                     local_symcount,
4479                                                     dynamic_symbols, dynstr);
4480       break;
4481 #endif
4482 #ifdef HAVE_TARGET_64_LITTLE
4483     case Parameters::TARGET_64_LITTLE:
4484       this->sized_create_version_sections<64, false>(versions, symtab,
4485                                                      local_symcount,
4486                                                      dynamic_symbols, dynstr);
4487       break;
4488 #endif
4489 #ifdef HAVE_TARGET_64_BIG
4490     case Parameters::TARGET_64_BIG:
4491       this->sized_create_version_sections<64, true>(versions, symtab,
4492                                                     local_symcount,
4493                                                     dynamic_symbols, dynstr);
4494       break;
4495 #endif
4496     default:
4497       gold_unreachable();
4498     }
4499 }
4500
4501 // Create the version sections, sized version.
4502
4503 template<int size, bool big_endian>
4504 void
4505 Layout::sized_create_version_sections(
4506     const Versions* versions,
4507     const Symbol_table* symtab,
4508     unsigned int local_symcount,
4509     const std::vector<Symbol*>& dynamic_symbols,
4510     const Output_section* dynstr)
4511 {
4512   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4513                                                      elfcpp::SHT_GNU_versym,
4514                                                      elfcpp::SHF_ALLOC,
4515                                                      false,
4516                                                      ORDER_DYNAMIC_LINKER,
4517                                                      false);
4518
4519   // Check for NULL since a linker script may discard this section.
4520   if (vsec != NULL)
4521     {
4522       unsigned char* vbuf;
4523       unsigned int vsize;
4524       versions->symbol_section_contents<size, big_endian>(symtab,
4525                                                           &this->dynpool_,
4526                                                           local_symcount,
4527                                                           dynamic_symbols,
4528                                                           &vbuf, &vsize);
4529
4530       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4531                                                                 "** versions");
4532
4533       vsec->add_output_section_data(vdata);
4534       vsec->set_entsize(2);
4535       vsec->set_link_section(this->dynsym_section_);
4536     }
4537
4538   Output_data_dynamic* const odyn = this->dynamic_data_;
4539   if (odyn != NULL && vsec != NULL)
4540     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4541
4542   if (versions->any_defs())
4543     {
4544       Output_section* vdsec;
4545       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4546                                           elfcpp::SHT_GNU_verdef,
4547                                           elfcpp::SHF_ALLOC,
4548                                           false, ORDER_DYNAMIC_LINKER, false);
4549
4550       if (vdsec != NULL)
4551         {
4552           unsigned char* vdbuf;
4553           unsigned int vdsize;
4554           unsigned int vdentries;
4555           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4556                                                            &vdbuf, &vdsize,
4557                                                            &vdentries);
4558
4559           Output_section_data* vddata =
4560             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4561
4562           vdsec->add_output_section_data(vddata);
4563           vdsec->set_link_section(dynstr);
4564           vdsec->set_info(vdentries);
4565
4566           if (odyn != NULL)
4567             {
4568               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4569               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4570             }
4571         }
4572     }
4573
4574   if (versions->any_needs())
4575     {
4576       Output_section* vnsec;
4577       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4578                                           elfcpp::SHT_GNU_verneed,
4579                                           elfcpp::SHF_ALLOC,
4580                                           false, ORDER_DYNAMIC_LINKER, false);
4581
4582       if (vnsec != NULL)
4583         {
4584           unsigned char* vnbuf;
4585           unsigned int vnsize;
4586           unsigned int vnentries;
4587           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4588                                                             &vnbuf, &vnsize,
4589                                                             &vnentries);
4590
4591           Output_section_data* vndata =
4592             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4593
4594           vnsec->add_output_section_data(vndata);
4595           vnsec->set_link_section(dynstr);
4596           vnsec->set_info(vnentries);
4597
4598           if (odyn != NULL)
4599             {
4600               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4601               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4602             }
4603         }
4604     }
4605 }
4606
4607 // Create the .interp section and PT_INTERP segment.
4608
4609 void
4610 Layout::create_interp(const Target* target)
4611 {
4612   gold_assert(this->interp_segment_ == NULL);
4613
4614   const char* interp = parameters->options().dynamic_linker();
4615   if (interp == NULL)
4616     {
4617       interp = target->dynamic_linker();
4618       gold_assert(interp != NULL);
4619     }
4620
4621   size_t len = strlen(interp) + 1;
4622
4623   Output_section_data* odata = new Output_data_const(interp, len, 1);
4624
4625   Output_section* osec = this->choose_output_section(NULL, ".interp",
4626                                                      elfcpp::SHT_PROGBITS,
4627                                                      elfcpp::SHF_ALLOC,
4628                                                      false, ORDER_INTERP,
4629                                                      false);
4630   if (osec != NULL)
4631     osec->add_output_section_data(odata);
4632 }
4633
4634 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4635 // called by the target-specific code.  This does nothing if not doing
4636 // a dynamic link.
4637
4638 // USE_REL is true for REL relocs rather than RELA relocs.
4639
4640 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4641
4642 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4643 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4644 // some targets have multiple reloc sections in PLT_REL.
4645
4646 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4647 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4648 // section.
4649
4650 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4651 // executable.
4652
4653 void
4654 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4655                                 const Output_data* plt_rel,
4656                                 const Output_data_reloc_generic* dyn_rel,
4657                                 bool add_debug, bool dynrel_includes_plt)
4658 {
4659   Output_data_dynamic* odyn = this->dynamic_data_;
4660   if (odyn == NULL)
4661     return;
4662
4663   if (plt_got != NULL && plt_got->output_section() != NULL)
4664     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4665
4666   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4667     {
4668       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4669       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4670       odyn->add_constant(elfcpp::DT_PLTREL,
4671                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4672     }
4673
4674   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4675       || (dynrel_includes_plt
4676           && plt_rel != NULL
4677           && plt_rel->output_section() != NULL))
4678     {
4679       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4680       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4681       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4682                                 (have_dyn_rel
4683                                  ? dyn_rel->output_section()
4684                                  : plt_rel->output_section()));
4685       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4686       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4687         odyn->add_section_size(size_tag,
4688                                dyn_rel->output_section(),
4689                                plt_rel->output_section());
4690       else if (have_dyn_rel)
4691         odyn->add_section_size(size_tag, dyn_rel->output_section());
4692       else
4693         odyn->add_section_size(size_tag, plt_rel->output_section());
4694       const int size = parameters->target().get_size();
4695       elfcpp::DT rel_tag;
4696       int rel_size;
4697       if (use_rel)
4698         {
4699           rel_tag = elfcpp::DT_RELENT;
4700           if (size == 32)
4701             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4702           else if (size == 64)
4703             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4704           else
4705             gold_unreachable();
4706         }
4707       else
4708         {
4709           rel_tag = elfcpp::DT_RELAENT;
4710           if (size == 32)
4711             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4712           else if (size == 64)
4713             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4714           else
4715             gold_unreachable();
4716         }
4717       odyn->add_constant(rel_tag, rel_size);
4718
4719       if (parameters->options().combreloc() && have_dyn_rel)
4720         {
4721           size_t c = dyn_rel->relative_reloc_count();
4722           if (c > 0)
4723             odyn->add_constant((use_rel
4724                                 ? elfcpp::DT_RELCOUNT
4725                                 : elfcpp::DT_RELACOUNT),
4726                                c);
4727         }
4728     }
4729
4730   if (add_debug && !parameters->options().shared())
4731     {
4732       // The value of the DT_DEBUG tag is filled in by the dynamic
4733       // linker at run time, and used by the debugger.
4734       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4735     }
4736 }
4737
4738 void
4739 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4740 {
4741   Output_data_dynamic* odyn = this->dynamic_data_;
4742   if (odyn == NULL)
4743     return;
4744   odyn->add_constant(tag, val);
4745 }
4746
4747 // Finish the .dynamic section and PT_DYNAMIC segment.
4748
4749 void
4750 Layout::finish_dynamic_section(const Input_objects* input_objects,
4751                                const Symbol_table* symtab)
4752 {
4753   if (!this->script_options_->saw_phdrs_clause()
4754       && this->dynamic_section_ != NULL)
4755     {
4756       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4757                                                        (elfcpp::PF_R
4758                                                         | elfcpp::PF_W));
4759       oseg->add_output_section_to_nonload(this->dynamic_section_,
4760                                           elfcpp::PF_R | elfcpp::PF_W);
4761     }
4762
4763   Output_data_dynamic* const odyn = this->dynamic_data_;
4764   if (odyn == NULL)
4765     return;
4766
4767   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4768        p != input_objects->dynobj_end();
4769        ++p)
4770     {
4771       if (!(*p)->is_needed() && (*p)->as_needed())
4772         {
4773           // This dynamic object was linked with --as-needed, but it
4774           // is not needed.
4775           continue;
4776         }
4777
4778       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4779     }
4780
4781   if (parameters->options().shared())
4782     {
4783       const char* soname = parameters->options().soname();
4784       if (soname != NULL)
4785         odyn->add_string(elfcpp::DT_SONAME, soname);
4786     }
4787
4788   Symbol* sym = symtab->lookup(parameters->options().init());
4789   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4790     odyn->add_symbol(elfcpp::DT_INIT, sym);
4791
4792   sym = symtab->lookup(parameters->options().fini());
4793   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4794     odyn->add_symbol(elfcpp::DT_FINI, sym);
4795
4796   // Look for .init_array, .preinit_array and .fini_array by checking
4797   // section types.
4798   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4799       p != this->section_list_.end();
4800       ++p)
4801     switch((*p)->type())
4802       {
4803       case elfcpp::SHT_FINI_ARRAY:
4804         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4805         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4806         break;
4807       case elfcpp::SHT_INIT_ARRAY:
4808         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4809         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4810         break;
4811       case elfcpp::SHT_PREINIT_ARRAY:
4812         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4813         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4814         break;
4815       default:
4816         break;
4817       }
4818
4819   // Add a DT_RPATH entry if needed.
4820   const General_options::Dir_list& rpath(parameters->options().rpath());
4821   if (!rpath.empty())
4822     {
4823       std::string rpath_val;
4824       for (General_options::Dir_list::const_iterator p = rpath.begin();
4825            p != rpath.end();
4826            ++p)
4827         {
4828           if (rpath_val.empty())
4829             rpath_val = p->name();
4830           else
4831             {
4832               // Eliminate duplicates.
4833               General_options::Dir_list::const_iterator q;
4834               for (q = rpath.begin(); q != p; ++q)
4835                 if (q->name() == p->name())
4836                   break;
4837               if (q == p)
4838                 {
4839                   rpath_val += ':';
4840                   rpath_val += p->name();
4841                 }
4842             }
4843         }
4844
4845       if (!parameters->options().enable_new_dtags())
4846         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4847       else
4848         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4849     }
4850
4851   // Look for text segments that have dynamic relocations.
4852   bool have_textrel = false;
4853   if (!this->script_options_->saw_sections_clause())
4854     {
4855       for (Segment_list::const_iterator p = this->segment_list_.begin();
4856            p != this->segment_list_.end();
4857            ++p)
4858         {
4859           if ((*p)->type() == elfcpp::PT_LOAD
4860               && ((*p)->flags() & elfcpp::PF_W) == 0
4861               && (*p)->has_dynamic_reloc())
4862             {
4863               have_textrel = true;
4864               break;
4865             }
4866         }
4867     }
4868   else
4869     {
4870       // We don't know the section -> segment mapping, so we are
4871       // conservative and just look for readonly sections with
4872       // relocations.  If those sections wind up in writable segments,
4873       // then we have created an unnecessary DT_TEXTREL entry.
4874       for (Section_list::const_iterator p = this->section_list_.begin();
4875            p != this->section_list_.end();
4876            ++p)
4877         {
4878           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4879               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4880               && (*p)->has_dynamic_reloc())
4881             {
4882               have_textrel = true;
4883               break;
4884             }
4885         }
4886     }
4887
4888   if (parameters->options().filter() != NULL)
4889     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4890   if (parameters->options().any_auxiliary())
4891     {
4892       for (options::String_set::const_iterator p =
4893              parameters->options().auxiliary_begin();
4894            p != parameters->options().auxiliary_end();
4895            ++p)
4896         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4897     }
4898
4899   // Add a DT_FLAGS entry if necessary.
4900   unsigned int flags = 0;
4901   if (have_textrel)
4902     {
4903       // Add a DT_TEXTREL for compatibility with older loaders.
4904       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4905       flags |= elfcpp::DF_TEXTREL;
4906
4907       if (parameters->options().text())
4908         gold_error(_("read-only segment has dynamic relocations"));
4909       else if (parameters->options().warn_shared_textrel()
4910                && parameters->options().shared())
4911         gold_warning(_("shared library text segment is not shareable"));
4912     }
4913   if (parameters->options().shared() && this->has_static_tls())
4914     flags |= elfcpp::DF_STATIC_TLS;
4915   if (parameters->options().origin())
4916     flags |= elfcpp::DF_ORIGIN;
4917   if (parameters->options().Bsymbolic()
4918       && !parameters->options().have_dynamic_list())
4919     {
4920       flags |= elfcpp::DF_SYMBOLIC;
4921       // Add DT_SYMBOLIC for compatibility with older loaders.
4922       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4923     }
4924   if (parameters->options().now())
4925     flags |= elfcpp::DF_BIND_NOW;
4926   if (flags != 0)
4927     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4928
4929   flags = 0;
4930   if (parameters->options().global())
4931     flags |= elfcpp::DF_1_GLOBAL;
4932   if (parameters->options().initfirst())
4933     flags |= elfcpp::DF_1_INITFIRST;
4934   if (parameters->options().interpose())
4935     flags |= elfcpp::DF_1_INTERPOSE;
4936   if (parameters->options().loadfltr())
4937     flags |= elfcpp::DF_1_LOADFLTR;
4938   if (parameters->options().nodefaultlib())
4939     flags |= elfcpp::DF_1_NODEFLIB;
4940   if (parameters->options().nodelete())
4941     flags |= elfcpp::DF_1_NODELETE;
4942   if (parameters->options().nodlopen())
4943     flags |= elfcpp::DF_1_NOOPEN;
4944   if (parameters->options().nodump())
4945     flags |= elfcpp::DF_1_NODUMP;
4946   if (!parameters->options().shared())
4947     flags &= ~(elfcpp::DF_1_INITFIRST
4948                | elfcpp::DF_1_NODELETE
4949                | elfcpp::DF_1_NOOPEN);
4950   if (parameters->options().origin())
4951     flags |= elfcpp::DF_1_ORIGIN;
4952   if (parameters->options().now())
4953     flags |= elfcpp::DF_1_NOW;
4954   if (parameters->options().Bgroup())
4955     flags |= elfcpp::DF_1_GROUP;
4956   if (flags != 0)
4957     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4958 }
4959
4960 // Set the size of the _DYNAMIC symbol table to be the size of the
4961 // dynamic data.
4962
4963 void
4964 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4965 {
4966   Output_data_dynamic* const odyn = this->dynamic_data_;
4967   if (odyn == NULL)
4968     return;
4969   odyn->finalize_data_size();
4970   if (this->dynamic_symbol_ == NULL)
4971     return;
4972   off_t data_size = odyn->data_size();
4973   const int size = parameters->target().get_size();
4974   if (size == 32)
4975     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4976   else if (size == 64)
4977     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4978   else
4979     gold_unreachable();
4980 }
4981
4982 // The mapping of input section name prefixes to output section names.
4983 // In some cases one prefix is itself a prefix of another prefix; in
4984 // such a case the longer prefix must come first.  These prefixes are
4985 // based on the GNU linker default ELF linker script.
4986
4987 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4988 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4989 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4990 {
4991   MAPPING_INIT(".text.", ".text"),
4992   MAPPING_INIT(".rodata.", ".rodata"),
4993   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4994   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4995   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4996   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4997   MAPPING_INIT(".data.", ".data"),
4998   MAPPING_INIT(".bss.", ".bss"),
4999   MAPPING_INIT(".tdata.", ".tdata"),
5000   MAPPING_INIT(".tbss.", ".tbss"),
5001   MAPPING_INIT(".init_array.", ".init_array"),
5002   MAPPING_INIT(".fini_array.", ".fini_array"),
5003   MAPPING_INIT(".sdata.", ".sdata"),
5004   MAPPING_INIT(".sbss.", ".sbss"),
5005   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5006   // differently depending on whether it is creating a shared library.
5007   MAPPING_INIT(".sdata2.", ".sdata"),
5008   MAPPING_INIT(".sbss2.", ".sbss"),
5009   MAPPING_INIT(".lrodata.", ".lrodata"),
5010   MAPPING_INIT(".ldata.", ".ldata"),
5011   MAPPING_INIT(".lbss.", ".lbss"),
5012   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5013   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5014   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5015   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5016   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5017   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5018   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5019   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5020   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5021   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5022   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5023   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5024   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5025   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5026   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5027   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5028   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5029   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5030   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5031   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5032   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5033 };
5034 #undef MAPPING_INIT
5035 #undef MAPPING_INIT_EXACT
5036
5037 const int Layout::section_name_mapping_count =
5038   (sizeof(Layout::section_name_mapping)
5039    / sizeof(Layout::section_name_mapping[0]));
5040
5041 // Choose the output section name to use given an input section name.
5042 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5043 // length of NAME.
5044
5045 const char*
5046 Layout::output_section_name(const Relobj* relobj, const char* name,
5047                             size_t* plen)
5048 {
5049   // gcc 4.3 generates the following sorts of section names when it
5050   // needs a section name specific to a function:
5051   //   .text.FN
5052   //   .rodata.FN
5053   //   .sdata2.FN
5054   //   .data.FN
5055   //   .data.rel.FN
5056   //   .data.rel.local.FN
5057   //   .data.rel.ro.FN
5058   //   .data.rel.ro.local.FN
5059   //   .sdata.FN
5060   //   .bss.FN
5061   //   .sbss.FN
5062   //   .tdata.FN
5063   //   .tbss.FN
5064
5065   // The GNU linker maps all of those to the part before the .FN,
5066   // except that .data.rel.local.FN is mapped to .data, and
5067   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5068   // beginning with .data.rel.ro.local are grouped together.
5069
5070   // For an anonymous namespace, the string FN can contain a '.'.
5071
5072   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5073   // GNU linker maps to .rodata.
5074
5075   // The .data.rel.ro sections are used with -z relro.  The sections
5076   // are recognized by name.  We use the same names that the GNU
5077   // linker does for these sections.
5078
5079   // It is hard to handle this in a principled way, so we don't even
5080   // try.  We use a table of mappings.  If the input section name is
5081   // not found in the table, we simply use it as the output section
5082   // name.
5083
5084   const Section_name_mapping* psnm = section_name_mapping;
5085   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5086     {
5087       if (psnm->fromlen > 0)
5088         {
5089           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5090             {
5091               *plen = psnm->tolen;
5092               return psnm->to;
5093             }
5094         }
5095       else
5096         {
5097           if (strcmp(name, psnm->from) == 0)
5098             {
5099               *plen = psnm->tolen;
5100               return psnm->to;
5101             }
5102         }
5103     }
5104
5105   // As an additional complication, .ctors sections are output in
5106   // either .ctors or .init_array sections, and .dtors sections are
5107   // output in either .dtors or .fini_array sections.
5108   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5109     {
5110       if (parameters->options().ctors_in_init_array())
5111         {
5112           *plen = 11;
5113           return name[1] == 'c' ? ".init_array" : ".fini_array";
5114         }
5115       else
5116         {
5117           *plen = 6;
5118           return name[1] == 'c' ? ".ctors" : ".dtors";
5119         }
5120     }
5121   if (parameters->options().ctors_in_init_array()
5122       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5123     {
5124       // To make .init_array/.fini_array work with gcc we must exclude
5125       // .ctors and .dtors sections from the crtbegin and crtend
5126       // files.
5127       if (relobj == NULL
5128           || (!Layout::match_file_name(relobj, "crtbegin")
5129               && !Layout::match_file_name(relobj, "crtend")))
5130         {
5131           *plen = 11;
5132           return name[1] == 'c' ? ".init_array" : ".fini_array";
5133         }
5134     }
5135
5136   return name;
5137 }
5138
5139 // Return true if RELOBJ is an input file whose base name matches
5140 // FILE_NAME.  The base name must have an extension of ".o", and must
5141 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5142 // to match crtbegin.o as well as crtbeginS.o without getting confused
5143 // by other possibilities.  Overall matching the file name this way is
5144 // a dreadful hack, but the GNU linker does it in order to better
5145 // support gcc, and we need to be compatible.
5146
5147 bool
5148 Layout::match_file_name(const Relobj* relobj, const char* match)
5149 {
5150   const std::string& file_name(relobj->name());
5151   const char* base_name = lbasename(file_name.c_str());
5152   size_t match_len = strlen(match);
5153   if (strncmp(base_name, match, match_len) != 0)
5154     return false;
5155   size_t base_len = strlen(base_name);
5156   if (base_len != match_len + 2 && base_len != match_len + 3)
5157     return false;
5158   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5159 }
5160
5161 // Check if a comdat group or .gnu.linkonce section with the given
5162 // NAME is selected for the link.  If there is already a section,
5163 // *KEPT_SECTION is set to point to the existing section and the
5164 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5165 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5166 // *KEPT_SECTION is set to the internal copy and the function returns
5167 // true.
5168
5169 bool
5170 Layout::find_or_add_kept_section(const std::string& name,
5171                                  Relobj* object,
5172                                  unsigned int shndx,
5173                                  bool is_comdat,
5174                                  bool is_group_name,
5175                                  Kept_section** kept_section)
5176 {
5177   // It's normal to see a couple of entries here, for the x86 thunk
5178   // sections.  If we see more than a few, we're linking a C++
5179   // program, and we resize to get more space to minimize rehashing.
5180   if (this->signatures_.size() > 4
5181       && !this->resized_signatures_)
5182     {
5183       reserve_unordered_map(&this->signatures_,
5184                             this->number_of_input_files_ * 64);
5185       this->resized_signatures_ = true;
5186     }
5187
5188   Kept_section candidate;
5189   std::pair<Signatures::iterator, bool> ins =
5190     this->signatures_.insert(std::make_pair(name, candidate));
5191
5192   if (kept_section != NULL)
5193     *kept_section = &ins.first->second;
5194   if (ins.second)
5195     {
5196       // This is the first time we've seen this signature.
5197       ins.first->second.set_object(object);
5198       ins.first->second.set_shndx(shndx);
5199       if (is_comdat)
5200         ins.first->second.set_is_comdat();
5201       if (is_group_name)
5202         ins.first->second.set_is_group_name();
5203       return true;
5204     }
5205
5206   // We have already seen this signature.
5207
5208   if (ins.first->second.is_group_name())
5209     {
5210       // We've already seen a real section group with this signature.
5211       // If the kept group is from a plugin object, and we're in the
5212       // replacement phase, accept the new one as a replacement.
5213       if (ins.first->second.object() == NULL
5214           && parameters->options().plugins()->in_replacement_phase())
5215         {
5216           ins.first->second.set_object(object);
5217           ins.first->second.set_shndx(shndx);
5218           return true;
5219         }
5220       return false;
5221     }
5222   else if (is_group_name)
5223     {
5224       // This is a real section group, and we've already seen a
5225       // linkonce section with this signature.  Record that we've seen
5226       // a section group, and don't include this section group.
5227       ins.first->second.set_is_group_name();
5228       return false;
5229     }
5230   else
5231     {
5232       // We've already seen a linkonce section and this is a linkonce
5233       // section.  These don't block each other--this may be the same
5234       // symbol name with different section types.
5235       return true;
5236     }
5237 }
5238
5239 // Store the allocated sections into the section list.
5240
5241 void
5242 Layout::get_allocated_sections(Section_list* section_list) const
5243 {
5244   for (Section_list::const_iterator p = this->section_list_.begin();
5245        p != this->section_list_.end();
5246        ++p)
5247     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5248       section_list->push_back(*p);
5249 }
5250
5251 // Store the executable sections into the section list.
5252
5253 void
5254 Layout::get_executable_sections(Section_list* section_list) const
5255 {
5256   for (Section_list::const_iterator p = this->section_list_.begin();
5257        p != this->section_list_.end();
5258        ++p)
5259     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5260         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5261       section_list->push_back(*p);
5262 }
5263
5264 // Create an output segment.
5265
5266 Output_segment*
5267 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5268 {
5269   gold_assert(!parameters->options().relocatable());
5270   Output_segment* oseg = new Output_segment(type, flags);
5271   this->segment_list_.push_back(oseg);
5272
5273   if (type == elfcpp::PT_TLS)
5274     this->tls_segment_ = oseg;
5275   else if (type == elfcpp::PT_GNU_RELRO)
5276     this->relro_segment_ = oseg;
5277   else if (type == elfcpp::PT_INTERP)
5278     this->interp_segment_ = oseg;
5279
5280   return oseg;
5281 }
5282
5283 // Return the file offset of the normal symbol table.
5284
5285 off_t
5286 Layout::symtab_section_offset() const
5287 {
5288   if (this->symtab_section_ != NULL)
5289     return this->symtab_section_->offset();
5290   return 0;
5291 }
5292
5293 // Return the section index of the normal symbol table.  It may have
5294 // been stripped by the -s/--strip-all option.
5295
5296 unsigned int
5297 Layout::symtab_section_shndx() const
5298 {
5299   if (this->symtab_section_ != NULL)
5300     return this->symtab_section_->out_shndx();
5301   return 0;
5302 }
5303
5304 // Write out the Output_sections.  Most won't have anything to write,
5305 // since most of the data will come from input sections which are
5306 // handled elsewhere.  But some Output_sections do have Output_data.
5307
5308 void
5309 Layout::write_output_sections(Output_file* of) const
5310 {
5311   for (Section_list::const_iterator p = this->section_list_.begin();
5312        p != this->section_list_.end();
5313        ++p)
5314     {
5315       if (!(*p)->after_input_sections())
5316         (*p)->write(of);
5317     }
5318 }
5319
5320 // Write out data not associated with a section or the symbol table.
5321
5322 void
5323 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5324 {
5325   if (!parameters->options().strip_all())
5326     {
5327       const Output_section* symtab_section = this->symtab_section_;
5328       for (Section_list::const_iterator p = this->section_list_.begin();
5329            p != this->section_list_.end();
5330            ++p)
5331         {
5332           if ((*p)->needs_symtab_index())
5333             {
5334               gold_assert(symtab_section != NULL);
5335               unsigned int index = (*p)->symtab_index();
5336               gold_assert(index > 0 && index != -1U);
5337               off_t off = (symtab_section->offset()
5338                            + index * symtab_section->entsize());
5339               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5340             }
5341         }
5342     }
5343
5344   const Output_section* dynsym_section = this->dynsym_section_;
5345   for (Section_list::const_iterator p = this->section_list_.begin();
5346        p != this->section_list_.end();
5347        ++p)
5348     {
5349       if ((*p)->needs_dynsym_index())
5350         {
5351           gold_assert(dynsym_section != NULL);
5352           unsigned int index = (*p)->dynsym_index();
5353           gold_assert(index > 0 && index != -1U);
5354           off_t off = (dynsym_section->offset()
5355                        + index * dynsym_section->entsize());
5356           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5357         }
5358     }
5359
5360   // Write out the Output_data which are not in an Output_section.
5361   for (Data_list::const_iterator p = this->special_output_list_.begin();
5362        p != this->special_output_list_.end();
5363        ++p)
5364     (*p)->write(of);
5365
5366   // Write out the Output_data which are not in an Output_section
5367   // and are regenerated in each iteration of relaxation.
5368   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5369        p != this->relax_output_list_.end();
5370        ++p)
5371     (*p)->write(of);
5372 }
5373
5374 // Write out the Output_sections which can only be written after the
5375 // input sections are complete.
5376
5377 void
5378 Layout::write_sections_after_input_sections(Output_file* of)
5379 {
5380   // Determine the final section offsets, and thus the final output
5381   // file size.  Note we finalize the .shstrab last, to allow the
5382   // after_input_section sections to modify their section-names before
5383   // writing.
5384   if (this->any_postprocessing_sections_)
5385     {
5386       off_t off = this->output_file_size_;
5387       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5388
5389       // Now that we've finalized the names, we can finalize the shstrab.
5390       off =
5391         this->set_section_offsets(off,
5392                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5393
5394       if (off > this->output_file_size_)
5395         {
5396           of->resize(off);
5397           this->output_file_size_ = off;
5398         }
5399     }
5400
5401   for (Section_list::const_iterator p = this->section_list_.begin();
5402        p != this->section_list_.end();
5403        ++p)
5404     {
5405       if ((*p)->after_input_sections())
5406         (*p)->write(of);
5407     }
5408
5409   this->section_headers_->write(of);
5410 }
5411
5412 // If a tree-style build ID was requested, the parallel part of that computation
5413 // is already done, and the final hash-of-hashes is computed here.  For other
5414 // types of build IDs, all the work is done here.
5415
5416 void
5417 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5418                        size_t size_of_hashes) const
5419 {
5420   if (this->build_id_note_ == NULL)
5421     return;
5422
5423   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5424                                           this->build_id_note_->data_size());
5425
5426   if (array_of_hashes == NULL)
5427     {
5428       const size_t output_file_size = this->output_file_size();
5429       const unsigned char* iv = of->get_input_view(0, output_file_size);
5430       const char* style = parameters->options().build_id();
5431
5432       // If we get here with style == "tree" then the output must be
5433       // too small for chunking, and we use SHA-1 in that case.
5434       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5435         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5436       else if (strcmp(style, "md5") == 0)
5437         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5438       else
5439         gold_unreachable();
5440
5441       of->free_input_view(0, output_file_size, iv);
5442     }
5443   else
5444     {
5445       // Non-overlapping substrings of the output file have been hashed.
5446       // Compute SHA-1 hash of the hashes.
5447       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5448                   size_of_hashes, ov);
5449       delete[] array_of_hashes;
5450     }
5451
5452   of->write_output_view(this->build_id_note_->offset(),
5453                         this->build_id_note_->data_size(),
5454                         ov);
5455 }
5456
5457 // Write out a binary file.  This is called after the link is
5458 // complete.  IN is the temporary output file we used to generate the
5459 // ELF code.  We simply walk through the segments, read them from
5460 // their file offset in IN, and write them to their load address in
5461 // the output file.  FIXME: with a bit more work, we could support
5462 // S-records and/or Intel hex format here.
5463
5464 void
5465 Layout::write_binary(Output_file* in) const
5466 {
5467   gold_assert(parameters->options().oformat_enum()
5468               == General_options::OBJECT_FORMAT_BINARY);
5469
5470   // Get the size of the binary file.
5471   uint64_t max_load_address = 0;
5472   for (Segment_list::const_iterator p = this->segment_list_.begin();
5473        p != this->segment_list_.end();
5474        ++p)
5475     {
5476       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5477         {
5478           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5479           if (max_paddr > max_load_address)
5480             max_load_address = max_paddr;
5481         }
5482     }
5483
5484   Output_file out(parameters->options().output_file_name());
5485   out.open(max_load_address);
5486
5487   for (Segment_list::const_iterator p = this->segment_list_.begin();
5488        p != this->segment_list_.end();
5489        ++p)
5490     {
5491       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5492         {
5493           const unsigned char* vin = in->get_input_view((*p)->offset(),
5494                                                         (*p)->filesz());
5495           unsigned char* vout = out.get_output_view((*p)->paddr(),
5496                                                     (*p)->filesz());
5497           memcpy(vout, vin, (*p)->filesz());
5498           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5499           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5500         }
5501     }
5502
5503   out.close();
5504 }
5505
5506 // Print the output sections to the map file.
5507
5508 void
5509 Layout::print_to_mapfile(Mapfile* mapfile) const
5510 {
5511   for (Segment_list::const_iterator p = this->segment_list_.begin();
5512        p != this->segment_list_.end();
5513        ++p)
5514     (*p)->print_sections_to_mapfile(mapfile);
5515   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5516        p != this->unattached_section_list_.end();
5517        ++p)
5518     (*p)->print_to_mapfile(mapfile);
5519 }
5520
5521 // Print statistical information to stderr.  This is used for --stats.
5522
5523 void
5524 Layout::print_stats() const
5525 {
5526   this->namepool_.print_stats("section name pool");
5527   this->sympool_.print_stats("output symbol name pool");
5528   this->dynpool_.print_stats("dynamic name pool");
5529
5530   for (Section_list::const_iterator p = this->section_list_.begin();
5531        p != this->section_list_.end();
5532        ++p)
5533     (*p)->print_merge_stats();
5534 }
5535
5536 // Write_sections_task methods.
5537
5538 // We can always run this task.
5539
5540 Task_token*
5541 Write_sections_task::is_runnable()
5542 {
5543   return NULL;
5544 }
5545
5546 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5547 // when finished.
5548
5549 void
5550 Write_sections_task::locks(Task_locker* tl)
5551 {
5552   tl->add(this, this->output_sections_blocker_);
5553   if (this->input_sections_blocker_ != NULL)
5554     tl->add(this, this->input_sections_blocker_);
5555   tl->add(this, this->final_blocker_);
5556 }
5557
5558 // Run the task--write out the data.
5559
5560 void
5561 Write_sections_task::run(Workqueue*)
5562 {
5563   this->layout_->write_output_sections(this->of_);
5564 }
5565
5566 // Write_data_task methods.
5567
5568 // We can always run this task.
5569
5570 Task_token*
5571 Write_data_task::is_runnable()
5572 {
5573   return NULL;
5574 }
5575
5576 // We need to unlock FINAL_BLOCKER when finished.
5577
5578 void
5579 Write_data_task::locks(Task_locker* tl)
5580 {
5581   tl->add(this, this->final_blocker_);
5582 }
5583
5584 // Run the task--write out the data.
5585
5586 void
5587 Write_data_task::run(Workqueue*)
5588 {
5589   this->layout_->write_data(this->symtab_, this->of_);
5590 }
5591
5592 // Write_symbols_task methods.
5593
5594 // We can always run this task.
5595
5596 Task_token*
5597 Write_symbols_task::is_runnable()
5598 {
5599   return NULL;
5600 }
5601
5602 // We need to unlock FINAL_BLOCKER when finished.
5603
5604 void
5605 Write_symbols_task::locks(Task_locker* tl)
5606 {
5607   tl->add(this, this->final_blocker_);
5608 }
5609
5610 // Run the task--write out the symbols.
5611
5612 void
5613 Write_symbols_task::run(Workqueue*)
5614 {
5615   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5616                                this->layout_->symtab_xindex(),
5617                                this->layout_->dynsym_xindex(), this->of_);
5618 }
5619
5620 // Write_after_input_sections_task methods.
5621
5622 // We can only run this task after the input sections have completed.
5623
5624 Task_token*
5625 Write_after_input_sections_task::is_runnable()
5626 {
5627   if (this->input_sections_blocker_->is_blocked())
5628     return this->input_sections_blocker_;
5629   return NULL;
5630 }
5631
5632 // We need to unlock FINAL_BLOCKER when finished.
5633
5634 void
5635 Write_after_input_sections_task::locks(Task_locker* tl)
5636 {
5637   tl->add(this, this->final_blocker_);
5638 }
5639
5640 // Run the task.
5641
5642 void
5643 Write_after_input_sections_task::run(Workqueue*)
5644 {
5645   this->layout_->write_sections_after_input_sections(this->of_);
5646 }
5647
5648 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5649 // or as a "tree" where each chunk of the string is hashed and then those
5650 // hashes are put into a (much smaller) string which is hashed with sha1.
5651 // We compute a checksum over the entire file because that is simplest.
5652
5653 void
5654 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5655 {
5656   Task_token* post_hash_tasks_blocker = new Task_token(true);
5657   const Layout* layout = this->layout_;
5658   Output_file* of = this->of_;
5659   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5660                            : static_cast<size_t>(layout->output_file_size()));
5661   unsigned char* array_of_hashes = NULL;
5662   size_t size_of_hashes = 0;
5663
5664   if (strcmp(this->options_->build_id(), "tree") == 0
5665       && this->options_->build_id_chunk_size_for_treehash() > 0
5666       && filesize > 0
5667       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5668     {
5669       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5670       const size_t chunk_size =
5671           this->options_->build_id_chunk_size_for_treehash();
5672       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5673       post_hash_tasks_blocker->add_blockers(num_hashes);
5674       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5675       array_of_hashes = new unsigned char[size_of_hashes];
5676       unsigned char *dst = array_of_hashes;
5677       for (size_t i = 0, src_offset = 0; i < num_hashes;
5678            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5679         {
5680           size_t size = std::min(chunk_size, filesize - src_offset);
5681           workqueue->queue(new Hash_task(of,
5682                                          src_offset,
5683                                          size,
5684                                          dst,
5685                                          post_hash_tasks_blocker));
5686         }
5687     }
5688
5689   // Queue the final task to write the build id and close the output file.
5690   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5691                                                            layout,
5692                                                            of,
5693                                                            array_of_hashes,
5694                                                            size_of_hashes),
5695                                      post_hash_tasks_blocker,
5696                                      "Task_function Close_task_runner"));
5697 }
5698
5699 // Close_task_runner methods.
5700
5701 // Finish up the build ID computation, if necessary, and write a binary file,
5702 // if necessary.  Then close the output file.
5703
5704 void
5705 Close_task_runner::run(Workqueue*, const Task*)
5706 {
5707   // At this point the multi-threaded part of the build ID computation,
5708   // if any, is done.  See Build_id_task_runner.
5709   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5710                                 this->size_of_hashes_);
5711
5712   // If we've been asked to create a binary file, we do so here.
5713   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5714     this->layout_->write_binary(this->of_);
5715
5716   this->of_->close();
5717 }
5718
5719 // Instantiate the templates we need.  We could use the configure
5720 // script to restrict this to only the ones for implemented targets.
5721
5722 #ifdef HAVE_TARGET_32_LITTLE
5723 template
5724 Output_section*
5725 Layout::init_fixed_output_section<32, false>(
5726     const char* name,
5727     elfcpp::Shdr<32, false>& shdr);
5728 #endif
5729
5730 #ifdef HAVE_TARGET_32_BIG
5731 template
5732 Output_section*
5733 Layout::init_fixed_output_section<32, true>(
5734     const char* name,
5735     elfcpp::Shdr<32, true>& shdr);
5736 #endif
5737
5738 #ifdef HAVE_TARGET_64_LITTLE
5739 template
5740 Output_section*
5741 Layout::init_fixed_output_section<64, false>(
5742     const char* name,
5743     elfcpp::Shdr<64, false>& shdr);
5744 #endif
5745
5746 #ifdef HAVE_TARGET_64_BIG
5747 template
5748 Output_section*
5749 Layout::init_fixed_output_section<64, true>(
5750     const char* name,
5751     elfcpp::Shdr<64, true>& shdr);
5752 #endif
5753
5754 #ifdef HAVE_TARGET_32_LITTLE
5755 template
5756 Output_section*
5757 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5758                           unsigned int shndx,
5759                           const char* name,
5760                           const elfcpp::Shdr<32, false>& shdr,
5761                           unsigned int, unsigned int, off_t*);
5762 #endif
5763
5764 #ifdef HAVE_TARGET_32_BIG
5765 template
5766 Output_section*
5767 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5768                          unsigned int shndx,
5769                          const char* name,
5770                          const elfcpp::Shdr<32, true>& shdr,
5771                          unsigned int, unsigned int, off_t*);
5772 #endif
5773
5774 #ifdef HAVE_TARGET_64_LITTLE
5775 template
5776 Output_section*
5777 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5778                           unsigned int shndx,
5779                           const char* name,
5780                           const elfcpp::Shdr<64, false>& shdr,
5781                           unsigned int, unsigned int, off_t*);
5782 #endif
5783
5784 #ifdef HAVE_TARGET_64_BIG
5785 template
5786 Output_section*
5787 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5788                          unsigned int shndx,
5789                          const char* name,
5790                          const elfcpp::Shdr<64, true>& shdr,
5791                          unsigned int, unsigned int, off_t*);
5792 #endif
5793
5794 #ifdef HAVE_TARGET_32_LITTLE
5795 template
5796 Output_section*
5797 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5798                                 unsigned int reloc_shndx,
5799                                 const elfcpp::Shdr<32, false>& shdr,
5800                                 Output_section* data_section,
5801                                 Relocatable_relocs* rr);
5802 #endif
5803
5804 #ifdef HAVE_TARGET_32_BIG
5805 template
5806 Output_section*
5807 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5808                                unsigned int reloc_shndx,
5809                                const elfcpp::Shdr<32, true>& shdr,
5810                                Output_section* data_section,
5811                                Relocatable_relocs* rr);
5812 #endif
5813
5814 #ifdef HAVE_TARGET_64_LITTLE
5815 template
5816 Output_section*
5817 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5818                                 unsigned int reloc_shndx,
5819                                 const elfcpp::Shdr<64, false>& shdr,
5820                                 Output_section* data_section,
5821                                 Relocatable_relocs* rr);
5822 #endif
5823
5824 #ifdef HAVE_TARGET_64_BIG
5825 template
5826 Output_section*
5827 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5828                                unsigned int reloc_shndx,
5829                                const elfcpp::Shdr<64, true>& shdr,
5830                                Output_section* data_section,
5831                                Relocatable_relocs* rr);
5832 #endif
5833
5834 #ifdef HAVE_TARGET_32_LITTLE
5835 template
5836 void
5837 Layout::layout_group<32, false>(Symbol_table* symtab,
5838                                 Sized_relobj_file<32, false>* object,
5839                                 unsigned int,
5840                                 const char* group_section_name,
5841                                 const char* signature,
5842                                 const elfcpp::Shdr<32, false>& shdr,
5843                                 elfcpp::Elf_Word flags,
5844                                 std::vector<unsigned int>* shndxes);
5845 #endif
5846
5847 #ifdef HAVE_TARGET_32_BIG
5848 template
5849 void
5850 Layout::layout_group<32, true>(Symbol_table* symtab,
5851                                Sized_relobj_file<32, true>* object,
5852                                unsigned int,
5853                                const char* group_section_name,
5854                                const char* signature,
5855                                const elfcpp::Shdr<32, true>& shdr,
5856                                elfcpp::Elf_Word flags,
5857                                std::vector<unsigned int>* shndxes);
5858 #endif
5859
5860 #ifdef HAVE_TARGET_64_LITTLE
5861 template
5862 void
5863 Layout::layout_group<64, false>(Symbol_table* symtab,
5864                                 Sized_relobj_file<64, false>* object,
5865                                 unsigned int,
5866                                 const char* group_section_name,
5867                                 const char* signature,
5868                                 const elfcpp::Shdr<64, false>& shdr,
5869                                 elfcpp::Elf_Word flags,
5870                                 std::vector<unsigned int>* shndxes);
5871 #endif
5872
5873 #ifdef HAVE_TARGET_64_BIG
5874 template
5875 void
5876 Layout::layout_group<64, true>(Symbol_table* symtab,
5877                                Sized_relobj_file<64, true>* object,
5878                                unsigned int,
5879                                const char* group_section_name,
5880                                const char* signature,
5881                                const elfcpp::Shdr<64, true>& shdr,
5882                                elfcpp::Elf_Word flags,
5883                                std::vector<unsigned int>* shndxes);
5884 #endif
5885
5886 #ifdef HAVE_TARGET_32_LITTLE
5887 template
5888 Output_section*
5889 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5890                                    const unsigned char* symbols,
5891                                    off_t symbols_size,
5892                                    const unsigned char* symbol_names,
5893                                    off_t symbol_names_size,
5894                                    unsigned int shndx,
5895                                    const elfcpp::Shdr<32, false>& shdr,
5896                                    unsigned int reloc_shndx,
5897                                    unsigned int reloc_type,
5898                                    off_t* off);
5899 #endif
5900
5901 #ifdef HAVE_TARGET_32_BIG
5902 template
5903 Output_section*
5904 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5905                                   const unsigned char* symbols,
5906                                   off_t symbols_size,
5907                                   const unsigned char* symbol_names,
5908                                   off_t symbol_names_size,
5909                                   unsigned int shndx,
5910                                   const elfcpp::Shdr<32, true>& shdr,
5911                                   unsigned int reloc_shndx,
5912                                   unsigned int reloc_type,
5913                                   off_t* off);
5914 #endif
5915
5916 #ifdef HAVE_TARGET_64_LITTLE
5917 template
5918 Output_section*
5919 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5920                                    const unsigned char* symbols,
5921                                    off_t symbols_size,
5922                                    const unsigned char* symbol_names,
5923                                    off_t symbol_names_size,
5924                                    unsigned int shndx,
5925                                    const elfcpp::Shdr<64, false>& shdr,
5926                                    unsigned int reloc_shndx,
5927                                    unsigned int reloc_type,
5928                                    off_t* off);
5929 #endif
5930
5931 #ifdef HAVE_TARGET_64_BIG
5932 template
5933 Output_section*
5934 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5935                                   const unsigned char* symbols,
5936                                   off_t symbols_size,
5937                                   const unsigned char* symbol_names,
5938                                   off_t symbol_names_size,
5939                                   unsigned int shndx,
5940                                   const elfcpp::Shdr<64, true>& shdr,
5941                                   unsigned int reloc_shndx,
5942                                   unsigned int reloc_type,
5943                                   off_t* off);
5944 #endif
5945
5946 #ifdef HAVE_TARGET_32_LITTLE
5947 template
5948 void
5949 Layout::add_to_gdb_index(bool is_type_unit,
5950                          Sized_relobj<32, false>* object,
5951                          const unsigned char* symbols,
5952                          off_t symbols_size,
5953                          unsigned int shndx,
5954                          unsigned int reloc_shndx,
5955                          unsigned int reloc_type);
5956 #endif
5957
5958 #ifdef HAVE_TARGET_32_BIG
5959 template
5960 void
5961 Layout::add_to_gdb_index(bool is_type_unit,
5962                          Sized_relobj<32, true>* object,
5963                          const unsigned char* symbols,
5964                          off_t symbols_size,
5965                          unsigned int shndx,
5966                          unsigned int reloc_shndx,
5967                          unsigned int reloc_type);
5968 #endif
5969
5970 #ifdef HAVE_TARGET_64_LITTLE
5971 template
5972 void
5973 Layout::add_to_gdb_index(bool is_type_unit,
5974                          Sized_relobj<64, false>* object,
5975                          const unsigned char* symbols,
5976                          off_t symbols_size,
5977                          unsigned int shndx,
5978                          unsigned int reloc_shndx,
5979                          unsigned int reloc_type);
5980 #endif
5981
5982 #ifdef HAVE_TARGET_64_BIG
5983 template
5984 void
5985 Layout::add_to_gdb_index(bool is_type_unit,
5986                          Sized_relobj<64, true>* object,
5987                          const unsigned char* symbols,
5988                          off_t symbols_size,
5989                          unsigned int shndx,
5990                          unsigned int reloc_shndx,
5991                          unsigned int reloc_type);
5992 #endif
5993
5994 } // End namespace gold.