Don't write unattached after_input sections twice.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "compressed_output.h"
36 #include "layout.h"
37
38 namespace gold
39 {
40
41 // Layout_task_runner methods.
42
43 // Lay out the sections.  This is called after all the input objects
44 // have been read.
45
46 void
47 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
48 {
49   off_t file_size = this->layout_->finalize(this->input_objects_,
50                                             this->symtab_,
51                                             task);
52
53   // Now we know the final size of the output file and we know where
54   // each piece of information goes.
55   Output_file* of = new Output_file(this->options_,
56                                     this->input_objects_->target());
57   of->open(file_size);
58
59   // Queue up the final set of tasks.
60   gold::queue_final_tasks(this->options_, this->input_objects_,
61                           this->symtab_, this->layout_, workqueue, of);
62 }
63
64 // Layout methods.
65
66 Layout::Layout(const General_options& options)
67   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
68     section_name_map_(), segment_list_(), section_list_(),
69     unattached_section_list_(), special_output_list_(),
70     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
71     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
72     eh_frame_section_(NULL), output_file_size_(-1),
73     input_requires_executable_stack_(false),
74     input_with_gnu_stack_note_(false),
75     input_without_gnu_stack_note_(false),
76     has_static_tls_(false),
77     any_postprocessing_sections_(false)
78 {
79   // Make space for more than enough segments for a typical file.
80   // This is just for efficiency--it's OK if we wind up needing more.
81   this->segment_list_.reserve(12);
82
83   // We expect two unattached Output_data objects: the file header and
84   // the segment headers.
85   this->special_output_list_.reserve(2);
86 }
87
88 // Hash a key we use to look up an output section mapping.
89
90 size_t
91 Layout::Hash_key::operator()(const Layout::Key& k) const
92 {
93  return k.first + k.second.first + k.second.second;
94 }
95
96 // Return whether PREFIX is a prefix of STR.
97
98 static inline bool
99 is_prefix_of(const char* prefix, const char* str)
100 {
101   return strncmp(prefix, str, strlen(prefix)) == 0;
102 }
103
104 // Returns whether the given section is in the list of
105 // debug-sections-used-by-some-version-of-gdb.  Currently,
106 // we've checked versions of gdb up to and including 6.7.1.
107
108 static const char* gdb_sections[] =
109 { ".debug_abbrev",
110   // ".debug_aranges",   // not used by gdb as of 6.7.1
111   ".debug_frame",
112   ".debug_info",
113   ".debug_line",
114   ".debug_loc",
115   ".debug_macinfo",
116   // ".debug_pubnames",  // not used by gdb as of 6.7.1
117   ".debug_ranges",
118   ".debug_str",
119 };
120
121 static inline bool
122 is_gdb_debug_section(const char* str)
123 {
124   // We can do this faster: binary search or a hashtable.  But why bother?
125   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
126     if (strcmp(str, gdb_sections[i]) == 0)
127       return true;
128   return false;
129 }
130
131 // Whether to include this section in the link.
132
133 template<int size, bool big_endian>
134 bool
135 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
136                         const elfcpp::Shdr<size, big_endian>& shdr)
137 {
138   // Some section types are never linked.  Some are only linked when
139   // doing a relocateable link.
140   switch (shdr.get_sh_type())
141     {
142     case elfcpp::SHT_NULL:
143     case elfcpp::SHT_SYMTAB:
144     case elfcpp::SHT_DYNSYM:
145     case elfcpp::SHT_STRTAB:
146     case elfcpp::SHT_HASH:
147     case elfcpp::SHT_DYNAMIC:
148     case elfcpp::SHT_SYMTAB_SHNDX:
149       return false;
150
151     case elfcpp::SHT_RELA:
152     case elfcpp::SHT_REL:
153     case elfcpp::SHT_GROUP:
154       return parameters->output_is_object();
155
156     case elfcpp::SHT_PROGBITS:
157       if (parameters->strip_debug()
158           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
159         {
160           // Debugging sections can only be recognized by name.
161           if (is_prefix_of(".debug", name)
162               || is_prefix_of(".gnu.linkonce.wi.", name)
163               || is_prefix_of(".line", name)
164               || is_prefix_of(".stab", name))
165             return false;
166         }
167       if (parameters->strip_debug_gdb()
168           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
169         {
170           // Debugging sections can only be recognized by name.
171           if (is_prefix_of(".debug", name)
172               && !is_gdb_debug_section(name))
173             return false;
174         }
175       return true;
176
177     default:
178       return true;
179     }
180 }
181
182 // Return an output section named NAME, or NULL if there is none.
183
184 Output_section*
185 Layout::find_output_section(const char* name) const
186 {
187   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
188        p != this->section_name_map_.end();
189        ++p)
190     if (strcmp(p->second->name(), name) == 0)
191       return p->second;
192   return NULL;
193 }
194
195 // Return an output segment of type TYPE, with segment flags SET set
196 // and segment flags CLEAR clear.  Return NULL if there is none.
197
198 Output_segment*
199 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
200                             elfcpp::Elf_Word clear) const
201 {
202   for (Segment_list::const_iterator p = this->segment_list_.begin();
203        p != this->segment_list_.end();
204        ++p)
205     if (static_cast<elfcpp::PT>((*p)->type()) == type
206         && ((*p)->flags() & set) == set
207         && ((*p)->flags() & clear) == 0)
208       return *p;
209   return NULL;
210 }
211
212 // Return the output section to use for section NAME with type TYPE
213 // and section flags FLAGS.
214
215 Output_section*
216 Layout::get_output_section(const char* name, Stringpool::Key name_key,
217                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
218 {
219   // We should ignore some flags.
220   flags &= ~ (elfcpp::SHF_INFO_LINK
221               | elfcpp::SHF_LINK_ORDER
222               | elfcpp::SHF_GROUP
223               | elfcpp::SHF_MERGE
224               | elfcpp::SHF_STRINGS);
225
226   const Key key(name_key, std::make_pair(type, flags));
227   const std::pair<Key, Output_section*> v(key, NULL);
228   std::pair<Section_name_map::iterator, bool> ins(
229     this->section_name_map_.insert(v));
230
231   if (!ins.second)
232     return ins.first->second;
233   else
234     {
235       // This is the first time we've seen this name/type/flags
236       // combination.
237       Output_section* os = this->make_output_section(name, type, flags);
238       ins.first->second = os;
239       return os;
240     }
241 }
242
243 // Return the output section to use for input section SHNDX, with name
244 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
245 // index of a relocation section which applies to this section, or 0
246 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
247 // relocation section if there is one.  Set *OFF to the offset of this
248 // input section without the output section.  Return NULL if the
249 // section should be discarded.  Set *OFF to -1 if the section
250 // contents should not be written directly to the output file, but
251 // will instead receive special handling.
252
253 template<int size, bool big_endian>
254 Output_section*
255 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
256                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
257                unsigned int reloc_shndx, unsigned int, off_t* off)
258 {
259   if (!this->include_section(object, name, shdr))
260     return NULL;
261
262   // If we are not doing a relocateable link, choose the name to use
263   // for the output section.
264   size_t len = strlen(name);
265   if (!parameters->output_is_object())
266     name = Layout::output_section_name(name, &len);
267
268   // FIXME: Handle SHF_OS_NONCONFORMING here.
269
270   // Canonicalize the section name.
271   Stringpool::Key name_key;
272   name = this->namepool_.add_prefix(name, len, &name_key);
273
274   // Find the output section.  The output section is selected based on
275   // the section name, type, and flags.
276   Output_section* os = this->get_output_section(name, name_key,
277                                                 shdr.get_sh_type(),
278                                                 shdr.get_sh_flags());
279
280   // FIXME: Handle SHF_LINK_ORDER somewhere.
281
282   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
283
284   return os;
285 }
286
287 // Special GNU handling of sections name .eh_frame.  They will
288 // normally hold exception frame data as defined by the C++ ABI
289 // (http://codesourcery.com/cxx-abi/).
290
291 template<int size, bool big_endian>
292 Output_section*
293 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
294                         const unsigned char* symbols,
295                         off_t symbols_size,
296                         const unsigned char* symbol_names,
297                         off_t symbol_names_size,
298                         unsigned int shndx,
299                         const elfcpp::Shdr<size, big_endian>& shdr,
300                         unsigned int reloc_shndx, unsigned int reloc_type,
301                         off_t* off)
302 {
303   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
304   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
305
306   Stringpool::Key name_key;
307   const char* name = this->namepool_.add(".eh_frame", false, &name_key);
308
309   Output_section* os = this->get_output_section(name, name_key,
310                                                 elfcpp::SHT_PROGBITS,
311                                                 elfcpp::SHF_ALLOC);
312
313   if (this->eh_frame_section_ == NULL)
314     {
315       this->eh_frame_section_ = os;
316       this->eh_frame_data_ = new Eh_frame();
317       os->add_output_section_data(this->eh_frame_data_);
318
319       if (this->options_.create_eh_frame_hdr())
320         {
321           Stringpool::Key hdr_name_key;
322           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
323                                                      false,
324                                                      &hdr_name_key);
325           Output_section* hdr_os =
326             this->get_output_section(hdr_name, hdr_name_key,
327                                      elfcpp::SHT_PROGBITS,
328                                      elfcpp::SHF_ALLOC);
329
330           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
331           hdr_os->add_output_section_data(hdr_posd);
332
333           hdr_os->set_after_input_sections();
334
335           Output_segment* hdr_oseg =
336             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
337           this->segment_list_.push_back(hdr_oseg);
338           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
339
340           this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
341         }
342     }
343
344   gold_assert(this->eh_frame_section_ == os);
345
346   if (this->eh_frame_data_->add_ehframe_input_section(object,
347                                                       symbols,
348                                                       symbols_size,
349                                                       symbol_names,
350                                                       symbol_names_size,
351                                                       shndx,
352                                                       reloc_shndx,
353                                                       reloc_type))
354     *off = -1;
355   else
356     {
357       // We couldn't handle this .eh_frame section for some reason.
358       // Add it as a normal section.
359       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
360     }
361
362   return os;
363 }
364
365 // Add POSD to an output section using NAME, TYPE, and FLAGS.
366
367 void
368 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
369                                 elfcpp::Elf_Xword flags,
370                                 Output_section_data* posd)
371 {
372   // Canonicalize the name.
373   Stringpool::Key name_key;
374   name = this->namepool_.add(name, true, &name_key);
375
376   Output_section* os = this->get_output_section(name, name_key, type, flags);
377   os->add_output_section_data(posd);
378 }
379
380 // Map section flags to segment flags.
381
382 elfcpp::Elf_Word
383 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
384 {
385   elfcpp::Elf_Word ret = elfcpp::PF_R;
386   if ((flags & elfcpp::SHF_WRITE) != 0)
387     ret |= elfcpp::PF_W;
388   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
389     ret |= elfcpp::PF_X;
390   return ret;
391 }
392
393 // Sometimes we compress sections.  This is typically done for
394 // sections that are not part of normal program execution (such as
395 // .debug_* sections), and where the readers of these sections know
396 // how to deal with compressed sections.  (To make it easier for them,
397 // we will rename the ouput section in such cases from .foo to
398 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
399 // doesn't say for certain whether we'll compress -- it depends on
400 // commandline options as well -- just whether this section is a
401 // candidate for compression.
402
403 static bool
404 is_compressible_debug_section(const char* secname)
405 {
406   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
407 }
408
409 // Make a new Output_section, and attach it to segments as
410 // appropriate.
411
412 Output_section*
413 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
414                             elfcpp::Elf_Xword flags)
415 {
416   Output_section* os;
417   if ((flags & elfcpp::SHF_ALLOC) == 0
418       && this->options_.compress_debug_sections()
419       && is_compressible_debug_section(name))
420     os = new Output_compressed_section(&this->options_, name, type, flags);
421   else
422     os = new Output_section(name, type, flags);
423
424   this->section_list_.push_back(os);
425
426   if ((flags & elfcpp::SHF_ALLOC) == 0)
427     this->unattached_section_list_.push_back(os);
428   else
429     {
430       // This output section goes into a PT_LOAD segment.
431
432       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
433
434       // The only thing we really care about for PT_LOAD segments is
435       // whether or not they are writable, so that is how we search
436       // for them.  People who need segments sorted on some other
437       // basis will have to wait until we implement a mechanism for
438       // them to describe the segments they want.
439
440       Segment_list::const_iterator p;
441       for (p = this->segment_list_.begin();
442            p != this->segment_list_.end();
443            ++p)
444         {
445           if ((*p)->type() == elfcpp::PT_LOAD
446               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
447             {
448               (*p)->add_output_section(os, seg_flags);
449               break;
450             }
451         }
452
453       if (p == this->segment_list_.end())
454         {
455           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
456                                                     seg_flags);
457           this->segment_list_.push_back(oseg);
458           oseg->add_output_section(os, seg_flags);
459         }
460
461       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
462       // segment.
463       if (type == elfcpp::SHT_NOTE)
464         {
465           // See if we already have an equivalent PT_NOTE segment.
466           for (p = this->segment_list_.begin();
467                p != segment_list_.end();
468                ++p)
469             {
470               if ((*p)->type() == elfcpp::PT_NOTE
471                   && (((*p)->flags() & elfcpp::PF_W)
472                       == (seg_flags & elfcpp::PF_W)))
473                 {
474                   (*p)->add_output_section(os, seg_flags);
475                   break;
476                 }
477             }
478
479           if (p == this->segment_list_.end())
480             {
481               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
482                                                         seg_flags);
483               this->segment_list_.push_back(oseg);
484               oseg->add_output_section(os, seg_flags);
485             }
486         }
487
488       // If we see a loadable SHF_TLS section, we create a PT_TLS
489       // segment.  There can only be one such segment.
490       if ((flags & elfcpp::SHF_TLS) != 0)
491         {
492           if (this->tls_segment_ == NULL)
493             {
494               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
495                                                       seg_flags);
496               this->segment_list_.push_back(this->tls_segment_);
497             }
498           this->tls_segment_->add_output_section(os, seg_flags);
499         }
500     }
501
502   return os;
503 }
504
505 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
506 // is whether we saw a .note.GNU-stack section in the object file.
507 // GNU_STACK_FLAGS is the section flags.  The flags give the
508 // protection required for stack memory.  We record this in an
509 // executable as a PT_GNU_STACK segment.  If an object file does not
510 // have a .note.GNU-stack segment, we must assume that it is an old
511 // object.  On some targets that will force an executable stack.
512
513 void
514 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
515 {
516   if (!seen_gnu_stack)
517     this->input_without_gnu_stack_note_ = true;
518   else
519     {
520       this->input_with_gnu_stack_note_ = true;
521       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
522         this->input_requires_executable_stack_ = true;
523     }
524 }
525
526 // Create the dynamic sections which are needed before we read the
527 // relocs.
528
529 void
530 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
531                                         Symbol_table* symtab)
532 {
533   if (parameters->doing_static_link())
534     return;
535
536   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
537   this->dynamic_section_ = this->make_output_section(dynamic_name,
538                                                      elfcpp::SHT_DYNAMIC,
539                                                      (elfcpp::SHF_ALLOC
540                                                       | elfcpp::SHF_WRITE));
541
542   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
543                                 this->dynamic_section_, 0, 0,
544                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
545                                 elfcpp::STV_HIDDEN, 0, false, false);
546
547   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
548
549   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
550 }
551
552 // For each output section whose name can be represented as C symbol,
553 // define __start and __stop symbols for the section.  This is a GNU
554 // extension.
555
556 void
557 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
558 {
559   for (Section_list::const_iterator p = this->section_list_.begin();
560        p != this->section_list_.end();
561        ++p)
562     {
563       const char* const name = (*p)->name();
564       if (name[strspn(name,
565                       ("0123456789"
566                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
567                        "abcdefghijklmnopqrstuvwxyz"
568                        "_"))]
569           == '\0')
570         {
571           const std::string name_string(name);
572           const std::string start_name("__start_" + name_string);
573           const std::string stop_name("__stop_" + name_string);
574
575           symtab->define_in_output_data(target,
576                                         start_name.c_str(),
577                                         NULL, // version
578                                         *p,
579                                         0, // value
580                                         0, // symsize
581                                         elfcpp::STT_NOTYPE,
582                                         elfcpp::STB_GLOBAL,
583                                         elfcpp::STV_DEFAULT,
584                                         0, // nonvis
585                                         false, // offset_is_from_end
586                                         false); // only_if_ref
587
588           symtab->define_in_output_data(target,
589                                         stop_name.c_str(),
590                                         NULL, // version
591                                         *p,
592                                         0, // value
593                                         0, // symsize
594                                         elfcpp::STT_NOTYPE,
595                                         elfcpp::STB_GLOBAL,
596                                         elfcpp::STV_DEFAULT,
597                                         0, // nonvis
598                                         true, // offset_is_from_end
599                                         false); // only_if_ref
600         }
601     }
602 }
603
604 // Find the first read-only PT_LOAD segment, creating one if
605 // necessary.
606
607 Output_segment*
608 Layout::find_first_load_seg()
609 {
610   for (Segment_list::const_iterator p = this->segment_list_.begin();
611        p != this->segment_list_.end();
612        ++p)
613     {
614       if ((*p)->type() == elfcpp::PT_LOAD
615           && ((*p)->flags() & elfcpp::PF_R) != 0
616           && ((*p)->flags() & elfcpp::PF_W) == 0)
617         return *p;
618     }
619
620   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
621   this->segment_list_.push_back(load_seg);
622   return load_seg;
623 }
624
625 // Finalize the layout.  When this is called, we have created all the
626 // output sections and all the output segments which are based on
627 // input sections.  We have several things to do, and we have to do
628 // them in the right order, so that we get the right results correctly
629 // and efficiently.
630
631 // 1) Finalize the list of output segments and create the segment
632 // table header.
633
634 // 2) Finalize the dynamic symbol table and associated sections.
635
636 // 3) Determine the final file offset of all the output segments.
637
638 // 4) Determine the final file offset of all the SHF_ALLOC output
639 // sections.
640
641 // 5) Create the symbol table sections and the section name table
642 // section.
643
644 // 6) Finalize the symbol table: set symbol values to their final
645 // value and make a final determination of which symbols are going
646 // into the output symbol table.
647
648 // 7) Create the section table header.
649
650 // 8) Determine the final file offset of all the output sections which
651 // are not SHF_ALLOC, including the section table header.
652
653 // 9) Finalize the ELF file header.
654
655 // This function returns the size of the output file.
656
657 off_t
658 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
659                  const Task* task)
660 {
661   Target* const target = input_objects->target();
662
663   target->finalize_sections(this);
664
665   this->count_local_symbols(task, input_objects);
666
667   this->create_gold_note();
668   this->create_executable_stack_info(target);
669
670   Output_segment* phdr_seg = NULL;
671   if (!parameters->doing_static_link())
672     {
673       // There was a dynamic object in the link.  We need to create
674       // some information for the dynamic linker.
675
676       // Create the PT_PHDR segment which will hold the program
677       // headers.
678       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
679       this->segment_list_.push_back(phdr_seg);
680
681       // Create the dynamic symbol table, including the hash table.
682       Output_section* dynstr;
683       std::vector<Symbol*> dynamic_symbols;
684       unsigned int local_dynamic_count;
685       Versions versions;
686       this->create_dynamic_symtab(input_objects, target, symtab, &dynstr,
687                                   &local_dynamic_count, &dynamic_symbols,
688                                   &versions);
689
690       // Create the .interp section to hold the name of the
691       // interpreter, and put it in a PT_INTERP segment.
692       if (!parameters->output_is_shared())
693         this->create_interp(target);
694
695       // Finish the .dynamic section to hold the dynamic data, and put
696       // it in a PT_DYNAMIC segment.
697       this->finish_dynamic_section(input_objects, symtab);
698
699       // We should have added everything we need to the dynamic string
700       // table.
701       this->dynpool_.set_string_offsets();
702
703       // Create the version sections.  We can't do this until the
704       // dynamic string table is complete.
705       this->create_version_sections(&versions, symtab, local_dynamic_count,
706                                     dynamic_symbols, dynstr);
707     }
708
709   // FIXME: Handle PT_GNU_STACK.
710
711   Output_segment* load_seg = this->find_first_load_seg();
712
713   // Lay out the segment headers.
714   Output_segment_headers* segment_headers;
715   segment_headers = new Output_segment_headers(this->segment_list_);
716   load_seg->add_initial_output_data(segment_headers);
717   this->special_output_list_.push_back(segment_headers);
718   if (phdr_seg != NULL)
719     phdr_seg->add_initial_output_data(segment_headers);
720
721   // Lay out the file header.
722   Output_file_header* file_header;
723   file_header = new Output_file_header(target, symtab, segment_headers);
724   load_seg->add_initial_output_data(file_header);
725   this->special_output_list_.push_back(file_header);
726
727   // We set the output section indexes in set_segment_offsets and
728   // set_section_indexes.
729   unsigned int shndx = 1;
730
731   // Set the file offsets of all the segments, and all the sections
732   // they contain.
733   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
734
735   // Create the symbol table sections.
736   this->create_symtab_sections(input_objects, symtab, task, &off);
737   if (!parameters->doing_static_link())
738     this->assign_local_dynsym_offsets(input_objects);
739
740   // Create the .shstrtab section.
741   Output_section* shstrtab_section = this->create_shstrtab();
742
743   // Set the file offsets of all the non-data sections which don't
744   // have to wait for the input sections.
745   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
746
747   // Now that all sections have been created, set the section indexes.
748   shndx = this->set_section_indexes(shndx);
749
750   // Create the section table header.
751   this->create_shdrs(&off);
752
753   // If there are no sections which require postprocessing, we can
754   // handle the section names now, and avoid a resize later.
755   if (!this->any_postprocessing_sections_)
756     off = this->set_section_offsets(off,
757                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
758
759   file_header->set_section_info(this->section_headers_, shstrtab_section);
760
761   // Now we know exactly where everything goes in the output file
762   // (except for non-allocated sections which require postprocessing).
763   Output_data::layout_complete();
764
765   this->output_file_size_ = off;
766
767   return off;
768 }
769
770 // Create a .note section for an executable or shared library.  This
771 // records the version of gold used to create the binary.
772
773 void
774 Layout::create_gold_note()
775 {
776   if (parameters->output_is_object())
777     return;
778
779   // Authorities all agree that the values in a .note field should
780   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
781   // they differ on what the alignment is for 64-bit binaries.
782   // The GABI says unambiguously they take 8-byte alignment:
783   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
784   // Other documentation says alignment should always be 4 bytes:
785   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
786   // GNU ld and GNU readelf both support the latter (at least as of
787   // version 2.16.91), and glibc always generates the latter for
788   // .note.ABI-tag (as of version 1.6), so that's the one we go with
789   // here.
790 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
791   const int size = parameters->get_size();
792 #else
793   const int size = 32;
794 #endif
795
796   // The contents of the .note section.
797   const char* name = "GNU";
798   std::string desc(std::string("gold ") + gold::get_version_string());
799   size_t namesz = strlen(name) + 1;
800   size_t aligned_namesz = align_address(namesz, size / 8);
801   size_t descsz = desc.length() + 1;
802   size_t aligned_descsz = align_address(descsz, size / 8);
803   const int note_type = 4;
804
805   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
806
807   unsigned char buffer[128];
808   gold_assert(sizeof buffer >= notesz);
809   memset(buffer, 0, notesz);
810
811   bool is_big_endian = parameters->is_big_endian();
812
813   if (size == 32)
814     {
815       if (!is_big_endian)
816         {
817           elfcpp::Swap<32, false>::writeval(buffer, namesz);
818           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
819           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
820         }
821       else
822         {
823           elfcpp::Swap<32, true>::writeval(buffer, namesz);
824           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
825           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
826         }
827     }
828   else if (size == 64)
829     {
830       if (!is_big_endian)
831         {
832           elfcpp::Swap<64, false>::writeval(buffer, namesz);
833           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
834           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
835         }
836       else
837         {
838           elfcpp::Swap<64, true>::writeval(buffer, namesz);
839           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
840           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
841         }
842     }
843   else
844     gold_unreachable();
845
846   memcpy(buffer + 3 * (size / 8), name, namesz);
847   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
848
849   const char* note_name = this->namepool_.add(".note", false, NULL);
850   Output_section* os = this->make_output_section(note_name,
851                                                  elfcpp::SHT_NOTE,
852                                                  0);
853   Output_section_data* posd = new Output_data_const(buffer, notesz,
854                                                     size / 8);
855   os->add_output_section_data(posd);
856 }
857
858 // Record whether the stack should be executable.  This can be set
859 // from the command line using the -z execstack or -z noexecstack
860 // options.  Otherwise, if any input file has a .note.GNU-stack
861 // section with the SHF_EXECINSTR flag set, the stack should be
862 // executable.  Otherwise, if at least one input file a
863 // .note.GNU-stack section, and some input file has no .note.GNU-stack
864 // section, we use the target default for whether the stack should be
865 // executable.  Otherwise, we don't generate a stack note.  When
866 // generating a object file, we create a .note.GNU-stack section with
867 // the appropriate marking.  When generating an executable or shared
868 // library, we create a PT_GNU_STACK segment.
869
870 void
871 Layout::create_executable_stack_info(const Target* target)
872 {
873   bool is_stack_executable;
874   if (this->options_.is_execstack_set())
875     is_stack_executable = this->options_.is_stack_executable();
876   else if (!this->input_with_gnu_stack_note_)
877     return;
878   else
879     {
880       if (this->input_requires_executable_stack_)
881         is_stack_executable = true;
882       else if (this->input_without_gnu_stack_note_)
883         is_stack_executable = target->is_default_stack_executable();
884       else
885         is_stack_executable = false;
886     }
887
888   if (parameters->output_is_object())
889     {
890       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
891       elfcpp::Elf_Xword flags = 0;
892       if (is_stack_executable)
893         flags |= elfcpp::SHF_EXECINSTR;
894       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
895     }
896   else
897     {
898       int flags = elfcpp::PF_R | elfcpp::PF_W;
899       if (is_stack_executable)
900         flags |= elfcpp::PF_X;
901       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
902       this->segment_list_.push_back(oseg);
903     }
904 }
905
906 // Return whether SEG1 should be before SEG2 in the output file.  This
907 // is based entirely on the segment type and flags.  When this is
908 // called the segment addresses has normally not yet been set.
909
910 bool
911 Layout::segment_precedes(const Output_segment* seg1,
912                          const Output_segment* seg2)
913 {
914   elfcpp::Elf_Word type1 = seg1->type();
915   elfcpp::Elf_Word type2 = seg2->type();
916
917   // The single PT_PHDR segment is required to precede any loadable
918   // segment.  We simply make it always first.
919   if (type1 == elfcpp::PT_PHDR)
920     {
921       gold_assert(type2 != elfcpp::PT_PHDR);
922       return true;
923     }
924   if (type2 == elfcpp::PT_PHDR)
925     return false;
926
927   // The single PT_INTERP segment is required to precede any loadable
928   // segment.  We simply make it always second.
929   if (type1 == elfcpp::PT_INTERP)
930     {
931       gold_assert(type2 != elfcpp::PT_INTERP);
932       return true;
933     }
934   if (type2 == elfcpp::PT_INTERP)
935     return false;
936
937   // We then put PT_LOAD segments before any other segments.
938   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
939     return true;
940   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
941     return false;
942
943   // We put the PT_TLS segment last, because that is where the dynamic
944   // linker expects to find it (this is just for efficiency; other
945   // positions would also work correctly).
946   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
947     return false;
948   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
949     return true;
950
951   const elfcpp::Elf_Word flags1 = seg1->flags();
952   const elfcpp::Elf_Word flags2 = seg2->flags();
953
954   // The order of non-PT_LOAD segments is unimportant.  We simply sort
955   // by the numeric segment type and flags values.  There should not
956   // be more than one segment with the same type and flags.
957   if (type1 != elfcpp::PT_LOAD)
958     {
959       if (type1 != type2)
960         return type1 < type2;
961       gold_assert(flags1 != flags2);
962       return flags1 < flags2;
963     }
964
965   // We sort PT_LOAD segments based on the flags.  Readonly segments
966   // come before writable segments.  Then executable segments come
967   // before non-executable segments.  Then the unlikely case of a
968   // non-readable segment comes before the normal case of a readable
969   // segment.  If there are multiple segments with the same type and
970   // flags, we require that the address be set, and we sort by
971   // virtual address and then physical address.
972   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
973     return (flags1 & elfcpp::PF_W) == 0;
974   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
975     return (flags1 & elfcpp::PF_X) != 0;
976   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
977     return (flags1 & elfcpp::PF_R) == 0;
978
979   uint64_t vaddr1 = seg1->vaddr();
980   uint64_t vaddr2 = seg2->vaddr();
981   if (vaddr1 != vaddr2)
982     return vaddr1 < vaddr2;
983
984   uint64_t paddr1 = seg1->paddr();
985   uint64_t paddr2 = seg2->paddr();
986   gold_assert(paddr1 != paddr2);
987   return paddr1 < paddr2;
988 }
989
990 // Set the file offsets of all the segments, and all the sections they
991 // contain.  They have all been created.  LOAD_SEG must be be laid out
992 // first.  Return the offset of the data to follow.
993
994 off_t
995 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
996                             unsigned int *pshndx)
997 {
998   // Sort them into the final order.
999   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1000             Layout::Compare_segments());
1001
1002   // Find the PT_LOAD segments, and set their addresses and offsets
1003   // and their section's addresses and offsets.
1004   uint64_t addr;
1005   if (parameters->output_is_shared())
1006     addr = 0;
1007   else if (options_.user_set_text_segment_address())
1008     addr = options_.text_segment_address();
1009   else
1010     addr = target->default_text_segment_address();
1011   off_t off = 0;
1012   bool was_readonly = false;
1013   for (Segment_list::iterator p = this->segment_list_.begin();
1014        p != this->segment_list_.end();
1015        ++p)
1016     {
1017       if ((*p)->type() == elfcpp::PT_LOAD)
1018         {
1019           if (load_seg != NULL && load_seg != *p)
1020             gold_unreachable();
1021           load_seg = NULL;
1022
1023           // If the last segment was readonly, and this one is not,
1024           // then skip the address forward one page, maintaining the
1025           // same position within the page.  This lets us store both
1026           // segments overlapping on a single page in the file, but
1027           // the loader will put them on different pages in memory.
1028
1029           uint64_t orig_addr = addr;
1030           uint64_t orig_off = off;
1031
1032           uint64_t aligned_addr = addr;
1033           uint64_t abi_pagesize = target->abi_pagesize();
1034
1035           // FIXME: This should depend on the -n and -N options.
1036           (*p)->set_minimum_addralign(target->common_pagesize());
1037
1038           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1039             {
1040               uint64_t align = (*p)->addralign();
1041
1042               addr = align_address(addr, align);
1043               aligned_addr = addr;
1044               if ((addr & (abi_pagesize - 1)) != 0)
1045                 addr = addr + abi_pagesize;
1046             }
1047
1048           unsigned int shndx_hold = *pshndx;
1049           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1050           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1051
1052           // Now that we know the size of this segment, we may be able
1053           // to save a page in memory, at the cost of wasting some
1054           // file space, by instead aligning to the start of a new
1055           // page.  Here we use the real machine page size rather than
1056           // the ABI mandated page size.
1057
1058           if (aligned_addr != addr)
1059             {
1060               uint64_t common_pagesize = target->common_pagesize();
1061               uint64_t first_off = (common_pagesize
1062                                     - (aligned_addr
1063                                        & (common_pagesize - 1)));
1064               uint64_t last_off = new_addr & (common_pagesize - 1);
1065               if (first_off > 0
1066                   && last_off > 0
1067                   && ((aligned_addr & ~ (common_pagesize - 1))
1068                       != (new_addr & ~ (common_pagesize - 1)))
1069                   && first_off + last_off <= common_pagesize)
1070                 {
1071                   *pshndx = shndx_hold;
1072                   addr = align_address(aligned_addr, common_pagesize);
1073                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1074                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1075                 }
1076             }
1077
1078           addr = new_addr;
1079
1080           if (((*p)->flags() & elfcpp::PF_W) == 0)
1081             was_readonly = true;
1082         }
1083     }
1084
1085   // Handle the non-PT_LOAD segments, setting their offsets from their
1086   // section's offsets.
1087   for (Segment_list::iterator p = this->segment_list_.begin();
1088        p != this->segment_list_.end();
1089        ++p)
1090     {
1091       if ((*p)->type() != elfcpp::PT_LOAD)
1092         (*p)->set_offset();
1093     }
1094
1095   // Set the TLS offsets for each section in the PT_TLS segment.
1096   if (this->tls_segment_ != NULL)
1097     this->tls_segment_->set_tls_offsets();
1098
1099   return off;
1100 }
1101
1102 // Set the file offset of all the sections not associated with a
1103 // segment.
1104
1105 off_t
1106 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1107 {
1108   for (Section_list::iterator p = this->unattached_section_list_.begin();
1109        p != this->unattached_section_list_.end();
1110        ++p)
1111     {
1112       // The symtab section is handled in create_symtab_sections.
1113       if (*p == this->symtab_section_)
1114         continue;
1115
1116       if (pass == BEFORE_INPUT_SECTIONS_PASS
1117           && (*p)->requires_postprocessing())
1118         {
1119           (*p)->create_postprocessing_buffer();
1120           this->any_postprocessing_sections_ = true;
1121         }
1122
1123       if (pass == BEFORE_INPUT_SECTIONS_PASS
1124           && (*p)->after_input_sections())
1125         continue;
1126       else if (pass == POSTPROCESSING_SECTIONS_PASS
1127                && (!(*p)->after_input_sections()
1128                    || (*p)->type() == elfcpp::SHT_STRTAB))
1129         continue;
1130       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1131                && (!(*p)->after_input_sections()
1132                    || (*p)->type() != elfcpp::SHT_STRTAB))
1133         continue;
1134
1135       off = align_address(off, (*p)->addralign());
1136       (*p)->set_file_offset(off);
1137       (*p)->finalize_data_size();
1138       off += (*p)->data_size();
1139
1140       // At this point the name must be set.
1141       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1142         this->namepool_.add((*p)->name(), false, NULL);
1143     }
1144   return off;
1145 }
1146
1147 // Set the section indexes of all the sections not associated with a
1148 // segment.
1149
1150 unsigned int
1151 Layout::set_section_indexes(unsigned int shndx)
1152 {
1153   for (Section_list::iterator p = this->unattached_section_list_.begin();
1154        p != this->unattached_section_list_.end();
1155        ++p)
1156     {
1157       (*p)->set_out_shndx(shndx);
1158       ++shndx;
1159     }
1160   return shndx;
1161 }
1162
1163 // Count the local symbols in the regular symbol table and the dynamic
1164 // symbol table, and build the respective string pools.
1165
1166 void
1167 Layout::count_local_symbols(const Task* task,
1168                             const Input_objects* input_objects)
1169 {
1170   // First, figure out an upper bound on the number of symbols we'll
1171   // be inserting into each pool.  This helps us create the pools with
1172   // the right size, to avoid unnecessary hashtable resizing.
1173   unsigned int symbol_count = 0;
1174   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1175        p != input_objects->relobj_end();
1176        ++p)
1177     symbol_count += (*p)->local_symbol_count();
1178
1179   // Go from "upper bound" to "estimate."  We overcount for two
1180   // reasons: we double-count symbols that occur in more than one
1181   // object file, and we count symbols that are dropped from the
1182   // output.  Add it all together and assume we overcount by 100%.
1183   symbol_count /= 2;
1184
1185   // We assume all symbols will go into both the sympool and dynpool.
1186   this->sympool_.reserve(symbol_count);
1187   this->dynpool_.reserve(symbol_count);
1188
1189   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1190        p != input_objects->relobj_end();
1191        ++p)
1192     {
1193       Task_lock_obj<Object> tlo(task, *p);
1194       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1195     }
1196 }
1197
1198 // Create the symbol table sections.  Here we also set the final
1199 // values of the symbols.  At this point all the loadable sections are
1200 // fully laid out.
1201
1202 void
1203 Layout::create_symtab_sections(const Input_objects* input_objects,
1204                                Symbol_table* symtab,
1205                                const Task* task,
1206                                off_t* poff)
1207 {
1208   int symsize;
1209   unsigned int align;
1210   if (parameters->get_size() == 32)
1211     {
1212       symsize = elfcpp::Elf_sizes<32>::sym_size;
1213       align = 4;
1214     }
1215   else if (parameters->get_size() == 64)
1216     {
1217       symsize = elfcpp::Elf_sizes<64>::sym_size;
1218       align = 8;
1219     }
1220   else
1221     gold_unreachable();
1222
1223   off_t off = *poff;
1224   off = align_address(off, align);
1225   off_t startoff = off;
1226
1227   // Save space for the dummy symbol at the start of the section.  We
1228   // never bother to write this out--it will just be left as zero.
1229   off += symsize;
1230   unsigned int local_symbol_index = 1;
1231
1232   // Add STT_SECTION symbols for each Output section which needs one.
1233   for (Section_list::iterator p = this->section_list_.begin();
1234        p != this->section_list_.end();
1235        ++p)
1236     {
1237       if (!(*p)->needs_symtab_index())
1238         (*p)->set_symtab_index(-1U);
1239       else
1240         {
1241           (*p)->set_symtab_index(local_symbol_index);
1242           ++local_symbol_index;
1243           off += symsize;
1244         }
1245     }
1246
1247   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1248        p != input_objects->relobj_end();
1249        ++p)
1250     {
1251       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1252                                                         off);
1253       off += (index - local_symbol_index) * symsize;
1254       local_symbol_index = index;
1255     }
1256
1257   unsigned int local_symcount = local_symbol_index;
1258   gold_assert(local_symcount * symsize == off - startoff);
1259
1260   off_t dynoff;
1261   size_t dyn_global_index;
1262   size_t dyncount;
1263   if (this->dynsym_section_ == NULL)
1264     {
1265       dynoff = 0;
1266       dyn_global_index = 0;
1267       dyncount = 0;
1268     }
1269   else
1270     {
1271       dyn_global_index = this->dynsym_section_->info();
1272       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1273       dynoff = this->dynsym_section_->offset() + locsize;
1274       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1275       gold_assert(static_cast<off_t>(dyncount * symsize)
1276                   == this->dynsym_section_->data_size() - locsize);
1277     }
1278
1279   off = symtab->finalize(task, local_symcount, off, dynoff, dyn_global_index,
1280                          dyncount, &this->sympool_);
1281
1282   if (!parameters->strip_all())
1283     {
1284       this->sympool_.set_string_offsets();
1285
1286       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1287       Output_section* osymtab = this->make_output_section(symtab_name,
1288                                                           elfcpp::SHT_SYMTAB,
1289                                                           0);
1290       this->symtab_section_ = osymtab;
1291
1292       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1293                                                              align);
1294       osymtab->add_output_section_data(pos);
1295
1296       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1297       Output_section* ostrtab = this->make_output_section(strtab_name,
1298                                                           elfcpp::SHT_STRTAB,
1299                                                           0);
1300
1301       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1302       ostrtab->add_output_section_data(pstr);
1303
1304       osymtab->set_file_offset(startoff);
1305       osymtab->finalize_data_size();
1306       osymtab->set_link_section(ostrtab);
1307       osymtab->set_info(local_symcount);
1308       osymtab->set_entsize(symsize);
1309
1310       *poff = off;
1311     }
1312 }
1313
1314 // Create the .shstrtab section, which holds the names of the
1315 // sections.  At the time this is called, we have created all the
1316 // output sections except .shstrtab itself.
1317
1318 Output_section*
1319 Layout::create_shstrtab()
1320 {
1321   // FIXME: We don't need to create a .shstrtab section if we are
1322   // stripping everything.
1323
1324   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1325
1326   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1327
1328   // We can't write out this section until we've set all the section
1329   // names, and we don't set the names of compressed output sections
1330   // until relocations are complete.
1331   os->set_after_input_sections();
1332
1333   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1334   os->add_output_section_data(posd);
1335
1336   return os;
1337 }
1338
1339 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1340 // offset.
1341
1342 void
1343 Layout::create_shdrs(off_t* poff)
1344 {
1345   Output_section_headers* oshdrs;
1346   oshdrs = new Output_section_headers(this,
1347                                       &this->segment_list_,
1348                                       &this->unattached_section_list_,
1349                                       &this->namepool_);
1350   off_t off = align_address(*poff, oshdrs->addralign());
1351   oshdrs->set_address_and_file_offset(0, off);
1352   off += oshdrs->data_size();
1353   *poff = off;
1354   this->section_headers_ = oshdrs;
1355 }
1356
1357 // Create the dynamic symbol table.
1358
1359 void
1360 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1361                               const Target* target, Symbol_table* symtab,
1362                               Output_section **pdynstr,
1363                               unsigned int* plocal_dynamic_count,
1364                               std::vector<Symbol*>* pdynamic_symbols,
1365                               Versions* pversions)
1366 {
1367   // Count all the symbols in the dynamic symbol table, and set the
1368   // dynamic symbol indexes.
1369
1370   // Skip symbol 0, which is always all zeroes.
1371   unsigned int index = 1;
1372
1373   // Add STT_SECTION symbols for each Output section which needs one.
1374   for (Section_list::iterator p = this->section_list_.begin();
1375        p != this->section_list_.end();
1376        ++p)
1377     {
1378       if (!(*p)->needs_dynsym_index())
1379         (*p)->set_dynsym_index(-1U);
1380       else
1381         {
1382           (*p)->set_dynsym_index(index);
1383           ++index;
1384         }
1385     }
1386
1387   // Count the local symbols that need to go in the dynamic symbol table,
1388   // and set the dynamic symbol indexes.
1389   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1390        p != input_objects->relobj_end();
1391        ++p)
1392     {
1393       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1394       index = new_index;
1395     }
1396
1397   unsigned int local_symcount = index;
1398   *plocal_dynamic_count = local_symcount;
1399
1400   // FIXME: We have to tell set_dynsym_indexes whether the
1401   // -E/--export-dynamic option was used.
1402   index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1403                                      &this->dynpool_, pversions);
1404
1405   int symsize;
1406   unsigned int align;
1407   const int size = parameters->get_size();
1408   if (size == 32)
1409     {
1410       symsize = elfcpp::Elf_sizes<32>::sym_size;
1411       align = 4;
1412     }
1413   else if (size == 64)
1414     {
1415       symsize = elfcpp::Elf_sizes<64>::sym_size;
1416       align = 8;
1417     }
1418   else
1419     gold_unreachable();
1420
1421   // Create the dynamic symbol table section.
1422
1423   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1424   Output_section* dynsym = this->make_output_section(dynsym_name,
1425                                                      elfcpp::SHT_DYNSYM,
1426                                                      elfcpp::SHF_ALLOC);
1427
1428   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1429                                                            align);
1430   dynsym->add_output_section_data(odata);
1431
1432   dynsym->set_info(local_symcount);
1433   dynsym->set_entsize(symsize);
1434   dynsym->set_addralign(align);
1435
1436   this->dynsym_section_ = dynsym;
1437
1438   Output_data_dynamic* const odyn = this->dynamic_data_;
1439   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1440   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1441
1442   // Create the dynamic string table section.
1443
1444   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1445   Output_section* dynstr = this->make_output_section(dynstr_name,
1446                                                      elfcpp::SHT_STRTAB,
1447                                                      elfcpp::SHF_ALLOC);
1448
1449   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1450   dynstr->add_output_section_data(strdata);
1451
1452   dynsym->set_link_section(dynstr);
1453   this->dynamic_section_->set_link_section(dynstr);
1454
1455   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1456   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1457
1458   *pdynstr = dynstr;
1459
1460   // Create the hash tables.
1461
1462   // FIXME: We need an option to create a GNU hash table.
1463
1464   unsigned char* phash;
1465   unsigned int hashlen;
1466   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1467                                 &phash, &hashlen);
1468
1469   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1470   Output_section* hashsec = this->make_output_section(hash_name,
1471                                                       elfcpp::SHT_HASH,
1472                                                       elfcpp::SHF_ALLOC);
1473
1474   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1475                                                                hashlen,
1476                                                                align);
1477   hashsec->add_output_section_data(hashdata);
1478
1479   hashsec->set_link_section(dynsym);
1480   hashsec->set_entsize(4);
1481
1482   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1483 }
1484
1485 // Assign offsets to each local portion of the dynamic symbol table.
1486
1487 void
1488 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1489 {
1490   Output_section* dynsym = this->dynsym_section_;
1491   gold_assert(dynsym != NULL);
1492
1493   off_t off = dynsym->offset();
1494
1495   // Skip the dummy symbol at the start of the section.
1496   off += dynsym->entsize();
1497
1498   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1499        p != input_objects->relobj_end();
1500        ++p)
1501     {
1502       unsigned int count = (*p)->set_local_dynsym_offset(off);
1503       off += count * dynsym->entsize();
1504     }
1505 }
1506
1507 // Create the version sections.
1508
1509 void
1510 Layout::create_version_sections(const Versions* versions,
1511                                 const Symbol_table* symtab,
1512                                 unsigned int local_symcount,
1513                                 const std::vector<Symbol*>& dynamic_symbols,
1514                                 const Output_section* dynstr)
1515 {
1516   if (!versions->any_defs() && !versions->any_needs())
1517     return;
1518
1519   if (parameters->get_size() == 32)
1520     {
1521       if (parameters->is_big_endian())
1522         {
1523 #ifdef HAVE_TARGET_32_BIG
1524           this->sized_create_version_sections
1525               SELECT_SIZE_ENDIAN_NAME(32, true)(
1526                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1527                   SELECT_SIZE_ENDIAN(32, true));
1528 #else
1529           gold_unreachable();
1530 #endif
1531         }
1532       else
1533         {
1534 #ifdef HAVE_TARGET_32_LITTLE
1535           this->sized_create_version_sections
1536               SELECT_SIZE_ENDIAN_NAME(32, false)(
1537                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1538                   SELECT_SIZE_ENDIAN(32, false));
1539 #else
1540           gold_unreachable();
1541 #endif
1542         }
1543     }
1544   else if (parameters->get_size() == 64)
1545     {
1546       if (parameters->is_big_endian())
1547         {
1548 #ifdef HAVE_TARGET_64_BIG
1549           this->sized_create_version_sections
1550               SELECT_SIZE_ENDIAN_NAME(64, true)(
1551                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1552                   SELECT_SIZE_ENDIAN(64, true));
1553 #else
1554           gold_unreachable();
1555 #endif
1556         }
1557       else
1558         {
1559 #ifdef HAVE_TARGET_64_LITTLE
1560           this->sized_create_version_sections
1561               SELECT_SIZE_ENDIAN_NAME(64, false)(
1562                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1563                   SELECT_SIZE_ENDIAN(64, false));
1564 #else
1565           gold_unreachable();
1566 #endif
1567         }
1568     }
1569   else
1570     gold_unreachable();
1571 }
1572
1573 // Create the version sections, sized version.
1574
1575 template<int size, bool big_endian>
1576 void
1577 Layout::sized_create_version_sections(
1578     const Versions* versions,
1579     const Symbol_table* symtab,
1580     unsigned int local_symcount,
1581     const std::vector<Symbol*>& dynamic_symbols,
1582     const Output_section* dynstr
1583     ACCEPT_SIZE_ENDIAN)
1584 {
1585   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1586   Output_section* vsec = this->make_output_section(vname,
1587                                                    elfcpp::SHT_GNU_versym,
1588                                                    elfcpp::SHF_ALLOC);
1589
1590   unsigned char* vbuf;
1591   unsigned int vsize;
1592   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1593       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1594       SELECT_SIZE_ENDIAN(size, big_endian));
1595
1596   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1597
1598   vsec->add_output_section_data(vdata);
1599   vsec->set_entsize(2);
1600   vsec->set_link_section(this->dynsym_section_);
1601
1602   Output_data_dynamic* const odyn = this->dynamic_data_;
1603   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1604
1605   if (versions->any_defs())
1606     {
1607       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1608       Output_section *vdsec;
1609       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1610                                         elfcpp::SHF_ALLOC);
1611
1612       unsigned char* vdbuf;
1613       unsigned int vdsize;
1614       unsigned int vdentries;
1615       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1616           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1617           SELECT_SIZE_ENDIAN(size, big_endian));
1618
1619       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1620                                                                  vdsize,
1621                                                                  4);
1622
1623       vdsec->add_output_section_data(vddata);
1624       vdsec->set_link_section(dynstr);
1625       vdsec->set_info(vdentries);
1626
1627       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1628       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1629     }
1630
1631   if (versions->any_needs())
1632     {
1633       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1634       Output_section* vnsec;
1635       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1636                                         elfcpp::SHF_ALLOC);
1637
1638       unsigned char* vnbuf;
1639       unsigned int vnsize;
1640       unsigned int vnentries;
1641       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1642         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1643          SELECT_SIZE_ENDIAN(size, big_endian));
1644
1645       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1646                                                                  vnsize,
1647                                                                  4);
1648
1649       vnsec->add_output_section_data(vndata);
1650       vnsec->set_link_section(dynstr);
1651       vnsec->set_info(vnentries);
1652
1653       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1654       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1655     }
1656 }
1657
1658 // Create the .interp section and PT_INTERP segment.
1659
1660 void
1661 Layout::create_interp(const Target* target)
1662 {
1663   const char* interp = this->options_.dynamic_linker();
1664   if (interp == NULL)
1665     {
1666       interp = target->dynamic_linker();
1667       gold_assert(interp != NULL);
1668     }
1669
1670   size_t len = strlen(interp) + 1;
1671
1672   Output_section_data* odata = new Output_data_const(interp, len, 1);
1673
1674   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1675   Output_section* osec = this->make_output_section(interp_name,
1676                                                    elfcpp::SHT_PROGBITS,
1677                                                    elfcpp::SHF_ALLOC);
1678   osec->add_output_section_data(odata);
1679
1680   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1681   this->segment_list_.push_back(oseg);
1682   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1683 }
1684
1685 // Finish the .dynamic section and PT_DYNAMIC segment.
1686
1687 void
1688 Layout::finish_dynamic_section(const Input_objects* input_objects,
1689                                const Symbol_table* symtab)
1690 {
1691   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1692                                             elfcpp::PF_R | elfcpp::PF_W);
1693   this->segment_list_.push_back(oseg);
1694   oseg->add_initial_output_section(this->dynamic_section_,
1695                                    elfcpp::PF_R | elfcpp::PF_W);
1696
1697   Output_data_dynamic* const odyn = this->dynamic_data_;
1698
1699   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1700        p != input_objects->dynobj_end();
1701        ++p)
1702     {
1703       // FIXME: Handle --as-needed.
1704       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1705     }
1706
1707   // FIXME: Support --init and --fini.
1708   Symbol* sym = symtab->lookup("_init");
1709   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1710     odyn->add_symbol(elfcpp::DT_INIT, sym);
1711
1712   sym = symtab->lookup("_fini");
1713   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1714     odyn->add_symbol(elfcpp::DT_FINI, sym);
1715
1716   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1717
1718   // Add a DT_RPATH entry if needed.
1719   const General_options::Dir_list& rpath(this->options_.rpath());
1720   if (!rpath.empty())
1721     {
1722       std::string rpath_val;
1723       for (General_options::Dir_list::const_iterator p = rpath.begin();
1724            p != rpath.end();
1725            ++p)
1726         {
1727           if (rpath_val.empty())
1728             rpath_val = p->name();
1729           else
1730             {
1731               // Eliminate duplicates.
1732               General_options::Dir_list::const_iterator q;
1733               for (q = rpath.begin(); q != p; ++q)
1734                 if (q->name() == p->name())
1735                   break;
1736               if (q == p)
1737                 {
1738                   rpath_val += ':';
1739                   rpath_val += p->name();
1740                 }
1741             }
1742         }
1743
1744       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1745     }
1746
1747   // Look for text segments that have dynamic relocations.
1748   bool have_textrel = false;
1749   for (Segment_list::const_iterator p = this->segment_list_.begin();
1750        p != this->segment_list_.end();
1751        ++p)
1752     {
1753       if (((*p)->flags() & elfcpp::PF_W) == 0
1754           && (*p)->dynamic_reloc_count() > 0)
1755         {
1756           have_textrel = true;
1757           break;
1758         }
1759     }
1760
1761   // Add a DT_FLAGS entry. We add it even if no flags are set so that
1762   // post-link tools can easily modify these flags if desired.
1763   unsigned int flags = 0;
1764   if (have_textrel)
1765     {
1766       // Add a DT_TEXTREL for compatibility with older loaders.
1767       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
1768       flags |= elfcpp::DF_TEXTREL;
1769     }
1770   if (parameters->output_is_shared() && this->has_static_tls())
1771     flags |= elfcpp::DF_STATIC_TLS;
1772   odyn->add_constant(elfcpp::DT_FLAGS, flags);
1773 }
1774
1775 // The mapping of .gnu.linkonce section names to real section names.
1776
1777 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1778 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1779 {
1780   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1781   MAPPING_INIT("t", ".text"),
1782   MAPPING_INIT("r", ".rodata"),
1783   MAPPING_INIT("d", ".data"),
1784   MAPPING_INIT("b", ".bss"),
1785   MAPPING_INIT("s", ".sdata"),
1786   MAPPING_INIT("sb", ".sbss"),
1787   MAPPING_INIT("s2", ".sdata2"),
1788   MAPPING_INIT("sb2", ".sbss2"),
1789   MAPPING_INIT("wi", ".debug_info"),
1790   MAPPING_INIT("td", ".tdata"),
1791   MAPPING_INIT("tb", ".tbss"),
1792   MAPPING_INIT("lr", ".lrodata"),
1793   MAPPING_INIT("l", ".ldata"),
1794   MAPPING_INIT("lb", ".lbss"),
1795 };
1796 #undef MAPPING_INIT
1797
1798 const int Layout::linkonce_mapping_count =
1799   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1800
1801 // Return the name of the output section to use for a .gnu.linkonce
1802 // section.  This is based on the default ELF linker script of the old
1803 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1804 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1805 // initialized to the length of NAME.
1806
1807 const char*
1808 Layout::linkonce_output_name(const char* name, size_t *plen)
1809 {
1810   const char* s = name + sizeof(".gnu.linkonce") - 1;
1811   if (*s != '.')
1812     return name;
1813   ++s;
1814   const Linkonce_mapping* plm = linkonce_mapping;
1815   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1816     {
1817       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1818         {
1819           *plen = plm->tolen;
1820           return plm->to;
1821         }
1822     }
1823   return name;
1824 }
1825
1826 // Choose the output section name to use given an input section name.
1827 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1828 // length of NAME.
1829
1830 const char*
1831 Layout::output_section_name(const char* name, size_t* plen)
1832 {
1833   if (Layout::is_linkonce(name))
1834     {
1835       // .gnu.linkonce sections are laid out as though they were named
1836       // for the sections are placed into.
1837       return Layout::linkonce_output_name(name, plen);
1838     }
1839
1840   // gcc 4.3 generates the following sorts of section names when it
1841   // needs a section name specific to a function:
1842   //   .text.FN
1843   //   .rodata.FN
1844   //   .sdata2.FN
1845   //   .data.FN
1846   //   .data.rel.FN
1847   //   .data.rel.local.FN
1848   //   .data.rel.ro.FN
1849   //   .data.rel.ro.local.FN
1850   //   .sdata.FN
1851   //   .bss.FN
1852   //   .sbss.FN
1853   //   .tdata.FN
1854   //   .tbss.FN
1855
1856   // The GNU linker maps all of those to the part before the .FN,
1857   // except that .data.rel.local.FN is mapped to .data, and
1858   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1859   // beginning with .data.rel.ro.local are grouped together.
1860
1861   // For an anonymous namespace, the string FN can contain a '.'.
1862
1863   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1864   // GNU linker maps to .rodata.
1865
1866   // The .data.rel.ro sections enable a security feature triggered by
1867   // the -z relro option.  Section which need to be relocated at
1868   // program startup time but which may be readonly after startup are
1869   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1870   // segment.  The dynamic linker will make that segment writable,
1871   // perform relocations, and then make it read-only.  FIXME: We do
1872   // not yet implement this optimization.
1873
1874   // It is hard to handle this in a principled way.
1875
1876   // These are the rules we follow:
1877
1878   // If the section name has no initial '.', or no dot other than an
1879   // initial '.', we use the name unchanged (i.e., "mysection" and
1880   // ".text" are unchanged).
1881
1882   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1883
1884   // Otherwise, we drop the second '.' and everything that comes after
1885   // it (i.e., ".text.XXX" becomes ".text").
1886
1887   const char* s = name;
1888   if (*s != '.')
1889     return name;
1890   ++s;
1891   const char* sdot = strchr(s, '.');
1892   if (sdot == NULL)
1893     return name;
1894
1895   const char* const data_rel_ro = ".data.rel.ro";
1896   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1897     {
1898       *plen = strlen(data_rel_ro);
1899       return data_rel_ro;
1900     }
1901
1902   *plen = sdot - name;
1903   return name;
1904 }
1905
1906 // Record the signature of a comdat section, and return whether to
1907 // include it in the link.  If GROUP is true, this is a regular
1908 // section group.  If GROUP is false, this is a group signature
1909 // derived from the name of a linkonce section.  We want linkonce
1910 // signatures and group signatures to block each other, but we don't
1911 // want a linkonce signature to block another linkonce signature.
1912
1913 bool
1914 Layout::add_comdat(const char* signature, bool group)
1915 {
1916   std::string sig(signature);
1917   std::pair<Signatures::iterator, bool> ins(
1918     this->signatures_.insert(std::make_pair(sig, group)));
1919
1920   if (ins.second)
1921     {
1922       // This is the first time we've seen this signature.
1923       return true;
1924     }
1925
1926   if (ins.first->second)
1927     {
1928       // We've already seen a real section group with this signature.
1929       return false;
1930     }
1931   else if (group)
1932     {
1933       // This is a real section group, and we've already seen a
1934       // linkonce section with this signature.  Record that we've seen
1935       // a section group, and don't include this section group.
1936       ins.first->second = true;
1937       return false;
1938     }
1939   else
1940     {
1941       // We've already seen a linkonce section and this is a linkonce
1942       // section.  These don't block each other--this may be the same
1943       // symbol name with different section types.
1944       return true;
1945     }
1946 }
1947
1948 // Write out the Output_sections.  Most won't have anything to write,
1949 // since most of the data will come from input sections which are
1950 // handled elsewhere.  But some Output_sections do have Output_data.
1951
1952 void
1953 Layout::write_output_sections(Output_file* of) const
1954 {
1955   for (Section_list::const_iterator p = this->section_list_.begin();
1956        p != this->section_list_.end();
1957        ++p)
1958     {
1959       if (!(*p)->after_input_sections())
1960         (*p)->write(of);
1961     }
1962 }
1963
1964 // Write out data not associated with a section or the symbol table.
1965
1966 void
1967 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1968 {
1969   if (!parameters->strip_all())
1970     {
1971       const Output_section* symtab_section = this->symtab_section_;
1972       for (Section_list::const_iterator p = this->section_list_.begin();
1973            p != this->section_list_.end();
1974            ++p)
1975         {
1976           if ((*p)->needs_symtab_index())
1977             {
1978               gold_assert(symtab_section != NULL);
1979               unsigned int index = (*p)->symtab_index();
1980               gold_assert(index > 0 && index != -1U);
1981               off_t off = (symtab_section->offset()
1982                            + index * symtab_section->entsize());
1983               symtab->write_section_symbol(*p, of, off);
1984             }
1985         }
1986     }
1987
1988   const Output_section* dynsym_section = this->dynsym_section_;
1989   for (Section_list::const_iterator p = this->section_list_.begin();
1990        p != this->section_list_.end();
1991        ++p)
1992     {
1993       if ((*p)->needs_dynsym_index())
1994         {
1995           gold_assert(dynsym_section != NULL);
1996           unsigned int index = (*p)->dynsym_index();
1997           gold_assert(index > 0 && index != -1U);
1998           off_t off = (dynsym_section->offset()
1999                        + index * dynsym_section->entsize());
2000           symtab->write_section_symbol(*p, of, off);
2001         }
2002     }
2003
2004   // Write out the Output_data which are not in an Output_section.
2005   for (Data_list::const_iterator p = this->special_output_list_.begin();
2006        p != this->special_output_list_.end();
2007        ++p)
2008     (*p)->write(of);
2009 }
2010
2011 // Write out the Output_sections which can only be written after the
2012 // input sections are complete.
2013
2014 void
2015 Layout::write_sections_after_input_sections(Output_file* of)
2016 {
2017   // Determine the final section offsets, and thus the final output
2018   // file size.  Note we finalize the .shstrab last, to allow the
2019   // after_input_section sections to modify their section-names before
2020   // writing.
2021   if (this->any_postprocessing_sections_)
2022     {
2023       off_t off = this->output_file_size_;
2024       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2025       
2026       // Now that we've finalized the names, we can finalize the shstrab.
2027       off =
2028         this->set_section_offsets(off,
2029                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2030
2031       if (off > this->output_file_size_)
2032         {
2033           of->resize(off);
2034           this->output_file_size_ = off;
2035         }
2036     }
2037
2038   for (Section_list::const_iterator p = this->section_list_.begin();
2039        p != this->section_list_.end();
2040        ++p)
2041     {
2042       if ((*p)->after_input_sections())
2043         (*p)->write(of);
2044     }
2045
2046   this->section_headers_->write(of);
2047 }
2048
2049 // Print statistical information to stderr.  This is used for --stats.
2050
2051 void
2052 Layout::print_stats() const
2053 {
2054   this->namepool_.print_stats("section name pool");
2055   this->sympool_.print_stats("output symbol name pool");
2056   this->dynpool_.print_stats("dynamic name pool");
2057
2058   for (Section_list::const_iterator p = this->section_list_.begin();
2059        p != this->section_list_.end();
2060        ++p)
2061     (*p)->print_merge_stats();
2062 }
2063
2064 // Write_sections_task methods.
2065
2066 // We can always run this task.
2067
2068 Task_token*
2069 Write_sections_task::is_runnable()
2070 {
2071   return NULL;
2072 }
2073
2074 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2075 // when finished.
2076
2077 void
2078 Write_sections_task::locks(Task_locker* tl)
2079 {
2080   tl->add(this, this->output_sections_blocker_);
2081   tl->add(this, this->final_blocker_);
2082 }
2083
2084 // Run the task--write out the data.
2085
2086 void
2087 Write_sections_task::run(Workqueue*)
2088 {
2089   this->layout_->write_output_sections(this->of_);
2090 }
2091
2092 // Write_data_task methods.
2093
2094 // We can always run this task.
2095
2096 Task_token*
2097 Write_data_task::is_runnable()
2098 {
2099   return NULL;
2100 }
2101
2102 // We need to unlock FINAL_BLOCKER when finished.
2103
2104 void
2105 Write_data_task::locks(Task_locker* tl)
2106 {
2107   tl->add(this, this->final_blocker_);
2108 }
2109
2110 // Run the task--write out the data.
2111
2112 void
2113 Write_data_task::run(Workqueue*)
2114 {
2115   this->layout_->write_data(this->symtab_, this->of_);
2116 }
2117
2118 // Write_symbols_task methods.
2119
2120 // We can always run this task.
2121
2122 Task_token*
2123 Write_symbols_task::is_runnable()
2124 {
2125   return NULL;
2126 }
2127
2128 // We need to unlock FINAL_BLOCKER when finished.
2129
2130 void
2131 Write_symbols_task::locks(Task_locker* tl)
2132 {
2133   tl->add(this, this->final_blocker_);
2134 }
2135
2136 // Run the task--write out the symbols.
2137
2138 void
2139 Write_symbols_task::run(Workqueue*)
2140 {
2141   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2142                                this->dynpool_, this->of_);
2143 }
2144
2145 // Write_after_input_sections_task methods.
2146
2147 // We can only run this task after the input sections have completed.
2148
2149 Task_token*
2150 Write_after_input_sections_task::is_runnable()
2151 {
2152   if (this->input_sections_blocker_->is_blocked())
2153     return this->input_sections_blocker_;
2154   return NULL;
2155 }
2156
2157 // We need to unlock FINAL_BLOCKER when finished.
2158
2159 void
2160 Write_after_input_sections_task::locks(Task_locker* tl)
2161 {
2162   tl->add(this, this->final_blocker_);
2163 }
2164
2165 // Run the task.
2166
2167 void
2168 Write_after_input_sections_task::run(Workqueue*)
2169 {
2170   this->layout_->write_sections_after_input_sections(this->of_);
2171 }
2172
2173 // Close_task_runner methods.
2174
2175 // Run the task--close the file.
2176
2177 void
2178 Close_task_runner::run(Workqueue*, const Task*)
2179 {
2180   this->of_->close();
2181 }
2182
2183 // Instantiate the templates we need.  We could use the configure
2184 // script to restrict this to only the ones for implemented targets.
2185
2186 #ifdef HAVE_TARGET_32_LITTLE
2187 template
2188 Output_section*
2189 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2190                           const char* name,
2191                           const elfcpp::Shdr<32, false>& shdr,
2192                           unsigned int, unsigned int, off_t*);
2193 #endif
2194
2195 #ifdef HAVE_TARGET_32_BIG
2196 template
2197 Output_section*
2198 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2199                          const char* name,
2200                          const elfcpp::Shdr<32, true>& shdr,
2201                          unsigned int, unsigned int, off_t*);
2202 #endif
2203
2204 #ifdef HAVE_TARGET_64_LITTLE
2205 template
2206 Output_section*
2207 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2208                           const char* name,
2209                           const elfcpp::Shdr<64, false>& shdr,
2210                           unsigned int, unsigned int, off_t*);
2211 #endif
2212
2213 #ifdef HAVE_TARGET_64_BIG
2214 template
2215 Output_section*
2216 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2217                          const char* name,
2218                          const elfcpp::Shdr<64, true>& shdr,
2219                          unsigned int, unsigned int, off_t*);
2220 #endif
2221
2222 #ifdef HAVE_TARGET_32_LITTLE
2223 template
2224 Output_section*
2225 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2226                                    const unsigned char* symbols,
2227                                    off_t symbols_size,
2228                                    const unsigned char* symbol_names,
2229                                    off_t symbol_names_size,
2230                                    unsigned int shndx,
2231                                    const elfcpp::Shdr<32, false>& shdr,
2232                                    unsigned int reloc_shndx,
2233                                    unsigned int reloc_type,
2234                                    off_t* off);
2235 #endif
2236
2237 #ifdef HAVE_TARGET_32_BIG
2238 template
2239 Output_section*
2240 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2241                                    const unsigned char* symbols,
2242                                    off_t symbols_size,
2243                                   const unsigned char* symbol_names,
2244                                   off_t symbol_names_size,
2245                                   unsigned int shndx,
2246                                   const elfcpp::Shdr<32, true>& shdr,
2247                                   unsigned int reloc_shndx,
2248                                   unsigned int reloc_type,
2249                                   off_t* off);
2250 #endif
2251
2252 #ifdef HAVE_TARGET_64_LITTLE
2253 template
2254 Output_section*
2255 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2256                                    const unsigned char* symbols,
2257                                    off_t symbols_size,
2258                                    const unsigned char* symbol_names,
2259                                    off_t symbol_names_size,
2260                                    unsigned int shndx,
2261                                    const elfcpp::Shdr<64, false>& shdr,
2262                                    unsigned int reloc_shndx,
2263                                    unsigned int reloc_type,
2264                                    off_t* off);
2265 #endif
2266
2267 #ifdef HAVE_TARGET_64_BIG
2268 template
2269 Output_section*
2270 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2271                                    const unsigned char* symbols,
2272                                    off_t symbols_size,
2273                                   const unsigned char* symbol_names,
2274                                   off_t symbol_names_size,
2275                                   unsigned int shndx,
2276                                   const elfcpp::Shdr<64, true>& shdr,
2277                                   unsigned int reloc_shndx,
2278                                   unsigned int reloc_type,
2279                                   off_t* off);
2280 #endif
2281
2282 } // End namespace gold.