[gdb/testsuite] Fix info-var.exp for debug info from other files
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_(),
478     gnu_properties_()
479 {
480   // Make space for more than enough segments for a typical file.
481   // This is just for efficiency--it's OK if we wind up needing more.
482   this->segment_list_.reserve(12);
483
484   // We expect two unattached Output_data objects: the file header and
485   // the segment headers.
486   this->special_output_list_.reserve(2);
487
488   // Initialize structure needed for an incremental build.
489   if (parameters->incremental())
490     this->incremental_inputs_ = new Incremental_inputs;
491
492   // The section name pool is worth optimizing in all cases, because
493   // it is small, but there are often overlaps due to .rel sections.
494   this->namepool_.set_optimize();
495 }
496
497 // For incremental links, record the base file to be modified.
498
499 void
500 Layout::set_incremental_base(Incremental_binary* base)
501 {
502   this->incremental_base_ = base;
503   this->free_list_.init(base->output_file()->filesize(), true);
504 }
505
506 // Hash a key we use to look up an output section mapping.
507
508 size_t
509 Layout::Hash_key::operator()(const Layout::Key& k) const
510 {
511  return k.first + k.second.first + k.second.second;
512 }
513
514 // These are the debug sections that are actually used by gdb.
515 // Currently, we've checked versions of gdb up to and including 7.4.
516 // We only check the part of the name that follows ".debug_" or
517 // ".zdebug_".
518
519 static const char* gdb_sections[] =
520 {
521   "abbrev",
522   "addr",         // Fission extension
523   // "aranges",   // not used by gdb as of 7.4
524   "frame",
525   "gdb_scripts",
526   "info",
527   "types",
528   "line",
529   "loc",
530   "macinfo",
531   "macro",
532   // "pubnames",  // not used by gdb as of 7.4
533   // "pubtypes",  // not used by gdb as of 7.4
534   // "gnu_pubnames",  // Fission extension
535   // "gnu_pubtypes",  // Fission extension
536   "ranges",
537   "str",
538   "str_offsets",
539 };
540
541 // This is the minimum set of sections needed for line numbers.
542
543 static const char* lines_only_debug_sections[] =
544 {
545   "abbrev",
546   // "addr",      // Fission extension
547   // "aranges",   // not used by gdb as of 7.4
548   // "frame",
549   // "gdb_scripts",
550   "info",
551   // "types",
552   "line",
553   // "loc",
554   // "macinfo",
555   // "macro",
556   // "pubnames",  // not used by gdb as of 7.4
557   // "pubtypes",  // not used by gdb as of 7.4
558   // "gnu_pubnames",  // Fission extension
559   // "gnu_pubtypes",  // Fission extension
560   // "ranges",
561   "str",
562   "str_offsets",  // Fission extension
563 };
564
565 // These sections are the DWARF fast-lookup tables, and are not needed
566 // when building a .gdb_index section.
567
568 static const char* gdb_fast_lookup_sections[] =
569 {
570   "aranges",
571   "pubnames",
572   "gnu_pubnames",
573   "pubtypes",
574   "gnu_pubtypes",
575 };
576
577 // Returns whether the given debug section is in the list of
578 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
579 // portion of the name following ".debug_" or ".zdebug_".
580
581 static inline bool
582 is_gdb_debug_section(const char* suffix)
583 {
584   // We can do this faster: binary search or a hashtable.  But why bother?
585   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
586     if (strcmp(suffix, gdb_sections[i]) == 0)
587       return true;
588   return false;
589 }
590
591 // Returns whether the given section is needed for lines-only debugging.
592
593 static inline bool
594 is_lines_only_debug_section(const char* suffix)
595 {
596   // We can do this faster: binary search or a hashtable.  But why bother?
597   for (size_t i = 0;
598        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
599        ++i)
600     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
601       return true;
602   return false;
603 }
604
605 // Returns whether the given section is a fast-lookup section that
606 // will not be needed when building a .gdb_index section.
607
608 static inline bool
609 is_gdb_fast_lookup_section(const char* suffix)
610 {
611   // We can do this faster: binary search or a hashtable.  But why bother?
612   for (size_t i = 0;
613        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
614        ++i)
615     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
616       return true;
617   return false;
618 }
619
620 // Sometimes we compress sections.  This is typically done for
621 // sections that are not part of normal program execution (such as
622 // .debug_* sections), and where the readers of these sections know
623 // how to deal with compressed sections.  This routine doesn't say for
624 // certain whether we'll compress -- it depends on commandline options
625 // as well -- just whether this section is a candidate for compression.
626 // (The Output_compressed_section class decides whether to compress
627 // a given section, and picks the name of the compressed section.)
628
629 static bool
630 is_compressible_debug_section(const char* secname)
631 {
632   return (is_prefix_of(".debug", secname));
633 }
634
635 // We may see compressed debug sections in input files.  Return TRUE
636 // if this is the name of a compressed debug section.
637
638 bool
639 is_compressed_debug_section(const char* secname)
640 {
641   return (is_prefix_of(".zdebug", secname));
642 }
643
644 std::string
645 corresponding_uncompressed_section_name(std::string secname)
646 {
647   gold_assert(secname[0] == '.' && secname[1] == 'z');
648   std::string ret(".");
649   ret.append(secname, 2, std::string::npos);
650   return ret;
651 }
652
653 // Whether to include this section in the link.
654
655 template<int size, bool big_endian>
656 bool
657 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
658                         const elfcpp::Shdr<size, big_endian>& shdr)
659 {
660   if (!parameters->options().relocatable()
661       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
662     return false;
663
664   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
665
666   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
667       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
668     return parameters->target().should_include_section(sh_type);
669
670   switch (sh_type)
671     {
672     case elfcpp::SHT_NULL:
673     case elfcpp::SHT_SYMTAB:
674     case elfcpp::SHT_DYNSYM:
675     case elfcpp::SHT_HASH:
676     case elfcpp::SHT_DYNAMIC:
677     case elfcpp::SHT_SYMTAB_SHNDX:
678       return false;
679
680     case elfcpp::SHT_STRTAB:
681       // Discard the sections which have special meanings in the ELF
682       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
683       // checking the sh_link fields of the appropriate sections.
684       return (strcmp(name, ".dynstr") != 0
685               && strcmp(name, ".strtab") != 0
686               && strcmp(name, ".shstrtab") != 0);
687
688     case elfcpp::SHT_RELA:
689     case elfcpp::SHT_REL:
690     case elfcpp::SHT_GROUP:
691       // If we are emitting relocations these should be handled
692       // elsewhere.
693       gold_assert(!parameters->options().relocatable());
694       return false;
695
696     case elfcpp::SHT_PROGBITS:
697       if (parameters->options().strip_debug()
698           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
699         {
700           if (is_debug_info_section(name))
701             return false;
702         }
703       if (parameters->options().strip_debug_non_line()
704           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
705         {
706           // Debugging sections can only be recognized by name.
707           if (is_prefix_of(".debug_", name)
708               && !is_lines_only_debug_section(name + 7))
709             return false;
710           if (is_prefix_of(".zdebug_", name)
711               && !is_lines_only_debug_section(name + 8))
712             return false;
713         }
714       if (parameters->options().strip_debug_gdb()
715           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
716         {
717           // Debugging sections can only be recognized by name.
718           if (is_prefix_of(".debug_", name)
719               && !is_gdb_debug_section(name + 7))
720             return false;
721           if (is_prefix_of(".zdebug_", name)
722               && !is_gdb_debug_section(name + 8))
723             return false;
724         }
725       if (parameters->options().gdb_index()
726           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
727         {
728           // When building .gdb_index, we can strip .debug_pubnames,
729           // .debug_pubtypes, and .debug_aranges sections.
730           if (is_prefix_of(".debug_", name)
731               && is_gdb_fast_lookup_section(name + 7))
732             return false;
733           if (is_prefix_of(".zdebug_", name)
734               && is_gdb_fast_lookup_section(name + 8))
735             return false;
736         }
737       if (parameters->options().strip_lto_sections()
738           && !parameters->options().relocatable()
739           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
740         {
741           // Ignore LTO sections containing intermediate code.
742           if (is_prefix_of(".gnu.lto_", name))
743             return false;
744         }
745       // The GNU linker strips .gnu_debuglink sections, so we do too.
746       // This is a feature used to keep debugging information in
747       // separate files.
748       if (strcmp(name, ".gnu_debuglink") == 0)
749         return false;
750       return true;
751
752     default:
753       return true;
754     }
755 }
756
757 // Return an output section named NAME, or NULL if there is none.
758
759 Output_section*
760 Layout::find_output_section(const char* name) const
761 {
762   for (Section_list::const_iterator p = this->section_list_.begin();
763        p != this->section_list_.end();
764        ++p)
765     if (strcmp((*p)->name(), name) == 0)
766       return *p;
767   return NULL;
768 }
769
770 // Return an output segment of type TYPE, with segment flags SET set
771 // and segment flags CLEAR clear.  Return NULL if there is none.
772
773 Output_segment*
774 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
775                             elfcpp::Elf_Word clear) const
776 {
777   for (Segment_list::const_iterator p = this->segment_list_.begin();
778        p != this->segment_list_.end();
779        ++p)
780     if (static_cast<elfcpp::PT>((*p)->type()) == type
781         && ((*p)->flags() & set) == set
782         && ((*p)->flags() & clear) == 0)
783       return *p;
784   return NULL;
785 }
786
787 // When we put a .ctors or .dtors section with more than one word into
788 // a .init_array or .fini_array section, we need to reverse the words
789 // in the .ctors/.dtors section.  This is because .init_array executes
790 // constructors front to back, where .ctors executes them back to
791 // front, and vice-versa for .fini_array/.dtors.  Although we do want
792 // to remap .ctors/.dtors into .init_array/.fini_array because it can
793 // be more efficient, we don't want to change the order in which
794 // constructors/destructors are run.  This set just keeps track of
795 // these sections which need to be reversed.  It is only changed by
796 // Layout::layout.  It should be a private member of Layout, but that
797 // would require layout.h to #include object.h to get the definition
798 // of Section_id.
799 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
800
801 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
802 // .init_array/.fini_array section.
803
804 bool
805 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
806 {
807   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
808           != ctors_sections_in_init_array.end());
809 }
810
811 // Return the output section to use for section NAME with type TYPE
812 // and section flags FLAGS.  NAME must be canonicalized in the string
813 // pool, and NAME_KEY is the key.  ORDER is where this should appear
814 // in the output sections.  IS_RELRO is true for a relro section.
815
816 Output_section*
817 Layout::get_output_section(const char* name, Stringpool::Key name_key,
818                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
819                            Output_section_order order, bool is_relro)
820 {
821   elfcpp::Elf_Word lookup_type = type;
822
823   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
824   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
825   // .init_array, .fini_array, and .preinit_array sections by name
826   // whatever their type in the input file.  We do this because the
827   // types are not always right in the input files.
828   if (lookup_type == elfcpp::SHT_INIT_ARRAY
829       || lookup_type == elfcpp::SHT_FINI_ARRAY
830       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
831     lookup_type = elfcpp::SHT_PROGBITS;
832
833   elfcpp::Elf_Xword lookup_flags = flags;
834
835   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
836   // read-write with read-only sections.  Some other ELF linkers do
837   // not do this.  FIXME: Perhaps there should be an option
838   // controlling this.
839   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
840
841   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
842   const std::pair<Key, Output_section*> v(key, NULL);
843   std::pair<Section_name_map::iterator, bool> ins(
844     this->section_name_map_.insert(v));
845
846   if (!ins.second)
847     return ins.first->second;
848   else
849     {
850       // This is the first time we've seen this name/type/flags
851       // combination.  For compatibility with the GNU linker, we
852       // combine sections with contents and zero flags with sections
853       // with non-zero flags.  This is a workaround for cases where
854       // assembler code forgets to set section flags.  FIXME: Perhaps
855       // there should be an option to control this.
856       Output_section* os = NULL;
857
858       if (lookup_type == elfcpp::SHT_PROGBITS)
859         {
860           if (flags == 0)
861             {
862               Output_section* same_name = this->find_output_section(name);
863               if (same_name != NULL
864                   && (same_name->type() == elfcpp::SHT_PROGBITS
865                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
866                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
867                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
868                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
869                 os = same_name;
870             }
871           else if ((flags & elfcpp::SHF_TLS) == 0)
872             {
873               elfcpp::Elf_Xword zero_flags = 0;
874               const Key zero_key(name_key, std::make_pair(lookup_type,
875                                                           zero_flags));
876               Section_name_map::iterator p =
877                   this->section_name_map_.find(zero_key);
878               if (p != this->section_name_map_.end())
879                 os = p->second;
880             }
881         }
882
883       if (os == NULL)
884         os = this->make_output_section(name, type, flags, order, is_relro);
885
886       ins.first->second = os;
887       return os;
888     }
889 }
890
891 // Returns TRUE iff NAME (an input section from RELOBJ) will
892 // be mapped to an output section that should be KEPT.
893
894 bool
895 Layout::keep_input_section(const Relobj* relobj, const char* name)
896 {
897   if (! this->script_options_->saw_sections_clause())
898     return false;
899
900   Script_sections* ss = this->script_options_->script_sections();
901   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
902   Output_section** output_section_slot;
903   Script_sections::Section_type script_section_type;
904   bool keep;
905
906   name = ss->output_section_name(file_name, name, &output_section_slot,
907                                  &script_section_type, &keep, true);
908   return name != NULL && keep;
909 }
910
911 // Clear the input section flags that should not be copied to the
912 // output section.
913
914 elfcpp::Elf_Xword
915 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
916 {
917   // Some flags in the input section should not be automatically
918   // copied to the output section.
919   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
920                             | elfcpp::SHF_GROUP
921                             | elfcpp::SHF_COMPRESSED
922                             | elfcpp::SHF_MERGE
923                             | elfcpp::SHF_STRINGS);
924
925   // We only clear the SHF_LINK_ORDER flag in for
926   // a non-relocatable link.
927   if (!parameters->options().relocatable())
928     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
929
930   return input_section_flags;
931 }
932
933 // Pick the output section to use for section NAME, in input file
934 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
935 // linker created section.  IS_INPUT_SECTION is true if we are
936 // choosing an output section for an input section found in a input
937 // file.  ORDER is where this section should appear in the output
938 // sections.  IS_RELRO is true for a relro section.  This will return
939 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
940 // is true if the section name should be matched against input specs
941 // in a linker script.
942
943 Output_section*
944 Layout::choose_output_section(const Relobj* relobj, const char* name,
945                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
946                               bool is_input_section, Output_section_order order,
947                               bool is_relro, bool is_reloc,
948                               bool match_input_spec)
949 {
950   // We should not see any input sections after we have attached
951   // sections to segments.
952   gold_assert(!is_input_section || !this->sections_are_attached_);
953
954   flags = this->get_output_section_flags(flags);
955
956   if (this->script_options_->saw_sections_clause() && !is_reloc)
957     {
958       // We are using a SECTIONS clause, so the output section is
959       // chosen based only on the name.
960
961       Script_sections* ss = this->script_options_->script_sections();
962       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
963       Output_section** output_section_slot;
964       Script_sections::Section_type script_section_type;
965       const char* orig_name = name;
966       bool keep;
967       name = ss->output_section_name(file_name, name, &output_section_slot,
968                                      &script_section_type, &keep,
969                                      match_input_spec);
970
971       if (name == NULL)
972         {
973           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
974                                      "because it is not allowed by the "
975                                      "SECTIONS clause of the linker script"),
976                      orig_name);
977           // The SECTIONS clause says to discard this input section.
978           return NULL;
979         }
980
981       // We can only handle script section types ST_NONE and ST_NOLOAD.
982       switch (script_section_type)
983         {
984         case Script_sections::ST_NONE:
985           break;
986         case Script_sections::ST_NOLOAD:
987           flags &= elfcpp::SHF_ALLOC;
988           break;
989         default:
990           gold_unreachable();
991         }
992
993       // If this is an orphan section--one not mentioned in the linker
994       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
995       // default processing below.
996
997       if (output_section_slot != NULL)
998         {
999           if (*output_section_slot != NULL)
1000             {
1001               (*output_section_slot)->update_flags_for_input_section(flags);
1002               return *output_section_slot;
1003             }
1004
1005           // We don't put sections found in the linker script into
1006           // SECTION_NAME_MAP_.  That keeps us from getting confused
1007           // if an orphan section is mapped to a section with the same
1008           // name as one in the linker script.
1009
1010           name = this->namepool_.add(name, false, NULL);
1011
1012           Output_section* os = this->make_output_section(name, type, flags,
1013                                                          order, is_relro);
1014
1015           os->set_found_in_sections_clause();
1016
1017           // Special handling for NOLOAD sections.
1018           if (script_section_type == Script_sections::ST_NOLOAD)
1019             {
1020               os->set_is_noload();
1021
1022               // The constructor of Output_section sets addresses of non-ALLOC
1023               // sections to 0 by default.  We don't want that for NOLOAD
1024               // sections even if they have no SHF_ALLOC flag.
1025               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1026                   && os->is_address_valid())
1027                 {
1028                   gold_assert(os->address() == 0
1029                               && !os->is_offset_valid()
1030                               && !os->is_data_size_valid());
1031                   os->reset_address_and_file_offset();
1032                 }
1033             }
1034
1035           *output_section_slot = os;
1036           return os;
1037         }
1038     }
1039
1040   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1041
1042   size_t len = strlen(name);
1043   std::string uncompressed_name;
1044
1045   // Compressed debug sections should be mapped to the corresponding
1046   // uncompressed section.
1047   if (is_compressed_debug_section(name))
1048     {
1049       uncompressed_name =
1050           corresponding_uncompressed_section_name(std::string(name, len));
1051       name = uncompressed_name.c_str();
1052       len = uncompressed_name.length();
1053     }
1054
1055   // Turn NAME from the name of the input section into the name of the
1056   // output section.
1057   if (is_input_section
1058       && !this->script_options_->saw_sections_clause()
1059       && !parameters->options().relocatable())
1060     {
1061       const char *orig_name = name;
1062       name = parameters->target().output_section_name(relobj, name, &len);
1063       if (name == NULL)
1064         name = Layout::output_section_name(relobj, orig_name, &len);
1065     }
1066
1067   Stringpool::Key name_key;
1068   name = this->namepool_.add_with_length(name, len, true, &name_key);
1069
1070   // Find or make the output section.  The output section is selected
1071   // based on the section name, type, and flags.
1072   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1073 }
1074
1075 // For incremental links, record the initial fixed layout of a section
1076 // from the base file, and return a pointer to the Output_section.
1077
1078 template<int size, bool big_endian>
1079 Output_section*
1080 Layout::init_fixed_output_section(const char* name,
1081                                   elfcpp::Shdr<size, big_endian>& shdr)
1082 {
1083   unsigned int sh_type = shdr.get_sh_type();
1084
1085   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1086   // PRE_INIT_ARRAY, and NOTE sections.
1087   // All others will be created from scratch and reallocated.
1088   if (!can_incremental_update(sh_type))
1089     return NULL;
1090
1091   // If we're generating a .gdb_index section, we need to regenerate
1092   // it from scratch.
1093   if (parameters->options().gdb_index()
1094       && sh_type == elfcpp::SHT_PROGBITS
1095       && strcmp(name, ".gdb_index") == 0)
1096     return NULL;
1097
1098   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1099   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1100   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1102   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1103       shdr.get_sh_addralign();
1104
1105   // Make the output section.
1106   Stringpool::Key name_key;
1107   name = this->namepool_.add(name, true, &name_key);
1108   Output_section* os = this->get_output_section(name, name_key, sh_type,
1109                                                 sh_flags, ORDER_INVALID, false);
1110   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1111   if (sh_type != elfcpp::SHT_NOBITS)
1112     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1113   return os;
1114 }
1115
1116 // Return the index by which an input section should be ordered.  This
1117 // is used to sort some .text sections, for compatibility with GNU ld.
1118
1119 int
1120 Layout::special_ordering_of_input_section(const char* name)
1121 {
1122   // The GNU linker has some special handling for some sections that
1123   // wind up in the .text section.  Sections that start with these
1124   // prefixes must appear first, and must appear in the order listed
1125   // here.
1126   static const char* const text_section_sort[] =
1127   {
1128     ".text.unlikely",
1129     ".text.exit",
1130     ".text.startup",
1131     ".text.hot"
1132   };
1133
1134   for (size_t i = 0;
1135        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1136        i++)
1137     if (is_prefix_of(text_section_sort[i], name))
1138       return i;
1139
1140   return -1;
1141 }
1142
1143 // Return the output section to use for input section SHNDX, with name
1144 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1145 // index of a relocation section which applies to this section, or 0
1146 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1147 // relocation section if there is one.  Set *OFF to the offset of this
1148 // input section without the output section.  Return NULL if the
1149 // section should be discarded.  Set *OFF to -1 if the section
1150 // contents should not be written directly to the output file, but
1151 // will instead receive special handling.
1152
1153 template<int size, bool big_endian>
1154 Output_section*
1155 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1156                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1157                unsigned int sh_type, unsigned int reloc_shndx,
1158                unsigned int, off_t* off)
1159 {
1160   *off = 0;
1161
1162   if (!this->include_section(object, name, shdr))
1163     return NULL;
1164
1165   // In a relocatable link a grouped section must not be combined with
1166   // any other sections.
1167   Output_section* os;
1168   if (parameters->options().relocatable()
1169       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170     {
1171       // Some flags in the input section should not be automatically
1172       // copied to the output section.
1173       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174                                  & ~ elfcpp::SHF_COMPRESSED);
1175       name = this->namepool_.add(name, true, NULL);
1176       os = this->make_output_section(name, sh_type, flags,
1177                                      ORDER_INVALID, false);
1178     }
1179   else
1180     {
1181       // All ".text.unlikely.*" sections can be moved to a unique
1182       // segment with --text-unlikely-segment option.
1183       bool text_unlikely_segment
1184           = (parameters->options().text_unlikely_segment()
1185              && is_prefix_of(".text.unlikely",
1186                              object->section_name(shndx).c_str()));
1187       if (text_unlikely_segment)
1188         {
1189           elfcpp::Elf_Xword flags
1190             = this->get_output_section_flags(shdr.get_sh_flags());
1191
1192           Stringpool::Key name_key;
1193           const char* os_name = this->namepool_.add(".text.unlikely", true,
1194                                                     &name_key);
1195           os = this->get_output_section(os_name, name_key, sh_type, flags,
1196                                         ORDER_INVALID, false);
1197           // Map this output section to a unique segment.  This is done to
1198           // separate "text" that is not likely to be executed from "text"
1199           // that is likely executed.
1200           os->set_is_unique_segment();
1201         }
1202       else
1203         {
1204           // Plugins can choose to place one or more subsets of sections in
1205           // unique segments and this is done by mapping these section subsets
1206           // to unique output sections.  Check if this section needs to be
1207           // remapped to a unique output section.
1208           Section_segment_map::iterator it
1209             = this->section_segment_map_.find(Const_section_id(object, shndx));
1210           if (it == this->section_segment_map_.end())
1211             {
1212               os = this->choose_output_section(object, name, sh_type,
1213                                                shdr.get_sh_flags(), true,
1214                                                ORDER_INVALID, false, false,
1215                                                true);
1216             }
1217           else
1218             {
1219               // We know the name of the output section, directly call
1220               // get_output_section here by-passing choose_output_section.
1221               elfcpp::Elf_Xword flags
1222                 = this->get_output_section_flags(shdr.get_sh_flags());
1223
1224               const char* os_name = it->second->name;
1225               Stringpool::Key name_key;
1226               os_name = this->namepool_.add(os_name, true, &name_key);
1227               os = this->get_output_section(os_name, name_key, sh_type, flags,
1228                                         ORDER_INVALID, false);
1229               if (!os->is_unique_segment())
1230                 {
1231                   os->set_is_unique_segment();
1232                   os->set_extra_segment_flags(it->second->flags);
1233                   os->set_segment_alignment(it->second->align);
1234                 }
1235             }
1236           }
1237       if (os == NULL)
1238         return NULL;
1239     }
1240
1241   // By default the GNU linker sorts input sections whose names match
1242   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1243   // sections are sorted by name.  This is used to implement
1244   // constructor priority ordering.  We are compatible.  When we put
1245   // .ctor sections in .init_array and .dtor sections in .fini_array,
1246   // we must also sort plain .ctor and .dtor sections.
1247   if (!this->script_options_->saw_sections_clause()
1248       && !parameters->options().relocatable()
1249       && (is_prefix_of(".ctors.", name)
1250           || is_prefix_of(".dtors.", name)
1251           || is_prefix_of(".init_array.", name)
1252           || is_prefix_of(".fini_array.", name)
1253           || (parameters->options().ctors_in_init_array()
1254               && (strcmp(name, ".ctors") == 0
1255                   || strcmp(name, ".dtors") == 0))))
1256     os->set_must_sort_attached_input_sections();
1257
1258   // By default the GNU linker sorts some special text sections ahead
1259   // of others.  We are compatible.
1260   if (parameters->options().text_reorder()
1261       && !this->script_options_->saw_sections_clause()
1262       && !this->is_section_ordering_specified()
1263       && !parameters->options().relocatable()
1264       && Layout::special_ordering_of_input_section(name) >= 0)
1265     os->set_must_sort_attached_input_sections();
1266
1267   // If this is a .ctors or .ctors.* section being mapped to a
1268   // .init_array section, or a .dtors or .dtors.* section being mapped
1269   // to a .fini_array section, we will need to reverse the words if
1270   // there is more than one.  Record this section for later.  See
1271   // ctors_sections_in_init_array above.
1272   if (!this->script_options_->saw_sections_clause()
1273       && !parameters->options().relocatable()
1274       && shdr.get_sh_size() > size / 8
1275       && (((strcmp(name, ".ctors") == 0
1276             || is_prefix_of(".ctors.", name))
1277            && strcmp(os->name(), ".init_array") == 0)
1278           || ((strcmp(name, ".dtors") == 0
1279                || is_prefix_of(".dtors.", name))
1280               && strcmp(os->name(), ".fini_array") == 0)))
1281     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1282
1283   // FIXME: Handle SHF_LINK_ORDER somewhere.
1284
1285   elfcpp::Elf_Xword orig_flags = os->flags();
1286
1287   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1288                                this->script_options_->saw_sections_clause());
1289
1290   // If the flags changed, we may have to change the order.
1291   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1292     {
1293       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1294       elfcpp::Elf_Xword new_flags =
1295         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296       if (orig_flags != new_flags)
1297         os->set_order(this->default_section_order(os, false));
1298     }
1299
1300   this->have_added_input_section_ = true;
1301
1302   return os;
1303 }
1304
1305 // Maps section SECN to SEGMENT s.
1306 void
1307 Layout::insert_section_segment_map(Const_section_id secn,
1308                                    Unique_segment_info *s)
1309 {
1310   gold_assert(this->unique_segment_for_sections_specified_);
1311   this->section_segment_map_[secn] = s;
1312 }
1313
1314 // Handle a relocation section when doing a relocatable link.
1315
1316 template<int size, bool big_endian>
1317 Output_section*
1318 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1319                      unsigned int,
1320                      const elfcpp::Shdr<size, big_endian>& shdr,
1321                      Output_section* data_section,
1322                      Relocatable_relocs* rr)
1323 {
1324   gold_assert(parameters->options().relocatable()
1325               || parameters->options().emit_relocs());
1326
1327   int sh_type = shdr.get_sh_type();
1328
1329   std::string name;
1330   if (sh_type == elfcpp::SHT_REL)
1331     name = ".rel";
1332   else if (sh_type == elfcpp::SHT_RELA)
1333     name = ".rela";
1334   else
1335     gold_unreachable();
1336   name += data_section->name();
1337
1338   // If the output data section already has a reloc section, use that;
1339   // otherwise, make a new one.
1340   Output_section* os = data_section->reloc_section();
1341   if (os == NULL)
1342     {
1343       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1344       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1345                                      ORDER_INVALID, false);
1346       os->set_should_link_to_symtab();
1347       os->set_info_section(data_section);
1348       data_section->set_reloc_section(os);
1349     }
1350
1351   Output_section_data* posd;
1352   if (sh_type == elfcpp::SHT_REL)
1353     {
1354       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1355       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1356                                            size,
1357                                            big_endian>(rr);
1358     }
1359   else if (sh_type == elfcpp::SHT_RELA)
1360     {
1361       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1362       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1363                                            size,
1364                                            big_endian>(rr);
1365     }
1366   else
1367     gold_unreachable();
1368
1369   os->add_output_section_data(posd);
1370   rr->set_output_data(posd);
1371
1372   return os;
1373 }
1374
1375 // Handle a group section when doing a relocatable link.
1376
1377 template<int size, bool big_endian>
1378 void
1379 Layout::layout_group(Symbol_table* symtab,
1380                      Sized_relobj_file<size, big_endian>* object,
1381                      unsigned int,
1382                      const char* group_section_name,
1383                      const char* signature,
1384                      const elfcpp::Shdr<size, big_endian>& shdr,
1385                      elfcpp::Elf_Word flags,
1386                      std::vector<unsigned int>* shndxes)
1387 {
1388   gold_assert(parameters->options().relocatable());
1389   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1390   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1391   Output_section* os = this->make_output_section(group_section_name,
1392                                                  elfcpp::SHT_GROUP,
1393                                                  shdr.get_sh_flags(),
1394                                                  ORDER_INVALID, false);
1395
1396   // We need to find a symbol with the signature in the symbol table.
1397   // If we don't find one now, we need to look again later.
1398   Symbol* sym = symtab->lookup(signature, NULL);
1399   if (sym != NULL)
1400     os->set_info_symndx(sym);
1401   else
1402     {
1403       // Reserve some space to minimize reallocations.
1404       if (this->group_signatures_.empty())
1405         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1406
1407       // We will wind up using a symbol whose name is the signature.
1408       // So just put the signature in the symbol name pool to save it.
1409       signature = symtab->canonicalize_name(signature);
1410       this->group_signatures_.push_back(Group_signature(os, signature));
1411     }
1412
1413   os->set_should_link_to_symtab();
1414   os->set_entsize(4);
1415
1416   section_size_type entry_count =
1417     convert_to_section_size_type(shdr.get_sh_size() / 4);
1418   Output_section_data* posd =
1419     new Output_data_group<size, big_endian>(object, entry_count, flags,
1420                                             shndxes);
1421   os->add_output_section_data(posd);
1422 }
1423
1424 // Special GNU handling of sections name .eh_frame.  They will
1425 // normally hold exception frame data as defined by the C++ ABI
1426 // (http://codesourcery.com/cxx-abi/).
1427
1428 template<int size, bool big_endian>
1429 Output_section*
1430 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1431                         const unsigned char* symbols,
1432                         off_t symbols_size,
1433                         const unsigned char* symbol_names,
1434                         off_t symbol_names_size,
1435                         unsigned int shndx,
1436                         const elfcpp::Shdr<size, big_endian>& shdr,
1437                         unsigned int reloc_shndx, unsigned int reloc_type,
1438                         off_t* off)
1439 {
1440   const unsigned int unwind_section_type =
1441       parameters->target().unwind_section_type();
1442
1443   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1444               || shdr.get_sh_type() == unwind_section_type);
1445   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1446
1447   Output_section* os = this->make_eh_frame_section(object);
1448   if (os == NULL)
1449     return NULL;
1450
1451   gold_assert(this->eh_frame_section_ == os);
1452
1453   elfcpp::Elf_Xword orig_flags = os->flags();
1454
1455   Eh_frame::Eh_frame_section_disposition disp =
1456       Eh_frame::EH_UNRECOGNIZED_SECTION;
1457   if (!parameters->incremental())
1458     {
1459       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1460                                                              symbols,
1461                                                              symbols_size,
1462                                                              symbol_names,
1463                                                              symbol_names_size,
1464                                                              shndx,
1465                                                              reloc_shndx,
1466                                                              reloc_type);
1467     }
1468
1469   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1470     {
1471       os->update_flags_for_input_section(shdr.get_sh_flags());
1472
1473       // A writable .eh_frame section is a RELRO section.
1474       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1475           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1476         {
1477           os->set_is_relro();
1478           os->set_order(ORDER_RELRO);
1479         }
1480
1481       *off = -1;
1482       return os;
1483     }
1484
1485   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1486     {
1487       // We found the end marker section, so now we can add the set of
1488       // optimized sections to the output section.  We need to postpone
1489       // adding this until we've found a section we can optimize so that
1490       // the .eh_frame section in crtbeginT.o winds up at the start of
1491       // the output section.
1492       os->add_output_section_data(this->eh_frame_data_);
1493       this->added_eh_frame_data_ = true;
1494      }
1495
1496   // We couldn't handle this .eh_frame section for some reason.
1497   // Add it as a normal section.
1498   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1499   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1500                                reloc_shndx, saw_sections_clause);
1501   this->have_added_input_section_ = true;
1502
1503   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1504       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1505     os->set_order(this->default_section_order(os, false));
1506
1507   return os;
1508 }
1509
1510 void
1511 Layout::finalize_eh_frame_section()
1512 {
1513   // If we never found an end marker section, we need to add the
1514   // optimized eh sections to the output section now.
1515   if (!parameters->incremental()
1516       && this->eh_frame_section_ != NULL
1517       && !this->added_eh_frame_data_)
1518     {
1519       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1520       this->added_eh_frame_data_ = true;
1521     }
1522 }
1523
1524 // Create and return the magic .eh_frame section.  Create
1525 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1526 // input .eh_frame section; it may be NULL.
1527
1528 Output_section*
1529 Layout::make_eh_frame_section(const Relobj* object)
1530 {
1531   const unsigned int unwind_section_type =
1532       parameters->target().unwind_section_type();
1533
1534   Output_section* os = this->choose_output_section(object, ".eh_frame",
1535                                                    unwind_section_type,
1536                                                    elfcpp::SHF_ALLOC, false,
1537                                                    ORDER_EHFRAME, false, false,
1538                                                    false);
1539   if (os == NULL)
1540     return NULL;
1541
1542   if (this->eh_frame_section_ == NULL)
1543     {
1544       this->eh_frame_section_ = os;
1545       this->eh_frame_data_ = new Eh_frame();
1546
1547       // For incremental linking, we do not optimize .eh_frame sections
1548       // or create a .eh_frame_hdr section.
1549       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1550         {
1551           Output_section* hdr_os =
1552             this->choose_output_section(NULL, ".eh_frame_hdr",
1553                                         unwind_section_type,
1554                                         elfcpp::SHF_ALLOC, false,
1555                                         ORDER_EHFRAME, false, false,
1556                                         false);
1557
1558           if (hdr_os != NULL)
1559             {
1560               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1561                                                         this->eh_frame_data_);
1562               hdr_os->add_output_section_data(hdr_posd);
1563
1564               hdr_os->set_after_input_sections();
1565
1566               if (!this->script_options_->saw_phdrs_clause())
1567                 {
1568                   Output_segment* hdr_oseg;
1569                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1570                                                        elfcpp::PF_R);
1571                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1572                                                           elfcpp::PF_R);
1573                 }
1574
1575               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1576             }
1577         }
1578     }
1579
1580   return os;
1581 }
1582
1583 // Add an exception frame for a PLT.  This is called from target code.
1584
1585 void
1586 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1587                              size_t cie_length, const unsigned char* fde_data,
1588                              size_t fde_length)
1589 {
1590   if (parameters->incremental())
1591     {
1592       // FIXME: Maybe this could work some day....
1593       return;
1594     }
1595   Output_section* os = this->make_eh_frame_section(NULL);
1596   if (os == NULL)
1597     return;
1598   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1599                                             fde_data, fde_length);
1600   if (!this->added_eh_frame_data_)
1601     {
1602       os->add_output_section_data(this->eh_frame_data_);
1603       this->added_eh_frame_data_ = true;
1604     }
1605 }
1606
1607 // Remove all post-map .eh_frame information for a PLT.
1608
1609 void
1610 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1611                                 size_t cie_length)
1612 {
1613   if (parameters->incremental())
1614     {
1615       // FIXME: Maybe this could work some day....
1616       return;
1617     }
1618   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1619 }
1620
1621 // Scan a .debug_info or .debug_types section, and add summary
1622 // information to the .gdb_index section.
1623
1624 template<int size, bool big_endian>
1625 void
1626 Layout::add_to_gdb_index(bool is_type_unit,
1627                          Sized_relobj<size, big_endian>* object,
1628                          const unsigned char* symbols,
1629                          off_t symbols_size,
1630                          unsigned int shndx,
1631                          unsigned int reloc_shndx,
1632                          unsigned int reloc_type)
1633 {
1634   if (this->gdb_index_data_ == NULL)
1635     {
1636       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1637                                                        elfcpp::SHT_PROGBITS, 0,
1638                                                        false, ORDER_INVALID,
1639                                                        false, false, false);
1640       if (os == NULL)
1641         return;
1642
1643       this->gdb_index_data_ = new Gdb_index(os);
1644       os->add_output_section_data(this->gdb_index_data_);
1645       os->set_after_input_sections();
1646     }
1647
1648   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1649                                          symbols_size, shndx, reloc_shndx,
1650                                          reloc_type);
1651 }
1652
1653 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1654 // the output section.
1655
1656 Output_section*
1657 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1658                                 elfcpp::Elf_Xword flags,
1659                                 Output_section_data* posd,
1660                                 Output_section_order order, bool is_relro)
1661 {
1662   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1663                                                    false, order, is_relro,
1664                                                    false, false);
1665   if (os != NULL)
1666     os->add_output_section_data(posd);
1667   return os;
1668 }
1669
1670 // Map section flags to segment flags.
1671
1672 elfcpp::Elf_Word
1673 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1674 {
1675   elfcpp::Elf_Word ret = elfcpp::PF_R;
1676   if ((flags & elfcpp::SHF_WRITE) != 0)
1677     ret |= elfcpp::PF_W;
1678   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1679     ret |= elfcpp::PF_X;
1680   return ret;
1681 }
1682
1683 // Make a new Output_section, and attach it to segments as
1684 // appropriate.  ORDER is the order in which this section should
1685 // appear in the output segment.  IS_RELRO is true if this is a relro
1686 // (read-only after relocations) section.
1687
1688 Output_section*
1689 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1690                             elfcpp::Elf_Xword flags,
1691                             Output_section_order order, bool is_relro)
1692 {
1693   Output_section* os;
1694   if ((flags & elfcpp::SHF_ALLOC) == 0
1695       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1696       && is_compressible_debug_section(name))
1697     os = new Output_compressed_section(&parameters->options(), name, type,
1698                                        flags);
1699   else if ((flags & elfcpp::SHF_ALLOC) == 0
1700            && parameters->options().strip_debug_non_line()
1701            && strcmp(".debug_abbrev", name) == 0)
1702     {
1703       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1704           name, type, flags);
1705       if (this->debug_info_)
1706         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1707     }
1708   else if ((flags & elfcpp::SHF_ALLOC) == 0
1709            && parameters->options().strip_debug_non_line()
1710            && strcmp(".debug_info", name) == 0)
1711     {
1712       os = this->debug_info_ = new Output_reduced_debug_info_section(
1713           name, type, flags);
1714       if (this->debug_abbrev_)
1715         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1716     }
1717   else
1718     {
1719       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1720       // not have correct section types.  Force them here.
1721       if (type == elfcpp::SHT_PROGBITS)
1722         {
1723           if (is_prefix_of(".init_array", name))
1724             type = elfcpp::SHT_INIT_ARRAY;
1725           else if (is_prefix_of(".preinit_array", name))
1726             type = elfcpp::SHT_PREINIT_ARRAY;
1727           else if (is_prefix_of(".fini_array", name))
1728             type = elfcpp::SHT_FINI_ARRAY;
1729         }
1730
1731       // FIXME: const_cast is ugly.
1732       Target* target = const_cast<Target*>(&parameters->target());
1733       os = target->make_output_section(name, type, flags);
1734     }
1735
1736   // With -z relro, we have to recognize the special sections by name.
1737   // There is no other way.
1738   bool is_relro_local = false;
1739   if (!this->script_options_->saw_sections_clause()
1740       && parameters->options().relro()
1741       && (flags & elfcpp::SHF_ALLOC) != 0
1742       && (flags & elfcpp::SHF_WRITE) != 0)
1743     {
1744       if (type == elfcpp::SHT_PROGBITS)
1745         {
1746           if ((flags & elfcpp::SHF_TLS) != 0)
1747             is_relro = true;
1748           else if (strcmp(name, ".data.rel.ro") == 0)
1749             is_relro = true;
1750           else if (strcmp(name, ".data.rel.ro.local") == 0)
1751             {
1752               is_relro = true;
1753               is_relro_local = true;
1754             }
1755           else if (strcmp(name, ".ctors") == 0
1756                    || strcmp(name, ".dtors") == 0
1757                    || strcmp(name, ".jcr") == 0)
1758             is_relro = true;
1759         }
1760       else if (type == elfcpp::SHT_INIT_ARRAY
1761                || type == elfcpp::SHT_FINI_ARRAY
1762                || type == elfcpp::SHT_PREINIT_ARRAY)
1763         is_relro = true;
1764     }
1765
1766   if (is_relro)
1767     os->set_is_relro();
1768
1769   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1770     order = this->default_section_order(os, is_relro_local);
1771
1772   os->set_order(order);
1773
1774   parameters->target().new_output_section(os);
1775
1776   this->section_list_.push_back(os);
1777
1778   // The GNU linker by default sorts some sections by priority, so we
1779   // do the same.  We need to know that this might happen before we
1780   // attach any input sections.
1781   if (!this->script_options_->saw_sections_clause()
1782       && !parameters->options().relocatable()
1783       && (strcmp(name, ".init_array") == 0
1784           || strcmp(name, ".fini_array") == 0
1785           || (!parameters->options().ctors_in_init_array()
1786               && (strcmp(name, ".ctors") == 0
1787                   || strcmp(name, ".dtors") == 0))))
1788     os->set_may_sort_attached_input_sections();
1789
1790   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1791   // sections before other .text sections.  We are compatible.  We
1792   // need to know that this might happen before we attach any input
1793   // sections.
1794   if (parameters->options().text_reorder()
1795       && !this->script_options_->saw_sections_clause()
1796       && !this->is_section_ordering_specified()
1797       && !parameters->options().relocatable()
1798       && strcmp(name, ".text") == 0)
1799     os->set_may_sort_attached_input_sections();
1800
1801   // GNU linker sorts section by name with --sort-section=name.
1802   if (strcmp(parameters->options().sort_section(), "name") == 0)
1803       os->set_must_sort_attached_input_sections();
1804
1805   // Check for .stab*str sections, as .stab* sections need to link to
1806   // them.
1807   if (type == elfcpp::SHT_STRTAB
1808       && !this->have_stabstr_section_
1809       && strncmp(name, ".stab", 5) == 0
1810       && strcmp(name + strlen(name) - 3, "str") == 0)
1811     this->have_stabstr_section_ = true;
1812
1813   // During a full incremental link, we add patch space to most
1814   // PROGBITS and NOBITS sections.  Flag those that may be
1815   // arbitrarily padded.
1816   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1817       && order != ORDER_INTERP
1818       && order != ORDER_INIT
1819       && order != ORDER_PLT
1820       && order != ORDER_FINI
1821       && order != ORDER_RELRO_LAST
1822       && order != ORDER_NON_RELRO_FIRST
1823       && strcmp(name, ".eh_frame") != 0
1824       && strcmp(name, ".ctors") != 0
1825       && strcmp(name, ".dtors") != 0
1826       && strcmp(name, ".jcr") != 0)
1827     {
1828       os->set_is_patch_space_allowed();
1829
1830       // Certain sections require "holes" to be filled with
1831       // specific fill patterns.  These fill patterns may have
1832       // a minimum size, so we must prevent allocations from the
1833       // free list that leave a hole smaller than the minimum.
1834       if (strcmp(name, ".debug_info") == 0)
1835         os->set_free_space_fill(new Output_fill_debug_info(false));
1836       else if (strcmp(name, ".debug_types") == 0)
1837         os->set_free_space_fill(new Output_fill_debug_info(true));
1838       else if (strcmp(name, ".debug_line") == 0)
1839         os->set_free_space_fill(new Output_fill_debug_line());
1840     }
1841
1842   // If we have already attached the sections to segments, then we
1843   // need to attach this one now.  This happens for sections created
1844   // directly by the linker.
1845   if (this->sections_are_attached_)
1846     this->attach_section_to_segment(&parameters->target(), os);
1847
1848   return os;
1849 }
1850
1851 // Return the default order in which a section should be placed in an
1852 // output segment.  This function captures a lot of the ideas in
1853 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1854 // linker created section is normally set when the section is created;
1855 // this function is used for input sections.
1856
1857 Output_section_order
1858 Layout::default_section_order(Output_section* os, bool is_relro_local)
1859 {
1860   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1861   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1862   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1863   bool is_bss = false;
1864
1865   switch (os->type())
1866     {
1867     default:
1868     case elfcpp::SHT_PROGBITS:
1869       break;
1870     case elfcpp::SHT_NOBITS:
1871       is_bss = true;
1872       break;
1873     case elfcpp::SHT_RELA:
1874     case elfcpp::SHT_REL:
1875       if (!is_write)
1876         return ORDER_DYNAMIC_RELOCS;
1877       break;
1878     case elfcpp::SHT_HASH:
1879     case elfcpp::SHT_DYNAMIC:
1880     case elfcpp::SHT_SHLIB:
1881     case elfcpp::SHT_DYNSYM:
1882     case elfcpp::SHT_GNU_HASH:
1883     case elfcpp::SHT_GNU_verdef:
1884     case elfcpp::SHT_GNU_verneed:
1885     case elfcpp::SHT_GNU_versym:
1886       if (!is_write)
1887         return ORDER_DYNAMIC_LINKER;
1888       break;
1889     case elfcpp::SHT_NOTE:
1890       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1891     }
1892
1893   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1894     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1895
1896   if (!is_bss && !is_write)
1897     {
1898       if (is_execinstr)
1899         {
1900           if (strcmp(os->name(), ".init") == 0)
1901             return ORDER_INIT;
1902           else if (strcmp(os->name(), ".fini") == 0)
1903             return ORDER_FINI;
1904           else if (parameters->options().keep_text_section_prefix())
1905             {
1906               // -z,keep-text-section-prefix introduces additional
1907               // output sections.
1908               if (strcmp(os->name(), ".text.hot") == 0)
1909                 return ORDER_TEXT_HOT;
1910               else if (strcmp(os->name(), ".text.startup") == 0)
1911                 return ORDER_TEXT_STARTUP;
1912               else if (strcmp(os->name(), ".text.exit") == 0)
1913                 return ORDER_TEXT_EXIT;
1914               else if (strcmp(os->name(), ".text.unlikely") == 0)
1915                 return ORDER_TEXT_UNLIKELY;
1916             }
1917         }
1918       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1919     }
1920
1921   if (os->is_relro())
1922     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1923
1924   if (os->is_small_section())
1925     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1926   if (os->is_large_section())
1927     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1928
1929   return is_bss ? ORDER_BSS : ORDER_DATA;
1930 }
1931
1932 // Attach output sections to segments.  This is called after we have
1933 // seen all the input sections.
1934
1935 void
1936 Layout::attach_sections_to_segments(const Target* target)
1937 {
1938   for (Section_list::iterator p = this->section_list_.begin();
1939        p != this->section_list_.end();
1940        ++p)
1941     this->attach_section_to_segment(target, *p);
1942
1943   this->sections_are_attached_ = true;
1944 }
1945
1946 // Attach an output section to a segment.
1947
1948 void
1949 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1950 {
1951   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1952     this->unattached_section_list_.push_back(os);
1953   else
1954     this->attach_allocated_section_to_segment(target, os);
1955 }
1956
1957 // Attach an allocated output section to a segment.
1958
1959 void
1960 Layout::attach_allocated_section_to_segment(const Target* target,
1961                                             Output_section* os)
1962 {
1963   elfcpp::Elf_Xword flags = os->flags();
1964   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1965
1966   if (parameters->options().relocatable())
1967     return;
1968
1969   // If we have a SECTIONS clause, we can't handle the attachment to
1970   // segments until after we've seen all the sections.
1971   if (this->script_options_->saw_sections_clause())
1972     return;
1973
1974   gold_assert(!this->script_options_->saw_phdrs_clause());
1975
1976   // This output section goes into a PT_LOAD segment.
1977
1978   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1979
1980   // If this output section's segment has extra flags that need to be set,
1981   // coming from a linker plugin, do that.
1982   seg_flags |= os->extra_segment_flags();
1983
1984   // Check for --section-start.
1985   uint64_t addr;
1986   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1987
1988   // In general the only thing we really care about for PT_LOAD
1989   // segments is whether or not they are writable or executable,
1990   // so that is how we search for them.
1991   // Large data sections also go into their own PT_LOAD segment.
1992   // People who need segments sorted on some other basis will
1993   // have to use a linker script.
1994
1995   Segment_list::const_iterator p;
1996   if (!os->is_unique_segment())
1997     {
1998       for (p = this->segment_list_.begin();
1999            p != this->segment_list_.end();
2000            ++p)
2001         {
2002           if ((*p)->type() != elfcpp::PT_LOAD)
2003             continue;
2004           if ((*p)->is_unique_segment())
2005             continue;
2006           if (!parameters->options().omagic()
2007               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2008             continue;
2009           if ((target->isolate_execinstr() || parameters->options().rosegment())
2010               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2011             continue;
2012           // If -Tbss was specified, we need to separate the data and BSS
2013           // segments.
2014           if (parameters->options().user_set_Tbss())
2015             {
2016               if ((os->type() == elfcpp::SHT_NOBITS)
2017                   == (*p)->has_any_data_sections())
2018                 continue;
2019             }
2020           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2021             continue;
2022
2023           if (is_address_set)
2024             {
2025               if ((*p)->are_addresses_set())
2026                 continue;
2027
2028               (*p)->add_initial_output_data(os);
2029               (*p)->update_flags_for_output_section(seg_flags);
2030               (*p)->set_addresses(addr, addr);
2031               break;
2032             }
2033
2034           (*p)->add_output_section_to_load(this, os, seg_flags);
2035           break;
2036         }
2037     }
2038
2039   if (p == this->segment_list_.end()
2040       || os->is_unique_segment())
2041     {
2042       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2043                                                        seg_flags);
2044       if (os->is_large_data_section())
2045         oseg->set_is_large_data_segment();
2046       oseg->add_output_section_to_load(this, os, seg_flags);
2047       if (is_address_set)
2048         oseg->set_addresses(addr, addr);
2049       // Check if segment should be marked unique.  For segments marked
2050       // unique by linker plugins, set the new alignment if specified.
2051       if (os->is_unique_segment())
2052         {
2053           oseg->set_is_unique_segment();
2054           if (os->segment_alignment() != 0)
2055             oseg->set_minimum_p_align(os->segment_alignment());
2056         }
2057     }
2058
2059   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2060   // segment.
2061   if (os->type() == elfcpp::SHT_NOTE)
2062     {
2063       // See if we already have an equivalent PT_NOTE segment.
2064       for (p = this->segment_list_.begin();
2065            p != segment_list_.end();
2066            ++p)
2067         {
2068           if ((*p)->type() == elfcpp::PT_NOTE
2069               && (((*p)->flags() & elfcpp::PF_W)
2070                   == (seg_flags & elfcpp::PF_W)))
2071             {
2072               (*p)->add_output_section_to_nonload(os, seg_flags);
2073               break;
2074             }
2075         }
2076
2077       if (p == this->segment_list_.end())
2078         {
2079           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2080                                                            seg_flags);
2081           oseg->add_output_section_to_nonload(os, seg_flags);
2082         }
2083     }
2084
2085   // If we see a loadable SHF_TLS section, we create a PT_TLS
2086   // segment.  There can only be one such segment.
2087   if ((flags & elfcpp::SHF_TLS) != 0)
2088     {
2089       if (this->tls_segment_ == NULL)
2090         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2091       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2092     }
2093
2094   // If -z relro is in effect, and we see a relro section, we create a
2095   // PT_GNU_RELRO segment.  There can only be one such segment.
2096   if (os->is_relro() && parameters->options().relro())
2097     {
2098       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2099       if (this->relro_segment_ == NULL)
2100         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2101       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2102     }
2103
2104   // If we see a section named .interp, put it into a PT_INTERP
2105   // segment.  This seems broken to me, but this is what GNU ld does,
2106   // and glibc expects it.
2107   if (strcmp(os->name(), ".interp") == 0
2108       && !this->script_options_->saw_phdrs_clause())
2109     {
2110       if (this->interp_segment_ == NULL)
2111         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2112       else
2113         gold_warning(_("multiple '.interp' sections in input files "
2114                        "may cause confusing PT_INTERP segment"));
2115       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2116     }
2117 }
2118
2119 // Make an output section for a script.
2120
2121 Output_section*
2122 Layout::make_output_section_for_script(
2123     const char* name,
2124     Script_sections::Section_type section_type)
2125 {
2126   name = this->namepool_.add(name, false, NULL);
2127   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2128   if (section_type == Script_sections::ST_NOLOAD)
2129     sh_flags = 0;
2130   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2131                                                  sh_flags, ORDER_INVALID,
2132                                                  false);
2133   os->set_found_in_sections_clause();
2134   if (section_type == Script_sections::ST_NOLOAD)
2135     os->set_is_noload();
2136   return os;
2137 }
2138
2139 // Return the number of segments we expect to see.
2140
2141 size_t
2142 Layout::expected_segment_count() const
2143 {
2144   size_t ret = this->segment_list_.size();
2145
2146   // If we didn't see a SECTIONS clause in a linker script, we should
2147   // already have the complete list of segments.  Otherwise we ask the
2148   // SECTIONS clause how many segments it expects, and add in the ones
2149   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2150
2151   if (!this->script_options_->saw_sections_clause())
2152     return ret;
2153   else
2154     {
2155       const Script_sections* ss = this->script_options_->script_sections();
2156       return ret + ss->expected_segment_count(this);
2157     }
2158 }
2159
2160 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2161 // is whether we saw a .note.GNU-stack section in the object file.
2162 // GNU_STACK_FLAGS is the section flags.  The flags give the
2163 // protection required for stack memory.  We record this in an
2164 // executable as a PT_GNU_STACK segment.  If an object file does not
2165 // have a .note.GNU-stack segment, we must assume that it is an old
2166 // object.  On some targets that will force an executable stack.
2167
2168 void
2169 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2170                          const Object* obj)
2171 {
2172   if (!seen_gnu_stack)
2173     {
2174       this->input_without_gnu_stack_note_ = true;
2175       if (parameters->options().warn_execstack()
2176           && parameters->target().is_default_stack_executable())
2177         gold_warning(_("%s: missing .note.GNU-stack section"
2178                        " implies executable stack"),
2179                      obj->name().c_str());
2180     }
2181   else
2182     {
2183       this->input_with_gnu_stack_note_ = true;
2184       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2185         {
2186           this->input_requires_executable_stack_ = true;
2187           if (parameters->options().warn_execstack())
2188             gold_warning(_("%s: requires executable stack"),
2189                          obj->name().c_str());
2190         }
2191     }
2192 }
2193
2194 // Read a value with given size and endianness.
2195
2196 static inline uint64_t
2197 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2198                  const Object* object)
2199 {
2200   uint64_t val = 0;
2201   if (size == 4)
2202     {
2203       if (is_big_endian)
2204         val = elfcpp::Swap<32, true>::readval(buf);
2205       else
2206         val = elfcpp::Swap<32, false>::readval(buf);
2207     }
2208   else if (size == 8)
2209     {
2210       if (is_big_endian)
2211         val = elfcpp::Swap<64, true>::readval(buf);
2212       else
2213         val = elfcpp::Swap<64, false>::readval(buf);
2214     }
2215   else
2216     {
2217       gold_warning(_("%s: in .note.gnu.property section, "
2218                      "pr_datasz must be 4 or 8"),
2219                    object->name().c_str());
2220     }
2221   return val;
2222 }
2223
2224 // Write a value with given size and endianness.
2225
2226 static inline void
2227 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2228                   bool is_big_endian)
2229 {
2230   if (size == 4)
2231     {
2232       if (is_big_endian)
2233         elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2234       else
2235         elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2236     }
2237   else if (size == 8)
2238     {
2239       if (is_big_endian)
2240         elfcpp::Swap<64, true>::writeval(buf, value);
2241       else
2242         elfcpp::Swap<64, false>::writeval(buf, value);
2243     }
2244   else
2245     {
2246       // We will have already complained about this.
2247     }
2248 }
2249
2250 // Handle the .note.gnu.property section at layout time.
2251
2252 void
2253 Layout::layout_gnu_property(unsigned int note_type,
2254                             unsigned int pr_type,
2255                             size_t pr_datasz,
2256                             const unsigned char* pr_data,
2257                             const Object* object)
2258 {
2259   // We currently support only the one note type.
2260   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2261
2262   if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2263       && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2264     {
2265       // Target-dependent property value; call the target to record.
2266       const int size = parameters->target().get_size();
2267       const bool is_big_endian = parameters->target().is_big_endian();
2268       if (size == 32)
2269         {
2270           if (is_big_endian)
2271             {
2272 #ifdef HAVE_TARGET_32_BIG
2273               parameters->sized_target<32, true>()->
2274                   record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2275                                       object);
2276 #else
2277               gold_unreachable();
2278 #endif
2279             }
2280           else
2281             {
2282 #ifdef HAVE_TARGET_32_LITTLE
2283               parameters->sized_target<32, false>()->
2284                   record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2285                                       object);
2286 #else
2287               gold_unreachable();
2288 #endif
2289             }
2290         }
2291       else if (size == 64)
2292         {
2293           if (is_big_endian)
2294             {
2295 #ifdef HAVE_TARGET_64_BIG
2296               parameters->sized_target<64, true>()->
2297                   record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2298                                       object);
2299 #else
2300               gold_unreachable();
2301 #endif
2302             }
2303           else
2304             {
2305 #ifdef HAVE_TARGET_64_LITTLE
2306               parameters->sized_target<64, false>()->
2307                   record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2308                                       object);
2309 #else
2310               gold_unreachable();
2311 #endif
2312             }
2313         }
2314       else
2315         gold_unreachable();
2316       return;
2317     }
2318
2319   Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2320   if (pprop == this->gnu_properties_.end())
2321     {
2322       Gnu_property prop;
2323       prop.pr_datasz = pr_datasz;
2324       prop.pr_data = new unsigned char[pr_datasz];
2325       memcpy(prop.pr_data, pr_data, pr_datasz);
2326       this->gnu_properties_[pr_type] = prop;
2327     }
2328   else
2329     {
2330       const bool is_big_endian = parameters->target().is_big_endian();
2331       switch (pr_type)
2332         {
2333         case elfcpp::GNU_PROPERTY_STACK_SIZE:
2334           // Record the maximum value seen.
2335           {
2336             uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2337                                              pprop->second.pr_data,
2338                                              is_big_endian, object);
2339             uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2340                                              is_big_endian, object);
2341             if (val2 > val1)
2342               write_sized_value(val2, pprop->second.pr_datasz,
2343                                 pprop->second.pr_data, is_big_endian);
2344           }
2345           break;
2346         case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2347           // No data to merge.
2348           break;
2349         default:
2350           gold_warning(_("%s: unknown program property type %d "
2351                          "in .note.gnu.property section"),
2352                        object->name().c_str(), pr_type);
2353         }
2354     }
2355 }
2356
2357 // Merge per-object properties with program properties.
2358 // This lets the target identify objects that are missing certain
2359 // properties, in cases where properties must be ANDed together.
2360
2361 void
2362 Layout::merge_gnu_properties(const Object* object)
2363 {
2364   const int size = parameters->target().get_size();
2365   const bool is_big_endian = parameters->target().is_big_endian();
2366   if (size == 32)
2367     {
2368       if (is_big_endian)
2369         {
2370 #ifdef HAVE_TARGET_32_BIG
2371           parameters->sized_target<32, true>()->merge_gnu_properties(object);
2372 #else
2373           gold_unreachable();
2374 #endif
2375         }
2376       else
2377         {
2378 #ifdef HAVE_TARGET_32_LITTLE
2379           parameters->sized_target<32, false>()->merge_gnu_properties(object);
2380 #else
2381           gold_unreachable();
2382 #endif
2383         }
2384     }
2385   else if (size == 64)
2386     {
2387       if (is_big_endian)
2388         {
2389 #ifdef HAVE_TARGET_64_BIG
2390           parameters->sized_target<64, true>()->merge_gnu_properties(object);
2391 #else
2392           gold_unreachable();
2393 #endif
2394         }
2395       else
2396         {
2397 #ifdef HAVE_TARGET_64_LITTLE
2398           parameters->sized_target<64, false>()->merge_gnu_properties(object);
2399 #else
2400           gold_unreachable();
2401 #endif
2402         }
2403     }
2404   else
2405     gold_unreachable();
2406 }
2407
2408 // Add a target-specific property for the output .note.gnu.property section.
2409
2410 void
2411 Layout::add_gnu_property(unsigned int note_type,
2412                          unsigned int pr_type,
2413                          size_t pr_datasz,
2414                          const unsigned char* pr_data)
2415 {
2416   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2417
2418   Gnu_property prop;
2419   prop.pr_datasz = pr_datasz;
2420   prop.pr_data = new unsigned char[pr_datasz];
2421   memcpy(prop.pr_data, pr_data, pr_datasz);
2422   this->gnu_properties_[pr_type] = prop;
2423 }
2424
2425 // Create automatic note sections.
2426
2427 void
2428 Layout::create_notes()
2429 {
2430   this->create_gnu_properties_note();
2431   this->create_gold_note();
2432   this->create_stack_segment();
2433   this->create_build_id();
2434 }
2435
2436 // Create the dynamic sections which are needed before we read the
2437 // relocs.
2438
2439 void
2440 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2441 {
2442   if (parameters->doing_static_link())
2443     return;
2444
2445   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2446                                                        elfcpp::SHT_DYNAMIC,
2447                                                        (elfcpp::SHF_ALLOC
2448                                                         | elfcpp::SHF_WRITE),
2449                                                        false, ORDER_RELRO,
2450                                                        true, false, false);
2451
2452   // A linker script may discard .dynamic, so check for NULL.
2453   if (this->dynamic_section_ != NULL)
2454     {
2455       this->dynamic_symbol_ =
2456         symtab->define_in_output_data("_DYNAMIC", NULL,
2457                                       Symbol_table::PREDEFINED,
2458                                       this->dynamic_section_, 0, 0,
2459                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2460                                       elfcpp::STV_HIDDEN, 0, false, false);
2461
2462       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2463
2464       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2465     }
2466 }
2467
2468 // For each output section whose name can be represented as C symbol,
2469 // define __start and __stop symbols for the section.  This is a GNU
2470 // extension.
2471
2472 void
2473 Layout::define_section_symbols(Symbol_table* symtab)
2474 {
2475   for (Section_list::const_iterator p = this->section_list_.begin();
2476        p != this->section_list_.end();
2477        ++p)
2478     {
2479       const char* const name = (*p)->name();
2480       if (is_cident(name))
2481         {
2482           const std::string name_string(name);
2483           const std::string start_name(cident_section_start_prefix
2484                                        + name_string);
2485           const std::string stop_name(cident_section_stop_prefix
2486                                       + name_string);
2487
2488           symtab->define_in_output_data(start_name.c_str(),
2489                                         NULL, // version
2490                                         Symbol_table::PREDEFINED,
2491                                         *p,
2492                                         0, // value
2493                                         0, // symsize
2494                                         elfcpp::STT_NOTYPE,
2495                                         elfcpp::STB_GLOBAL,
2496                                         elfcpp::STV_PROTECTED,
2497                                         0, // nonvis
2498                                         false, // offset_is_from_end
2499                                         true); // only_if_ref
2500
2501           symtab->define_in_output_data(stop_name.c_str(),
2502                                         NULL, // version
2503                                         Symbol_table::PREDEFINED,
2504                                         *p,
2505                                         0, // value
2506                                         0, // symsize
2507                                         elfcpp::STT_NOTYPE,
2508                                         elfcpp::STB_GLOBAL,
2509                                         elfcpp::STV_PROTECTED,
2510                                         0, // nonvis
2511                                         true, // offset_is_from_end
2512                                         true); // only_if_ref
2513         }
2514     }
2515 }
2516
2517 // Define symbols for group signatures.
2518
2519 void
2520 Layout::define_group_signatures(Symbol_table* symtab)
2521 {
2522   for (Group_signatures::iterator p = this->group_signatures_.begin();
2523        p != this->group_signatures_.end();
2524        ++p)
2525     {
2526       Symbol* sym = symtab->lookup(p->signature, NULL);
2527       if (sym != NULL)
2528         p->section->set_info_symndx(sym);
2529       else
2530         {
2531           // Force the name of the group section to the group
2532           // signature, and use the group's section symbol as the
2533           // signature symbol.
2534           if (strcmp(p->section->name(), p->signature) != 0)
2535             {
2536               const char* name = this->namepool_.add(p->signature,
2537                                                      true, NULL);
2538               p->section->set_name(name);
2539             }
2540           p->section->set_needs_symtab_index();
2541           p->section->set_info_section_symndx(p->section);
2542         }
2543     }
2544
2545   this->group_signatures_.clear();
2546 }
2547
2548 // Find the first read-only PT_LOAD segment, creating one if
2549 // necessary.
2550
2551 Output_segment*
2552 Layout::find_first_load_seg(const Target* target)
2553 {
2554   Output_segment* best = NULL;
2555   for (Segment_list::const_iterator p = this->segment_list_.begin();
2556        p != this->segment_list_.end();
2557        ++p)
2558     {
2559       if ((*p)->type() == elfcpp::PT_LOAD
2560           && ((*p)->flags() & elfcpp::PF_R) != 0
2561           && (parameters->options().omagic()
2562               || ((*p)->flags() & elfcpp::PF_W) == 0)
2563           && (!target->isolate_execinstr()
2564               || ((*p)->flags() & elfcpp::PF_X) == 0))
2565         {
2566           if (best == NULL || this->segment_precedes(*p, best))
2567             best = *p;
2568         }
2569     }
2570   if (best != NULL)
2571     return best;
2572
2573   gold_assert(!this->script_options_->saw_phdrs_clause());
2574
2575   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2576                                                        elfcpp::PF_R);
2577   return load_seg;
2578 }
2579
2580 // Save states of all current output segments.  Store saved states
2581 // in SEGMENT_STATES.
2582
2583 void
2584 Layout::save_segments(Segment_states* segment_states)
2585 {
2586   for (Segment_list::const_iterator p = this->segment_list_.begin();
2587        p != this->segment_list_.end();
2588        ++p)
2589     {
2590       Output_segment* segment = *p;
2591       // Shallow copy.
2592       Output_segment* copy = new Output_segment(*segment);
2593       (*segment_states)[segment] = copy;
2594     }
2595 }
2596
2597 // Restore states of output segments and delete any segment not found in
2598 // SEGMENT_STATES.
2599
2600 void
2601 Layout::restore_segments(const Segment_states* segment_states)
2602 {
2603   // Go through the segment list and remove any segment added in the
2604   // relaxation loop.
2605   this->tls_segment_ = NULL;
2606   this->relro_segment_ = NULL;
2607   Segment_list::iterator list_iter = this->segment_list_.begin();
2608   while (list_iter != this->segment_list_.end())
2609     {
2610       Output_segment* segment = *list_iter;
2611       Segment_states::const_iterator states_iter =
2612           segment_states->find(segment);
2613       if (states_iter != segment_states->end())
2614         {
2615           const Output_segment* copy = states_iter->second;
2616           // Shallow copy to restore states.
2617           *segment = *copy;
2618
2619           // Also fix up TLS and RELRO segment pointers as appropriate.
2620           if (segment->type() == elfcpp::PT_TLS)
2621             this->tls_segment_ = segment;
2622           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2623             this->relro_segment_ = segment;
2624
2625           ++list_iter;
2626         }
2627       else
2628         {
2629           list_iter = this->segment_list_.erase(list_iter);
2630           // This is a segment created during section layout.  It should be
2631           // safe to remove it since we should have removed all pointers to it.
2632           delete segment;
2633         }
2634     }
2635 }
2636
2637 // Clean up after relaxation so that sections can be laid out again.
2638
2639 void
2640 Layout::clean_up_after_relaxation()
2641 {
2642   // Restore the segments to point state just prior to the relaxation loop.
2643   Script_sections* script_section = this->script_options_->script_sections();
2644   script_section->release_segments();
2645   this->restore_segments(this->segment_states_);
2646
2647   // Reset section addresses and file offsets
2648   for (Section_list::iterator p = this->section_list_.begin();
2649        p != this->section_list_.end();
2650        ++p)
2651     {
2652       (*p)->restore_states();
2653
2654       // If an input section changes size because of relaxation,
2655       // we need to adjust the section offsets of all input sections.
2656       // after such a section.
2657       if ((*p)->section_offsets_need_adjustment())
2658         (*p)->adjust_section_offsets();
2659
2660       (*p)->reset_address_and_file_offset();
2661     }
2662
2663   // Reset special output object address and file offsets.
2664   for (Data_list::iterator p = this->special_output_list_.begin();
2665        p != this->special_output_list_.end();
2666        ++p)
2667     (*p)->reset_address_and_file_offset();
2668
2669   // A linker script may have created some output section data objects.
2670   // They are useless now.
2671   for (Output_section_data_list::const_iterator p =
2672          this->script_output_section_data_list_.begin();
2673        p != this->script_output_section_data_list_.end();
2674        ++p)
2675     delete *p;
2676   this->script_output_section_data_list_.clear();
2677
2678   // Special-case fill output objects are recreated each time through
2679   // the relaxation loop.
2680   this->reset_relax_output();
2681 }
2682
2683 void
2684 Layout::reset_relax_output()
2685 {
2686   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2687        p != this->relax_output_list_.end();
2688        ++p)
2689     delete *p;
2690   this->relax_output_list_.clear();
2691 }
2692
2693 // Prepare for relaxation.
2694
2695 void
2696 Layout::prepare_for_relaxation()
2697 {
2698   // Create an relaxation debug check if in debugging mode.
2699   if (is_debugging_enabled(DEBUG_RELAXATION))
2700     this->relaxation_debug_check_ = new Relaxation_debug_check();
2701
2702   // Save segment states.
2703   this->segment_states_ = new Segment_states();
2704   this->save_segments(this->segment_states_);
2705
2706   for(Section_list::const_iterator p = this->section_list_.begin();
2707       p != this->section_list_.end();
2708       ++p)
2709     (*p)->save_states();
2710
2711   if (is_debugging_enabled(DEBUG_RELAXATION))
2712     this->relaxation_debug_check_->check_output_data_for_reset_values(
2713         this->section_list_, this->special_output_list_,
2714         this->relax_output_list_);
2715
2716   // Also enable recording of output section data from scripts.
2717   this->record_output_section_data_from_script_ = true;
2718 }
2719
2720 // If the user set the address of the text segment, that may not be
2721 // compatible with putting the segment headers and file headers into
2722 // that segment.  For isolate_execinstr() targets, it's the rodata
2723 // segment rather than text where we might put the headers.
2724 static inline bool
2725 load_seg_unusable_for_headers(const Target* target)
2726 {
2727   const General_options& options = parameters->options();
2728   if (target->isolate_execinstr())
2729     return (options.user_set_Trodata_segment()
2730             && options.Trodata_segment() % target->abi_pagesize() != 0);
2731   else
2732     return (options.user_set_Ttext()
2733             && options.Ttext() % target->abi_pagesize() != 0);
2734 }
2735
2736 // Relaxation loop body:  If target has no relaxation, this runs only once
2737 // Otherwise, the target relaxation hook is called at the end of
2738 // each iteration.  If the hook returns true, it means re-layout of
2739 // section is required.
2740 //
2741 // The number of segments created by a linking script without a PHDRS
2742 // clause may be affected by section sizes and alignments.  There is
2743 // a remote chance that relaxation causes different number of PT_LOAD
2744 // segments are created and sections are attached to different segments.
2745 // Therefore, we always throw away all segments created during section
2746 // layout.  In order to be able to restart the section layout, we keep
2747 // a copy of the segment list right before the relaxation loop and use
2748 // that to restore the segments.
2749 //
2750 // PASS is the current relaxation pass number.
2751 // SYMTAB is a symbol table.
2752 // PLOAD_SEG is the address of a pointer for the load segment.
2753 // PHDR_SEG is a pointer to the PHDR segment.
2754 // SEGMENT_HEADERS points to the output segment header.
2755 // FILE_HEADER points to the output file header.
2756 // PSHNDX is the address to store the output section index.
2757
2758 off_t inline
2759 Layout::relaxation_loop_body(
2760     int pass,
2761     Target* target,
2762     Symbol_table* symtab,
2763     Output_segment** pload_seg,
2764     Output_segment* phdr_seg,
2765     Output_segment_headers* segment_headers,
2766     Output_file_header* file_header,
2767     unsigned int* pshndx)
2768 {
2769   // If this is not the first iteration, we need to clean up after
2770   // relaxation so that we can lay out the sections again.
2771   if (pass != 0)
2772     this->clean_up_after_relaxation();
2773
2774   // If there is a SECTIONS clause, put all the input sections into
2775   // the required order.
2776   Output_segment* load_seg;
2777   if (this->script_options_->saw_sections_clause())
2778     load_seg = this->set_section_addresses_from_script(symtab);
2779   else if (parameters->options().relocatable())
2780     load_seg = NULL;
2781   else
2782     load_seg = this->find_first_load_seg(target);
2783
2784   if (parameters->options().oformat_enum()
2785       != General_options::OBJECT_FORMAT_ELF)
2786     load_seg = NULL;
2787
2788   if (load_seg_unusable_for_headers(target))
2789     {
2790       load_seg = NULL;
2791       phdr_seg = NULL;
2792     }
2793
2794   gold_assert(phdr_seg == NULL
2795               || load_seg != NULL
2796               || this->script_options_->saw_sections_clause());
2797
2798   // If the address of the load segment we found has been set by
2799   // --section-start rather than by a script, then adjust the VMA and
2800   // LMA downward if possible to include the file and section headers.
2801   uint64_t header_gap = 0;
2802   if (load_seg != NULL
2803       && load_seg->are_addresses_set()
2804       && !this->script_options_->saw_sections_clause()
2805       && !parameters->options().relocatable())
2806     {
2807       file_header->finalize_data_size();
2808       segment_headers->finalize_data_size();
2809       size_t sizeof_headers = (file_header->data_size()
2810                                + segment_headers->data_size());
2811       const uint64_t abi_pagesize = target->abi_pagesize();
2812       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2813       hdr_paddr &= ~(abi_pagesize - 1);
2814       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2815       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2816         load_seg = NULL;
2817       else
2818         {
2819           load_seg->set_addresses(load_seg->vaddr() - subtract,
2820                                   load_seg->paddr() - subtract);
2821           header_gap = subtract - sizeof_headers;
2822         }
2823     }
2824
2825   // Lay out the segment headers.
2826   if (!parameters->options().relocatable())
2827     {
2828       gold_assert(segment_headers != NULL);
2829       if (header_gap != 0 && load_seg != NULL)
2830         {
2831           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2832           load_seg->add_initial_output_data(z);
2833         }
2834       if (load_seg != NULL)
2835         load_seg->add_initial_output_data(segment_headers);
2836       if (phdr_seg != NULL)
2837         phdr_seg->add_initial_output_data(segment_headers);
2838     }
2839
2840   // Lay out the file header.
2841   if (load_seg != NULL)
2842     load_seg->add_initial_output_data(file_header);
2843
2844   if (this->script_options_->saw_phdrs_clause()
2845       && !parameters->options().relocatable())
2846     {
2847       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2848       // clause in a linker script.
2849       Script_sections* ss = this->script_options_->script_sections();
2850       ss->put_headers_in_phdrs(file_header, segment_headers);
2851     }
2852
2853   // We set the output section indexes in set_segment_offsets and
2854   // set_section_indexes.
2855   *pshndx = 1;
2856
2857   // Set the file offsets of all the segments, and all the sections
2858   // they contain.
2859   off_t off;
2860   if (!parameters->options().relocatable())
2861     off = this->set_segment_offsets(target, load_seg, pshndx);
2862   else
2863     off = this->set_relocatable_section_offsets(file_header, pshndx);
2864
2865    // Verify that the dummy relaxation does not change anything.
2866   if (is_debugging_enabled(DEBUG_RELAXATION))
2867     {
2868       if (pass == 0)
2869         this->relaxation_debug_check_->read_sections(this->section_list_);
2870       else
2871         this->relaxation_debug_check_->verify_sections(this->section_list_);
2872     }
2873
2874   *pload_seg = load_seg;
2875   return off;
2876 }
2877
2878 // Search the list of patterns and find the position of the given section
2879 // name in the output section.  If the section name matches a glob
2880 // pattern and a non-glob name, then the non-glob position takes
2881 // precedence.  Return 0 if no match is found.
2882
2883 unsigned int
2884 Layout::find_section_order_index(const std::string& section_name)
2885 {
2886   Unordered_map<std::string, unsigned int>::iterator map_it;
2887   map_it = this->input_section_position_.find(section_name);
2888   if (map_it != this->input_section_position_.end())
2889     return map_it->second;
2890
2891   // Absolute match failed.  Linear search the glob patterns.
2892   std::vector<std::string>::iterator it;
2893   for (it = this->input_section_glob_.begin();
2894        it != this->input_section_glob_.end();
2895        ++it)
2896     {
2897        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2898          {
2899            map_it = this->input_section_position_.find(*it);
2900            gold_assert(map_it != this->input_section_position_.end());
2901            return map_it->second;
2902          }
2903     }
2904   return 0;
2905 }
2906
2907 // Read the sequence of input sections from the file specified with
2908 // option --section-ordering-file.
2909
2910 void
2911 Layout::read_layout_from_file()
2912 {
2913   const char* filename = parameters->options().section_ordering_file();
2914   std::ifstream in;
2915   std::string line;
2916
2917   in.open(filename);
2918   if (!in)
2919     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2920                filename, strerror(errno));
2921
2922   std::getline(in, line);   // this chops off the trailing \n, if any
2923   unsigned int position = 1;
2924   this->set_section_ordering_specified();
2925
2926   while (in)
2927     {
2928       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2929         line.resize(line.length() - 1);
2930       // Ignore comments, beginning with '#'
2931       if (line[0] == '#')
2932         {
2933           std::getline(in, line);
2934           continue;
2935         }
2936       this->input_section_position_[line] = position;
2937       // Store all glob patterns in a vector.
2938       if (is_wildcard_string(line.c_str()))
2939         this->input_section_glob_.push_back(line);
2940       position++;
2941       std::getline(in, line);
2942     }
2943 }
2944
2945 // Finalize the layout.  When this is called, we have created all the
2946 // output sections and all the output segments which are based on
2947 // input sections.  We have several things to do, and we have to do
2948 // them in the right order, so that we get the right results correctly
2949 // and efficiently.
2950
2951 // 1) Finalize the list of output segments and create the segment
2952 // table header.
2953
2954 // 2) Finalize the dynamic symbol table and associated sections.
2955
2956 // 3) Determine the final file offset of all the output segments.
2957
2958 // 4) Determine the final file offset of all the SHF_ALLOC output
2959 // sections.
2960
2961 // 5) Create the symbol table sections and the section name table
2962 // section.
2963
2964 // 6) Finalize the symbol table: set symbol values to their final
2965 // value and make a final determination of which symbols are going
2966 // into the output symbol table.
2967
2968 // 7) Create the section table header.
2969
2970 // 8) Determine the final file offset of all the output sections which
2971 // are not SHF_ALLOC, including the section table header.
2972
2973 // 9) Finalize the ELF file header.
2974
2975 // This function returns the size of the output file.
2976
2977 off_t
2978 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2979                  Target* target, const Task* task)
2980 {
2981   unsigned int local_dynamic_count = 0;
2982   unsigned int forced_local_dynamic_count = 0;
2983
2984   target->finalize_sections(this, input_objects, symtab);
2985
2986   this->count_local_symbols(task, input_objects);
2987
2988   this->link_stabs_sections();
2989
2990   Output_segment* phdr_seg = NULL;
2991   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2992     {
2993       // There was a dynamic object in the link.  We need to create
2994       // some information for the dynamic linker.
2995
2996       // Create the PT_PHDR segment which will hold the program
2997       // headers.
2998       if (!this->script_options_->saw_phdrs_clause())
2999         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3000
3001       // Create the dynamic symbol table, including the hash table.
3002       Output_section* dynstr;
3003       std::vector<Symbol*> dynamic_symbols;
3004       Versions versions(*this->script_options()->version_script_info(),
3005                         &this->dynpool_);
3006       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3007                                   &local_dynamic_count,
3008                                   &forced_local_dynamic_count,
3009                                   &dynamic_symbols,
3010                                   &versions);
3011
3012       // Create the .interp section to hold the name of the
3013       // interpreter, and put it in a PT_INTERP segment.  Don't do it
3014       // if we saw a .interp section in an input file.
3015       if ((!parameters->options().shared()
3016            || parameters->options().dynamic_linker() != NULL)
3017           && this->interp_segment_ == NULL)
3018         this->create_interp(target);
3019
3020       // Finish the .dynamic section to hold the dynamic data, and put
3021       // it in a PT_DYNAMIC segment.
3022       this->finish_dynamic_section(input_objects, symtab);
3023
3024       // We should have added everything we need to the dynamic string
3025       // table.
3026       this->dynpool_.set_string_offsets();
3027
3028       // Create the version sections.  We can't do this until the
3029       // dynamic string table is complete.
3030       this->create_version_sections(&versions, symtab,
3031                                     (local_dynamic_count
3032                                      + forced_local_dynamic_count),
3033                                     dynamic_symbols, dynstr);
3034
3035       // Set the size of the _DYNAMIC symbol.  We can't do this until
3036       // after we call create_version_sections.
3037       this->set_dynamic_symbol_size(symtab);
3038     }
3039
3040   // Create segment headers.
3041   Output_segment_headers* segment_headers =
3042     (parameters->options().relocatable()
3043      ? NULL
3044      : new Output_segment_headers(this->segment_list_));
3045
3046   // Lay out the file header.
3047   Output_file_header* file_header = new Output_file_header(target, symtab,
3048                                                            segment_headers);
3049
3050   this->special_output_list_.push_back(file_header);
3051   if (segment_headers != NULL)
3052     this->special_output_list_.push_back(segment_headers);
3053
3054   // Find approriate places for orphan output sections if we are using
3055   // a linker script.
3056   if (this->script_options_->saw_sections_clause())
3057     this->place_orphan_sections_in_script();
3058
3059   Output_segment* load_seg;
3060   off_t off;
3061   unsigned int shndx;
3062   int pass = 0;
3063
3064   // Take a snapshot of the section layout as needed.
3065   if (target->may_relax())
3066     this->prepare_for_relaxation();
3067
3068   // Run the relaxation loop to lay out sections.
3069   do
3070     {
3071       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3072                                        phdr_seg, segment_headers, file_header,
3073                                        &shndx);
3074       pass++;
3075     }
3076   while (target->may_relax()
3077          && target->relax(pass, input_objects, symtab, this, task));
3078
3079   // If there is a load segment that contains the file and program headers,
3080   // provide a symbol __ehdr_start pointing there.
3081   // A program can use this to examine itself robustly.
3082   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3083   if (ehdr_start != NULL && ehdr_start->is_predefined())
3084     {
3085       if (load_seg != NULL)
3086         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3087       else
3088         ehdr_start->set_undefined();
3089     }
3090
3091   // Set the file offsets of all the non-data sections we've seen so
3092   // far which don't have to wait for the input sections.  We need
3093   // this in order to finalize local symbols in non-allocated
3094   // sections.
3095   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3096
3097   // Set the section indexes of all unallocated sections seen so far,
3098   // in case any of them are somehow referenced by a symbol.
3099   shndx = this->set_section_indexes(shndx);
3100
3101   // Create the symbol table sections.
3102   this->create_symtab_sections(input_objects, symtab, shndx, &off,
3103                                local_dynamic_count);
3104   if (!parameters->doing_static_link())
3105     this->assign_local_dynsym_offsets(input_objects);
3106
3107   // Process any symbol assignments from a linker script.  This must
3108   // be called after the symbol table has been finalized.
3109   this->script_options_->finalize_symbols(symtab, this);
3110
3111   // Create the incremental inputs sections.
3112   if (this->incremental_inputs_)
3113     {
3114       this->incremental_inputs_->finalize();
3115       this->create_incremental_info_sections(symtab);
3116     }
3117
3118   // Create the .shstrtab section.
3119   Output_section* shstrtab_section = this->create_shstrtab();
3120
3121   // Set the file offsets of the rest of the non-data sections which
3122   // don't have to wait for the input sections.
3123   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3124
3125   // Now that all sections have been created, set the section indexes
3126   // for any sections which haven't been done yet.
3127   shndx = this->set_section_indexes(shndx);
3128
3129   // Create the section table header.
3130   this->create_shdrs(shstrtab_section, &off);
3131
3132   // If there are no sections which require postprocessing, we can
3133   // handle the section names now, and avoid a resize later.
3134   if (!this->any_postprocessing_sections_)
3135     {
3136       off = this->set_section_offsets(off,
3137                                       POSTPROCESSING_SECTIONS_PASS);
3138       off =
3139           this->set_section_offsets(off,
3140                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3141     }
3142
3143   file_header->set_section_info(this->section_headers_, shstrtab_section);
3144
3145   // Now we know exactly where everything goes in the output file
3146   // (except for non-allocated sections which require postprocessing).
3147   Output_data::layout_complete();
3148
3149   this->output_file_size_ = off;
3150
3151   return off;
3152 }
3153
3154 // Create a note header following the format defined in the ELF ABI.
3155 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3156 // of the section to create, DESCSZ is the size of the descriptor.
3157 // ALLOCATE is true if the section should be allocated in memory.
3158 // This returns the new note section.  It sets *TRAILING_PADDING to
3159 // the number of trailing zero bytes required.
3160
3161 Output_section*
3162 Layout::create_note(const char* name, int note_type,
3163                     const char* section_name, size_t descsz,
3164                     bool allocate, size_t* trailing_padding)
3165 {
3166   // Authorities all agree that the values in a .note field should
3167   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
3168   // they differ on what the alignment is for 64-bit binaries.
3169   // The GABI says unambiguously they take 8-byte alignment:
3170   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3171   // Other documentation says alignment should always be 4 bytes:
3172   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3173   // GNU ld and GNU readelf both support the latter (at least as of
3174   // version 2.16.91), and glibc always generates the latter for
3175   // .note.ABI-tag (as of version 1.6), so that's the one we go with
3176   // here.
3177 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
3178   const int size = parameters->target().get_size();
3179 #else
3180   const int size = 32;
3181 #endif
3182
3183   // The contents of the .note section.
3184   size_t namesz = strlen(name) + 1;
3185   size_t aligned_namesz = align_address(namesz, size / 8);
3186   size_t aligned_descsz = align_address(descsz, size / 8);
3187
3188   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3189
3190   unsigned char* buffer = new unsigned char[notehdrsz];
3191   memset(buffer, 0, notehdrsz);
3192
3193   bool is_big_endian = parameters->target().is_big_endian();
3194
3195   if (size == 32)
3196     {
3197       if (!is_big_endian)
3198         {
3199           elfcpp::Swap<32, false>::writeval(buffer, namesz);
3200           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3201           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3202         }
3203       else
3204         {
3205           elfcpp::Swap<32, true>::writeval(buffer, namesz);
3206           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3207           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3208         }
3209     }
3210   else if (size == 64)
3211     {
3212       if (!is_big_endian)
3213         {
3214           elfcpp::Swap<64, false>::writeval(buffer, namesz);
3215           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3216           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3217         }
3218       else
3219         {
3220           elfcpp::Swap<64, true>::writeval(buffer, namesz);
3221           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3222           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3223         }
3224     }
3225   else
3226     gold_unreachable();
3227
3228   memcpy(buffer + 3 * (size / 8), name, namesz);
3229
3230   elfcpp::Elf_Xword flags = 0;
3231   Output_section_order order = ORDER_INVALID;
3232   if (allocate)
3233     {
3234       flags = elfcpp::SHF_ALLOC;
3235       order = ORDER_RO_NOTE;
3236     }
3237   Output_section* os = this->choose_output_section(NULL, section_name,
3238                                                    elfcpp::SHT_NOTE,
3239                                                    flags, false, order, false,
3240                                                    false, true);
3241   if (os == NULL)
3242     return NULL;
3243
3244   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3245                                                            size / 8,
3246                                                            "** note header");
3247   os->add_output_section_data(posd);
3248
3249   *trailing_padding = aligned_descsz - descsz;
3250
3251   return os;
3252 }
3253
3254 // Create a .note.gnu.property section to record program properties
3255 // accumulated from the input files.
3256
3257 void
3258 Layout::create_gnu_properties_note()
3259 {
3260   parameters->target().finalize_gnu_properties(this);
3261
3262   if (this->gnu_properties_.empty())
3263     return;
3264
3265   const unsigned int size = parameters->target().get_size();
3266   const bool is_big_endian = parameters->target().is_big_endian();
3267
3268   // Compute the total size of the properties array.
3269   size_t descsz = 0;
3270   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3271        prop != this->gnu_properties_.end();
3272        ++prop)
3273     {
3274       descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3275     }
3276
3277   // Create the note section.
3278   size_t trailing_padding;
3279   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3280                                          ".note.gnu.property", descsz,
3281                                          true, &trailing_padding);
3282   if (os == NULL)
3283     return;
3284   gold_assert(trailing_padding == 0);
3285
3286   // Allocate and fill the properties array.
3287   unsigned char* desc = new unsigned char[descsz];
3288   unsigned char* p = desc;
3289   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3290        prop != this->gnu_properties_.end();
3291        ++prop)
3292     {
3293       size_t datasz = prop->second.pr_datasz;
3294       size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3295       write_sized_value(prop->first, 4, p, is_big_endian);
3296       write_sized_value(datasz, 4, p + 4, is_big_endian);
3297       memcpy(p + 8, prop->second.pr_data, datasz);
3298       if (aligned_datasz > datasz)
3299         memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3300       p += 8 + aligned_datasz;
3301     }
3302   Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3303   os->add_output_section_data(posd);
3304 }
3305
3306 // For an executable or shared library, create a note to record the
3307 // version of gold used to create the binary.
3308
3309 void
3310 Layout::create_gold_note()
3311 {
3312   if (parameters->options().relocatable()
3313       || parameters->incremental_update())
3314     return;
3315
3316   std::string desc = std::string("gold ") + gold::get_version_string();
3317
3318   size_t trailing_padding;
3319   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3320                                          ".note.gnu.gold-version", desc.size(),
3321                                          false, &trailing_padding);
3322   if (os == NULL)
3323     return;
3324
3325   Output_section_data* posd = new Output_data_const(desc, 4);
3326   os->add_output_section_data(posd);
3327
3328   if (trailing_padding > 0)
3329     {
3330       posd = new Output_data_zero_fill(trailing_padding, 0);
3331       os->add_output_section_data(posd);
3332     }
3333 }
3334
3335 // Record whether the stack should be executable.  This can be set
3336 // from the command line using the -z execstack or -z noexecstack
3337 // options.  Otherwise, if any input file has a .note.GNU-stack
3338 // section with the SHF_EXECINSTR flag set, the stack should be
3339 // executable.  Otherwise, if at least one input file a
3340 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3341 // section, we use the target default for whether the stack should be
3342 // executable.  If -z stack-size was used to set a p_memsz value for
3343 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3344 // don't generate a stack note.  When generating a object file, we
3345 // create a .note.GNU-stack section with the appropriate marking.
3346 // When generating an executable or shared library, we create a
3347 // PT_GNU_STACK segment.
3348
3349 void
3350 Layout::create_stack_segment()
3351 {
3352   bool is_stack_executable;
3353   if (parameters->options().is_execstack_set())
3354     {
3355       is_stack_executable = parameters->options().is_stack_executable();
3356       if (!is_stack_executable
3357           && this->input_requires_executable_stack_
3358           && parameters->options().warn_execstack())
3359         gold_warning(_("one or more inputs require executable stack, "
3360                        "but -z noexecstack was given"));
3361     }
3362   else if (!this->input_with_gnu_stack_note_
3363            && (!parameters->options().user_set_stack_size()
3364                || parameters->options().relocatable()))
3365     return;
3366   else
3367     {
3368       if (this->input_requires_executable_stack_)
3369         is_stack_executable = true;
3370       else if (this->input_without_gnu_stack_note_)
3371         is_stack_executable =
3372           parameters->target().is_default_stack_executable();
3373       else
3374         is_stack_executable = false;
3375     }
3376
3377   if (parameters->options().relocatable())
3378     {
3379       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3380       elfcpp::Elf_Xword flags = 0;
3381       if (is_stack_executable)
3382         flags |= elfcpp::SHF_EXECINSTR;
3383       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3384                                 ORDER_INVALID, false);
3385     }
3386   else
3387     {
3388       if (this->script_options_->saw_phdrs_clause())
3389         return;
3390       int flags = elfcpp::PF_R | elfcpp::PF_W;
3391       if (is_stack_executable)
3392         flags |= elfcpp::PF_X;
3393       Output_segment* seg =
3394         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3395       seg->set_size(parameters->options().stack_size());
3396       // BFD lets targets override this default alignment, but the only
3397       // targets that do so are ones that Gold does not support so far.
3398       seg->set_minimum_p_align(16);
3399     }
3400 }
3401
3402 // If --build-id was used, set up the build ID note.
3403
3404 void
3405 Layout::create_build_id()
3406 {
3407   if (!parameters->options().user_set_build_id())
3408     return;
3409
3410   const char* style = parameters->options().build_id();
3411   if (strcmp(style, "none") == 0)
3412     return;
3413
3414   // Set DESCSZ to the size of the note descriptor.  When possible,
3415   // set DESC to the note descriptor contents.
3416   size_t descsz;
3417   std::string desc;
3418   if (strcmp(style, "md5") == 0)
3419     descsz = 128 / 8;
3420   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3421     descsz = 160 / 8;
3422   else if (strcmp(style, "uuid") == 0)
3423     {
3424 #ifndef __MINGW32__
3425       const size_t uuidsz = 128 / 8;
3426
3427       char buffer[uuidsz];
3428       memset(buffer, 0, uuidsz);
3429
3430       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3431       if (descriptor < 0)
3432         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3433                    strerror(errno));
3434       else
3435         {
3436           ssize_t got = ::read(descriptor, buffer, uuidsz);
3437           release_descriptor(descriptor, true);
3438           if (got < 0)
3439             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3440           else if (static_cast<size_t>(got) != uuidsz)
3441             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3442                        uuidsz, got);
3443         }
3444
3445       desc.assign(buffer, uuidsz);
3446       descsz = uuidsz;
3447 #else // __MINGW32__
3448       UUID uuid;
3449       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3450
3451       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3452       if (!rpc_library)
3453         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3454       else
3455         {
3456           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3457               GetProcAddress(rpc_library, "UuidCreate"));
3458           if (!uuid_create)
3459             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3460           else if (uuid_create(&uuid) != RPC_S_OK)
3461             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3462           FreeLibrary(rpc_library);
3463         }
3464       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3465       descsz = sizeof(UUID);
3466 #endif // __MINGW32__
3467     }
3468   else if (strncmp(style, "0x", 2) == 0)
3469     {
3470       hex_init();
3471       const char* p = style + 2;
3472       while (*p != '\0')
3473         {
3474           if (hex_p(p[0]) && hex_p(p[1]))
3475             {
3476               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3477               desc += c;
3478               p += 2;
3479             }
3480           else if (*p == '-' || *p == ':')
3481             ++p;
3482           else
3483             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3484                        style);
3485         }
3486       descsz = desc.size();
3487     }
3488   else
3489     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3490
3491   // Create the note.
3492   size_t trailing_padding;
3493   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3494                                          ".note.gnu.build-id", descsz, true,
3495                                          &trailing_padding);
3496   if (os == NULL)
3497     return;
3498
3499   if (!desc.empty())
3500     {
3501       // We know the value already, so we fill it in now.
3502       gold_assert(desc.size() == descsz);
3503
3504       Output_section_data* posd = new Output_data_const(desc, 4);
3505       os->add_output_section_data(posd);
3506
3507       if (trailing_padding != 0)
3508         {
3509           posd = new Output_data_zero_fill(trailing_padding, 0);
3510           os->add_output_section_data(posd);
3511         }
3512     }
3513   else
3514     {
3515       // We need to compute a checksum after we have completed the
3516       // link.
3517       gold_assert(trailing_padding == 0);
3518       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3519       os->add_output_section_data(this->build_id_note_);
3520     }
3521 }
3522
3523 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3524 // field of the former should point to the latter.  I'm not sure who
3525 // started this, but the GNU linker does it, and some tools depend
3526 // upon it.
3527
3528 void
3529 Layout::link_stabs_sections()
3530 {
3531   if (!this->have_stabstr_section_)
3532     return;
3533
3534   for (Section_list::iterator p = this->section_list_.begin();
3535        p != this->section_list_.end();
3536        ++p)
3537     {
3538       if ((*p)->type() != elfcpp::SHT_STRTAB)
3539         continue;
3540
3541       const char* name = (*p)->name();
3542       if (strncmp(name, ".stab", 5) != 0)
3543         continue;
3544
3545       size_t len = strlen(name);
3546       if (strcmp(name + len - 3, "str") != 0)
3547         continue;
3548
3549       std::string stab_name(name, len - 3);
3550       Output_section* stab_sec;
3551       stab_sec = this->find_output_section(stab_name.c_str());
3552       if (stab_sec != NULL)
3553         stab_sec->set_link_section(*p);
3554     }
3555 }
3556
3557 // Create .gnu_incremental_inputs and related sections needed
3558 // for the next run of incremental linking to check what has changed.
3559
3560 void
3561 Layout::create_incremental_info_sections(Symbol_table* symtab)
3562 {
3563   Incremental_inputs* incr = this->incremental_inputs_;
3564
3565   gold_assert(incr != NULL);
3566
3567   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3568   incr->create_data_sections(symtab);
3569
3570   // Add the .gnu_incremental_inputs section.
3571   const char* incremental_inputs_name =
3572     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3573   Output_section* incremental_inputs_os =
3574     this->make_output_section(incremental_inputs_name,
3575                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3576                               ORDER_INVALID, false);
3577   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3578
3579   // Add the .gnu_incremental_symtab section.
3580   const char* incremental_symtab_name =
3581     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3582   Output_section* incremental_symtab_os =
3583     this->make_output_section(incremental_symtab_name,
3584                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3585                               ORDER_INVALID, false);
3586   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3587   incremental_symtab_os->set_entsize(4);
3588
3589   // Add the .gnu_incremental_relocs section.
3590   const char* incremental_relocs_name =
3591     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3592   Output_section* incremental_relocs_os =
3593     this->make_output_section(incremental_relocs_name,
3594                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3595                               ORDER_INVALID, false);
3596   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3597   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3598
3599   // Add the .gnu_incremental_got_plt section.
3600   const char* incremental_got_plt_name =
3601     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3602   Output_section* incremental_got_plt_os =
3603     this->make_output_section(incremental_got_plt_name,
3604                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3605                               ORDER_INVALID, false);
3606   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3607
3608   // Add the .gnu_incremental_strtab section.
3609   const char* incremental_strtab_name =
3610     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3611   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3612                                                         elfcpp::SHT_STRTAB, 0,
3613                                                         ORDER_INVALID, false);
3614   Output_data_strtab* strtab_data =
3615       new Output_data_strtab(incr->get_stringpool());
3616   incremental_strtab_os->add_output_section_data(strtab_data);
3617
3618   incremental_inputs_os->set_after_input_sections();
3619   incremental_symtab_os->set_after_input_sections();
3620   incremental_relocs_os->set_after_input_sections();
3621   incremental_got_plt_os->set_after_input_sections();
3622
3623   incremental_inputs_os->set_link_section(incremental_strtab_os);
3624   incremental_symtab_os->set_link_section(incremental_inputs_os);
3625   incremental_relocs_os->set_link_section(incremental_inputs_os);
3626   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3627 }
3628
3629 // Return whether SEG1 should be before SEG2 in the output file.  This
3630 // is based entirely on the segment type and flags.  When this is
3631 // called the segment addresses have normally not yet been set.
3632
3633 bool
3634 Layout::segment_precedes(const Output_segment* seg1,
3635                          const Output_segment* seg2)
3636 {
3637   // In order to produce a stable ordering if we're called with the same pointer
3638   // return false.
3639   if (seg1 == seg2)
3640     return false;
3641
3642   elfcpp::Elf_Word type1 = seg1->type();
3643   elfcpp::Elf_Word type2 = seg2->type();
3644
3645   // The single PT_PHDR segment is required to precede any loadable
3646   // segment.  We simply make it always first.
3647   if (type1 == elfcpp::PT_PHDR)
3648     {
3649       gold_assert(type2 != elfcpp::PT_PHDR);
3650       return true;
3651     }
3652   if (type2 == elfcpp::PT_PHDR)
3653     return false;
3654
3655   // The single PT_INTERP segment is required to precede any loadable
3656   // segment.  We simply make it always second.
3657   if (type1 == elfcpp::PT_INTERP)
3658     {
3659       gold_assert(type2 != elfcpp::PT_INTERP);
3660       return true;
3661     }
3662   if (type2 == elfcpp::PT_INTERP)
3663     return false;
3664
3665   // We then put PT_LOAD segments before any other segments.
3666   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3667     return true;
3668   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3669     return false;
3670
3671   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3672   // segment, because that is where the dynamic linker expects to find
3673   // it (this is just for efficiency; other positions would also work
3674   // correctly).
3675   if (type1 == elfcpp::PT_TLS
3676       && type2 != elfcpp::PT_TLS
3677       && type2 != elfcpp::PT_GNU_RELRO)
3678     return false;
3679   if (type2 == elfcpp::PT_TLS
3680       && type1 != elfcpp::PT_TLS
3681       && type1 != elfcpp::PT_GNU_RELRO)
3682     return true;
3683
3684   // We put the PT_GNU_RELRO segment last, because that is where the
3685   // dynamic linker expects to find it (as with PT_TLS, this is just
3686   // for efficiency).
3687   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3688     return false;
3689   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3690     return true;
3691
3692   const elfcpp::Elf_Word flags1 = seg1->flags();
3693   const elfcpp::Elf_Word flags2 = seg2->flags();
3694
3695   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3696   // by the numeric segment type and flags values.  There should not
3697   // be more than one segment with the same type and flags, except
3698   // when a linker script specifies such.
3699   if (type1 != elfcpp::PT_LOAD)
3700     {
3701       if (type1 != type2)
3702         return type1 < type2;
3703       gold_assert(flags1 != flags2
3704                   || this->script_options_->saw_phdrs_clause());
3705       return flags1 < flags2;
3706     }
3707
3708   // If the addresses are set already, sort by load address.
3709   if (seg1->are_addresses_set())
3710     {
3711       if (!seg2->are_addresses_set())
3712         return true;
3713
3714       unsigned int section_count1 = seg1->output_section_count();
3715       unsigned int section_count2 = seg2->output_section_count();
3716       if (section_count1 == 0 && section_count2 > 0)
3717         return true;
3718       if (section_count1 > 0 && section_count2 == 0)
3719         return false;
3720
3721       uint64_t paddr1 = (seg1->are_addresses_set()
3722                          ? seg1->paddr()
3723                          : seg1->first_section_load_address());
3724       uint64_t paddr2 = (seg2->are_addresses_set()
3725                          ? seg2->paddr()
3726                          : seg2->first_section_load_address());
3727
3728       if (paddr1 != paddr2)
3729         return paddr1 < paddr2;
3730     }
3731   else if (seg2->are_addresses_set())
3732     return false;
3733
3734   // A segment which holds large data comes after a segment which does
3735   // not hold large data.
3736   if (seg1->is_large_data_segment())
3737     {
3738       if (!seg2->is_large_data_segment())
3739         return false;
3740     }
3741   else if (seg2->is_large_data_segment())
3742     return true;
3743
3744   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3745   // segments come before writable segments.  Then writable segments
3746   // with data come before writable segments without data.  Then
3747   // executable segments come before non-executable segments.  Then
3748   // the unlikely case of a non-readable segment comes before the
3749   // normal case of a readable segment.  If there are multiple
3750   // segments with the same type and flags, we require that the
3751   // address be set, and we sort by virtual address and then physical
3752   // address.
3753   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3754     return (flags1 & elfcpp::PF_W) == 0;
3755   if ((flags1 & elfcpp::PF_W) != 0
3756       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3757     return seg1->has_any_data_sections();
3758   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3759     return (flags1 & elfcpp::PF_X) != 0;
3760   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3761     return (flags1 & elfcpp::PF_R) == 0;
3762
3763   // We shouldn't get here--we shouldn't create segments which we
3764   // can't distinguish.  Unless of course we are using a weird linker
3765   // script or overlapping --section-start options.  We could also get
3766   // here if plugins want unique segments for subsets of sections.
3767   gold_assert(this->script_options_->saw_phdrs_clause()
3768               || parameters->options().any_section_start()
3769               || this->is_unique_segment_for_sections_specified()
3770               || parameters->options().text_unlikely_segment());
3771   return false;
3772 }
3773
3774 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3775
3776 static off_t
3777 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3778 {
3779   uint64_t unsigned_off = off;
3780   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3781                           | (addr & (abi_pagesize - 1)));
3782   if (aligned_off < unsigned_off)
3783     aligned_off += abi_pagesize;
3784   return aligned_off;
3785 }
3786
3787 // On targets where the text segment contains only executable code,
3788 // a non-executable segment is never the text segment.
3789
3790 static inline bool
3791 is_text_segment(const Target* target, const Output_segment* seg)
3792 {
3793   elfcpp::Elf_Xword flags = seg->flags();
3794   if ((flags & elfcpp::PF_W) != 0)
3795     return false;
3796   if ((flags & elfcpp::PF_X) == 0)
3797     return !target->isolate_execinstr();
3798   return true;
3799 }
3800
3801 // Set the file offsets of all the segments, and all the sections they
3802 // contain.  They have all been created.  LOAD_SEG must be laid out
3803 // first.  Return the offset of the data to follow.
3804
3805 off_t
3806 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3807                             unsigned int* pshndx)
3808 {
3809   // Sort them into the final order.  We use a stable sort so that we
3810   // don't randomize the order of indistinguishable segments created
3811   // by linker scripts.
3812   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3813                    Layout::Compare_segments(this));
3814
3815   // Find the PT_LOAD segments, and set their addresses and offsets
3816   // and their section's addresses and offsets.
3817   uint64_t start_addr;
3818   if (parameters->options().user_set_Ttext())
3819     start_addr = parameters->options().Ttext();
3820   else if (parameters->options().output_is_position_independent())
3821     start_addr = 0;
3822   else
3823     start_addr = target->default_text_segment_address();
3824
3825   uint64_t addr = start_addr;
3826   off_t off = 0;
3827
3828   // If LOAD_SEG is NULL, then the file header and segment headers
3829   // will not be loadable.  But they still need to be at offset 0 in
3830   // the file.  Set their offsets now.
3831   if (load_seg == NULL)
3832     {
3833       for (Data_list::iterator p = this->special_output_list_.begin();
3834            p != this->special_output_list_.end();
3835            ++p)
3836         {
3837           off = align_address(off, (*p)->addralign());
3838           (*p)->set_address_and_file_offset(0, off);
3839           off += (*p)->data_size();
3840         }
3841     }
3842
3843   unsigned int increase_relro = this->increase_relro_;
3844   if (this->script_options_->saw_sections_clause())
3845     increase_relro = 0;
3846
3847   const bool check_sections = parameters->options().check_sections();
3848   Output_segment* last_load_segment = NULL;
3849
3850   unsigned int shndx_begin = *pshndx;
3851   unsigned int shndx_load_seg = *pshndx;
3852
3853   for (Segment_list::iterator p = this->segment_list_.begin();
3854        p != this->segment_list_.end();
3855        ++p)
3856     {
3857       if ((*p)->type() == elfcpp::PT_LOAD)
3858         {
3859           if (target->isolate_execinstr())
3860             {
3861               // When we hit the segment that should contain the
3862               // file headers, reset the file offset so we place
3863               // it and subsequent segments appropriately.
3864               // We'll fix up the preceding segments below.
3865               if (load_seg == *p)
3866                 {
3867                   if (off == 0)
3868                     load_seg = NULL;
3869                   else
3870                     {
3871                       off = 0;
3872                       shndx_load_seg = *pshndx;
3873                     }
3874                 }
3875             }
3876           else
3877             {
3878               // Verify that the file headers fall into the first segment.
3879               if (load_seg != NULL && load_seg != *p)
3880                 gold_unreachable();
3881               load_seg = NULL;
3882             }
3883
3884           bool are_addresses_set = (*p)->are_addresses_set();
3885           if (are_addresses_set)
3886             {
3887               // When it comes to setting file offsets, we care about
3888               // the physical address.
3889               addr = (*p)->paddr();
3890             }
3891           else if (parameters->options().user_set_Ttext()
3892                    && (parameters->options().omagic()
3893                        || is_text_segment(target, *p)))
3894             {
3895               are_addresses_set = true;
3896             }
3897           else if (parameters->options().user_set_Trodata_segment()
3898                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3899             {
3900               addr = parameters->options().Trodata_segment();
3901               are_addresses_set = true;
3902             }
3903           else if (parameters->options().user_set_Tdata()
3904                    && ((*p)->flags() & elfcpp::PF_W) != 0
3905                    && (!parameters->options().user_set_Tbss()
3906                        || (*p)->has_any_data_sections()))
3907             {
3908               addr = parameters->options().Tdata();
3909               are_addresses_set = true;
3910             }
3911           else if (parameters->options().user_set_Tbss()
3912                    && ((*p)->flags() & elfcpp::PF_W) != 0
3913                    && !(*p)->has_any_data_sections())
3914             {
3915               addr = parameters->options().Tbss();
3916               are_addresses_set = true;
3917             }
3918
3919           uint64_t orig_addr = addr;
3920           uint64_t orig_off = off;
3921
3922           uint64_t aligned_addr = 0;
3923           uint64_t abi_pagesize = target->abi_pagesize();
3924           uint64_t common_pagesize = target->common_pagesize();
3925
3926           if (!parameters->options().nmagic()
3927               && !parameters->options().omagic())
3928             (*p)->set_minimum_p_align(abi_pagesize);
3929
3930           if (!are_addresses_set)
3931             {
3932               // Skip the address forward one page, maintaining the same
3933               // position within the page.  This lets us store both segments
3934               // overlapping on a single page in the file, but the loader will
3935               // put them on different pages in memory. We will revisit this
3936               // decision once we know the size of the segment.
3937
3938               uint64_t max_align = (*p)->maximum_alignment();
3939               if (max_align > abi_pagesize)
3940                 addr = align_address(addr, max_align);
3941               aligned_addr = addr;
3942
3943               if (load_seg == *p)
3944                 {
3945                   // This is the segment that will contain the file
3946                   // headers, so its offset will have to be exactly zero.
3947                   gold_assert(orig_off == 0);
3948
3949                   // If the target wants a fixed minimum distance from the
3950                   // text segment to the read-only segment, move up now.
3951                   uint64_t min_addr =
3952                     start_addr + (parameters->options().user_set_rosegment_gap()
3953                                   ? parameters->options().rosegment_gap()
3954                                   : target->rosegment_gap());
3955                   if (addr < min_addr)
3956                     addr = min_addr;
3957
3958                   // But this is not the first segment!  To make its
3959                   // address congruent with its offset, that address better
3960                   // be aligned to the ABI-mandated page size.
3961                   addr = align_address(addr, abi_pagesize);
3962                   aligned_addr = addr;
3963                 }
3964               else
3965                 {
3966                   if ((addr & (abi_pagesize - 1)) != 0)
3967                     addr = addr + abi_pagesize;
3968
3969                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3970                 }
3971             }
3972
3973           if (!parameters->options().nmagic()
3974               && !parameters->options().omagic())
3975             {
3976               // Here we are also taking care of the case when
3977               // the maximum segment alignment is larger than the page size.
3978               off = align_file_offset(off, addr,
3979                                       std::max(abi_pagesize,
3980                                                (*p)->maximum_alignment()));
3981             }
3982           else
3983             {
3984               // This is -N or -n with a section script which prevents
3985               // us from using a load segment.  We need to ensure that
3986               // the file offset is aligned to the alignment of the
3987               // segment.  This is because the linker script
3988               // implicitly assumed a zero offset.  If we don't align
3989               // here, then the alignment of the sections in the
3990               // linker script may not match the alignment of the
3991               // sections in the set_section_addresses call below,
3992               // causing an error about dot moving backward.
3993               off = align_address(off, (*p)->maximum_alignment());
3994             }
3995
3996           unsigned int shndx_hold = *pshndx;
3997           bool has_relro = false;
3998           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3999                                                           false, addr,
4000                                                           &increase_relro,
4001                                                           &has_relro,
4002                                                           &off, pshndx);
4003
4004           // Now that we know the size of this segment, we may be able
4005           // to save a page in memory, at the cost of wasting some
4006           // file space, by instead aligning to the start of a new
4007           // page.  Here we use the real machine page size rather than
4008           // the ABI mandated page size.  If the segment has been
4009           // aligned so that the relro data ends at a page boundary,
4010           // we do not try to realign it.
4011
4012           if (!are_addresses_set
4013               && !has_relro
4014               && aligned_addr != addr
4015               && !parameters->incremental())
4016             {
4017               uint64_t first_off = (common_pagesize
4018                                     - (aligned_addr
4019                                        & (common_pagesize - 1)));
4020               uint64_t last_off = new_addr & (common_pagesize - 1);
4021               if (first_off > 0
4022                   && last_off > 0
4023                   && ((aligned_addr & ~ (common_pagesize - 1))
4024                       != (new_addr & ~ (common_pagesize - 1)))
4025                   && first_off + last_off <= common_pagesize)
4026                 {
4027                   *pshndx = shndx_hold;
4028                   addr = align_address(aligned_addr, common_pagesize);
4029                   addr = align_address(addr, (*p)->maximum_alignment());
4030                   if ((addr & (abi_pagesize - 1)) != 0)
4031                     addr = addr + abi_pagesize;
4032                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4033                   off = align_file_offset(off, addr, abi_pagesize);
4034
4035                   increase_relro = this->increase_relro_;
4036                   if (this->script_options_->saw_sections_clause())
4037                     increase_relro = 0;
4038                   has_relro = false;
4039
4040                   new_addr = (*p)->set_section_addresses(target, this,
4041                                                          true, addr,
4042                                                          &increase_relro,
4043                                                          &has_relro,
4044                                                          &off, pshndx);
4045                 }
4046             }
4047
4048           addr = new_addr;
4049
4050           // Implement --check-sections.  We know that the segments
4051           // are sorted by LMA.
4052           if (check_sections && last_load_segment != NULL)
4053             {
4054               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4055               if (last_load_segment->paddr() + last_load_segment->memsz()
4056                   > (*p)->paddr())
4057                 {
4058                   unsigned long long lb1 = last_load_segment->paddr();
4059                   unsigned long long le1 = lb1 + last_load_segment->memsz();
4060                   unsigned long long lb2 = (*p)->paddr();
4061                   unsigned long long le2 = lb2 + (*p)->memsz();
4062                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4063                                "[0x%llx -> 0x%llx]"),
4064                              lb1, le1, lb2, le2);
4065                 }
4066             }
4067           last_load_segment = *p;
4068         }
4069     }
4070
4071   if (load_seg != NULL && target->isolate_execinstr())
4072     {
4073       // Process the early segments again, setting their file offsets
4074       // so they land after the segments starting at LOAD_SEG.
4075       off = align_file_offset(off, 0, target->abi_pagesize());
4076
4077       this->reset_relax_output();
4078
4079       for (Segment_list::iterator p = this->segment_list_.begin();
4080            *p != load_seg;
4081            ++p)
4082         {
4083           if ((*p)->type() == elfcpp::PT_LOAD)
4084             {
4085               // We repeat the whole job of assigning addresses and
4086               // offsets, but we really only want to change the offsets and
4087               // must ensure that the addresses all come out the same as
4088               // they did the first time through.
4089               bool has_relro = false;
4090               const uint64_t old_addr = (*p)->vaddr();
4091               const uint64_t old_end = old_addr + (*p)->memsz();
4092               uint64_t new_addr = (*p)->set_section_addresses(target, this,
4093                                                               true, old_addr,
4094                                                               &increase_relro,
4095                                                               &has_relro,
4096                                                               &off,
4097                                                               &shndx_begin);
4098               gold_assert(new_addr == old_end);
4099             }
4100         }
4101
4102       gold_assert(shndx_begin == shndx_load_seg);
4103     }
4104
4105   // Handle the non-PT_LOAD segments, setting their offsets from their
4106   // section's offsets.
4107   for (Segment_list::iterator p = this->segment_list_.begin();
4108        p != this->segment_list_.end();
4109        ++p)
4110     {
4111       // PT_GNU_STACK was set up correctly when it was created.
4112       if ((*p)->type() != elfcpp::PT_LOAD
4113           && (*p)->type() != elfcpp::PT_GNU_STACK)
4114         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4115                          ? increase_relro
4116                          : 0);
4117     }
4118
4119   // Set the TLS offsets for each section in the PT_TLS segment.
4120   if (this->tls_segment_ != NULL)
4121     this->tls_segment_->set_tls_offsets();
4122
4123   return off;
4124 }
4125
4126 // Set the offsets of all the allocated sections when doing a
4127 // relocatable link.  This does the same jobs as set_segment_offsets,
4128 // only for a relocatable link.
4129
4130 off_t
4131 Layout::set_relocatable_section_offsets(Output_data* file_header,
4132                                         unsigned int* pshndx)
4133 {
4134   off_t off = 0;
4135
4136   file_header->set_address_and_file_offset(0, 0);
4137   off += file_header->data_size();
4138
4139   for (Section_list::iterator p = this->section_list_.begin();
4140        p != this->section_list_.end();
4141        ++p)
4142     {
4143       // We skip unallocated sections here, except that group sections
4144       // have to come first.
4145       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4146           && (*p)->type() != elfcpp::SHT_GROUP)
4147         continue;
4148
4149       off = align_address(off, (*p)->addralign());
4150
4151       // The linker script might have set the address.
4152       if (!(*p)->is_address_valid())
4153         (*p)->set_address(0);
4154       (*p)->set_file_offset(off);
4155       (*p)->finalize_data_size();
4156       if ((*p)->type() != elfcpp::SHT_NOBITS)
4157         off += (*p)->data_size();
4158
4159       (*p)->set_out_shndx(*pshndx);
4160       ++*pshndx;
4161     }
4162
4163   return off;
4164 }
4165
4166 // Set the file offset of all the sections not associated with a
4167 // segment.
4168
4169 off_t
4170 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4171 {
4172   off_t startoff = off;
4173   off_t maxoff = off;
4174
4175   for (Section_list::iterator p = this->unattached_section_list_.begin();
4176        p != this->unattached_section_list_.end();
4177        ++p)
4178     {
4179       // The symtab section is handled in create_symtab_sections.
4180       if (*p == this->symtab_section_)
4181         continue;
4182
4183       // If we've already set the data size, don't set it again.
4184       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4185         continue;
4186
4187       if (pass == BEFORE_INPUT_SECTIONS_PASS
4188           && (*p)->requires_postprocessing())
4189         {
4190           (*p)->create_postprocessing_buffer();
4191           this->any_postprocessing_sections_ = true;
4192         }
4193
4194       if (pass == BEFORE_INPUT_SECTIONS_PASS
4195           && (*p)->after_input_sections())
4196         continue;
4197       else if (pass == POSTPROCESSING_SECTIONS_PASS
4198                && (!(*p)->after_input_sections()
4199                    || (*p)->type() == elfcpp::SHT_STRTAB))
4200         continue;
4201       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4202                && (!(*p)->after_input_sections()
4203                    || (*p)->type() != elfcpp::SHT_STRTAB))
4204         continue;
4205
4206       if (!parameters->incremental_update())
4207         {
4208           off = align_address(off, (*p)->addralign());
4209           (*p)->set_file_offset(off);
4210           (*p)->finalize_data_size();
4211         }
4212       else
4213         {
4214           // Incremental update: allocate file space from free list.
4215           (*p)->pre_finalize_data_size();
4216           off_t current_size = (*p)->current_data_size();
4217           off = this->allocate(current_size, (*p)->addralign(), startoff);
4218           if (off == -1)
4219             {
4220               if (is_debugging_enabled(DEBUG_INCREMENTAL))
4221                 this->free_list_.dump();
4222               gold_assert((*p)->output_section() != NULL);
4223               gold_fallback(_("out of patch space for section %s; "
4224                               "relink with --incremental-full"),
4225                             (*p)->output_section()->name());
4226             }
4227           (*p)->set_file_offset(off);
4228           (*p)->finalize_data_size();
4229           if ((*p)->data_size() > current_size)
4230             {
4231               gold_assert((*p)->output_section() != NULL);
4232               gold_fallback(_("%s: section changed size; "
4233                               "relink with --incremental-full"),
4234                             (*p)->output_section()->name());
4235             }
4236           gold_debug(DEBUG_INCREMENTAL,
4237                      "set_section_offsets: %08lx %08lx %s",
4238                      static_cast<long>(off),
4239                      static_cast<long>((*p)->data_size()),
4240                      ((*p)->output_section() != NULL
4241                       ? (*p)->output_section()->name() : "(special)"));
4242         }
4243
4244       off += (*p)->data_size();
4245       if (off > maxoff)
4246         maxoff = off;
4247
4248       // At this point the name must be set.
4249       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4250         this->namepool_.add((*p)->name(), false, NULL);
4251     }
4252   return maxoff;
4253 }
4254
4255 // Set the section indexes of all the sections not associated with a
4256 // segment.
4257
4258 unsigned int
4259 Layout::set_section_indexes(unsigned int shndx)
4260 {
4261   for (Section_list::iterator p = this->unattached_section_list_.begin();
4262        p != this->unattached_section_list_.end();
4263        ++p)
4264     {
4265       if (!(*p)->has_out_shndx())
4266         {
4267           (*p)->set_out_shndx(shndx);
4268           ++shndx;
4269         }
4270     }
4271   return shndx;
4272 }
4273
4274 // Set the section addresses according to the linker script.  This is
4275 // only called when we see a SECTIONS clause.  This returns the
4276 // program segment which should hold the file header and segment
4277 // headers, if any.  It will return NULL if they should not be in a
4278 // segment.
4279
4280 Output_segment*
4281 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4282 {
4283   Script_sections* ss = this->script_options_->script_sections();
4284   gold_assert(ss->saw_sections_clause());
4285   return this->script_options_->set_section_addresses(symtab, this);
4286 }
4287
4288 // Place the orphan sections in the linker script.
4289
4290 void
4291 Layout::place_orphan_sections_in_script()
4292 {
4293   Script_sections* ss = this->script_options_->script_sections();
4294   gold_assert(ss->saw_sections_clause());
4295
4296   // Place each orphaned output section in the script.
4297   for (Section_list::iterator p = this->section_list_.begin();
4298        p != this->section_list_.end();
4299        ++p)
4300     {
4301       if (!(*p)->found_in_sections_clause())
4302         ss->place_orphan(*p);
4303     }
4304 }
4305
4306 // Count the local symbols in the regular symbol table and the dynamic
4307 // symbol table, and build the respective string pools.
4308
4309 void
4310 Layout::count_local_symbols(const Task* task,
4311                             const Input_objects* input_objects)
4312 {
4313   // First, figure out an upper bound on the number of symbols we'll
4314   // be inserting into each pool.  This helps us create the pools with
4315   // the right size, to avoid unnecessary hashtable resizing.
4316   unsigned int symbol_count = 0;
4317   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4318        p != input_objects->relobj_end();
4319        ++p)
4320     symbol_count += (*p)->local_symbol_count();
4321
4322   // Go from "upper bound" to "estimate."  We overcount for two
4323   // reasons: we double-count symbols that occur in more than one
4324   // object file, and we count symbols that are dropped from the
4325   // output.  Add it all together and assume we overcount by 100%.
4326   symbol_count /= 2;
4327
4328   // We assume all symbols will go into both the sympool and dynpool.
4329   this->sympool_.reserve(symbol_count);
4330   this->dynpool_.reserve(symbol_count);
4331
4332   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4333        p != input_objects->relobj_end();
4334        ++p)
4335     {
4336       Task_lock_obj<Object> tlo(task, *p);
4337       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4338     }
4339 }
4340
4341 // Create the symbol table sections.  Here we also set the final
4342 // values of the symbols.  At this point all the loadable sections are
4343 // fully laid out.  SHNUM is the number of sections so far.
4344
4345 void
4346 Layout::create_symtab_sections(const Input_objects* input_objects,
4347                                Symbol_table* symtab,
4348                                unsigned int shnum,
4349                                off_t* poff,
4350                                unsigned int local_dynamic_count)
4351 {
4352   int symsize;
4353   unsigned int align;
4354   if (parameters->target().get_size() == 32)
4355     {
4356       symsize = elfcpp::Elf_sizes<32>::sym_size;
4357       align = 4;
4358     }
4359   else if (parameters->target().get_size() == 64)
4360     {
4361       symsize = elfcpp::Elf_sizes<64>::sym_size;
4362       align = 8;
4363     }
4364   else
4365     gold_unreachable();
4366
4367   // Compute file offsets relative to the start of the symtab section.
4368   off_t off = 0;
4369
4370   // Save space for the dummy symbol at the start of the section.  We
4371   // never bother to write this out--it will just be left as zero.
4372   off += symsize;
4373   unsigned int local_symbol_index = 1;
4374
4375   // Add STT_SECTION symbols for each Output section which needs one.
4376   for (Section_list::iterator p = this->section_list_.begin();
4377        p != this->section_list_.end();
4378        ++p)
4379     {
4380       if (!(*p)->needs_symtab_index())
4381         (*p)->set_symtab_index(-1U);
4382       else
4383         {
4384           (*p)->set_symtab_index(local_symbol_index);
4385           ++local_symbol_index;
4386           off += symsize;
4387         }
4388     }
4389
4390   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4391        p != input_objects->relobj_end();
4392        ++p)
4393     {
4394       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4395                                                         off, symtab);
4396       off += (index - local_symbol_index) * symsize;
4397       local_symbol_index = index;
4398     }
4399
4400   unsigned int local_symcount = local_symbol_index;
4401   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4402
4403   off_t dynoff;
4404   size_t dyncount;
4405   if (this->dynsym_section_ == NULL)
4406     {
4407       dynoff = 0;
4408       dyncount = 0;
4409     }
4410   else
4411     {
4412       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4413       dynoff = this->dynsym_section_->offset() + locsize;
4414       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4415       gold_assert(static_cast<off_t>(dyncount * symsize)
4416                   == this->dynsym_section_->data_size() - locsize);
4417     }
4418
4419   off_t global_off = off;
4420   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4421                          &this->sympool_, &local_symcount);
4422
4423   if (!parameters->options().strip_all())
4424     {
4425       this->sympool_.set_string_offsets();
4426
4427       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4428       Output_section* osymtab = this->make_output_section(symtab_name,
4429                                                           elfcpp::SHT_SYMTAB,
4430                                                           0, ORDER_INVALID,
4431                                                           false);
4432       this->symtab_section_ = osymtab;
4433
4434       Output_section_data* pos = new Output_data_fixed_space(off, align,
4435                                                              "** symtab");
4436       osymtab->add_output_section_data(pos);
4437
4438       // We generate a .symtab_shndx section if we have more than
4439       // SHN_LORESERVE sections.  Technically it is possible that we
4440       // don't need one, because it is possible that there are no
4441       // symbols in any of sections with indexes larger than
4442       // SHN_LORESERVE.  That is probably unusual, though, and it is
4443       // easier to always create one than to compute section indexes
4444       // twice (once here, once when writing out the symbols).
4445       if (shnum >= elfcpp::SHN_LORESERVE)
4446         {
4447           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4448                                                                false, NULL);
4449           Output_section* osymtab_xindex =
4450             this->make_output_section(symtab_xindex_name,
4451                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4452                                       ORDER_INVALID, false);
4453
4454           size_t symcount = off / symsize;
4455           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4456
4457           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4458
4459           osymtab_xindex->set_link_section(osymtab);
4460           osymtab_xindex->set_addralign(4);
4461           osymtab_xindex->set_entsize(4);
4462
4463           osymtab_xindex->set_after_input_sections();
4464
4465           // This tells the driver code to wait until the symbol table
4466           // has written out before writing out the postprocessing
4467           // sections, including the .symtab_shndx section.
4468           this->any_postprocessing_sections_ = true;
4469         }
4470
4471       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4472       Output_section* ostrtab = this->make_output_section(strtab_name,
4473                                                           elfcpp::SHT_STRTAB,
4474                                                           0, ORDER_INVALID,
4475                                                           false);
4476
4477       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4478       ostrtab->add_output_section_data(pstr);
4479
4480       off_t symtab_off;
4481       if (!parameters->incremental_update())
4482         symtab_off = align_address(*poff, align);
4483       else
4484         {
4485           symtab_off = this->allocate(off, align, *poff);
4486           if (off == -1)
4487             gold_fallback(_("out of patch space for symbol table; "
4488                             "relink with --incremental-full"));
4489           gold_debug(DEBUG_INCREMENTAL,
4490                      "create_symtab_sections: %08lx %08lx .symtab",
4491                      static_cast<long>(symtab_off),
4492                      static_cast<long>(off));
4493         }
4494
4495       symtab->set_file_offset(symtab_off + global_off);
4496       osymtab->set_file_offset(symtab_off);
4497       osymtab->finalize_data_size();
4498       osymtab->set_link_section(ostrtab);
4499       osymtab->set_info(local_symcount);
4500       osymtab->set_entsize(symsize);
4501
4502       if (symtab_off + off > *poff)
4503         *poff = symtab_off + off;
4504     }
4505 }
4506
4507 // Create the .shstrtab section, which holds the names of the
4508 // sections.  At the time this is called, we have created all the
4509 // output sections except .shstrtab itself.
4510
4511 Output_section*
4512 Layout::create_shstrtab()
4513 {
4514   // FIXME: We don't need to create a .shstrtab section if we are
4515   // stripping everything.
4516
4517   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4518
4519   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4520                                                  ORDER_INVALID, false);
4521
4522   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4523     {
4524       // We can't write out this section until we've set all the
4525       // section names, and we don't set the names of compressed
4526       // output sections until relocations are complete.  FIXME: With
4527       // the current names we use, this is unnecessary.
4528       os->set_after_input_sections();
4529     }
4530
4531   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4532   os->add_output_section_data(posd);
4533
4534   return os;
4535 }
4536
4537 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4538 // offset.
4539
4540 void
4541 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4542 {
4543   Output_section_headers* oshdrs;
4544   oshdrs = new Output_section_headers(this,
4545                                       &this->segment_list_,
4546                                       &this->section_list_,
4547                                       &this->unattached_section_list_,
4548                                       &this->namepool_,
4549                                       shstrtab_section);
4550   off_t off;
4551   if (!parameters->incremental_update())
4552     off = align_address(*poff, oshdrs->addralign());
4553   else
4554     {
4555       oshdrs->pre_finalize_data_size();
4556       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4557       if (off == -1)
4558           gold_fallback(_("out of patch space for section header table; "
4559                           "relink with --incremental-full"));
4560       gold_debug(DEBUG_INCREMENTAL,
4561                  "create_shdrs: %08lx %08lx (section header table)",
4562                  static_cast<long>(off),
4563                  static_cast<long>(off + oshdrs->data_size()));
4564     }
4565   oshdrs->set_address_and_file_offset(0, off);
4566   off += oshdrs->data_size();
4567   if (off > *poff)
4568     *poff = off;
4569   this->section_headers_ = oshdrs;
4570 }
4571
4572 // Count the allocated sections.
4573
4574 size_t
4575 Layout::allocated_output_section_count() const
4576 {
4577   size_t section_count = 0;
4578   for (Segment_list::const_iterator p = this->segment_list_.begin();
4579        p != this->segment_list_.end();
4580        ++p)
4581     section_count += (*p)->output_section_count();
4582   return section_count;
4583 }
4584
4585 // Create the dynamic symbol table.
4586 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4587 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4588 // to the number of global symbols that have been forced local.
4589 // We need to remember the former because the forced-local symbols are
4590 // written along with the global symbols in Symtab::write_globals().
4591
4592 void
4593 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4594                               Symbol_table* symtab,
4595                               Output_section** pdynstr,
4596                               unsigned int* plocal_dynamic_count,
4597                               unsigned int* pforced_local_dynamic_count,
4598                               std::vector<Symbol*>* pdynamic_symbols,
4599                               Versions* pversions)
4600 {
4601   // Count all the symbols in the dynamic symbol table, and set the
4602   // dynamic symbol indexes.
4603
4604   // Skip symbol 0, which is always all zeroes.
4605   unsigned int index = 1;
4606
4607   // Add STT_SECTION symbols for each Output section which needs one.
4608   for (Section_list::iterator p = this->section_list_.begin();
4609        p != this->section_list_.end();
4610        ++p)
4611     {
4612       if (!(*p)->needs_dynsym_index())
4613         (*p)->set_dynsym_index(-1U);
4614       else
4615         {
4616           (*p)->set_dynsym_index(index);
4617           ++index;
4618         }
4619     }
4620
4621   // Count the local symbols that need to go in the dynamic symbol table,
4622   // and set the dynamic symbol indexes.
4623   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4624        p != input_objects->relobj_end();
4625        ++p)
4626     {
4627       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4628       index = new_index;
4629     }
4630
4631   unsigned int local_symcount = index;
4632   unsigned int forced_local_count = 0;
4633
4634   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4635                                      pdynamic_symbols, &this->dynpool_,
4636                                      pversions);
4637
4638   *plocal_dynamic_count = local_symcount;
4639   *pforced_local_dynamic_count = forced_local_count;
4640
4641   int symsize;
4642   unsigned int align;
4643   const int size = parameters->target().get_size();
4644   if (size == 32)
4645     {
4646       symsize = elfcpp::Elf_sizes<32>::sym_size;
4647       align = 4;
4648     }
4649   else if (size == 64)
4650     {
4651       symsize = elfcpp::Elf_sizes<64>::sym_size;
4652       align = 8;
4653     }
4654   else
4655     gold_unreachable();
4656
4657   // Create the dynamic symbol table section.
4658
4659   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4660                                                        elfcpp::SHT_DYNSYM,
4661                                                        elfcpp::SHF_ALLOC,
4662                                                        false,
4663                                                        ORDER_DYNAMIC_LINKER,
4664                                                        false, false, false);
4665
4666   // Check for NULL as a linker script may discard .dynsym.
4667   if (dynsym != NULL)
4668     {
4669       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4670                                                                align,
4671                                                                "** dynsym");
4672       dynsym->add_output_section_data(odata);
4673
4674       dynsym->set_info(local_symcount + forced_local_count);
4675       dynsym->set_entsize(symsize);
4676       dynsym->set_addralign(align);
4677
4678       this->dynsym_section_ = dynsym;
4679     }
4680
4681   Output_data_dynamic* const odyn = this->dynamic_data_;
4682   if (odyn != NULL)
4683     {
4684       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4685       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4686     }
4687
4688   // If there are more than SHN_LORESERVE allocated sections, we
4689   // create a .dynsym_shndx section.  It is possible that we don't
4690   // need one, because it is possible that there are no dynamic
4691   // symbols in any of the sections with indexes larger than
4692   // SHN_LORESERVE.  This is probably unusual, though, and at this
4693   // time we don't know the actual section indexes so it is
4694   // inconvenient to check.
4695   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4696     {
4697       Output_section* dynsym_xindex =
4698         this->choose_output_section(NULL, ".dynsym_shndx",
4699                                     elfcpp::SHT_SYMTAB_SHNDX,
4700                                     elfcpp::SHF_ALLOC,
4701                                     false, ORDER_DYNAMIC_LINKER, false, false,
4702                                     false);
4703
4704       if (dynsym_xindex != NULL)
4705         {
4706           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4707
4708           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4709
4710           dynsym_xindex->set_link_section(dynsym);
4711           dynsym_xindex->set_addralign(4);
4712           dynsym_xindex->set_entsize(4);
4713
4714           dynsym_xindex->set_after_input_sections();
4715
4716           // This tells the driver code to wait until the symbol table
4717           // has written out before writing out the postprocessing
4718           // sections, including the .dynsym_shndx section.
4719           this->any_postprocessing_sections_ = true;
4720         }
4721     }
4722
4723   // Create the dynamic string table section.
4724
4725   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4726                                                        elfcpp::SHT_STRTAB,
4727                                                        elfcpp::SHF_ALLOC,
4728                                                        false,
4729                                                        ORDER_DYNAMIC_LINKER,
4730                                                        false, false, false);
4731   *pdynstr = dynstr;
4732   if (dynstr != NULL)
4733     {
4734       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4735       dynstr->add_output_section_data(strdata);
4736
4737       if (dynsym != NULL)
4738         dynsym->set_link_section(dynstr);
4739       if (this->dynamic_section_ != NULL)
4740         this->dynamic_section_->set_link_section(dynstr);
4741
4742       if (odyn != NULL)
4743         {
4744           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4745           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4746         }
4747     }
4748
4749   // Create the hash tables.  The Gnu-style hash table must be
4750   // built first, because it changes the order of the symbols
4751   // in the dynamic symbol table.
4752
4753   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4754       || strcmp(parameters->options().hash_style(), "both") == 0)
4755     {
4756       unsigned char* phash;
4757       unsigned int hashlen;
4758       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4759                                     local_symcount + forced_local_count,
4760                                     &phash, &hashlen);
4761
4762       Output_section* hashsec =
4763         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4764                                     elfcpp::SHF_ALLOC, false,
4765                                     ORDER_DYNAMIC_LINKER, false, false,
4766                                     false);
4767
4768       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4769                                                                    hashlen,
4770                                                                    align,
4771                                                                    "** hash");
4772       if (hashsec != NULL && hashdata != NULL)
4773         hashsec->add_output_section_data(hashdata);
4774
4775       if (hashsec != NULL)
4776         {
4777           if (dynsym != NULL)
4778             hashsec->set_link_section(dynsym);
4779
4780           // For a 64-bit target, the entries in .gnu.hash do not have
4781           // a uniform size, so we only set the entry size for a
4782           // 32-bit target.
4783           if (parameters->target().get_size() == 32)
4784             hashsec->set_entsize(4);
4785
4786           if (odyn != NULL)
4787             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4788         }
4789     }
4790
4791   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4792       || strcmp(parameters->options().hash_style(), "both") == 0)
4793     {
4794       unsigned char* phash;
4795       unsigned int hashlen;
4796       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4797                                     local_symcount + forced_local_count,
4798                                     &phash, &hashlen);
4799
4800       Output_section* hashsec =
4801         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4802                                     elfcpp::SHF_ALLOC, false,
4803                                     ORDER_DYNAMIC_LINKER, false, false,
4804                                     false);
4805
4806       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4807                                                                    hashlen,
4808                                                                    align,
4809                                                                    "** hash");
4810       if (hashsec != NULL && hashdata != NULL)
4811         hashsec->add_output_section_data(hashdata);
4812
4813       if (hashsec != NULL)
4814         {
4815           if (dynsym != NULL)
4816             hashsec->set_link_section(dynsym);
4817           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4818         }
4819
4820       if (odyn != NULL)
4821         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4822     }
4823 }
4824
4825 // Assign offsets to each local portion of the dynamic symbol table.
4826
4827 void
4828 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4829 {
4830   Output_section* dynsym = this->dynsym_section_;
4831   if (dynsym == NULL)
4832     return;
4833
4834   off_t off = dynsym->offset();
4835
4836   // Skip the dummy symbol at the start of the section.
4837   off += dynsym->entsize();
4838
4839   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4840        p != input_objects->relobj_end();
4841        ++p)
4842     {
4843       unsigned int count = (*p)->set_local_dynsym_offset(off);
4844       off += count * dynsym->entsize();
4845     }
4846 }
4847
4848 // Create the version sections.
4849
4850 void
4851 Layout::create_version_sections(const Versions* versions,
4852                                 const Symbol_table* symtab,
4853                                 unsigned int local_symcount,
4854                                 const std::vector<Symbol*>& dynamic_symbols,
4855                                 const Output_section* dynstr)
4856 {
4857   if (!versions->any_defs() && !versions->any_needs())
4858     return;
4859
4860   switch (parameters->size_and_endianness())
4861     {
4862 #ifdef HAVE_TARGET_32_LITTLE
4863     case Parameters::TARGET_32_LITTLE:
4864       this->sized_create_version_sections<32, false>(versions, symtab,
4865                                                      local_symcount,
4866                                                      dynamic_symbols, dynstr);
4867       break;
4868 #endif
4869 #ifdef HAVE_TARGET_32_BIG
4870     case Parameters::TARGET_32_BIG:
4871       this->sized_create_version_sections<32, true>(versions, symtab,
4872                                                     local_symcount,
4873                                                     dynamic_symbols, dynstr);
4874       break;
4875 #endif
4876 #ifdef HAVE_TARGET_64_LITTLE
4877     case Parameters::TARGET_64_LITTLE:
4878       this->sized_create_version_sections<64, false>(versions, symtab,
4879                                                      local_symcount,
4880                                                      dynamic_symbols, dynstr);
4881       break;
4882 #endif
4883 #ifdef HAVE_TARGET_64_BIG
4884     case Parameters::TARGET_64_BIG:
4885       this->sized_create_version_sections<64, true>(versions, symtab,
4886                                                     local_symcount,
4887                                                     dynamic_symbols, dynstr);
4888       break;
4889 #endif
4890     default:
4891       gold_unreachable();
4892     }
4893 }
4894
4895 // Create the version sections, sized version.
4896
4897 template<int size, bool big_endian>
4898 void
4899 Layout::sized_create_version_sections(
4900     const Versions* versions,
4901     const Symbol_table* symtab,
4902     unsigned int local_symcount,
4903     const std::vector<Symbol*>& dynamic_symbols,
4904     const Output_section* dynstr)
4905 {
4906   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4907                                                      elfcpp::SHT_GNU_versym,
4908                                                      elfcpp::SHF_ALLOC,
4909                                                      false,
4910                                                      ORDER_DYNAMIC_LINKER,
4911                                                      false, false, false);
4912
4913   // Check for NULL since a linker script may discard this section.
4914   if (vsec != NULL)
4915     {
4916       unsigned char* vbuf;
4917       unsigned int vsize;
4918       versions->symbol_section_contents<size, big_endian>(symtab,
4919                                                           &this->dynpool_,
4920                                                           local_symcount,
4921                                                           dynamic_symbols,
4922                                                           &vbuf, &vsize);
4923
4924       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4925                                                                 "** versions");
4926
4927       vsec->add_output_section_data(vdata);
4928       vsec->set_entsize(2);
4929       vsec->set_link_section(this->dynsym_section_);
4930     }
4931
4932   Output_data_dynamic* const odyn = this->dynamic_data_;
4933   if (odyn != NULL && vsec != NULL)
4934     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4935
4936   if (versions->any_defs())
4937     {
4938       Output_section* vdsec;
4939       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4940                                           elfcpp::SHT_GNU_verdef,
4941                                           elfcpp::SHF_ALLOC,
4942                                           false, ORDER_DYNAMIC_LINKER, false,
4943                                           false, false);
4944
4945       if (vdsec != NULL)
4946         {
4947           unsigned char* vdbuf;
4948           unsigned int vdsize;
4949           unsigned int vdentries;
4950           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4951                                                            &vdbuf, &vdsize,
4952                                                            &vdentries);
4953
4954           Output_section_data* vddata =
4955             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4956
4957           vdsec->add_output_section_data(vddata);
4958           vdsec->set_link_section(dynstr);
4959           vdsec->set_info(vdentries);
4960
4961           if (odyn != NULL)
4962             {
4963               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4964               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4965             }
4966         }
4967     }
4968
4969   if (versions->any_needs())
4970     {
4971       Output_section* vnsec;
4972       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4973                                           elfcpp::SHT_GNU_verneed,
4974                                           elfcpp::SHF_ALLOC,
4975                                           false, ORDER_DYNAMIC_LINKER, false,
4976                                           false, false);
4977
4978       if (vnsec != NULL)
4979         {
4980           unsigned char* vnbuf;
4981           unsigned int vnsize;
4982           unsigned int vnentries;
4983           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4984                                                             &vnbuf, &vnsize,
4985                                                             &vnentries);
4986
4987           Output_section_data* vndata =
4988             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4989
4990           vnsec->add_output_section_data(vndata);
4991           vnsec->set_link_section(dynstr);
4992           vnsec->set_info(vnentries);
4993
4994           if (odyn != NULL)
4995             {
4996               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4997               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4998             }
4999         }
5000     }
5001 }
5002
5003 // Create the .interp section and PT_INTERP segment.
5004
5005 void
5006 Layout::create_interp(const Target* target)
5007 {
5008   gold_assert(this->interp_segment_ == NULL);
5009
5010   const char* interp = parameters->options().dynamic_linker();
5011   if (interp == NULL)
5012     {
5013       interp = target->dynamic_linker();
5014       gold_assert(interp != NULL);
5015     }
5016
5017   size_t len = strlen(interp) + 1;
5018
5019   Output_section_data* odata = new Output_data_const(interp, len, 1);
5020
5021   Output_section* osec = this->choose_output_section(NULL, ".interp",
5022                                                      elfcpp::SHT_PROGBITS,
5023                                                      elfcpp::SHF_ALLOC,
5024                                                      false, ORDER_INTERP,
5025                                                      false, false, false);
5026   if (osec != NULL)
5027     osec->add_output_section_data(odata);
5028 }
5029
5030 // Add dynamic tags for the PLT and the dynamic relocs.  This is
5031 // called by the target-specific code.  This does nothing if not doing
5032 // a dynamic link.
5033
5034 // USE_REL is true for REL relocs rather than RELA relocs.
5035
5036 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5037
5038 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5039 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
5040 // some targets have multiple reloc sections in PLT_REL.
5041
5042 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5043 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
5044 // section.
5045
5046 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5047 // executable.
5048
5049 void
5050 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5051                                 const Output_data* plt_rel,
5052                                 const Output_data_reloc_generic* dyn_rel,
5053                                 bool add_debug, bool dynrel_includes_plt)
5054 {
5055   Output_data_dynamic* odyn = this->dynamic_data_;
5056   if (odyn == NULL)
5057     return;
5058
5059   if (plt_got != NULL && plt_got->output_section() != NULL)
5060     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5061
5062   if (plt_rel != NULL && plt_rel->output_section() != NULL)
5063     {
5064       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5065       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5066       odyn->add_constant(elfcpp::DT_PLTREL,
5067                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5068     }
5069
5070   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5071       || (dynrel_includes_plt
5072           && plt_rel != NULL
5073           && plt_rel->output_section() != NULL))
5074     {
5075       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5076       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5077       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5078                                 (have_dyn_rel
5079                                  ? dyn_rel->output_section()
5080                                  : plt_rel->output_section()));
5081       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5082       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5083         odyn->add_section_size(size_tag,
5084                                dyn_rel->output_section(),
5085                                plt_rel->output_section());
5086       else if (have_dyn_rel)
5087         odyn->add_section_size(size_tag, dyn_rel->output_section());
5088       else
5089         odyn->add_section_size(size_tag, plt_rel->output_section());
5090       const int size = parameters->target().get_size();
5091       elfcpp::DT rel_tag;
5092       int rel_size;
5093       if (use_rel)
5094         {
5095           rel_tag = elfcpp::DT_RELENT;
5096           if (size == 32)
5097             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5098           else if (size == 64)
5099             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5100           else
5101             gold_unreachable();
5102         }
5103       else
5104         {
5105           rel_tag = elfcpp::DT_RELAENT;
5106           if (size == 32)
5107             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5108           else if (size == 64)
5109             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5110           else
5111             gold_unreachable();
5112         }
5113       odyn->add_constant(rel_tag, rel_size);
5114
5115       if (parameters->options().combreloc() && have_dyn_rel)
5116         {
5117           size_t c = dyn_rel->relative_reloc_count();
5118           if (c > 0)
5119             odyn->add_constant((use_rel
5120                                 ? elfcpp::DT_RELCOUNT
5121                                 : elfcpp::DT_RELACOUNT),
5122                                c);
5123         }
5124     }
5125
5126   if (add_debug && !parameters->options().shared())
5127     {
5128       // The value of the DT_DEBUG tag is filled in by the dynamic
5129       // linker at run time, and used by the debugger.
5130       odyn->add_constant(elfcpp::DT_DEBUG, 0);
5131     }
5132 }
5133
5134 void
5135 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5136 {
5137   Output_data_dynamic* odyn = this->dynamic_data_;
5138   if (odyn == NULL)
5139     return;
5140   odyn->add_constant(tag, val);
5141 }
5142
5143 // Finish the .dynamic section and PT_DYNAMIC segment.
5144
5145 void
5146 Layout::finish_dynamic_section(const Input_objects* input_objects,
5147                                const Symbol_table* symtab)
5148 {
5149   if (!this->script_options_->saw_phdrs_clause()
5150       && this->dynamic_section_ != NULL)
5151     {
5152       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5153                                                        (elfcpp::PF_R
5154                                                         | elfcpp::PF_W));
5155       oseg->add_output_section_to_nonload(this->dynamic_section_,
5156                                           elfcpp::PF_R | elfcpp::PF_W);
5157     }
5158
5159   Output_data_dynamic* const odyn = this->dynamic_data_;
5160   if (odyn == NULL)
5161     return;
5162
5163   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5164        p != input_objects->dynobj_end();
5165        ++p)
5166     {
5167       if (!(*p)->is_needed() && (*p)->as_needed())
5168         {
5169           // This dynamic object was linked with --as-needed, but it
5170           // is not needed.
5171           continue;
5172         }
5173
5174       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5175     }
5176
5177   if (parameters->options().shared())
5178     {
5179       const char* soname = parameters->options().soname();
5180       if (soname != NULL)
5181         odyn->add_string(elfcpp::DT_SONAME, soname);
5182     }
5183
5184   Symbol* sym = symtab->lookup(parameters->options().init());
5185   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5186     odyn->add_symbol(elfcpp::DT_INIT, sym);
5187
5188   sym = symtab->lookup(parameters->options().fini());
5189   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5190     odyn->add_symbol(elfcpp::DT_FINI, sym);
5191
5192   // Look for .init_array, .preinit_array and .fini_array by checking
5193   // section types.
5194   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5195       p != this->section_list_.end();
5196       ++p)
5197     switch((*p)->type())
5198       {
5199       case elfcpp::SHT_FINI_ARRAY:
5200         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5201         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5202         break;
5203       case elfcpp::SHT_INIT_ARRAY:
5204         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5205         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5206         break;
5207       case elfcpp::SHT_PREINIT_ARRAY:
5208         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5209         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5210         break;
5211       default:
5212         break;
5213       }
5214
5215   // Add a DT_RPATH entry if needed.
5216   const General_options::Dir_list& rpath(parameters->options().rpath());
5217   if (!rpath.empty())
5218     {
5219       std::string rpath_val;
5220       for (General_options::Dir_list::const_iterator p = rpath.begin();
5221            p != rpath.end();
5222            ++p)
5223         {
5224           if (rpath_val.empty())
5225             rpath_val = p->name();
5226           else
5227             {
5228               // Eliminate duplicates.
5229               General_options::Dir_list::const_iterator q;
5230               for (q = rpath.begin(); q != p; ++q)
5231                 if (q->name() == p->name())
5232                   break;
5233               if (q == p)
5234                 {
5235                   rpath_val += ':';
5236                   rpath_val += p->name();
5237                 }
5238             }
5239         }
5240
5241       if (!parameters->options().enable_new_dtags())
5242         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5243       else
5244         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5245     }
5246
5247   // Look for text segments that have dynamic relocations.
5248   bool have_textrel = false;
5249   if (!this->script_options_->saw_sections_clause())
5250     {
5251       for (Segment_list::const_iterator p = this->segment_list_.begin();
5252            p != this->segment_list_.end();
5253            ++p)
5254         {
5255           if ((*p)->type() == elfcpp::PT_LOAD
5256               && ((*p)->flags() & elfcpp::PF_W) == 0
5257               && (*p)->has_dynamic_reloc())
5258             {
5259               have_textrel = true;
5260               break;
5261             }
5262         }
5263     }
5264   else
5265     {
5266       // We don't know the section -> segment mapping, so we are
5267       // conservative and just look for readonly sections with
5268       // relocations.  If those sections wind up in writable segments,
5269       // then we have created an unnecessary DT_TEXTREL entry.
5270       for (Section_list::const_iterator p = this->section_list_.begin();
5271            p != this->section_list_.end();
5272            ++p)
5273         {
5274           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5275               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5276               && (*p)->has_dynamic_reloc())
5277             {
5278               have_textrel = true;
5279               break;
5280             }
5281         }
5282     }
5283
5284   if (parameters->options().filter() != NULL)
5285     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5286   if (parameters->options().any_auxiliary())
5287     {
5288       for (options::String_set::const_iterator p =
5289              parameters->options().auxiliary_begin();
5290            p != parameters->options().auxiliary_end();
5291            ++p)
5292         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5293     }
5294
5295   // Add a DT_FLAGS entry if necessary.
5296   unsigned int flags = 0;
5297   if (have_textrel)
5298     {
5299       // Add a DT_TEXTREL for compatibility with older loaders.
5300       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5301       flags |= elfcpp::DF_TEXTREL;
5302
5303       if (parameters->options().text())
5304         gold_error(_("read-only segment has dynamic relocations"));
5305       else if (parameters->options().warn_shared_textrel()
5306                && parameters->options().shared())
5307         gold_warning(_("shared library text segment is not shareable"));
5308     }
5309   if (parameters->options().shared() && this->has_static_tls())
5310     flags |= elfcpp::DF_STATIC_TLS;
5311   if (parameters->options().origin())
5312     flags |= elfcpp::DF_ORIGIN;
5313   if (parameters->options().Bsymbolic()
5314       && !parameters->options().have_dynamic_list())
5315     {
5316       flags |= elfcpp::DF_SYMBOLIC;
5317       // Add DT_SYMBOLIC for compatibility with older loaders.
5318       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5319     }
5320   if (parameters->options().now())
5321     flags |= elfcpp::DF_BIND_NOW;
5322   if (flags != 0)
5323     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5324
5325   flags = 0;
5326   if (parameters->options().global())
5327     flags |= elfcpp::DF_1_GLOBAL;
5328   if (parameters->options().initfirst())
5329     flags |= elfcpp::DF_1_INITFIRST;
5330   if (parameters->options().interpose())
5331     flags |= elfcpp::DF_1_INTERPOSE;
5332   if (parameters->options().loadfltr())
5333     flags |= elfcpp::DF_1_LOADFLTR;
5334   if (parameters->options().nodefaultlib())
5335     flags |= elfcpp::DF_1_NODEFLIB;
5336   if (parameters->options().nodelete())
5337     flags |= elfcpp::DF_1_NODELETE;
5338   if (parameters->options().nodlopen())
5339     flags |= elfcpp::DF_1_NOOPEN;
5340   if (parameters->options().nodump())
5341     flags |= elfcpp::DF_1_NODUMP;
5342   if (!parameters->options().shared())
5343     flags &= ~(elfcpp::DF_1_INITFIRST
5344                | elfcpp::DF_1_NODELETE
5345                | elfcpp::DF_1_NOOPEN);
5346   if (parameters->options().origin())
5347     flags |= elfcpp::DF_1_ORIGIN;
5348   if (parameters->options().now())
5349     flags |= elfcpp::DF_1_NOW;
5350   if (parameters->options().Bgroup())
5351     flags |= elfcpp::DF_1_GROUP;
5352   if (flags != 0)
5353     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5354 }
5355
5356 // Set the size of the _DYNAMIC symbol table to be the size of the
5357 // dynamic data.
5358
5359 void
5360 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5361 {
5362   Output_data_dynamic* const odyn = this->dynamic_data_;
5363   if (odyn == NULL)
5364     return;
5365   odyn->finalize_data_size();
5366   if (this->dynamic_symbol_ == NULL)
5367     return;
5368   off_t data_size = odyn->data_size();
5369   const int size = parameters->target().get_size();
5370   if (size == 32)
5371     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5372   else if (size == 64)
5373     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5374   else
5375     gold_unreachable();
5376 }
5377
5378 // The mapping of input section name prefixes to output section names.
5379 // In some cases one prefix is itself a prefix of another prefix; in
5380 // such a case the longer prefix must come first.  These prefixes are
5381 // based on the GNU linker default ELF linker script.
5382
5383 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5384 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5385 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5386 {
5387   MAPPING_INIT(".text.", ".text"),
5388   MAPPING_INIT(".rodata.", ".rodata"),
5389   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5390   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5391   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5392   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5393   MAPPING_INIT(".data.", ".data"),
5394   MAPPING_INIT(".bss.", ".bss"),
5395   MAPPING_INIT(".tdata.", ".tdata"),
5396   MAPPING_INIT(".tbss.", ".tbss"),
5397   MAPPING_INIT(".init_array.", ".init_array"),
5398   MAPPING_INIT(".fini_array.", ".fini_array"),
5399   MAPPING_INIT(".sdata.", ".sdata"),
5400   MAPPING_INIT(".sbss.", ".sbss"),
5401   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5402   // differently depending on whether it is creating a shared library.
5403   MAPPING_INIT(".sdata2.", ".sdata"),
5404   MAPPING_INIT(".sbss2.", ".sbss"),
5405   MAPPING_INIT(".lrodata.", ".lrodata"),
5406   MAPPING_INIT(".ldata.", ".ldata"),
5407   MAPPING_INIT(".lbss.", ".lbss"),
5408   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5409   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5410   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5411   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5412   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5413   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5414   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5415   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5416   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5417   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5418   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5419   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5420   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5421   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5422   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5423   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5424   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5425   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5426   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5427   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5428   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5429   MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5430 };
5431
5432 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5433 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5434 {
5435   MAPPING_INIT(".text.hot.", ".text.hot"),
5436   MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5437   MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5438   MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5439   MAPPING_INIT(".text.startup.", ".text.startup"),
5440   MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5441   MAPPING_INIT(".text.exit.", ".text.exit"),
5442   MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5443   MAPPING_INIT(".text.", ".text"),
5444 };
5445 #undef MAPPING_INIT
5446 #undef MAPPING_INIT_EXACT
5447
5448 const int Layout::section_name_mapping_count =
5449   (sizeof(Layout::section_name_mapping)
5450    / sizeof(Layout::section_name_mapping[0]));
5451
5452 const int Layout::text_section_name_mapping_count =
5453   (sizeof(Layout::text_section_name_mapping)
5454    / sizeof(Layout::text_section_name_mapping[0]));
5455
5456 // Find section name NAME in PSNM and return the mapped name if found
5457 // with the length set in PLEN.
5458 const char *
5459 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5460                            const int count,
5461                            const char* name, size_t* plen)
5462 {
5463   for (int i = 0; i < count; ++i, ++psnm)
5464     {
5465       if (psnm->fromlen > 0)
5466         {
5467           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5468             {
5469               *plen = psnm->tolen;
5470               return psnm->to;
5471             }
5472         }
5473       else
5474         {
5475           if (strcmp(name, psnm->from) == 0)
5476             {
5477               *plen = psnm->tolen;
5478               return psnm->to;
5479             }
5480         }
5481     }
5482   return NULL;
5483 }
5484
5485 // Choose the output section name to use given an input section name.
5486 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5487 // length of NAME.
5488
5489 const char*
5490 Layout::output_section_name(const Relobj* relobj, const char* name,
5491                             size_t* plen)
5492 {
5493   // gcc 4.3 generates the following sorts of section names when it
5494   // needs a section name specific to a function:
5495   //   .text.FN
5496   //   .rodata.FN
5497   //   .sdata2.FN
5498   //   .data.FN
5499   //   .data.rel.FN
5500   //   .data.rel.local.FN
5501   //   .data.rel.ro.FN
5502   //   .data.rel.ro.local.FN
5503   //   .sdata.FN
5504   //   .bss.FN
5505   //   .sbss.FN
5506   //   .tdata.FN
5507   //   .tbss.FN
5508
5509   // The GNU linker maps all of those to the part before the .FN,
5510   // except that .data.rel.local.FN is mapped to .data, and
5511   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5512   // beginning with .data.rel.ro.local are grouped together.
5513
5514   // For an anonymous namespace, the string FN can contain a '.'.
5515
5516   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5517   // GNU linker maps to .rodata.
5518
5519   // The .data.rel.ro sections are used with -z relro.  The sections
5520   // are recognized by name.  We use the same names that the GNU
5521   // linker does for these sections.
5522
5523   // It is hard to handle this in a principled way, so we don't even
5524   // try.  We use a table of mappings.  If the input section name is
5525   // not found in the table, we simply use it as the output section
5526   // name.
5527
5528   if (parameters->options().keep_text_section_prefix()
5529       && is_prefix_of(".text", name))
5530     {
5531       const char* match = match_section_name(text_section_name_mapping,
5532                                              text_section_name_mapping_count,
5533                                              name, plen);
5534       if (match != NULL)
5535         return match;
5536     }
5537
5538   const char* match = match_section_name(section_name_mapping,
5539                                          section_name_mapping_count, name, plen);
5540   if (match != NULL)
5541     return match;
5542
5543   // As an additional complication, .ctors sections are output in
5544   // either .ctors or .init_array sections, and .dtors sections are
5545   // output in either .dtors or .fini_array sections.
5546   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5547     {
5548       if (parameters->options().ctors_in_init_array())
5549         {
5550           *plen = 11;
5551           return name[1] == 'c' ? ".init_array" : ".fini_array";
5552         }
5553       else
5554         {
5555           *plen = 6;
5556           return name[1] == 'c' ? ".ctors" : ".dtors";
5557         }
5558     }
5559   if (parameters->options().ctors_in_init_array()
5560       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5561     {
5562       // To make .init_array/.fini_array work with gcc we must exclude
5563       // .ctors and .dtors sections from the crtbegin and crtend
5564       // files.
5565       if (relobj == NULL
5566           || (!Layout::match_file_name(relobj, "crtbegin")
5567               && !Layout::match_file_name(relobj, "crtend")))
5568         {
5569           *plen = 11;
5570           return name[1] == 'c' ? ".init_array" : ".fini_array";
5571         }
5572     }
5573
5574   return name;
5575 }
5576
5577 // Return true if RELOBJ is an input file whose base name matches
5578 // FILE_NAME.  The base name must have an extension of ".o", and must
5579 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5580 // to match crtbegin.o as well as crtbeginS.o without getting confused
5581 // by other possibilities.  Overall matching the file name this way is
5582 // a dreadful hack, but the GNU linker does it in order to better
5583 // support gcc, and we need to be compatible.
5584
5585 bool
5586 Layout::match_file_name(const Relobj* relobj, const char* match)
5587 {
5588   const std::string& file_name(relobj->name());
5589   const char* base_name = lbasename(file_name.c_str());
5590   size_t match_len = strlen(match);
5591   if (strncmp(base_name, match, match_len) != 0)
5592     return false;
5593   size_t base_len = strlen(base_name);
5594   if (base_len != match_len + 2 && base_len != match_len + 3)
5595     return false;
5596   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5597 }
5598
5599 // Check if a comdat group or .gnu.linkonce section with the given
5600 // NAME is selected for the link.  If there is already a section,
5601 // *KEPT_SECTION is set to point to the existing section and the
5602 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5603 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5604 // *KEPT_SECTION is set to the internal copy and the function returns
5605 // true.
5606
5607 bool
5608 Layout::find_or_add_kept_section(const std::string& name,
5609                                  Relobj* object,
5610                                  unsigned int shndx,
5611                                  bool is_comdat,
5612                                  bool is_group_name,
5613                                  Kept_section** kept_section)
5614 {
5615   // It's normal to see a couple of entries here, for the x86 thunk
5616   // sections.  If we see more than a few, we're linking a C++
5617   // program, and we resize to get more space to minimize rehashing.
5618   if (this->signatures_.size() > 4
5619       && !this->resized_signatures_)
5620     {
5621       reserve_unordered_map(&this->signatures_,
5622                             this->number_of_input_files_ * 64);
5623       this->resized_signatures_ = true;
5624     }
5625
5626   Kept_section candidate;
5627   std::pair<Signatures::iterator, bool> ins =
5628     this->signatures_.insert(std::make_pair(name, candidate));
5629
5630   if (kept_section != NULL)
5631     *kept_section = &ins.first->second;
5632   if (ins.second)
5633     {
5634       // This is the first time we've seen this signature.
5635       ins.first->second.set_object(object);
5636       ins.first->second.set_shndx(shndx);
5637       if (is_comdat)
5638         ins.first->second.set_is_comdat();
5639       if (is_group_name)
5640         ins.first->second.set_is_group_name();
5641       return true;
5642     }
5643
5644   // We have already seen this signature.
5645
5646   if (ins.first->second.is_group_name())
5647     {
5648       // We've already seen a real section group with this signature.
5649       // If the kept group is from a plugin object, and we're in the
5650       // replacement phase, accept the new one as a replacement.
5651       if (ins.first->second.object() == NULL
5652           && parameters->options().plugins()->in_replacement_phase())
5653         {
5654           ins.first->second.set_object(object);
5655           ins.first->second.set_shndx(shndx);
5656           return true;
5657         }
5658       return false;
5659     }
5660   else if (is_group_name)
5661     {
5662       // This is a real section group, and we've already seen a
5663       // linkonce section with this signature.  Record that we've seen
5664       // a section group, and don't include this section group.
5665       ins.first->second.set_is_group_name();
5666       return false;
5667     }
5668   else
5669     {
5670       // We've already seen a linkonce section and this is a linkonce
5671       // section.  These don't block each other--this may be the same
5672       // symbol name with different section types.
5673       return true;
5674     }
5675 }
5676
5677 // Store the allocated sections into the section list.
5678
5679 void
5680 Layout::get_allocated_sections(Section_list* section_list) const
5681 {
5682   for (Section_list::const_iterator p = this->section_list_.begin();
5683        p != this->section_list_.end();
5684        ++p)
5685     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5686       section_list->push_back(*p);
5687 }
5688
5689 // Store the executable sections into the section list.
5690
5691 void
5692 Layout::get_executable_sections(Section_list* section_list) const
5693 {
5694   for (Section_list::const_iterator p = this->section_list_.begin();
5695        p != this->section_list_.end();
5696        ++p)
5697     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5698         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5699       section_list->push_back(*p);
5700 }
5701
5702 // Create an output segment.
5703
5704 Output_segment*
5705 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5706 {
5707   gold_assert(!parameters->options().relocatable());
5708   Output_segment* oseg = new Output_segment(type, flags);
5709   this->segment_list_.push_back(oseg);
5710
5711   if (type == elfcpp::PT_TLS)
5712     this->tls_segment_ = oseg;
5713   else if (type == elfcpp::PT_GNU_RELRO)
5714     this->relro_segment_ = oseg;
5715   else if (type == elfcpp::PT_INTERP)
5716     this->interp_segment_ = oseg;
5717
5718   return oseg;
5719 }
5720
5721 // Return the file offset of the normal symbol table.
5722
5723 off_t
5724 Layout::symtab_section_offset() const
5725 {
5726   if (this->symtab_section_ != NULL)
5727     return this->symtab_section_->offset();
5728   return 0;
5729 }
5730
5731 // Return the section index of the normal symbol table.  It may have
5732 // been stripped by the -s/--strip-all option.
5733
5734 unsigned int
5735 Layout::symtab_section_shndx() const
5736 {
5737   if (this->symtab_section_ != NULL)
5738     return this->symtab_section_->out_shndx();
5739   return 0;
5740 }
5741
5742 // Write out the Output_sections.  Most won't have anything to write,
5743 // since most of the data will come from input sections which are
5744 // handled elsewhere.  But some Output_sections do have Output_data.
5745
5746 void
5747 Layout::write_output_sections(Output_file* of) const
5748 {
5749   for (Section_list::const_iterator p = this->section_list_.begin();
5750        p != this->section_list_.end();
5751        ++p)
5752     {
5753       if (!(*p)->after_input_sections())
5754         (*p)->write(of);
5755     }
5756 }
5757
5758 // Write out data not associated with a section or the symbol table.
5759
5760 void
5761 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5762 {
5763   if (!parameters->options().strip_all())
5764     {
5765       const Output_section* symtab_section = this->symtab_section_;
5766       for (Section_list::const_iterator p = this->section_list_.begin();
5767            p != this->section_list_.end();
5768            ++p)
5769         {
5770           if ((*p)->needs_symtab_index())
5771             {
5772               gold_assert(symtab_section != NULL);
5773               unsigned int index = (*p)->symtab_index();
5774               gold_assert(index > 0 && index != -1U);
5775               off_t off = (symtab_section->offset()
5776                            + index * symtab_section->entsize());
5777               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5778             }
5779         }
5780     }
5781
5782   const Output_section* dynsym_section = this->dynsym_section_;
5783   for (Section_list::const_iterator p = this->section_list_.begin();
5784        p != this->section_list_.end();
5785        ++p)
5786     {
5787       if ((*p)->needs_dynsym_index())
5788         {
5789           gold_assert(dynsym_section != NULL);
5790           unsigned int index = (*p)->dynsym_index();
5791           gold_assert(index > 0 && index != -1U);
5792           off_t off = (dynsym_section->offset()
5793                        + index * dynsym_section->entsize());
5794           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5795         }
5796     }
5797
5798   // Write out the Output_data which are not in an Output_section.
5799   for (Data_list::const_iterator p = this->special_output_list_.begin();
5800        p != this->special_output_list_.end();
5801        ++p)
5802     (*p)->write(of);
5803
5804   // Write out the Output_data which are not in an Output_section
5805   // and are regenerated in each iteration of relaxation.
5806   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5807        p != this->relax_output_list_.end();
5808        ++p)
5809     (*p)->write(of);
5810 }
5811
5812 // Write out the Output_sections which can only be written after the
5813 // input sections are complete.
5814
5815 void
5816 Layout::write_sections_after_input_sections(Output_file* of)
5817 {
5818   // Determine the final section offsets, and thus the final output
5819   // file size.  Note we finalize the .shstrab last, to allow the
5820   // after_input_section sections to modify their section-names before
5821   // writing.
5822   if (this->any_postprocessing_sections_)
5823     {
5824       off_t off = this->output_file_size_;
5825       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5826
5827       // Now that we've finalized the names, we can finalize the shstrab.
5828       off =
5829         this->set_section_offsets(off,
5830                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5831
5832       if (off > this->output_file_size_)
5833         {
5834           of->resize(off);
5835           this->output_file_size_ = off;
5836         }
5837     }
5838
5839   for (Section_list::const_iterator p = this->section_list_.begin();
5840        p != this->section_list_.end();
5841        ++p)
5842     {
5843       if ((*p)->after_input_sections())
5844         (*p)->write(of);
5845     }
5846
5847   this->section_headers_->write(of);
5848 }
5849
5850 // If a tree-style build ID was requested, the parallel part of that computation
5851 // is already done, and the final hash-of-hashes is computed here.  For other
5852 // types of build IDs, all the work is done here.
5853
5854 void
5855 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5856                        size_t size_of_hashes) const
5857 {
5858   if (this->build_id_note_ == NULL)
5859     return;
5860
5861   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5862                                           this->build_id_note_->data_size());
5863
5864   if (array_of_hashes == NULL)
5865     {
5866       const size_t output_file_size = this->output_file_size();
5867       const unsigned char* iv = of->get_input_view(0, output_file_size);
5868       const char* style = parameters->options().build_id();
5869
5870       // If we get here with style == "tree" then the output must be
5871       // too small for chunking, and we use SHA-1 in that case.
5872       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5873         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5874       else if (strcmp(style, "md5") == 0)
5875         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5876       else
5877         gold_unreachable();
5878
5879       of->free_input_view(0, output_file_size, iv);
5880     }
5881   else
5882     {
5883       // Non-overlapping substrings of the output file have been hashed.
5884       // Compute SHA-1 hash of the hashes.
5885       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5886                   size_of_hashes, ov);
5887       delete[] array_of_hashes;
5888     }
5889
5890   of->write_output_view(this->build_id_note_->offset(),
5891                         this->build_id_note_->data_size(),
5892                         ov);
5893 }
5894
5895 // Write out a binary file.  This is called after the link is
5896 // complete.  IN is the temporary output file we used to generate the
5897 // ELF code.  We simply walk through the segments, read them from
5898 // their file offset in IN, and write them to their load address in
5899 // the output file.  FIXME: with a bit more work, we could support
5900 // S-records and/or Intel hex format here.
5901
5902 void
5903 Layout::write_binary(Output_file* in) const
5904 {
5905   gold_assert(parameters->options().oformat_enum()
5906               == General_options::OBJECT_FORMAT_BINARY);
5907
5908   // Get the size of the binary file.
5909   uint64_t max_load_address = 0;
5910   for (Segment_list::const_iterator p = this->segment_list_.begin();
5911        p != this->segment_list_.end();
5912        ++p)
5913     {
5914       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5915         {
5916           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5917           if (max_paddr > max_load_address)
5918             max_load_address = max_paddr;
5919         }
5920     }
5921
5922   Output_file out(parameters->options().output_file_name());
5923   out.open(max_load_address);
5924
5925   for (Segment_list::const_iterator p = this->segment_list_.begin();
5926        p != this->segment_list_.end();
5927        ++p)
5928     {
5929       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5930         {
5931           const unsigned char* vin = in->get_input_view((*p)->offset(),
5932                                                         (*p)->filesz());
5933           unsigned char* vout = out.get_output_view((*p)->paddr(),
5934                                                     (*p)->filesz());
5935           memcpy(vout, vin, (*p)->filesz());
5936           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5937           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5938         }
5939     }
5940
5941   out.close();
5942 }
5943
5944 // Print the output sections to the map file.
5945
5946 void
5947 Layout::print_to_mapfile(Mapfile* mapfile) const
5948 {
5949   for (Segment_list::const_iterator p = this->segment_list_.begin();
5950        p != this->segment_list_.end();
5951        ++p)
5952     (*p)->print_sections_to_mapfile(mapfile);
5953   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5954        p != this->unattached_section_list_.end();
5955        ++p)
5956     (*p)->print_to_mapfile(mapfile);
5957 }
5958
5959 // Print statistical information to stderr.  This is used for --stats.
5960
5961 void
5962 Layout::print_stats() const
5963 {
5964   this->namepool_.print_stats("section name pool");
5965   this->sympool_.print_stats("output symbol name pool");
5966   this->dynpool_.print_stats("dynamic name pool");
5967
5968   for (Section_list::const_iterator p = this->section_list_.begin();
5969        p != this->section_list_.end();
5970        ++p)
5971     (*p)->print_merge_stats();
5972 }
5973
5974 // Write_sections_task methods.
5975
5976 // We can always run this task.
5977
5978 Task_token*
5979 Write_sections_task::is_runnable()
5980 {
5981   return NULL;
5982 }
5983
5984 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5985 // when finished.
5986
5987 void
5988 Write_sections_task::locks(Task_locker* tl)
5989 {
5990   tl->add(this, this->output_sections_blocker_);
5991   if (this->input_sections_blocker_ != NULL)
5992     tl->add(this, this->input_sections_blocker_);
5993   tl->add(this, this->final_blocker_);
5994 }
5995
5996 // Run the task--write out the data.
5997
5998 void
5999 Write_sections_task::run(Workqueue*)
6000 {
6001   this->layout_->write_output_sections(this->of_);
6002 }
6003
6004 // Write_data_task methods.
6005
6006 // We can always run this task.
6007
6008 Task_token*
6009 Write_data_task::is_runnable()
6010 {
6011   return NULL;
6012 }
6013
6014 // We need to unlock FINAL_BLOCKER when finished.
6015
6016 void
6017 Write_data_task::locks(Task_locker* tl)
6018 {
6019   tl->add(this, this->final_blocker_);
6020 }
6021
6022 // Run the task--write out the data.
6023
6024 void
6025 Write_data_task::run(Workqueue*)
6026 {
6027   this->layout_->write_data(this->symtab_, this->of_);
6028 }
6029
6030 // Write_symbols_task methods.
6031
6032 // We can always run this task.
6033
6034 Task_token*
6035 Write_symbols_task::is_runnable()
6036 {
6037   return NULL;
6038 }
6039
6040 // We need to unlock FINAL_BLOCKER when finished.
6041
6042 void
6043 Write_symbols_task::locks(Task_locker* tl)
6044 {
6045   tl->add(this, this->final_blocker_);
6046 }
6047
6048 // Run the task--write out the symbols.
6049
6050 void
6051 Write_symbols_task::run(Workqueue*)
6052 {
6053   this->symtab_->write_globals(this->sympool_, this->dynpool_,
6054                                this->layout_->symtab_xindex(),
6055                                this->layout_->dynsym_xindex(), this->of_);
6056 }
6057
6058 // Write_after_input_sections_task methods.
6059
6060 // We can only run this task after the input sections have completed.
6061
6062 Task_token*
6063 Write_after_input_sections_task::is_runnable()
6064 {
6065   if (this->input_sections_blocker_->is_blocked())
6066     return this->input_sections_blocker_;
6067   return NULL;
6068 }
6069
6070 // We need to unlock FINAL_BLOCKER when finished.
6071
6072 void
6073 Write_after_input_sections_task::locks(Task_locker* tl)
6074 {
6075   tl->add(this, this->final_blocker_);
6076 }
6077
6078 // Run the task.
6079
6080 void
6081 Write_after_input_sections_task::run(Workqueue*)
6082 {
6083   this->layout_->write_sections_after_input_sections(this->of_);
6084 }
6085
6086 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6087 // or as a "tree" where each chunk of the string is hashed and then those
6088 // hashes are put into a (much smaller) string which is hashed with sha1.
6089 // We compute a checksum over the entire file because that is simplest.
6090
6091 void
6092 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6093 {
6094   Task_token* post_hash_tasks_blocker = new Task_token(true);
6095   const Layout* layout = this->layout_;
6096   Output_file* of = this->of_;
6097   const size_t filesize = (layout->output_file_size() <= 0 ? 0
6098                            : static_cast<size_t>(layout->output_file_size()));
6099   unsigned char* array_of_hashes = NULL;
6100   size_t size_of_hashes = 0;
6101
6102   if (strcmp(this->options_->build_id(), "tree") == 0
6103       && this->options_->build_id_chunk_size_for_treehash() > 0
6104       && filesize > 0
6105       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6106     {
6107       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6108       const size_t chunk_size =
6109           this->options_->build_id_chunk_size_for_treehash();
6110       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6111       post_hash_tasks_blocker->add_blockers(num_hashes);
6112       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6113       array_of_hashes = new unsigned char[size_of_hashes];
6114       unsigned char *dst = array_of_hashes;
6115       for (size_t i = 0, src_offset = 0; i < num_hashes;
6116            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6117         {
6118           size_t size = std::min(chunk_size, filesize - src_offset);
6119           workqueue->queue(new Hash_task(of,
6120                                          src_offset,
6121                                          size,
6122                                          dst,
6123                                          post_hash_tasks_blocker));
6124         }
6125     }
6126
6127   // Queue the final task to write the build id and close the output file.
6128   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6129                                                            layout,
6130                                                            of,
6131                                                            array_of_hashes,
6132                                                            size_of_hashes),
6133                                      post_hash_tasks_blocker,
6134                                      "Task_function Close_task_runner"));
6135 }
6136
6137 // Close_task_runner methods.
6138
6139 // Finish up the build ID computation, if necessary, and write a binary file,
6140 // if necessary.  Then close the output file.
6141
6142 void
6143 Close_task_runner::run(Workqueue*, const Task*)
6144 {
6145   // At this point the multi-threaded part of the build ID computation,
6146   // if any, is done.  See Build_id_task_runner.
6147   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6148                                 this->size_of_hashes_);
6149
6150   // If we've been asked to create a binary file, we do so here.
6151   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6152     this->layout_->write_binary(this->of_);
6153
6154   this->of_->close();
6155 }
6156
6157 // Instantiate the templates we need.  We could use the configure
6158 // script to restrict this to only the ones for implemented targets.
6159
6160 #ifdef HAVE_TARGET_32_LITTLE
6161 template
6162 Output_section*
6163 Layout::init_fixed_output_section<32, false>(
6164     const char* name,
6165     elfcpp::Shdr<32, false>& shdr);
6166 #endif
6167
6168 #ifdef HAVE_TARGET_32_BIG
6169 template
6170 Output_section*
6171 Layout::init_fixed_output_section<32, true>(
6172     const char* name,
6173     elfcpp::Shdr<32, true>& shdr);
6174 #endif
6175
6176 #ifdef HAVE_TARGET_64_LITTLE
6177 template
6178 Output_section*
6179 Layout::init_fixed_output_section<64, false>(
6180     const char* name,
6181     elfcpp::Shdr<64, false>& shdr);
6182 #endif
6183
6184 #ifdef HAVE_TARGET_64_BIG
6185 template
6186 Output_section*
6187 Layout::init_fixed_output_section<64, true>(
6188     const char* name,
6189     elfcpp::Shdr<64, true>& shdr);
6190 #endif
6191
6192 #ifdef HAVE_TARGET_32_LITTLE
6193 template
6194 Output_section*
6195 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6196                           unsigned int shndx,
6197                           const char* name,
6198                           const elfcpp::Shdr<32, false>& shdr,
6199                           unsigned int, unsigned int, unsigned int, off_t*);
6200 #endif
6201
6202 #ifdef HAVE_TARGET_32_BIG
6203 template
6204 Output_section*
6205 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6206                          unsigned int shndx,
6207                          const char* name,
6208                          const elfcpp::Shdr<32, true>& shdr,
6209                          unsigned int, unsigned int, unsigned int, off_t*);
6210 #endif
6211
6212 #ifdef HAVE_TARGET_64_LITTLE
6213 template
6214 Output_section*
6215 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6216                           unsigned int shndx,
6217                           const char* name,
6218                           const elfcpp::Shdr<64, false>& shdr,
6219                           unsigned int, unsigned int, unsigned int, off_t*);
6220 #endif
6221
6222 #ifdef HAVE_TARGET_64_BIG
6223 template
6224 Output_section*
6225 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6226                          unsigned int shndx,
6227                          const char* name,
6228                          const elfcpp::Shdr<64, true>& shdr,
6229                          unsigned int, unsigned int, unsigned int, off_t*);
6230 #endif
6231
6232 #ifdef HAVE_TARGET_32_LITTLE
6233 template
6234 Output_section*
6235 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6236                                 unsigned int reloc_shndx,
6237                                 const elfcpp::Shdr<32, false>& shdr,
6238                                 Output_section* data_section,
6239                                 Relocatable_relocs* rr);
6240 #endif
6241
6242 #ifdef HAVE_TARGET_32_BIG
6243 template
6244 Output_section*
6245 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6246                                unsigned int reloc_shndx,
6247                                const elfcpp::Shdr<32, true>& shdr,
6248                                Output_section* data_section,
6249                                Relocatable_relocs* rr);
6250 #endif
6251
6252 #ifdef HAVE_TARGET_64_LITTLE
6253 template
6254 Output_section*
6255 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6256                                 unsigned int reloc_shndx,
6257                                 const elfcpp::Shdr<64, false>& shdr,
6258                                 Output_section* data_section,
6259                                 Relocatable_relocs* rr);
6260 #endif
6261
6262 #ifdef HAVE_TARGET_64_BIG
6263 template
6264 Output_section*
6265 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6266                                unsigned int reloc_shndx,
6267                                const elfcpp::Shdr<64, true>& shdr,
6268                                Output_section* data_section,
6269                                Relocatable_relocs* rr);
6270 #endif
6271
6272 #ifdef HAVE_TARGET_32_LITTLE
6273 template
6274 void
6275 Layout::layout_group<32, false>(Symbol_table* symtab,
6276                                 Sized_relobj_file<32, false>* object,
6277                                 unsigned int,
6278                                 const char* group_section_name,
6279                                 const char* signature,
6280                                 const elfcpp::Shdr<32, false>& shdr,
6281                                 elfcpp::Elf_Word flags,
6282                                 std::vector<unsigned int>* shndxes);
6283 #endif
6284
6285 #ifdef HAVE_TARGET_32_BIG
6286 template
6287 void
6288 Layout::layout_group<32, true>(Symbol_table* symtab,
6289                                Sized_relobj_file<32, true>* object,
6290                                unsigned int,
6291                                const char* group_section_name,
6292                                const char* signature,
6293                                const elfcpp::Shdr<32, true>& shdr,
6294                                elfcpp::Elf_Word flags,
6295                                std::vector<unsigned int>* shndxes);
6296 #endif
6297
6298 #ifdef HAVE_TARGET_64_LITTLE
6299 template
6300 void
6301 Layout::layout_group<64, false>(Symbol_table* symtab,
6302                                 Sized_relobj_file<64, false>* object,
6303                                 unsigned int,
6304                                 const char* group_section_name,
6305                                 const char* signature,
6306                                 const elfcpp::Shdr<64, false>& shdr,
6307                                 elfcpp::Elf_Word flags,
6308                                 std::vector<unsigned int>* shndxes);
6309 #endif
6310
6311 #ifdef HAVE_TARGET_64_BIG
6312 template
6313 void
6314 Layout::layout_group<64, true>(Symbol_table* symtab,
6315                                Sized_relobj_file<64, true>* object,
6316                                unsigned int,
6317                                const char* group_section_name,
6318                                const char* signature,
6319                                const elfcpp::Shdr<64, true>& shdr,
6320                                elfcpp::Elf_Word flags,
6321                                std::vector<unsigned int>* shndxes);
6322 #endif
6323
6324 #ifdef HAVE_TARGET_32_LITTLE
6325 template
6326 Output_section*
6327 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6328                                    const unsigned char* symbols,
6329                                    off_t symbols_size,
6330                                    const unsigned char* symbol_names,
6331                                    off_t symbol_names_size,
6332                                    unsigned int shndx,
6333                                    const elfcpp::Shdr<32, false>& shdr,
6334                                    unsigned int reloc_shndx,
6335                                    unsigned int reloc_type,
6336                                    off_t* off);
6337 #endif
6338
6339 #ifdef HAVE_TARGET_32_BIG
6340 template
6341 Output_section*
6342 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6343                                   const unsigned char* symbols,
6344                                   off_t symbols_size,
6345                                   const unsigned char* symbol_names,
6346                                   off_t symbol_names_size,
6347                                   unsigned int shndx,
6348                                   const elfcpp::Shdr<32, true>& shdr,
6349                                   unsigned int reloc_shndx,
6350                                   unsigned int reloc_type,
6351                                   off_t* off);
6352 #endif
6353
6354 #ifdef HAVE_TARGET_64_LITTLE
6355 template
6356 Output_section*
6357 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6358                                    const unsigned char* symbols,
6359                                    off_t symbols_size,
6360                                    const unsigned char* symbol_names,
6361                                    off_t symbol_names_size,
6362                                    unsigned int shndx,
6363                                    const elfcpp::Shdr<64, false>& shdr,
6364                                    unsigned int reloc_shndx,
6365                                    unsigned int reloc_type,
6366                                    off_t* off);
6367 #endif
6368
6369 #ifdef HAVE_TARGET_64_BIG
6370 template
6371 Output_section*
6372 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6373                                   const unsigned char* symbols,
6374                                   off_t symbols_size,
6375                                   const unsigned char* symbol_names,
6376                                   off_t symbol_names_size,
6377                                   unsigned int shndx,
6378                                   const elfcpp::Shdr<64, true>& shdr,
6379                                   unsigned int reloc_shndx,
6380                                   unsigned int reloc_type,
6381                                   off_t* off);
6382 #endif
6383
6384 #ifdef HAVE_TARGET_32_LITTLE
6385 template
6386 void
6387 Layout::add_to_gdb_index(bool is_type_unit,
6388                          Sized_relobj<32, false>* object,
6389                          const unsigned char* symbols,
6390                          off_t symbols_size,
6391                          unsigned int shndx,
6392                          unsigned int reloc_shndx,
6393                          unsigned int reloc_type);
6394 #endif
6395
6396 #ifdef HAVE_TARGET_32_BIG
6397 template
6398 void
6399 Layout::add_to_gdb_index(bool is_type_unit,
6400                          Sized_relobj<32, true>* object,
6401                          const unsigned char* symbols,
6402                          off_t symbols_size,
6403                          unsigned int shndx,
6404                          unsigned int reloc_shndx,
6405                          unsigned int reloc_type);
6406 #endif
6407
6408 #ifdef HAVE_TARGET_64_LITTLE
6409 template
6410 void
6411 Layout::add_to_gdb_index(bool is_type_unit,
6412                          Sized_relobj<64, false>* object,
6413                          const unsigned char* symbols,
6414                          off_t symbols_size,
6415                          unsigned int shndx,
6416                          unsigned int reloc_shndx,
6417                          unsigned int reloc_type);
6418 #endif
6419
6420 #ifdef HAVE_TARGET_64_BIG
6421 template
6422 void
6423 Layout::add_to_gdb_index(bool is_type_unit,
6424                          Sized_relobj<64, true>* object,
6425                          const unsigned char* symbols,
6426                          off_t symbols_size,
6427                          unsigned int shndx,
6428                          unsigned int reloc_shndx,
6429                          unsigned int reloc_type);
6430 #endif
6431
6432 } // End namespace gold.