gold/testsuite: Fix bad regexp in split_x86_64.sh
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "gdb_scripts",
525   "info",
526   "types",
527   "line",
528   "loc",
529   "macinfo",
530   "macro",
531   // "pubnames",  // not used by gdb as of 7.4
532   // "pubtypes",  // not used by gdb as of 7.4
533   // "gnu_pubnames",  // Fission extension
534   // "gnu_pubtypes",  // Fission extension
535   "ranges",
536   "str",
537   "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544   "abbrev",
545   // "addr",      // Fission extension
546   // "aranges",   // not used by gdb as of 7.4
547   // "frame",
548   // "gdb_scripts",
549   "info",
550   // "types",
551   "line",
552   // "loc",
553   // "macinfo",
554   // "macro",
555   // "pubnames",  // not used by gdb as of 7.4
556   // "pubtypes",  // not used by gdb as of 7.4
557   // "gnu_pubnames",  // Fission extension
558   // "gnu_pubtypes",  // Fission extension
559   // "ranges",
560   "str",
561   "str_offsets",  // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569   "aranges",
570   "pubnames",
571   "gnu_pubnames",
572   "pubtypes",
573   "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583   // We can do this faster: binary search or a hashtable.  But why bother?
584   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585     if (strcmp(suffix, gdb_sections[i]) == 0)
586       return true;
587   return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595   // We can do this faster: binary search or a hashtable.  But why bother?
596   for (size_t i = 0;
597        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598        ++i)
599     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600       return true;
601   return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610   // We can do this faster: binary search or a hashtable.  But why bother?
611   for (size_t i = 0;
612        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613        ++i)
614     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615       return true;
616   return false;
617 }
618
619 // Sometimes we compress sections.  This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections.  This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631   return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files.  Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640   return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646   gold_assert(secname[0] == '.' && secname[1] == 'z');
647   std::string ret(".");
648   ret.append(secname, 2, std::string::npos);
649   return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657                         const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659   if (!parameters->options().relocatable()
660       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661     return false;
662
663   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667     return parameters->target().should_include_section(sh_type);
668
669   switch (sh_type)
670     {
671     case elfcpp::SHT_NULL:
672     case elfcpp::SHT_SYMTAB:
673     case elfcpp::SHT_DYNSYM:
674     case elfcpp::SHT_HASH:
675     case elfcpp::SHT_DYNAMIC:
676     case elfcpp::SHT_SYMTAB_SHNDX:
677       return false;
678
679     case elfcpp::SHT_STRTAB:
680       // Discard the sections which have special meanings in the ELF
681       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
682       // checking the sh_link fields of the appropriate sections.
683       return (strcmp(name, ".dynstr") != 0
684               && strcmp(name, ".strtab") != 0
685               && strcmp(name, ".shstrtab") != 0);
686
687     case elfcpp::SHT_RELA:
688     case elfcpp::SHT_REL:
689     case elfcpp::SHT_GROUP:
690       // If we are emitting relocations these should be handled
691       // elsewhere.
692       gold_assert(!parameters->options().relocatable());
693       return false;
694
695     case elfcpp::SHT_PROGBITS:
696       if (parameters->options().strip_debug()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           if (is_debug_info_section(name))
700             return false;
701         }
702       if (parameters->options().strip_debug_non_line()
703           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704         {
705           // Debugging sections can only be recognized by name.
706           if (is_prefix_of(".debug_", name)
707               && !is_lines_only_debug_section(name + 7))
708             return false;
709           if (is_prefix_of(".zdebug_", name)
710               && !is_lines_only_debug_section(name + 8))
711             return false;
712         }
713       if (parameters->options().strip_debug_gdb()
714           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715         {
716           // Debugging sections can only be recognized by name.
717           if (is_prefix_of(".debug_", name)
718               && !is_gdb_debug_section(name + 7))
719             return false;
720           if (is_prefix_of(".zdebug_", name)
721               && !is_gdb_debug_section(name + 8))
722             return false;
723         }
724       if (parameters->options().gdb_index()
725           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726         {
727           // When building .gdb_index, we can strip .debug_pubnames,
728           // .debug_pubtypes, and .debug_aranges sections.
729           if (is_prefix_of(".debug_", name)
730               && is_gdb_fast_lookup_section(name + 7))
731             return false;
732           if (is_prefix_of(".zdebug_", name)
733               && is_gdb_fast_lookup_section(name + 8))
734             return false;
735         }
736       if (parameters->options().strip_lto_sections()
737           && !parameters->options().relocatable()
738           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739         {
740           // Ignore LTO sections containing intermediate code.
741           if (is_prefix_of(".gnu.lto_", name))
742             return false;
743         }
744       // The GNU linker strips .gnu_debuglink sections, so we do too.
745       // This is a feature used to keep debugging information in
746       // separate files.
747       if (strcmp(name, ".gnu_debuglink") == 0)
748         return false;
749       return true;
750
751     default:
752       return true;
753     }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761   for (Section_list::const_iterator p = this->section_list_.begin();
762        p != this->section_list_.end();
763        ++p)
764     if (strcmp((*p)->name(), name) == 0)
765       return *p;
766   return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear.  Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774                             elfcpp::Elf_Word clear) const
775 {
776   for (Segment_list::const_iterator p = this->segment_list_.begin();
777        p != this->segment_list_.end();
778        ++p)
779     if (static_cast<elfcpp::PT>((*p)->type()) == type
780         && ((*p)->flags() & set) == set
781         && ((*p)->flags() & clear) == 0)
782       return *p;
783   return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section.  This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors.  Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run.  This set just keeps track of
794 // these sections which need to be reversed.  It is only changed by
795 // Layout::layout.  It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807           != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS.  NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key.  ORDER is where this should appear
813 // in the output sections.  IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818                            Output_section_order order, bool is_relro)
819 {
820   elfcpp::Elf_Word lookup_type = type;
821
822   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
824   // .init_array, .fini_array, and .preinit_array sections by name
825   // whatever their type in the input file.  We do this because the
826   // types are not always right in the input files.
827   if (lookup_type == elfcpp::SHT_INIT_ARRAY
828       || lookup_type == elfcpp::SHT_FINI_ARRAY
829       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830     lookup_type = elfcpp::SHT_PROGBITS;
831
832   elfcpp::Elf_Xword lookup_flags = flags;
833
834   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835   // read-write with read-only sections.  Some other ELF linkers do
836   // not do this.  FIXME: Perhaps there should be an option
837   // controlling this.
838   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841   const std::pair<Key, Output_section*> v(key, NULL);
842   std::pair<Section_name_map::iterator, bool> ins(
843     this->section_name_map_.insert(v));
844
845   if (!ins.second)
846     return ins.first->second;
847   else
848     {
849       // This is the first time we've seen this name/type/flags
850       // combination.  For compatibility with the GNU linker, we
851       // combine sections with contents and zero flags with sections
852       // with non-zero flags.  This is a workaround for cases where
853       // assembler code forgets to set section flags.  FIXME: Perhaps
854       // there should be an option to control this.
855       Output_section* os = NULL;
856
857       if (lookup_type == elfcpp::SHT_PROGBITS)
858         {
859           if (flags == 0)
860             {
861               Output_section* same_name = this->find_output_section(name);
862               if (same_name != NULL
863                   && (same_name->type() == elfcpp::SHT_PROGBITS
864                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
865                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
866                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868                 os = same_name;
869             }
870           else if ((flags & elfcpp::SHF_TLS) == 0)
871             {
872               elfcpp::Elf_Xword zero_flags = 0;
873               const Key zero_key(name_key, std::make_pair(lookup_type,
874                                                           zero_flags));
875               Section_name_map::iterator p =
876                   this->section_name_map_.find(zero_key);
877               if (p != this->section_name_map_.end())
878                 os = p->second;
879             }
880         }
881
882       if (os == NULL)
883         os = this->make_output_section(name, type, flags, order, is_relro);
884
885       ins.first->second = os;
886       return os;
887     }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896   if (! this->script_options_->saw_sections_clause())
897     return false;
898
899   Script_sections* ss = this->script_options_->script_sections();
900   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901   Output_section** output_section_slot;
902   Script_sections::Section_type script_section_type;
903   bool keep;
904
905   name = ss->output_section_name(file_name, name, &output_section_slot,
906                                  &script_section_type, &keep, true);
907   return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916   // Some flags in the input section should not be automatically
917   // copied to the output section.
918   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919                             | elfcpp::SHF_GROUP
920                             | elfcpp::SHF_COMPRESSED
921                             | elfcpp::SHF_MERGE
922                             | elfcpp::SHF_STRINGS);
923
924   // We only clear the SHF_LINK_ORDER flag in for
925   // a non-relocatable link.
926   if (!parameters->options().relocatable())
927     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929   return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
934 // linker created section.  IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file.  ORDER is where this section should appear in the output
937 // sections.  IS_RELRO is true for a relro section.  This will return
938 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
939 // is true if the section name should be matched against input specs
940 // in a linker script.
941
942 Output_section*
943 Layout::choose_output_section(const Relobj* relobj, const char* name,
944                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
945                               bool is_input_section, Output_section_order order,
946                               bool is_relro, bool is_reloc,
947                               bool match_input_spec)
948 {
949   // We should not see any input sections after we have attached
950   // sections to segments.
951   gold_assert(!is_input_section || !this->sections_are_attached_);
952
953   flags = this->get_output_section_flags(flags);
954
955   if (this->script_options_->saw_sections_clause() && !is_reloc)
956     {
957       // We are using a SECTIONS clause, so the output section is
958       // chosen based only on the name.
959
960       Script_sections* ss = this->script_options_->script_sections();
961       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
962       Output_section** output_section_slot;
963       Script_sections::Section_type script_section_type;
964       const char* orig_name = name;
965       bool keep;
966       name = ss->output_section_name(file_name, name, &output_section_slot,
967                                      &script_section_type, &keep,
968                                      match_input_spec);
969
970       if (name == NULL)
971         {
972           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
973                                      "because it is not allowed by the "
974                                      "SECTIONS clause of the linker script"),
975                      orig_name);
976           // The SECTIONS clause says to discard this input section.
977           return NULL;
978         }
979
980       // We can only handle script section types ST_NONE and ST_NOLOAD.
981       switch (script_section_type)
982         {
983         case Script_sections::ST_NONE:
984           break;
985         case Script_sections::ST_NOLOAD:
986           flags &= elfcpp::SHF_ALLOC;
987           break;
988         default:
989           gold_unreachable();
990         }
991
992       // If this is an orphan section--one not mentioned in the linker
993       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
994       // default processing below.
995
996       if (output_section_slot != NULL)
997         {
998           if (*output_section_slot != NULL)
999             {
1000               (*output_section_slot)->update_flags_for_input_section(flags);
1001               return *output_section_slot;
1002             }
1003
1004           // We don't put sections found in the linker script into
1005           // SECTION_NAME_MAP_.  That keeps us from getting confused
1006           // if an orphan section is mapped to a section with the same
1007           // name as one in the linker script.
1008
1009           name = this->namepool_.add(name, false, NULL);
1010
1011           Output_section* os = this->make_output_section(name, type, flags,
1012                                                          order, is_relro);
1013
1014           os->set_found_in_sections_clause();
1015
1016           // Special handling for NOLOAD sections.
1017           if (script_section_type == Script_sections::ST_NOLOAD)
1018             {
1019               os->set_is_noload();
1020
1021               // The constructor of Output_section sets addresses of non-ALLOC
1022               // sections to 0 by default.  We don't want that for NOLOAD
1023               // sections even if they have no SHF_ALLOC flag.
1024               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1025                   && os->is_address_valid())
1026                 {
1027                   gold_assert(os->address() == 0
1028                               && !os->is_offset_valid()
1029                               && !os->is_data_size_valid());
1030                   os->reset_address_and_file_offset();
1031                 }
1032             }
1033
1034           *output_section_slot = os;
1035           return os;
1036         }
1037     }
1038
1039   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1040
1041   size_t len = strlen(name);
1042   std::string uncompressed_name;
1043
1044   // Compressed debug sections should be mapped to the corresponding
1045   // uncompressed section.
1046   if (is_compressed_debug_section(name))
1047     {
1048       uncompressed_name =
1049           corresponding_uncompressed_section_name(std::string(name, len));
1050       name = uncompressed_name.c_str();
1051       len = uncompressed_name.length();
1052     }
1053
1054   // Turn NAME from the name of the input section into the name of the
1055   // output section.
1056   if (is_input_section
1057       && !this->script_options_->saw_sections_clause()
1058       && !parameters->options().relocatable())
1059     {
1060       const char *orig_name = name;
1061       name = parameters->target().output_section_name(relobj, name, &len);
1062       if (name == NULL)
1063         name = Layout::output_section_name(relobj, orig_name, &len);
1064     }
1065
1066   Stringpool::Key name_key;
1067   name = this->namepool_.add_with_length(name, len, true, &name_key);
1068
1069   // Find or make the output section.  The output section is selected
1070   // based on the section name, type, and flags.
1071   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1072 }
1073
1074 // For incremental links, record the initial fixed layout of a section
1075 // from the base file, and return a pointer to the Output_section.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::init_fixed_output_section(const char* name,
1080                                   elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082   unsigned int sh_type = shdr.get_sh_type();
1083
1084   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1085   // PRE_INIT_ARRAY, and NOTE sections.
1086   // All others will be created from scratch and reallocated.
1087   if (!can_incremental_update(sh_type))
1088     return NULL;
1089
1090   // If we're generating a .gdb_index section, we need to regenerate
1091   // it from scratch.
1092   if (parameters->options().gdb_index()
1093       && sh_type == elfcpp::SHT_PROGBITS
1094       && strcmp(name, ".gdb_index") == 0)
1095     return NULL;
1096
1097   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1098   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1099   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1100   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1102       shdr.get_sh_addralign();
1103
1104   // Make the output section.
1105   Stringpool::Key name_key;
1106   name = this->namepool_.add(name, true, &name_key);
1107   Output_section* os = this->get_output_section(name, name_key, sh_type,
1108                                                 sh_flags, ORDER_INVALID, false);
1109   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1110   if (sh_type != elfcpp::SHT_NOBITS)
1111     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1112   return os;
1113 }
1114
1115 // Return the index by which an input section should be ordered.  This
1116 // is used to sort some .text sections, for compatibility with GNU ld.
1117
1118 int
1119 Layout::special_ordering_of_input_section(const char* name)
1120 {
1121   // The GNU linker has some special handling for some sections that
1122   // wind up in the .text section.  Sections that start with these
1123   // prefixes must appear first, and must appear in the order listed
1124   // here.
1125   static const char* const text_section_sort[] =
1126   {
1127     ".text.unlikely",
1128     ".text.exit",
1129     ".text.startup",
1130     ".text.hot"
1131   };
1132
1133   for (size_t i = 0;
1134        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1135        i++)
1136     if (is_prefix_of(text_section_sort[i], name))
1137       return i;
1138
1139   return -1;
1140 }
1141
1142 // Return the output section to use for input section SHNDX, with name
1143 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1144 // index of a relocation section which applies to this section, or 0
1145 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1146 // relocation section if there is one.  Set *OFF to the offset of this
1147 // input section without the output section.  Return NULL if the
1148 // section should be discarded.  Set *OFF to -1 if the section
1149 // contents should not be written directly to the output file, but
1150 // will instead receive special handling.
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1155                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1156                unsigned int reloc_shndx, unsigned int, off_t* off)
1157 {
1158   *off = 0;
1159
1160   if (!this->include_section(object, name, shdr))
1161     return NULL;
1162
1163   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1164
1165   // In a relocatable link a grouped section must not be combined with
1166   // any other sections.
1167   Output_section* os;
1168   if (parameters->options().relocatable()
1169       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170     {
1171       // Some flags in the input section should not be automatically
1172       // copied to the output section.
1173       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174                                  & ~ elfcpp::SHF_COMPRESSED);
1175       name = this->namepool_.add(name, true, NULL);
1176       os = this->make_output_section(name, sh_type, flags,
1177                                      ORDER_INVALID, false);
1178     }
1179   else
1180     {
1181       // All ".text.unlikely.*" sections can be moved to a unique
1182       // segment with --text-unlikely-segment option.
1183       bool text_unlikely_segment
1184           = (parameters->options().text_unlikely_segment()
1185              && is_prefix_of(".text.unlikely",
1186                              object->section_name(shndx).c_str()));
1187       if (text_unlikely_segment)
1188         {
1189           elfcpp::Elf_Xword flags
1190             = this->get_output_section_flags(shdr.get_sh_flags());
1191
1192           Stringpool::Key name_key;
1193           const char* os_name = this->namepool_.add(".text.unlikely", true,
1194                                                     &name_key);
1195           os = this->get_output_section(os_name, name_key, sh_type, flags,
1196                                         ORDER_INVALID, false);
1197           // Map this output section to a unique segment.  This is done to
1198           // separate "text" that is not likely to be executed from "text"
1199           // that is likely executed.
1200           os->set_is_unique_segment();
1201         }
1202       else
1203         {
1204           // Plugins can choose to place one or more subsets of sections in
1205           // unique segments and this is done by mapping these section subsets
1206           // to unique output sections.  Check if this section needs to be
1207           // remapped to a unique output section.
1208           Section_segment_map::iterator it
1209             = this->section_segment_map_.find(Const_section_id(object, shndx));
1210           if (it == this->section_segment_map_.end())
1211             {
1212               os = this->choose_output_section(object, name, sh_type,
1213                                                shdr.get_sh_flags(), true,
1214                                                ORDER_INVALID, false, false,
1215                                                true);
1216             }
1217           else
1218             {
1219               // We know the name of the output section, directly call
1220               // get_output_section here by-passing choose_output_section.
1221               elfcpp::Elf_Xword flags
1222                 = this->get_output_section_flags(shdr.get_sh_flags());
1223
1224               const char* os_name = it->second->name;
1225               Stringpool::Key name_key;
1226               os_name = this->namepool_.add(os_name, true, &name_key);
1227               os = this->get_output_section(os_name, name_key, sh_type, flags,
1228                                         ORDER_INVALID, false);
1229               if (!os->is_unique_segment())
1230                 {
1231                   os->set_is_unique_segment();
1232                   os->set_extra_segment_flags(it->second->flags);
1233                   os->set_segment_alignment(it->second->align);
1234                 }
1235             }
1236           }
1237       if (os == NULL)
1238         return NULL;
1239     }
1240
1241   // By default the GNU linker sorts input sections whose names match
1242   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1243   // sections are sorted by name.  This is used to implement
1244   // constructor priority ordering.  We are compatible.  When we put
1245   // .ctor sections in .init_array and .dtor sections in .fini_array,
1246   // we must also sort plain .ctor and .dtor sections.
1247   if (!this->script_options_->saw_sections_clause()
1248       && !parameters->options().relocatable()
1249       && (is_prefix_of(".ctors.", name)
1250           || is_prefix_of(".dtors.", name)
1251           || is_prefix_of(".init_array.", name)
1252           || is_prefix_of(".fini_array.", name)
1253           || (parameters->options().ctors_in_init_array()
1254               && (strcmp(name, ".ctors") == 0
1255                   || strcmp(name, ".dtors") == 0))))
1256     os->set_must_sort_attached_input_sections();
1257
1258   // By default the GNU linker sorts some special text sections ahead
1259   // of others.  We are compatible.
1260   if (parameters->options().text_reorder()
1261       && !this->script_options_->saw_sections_clause()
1262       && !this->is_section_ordering_specified()
1263       && !parameters->options().relocatable()
1264       && Layout::special_ordering_of_input_section(name) >= 0)
1265     os->set_must_sort_attached_input_sections();
1266
1267   // If this is a .ctors or .ctors.* section being mapped to a
1268   // .init_array section, or a .dtors or .dtors.* section being mapped
1269   // to a .fini_array section, we will need to reverse the words if
1270   // there is more than one.  Record this section for later.  See
1271   // ctors_sections_in_init_array above.
1272   if (!this->script_options_->saw_sections_clause()
1273       && !parameters->options().relocatable()
1274       && shdr.get_sh_size() > size / 8
1275       && (((strcmp(name, ".ctors") == 0
1276             || is_prefix_of(".ctors.", name))
1277            && strcmp(os->name(), ".init_array") == 0)
1278           || ((strcmp(name, ".dtors") == 0
1279                || is_prefix_of(".dtors.", name))
1280               && strcmp(os->name(), ".fini_array") == 0)))
1281     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1282
1283   // FIXME: Handle SHF_LINK_ORDER somewhere.
1284
1285   elfcpp::Elf_Xword orig_flags = os->flags();
1286
1287   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1288                                this->script_options_->saw_sections_clause());
1289
1290   // If the flags changed, we may have to change the order.
1291   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1292     {
1293       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1294       elfcpp::Elf_Xword new_flags =
1295         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296       if (orig_flags != new_flags)
1297         os->set_order(this->default_section_order(os, false));
1298     }
1299
1300   this->have_added_input_section_ = true;
1301
1302   return os;
1303 }
1304
1305 // Maps section SECN to SEGMENT s.
1306 void
1307 Layout::insert_section_segment_map(Const_section_id secn,
1308                                    Unique_segment_info *s)
1309 {
1310   gold_assert(this->unique_segment_for_sections_specified_);
1311   this->section_segment_map_[secn] = s;
1312 }
1313
1314 // Handle a relocation section when doing a relocatable link.
1315
1316 template<int size, bool big_endian>
1317 Output_section*
1318 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1319                      unsigned int,
1320                      const elfcpp::Shdr<size, big_endian>& shdr,
1321                      Output_section* data_section,
1322                      Relocatable_relocs* rr)
1323 {
1324   gold_assert(parameters->options().relocatable()
1325               || parameters->options().emit_relocs());
1326
1327   int sh_type = shdr.get_sh_type();
1328
1329   std::string name;
1330   if (sh_type == elfcpp::SHT_REL)
1331     name = ".rel";
1332   else if (sh_type == elfcpp::SHT_RELA)
1333     name = ".rela";
1334   else
1335     gold_unreachable();
1336   name += data_section->name();
1337
1338   // In a relocatable link relocs for a grouped section must not be
1339   // combined with other reloc sections.
1340   Output_section* os;
1341   if (!parameters->options().relocatable()
1342       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1343     os = this->choose_output_section(object, name.c_str(), sh_type,
1344                                      shdr.get_sh_flags(), false,
1345                                      ORDER_INVALID, false, true, false);
1346   else
1347     {
1348       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1349       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1350                                      ORDER_INVALID, false);
1351     }
1352
1353   os->set_should_link_to_symtab();
1354   os->set_info_section(data_section);
1355
1356   Output_section_data* posd;
1357   if (sh_type == elfcpp::SHT_REL)
1358     {
1359       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1360       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1361                                            size,
1362                                            big_endian>(rr);
1363     }
1364   else if (sh_type == elfcpp::SHT_RELA)
1365     {
1366       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1367       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1368                                            size,
1369                                            big_endian>(rr);
1370     }
1371   else
1372     gold_unreachable();
1373
1374   os->add_output_section_data(posd);
1375   rr->set_output_data(posd);
1376
1377   return os;
1378 }
1379
1380 // Handle a group section when doing a relocatable link.
1381
1382 template<int size, bool big_endian>
1383 void
1384 Layout::layout_group(Symbol_table* symtab,
1385                      Sized_relobj_file<size, big_endian>* object,
1386                      unsigned int,
1387                      const char* group_section_name,
1388                      const char* signature,
1389                      const elfcpp::Shdr<size, big_endian>& shdr,
1390                      elfcpp::Elf_Word flags,
1391                      std::vector<unsigned int>* shndxes)
1392 {
1393   gold_assert(parameters->options().relocatable());
1394   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1395   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1396   Output_section* os = this->make_output_section(group_section_name,
1397                                                  elfcpp::SHT_GROUP,
1398                                                  shdr.get_sh_flags(),
1399                                                  ORDER_INVALID, false);
1400
1401   // We need to find a symbol with the signature in the symbol table.
1402   // If we don't find one now, we need to look again later.
1403   Symbol* sym = symtab->lookup(signature, NULL);
1404   if (sym != NULL)
1405     os->set_info_symndx(sym);
1406   else
1407     {
1408       // Reserve some space to minimize reallocations.
1409       if (this->group_signatures_.empty())
1410         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1411
1412       // We will wind up using a symbol whose name is the signature.
1413       // So just put the signature in the symbol name pool to save it.
1414       signature = symtab->canonicalize_name(signature);
1415       this->group_signatures_.push_back(Group_signature(os, signature));
1416     }
1417
1418   os->set_should_link_to_symtab();
1419   os->set_entsize(4);
1420
1421   section_size_type entry_count =
1422     convert_to_section_size_type(shdr.get_sh_size() / 4);
1423   Output_section_data* posd =
1424     new Output_data_group<size, big_endian>(object, entry_count, flags,
1425                                             shndxes);
1426   os->add_output_section_data(posd);
1427 }
1428
1429 // Special GNU handling of sections name .eh_frame.  They will
1430 // normally hold exception frame data as defined by the C++ ABI
1431 // (http://codesourcery.com/cxx-abi/).
1432
1433 template<int size, bool big_endian>
1434 Output_section*
1435 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1436                         const unsigned char* symbols,
1437                         off_t symbols_size,
1438                         const unsigned char* symbol_names,
1439                         off_t symbol_names_size,
1440                         unsigned int shndx,
1441                         const elfcpp::Shdr<size, big_endian>& shdr,
1442                         unsigned int reloc_shndx, unsigned int reloc_type,
1443                         off_t* off)
1444 {
1445   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1446               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1447   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1448
1449   Output_section* os = this->make_eh_frame_section(object);
1450   if (os == NULL)
1451     return NULL;
1452
1453   gold_assert(this->eh_frame_section_ == os);
1454
1455   elfcpp::Elf_Xword orig_flags = os->flags();
1456
1457   Eh_frame::Eh_frame_section_disposition disp =
1458       Eh_frame::EH_UNRECOGNIZED_SECTION;
1459   if (!parameters->incremental())
1460     {
1461       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1462                                                              symbols,
1463                                                              symbols_size,
1464                                                              symbol_names,
1465                                                              symbol_names_size,
1466                                                              shndx,
1467                                                              reloc_shndx,
1468                                                              reloc_type);
1469     }
1470
1471   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1472     {
1473       os->update_flags_for_input_section(shdr.get_sh_flags());
1474
1475       // A writable .eh_frame section is a RELRO section.
1476       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478         {
1479           os->set_is_relro();
1480           os->set_order(ORDER_RELRO);
1481         }
1482
1483       *off = -1;
1484       return os;
1485     }
1486
1487   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1488     {
1489       // We found the end marker section, so now we can add the set of
1490       // optimized sections to the output section.  We need to postpone
1491       // adding this until we've found a section we can optimize so that
1492       // the .eh_frame section in crtbeginT.o winds up at the start of
1493       // the output section.
1494       os->add_output_section_data(this->eh_frame_data_);
1495       this->added_eh_frame_data_ = true;
1496      }
1497
1498   // We couldn't handle this .eh_frame section for some reason.
1499   // Add it as a normal section.
1500   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1501   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1502                                reloc_shndx, saw_sections_clause);
1503   this->have_added_input_section_ = true;
1504
1505   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1506       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1507     os->set_order(this->default_section_order(os, false));
1508
1509   return os;
1510 }
1511
1512 void
1513 Layout::finalize_eh_frame_section()
1514 {
1515   // If we never found an end marker section, we need to add the
1516   // optimized eh sections to the output section now.
1517   if (!parameters->incremental()
1518       && this->eh_frame_section_ != NULL
1519       && !this->added_eh_frame_data_)
1520     {
1521       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1522       this->added_eh_frame_data_ = true;
1523     }
1524 }
1525
1526 // Create and return the magic .eh_frame section.  Create
1527 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1528 // input .eh_frame section; it may be NULL.
1529
1530 Output_section*
1531 Layout::make_eh_frame_section(const Relobj* object)
1532 {
1533   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1534   // SHT_PROGBITS.
1535   Output_section* os = this->choose_output_section(object, ".eh_frame",
1536                                                    elfcpp::SHT_PROGBITS,
1537                                                    elfcpp::SHF_ALLOC, false,
1538                                                    ORDER_EHFRAME, false, false,
1539                                                    false);
1540   if (os == NULL)
1541     return NULL;
1542
1543   if (this->eh_frame_section_ == NULL)
1544     {
1545       this->eh_frame_section_ = os;
1546       this->eh_frame_data_ = new Eh_frame();
1547
1548       // For incremental linking, we do not optimize .eh_frame sections
1549       // or create a .eh_frame_hdr section.
1550       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1551         {
1552           Output_section* hdr_os =
1553             this->choose_output_section(NULL, ".eh_frame_hdr",
1554                                         elfcpp::SHT_PROGBITS,
1555                                         elfcpp::SHF_ALLOC, false,
1556                                         ORDER_EHFRAME, false, false,
1557                                         false);
1558
1559           if (hdr_os != NULL)
1560             {
1561               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1562                                                         this->eh_frame_data_);
1563               hdr_os->add_output_section_data(hdr_posd);
1564
1565               hdr_os->set_after_input_sections();
1566
1567               if (!this->script_options_->saw_phdrs_clause())
1568                 {
1569                   Output_segment* hdr_oseg;
1570                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1571                                                        elfcpp::PF_R);
1572                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1573                                                           elfcpp::PF_R);
1574                 }
1575
1576               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1577             }
1578         }
1579     }
1580
1581   return os;
1582 }
1583
1584 // Add an exception frame for a PLT.  This is called from target code.
1585
1586 void
1587 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1588                              size_t cie_length, const unsigned char* fde_data,
1589                              size_t fde_length)
1590 {
1591   if (parameters->incremental())
1592     {
1593       // FIXME: Maybe this could work some day....
1594       return;
1595     }
1596   Output_section* os = this->make_eh_frame_section(NULL);
1597   if (os == NULL)
1598     return;
1599   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1600                                             fde_data, fde_length);
1601   if (!this->added_eh_frame_data_)
1602     {
1603       os->add_output_section_data(this->eh_frame_data_);
1604       this->added_eh_frame_data_ = true;
1605     }
1606 }
1607
1608 // Remove .eh_frame information for a PLT.  FDEs using the CIE must
1609 // be removed in reverse order to the order they were added.
1610
1611 void
1612 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1613                                 size_t cie_length, const unsigned char* fde_data,
1614                                 size_t fde_length)
1615 {
1616   if (parameters->incremental())
1617     {
1618       // FIXME: Maybe this could work some day....
1619       return;
1620     }
1621   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1622                                                fde_data, fde_length);
1623 }
1624
1625 // Scan a .debug_info or .debug_types section, and add summary
1626 // information to the .gdb_index section.
1627
1628 template<int size, bool big_endian>
1629 void
1630 Layout::add_to_gdb_index(bool is_type_unit,
1631                          Sized_relobj<size, big_endian>* object,
1632                          const unsigned char* symbols,
1633                          off_t symbols_size,
1634                          unsigned int shndx,
1635                          unsigned int reloc_shndx,
1636                          unsigned int reloc_type)
1637 {
1638   if (this->gdb_index_data_ == NULL)
1639     {
1640       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1641                                                        elfcpp::SHT_PROGBITS, 0,
1642                                                        false, ORDER_INVALID,
1643                                                        false, false, false);
1644       if (os == NULL)
1645         return;
1646
1647       this->gdb_index_data_ = new Gdb_index(os);
1648       os->add_output_section_data(this->gdb_index_data_);
1649       os->set_after_input_sections();
1650     }
1651
1652   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1653                                          symbols_size, shndx, reloc_shndx,
1654                                          reloc_type);
1655 }
1656
1657 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1658 // the output section.
1659
1660 Output_section*
1661 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1662                                 elfcpp::Elf_Xword flags,
1663                                 Output_section_data* posd,
1664                                 Output_section_order order, bool is_relro)
1665 {
1666   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1667                                                    false, order, is_relro,
1668                                                    false, false);
1669   if (os != NULL)
1670     os->add_output_section_data(posd);
1671   return os;
1672 }
1673
1674 // Map section flags to segment flags.
1675
1676 elfcpp::Elf_Word
1677 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1678 {
1679   elfcpp::Elf_Word ret = elfcpp::PF_R;
1680   if ((flags & elfcpp::SHF_WRITE) != 0)
1681     ret |= elfcpp::PF_W;
1682   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1683     ret |= elfcpp::PF_X;
1684   return ret;
1685 }
1686
1687 // Make a new Output_section, and attach it to segments as
1688 // appropriate.  ORDER is the order in which this section should
1689 // appear in the output segment.  IS_RELRO is true if this is a relro
1690 // (read-only after relocations) section.
1691
1692 Output_section*
1693 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1694                             elfcpp::Elf_Xword flags,
1695                             Output_section_order order, bool is_relro)
1696 {
1697   Output_section* os;
1698   if ((flags & elfcpp::SHF_ALLOC) == 0
1699       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1700       && is_compressible_debug_section(name))
1701     os = new Output_compressed_section(&parameters->options(), name, type,
1702                                        flags);
1703   else if ((flags & elfcpp::SHF_ALLOC) == 0
1704            && parameters->options().strip_debug_non_line()
1705            && strcmp(".debug_abbrev", name) == 0)
1706     {
1707       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1708           name, type, flags);
1709       if (this->debug_info_)
1710         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1711     }
1712   else if ((flags & elfcpp::SHF_ALLOC) == 0
1713            && parameters->options().strip_debug_non_line()
1714            && strcmp(".debug_info", name) == 0)
1715     {
1716       os = this->debug_info_ = new Output_reduced_debug_info_section(
1717           name, type, flags);
1718       if (this->debug_abbrev_)
1719         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1720     }
1721   else
1722     {
1723       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1724       // not have correct section types.  Force them here.
1725       if (type == elfcpp::SHT_PROGBITS)
1726         {
1727           if (is_prefix_of(".init_array", name))
1728             type = elfcpp::SHT_INIT_ARRAY;
1729           else if (is_prefix_of(".preinit_array", name))
1730             type = elfcpp::SHT_PREINIT_ARRAY;
1731           else if (is_prefix_of(".fini_array", name))
1732             type = elfcpp::SHT_FINI_ARRAY;
1733         }
1734
1735       // FIXME: const_cast is ugly.
1736       Target* target = const_cast<Target*>(&parameters->target());
1737       os = target->make_output_section(name, type, flags);
1738     }
1739
1740   // With -z relro, we have to recognize the special sections by name.
1741   // There is no other way.
1742   bool is_relro_local = false;
1743   if (!this->script_options_->saw_sections_clause()
1744       && parameters->options().relro()
1745       && (flags & elfcpp::SHF_ALLOC) != 0
1746       && (flags & elfcpp::SHF_WRITE) != 0)
1747     {
1748       if (type == elfcpp::SHT_PROGBITS)
1749         {
1750           if ((flags & elfcpp::SHF_TLS) != 0)
1751             is_relro = true;
1752           else if (strcmp(name, ".data.rel.ro") == 0)
1753             is_relro = true;
1754           else if (strcmp(name, ".data.rel.ro.local") == 0)
1755             {
1756               is_relro = true;
1757               is_relro_local = true;
1758             }
1759           else if (strcmp(name, ".ctors") == 0
1760                    || strcmp(name, ".dtors") == 0
1761                    || strcmp(name, ".jcr") == 0)
1762             is_relro = true;
1763         }
1764       else if (type == elfcpp::SHT_INIT_ARRAY
1765                || type == elfcpp::SHT_FINI_ARRAY
1766                || type == elfcpp::SHT_PREINIT_ARRAY)
1767         is_relro = true;
1768     }
1769
1770   if (is_relro)
1771     os->set_is_relro();
1772
1773   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1774     order = this->default_section_order(os, is_relro_local);
1775
1776   os->set_order(order);
1777
1778   parameters->target().new_output_section(os);
1779
1780   this->section_list_.push_back(os);
1781
1782   // The GNU linker by default sorts some sections by priority, so we
1783   // do the same.  We need to know that this might happen before we
1784   // attach any input sections.
1785   if (!this->script_options_->saw_sections_clause()
1786       && !parameters->options().relocatable()
1787       && (strcmp(name, ".init_array") == 0
1788           || strcmp(name, ".fini_array") == 0
1789           || (!parameters->options().ctors_in_init_array()
1790               && (strcmp(name, ".ctors") == 0
1791                   || strcmp(name, ".dtors") == 0))))
1792     os->set_may_sort_attached_input_sections();
1793
1794   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1795   // sections before other .text sections.  We are compatible.  We
1796   // need to know that this might happen before we attach any input
1797   // sections.
1798   if (parameters->options().text_reorder()
1799       && !this->script_options_->saw_sections_clause()
1800       && !this->is_section_ordering_specified()
1801       && !parameters->options().relocatable()
1802       && strcmp(name, ".text") == 0)
1803     os->set_may_sort_attached_input_sections();
1804
1805   // GNU linker sorts section by name with --sort-section=name.
1806   if (strcmp(parameters->options().sort_section(), "name") == 0)
1807       os->set_must_sort_attached_input_sections();
1808
1809   // Check for .stab*str sections, as .stab* sections need to link to
1810   // them.
1811   if (type == elfcpp::SHT_STRTAB
1812       && !this->have_stabstr_section_
1813       && strncmp(name, ".stab", 5) == 0
1814       && strcmp(name + strlen(name) - 3, "str") == 0)
1815     this->have_stabstr_section_ = true;
1816
1817   // During a full incremental link, we add patch space to most
1818   // PROGBITS and NOBITS sections.  Flag those that may be
1819   // arbitrarily padded.
1820   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1821       && order != ORDER_INTERP
1822       && order != ORDER_INIT
1823       && order != ORDER_PLT
1824       && order != ORDER_FINI
1825       && order != ORDER_RELRO_LAST
1826       && order != ORDER_NON_RELRO_FIRST
1827       && strcmp(name, ".eh_frame") != 0
1828       && strcmp(name, ".ctors") != 0
1829       && strcmp(name, ".dtors") != 0
1830       && strcmp(name, ".jcr") != 0)
1831     {
1832       os->set_is_patch_space_allowed();
1833
1834       // Certain sections require "holes" to be filled with
1835       // specific fill patterns.  These fill patterns may have
1836       // a minimum size, so we must prevent allocations from the
1837       // free list that leave a hole smaller than the minimum.
1838       if (strcmp(name, ".debug_info") == 0)
1839         os->set_free_space_fill(new Output_fill_debug_info(false));
1840       else if (strcmp(name, ".debug_types") == 0)
1841         os->set_free_space_fill(new Output_fill_debug_info(true));
1842       else if (strcmp(name, ".debug_line") == 0)
1843         os->set_free_space_fill(new Output_fill_debug_line());
1844     }
1845
1846   // If we have already attached the sections to segments, then we
1847   // need to attach this one now.  This happens for sections created
1848   // directly by the linker.
1849   if (this->sections_are_attached_)
1850     this->attach_section_to_segment(&parameters->target(), os);
1851
1852   return os;
1853 }
1854
1855 // Return the default order in which a section should be placed in an
1856 // output segment.  This function captures a lot of the ideas in
1857 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1858 // linker created section is normally set when the section is created;
1859 // this function is used for input sections.
1860
1861 Output_section_order
1862 Layout::default_section_order(Output_section* os, bool is_relro_local)
1863 {
1864   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1865   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1866   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1867   bool is_bss = false;
1868
1869   switch (os->type())
1870     {
1871     default:
1872     case elfcpp::SHT_PROGBITS:
1873       break;
1874     case elfcpp::SHT_NOBITS:
1875       is_bss = true;
1876       break;
1877     case elfcpp::SHT_RELA:
1878     case elfcpp::SHT_REL:
1879       if (!is_write)
1880         return ORDER_DYNAMIC_RELOCS;
1881       break;
1882     case elfcpp::SHT_HASH:
1883     case elfcpp::SHT_DYNAMIC:
1884     case elfcpp::SHT_SHLIB:
1885     case elfcpp::SHT_DYNSYM:
1886     case elfcpp::SHT_GNU_HASH:
1887     case elfcpp::SHT_GNU_verdef:
1888     case elfcpp::SHT_GNU_verneed:
1889     case elfcpp::SHT_GNU_versym:
1890       if (!is_write)
1891         return ORDER_DYNAMIC_LINKER;
1892       break;
1893     case elfcpp::SHT_NOTE:
1894       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1895     }
1896
1897   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1898     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1899
1900   if (!is_bss && !is_write)
1901     {
1902       if (is_execinstr)
1903         {
1904           if (strcmp(os->name(), ".init") == 0)
1905             return ORDER_INIT;
1906           else if (strcmp(os->name(), ".fini") == 0)
1907             return ORDER_FINI;
1908           else if (parameters->options().keep_text_section_prefix())
1909             {
1910               // -z,keep-text-section-prefix introduces additional
1911               // output sections.
1912               if (strcmp(os->name(), ".text.hot") == 0)
1913                 return ORDER_TEXT_HOT;
1914               else if (strcmp(os->name(), ".text.startup") == 0)
1915                 return ORDER_TEXT_STARTUP;
1916               else if (strcmp(os->name(), ".text.exit") == 0)
1917                 return ORDER_TEXT_EXIT;
1918               else if (strcmp(os->name(), ".text.unlikely") == 0)
1919                 return ORDER_TEXT_UNLIKELY;
1920             }
1921         }
1922       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1923     }
1924
1925   if (os->is_relro())
1926     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1927
1928   if (os->is_small_section())
1929     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1930   if (os->is_large_section())
1931     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1932
1933   return is_bss ? ORDER_BSS : ORDER_DATA;
1934 }
1935
1936 // Attach output sections to segments.  This is called after we have
1937 // seen all the input sections.
1938
1939 void
1940 Layout::attach_sections_to_segments(const Target* target)
1941 {
1942   for (Section_list::iterator p = this->section_list_.begin();
1943        p != this->section_list_.end();
1944        ++p)
1945     this->attach_section_to_segment(target, *p);
1946
1947   this->sections_are_attached_ = true;
1948 }
1949
1950 // Attach an output section to a segment.
1951
1952 void
1953 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1954 {
1955   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1956     this->unattached_section_list_.push_back(os);
1957   else
1958     this->attach_allocated_section_to_segment(target, os);
1959 }
1960
1961 // Attach an allocated output section to a segment.
1962
1963 void
1964 Layout::attach_allocated_section_to_segment(const Target* target,
1965                                             Output_section* os)
1966 {
1967   elfcpp::Elf_Xword flags = os->flags();
1968   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1969
1970   if (parameters->options().relocatable())
1971     return;
1972
1973   // If we have a SECTIONS clause, we can't handle the attachment to
1974   // segments until after we've seen all the sections.
1975   if (this->script_options_->saw_sections_clause())
1976     return;
1977
1978   gold_assert(!this->script_options_->saw_phdrs_clause());
1979
1980   // This output section goes into a PT_LOAD segment.
1981
1982   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1983
1984   // If this output section's segment has extra flags that need to be set,
1985   // coming from a linker plugin, do that.
1986   seg_flags |= os->extra_segment_flags();
1987
1988   // Check for --section-start.
1989   uint64_t addr;
1990   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1991
1992   // In general the only thing we really care about for PT_LOAD
1993   // segments is whether or not they are writable or executable,
1994   // so that is how we search for them.
1995   // Large data sections also go into their own PT_LOAD segment.
1996   // People who need segments sorted on some other basis will
1997   // have to use a linker script.
1998
1999   Segment_list::const_iterator p;
2000   if (!os->is_unique_segment())
2001     {
2002       for (p = this->segment_list_.begin();
2003            p != this->segment_list_.end();
2004            ++p)
2005         {
2006           if ((*p)->type() != elfcpp::PT_LOAD)
2007             continue;
2008           if ((*p)->is_unique_segment())
2009             continue;
2010           if (!parameters->options().omagic()
2011               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2012             continue;
2013           if ((target->isolate_execinstr() || parameters->options().rosegment())
2014               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2015             continue;
2016           // If -Tbss was specified, we need to separate the data and BSS
2017           // segments.
2018           if (parameters->options().user_set_Tbss())
2019             {
2020               if ((os->type() == elfcpp::SHT_NOBITS)
2021                   == (*p)->has_any_data_sections())
2022                 continue;
2023             }
2024           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2025             continue;
2026
2027           if (is_address_set)
2028             {
2029               if ((*p)->are_addresses_set())
2030                 continue;
2031
2032               (*p)->add_initial_output_data(os);
2033               (*p)->update_flags_for_output_section(seg_flags);
2034               (*p)->set_addresses(addr, addr);
2035               break;
2036             }
2037
2038           (*p)->add_output_section_to_load(this, os, seg_flags);
2039           break;
2040         }
2041     }
2042
2043   if (p == this->segment_list_.end()
2044       || os->is_unique_segment())
2045     {
2046       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2047                                                        seg_flags);
2048       if (os->is_large_data_section())
2049         oseg->set_is_large_data_segment();
2050       oseg->add_output_section_to_load(this, os, seg_flags);
2051       if (is_address_set)
2052         oseg->set_addresses(addr, addr);
2053       // Check if segment should be marked unique.  For segments marked
2054       // unique by linker plugins, set the new alignment if specified.
2055       if (os->is_unique_segment())
2056         {
2057           oseg->set_is_unique_segment();
2058           if (os->segment_alignment() != 0)
2059             oseg->set_minimum_p_align(os->segment_alignment());
2060         }
2061     }
2062
2063   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2064   // segment.
2065   if (os->type() == elfcpp::SHT_NOTE)
2066     {
2067       // See if we already have an equivalent PT_NOTE segment.
2068       for (p = this->segment_list_.begin();
2069            p != segment_list_.end();
2070            ++p)
2071         {
2072           if ((*p)->type() == elfcpp::PT_NOTE
2073               && (((*p)->flags() & elfcpp::PF_W)
2074                   == (seg_flags & elfcpp::PF_W)))
2075             {
2076               (*p)->add_output_section_to_nonload(os, seg_flags);
2077               break;
2078             }
2079         }
2080
2081       if (p == this->segment_list_.end())
2082         {
2083           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2084                                                            seg_flags);
2085           oseg->add_output_section_to_nonload(os, seg_flags);
2086         }
2087     }
2088
2089   // If we see a loadable SHF_TLS section, we create a PT_TLS
2090   // segment.  There can only be one such segment.
2091   if ((flags & elfcpp::SHF_TLS) != 0)
2092     {
2093       if (this->tls_segment_ == NULL)
2094         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2095       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2096     }
2097
2098   // If -z relro is in effect, and we see a relro section, we create a
2099   // PT_GNU_RELRO segment.  There can only be one such segment.
2100   if (os->is_relro() && parameters->options().relro())
2101     {
2102       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2103       if (this->relro_segment_ == NULL)
2104         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2105       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2106     }
2107
2108   // If we see a section named .interp, put it into a PT_INTERP
2109   // segment.  This seems broken to me, but this is what GNU ld does,
2110   // and glibc expects it.
2111   if (strcmp(os->name(), ".interp") == 0
2112       && !this->script_options_->saw_phdrs_clause())
2113     {
2114       if (this->interp_segment_ == NULL)
2115         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2116       else
2117         gold_warning(_("multiple '.interp' sections in input files "
2118                        "may cause confusing PT_INTERP segment"));
2119       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2120     }
2121 }
2122
2123 // Make an output section for a script.
2124
2125 Output_section*
2126 Layout::make_output_section_for_script(
2127     const char* name,
2128     Script_sections::Section_type section_type)
2129 {
2130   name = this->namepool_.add(name, false, NULL);
2131   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2132   if (section_type == Script_sections::ST_NOLOAD)
2133     sh_flags = 0;
2134   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2135                                                  sh_flags, ORDER_INVALID,
2136                                                  false);
2137   os->set_found_in_sections_clause();
2138   if (section_type == Script_sections::ST_NOLOAD)
2139     os->set_is_noload();
2140   return os;
2141 }
2142
2143 // Return the number of segments we expect to see.
2144
2145 size_t
2146 Layout::expected_segment_count() const
2147 {
2148   size_t ret = this->segment_list_.size();
2149
2150   // If we didn't see a SECTIONS clause in a linker script, we should
2151   // already have the complete list of segments.  Otherwise we ask the
2152   // SECTIONS clause how many segments it expects, and add in the ones
2153   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2154
2155   if (!this->script_options_->saw_sections_clause())
2156     return ret;
2157   else
2158     {
2159       const Script_sections* ss = this->script_options_->script_sections();
2160       return ret + ss->expected_segment_count(this);
2161     }
2162 }
2163
2164 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2165 // is whether we saw a .note.GNU-stack section in the object file.
2166 // GNU_STACK_FLAGS is the section flags.  The flags give the
2167 // protection required for stack memory.  We record this in an
2168 // executable as a PT_GNU_STACK segment.  If an object file does not
2169 // have a .note.GNU-stack segment, we must assume that it is an old
2170 // object.  On some targets that will force an executable stack.
2171
2172 void
2173 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2174                          const Object* obj)
2175 {
2176   if (!seen_gnu_stack)
2177     {
2178       this->input_without_gnu_stack_note_ = true;
2179       if (parameters->options().warn_execstack()
2180           && parameters->target().is_default_stack_executable())
2181         gold_warning(_("%s: missing .note.GNU-stack section"
2182                        " implies executable stack"),
2183                      obj->name().c_str());
2184     }
2185   else
2186     {
2187       this->input_with_gnu_stack_note_ = true;
2188       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2189         {
2190           this->input_requires_executable_stack_ = true;
2191           if (parameters->options().warn_execstack())
2192             gold_warning(_("%s: requires executable stack"),
2193                          obj->name().c_str());
2194         }
2195     }
2196 }
2197
2198 // Create automatic note sections.
2199
2200 void
2201 Layout::create_notes()
2202 {
2203   this->create_gold_note();
2204   this->create_stack_segment();
2205   this->create_build_id();
2206 }
2207
2208 // Create the dynamic sections which are needed before we read the
2209 // relocs.
2210
2211 void
2212 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2213 {
2214   if (parameters->doing_static_link())
2215     return;
2216
2217   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2218                                                        elfcpp::SHT_DYNAMIC,
2219                                                        (elfcpp::SHF_ALLOC
2220                                                         | elfcpp::SHF_WRITE),
2221                                                        false, ORDER_RELRO,
2222                                                        true, false, false);
2223
2224   // A linker script may discard .dynamic, so check for NULL.
2225   if (this->dynamic_section_ != NULL)
2226     {
2227       this->dynamic_symbol_ =
2228         symtab->define_in_output_data("_DYNAMIC", NULL,
2229                                       Symbol_table::PREDEFINED,
2230                                       this->dynamic_section_, 0, 0,
2231                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2232                                       elfcpp::STV_HIDDEN, 0, false, false);
2233
2234       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2235
2236       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2237     }
2238 }
2239
2240 // For each output section whose name can be represented as C symbol,
2241 // define __start and __stop symbols for the section.  This is a GNU
2242 // extension.
2243
2244 void
2245 Layout::define_section_symbols(Symbol_table* symtab)
2246 {
2247   for (Section_list::const_iterator p = this->section_list_.begin();
2248        p != this->section_list_.end();
2249        ++p)
2250     {
2251       const char* const name = (*p)->name();
2252       if (is_cident(name))
2253         {
2254           const std::string name_string(name);
2255           const std::string start_name(cident_section_start_prefix
2256                                        + name_string);
2257           const std::string stop_name(cident_section_stop_prefix
2258                                       + name_string);
2259
2260           symtab->define_in_output_data(start_name.c_str(),
2261                                         NULL, // version
2262                                         Symbol_table::PREDEFINED,
2263                                         *p,
2264                                         0, // value
2265                                         0, // symsize
2266                                         elfcpp::STT_NOTYPE,
2267                                         elfcpp::STB_GLOBAL,
2268                                         elfcpp::STV_PROTECTED,
2269                                         0, // nonvis
2270                                         false, // offset_is_from_end
2271                                         true); // only_if_ref
2272
2273           symtab->define_in_output_data(stop_name.c_str(),
2274                                         NULL, // version
2275                                         Symbol_table::PREDEFINED,
2276                                         *p,
2277                                         0, // value
2278                                         0, // symsize
2279                                         elfcpp::STT_NOTYPE,
2280                                         elfcpp::STB_GLOBAL,
2281                                         elfcpp::STV_PROTECTED,
2282                                         0, // nonvis
2283                                         true, // offset_is_from_end
2284                                         true); // only_if_ref
2285         }
2286     }
2287 }
2288
2289 // Define symbols for group signatures.
2290
2291 void
2292 Layout::define_group_signatures(Symbol_table* symtab)
2293 {
2294   for (Group_signatures::iterator p = this->group_signatures_.begin();
2295        p != this->group_signatures_.end();
2296        ++p)
2297     {
2298       Symbol* sym = symtab->lookup(p->signature, NULL);
2299       if (sym != NULL)
2300         p->section->set_info_symndx(sym);
2301       else
2302         {
2303           // Force the name of the group section to the group
2304           // signature, and use the group's section symbol as the
2305           // signature symbol.
2306           if (strcmp(p->section->name(), p->signature) != 0)
2307             {
2308               const char* name = this->namepool_.add(p->signature,
2309                                                      true, NULL);
2310               p->section->set_name(name);
2311             }
2312           p->section->set_needs_symtab_index();
2313           p->section->set_info_section_symndx(p->section);
2314         }
2315     }
2316
2317   this->group_signatures_.clear();
2318 }
2319
2320 // Find the first read-only PT_LOAD segment, creating one if
2321 // necessary.
2322
2323 Output_segment*
2324 Layout::find_first_load_seg(const Target* target)
2325 {
2326   Output_segment* best = NULL;
2327   for (Segment_list::const_iterator p = this->segment_list_.begin();
2328        p != this->segment_list_.end();
2329        ++p)
2330     {
2331       if ((*p)->type() == elfcpp::PT_LOAD
2332           && ((*p)->flags() & elfcpp::PF_R) != 0
2333           && (parameters->options().omagic()
2334               || ((*p)->flags() & elfcpp::PF_W) == 0)
2335           && (!target->isolate_execinstr()
2336               || ((*p)->flags() & elfcpp::PF_X) == 0))
2337         {
2338           if (best == NULL || this->segment_precedes(*p, best))
2339             best = *p;
2340         }
2341     }
2342   if (best != NULL)
2343     return best;
2344
2345   gold_assert(!this->script_options_->saw_phdrs_clause());
2346
2347   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2348                                                        elfcpp::PF_R);
2349   return load_seg;
2350 }
2351
2352 // Save states of all current output segments.  Store saved states
2353 // in SEGMENT_STATES.
2354
2355 void
2356 Layout::save_segments(Segment_states* segment_states)
2357 {
2358   for (Segment_list::const_iterator p = this->segment_list_.begin();
2359        p != this->segment_list_.end();
2360        ++p)
2361     {
2362       Output_segment* segment = *p;
2363       // Shallow copy.
2364       Output_segment* copy = new Output_segment(*segment);
2365       (*segment_states)[segment] = copy;
2366     }
2367 }
2368
2369 // Restore states of output segments and delete any segment not found in
2370 // SEGMENT_STATES.
2371
2372 void
2373 Layout::restore_segments(const Segment_states* segment_states)
2374 {
2375   // Go through the segment list and remove any segment added in the
2376   // relaxation loop.
2377   this->tls_segment_ = NULL;
2378   this->relro_segment_ = NULL;
2379   Segment_list::iterator list_iter = this->segment_list_.begin();
2380   while (list_iter != this->segment_list_.end())
2381     {
2382       Output_segment* segment = *list_iter;
2383       Segment_states::const_iterator states_iter =
2384           segment_states->find(segment);
2385       if (states_iter != segment_states->end())
2386         {
2387           const Output_segment* copy = states_iter->second;
2388           // Shallow copy to restore states.
2389           *segment = *copy;
2390
2391           // Also fix up TLS and RELRO segment pointers as appropriate.
2392           if (segment->type() == elfcpp::PT_TLS)
2393             this->tls_segment_ = segment;
2394           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2395             this->relro_segment_ = segment;
2396
2397           ++list_iter;
2398         }
2399       else
2400         {
2401           list_iter = this->segment_list_.erase(list_iter);
2402           // This is a segment created during section layout.  It should be
2403           // safe to remove it since we should have removed all pointers to it.
2404           delete segment;
2405         }
2406     }
2407 }
2408
2409 // Clean up after relaxation so that sections can be laid out again.
2410
2411 void
2412 Layout::clean_up_after_relaxation()
2413 {
2414   // Restore the segments to point state just prior to the relaxation loop.
2415   Script_sections* script_section = this->script_options_->script_sections();
2416   script_section->release_segments();
2417   this->restore_segments(this->segment_states_);
2418
2419   // Reset section addresses and file offsets
2420   for (Section_list::iterator p = this->section_list_.begin();
2421        p != this->section_list_.end();
2422        ++p)
2423     {
2424       (*p)->restore_states();
2425
2426       // If an input section changes size because of relaxation,
2427       // we need to adjust the section offsets of all input sections.
2428       // after such a section.
2429       if ((*p)->section_offsets_need_adjustment())
2430         (*p)->adjust_section_offsets();
2431
2432       (*p)->reset_address_and_file_offset();
2433     }
2434
2435   // Reset special output object address and file offsets.
2436   for (Data_list::iterator p = this->special_output_list_.begin();
2437        p != this->special_output_list_.end();
2438        ++p)
2439     (*p)->reset_address_and_file_offset();
2440
2441   // A linker script may have created some output section data objects.
2442   // They are useless now.
2443   for (Output_section_data_list::const_iterator p =
2444          this->script_output_section_data_list_.begin();
2445        p != this->script_output_section_data_list_.end();
2446        ++p)
2447     delete *p;
2448   this->script_output_section_data_list_.clear();
2449
2450   // Special-case fill output objects are recreated each time through
2451   // the relaxation loop.
2452   this->reset_relax_output();
2453 }
2454
2455 void
2456 Layout::reset_relax_output()
2457 {
2458   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2459        p != this->relax_output_list_.end();
2460        ++p)
2461     delete *p;
2462   this->relax_output_list_.clear();
2463 }
2464
2465 // Prepare for relaxation.
2466
2467 void
2468 Layout::prepare_for_relaxation()
2469 {
2470   // Create an relaxation debug check if in debugging mode.
2471   if (is_debugging_enabled(DEBUG_RELAXATION))
2472     this->relaxation_debug_check_ = new Relaxation_debug_check();
2473
2474   // Save segment states.
2475   this->segment_states_ = new Segment_states();
2476   this->save_segments(this->segment_states_);
2477
2478   for(Section_list::const_iterator p = this->section_list_.begin();
2479       p != this->section_list_.end();
2480       ++p)
2481     (*p)->save_states();
2482
2483   if (is_debugging_enabled(DEBUG_RELAXATION))
2484     this->relaxation_debug_check_->check_output_data_for_reset_values(
2485         this->section_list_, this->special_output_list_,
2486         this->relax_output_list_);
2487
2488   // Also enable recording of output section data from scripts.
2489   this->record_output_section_data_from_script_ = true;
2490 }
2491
2492 // If the user set the address of the text segment, that may not be
2493 // compatible with putting the segment headers and file headers into
2494 // that segment.  For isolate_execinstr() targets, it's the rodata
2495 // segment rather than text where we might put the headers.
2496 static inline bool
2497 load_seg_unusable_for_headers(const Target* target)
2498 {
2499   const General_options& options = parameters->options();
2500   if (target->isolate_execinstr())
2501     return (options.user_set_Trodata_segment()
2502             && options.Trodata_segment() % target->abi_pagesize() != 0);
2503   else
2504     return (options.user_set_Ttext()
2505             && options.Ttext() % target->abi_pagesize() != 0);
2506 }
2507
2508 // Relaxation loop body:  If target has no relaxation, this runs only once
2509 // Otherwise, the target relaxation hook is called at the end of
2510 // each iteration.  If the hook returns true, it means re-layout of
2511 // section is required.
2512 //
2513 // The number of segments created by a linking script without a PHDRS
2514 // clause may be affected by section sizes and alignments.  There is
2515 // a remote chance that relaxation causes different number of PT_LOAD
2516 // segments are created and sections are attached to different segments.
2517 // Therefore, we always throw away all segments created during section
2518 // layout.  In order to be able to restart the section layout, we keep
2519 // a copy of the segment list right before the relaxation loop and use
2520 // that to restore the segments.
2521 //
2522 // PASS is the current relaxation pass number.
2523 // SYMTAB is a symbol table.
2524 // PLOAD_SEG is the address of a pointer for the load segment.
2525 // PHDR_SEG is a pointer to the PHDR segment.
2526 // SEGMENT_HEADERS points to the output segment header.
2527 // FILE_HEADER points to the output file header.
2528 // PSHNDX is the address to store the output section index.
2529
2530 off_t inline
2531 Layout::relaxation_loop_body(
2532     int pass,
2533     Target* target,
2534     Symbol_table* symtab,
2535     Output_segment** pload_seg,
2536     Output_segment* phdr_seg,
2537     Output_segment_headers* segment_headers,
2538     Output_file_header* file_header,
2539     unsigned int* pshndx)
2540 {
2541   // If this is not the first iteration, we need to clean up after
2542   // relaxation so that we can lay out the sections again.
2543   if (pass != 0)
2544     this->clean_up_after_relaxation();
2545
2546   // If there is a SECTIONS clause, put all the input sections into
2547   // the required order.
2548   Output_segment* load_seg;
2549   if (this->script_options_->saw_sections_clause())
2550     load_seg = this->set_section_addresses_from_script(symtab);
2551   else if (parameters->options().relocatable())
2552     load_seg = NULL;
2553   else
2554     load_seg = this->find_first_load_seg(target);
2555
2556   if (parameters->options().oformat_enum()
2557       != General_options::OBJECT_FORMAT_ELF)
2558     load_seg = NULL;
2559
2560   if (load_seg_unusable_for_headers(target))
2561     {
2562       load_seg = NULL;
2563       phdr_seg = NULL;
2564     }
2565
2566   gold_assert(phdr_seg == NULL
2567               || load_seg != NULL
2568               || this->script_options_->saw_sections_clause());
2569
2570   // If the address of the load segment we found has been set by
2571   // --section-start rather than by a script, then adjust the VMA and
2572   // LMA downward if possible to include the file and section headers.
2573   uint64_t header_gap = 0;
2574   if (load_seg != NULL
2575       && load_seg->are_addresses_set()
2576       && !this->script_options_->saw_sections_clause()
2577       && !parameters->options().relocatable())
2578     {
2579       file_header->finalize_data_size();
2580       segment_headers->finalize_data_size();
2581       size_t sizeof_headers = (file_header->data_size()
2582                                + segment_headers->data_size());
2583       const uint64_t abi_pagesize = target->abi_pagesize();
2584       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2585       hdr_paddr &= ~(abi_pagesize - 1);
2586       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2587       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2588         load_seg = NULL;
2589       else
2590         {
2591           load_seg->set_addresses(load_seg->vaddr() - subtract,
2592                                   load_seg->paddr() - subtract);
2593           header_gap = subtract - sizeof_headers;
2594         }
2595     }
2596
2597   // Lay out the segment headers.
2598   if (!parameters->options().relocatable())
2599     {
2600       gold_assert(segment_headers != NULL);
2601       if (header_gap != 0 && load_seg != NULL)
2602         {
2603           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2604           load_seg->add_initial_output_data(z);
2605         }
2606       if (load_seg != NULL)
2607         load_seg->add_initial_output_data(segment_headers);
2608       if (phdr_seg != NULL)
2609         phdr_seg->add_initial_output_data(segment_headers);
2610     }
2611
2612   // Lay out the file header.
2613   if (load_seg != NULL)
2614     load_seg->add_initial_output_data(file_header);
2615
2616   if (this->script_options_->saw_phdrs_clause()
2617       && !parameters->options().relocatable())
2618     {
2619       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2620       // clause in a linker script.
2621       Script_sections* ss = this->script_options_->script_sections();
2622       ss->put_headers_in_phdrs(file_header, segment_headers);
2623     }
2624
2625   // We set the output section indexes in set_segment_offsets and
2626   // set_section_indexes.
2627   *pshndx = 1;
2628
2629   // Set the file offsets of all the segments, and all the sections
2630   // they contain.
2631   off_t off;
2632   if (!parameters->options().relocatable())
2633     off = this->set_segment_offsets(target, load_seg, pshndx);
2634   else
2635     off = this->set_relocatable_section_offsets(file_header, pshndx);
2636
2637    // Verify that the dummy relaxation does not change anything.
2638   if (is_debugging_enabled(DEBUG_RELAXATION))
2639     {
2640       if (pass == 0)
2641         this->relaxation_debug_check_->read_sections(this->section_list_);
2642       else
2643         this->relaxation_debug_check_->verify_sections(this->section_list_);
2644     }
2645
2646   *pload_seg = load_seg;
2647   return off;
2648 }
2649
2650 // Search the list of patterns and find the position of the given section
2651 // name in the output section.  If the section name matches a glob
2652 // pattern and a non-glob name, then the non-glob position takes
2653 // precedence.  Return 0 if no match is found.
2654
2655 unsigned int
2656 Layout::find_section_order_index(const std::string& section_name)
2657 {
2658   Unordered_map<std::string, unsigned int>::iterator map_it;
2659   map_it = this->input_section_position_.find(section_name);
2660   if (map_it != this->input_section_position_.end())
2661     return map_it->second;
2662
2663   // Absolute match failed.  Linear search the glob patterns.
2664   std::vector<std::string>::iterator it;
2665   for (it = this->input_section_glob_.begin();
2666        it != this->input_section_glob_.end();
2667        ++it)
2668     {
2669        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2670          {
2671            map_it = this->input_section_position_.find(*it);
2672            gold_assert(map_it != this->input_section_position_.end());
2673            return map_it->second;
2674          }
2675     }
2676   return 0;
2677 }
2678
2679 // Read the sequence of input sections from the file specified with
2680 // option --section-ordering-file.
2681
2682 void
2683 Layout::read_layout_from_file()
2684 {
2685   const char* filename = parameters->options().section_ordering_file();
2686   std::ifstream in;
2687   std::string line;
2688
2689   in.open(filename);
2690   if (!in)
2691     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2692                filename, strerror(errno));
2693
2694   std::getline(in, line);   // this chops off the trailing \n, if any
2695   unsigned int position = 1;
2696   this->set_section_ordering_specified();
2697
2698   while (in)
2699     {
2700       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2701         line.resize(line.length() - 1);
2702       // Ignore comments, beginning with '#'
2703       if (line[0] == '#')
2704         {
2705           std::getline(in, line);
2706           continue;
2707         }
2708       this->input_section_position_[line] = position;
2709       // Store all glob patterns in a vector.
2710       if (is_wildcard_string(line.c_str()))
2711         this->input_section_glob_.push_back(line);
2712       position++;
2713       std::getline(in, line);
2714     }
2715 }
2716
2717 // Finalize the layout.  When this is called, we have created all the
2718 // output sections and all the output segments which are based on
2719 // input sections.  We have several things to do, and we have to do
2720 // them in the right order, so that we get the right results correctly
2721 // and efficiently.
2722
2723 // 1) Finalize the list of output segments and create the segment
2724 // table header.
2725
2726 // 2) Finalize the dynamic symbol table and associated sections.
2727
2728 // 3) Determine the final file offset of all the output segments.
2729
2730 // 4) Determine the final file offset of all the SHF_ALLOC output
2731 // sections.
2732
2733 // 5) Create the symbol table sections and the section name table
2734 // section.
2735
2736 // 6) Finalize the symbol table: set symbol values to their final
2737 // value and make a final determination of which symbols are going
2738 // into the output symbol table.
2739
2740 // 7) Create the section table header.
2741
2742 // 8) Determine the final file offset of all the output sections which
2743 // are not SHF_ALLOC, including the section table header.
2744
2745 // 9) Finalize the ELF file header.
2746
2747 // This function returns the size of the output file.
2748
2749 off_t
2750 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2751                  Target* target, const Task* task)
2752 {
2753   unsigned int local_dynamic_count = 0;
2754   unsigned int forced_local_dynamic_count = 0;
2755
2756   target->finalize_sections(this, input_objects, symtab);
2757
2758   this->count_local_symbols(task, input_objects);
2759
2760   this->link_stabs_sections();
2761
2762   Output_segment* phdr_seg = NULL;
2763   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2764     {
2765       // There was a dynamic object in the link.  We need to create
2766       // some information for the dynamic linker.
2767
2768       // Create the PT_PHDR segment which will hold the program
2769       // headers.
2770       if (!this->script_options_->saw_phdrs_clause())
2771         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2772
2773       // Create the dynamic symbol table, including the hash table.
2774       Output_section* dynstr;
2775       std::vector<Symbol*> dynamic_symbols;
2776       Versions versions(*this->script_options()->version_script_info(),
2777                         &this->dynpool_);
2778       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2779                                   &local_dynamic_count,
2780                                   &forced_local_dynamic_count,
2781                                   &dynamic_symbols,
2782                                   &versions);
2783
2784       // Create the .interp section to hold the name of the
2785       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2786       // if we saw a .interp section in an input file.
2787       if ((!parameters->options().shared()
2788            || parameters->options().dynamic_linker() != NULL)
2789           && this->interp_segment_ == NULL)
2790         this->create_interp(target);
2791
2792       // Finish the .dynamic section to hold the dynamic data, and put
2793       // it in a PT_DYNAMIC segment.
2794       this->finish_dynamic_section(input_objects, symtab);
2795
2796       // We should have added everything we need to the dynamic string
2797       // table.
2798       this->dynpool_.set_string_offsets();
2799
2800       // Create the version sections.  We can't do this until the
2801       // dynamic string table is complete.
2802       this->create_version_sections(&versions, symtab,
2803                                     (local_dynamic_count
2804                                      + forced_local_dynamic_count),
2805                                     dynamic_symbols, dynstr);
2806
2807       // Set the size of the _DYNAMIC symbol.  We can't do this until
2808       // after we call create_version_sections.
2809       this->set_dynamic_symbol_size(symtab);
2810     }
2811
2812   // Create segment headers.
2813   Output_segment_headers* segment_headers =
2814     (parameters->options().relocatable()
2815      ? NULL
2816      : new Output_segment_headers(this->segment_list_));
2817
2818   // Lay out the file header.
2819   Output_file_header* file_header = new Output_file_header(target, symtab,
2820                                                            segment_headers);
2821
2822   this->special_output_list_.push_back(file_header);
2823   if (segment_headers != NULL)
2824     this->special_output_list_.push_back(segment_headers);
2825
2826   // Find approriate places for orphan output sections if we are using
2827   // a linker script.
2828   if (this->script_options_->saw_sections_clause())
2829     this->place_orphan_sections_in_script();
2830
2831   Output_segment* load_seg;
2832   off_t off;
2833   unsigned int shndx;
2834   int pass = 0;
2835
2836   // Take a snapshot of the section layout as needed.
2837   if (target->may_relax())
2838     this->prepare_for_relaxation();
2839
2840   // Run the relaxation loop to lay out sections.
2841   do
2842     {
2843       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2844                                        phdr_seg, segment_headers, file_header,
2845                                        &shndx);
2846       pass++;
2847     }
2848   while (target->may_relax()
2849          && target->relax(pass, input_objects, symtab, this, task));
2850
2851   // If there is a load segment that contains the file and program headers,
2852   // provide a symbol __ehdr_start pointing there.
2853   // A program can use this to examine itself robustly.
2854   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2855   if (ehdr_start != NULL && ehdr_start->is_predefined())
2856     {
2857       if (load_seg != NULL)
2858         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2859       else
2860         ehdr_start->set_undefined();
2861     }
2862
2863   // Set the file offsets of all the non-data sections we've seen so
2864   // far which don't have to wait for the input sections.  We need
2865   // this in order to finalize local symbols in non-allocated
2866   // sections.
2867   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2868
2869   // Set the section indexes of all unallocated sections seen so far,
2870   // in case any of them are somehow referenced by a symbol.
2871   shndx = this->set_section_indexes(shndx);
2872
2873   // Create the symbol table sections.
2874   this->create_symtab_sections(input_objects, symtab, shndx, &off,
2875                                local_dynamic_count);
2876   if (!parameters->doing_static_link())
2877     this->assign_local_dynsym_offsets(input_objects);
2878
2879   // Process any symbol assignments from a linker script.  This must
2880   // be called after the symbol table has been finalized.
2881   this->script_options_->finalize_symbols(symtab, this);
2882
2883   // Create the incremental inputs sections.
2884   if (this->incremental_inputs_)
2885     {
2886       this->incremental_inputs_->finalize();
2887       this->create_incremental_info_sections(symtab);
2888     }
2889
2890   // Create the .shstrtab section.
2891   Output_section* shstrtab_section = this->create_shstrtab();
2892
2893   // Set the file offsets of the rest of the non-data sections which
2894   // don't have to wait for the input sections.
2895   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2896
2897   // Now that all sections have been created, set the section indexes
2898   // for any sections which haven't been done yet.
2899   shndx = this->set_section_indexes(shndx);
2900
2901   // Create the section table header.
2902   this->create_shdrs(shstrtab_section, &off);
2903
2904   // If there are no sections which require postprocessing, we can
2905   // handle the section names now, and avoid a resize later.
2906   if (!this->any_postprocessing_sections_)
2907     {
2908       off = this->set_section_offsets(off,
2909                                       POSTPROCESSING_SECTIONS_PASS);
2910       off =
2911           this->set_section_offsets(off,
2912                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2913     }
2914
2915   file_header->set_section_info(this->section_headers_, shstrtab_section);
2916
2917   // Now we know exactly where everything goes in the output file
2918   // (except for non-allocated sections which require postprocessing).
2919   Output_data::layout_complete();
2920
2921   this->output_file_size_ = off;
2922
2923   return off;
2924 }
2925
2926 // Create a note header following the format defined in the ELF ABI.
2927 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2928 // of the section to create, DESCSZ is the size of the descriptor.
2929 // ALLOCATE is true if the section should be allocated in memory.
2930 // This returns the new note section.  It sets *TRAILING_PADDING to
2931 // the number of trailing zero bytes required.
2932
2933 Output_section*
2934 Layout::create_note(const char* name, int note_type,
2935                     const char* section_name, size_t descsz,
2936                     bool allocate, size_t* trailing_padding)
2937 {
2938   // Authorities all agree that the values in a .note field should
2939   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2940   // they differ on what the alignment is for 64-bit binaries.
2941   // The GABI says unambiguously they take 8-byte alignment:
2942   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2943   // Other documentation says alignment should always be 4 bytes:
2944   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2945   // GNU ld and GNU readelf both support the latter (at least as of
2946   // version 2.16.91), and glibc always generates the latter for
2947   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2948   // here.
2949 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2950   const int size = parameters->target().get_size();
2951 #else
2952   const int size = 32;
2953 #endif
2954
2955   // The contents of the .note section.
2956   size_t namesz = strlen(name) + 1;
2957   size_t aligned_namesz = align_address(namesz, size / 8);
2958   size_t aligned_descsz = align_address(descsz, size / 8);
2959
2960   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2961
2962   unsigned char* buffer = new unsigned char[notehdrsz];
2963   memset(buffer, 0, notehdrsz);
2964
2965   bool is_big_endian = parameters->target().is_big_endian();
2966
2967   if (size == 32)
2968     {
2969       if (!is_big_endian)
2970         {
2971           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2972           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2973           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2974         }
2975       else
2976         {
2977           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2978           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2979           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2980         }
2981     }
2982   else if (size == 64)
2983     {
2984       if (!is_big_endian)
2985         {
2986           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2987           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2988           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2989         }
2990       else
2991         {
2992           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2993           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2994           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2995         }
2996     }
2997   else
2998     gold_unreachable();
2999
3000   memcpy(buffer + 3 * (size / 8), name, namesz);
3001
3002   elfcpp::Elf_Xword flags = 0;
3003   Output_section_order order = ORDER_INVALID;
3004   if (allocate)
3005     {
3006       flags = elfcpp::SHF_ALLOC;
3007       order = ORDER_RO_NOTE;
3008     }
3009   Output_section* os = this->choose_output_section(NULL, section_name,
3010                                                    elfcpp::SHT_NOTE,
3011                                                    flags, false, order, false,
3012                                                    false, true);
3013   if (os == NULL)
3014     return NULL;
3015
3016   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3017                                                            size / 8,
3018                                                            "** note header");
3019   os->add_output_section_data(posd);
3020
3021   *trailing_padding = aligned_descsz - descsz;
3022
3023   return os;
3024 }
3025
3026 // For an executable or shared library, create a note to record the
3027 // version of gold used to create the binary.
3028
3029 void
3030 Layout::create_gold_note()
3031 {
3032   if (parameters->options().relocatable()
3033       || parameters->incremental_update())
3034     return;
3035
3036   std::string desc = std::string("gold ") + gold::get_version_string();
3037
3038   size_t trailing_padding;
3039   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3040                                          ".note.gnu.gold-version", desc.size(),
3041                                          false, &trailing_padding);
3042   if (os == NULL)
3043     return;
3044
3045   Output_section_data* posd = new Output_data_const(desc, 4);
3046   os->add_output_section_data(posd);
3047
3048   if (trailing_padding > 0)
3049     {
3050       posd = new Output_data_zero_fill(trailing_padding, 0);
3051       os->add_output_section_data(posd);
3052     }
3053 }
3054
3055 // Record whether the stack should be executable.  This can be set
3056 // from the command line using the -z execstack or -z noexecstack
3057 // options.  Otherwise, if any input file has a .note.GNU-stack
3058 // section with the SHF_EXECINSTR flag set, the stack should be
3059 // executable.  Otherwise, if at least one input file a
3060 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3061 // section, we use the target default for whether the stack should be
3062 // executable.  If -z stack-size was used to set a p_memsz value for
3063 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3064 // don't generate a stack note.  When generating a object file, we
3065 // create a .note.GNU-stack section with the appropriate marking.
3066 // When generating an executable or shared library, we create a
3067 // PT_GNU_STACK segment.
3068
3069 void
3070 Layout::create_stack_segment()
3071 {
3072   bool is_stack_executable;
3073   if (parameters->options().is_execstack_set())
3074     {
3075       is_stack_executable = parameters->options().is_stack_executable();
3076       if (!is_stack_executable
3077           && this->input_requires_executable_stack_
3078           && parameters->options().warn_execstack())
3079         gold_warning(_("one or more inputs require executable stack, "
3080                        "but -z noexecstack was given"));
3081     }
3082   else if (!this->input_with_gnu_stack_note_
3083            && (!parameters->options().user_set_stack_size()
3084                || parameters->options().relocatable()))
3085     return;
3086   else
3087     {
3088       if (this->input_requires_executable_stack_)
3089         is_stack_executable = true;
3090       else if (this->input_without_gnu_stack_note_)
3091         is_stack_executable =
3092           parameters->target().is_default_stack_executable();
3093       else
3094         is_stack_executable = false;
3095     }
3096
3097   if (parameters->options().relocatable())
3098     {
3099       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3100       elfcpp::Elf_Xword flags = 0;
3101       if (is_stack_executable)
3102         flags |= elfcpp::SHF_EXECINSTR;
3103       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3104                                 ORDER_INVALID, false);
3105     }
3106   else
3107     {
3108       if (this->script_options_->saw_phdrs_clause())
3109         return;
3110       int flags = elfcpp::PF_R | elfcpp::PF_W;
3111       if (is_stack_executable)
3112         flags |= elfcpp::PF_X;
3113       Output_segment* seg =
3114         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3115       seg->set_size(parameters->options().stack_size());
3116       // BFD lets targets override this default alignment, but the only
3117       // targets that do so are ones that Gold does not support so far.
3118       seg->set_minimum_p_align(16);
3119     }
3120 }
3121
3122 // If --build-id was used, set up the build ID note.
3123
3124 void
3125 Layout::create_build_id()
3126 {
3127   if (!parameters->options().user_set_build_id())
3128     return;
3129
3130   const char* style = parameters->options().build_id();
3131   if (strcmp(style, "none") == 0)
3132     return;
3133
3134   // Set DESCSZ to the size of the note descriptor.  When possible,
3135   // set DESC to the note descriptor contents.
3136   size_t descsz;
3137   std::string desc;
3138   if (strcmp(style, "md5") == 0)
3139     descsz = 128 / 8;
3140   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3141     descsz = 160 / 8;
3142   else if (strcmp(style, "uuid") == 0)
3143     {
3144 #ifndef __MINGW32__
3145       const size_t uuidsz = 128 / 8;
3146
3147       char buffer[uuidsz];
3148       memset(buffer, 0, uuidsz);
3149
3150       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3151       if (descriptor < 0)
3152         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3153                    strerror(errno));
3154       else
3155         {
3156           ssize_t got = ::read(descriptor, buffer, uuidsz);
3157           release_descriptor(descriptor, true);
3158           if (got < 0)
3159             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3160           else if (static_cast<size_t>(got) != uuidsz)
3161             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3162                        uuidsz, got);
3163         }
3164
3165       desc.assign(buffer, uuidsz);
3166       descsz = uuidsz;
3167 #else // __MINGW32__
3168       UUID uuid;
3169       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3170
3171       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3172       if (!rpc_library)
3173         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3174       else
3175         {
3176           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3177               GetProcAddress(rpc_library, "UuidCreate"));
3178           if (!uuid_create)
3179             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3180           else if (uuid_create(&uuid) != RPC_S_OK)
3181             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3182           FreeLibrary(rpc_library);
3183         }
3184       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3185       descsz = sizeof(UUID);
3186 #endif // __MINGW32__
3187     }
3188   else if (strncmp(style, "0x", 2) == 0)
3189     {
3190       hex_init();
3191       const char* p = style + 2;
3192       while (*p != '\0')
3193         {
3194           if (hex_p(p[0]) && hex_p(p[1]))
3195             {
3196               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3197               desc += c;
3198               p += 2;
3199             }
3200           else if (*p == '-' || *p == ':')
3201             ++p;
3202           else
3203             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3204                        style);
3205         }
3206       descsz = desc.size();
3207     }
3208   else
3209     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3210
3211   // Create the note.
3212   size_t trailing_padding;
3213   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3214                                          ".note.gnu.build-id", descsz, true,
3215                                          &trailing_padding);
3216   if (os == NULL)
3217     return;
3218
3219   if (!desc.empty())
3220     {
3221       // We know the value already, so we fill it in now.
3222       gold_assert(desc.size() == descsz);
3223
3224       Output_section_data* posd = new Output_data_const(desc, 4);
3225       os->add_output_section_data(posd);
3226
3227       if (trailing_padding != 0)
3228         {
3229           posd = new Output_data_zero_fill(trailing_padding, 0);
3230           os->add_output_section_data(posd);
3231         }
3232     }
3233   else
3234     {
3235       // We need to compute a checksum after we have completed the
3236       // link.
3237       gold_assert(trailing_padding == 0);
3238       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3239       os->add_output_section_data(this->build_id_note_);
3240     }
3241 }
3242
3243 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3244 // field of the former should point to the latter.  I'm not sure who
3245 // started this, but the GNU linker does it, and some tools depend
3246 // upon it.
3247
3248 void
3249 Layout::link_stabs_sections()
3250 {
3251   if (!this->have_stabstr_section_)
3252     return;
3253
3254   for (Section_list::iterator p = this->section_list_.begin();
3255        p != this->section_list_.end();
3256        ++p)
3257     {
3258       if ((*p)->type() != elfcpp::SHT_STRTAB)
3259         continue;
3260
3261       const char* name = (*p)->name();
3262       if (strncmp(name, ".stab", 5) != 0)
3263         continue;
3264
3265       size_t len = strlen(name);
3266       if (strcmp(name + len - 3, "str") != 0)
3267         continue;
3268
3269       std::string stab_name(name, len - 3);
3270       Output_section* stab_sec;
3271       stab_sec = this->find_output_section(stab_name.c_str());
3272       if (stab_sec != NULL)
3273         stab_sec->set_link_section(*p);
3274     }
3275 }
3276
3277 // Create .gnu_incremental_inputs and related sections needed
3278 // for the next run of incremental linking to check what has changed.
3279
3280 void
3281 Layout::create_incremental_info_sections(Symbol_table* symtab)
3282 {
3283   Incremental_inputs* incr = this->incremental_inputs_;
3284
3285   gold_assert(incr != NULL);
3286
3287   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3288   incr->create_data_sections(symtab);
3289
3290   // Add the .gnu_incremental_inputs section.
3291   const char* incremental_inputs_name =
3292     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3293   Output_section* incremental_inputs_os =
3294     this->make_output_section(incremental_inputs_name,
3295                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3296                               ORDER_INVALID, false);
3297   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3298
3299   // Add the .gnu_incremental_symtab section.
3300   const char* incremental_symtab_name =
3301     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3302   Output_section* incremental_symtab_os =
3303     this->make_output_section(incremental_symtab_name,
3304                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3305                               ORDER_INVALID, false);
3306   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3307   incremental_symtab_os->set_entsize(4);
3308
3309   // Add the .gnu_incremental_relocs section.
3310   const char* incremental_relocs_name =
3311     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3312   Output_section* incremental_relocs_os =
3313     this->make_output_section(incremental_relocs_name,
3314                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3315                               ORDER_INVALID, false);
3316   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3317   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3318
3319   // Add the .gnu_incremental_got_plt section.
3320   const char* incremental_got_plt_name =
3321     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3322   Output_section* incremental_got_plt_os =
3323     this->make_output_section(incremental_got_plt_name,
3324                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3325                               ORDER_INVALID, false);
3326   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3327
3328   // Add the .gnu_incremental_strtab section.
3329   const char* incremental_strtab_name =
3330     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3331   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3332                                                         elfcpp::SHT_STRTAB, 0,
3333                                                         ORDER_INVALID, false);
3334   Output_data_strtab* strtab_data =
3335       new Output_data_strtab(incr->get_stringpool());
3336   incremental_strtab_os->add_output_section_data(strtab_data);
3337
3338   incremental_inputs_os->set_after_input_sections();
3339   incremental_symtab_os->set_after_input_sections();
3340   incremental_relocs_os->set_after_input_sections();
3341   incremental_got_plt_os->set_after_input_sections();
3342
3343   incremental_inputs_os->set_link_section(incremental_strtab_os);
3344   incremental_symtab_os->set_link_section(incremental_inputs_os);
3345   incremental_relocs_os->set_link_section(incremental_inputs_os);
3346   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3347 }
3348
3349 // Return whether SEG1 should be before SEG2 in the output file.  This
3350 // is based entirely on the segment type and flags.  When this is
3351 // called the segment addresses have normally not yet been set.
3352
3353 bool
3354 Layout::segment_precedes(const Output_segment* seg1,
3355                          const Output_segment* seg2)
3356 {
3357   // In order to produce a stable ordering if we're called with the same pointer
3358   // return false.
3359   if (seg1 == seg2)
3360     return false;
3361
3362   elfcpp::Elf_Word type1 = seg1->type();
3363   elfcpp::Elf_Word type2 = seg2->type();
3364
3365   // The single PT_PHDR segment is required to precede any loadable
3366   // segment.  We simply make it always first.
3367   if (type1 == elfcpp::PT_PHDR)
3368     {
3369       gold_assert(type2 != elfcpp::PT_PHDR);
3370       return true;
3371     }
3372   if (type2 == elfcpp::PT_PHDR)
3373     return false;
3374
3375   // The single PT_INTERP segment is required to precede any loadable
3376   // segment.  We simply make it always second.
3377   if (type1 == elfcpp::PT_INTERP)
3378     {
3379       gold_assert(type2 != elfcpp::PT_INTERP);
3380       return true;
3381     }
3382   if (type2 == elfcpp::PT_INTERP)
3383     return false;
3384
3385   // We then put PT_LOAD segments before any other segments.
3386   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3387     return true;
3388   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3389     return false;
3390
3391   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3392   // segment, because that is where the dynamic linker expects to find
3393   // it (this is just for efficiency; other positions would also work
3394   // correctly).
3395   if (type1 == elfcpp::PT_TLS
3396       && type2 != elfcpp::PT_TLS
3397       && type2 != elfcpp::PT_GNU_RELRO)
3398     return false;
3399   if (type2 == elfcpp::PT_TLS
3400       && type1 != elfcpp::PT_TLS
3401       && type1 != elfcpp::PT_GNU_RELRO)
3402     return true;
3403
3404   // We put the PT_GNU_RELRO segment last, because that is where the
3405   // dynamic linker expects to find it (as with PT_TLS, this is just
3406   // for efficiency).
3407   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3408     return false;
3409   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3410     return true;
3411
3412   const elfcpp::Elf_Word flags1 = seg1->flags();
3413   const elfcpp::Elf_Word flags2 = seg2->flags();
3414
3415   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3416   // by the numeric segment type and flags values.  There should not
3417   // be more than one segment with the same type and flags, except
3418   // when a linker script specifies such.
3419   if (type1 != elfcpp::PT_LOAD)
3420     {
3421       if (type1 != type2)
3422         return type1 < type2;
3423       gold_assert(flags1 != flags2
3424                   || this->script_options_->saw_phdrs_clause());
3425       return flags1 < flags2;
3426     }
3427
3428   // If the addresses are set already, sort by load address.
3429   if (seg1->are_addresses_set())
3430     {
3431       if (!seg2->are_addresses_set())
3432         return true;
3433
3434       unsigned int section_count1 = seg1->output_section_count();
3435       unsigned int section_count2 = seg2->output_section_count();
3436       if (section_count1 == 0 && section_count2 > 0)
3437         return true;
3438       if (section_count1 > 0 && section_count2 == 0)
3439         return false;
3440
3441       uint64_t paddr1 = (seg1->are_addresses_set()
3442                          ? seg1->paddr()
3443                          : seg1->first_section_load_address());
3444       uint64_t paddr2 = (seg2->are_addresses_set()
3445                          ? seg2->paddr()
3446                          : seg2->first_section_load_address());
3447
3448       if (paddr1 != paddr2)
3449         return paddr1 < paddr2;
3450     }
3451   else if (seg2->are_addresses_set())
3452     return false;
3453
3454   // A segment which holds large data comes after a segment which does
3455   // not hold large data.
3456   if (seg1->is_large_data_segment())
3457     {
3458       if (!seg2->is_large_data_segment())
3459         return false;
3460     }
3461   else if (seg2->is_large_data_segment())
3462     return true;
3463
3464   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3465   // segments come before writable segments.  Then writable segments
3466   // with data come before writable segments without data.  Then
3467   // executable segments come before non-executable segments.  Then
3468   // the unlikely case of a non-readable segment comes before the
3469   // normal case of a readable segment.  If there are multiple
3470   // segments with the same type and flags, we require that the
3471   // address be set, and we sort by virtual address and then physical
3472   // address.
3473   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3474     return (flags1 & elfcpp::PF_W) == 0;
3475   if ((flags1 & elfcpp::PF_W) != 0
3476       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3477     return seg1->has_any_data_sections();
3478   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3479     return (flags1 & elfcpp::PF_X) != 0;
3480   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3481     return (flags1 & elfcpp::PF_R) == 0;
3482
3483   // We shouldn't get here--we shouldn't create segments which we
3484   // can't distinguish.  Unless of course we are using a weird linker
3485   // script or overlapping --section-start options.  We could also get
3486   // here if plugins want unique segments for subsets of sections.
3487   gold_assert(this->script_options_->saw_phdrs_clause()
3488               || parameters->options().any_section_start()
3489               || this->is_unique_segment_for_sections_specified()
3490               || parameters->options().text_unlikely_segment());
3491   return false;
3492 }
3493
3494 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3495
3496 static off_t
3497 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3498 {
3499   uint64_t unsigned_off = off;
3500   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3501                           | (addr & (abi_pagesize - 1)));
3502   if (aligned_off < unsigned_off)
3503     aligned_off += abi_pagesize;
3504   return aligned_off;
3505 }
3506
3507 // On targets where the text segment contains only executable code,
3508 // a non-executable segment is never the text segment.
3509
3510 static inline bool
3511 is_text_segment(const Target* target, const Output_segment* seg)
3512 {
3513   elfcpp::Elf_Xword flags = seg->flags();
3514   if ((flags & elfcpp::PF_W) != 0)
3515     return false;
3516   if ((flags & elfcpp::PF_X) == 0)
3517     return !target->isolate_execinstr();
3518   return true;
3519 }
3520
3521 // Set the file offsets of all the segments, and all the sections they
3522 // contain.  They have all been created.  LOAD_SEG must be laid out
3523 // first.  Return the offset of the data to follow.
3524
3525 off_t
3526 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3527                             unsigned int* pshndx)
3528 {
3529   // Sort them into the final order.  We use a stable sort so that we
3530   // don't randomize the order of indistinguishable segments created
3531   // by linker scripts.
3532   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3533                    Layout::Compare_segments(this));
3534
3535   // Find the PT_LOAD segments, and set their addresses and offsets
3536   // and their section's addresses and offsets.
3537   uint64_t start_addr;
3538   if (parameters->options().user_set_Ttext())
3539     start_addr = parameters->options().Ttext();
3540   else if (parameters->options().output_is_position_independent())
3541     start_addr = 0;
3542   else
3543     start_addr = target->default_text_segment_address();
3544
3545   uint64_t addr = start_addr;
3546   off_t off = 0;
3547
3548   // If LOAD_SEG is NULL, then the file header and segment headers
3549   // will not be loadable.  But they still need to be at offset 0 in
3550   // the file.  Set their offsets now.
3551   if (load_seg == NULL)
3552     {
3553       for (Data_list::iterator p = this->special_output_list_.begin();
3554            p != this->special_output_list_.end();
3555            ++p)
3556         {
3557           off = align_address(off, (*p)->addralign());
3558           (*p)->set_address_and_file_offset(0, off);
3559           off += (*p)->data_size();
3560         }
3561     }
3562
3563   unsigned int increase_relro = this->increase_relro_;
3564   if (this->script_options_->saw_sections_clause())
3565     increase_relro = 0;
3566
3567   const bool check_sections = parameters->options().check_sections();
3568   Output_segment* last_load_segment = NULL;
3569
3570   unsigned int shndx_begin = *pshndx;
3571   unsigned int shndx_load_seg = *pshndx;
3572
3573   for (Segment_list::iterator p = this->segment_list_.begin();
3574        p != this->segment_list_.end();
3575        ++p)
3576     {
3577       if ((*p)->type() == elfcpp::PT_LOAD)
3578         {
3579           if (target->isolate_execinstr())
3580             {
3581               // When we hit the segment that should contain the
3582               // file headers, reset the file offset so we place
3583               // it and subsequent segments appropriately.
3584               // We'll fix up the preceding segments below.
3585               if (load_seg == *p)
3586                 {
3587                   if (off == 0)
3588                     load_seg = NULL;
3589                   else
3590                     {
3591                       off = 0;
3592                       shndx_load_seg = *pshndx;
3593                     }
3594                 }
3595             }
3596           else
3597             {
3598               // Verify that the file headers fall into the first segment.
3599               if (load_seg != NULL && load_seg != *p)
3600                 gold_unreachable();
3601               load_seg = NULL;
3602             }
3603
3604           bool are_addresses_set = (*p)->are_addresses_set();
3605           if (are_addresses_set)
3606             {
3607               // When it comes to setting file offsets, we care about
3608               // the physical address.
3609               addr = (*p)->paddr();
3610             }
3611           else if (parameters->options().user_set_Ttext()
3612                    && (parameters->options().omagic()
3613                        || is_text_segment(target, *p)))
3614             {
3615               are_addresses_set = true;
3616             }
3617           else if (parameters->options().user_set_Trodata_segment()
3618                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3619             {
3620               addr = parameters->options().Trodata_segment();
3621               are_addresses_set = true;
3622             }
3623           else if (parameters->options().user_set_Tdata()
3624                    && ((*p)->flags() & elfcpp::PF_W) != 0
3625                    && (!parameters->options().user_set_Tbss()
3626                        || (*p)->has_any_data_sections()))
3627             {
3628               addr = parameters->options().Tdata();
3629               are_addresses_set = true;
3630             }
3631           else if (parameters->options().user_set_Tbss()
3632                    && ((*p)->flags() & elfcpp::PF_W) != 0
3633                    && !(*p)->has_any_data_sections())
3634             {
3635               addr = parameters->options().Tbss();
3636               are_addresses_set = true;
3637             }
3638
3639           uint64_t orig_addr = addr;
3640           uint64_t orig_off = off;
3641
3642           uint64_t aligned_addr = 0;
3643           uint64_t abi_pagesize = target->abi_pagesize();
3644           uint64_t common_pagesize = target->common_pagesize();
3645
3646           if (!parameters->options().nmagic()
3647               && !parameters->options().omagic())
3648             (*p)->set_minimum_p_align(abi_pagesize);
3649
3650           if (!are_addresses_set)
3651             {
3652               // Skip the address forward one page, maintaining the same
3653               // position within the page.  This lets us store both segments
3654               // overlapping on a single page in the file, but the loader will
3655               // put them on different pages in memory. We will revisit this
3656               // decision once we know the size of the segment.
3657
3658               uint64_t max_align = (*p)->maximum_alignment();
3659               if (max_align > abi_pagesize)
3660                 addr = align_address(addr, max_align);
3661               aligned_addr = addr;
3662
3663               if (load_seg == *p)
3664                 {
3665                   // This is the segment that will contain the file
3666                   // headers, so its offset will have to be exactly zero.
3667                   gold_assert(orig_off == 0);
3668
3669                   // If the target wants a fixed minimum distance from the
3670                   // text segment to the read-only segment, move up now.
3671                   uint64_t min_addr =
3672                     start_addr + (parameters->options().user_set_rosegment_gap()
3673                                   ? parameters->options().rosegment_gap()
3674                                   : target->rosegment_gap());
3675                   if (addr < min_addr)
3676                     addr = min_addr;
3677
3678                   // But this is not the first segment!  To make its
3679                   // address congruent with its offset, that address better
3680                   // be aligned to the ABI-mandated page size.
3681                   addr = align_address(addr, abi_pagesize);
3682                   aligned_addr = addr;
3683                 }
3684               else
3685                 {
3686                   if ((addr & (abi_pagesize - 1)) != 0)
3687                     addr = addr + abi_pagesize;
3688
3689                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3690                 }
3691             }
3692
3693           if (!parameters->options().nmagic()
3694               && !parameters->options().omagic())
3695             {
3696               // Here we are also taking care of the case when
3697               // the maximum segment alignment is larger than the page size.
3698               off = align_file_offset(off, addr,
3699                                       std::max(abi_pagesize,
3700                                                (*p)->maximum_alignment()));
3701             }
3702           else
3703             {
3704               // This is -N or -n with a section script which prevents
3705               // us from using a load segment.  We need to ensure that
3706               // the file offset is aligned to the alignment of the
3707               // segment.  This is because the linker script
3708               // implicitly assumed a zero offset.  If we don't align
3709               // here, then the alignment of the sections in the
3710               // linker script may not match the alignment of the
3711               // sections in the set_section_addresses call below,
3712               // causing an error about dot moving backward.
3713               off = align_address(off, (*p)->maximum_alignment());
3714             }
3715
3716           unsigned int shndx_hold = *pshndx;
3717           bool has_relro = false;
3718           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3719                                                           false, addr,
3720                                                           &increase_relro,
3721                                                           &has_relro,
3722                                                           &off, pshndx);
3723
3724           // Now that we know the size of this segment, we may be able
3725           // to save a page in memory, at the cost of wasting some
3726           // file space, by instead aligning to the start of a new
3727           // page.  Here we use the real machine page size rather than
3728           // the ABI mandated page size.  If the segment has been
3729           // aligned so that the relro data ends at a page boundary,
3730           // we do not try to realign it.
3731
3732           if (!are_addresses_set
3733               && !has_relro
3734               && aligned_addr != addr
3735               && !parameters->incremental())
3736             {
3737               uint64_t first_off = (common_pagesize
3738                                     - (aligned_addr
3739                                        & (common_pagesize - 1)));
3740               uint64_t last_off = new_addr & (common_pagesize - 1);
3741               if (first_off > 0
3742                   && last_off > 0
3743                   && ((aligned_addr & ~ (common_pagesize - 1))
3744                       != (new_addr & ~ (common_pagesize - 1)))
3745                   && first_off + last_off <= common_pagesize)
3746                 {
3747                   *pshndx = shndx_hold;
3748                   addr = align_address(aligned_addr, common_pagesize);
3749                   addr = align_address(addr, (*p)->maximum_alignment());
3750                   if ((addr & (abi_pagesize - 1)) != 0)
3751                     addr = addr + abi_pagesize;
3752                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3753                   off = align_file_offset(off, addr, abi_pagesize);
3754
3755                   increase_relro = this->increase_relro_;
3756                   if (this->script_options_->saw_sections_clause())
3757                     increase_relro = 0;
3758                   has_relro = false;
3759
3760                   new_addr = (*p)->set_section_addresses(target, this,
3761                                                          true, addr,
3762                                                          &increase_relro,
3763                                                          &has_relro,
3764                                                          &off, pshndx);
3765                 }
3766             }
3767
3768           addr = new_addr;
3769
3770           // Implement --check-sections.  We know that the segments
3771           // are sorted by LMA.
3772           if (check_sections && last_load_segment != NULL)
3773             {
3774               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3775               if (last_load_segment->paddr() + last_load_segment->memsz()
3776                   > (*p)->paddr())
3777                 {
3778                   unsigned long long lb1 = last_load_segment->paddr();
3779                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3780                   unsigned long long lb2 = (*p)->paddr();
3781                   unsigned long long le2 = lb2 + (*p)->memsz();
3782                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3783                                "[0x%llx -> 0x%llx]"),
3784                              lb1, le1, lb2, le2);
3785                 }
3786             }
3787           last_load_segment = *p;
3788         }
3789     }
3790
3791   if (load_seg != NULL && target->isolate_execinstr())
3792     {
3793       // Process the early segments again, setting their file offsets
3794       // so they land after the segments starting at LOAD_SEG.
3795       off = align_file_offset(off, 0, target->abi_pagesize());
3796
3797       this->reset_relax_output();
3798
3799       for (Segment_list::iterator p = this->segment_list_.begin();
3800            *p != load_seg;
3801            ++p)
3802         {
3803           if ((*p)->type() == elfcpp::PT_LOAD)
3804             {
3805               // We repeat the whole job of assigning addresses and
3806               // offsets, but we really only want to change the offsets and
3807               // must ensure that the addresses all come out the same as
3808               // they did the first time through.
3809               bool has_relro = false;
3810               const uint64_t old_addr = (*p)->vaddr();
3811               const uint64_t old_end = old_addr + (*p)->memsz();
3812               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3813                                                               true, old_addr,
3814                                                               &increase_relro,
3815                                                               &has_relro,
3816                                                               &off,
3817                                                               &shndx_begin);
3818               gold_assert(new_addr == old_end);
3819             }
3820         }
3821
3822       gold_assert(shndx_begin == shndx_load_seg);
3823     }
3824
3825   // Handle the non-PT_LOAD segments, setting their offsets from their
3826   // section's offsets.
3827   for (Segment_list::iterator p = this->segment_list_.begin();
3828        p != this->segment_list_.end();
3829        ++p)
3830     {
3831       // PT_GNU_STACK was set up correctly when it was created.
3832       if ((*p)->type() != elfcpp::PT_LOAD
3833           && (*p)->type() != elfcpp::PT_GNU_STACK)
3834         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3835                          ? increase_relro
3836                          : 0);
3837     }
3838
3839   // Set the TLS offsets for each section in the PT_TLS segment.
3840   if (this->tls_segment_ != NULL)
3841     this->tls_segment_->set_tls_offsets();
3842
3843   return off;
3844 }
3845
3846 // Set the offsets of all the allocated sections when doing a
3847 // relocatable link.  This does the same jobs as set_segment_offsets,
3848 // only for a relocatable link.
3849
3850 off_t
3851 Layout::set_relocatable_section_offsets(Output_data* file_header,
3852                                         unsigned int* pshndx)
3853 {
3854   off_t off = 0;
3855
3856   file_header->set_address_and_file_offset(0, 0);
3857   off += file_header->data_size();
3858
3859   for (Section_list::iterator p = this->section_list_.begin();
3860        p != this->section_list_.end();
3861        ++p)
3862     {
3863       // We skip unallocated sections here, except that group sections
3864       // have to come first.
3865       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3866           && (*p)->type() != elfcpp::SHT_GROUP)
3867         continue;
3868
3869       off = align_address(off, (*p)->addralign());
3870
3871       // The linker script might have set the address.
3872       if (!(*p)->is_address_valid())
3873         (*p)->set_address(0);
3874       (*p)->set_file_offset(off);
3875       (*p)->finalize_data_size();
3876       if ((*p)->type() != elfcpp::SHT_NOBITS)
3877         off += (*p)->data_size();
3878
3879       (*p)->set_out_shndx(*pshndx);
3880       ++*pshndx;
3881     }
3882
3883   return off;
3884 }
3885
3886 // Set the file offset of all the sections not associated with a
3887 // segment.
3888
3889 off_t
3890 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3891 {
3892   off_t startoff = off;
3893   off_t maxoff = off;
3894
3895   for (Section_list::iterator p = this->unattached_section_list_.begin();
3896        p != this->unattached_section_list_.end();
3897        ++p)
3898     {
3899       // The symtab section is handled in create_symtab_sections.
3900       if (*p == this->symtab_section_)
3901         continue;
3902
3903       // If we've already set the data size, don't set it again.
3904       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3905         continue;
3906
3907       if (pass == BEFORE_INPUT_SECTIONS_PASS
3908           && (*p)->requires_postprocessing())
3909         {
3910           (*p)->create_postprocessing_buffer();
3911           this->any_postprocessing_sections_ = true;
3912         }
3913
3914       if (pass == BEFORE_INPUT_SECTIONS_PASS
3915           && (*p)->after_input_sections())
3916         continue;
3917       else if (pass == POSTPROCESSING_SECTIONS_PASS
3918                && (!(*p)->after_input_sections()
3919                    || (*p)->type() == elfcpp::SHT_STRTAB))
3920         continue;
3921       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3922                && (!(*p)->after_input_sections()
3923                    || (*p)->type() != elfcpp::SHT_STRTAB))
3924         continue;
3925
3926       if (!parameters->incremental_update())
3927         {
3928           off = align_address(off, (*p)->addralign());
3929           (*p)->set_file_offset(off);
3930           (*p)->finalize_data_size();
3931         }
3932       else
3933         {
3934           // Incremental update: allocate file space from free list.
3935           (*p)->pre_finalize_data_size();
3936           off_t current_size = (*p)->current_data_size();
3937           off = this->allocate(current_size, (*p)->addralign(), startoff);
3938           if (off == -1)
3939             {
3940               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3941                 this->free_list_.dump();
3942               gold_assert((*p)->output_section() != NULL);
3943               gold_fallback(_("out of patch space for section %s; "
3944                               "relink with --incremental-full"),
3945                             (*p)->output_section()->name());
3946             }
3947           (*p)->set_file_offset(off);
3948           (*p)->finalize_data_size();
3949           if ((*p)->data_size() > current_size)
3950             {
3951               gold_assert((*p)->output_section() != NULL);
3952               gold_fallback(_("%s: section changed size; "
3953                               "relink with --incremental-full"),
3954                             (*p)->output_section()->name());
3955             }
3956           gold_debug(DEBUG_INCREMENTAL,
3957                      "set_section_offsets: %08lx %08lx %s",
3958                      static_cast<long>(off),
3959                      static_cast<long>((*p)->data_size()),
3960                      ((*p)->output_section() != NULL
3961                       ? (*p)->output_section()->name() : "(special)"));
3962         }
3963
3964       off += (*p)->data_size();
3965       if (off > maxoff)
3966         maxoff = off;
3967
3968       // At this point the name must be set.
3969       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3970         this->namepool_.add((*p)->name(), false, NULL);
3971     }
3972   return maxoff;
3973 }
3974
3975 // Set the section indexes of all the sections not associated with a
3976 // segment.
3977
3978 unsigned int
3979 Layout::set_section_indexes(unsigned int shndx)
3980 {
3981   for (Section_list::iterator p = this->unattached_section_list_.begin();
3982        p != this->unattached_section_list_.end();
3983        ++p)
3984     {
3985       if (!(*p)->has_out_shndx())
3986         {
3987           (*p)->set_out_shndx(shndx);
3988           ++shndx;
3989         }
3990     }
3991   return shndx;
3992 }
3993
3994 // Set the section addresses according to the linker script.  This is
3995 // only called when we see a SECTIONS clause.  This returns the
3996 // program segment which should hold the file header and segment
3997 // headers, if any.  It will return NULL if they should not be in a
3998 // segment.
3999
4000 Output_segment*
4001 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4002 {
4003   Script_sections* ss = this->script_options_->script_sections();
4004   gold_assert(ss->saw_sections_clause());
4005   return this->script_options_->set_section_addresses(symtab, this);
4006 }
4007
4008 // Place the orphan sections in the linker script.
4009
4010 void
4011 Layout::place_orphan_sections_in_script()
4012 {
4013   Script_sections* ss = this->script_options_->script_sections();
4014   gold_assert(ss->saw_sections_clause());
4015
4016   // Place each orphaned output section in the script.
4017   for (Section_list::iterator p = this->section_list_.begin();
4018        p != this->section_list_.end();
4019        ++p)
4020     {
4021       if (!(*p)->found_in_sections_clause())
4022         ss->place_orphan(*p);
4023     }
4024 }
4025
4026 // Count the local symbols in the regular symbol table and the dynamic
4027 // symbol table, and build the respective string pools.
4028
4029 void
4030 Layout::count_local_symbols(const Task* task,
4031                             const Input_objects* input_objects)
4032 {
4033   // First, figure out an upper bound on the number of symbols we'll
4034   // be inserting into each pool.  This helps us create the pools with
4035   // the right size, to avoid unnecessary hashtable resizing.
4036   unsigned int symbol_count = 0;
4037   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4038        p != input_objects->relobj_end();
4039        ++p)
4040     symbol_count += (*p)->local_symbol_count();
4041
4042   // Go from "upper bound" to "estimate."  We overcount for two
4043   // reasons: we double-count symbols that occur in more than one
4044   // object file, and we count symbols that are dropped from the
4045   // output.  Add it all together and assume we overcount by 100%.
4046   symbol_count /= 2;
4047
4048   // We assume all symbols will go into both the sympool and dynpool.
4049   this->sympool_.reserve(symbol_count);
4050   this->dynpool_.reserve(symbol_count);
4051
4052   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4053        p != input_objects->relobj_end();
4054        ++p)
4055     {
4056       Task_lock_obj<Object> tlo(task, *p);
4057       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4058     }
4059 }
4060
4061 // Create the symbol table sections.  Here we also set the final
4062 // values of the symbols.  At this point all the loadable sections are
4063 // fully laid out.  SHNUM is the number of sections so far.
4064
4065 void
4066 Layout::create_symtab_sections(const Input_objects* input_objects,
4067                                Symbol_table* symtab,
4068                                unsigned int shnum,
4069                                off_t* poff,
4070                                unsigned int local_dynamic_count)
4071 {
4072   int symsize;
4073   unsigned int align;
4074   if (parameters->target().get_size() == 32)
4075     {
4076       symsize = elfcpp::Elf_sizes<32>::sym_size;
4077       align = 4;
4078     }
4079   else if (parameters->target().get_size() == 64)
4080     {
4081       symsize = elfcpp::Elf_sizes<64>::sym_size;
4082       align = 8;
4083     }
4084   else
4085     gold_unreachable();
4086
4087   // Compute file offsets relative to the start of the symtab section.
4088   off_t off = 0;
4089
4090   // Save space for the dummy symbol at the start of the section.  We
4091   // never bother to write this out--it will just be left as zero.
4092   off += symsize;
4093   unsigned int local_symbol_index = 1;
4094
4095   // Add STT_SECTION symbols for each Output section which needs one.
4096   for (Section_list::iterator p = this->section_list_.begin();
4097        p != this->section_list_.end();
4098        ++p)
4099     {
4100       if (!(*p)->needs_symtab_index())
4101         (*p)->set_symtab_index(-1U);
4102       else
4103         {
4104           (*p)->set_symtab_index(local_symbol_index);
4105           ++local_symbol_index;
4106           off += symsize;
4107         }
4108     }
4109
4110   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4111        p != input_objects->relobj_end();
4112        ++p)
4113     {
4114       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4115                                                         off, symtab);
4116       off += (index - local_symbol_index) * symsize;
4117       local_symbol_index = index;
4118     }
4119
4120   unsigned int local_symcount = local_symbol_index;
4121   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4122
4123   off_t dynoff;
4124   size_t dyncount;
4125   if (this->dynsym_section_ == NULL)
4126     {
4127       dynoff = 0;
4128       dyncount = 0;
4129     }
4130   else
4131     {
4132       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4133       dynoff = this->dynsym_section_->offset() + locsize;
4134       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4135       gold_assert(static_cast<off_t>(dyncount * symsize)
4136                   == this->dynsym_section_->data_size() - locsize);
4137     }
4138
4139   off_t global_off = off;
4140   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4141                          &this->sympool_, &local_symcount);
4142
4143   if (!parameters->options().strip_all())
4144     {
4145       this->sympool_.set_string_offsets();
4146
4147       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4148       Output_section* osymtab = this->make_output_section(symtab_name,
4149                                                           elfcpp::SHT_SYMTAB,
4150                                                           0, ORDER_INVALID,
4151                                                           false);
4152       this->symtab_section_ = osymtab;
4153
4154       Output_section_data* pos = new Output_data_fixed_space(off, align,
4155                                                              "** symtab");
4156       osymtab->add_output_section_data(pos);
4157
4158       // We generate a .symtab_shndx section if we have more than
4159       // SHN_LORESERVE sections.  Technically it is possible that we
4160       // don't need one, because it is possible that there are no
4161       // symbols in any of sections with indexes larger than
4162       // SHN_LORESERVE.  That is probably unusual, though, and it is
4163       // easier to always create one than to compute section indexes
4164       // twice (once here, once when writing out the symbols).
4165       if (shnum >= elfcpp::SHN_LORESERVE)
4166         {
4167           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4168                                                                false, NULL);
4169           Output_section* osymtab_xindex =
4170             this->make_output_section(symtab_xindex_name,
4171                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4172                                       ORDER_INVALID, false);
4173
4174           size_t symcount = off / symsize;
4175           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4176
4177           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4178
4179           osymtab_xindex->set_link_section(osymtab);
4180           osymtab_xindex->set_addralign(4);
4181           osymtab_xindex->set_entsize(4);
4182
4183           osymtab_xindex->set_after_input_sections();
4184
4185           // This tells the driver code to wait until the symbol table
4186           // has written out before writing out the postprocessing
4187           // sections, including the .symtab_shndx section.
4188           this->any_postprocessing_sections_ = true;
4189         }
4190
4191       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4192       Output_section* ostrtab = this->make_output_section(strtab_name,
4193                                                           elfcpp::SHT_STRTAB,
4194                                                           0, ORDER_INVALID,
4195                                                           false);
4196
4197       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4198       ostrtab->add_output_section_data(pstr);
4199
4200       off_t symtab_off;
4201       if (!parameters->incremental_update())
4202         symtab_off = align_address(*poff, align);
4203       else
4204         {
4205           symtab_off = this->allocate(off, align, *poff);
4206           if (off == -1)
4207             gold_fallback(_("out of patch space for symbol table; "
4208                             "relink with --incremental-full"));
4209           gold_debug(DEBUG_INCREMENTAL,
4210                      "create_symtab_sections: %08lx %08lx .symtab",
4211                      static_cast<long>(symtab_off),
4212                      static_cast<long>(off));
4213         }
4214
4215       symtab->set_file_offset(symtab_off + global_off);
4216       osymtab->set_file_offset(symtab_off);
4217       osymtab->finalize_data_size();
4218       osymtab->set_link_section(ostrtab);
4219       osymtab->set_info(local_symcount);
4220       osymtab->set_entsize(symsize);
4221
4222       if (symtab_off + off > *poff)
4223         *poff = symtab_off + off;
4224     }
4225 }
4226
4227 // Create the .shstrtab section, which holds the names of the
4228 // sections.  At the time this is called, we have created all the
4229 // output sections except .shstrtab itself.
4230
4231 Output_section*
4232 Layout::create_shstrtab()
4233 {
4234   // FIXME: We don't need to create a .shstrtab section if we are
4235   // stripping everything.
4236
4237   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4238
4239   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4240                                                  ORDER_INVALID, false);
4241
4242   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4243     {
4244       // We can't write out this section until we've set all the
4245       // section names, and we don't set the names of compressed
4246       // output sections until relocations are complete.  FIXME: With
4247       // the current names we use, this is unnecessary.
4248       os->set_after_input_sections();
4249     }
4250
4251   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4252   os->add_output_section_data(posd);
4253
4254   return os;
4255 }
4256
4257 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4258 // offset.
4259
4260 void
4261 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4262 {
4263   Output_section_headers* oshdrs;
4264   oshdrs = new Output_section_headers(this,
4265                                       &this->segment_list_,
4266                                       &this->section_list_,
4267                                       &this->unattached_section_list_,
4268                                       &this->namepool_,
4269                                       shstrtab_section);
4270   off_t off;
4271   if (!parameters->incremental_update())
4272     off = align_address(*poff, oshdrs->addralign());
4273   else
4274     {
4275       oshdrs->pre_finalize_data_size();
4276       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4277       if (off == -1)
4278           gold_fallback(_("out of patch space for section header table; "
4279                           "relink with --incremental-full"));
4280       gold_debug(DEBUG_INCREMENTAL,
4281                  "create_shdrs: %08lx %08lx (section header table)",
4282                  static_cast<long>(off),
4283                  static_cast<long>(off + oshdrs->data_size()));
4284     }
4285   oshdrs->set_address_and_file_offset(0, off);
4286   off += oshdrs->data_size();
4287   if (off > *poff)
4288     *poff = off;
4289   this->section_headers_ = oshdrs;
4290 }
4291
4292 // Count the allocated sections.
4293
4294 size_t
4295 Layout::allocated_output_section_count() const
4296 {
4297   size_t section_count = 0;
4298   for (Segment_list::const_iterator p = this->segment_list_.begin();
4299        p != this->segment_list_.end();
4300        ++p)
4301     section_count += (*p)->output_section_count();
4302   return section_count;
4303 }
4304
4305 // Create the dynamic symbol table.
4306 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4307 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4308 // to the number of global symbols that have been forced local.
4309 // We need to remember the former because the forced-local symbols are
4310 // written along with the global symbols in Symtab::write_globals().
4311
4312 void
4313 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4314                               Symbol_table* symtab,
4315                               Output_section** pdynstr,
4316                               unsigned int* plocal_dynamic_count,
4317                               unsigned int* pforced_local_dynamic_count,
4318                               std::vector<Symbol*>* pdynamic_symbols,
4319                               Versions* pversions)
4320 {
4321   // Count all the symbols in the dynamic symbol table, and set the
4322   // dynamic symbol indexes.
4323
4324   // Skip symbol 0, which is always all zeroes.
4325   unsigned int index = 1;
4326
4327   // Add STT_SECTION symbols for each Output section which needs one.
4328   for (Section_list::iterator p = this->section_list_.begin();
4329        p != this->section_list_.end();
4330        ++p)
4331     {
4332       if (!(*p)->needs_dynsym_index())
4333         (*p)->set_dynsym_index(-1U);
4334       else
4335         {
4336           (*p)->set_dynsym_index(index);
4337           ++index;
4338         }
4339     }
4340
4341   // Count the local symbols that need to go in the dynamic symbol table,
4342   // and set the dynamic symbol indexes.
4343   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4344        p != input_objects->relobj_end();
4345        ++p)
4346     {
4347       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4348       index = new_index;
4349     }
4350
4351   unsigned int local_symcount = index;
4352   unsigned int forced_local_count = 0;
4353
4354   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4355                                      pdynamic_symbols, &this->dynpool_,
4356                                      pversions);
4357
4358   *plocal_dynamic_count = local_symcount;
4359   *pforced_local_dynamic_count = forced_local_count;
4360
4361   int symsize;
4362   unsigned int align;
4363   const int size = parameters->target().get_size();
4364   if (size == 32)
4365     {
4366       symsize = elfcpp::Elf_sizes<32>::sym_size;
4367       align = 4;
4368     }
4369   else if (size == 64)
4370     {
4371       symsize = elfcpp::Elf_sizes<64>::sym_size;
4372       align = 8;
4373     }
4374   else
4375     gold_unreachable();
4376
4377   // Create the dynamic symbol table section.
4378
4379   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4380                                                        elfcpp::SHT_DYNSYM,
4381                                                        elfcpp::SHF_ALLOC,
4382                                                        false,
4383                                                        ORDER_DYNAMIC_LINKER,
4384                                                        false, false, false);
4385
4386   // Check for NULL as a linker script may discard .dynsym.
4387   if (dynsym != NULL)
4388     {
4389       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4390                                                                align,
4391                                                                "** dynsym");
4392       dynsym->add_output_section_data(odata);
4393
4394       dynsym->set_info(local_symcount + forced_local_count);
4395       dynsym->set_entsize(symsize);
4396       dynsym->set_addralign(align);
4397
4398       this->dynsym_section_ = dynsym;
4399     }
4400
4401   Output_data_dynamic* const odyn = this->dynamic_data_;
4402   if (odyn != NULL)
4403     {
4404       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4405       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4406     }
4407
4408   // If there are more than SHN_LORESERVE allocated sections, we
4409   // create a .dynsym_shndx section.  It is possible that we don't
4410   // need one, because it is possible that there are no dynamic
4411   // symbols in any of the sections with indexes larger than
4412   // SHN_LORESERVE.  This is probably unusual, though, and at this
4413   // time we don't know the actual section indexes so it is
4414   // inconvenient to check.
4415   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4416     {
4417       Output_section* dynsym_xindex =
4418         this->choose_output_section(NULL, ".dynsym_shndx",
4419                                     elfcpp::SHT_SYMTAB_SHNDX,
4420                                     elfcpp::SHF_ALLOC,
4421                                     false, ORDER_DYNAMIC_LINKER, false, false,
4422                                     false);
4423
4424       if (dynsym_xindex != NULL)
4425         {
4426           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4427
4428           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4429
4430           dynsym_xindex->set_link_section(dynsym);
4431           dynsym_xindex->set_addralign(4);
4432           dynsym_xindex->set_entsize(4);
4433
4434           dynsym_xindex->set_after_input_sections();
4435
4436           // This tells the driver code to wait until the symbol table
4437           // has written out before writing out the postprocessing
4438           // sections, including the .dynsym_shndx section.
4439           this->any_postprocessing_sections_ = true;
4440         }
4441     }
4442
4443   // Create the dynamic string table section.
4444
4445   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4446                                                        elfcpp::SHT_STRTAB,
4447                                                        elfcpp::SHF_ALLOC,
4448                                                        false,
4449                                                        ORDER_DYNAMIC_LINKER,
4450                                                        false, false, false);
4451   *pdynstr = dynstr;
4452   if (dynstr != NULL)
4453     {
4454       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4455       dynstr->add_output_section_data(strdata);
4456
4457       if (dynsym != NULL)
4458         dynsym->set_link_section(dynstr);
4459       if (this->dynamic_section_ != NULL)
4460         this->dynamic_section_->set_link_section(dynstr);
4461
4462       if (odyn != NULL)
4463         {
4464           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4465           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4466         }
4467     }
4468
4469   // Create the hash tables.  The Gnu-style hash table must be
4470   // built first, because it changes the order of the symbols
4471   // in the dynamic symbol table.
4472
4473   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4474       || strcmp(parameters->options().hash_style(), "both") == 0)
4475     {
4476       unsigned char* phash;
4477       unsigned int hashlen;
4478       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4479                                     local_symcount + forced_local_count,
4480                                     &phash, &hashlen);
4481
4482       Output_section* hashsec =
4483         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4484                                     elfcpp::SHF_ALLOC, false,
4485                                     ORDER_DYNAMIC_LINKER, false, false,
4486                                     false);
4487
4488       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4489                                                                    hashlen,
4490                                                                    align,
4491                                                                    "** hash");
4492       if (hashsec != NULL && hashdata != NULL)
4493         hashsec->add_output_section_data(hashdata);
4494
4495       if (hashsec != NULL)
4496         {
4497           if (dynsym != NULL)
4498             hashsec->set_link_section(dynsym);
4499
4500           // For a 64-bit target, the entries in .gnu.hash do not have
4501           // a uniform size, so we only set the entry size for a
4502           // 32-bit target.
4503           if (parameters->target().get_size() == 32)
4504             hashsec->set_entsize(4);
4505
4506           if (odyn != NULL)
4507             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4508         }
4509     }
4510
4511   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4512       || strcmp(parameters->options().hash_style(), "both") == 0)
4513     {
4514       unsigned char* phash;
4515       unsigned int hashlen;
4516       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4517                                     local_symcount + forced_local_count,
4518                                     &phash, &hashlen);
4519
4520       Output_section* hashsec =
4521         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4522                                     elfcpp::SHF_ALLOC, false,
4523                                     ORDER_DYNAMIC_LINKER, false, false,
4524                                     false);
4525
4526       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4527                                                                    hashlen,
4528                                                                    align,
4529                                                                    "** hash");
4530       if (hashsec != NULL && hashdata != NULL)
4531         hashsec->add_output_section_data(hashdata);
4532
4533       if (hashsec != NULL)
4534         {
4535           if (dynsym != NULL)
4536             hashsec->set_link_section(dynsym);
4537           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4538         }
4539
4540       if (odyn != NULL)
4541         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4542     }
4543 }
4544
4545 // Assign offsets to each local portion of the dynamic symbol table.
4546
4547 void
4548 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4549 {
4550   Output_section* dynsym = this->dynsym_section_;
4551   if (dynsym == NULL)
4552     return;
4553
4554   off_t off = dynsym->offset();
4555
4556   // Skip the dummy symbol at the start of the section.
4557   off += dynsym->entsize();
4558
4559   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4560        p != input_objects->relobj_end();
4561        ++p)
4562     {
4563       unsigned int count = (*p)->set_local_dynsym_offset(off);
4564       off += count * dynsym->entsize();
4565     }
4566 }
4567
4568 // Create the version sections.
4569
4570 void
4571 Layout::create_version_sections(const Versions* versions,
4572                                 const Symbol_table* symtab,
4573                                 unsigned int local_symcount,
4574                                 const std::vector<Symbol*>& dynamic_symbols,
4575                                 const Output_section* dynstr)
4576 {
4577   if (!versions->any_defs() && !versions->any_needs())
4578     return;
4579
4580   switch (parameters->size_and_endianness())
4581     {
4582 #ifdef HAVE_TARGET_32_LITTLE
4583     case Parameters::TARGET_32_LITTLE:
4584       this->sized_create_version_sections<32, false>(versions, symtab,
4585                                                      local_symcount,
4586                                                      dynamic_symbols, dynstr);
4587       break;
4588 #endif
4589 #ifdef HAVE_TARGET_32_BIG
4590     case Parameters::TARGET_32_BIG:
4591       this->sized_create_version_sections<32, true>(versions, symtab,
4592                                                     local_symcount,
4593                                                     dynamic_symbols, dynstr);
4594       break;
4595 #endif
4596 #ifdef HAVE_TARGET_64_LITTLE
4597     case Parameters::TARGET_64_LITTLE:
4598       this->sized_create_version_sections<64, false>(versions, symtab,
4599                                                      local_symcount,
4600                                                      dynamic_symbols, dynstr);
4601       break;
4602 #endif
4603 #ifdef HAVE_TARGET_64_BIG
4604     case Parameters::TARGET_64_BIG:
4605       this->sized_create_version_sections<64, true>(versions, symtab,
4606                                                     local_symcount,
4607                                                     dynamic_symbols, dynstr);
4608       break;
4609 #endif
4610     default:
4611       gold_unreachable();
4612     }
4613 }
4614
4615 // Create the version sections, sized version.
4616
4617 template<int size, bool big_endian>
4618 void
4619 Layout::sized_create_version_sections(
4620     const Versions* versions,
4621     const Symbol_table* symtab,
4622     unsigned int local_symcount,
4623     const std::vector<Symbol*>& dynamic_symbols,
4624     const Output_section* dynstr)
4625 {
4626   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4627                                                      elfcpp::SHT_GNU_versym,
4628                                                      elfcpp::SHF_ALLOC,
4629                                                      false,
4630                                                      ORDER_DYNAMIC_LINKER,
4631                                                      false, false, false);
4632
4633   // Check for NULL since a linker script may discard this section.
4634   if (vsec != NULL)
4635     {
4636       unsigned char* vbuf;
4637       unsigned int vsize;
4638       versions->symbol_section_contents<size, big_endian>(symtab,
4639                                                           &this->dynpool_,
4640                                                           local_symcount,
4641                                                           dynamic_symbols,
4642                                                           &vbuf, &vsize);
4643
4644       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4645                                                                 "** versions");
4646
4647       vsec->add_output_section_data(vdata);
4648       vsec->set_entsize(2);
4649       vsec->set_link_section(this->dynsym_section_);
4650     }
4651
4652   Output_data_dynamic* const odyn = this->dynamic_data_;
4653   if (odyn != NULL && vsec != NULL)
4654     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4655
4656   if (versions->any_defs())
4657     {
4658       Output_section* vdsec;
4659       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4660                                           elfcpp::SHT_GNU_verdef,
4661                                           elfcpp::SHF_ALLOC,
4662                                           false, ORDER_DYNAMIC_LINKER, false,
4663                                           false, false);
4664
4665       if (vdsec != NULL)
4666         {
4667           unsigned char* vdbuf;
4668           unsigned int vdsize;
4669           unsigned int vdentries;
4670           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4671                                                            &vdbuf, &vdsize,
4672                                                            &vdentries);
4673
4674           Output_section_data* vddata =
4675             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4676
4677           vdsec->add_output_section_data(vddata);
4678           vdsec->set_link_section(dynstr);
4679           vdsec->set_info(vdentries);
4680
4681           if (odyn != NULL)
4682             {
4683               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4684               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4685             }
4686         }
4687     }
4688
4689   if (versions->any_needs())
4690     {
4691       Output_section* vnsec;
4692       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4693                                           elfcpp::SHT_GNU_verneed,
4694                                           elfcpp::SHF_ALLOC,
4695                                           false, ORDER_DYNAMIC_LINKER, false,
4696                                           false, false);
4697
4698       if (vnsec != NULL)
4699         {
4700           unsigned char* vnbuf;
4701           unsigned int vnsize;
4702           unsigned int vnentries;
4703           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4704                                                             &vnbuf, &vnsize,
4705                                                             &vnentries);
4706
4707           Output_section_data* vndata =
4708             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4709
4710           vnsec->add_output_section_data(vndata);
4711           vnsec->set_link_section(dynstr);
4712           vnsec->set_info(vnentries);
4713
4714           if (odyn != NULL)
4715             {
4716               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4717               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4718             }
4719         }
4720     }
4721 }
4722
4723 // Create the .interp section and PT_INTERP segment.
4724
4725 void
4726 Layout::create_interp(const Target* target)
4727 {
4728   gold_assert(this->interp_segment_ == NULL);
4729
4730   const char* interp = parameters->options().dynamic_linker();
4731   if (interp == NULL)
4732     {
4733       interp = target->dynamic_linker();
4734       gold_assert(interp != NULL);
4735     }
4736
4737   size_t len = strlen(interp) + 1;
4738
4739   Output_section_data* odata = new Output_data_const(interp, len, 1);
4740
4741   Output_section* osec = this->choose_output_section(NULL, ".interp",
4742                                                      elfcpp::SHT_PROGBITS,
4743                                                      elfcpp::SHF_ALLOC,
4744                                                      false, ORDER_INTERP,
4745                                                      false, false, false);
4746   if (osec != NULL)
4747     osec->add_output_section_data(odata);
4748 }
4749
4750 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4751 // called by the target-specific code.  This does nothing if not doing
4752 // a dynamic link.
4753
4754 // USE_REL is true for REL relocs rather than RELA relocs.
4755
4756 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4757
4758 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4759 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4760 // some targets have multiple reloc sections in PLT_REL.
4761
4762 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4763 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4764 // section.
4765
4766 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4767 // executable.
4768
4769 void
4770 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4771                                 const Output_data* plt_rel,
4772                                 const Output_data_reloc_generic* dyn_rel,
4773                                 bool add_debug, bool dynrel_includes_plt)
4774 {
4775   Output_data_dynamic* odyn = this->dynamic_data_;
4776   if (odyn == NULL)
4777     return;
4778
4779   if (plt_got != NULL && plt_got->output_section() != NULL)
4780     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4781
4782   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4783     {
4784       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4785       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4786       odyn->add_constant(elfcpp::DT_PLTREL,
4787                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4788     }
4789
4790   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4791       || (dynrel_includes_plt
4792           && plt_rel != NULL
4793           && plt_rel->output_section() != NULL))
4794     {
4795       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4796       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4797       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4798                                 (have_dyn_rel
4799                                  ? dyn_rel->output_section()
4800                                  : plt_rel->output_section()));
4801       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4802       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4803         odyn->add_section_size(size_tag,
4804                                dyn_rel->output_section(),
4805                                plt_rel->output_section());
4806       else if (have_dyn_rel)
4807         odyn->add_section_size(size_tag, dyn_rel->output_section());
4808       else
4809         odyn->add_section_size(size_tag, plt_rel->output_section());
4810       const int size = parameters->target().get_size();
4811       elfcpp::DT rel_tag;
4812       int rel_size;
4813       if (use_rel)
4814         {
4815           rel_tag = elfcpp::DT_RELENT;
4816           if (size == 32)
4817             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4818           else if (size == 64)
4819             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4820           else
4821             gold_unreachable();
4822         }
4823       else
4824         {
4825           rel_tag = elfcpp::DT_RELAENT;
4826           if (size == 32)
4827             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4828           else if (size == 64)
4829             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4830           else
4831             gold_unreachable();
4832         }
4833       odyn->add_constant(rel_tag, rel_size);
4834
4835       if (parameters->options().combreloc() && have_dyn_rel)
4836         {
4837           size_t c = dyn_rel->relative_reloc_count();
4838           if (c > 0)
4839             odyn->add_constant((use_rel
4840                                 ? elfcpp::DT_RELCOUNT
4841                                 : elfcpp::DT_RELACOUNT),
4842                                c);
4843         }
4844     }
4845
4846   if (add_debug && !parameters->options().shared())
4847     {
4848       // The value of the DT_DEBUG tag is filled in by the dynamic
4849       // linker at run time, and used by the debugger.
4850       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4851     }
4852 }
4853
4854 void
4855 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4856 {
4857   Output_data_dynamic* odyn = this->dynamic_data_;
4858   if (odyn == NULL)
4859     return;
4860   odyn->add_constant(tag, val);
4861 }
4862
4863 // Finish the .dynamic section and PT_DYNAMIC segment.
4864
4865 void
4866 Layout::finish_dynamic_section(const Input_objects* input_objects,
4867                                const Symbol_table* symtab)
4868 {
4869   if (!this->script_options_->saw_phdrs_clause()
4870       && this->dynamic_section_ != NULL)
4871     {
4872       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4873                                                        (elfcpp::PF_R
4874                                                         | elfcpp::PF_W));
4875       oseg->add_output_section_to_nonload(this->dynamic_section_,
4876                                           elfcpp::PF_R | elfcpp::PF_W);
4877     }
4878
4879   Output_data_dynamic* const odyn = this->dynamic_data_;
4880   if (odyn == NULL)
4881     return;
4882
4883   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4884        p != input_objects->dynobj_end();
4885        ++p)
4886     {
4887       if (!(*p)->is_needed() && (*p)->as_needed())
4888         {
4889           // This dynamic object was linked with --as-needed, but it
4890           // is not needed.
4891           continue;
4892         }
4893
4894       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4895     }
4896
4897   if (parameters->options().shared())
4898     {
4899       const char* soname = parameters->options().soname();
4900       if (soname != NULL)
4901         odyn->add_string(elfcpp::DT_SONAME, soname);
4902     }
4903
4904   Symbol* sym = symtab->lookup(parameters->options().init());
4905   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4906     odyn->add_symbol(elfcpp::DT_INIT, sym);
4907
4908   sym = symtab->lookup(parameters->options().fini());
4909   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4910     odyn->add_symbol(elfcpp::DT_FINI, sym);
4911
4912   // Look for .init_array, .preinit_array and .fini_array by checking
4913   // section types.
4914   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4915       p != this->section_list_.end();
4916       ++p)
4917     switch((*p)->type())
4918       {
4919       case elfcpp::SHT_FINI_ARRAY:
4920         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4921         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4922         break;
4923       case elfcpp::SHT_INIT_ARRAY:
4924         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4925         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4926         break;
4927       case elfcpp::SHT_PREINIT_ARRAY:
4928         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4929         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4930         break;
4931       default:
4932         break;
4933       }
4934
4935   // Add a DT_RPATH entry if needed.
4936   const General_options::Dir_list& rpath(parameters->options().rpath());
4937   if (!rpath.empty())
4938     {
4939       std::string rpath_val;
4940       for (General_options::Dir_list::const_iterator p = rpath.begin();
4941            p != rpath.end();
4942            ++p)
4943         {
4944           if (rpath_val.empty())
4945             rpath_val = p->name();
4946           else
4947             {
4948               // Eliminate duplicates.
4949               General_options::Dir_list::const_iterator q;
4950               for (q = rpath.begin(); q != p; ++q)
4951                 if (q->name() == p->name())
4952                   break;
4953               if (q == p)
4954                 {
4955                   rpath_val += ':';
4956                   rpath_val += p->name();
4957                 }
4958             }
4959         }
4960
4961       if (!parameters->options().enable_new_dtags())
4962         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4963       else
4964         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4965     }
4966
4967   // Look for text segments that have dynamic relocations.
4968   bool have_textrel = false;
4969   if (!this->script_options_->saw_sections_clause())
4970     {
4971       for (Segment_list::const_iterator p = this->segment_list_.begin();
4972            p != this->segment_list_.end();
4973            ++p)
4974         {
4975           if ((*p)->type() == elfcpp::PT_LOAD
4976               && ((*p)->flags() & elfcpp::PF_W) == 0
4977               && (*p)->has_dynamic_reloc())
4978             {
4979               have_textrel = true;
4980               break;
4981             }
4982         }
4983     }
4984   else
4985     {
4986       // We don't know the section -> segment mapping, so we are
4987       // conservative and just look for readonly sections with
4988       // relocations.  If those sections wind up in writable segments,
4989       // then we have created an unnecessary DT_TEXTREL entry.
4990       for (Section_list::const_iterator p = this->section_list_.begin();
4991            p != this->section_list_.end();
4992            ++p)
4993         {
4994           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4995               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4996               && (*p)->has_dynamic_reloc())
4997             {
4998               have_textrel = true;
4999               break;
5000             }
5001         }
5002     }
5003
5004   if (parameters->options().filter() != NULL)
5005     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5006   if (parameters->options().any_auxiliary())
5007     {
5008       for (options::String_set::const_iterator p =
5009              parameters->options().auxiliary_begin();
5010            p != parameters->options().auxiliary_end();
5011            ++p)
5012         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5013     }
5014
5015   // Add a DT_FLAGS entry if necessary.
5016   unsigned int flags = 0;
5017   if (have_textrel)
5018     {
5019       // Add a DT_TEXTREL for compatibility with older loaders.
5020       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5021       flags |= elfcpp::DF_TEXTREL;
5022
5023       if (parameters->options().text())
5024         gold_error(_("read-only segment has dynamic relocations"));
5025       else if (parameters->options().warn_shared_textrel()
5026                && parameters->options().shared())
5027         gold_warning(_("shared library text segment is not shareable"));
5028     }
5029   if (parameters->options().shared() && this->has_static_tls())
5030     flags |= elfcpp::DF_STATIC_TLS;
5031   if (parameters->options().origin())
5032     flags |= elfcpp::DF_ORIGIN;
5033   if (parameters->options().Bsymbolic()
5034       && !parameters->options().have_dynamic_list())
5035     {
5036       flags |= elfcpp::DF_SYMBOLIC;
5037       // Add DT_SYMBOLIC for compatibility with older loaders.
5038       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5039     }
5040   if (parameters->options().now())
5041     flags |= elfcpp::DF_BIND_NOW;
5042   if (flags != 0)
5043     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5044
5045   flags = 0;
5046   if (parameters->options().global())
5047     flags |= elfcpp::DF_1_GLOBAL;
5048   if (parameters->options().initfirst())
5049     flags |= elfcpp::DF_1_INITFIRST;
5050   if (parameters->options().interpose())
5051     flags |= elfcpp::DF_1_INTERPOSE;
5052   if (parameters->options().loadfltr())
5053     flags |= elfcpp::DF_1_LOADFLTR;
5054   if (parameters->options().nodefaultlib())
5055     flags |= elfcpp::DF_1_NODEFLIB;
5056   if (parameters->options().nodelete())
5057     flags |= elfcpp::DF_1_NODELETE;
5058   if (parameters->options().nodlopen())
5059     flags |= elfcpp::DF_1_NOOPEN;
5060   if (parameters->options().nodump())
5061     flags |= elfcpp::DF_1_NODUMP;
5062   if (!parameters->options().shared())
5063     flags &= ~(elfcpp::DF_1_INITFIRST
5064                | elfcpp::DF_1_NODELETE
5065                | elfcpp::DF_1_NOOPEN);
5066   if (parameters->options().origin())
5067     flags |= elfcpp::DF_1_ORIGIN;
5068   if (parameters->options().now())
5069     flags |= elfcpp::DF_1_NOW;
5070   if (parameters->options().Bgroup())
5071     flags |= elfcpp::DF_1_GROUP;
5072   if (flags != 0)
5073     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5074 }
5075
5076 // Set the size of the _DYNAMIC symbol table to be the size of the
5077 // dynamic data.
5078
5079 void
5080 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5081 {
5082   Output_data_dynamic* const odyn = this->dynamic_data_;
5083   if (odyn == NULL)
5084     return;
5085   odyn->finalize_data_size();
5086   if (this->dynamic_symbol_ == NULL)
5087     return;
5088   off_t data_size = odyn->data_size();
5089   const int size = parameters->target().get_size();
5090   if (size == 32)
5091     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5092   else if (size == 64)
5093     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5094   else
5095     gold_unreachable();
5096 }
5097
5098 // The mapping of input section name prefixes to output section names.
5099 // In some cases one prefix is itself a prefix of another prefix; in
5100 // such a case the longer prefix must come first.  These prefixes are
5101 // based on the GNU linker default ELF linker script.
5102
5103 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5104 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5105 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5106 {
5107   MAPPING_INIT(".text.", ".text"),
5108   MAPPING_INIT(".rodata.", ".rodata"),
5109   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5110   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5111   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5112   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5113   MAPPING_INIT(".data.", ".data"),
5114   MAPPING_INIT(".bss.", ".bss"),
5115   MAPPING_INIT(".tdata.", ".tdata"),
5116   MAPPING_INIT(".tbss.", ".tbss"),
5117   MAPPING_INIT(".init_array.", ".init_array"),
5118   MAPPING_INIT(".fini_array.", ".fini_array"),
5119   MAPPING_INIT(".sdata.", ".sdata"),
5120   MAPPING_INIT(".sbss.", ".sbss"),
5121   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5122   // differently depending on whether it is creating a shared library.
5123   MAPPING_INIT(".sdata2.", ".sdata"),
5124   MAPPING_INIT(".sbss2.", ".sbss"),
5125   MAPPING_INIT(".lrodata.", ".lrodata"),
5126   MAPPING_INIT(".ldata.", ".ldata"),
5127   MAPPING_INIT(".lbss.", ".lbss"),
5128   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5129   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5130   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5131   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5132   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5133   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5134   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5135   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5136   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5137   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5138   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5139   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5140   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5141   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5142   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5143   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5144   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5145   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5146   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5147   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5148   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5149 };
5150
5151 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5152 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5153 {
5154   MAPPING_INIT(".text.hot.", ".text.hot"),
5155   MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5156   MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5157   MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5158   MAPPING_INIT(".text.startup.", ".text.startup"),
5159   MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5160   MAPPING_INIT(".text.exit.", ".text.exit"),
5161   MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5162   MAPPING_INIT(".text.", ".text"),
5163 };
5164 #undef MAPPING_INIT
5165 #undef MAPPING_INIT_EXACT
5166
5167 const int Layout::section_name_mapping_count =
5168   (sizeof(Layout::section_name_mapping)
5169    / sizeof(Layout::section_name_mapping[0]));
5170
5171 const int Layout::text_section_name_mapping_count =
5172   (sizeof(Layout::text_section_name_mapping)
5173    / sizeof(Layout::text_section_name_mapping[0]));
5174
5175 // Find section name NAME in PSNM and return the mapped name if found
5176 // with the length set in PLEN.
5177 const char *
5178 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5179                            const int count,
5180                            const char* name, size_t* plen)
5181 {
5182   for (int i = 0; i < count; ++i, ++psnm)
5183     {
5184       if (psnm->fromlen > 0)
5185         {
5186           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5187             {
5188               *plen = psnm->tolen;
5189               return psnm->to;
5190             }
5191         }
5192       else
5193         {
5194           if (strcmp(name, psnm->from) == 0)
5195             {
5196               *plen = psnm->tolen;
5197               return psnm->to;
5198             }
5199         }
5200     }
5201   return NULL;
5202 }
5203
5204 // Choose the output section name to use given an input section name.
5205 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5206 // length of NAME.
5207
5208 const char*
5209 Layout::output_section_name(const Relobj* relobj, const char* name,
5210                             size_t* plen)
5211 {
5212   // gcc 4.3 generates the following sorts of section names when it
5213   // needs a section name specific to a function:
5214   //   .text.FN
5215   //   .rodata.FN
5216   //   .sdata2.FN
5217   //   .data.FN
5218   //   .data.rel.FN
5219   //   .data.rel.local.FN
5220   //   .data.rel.ro.FN
5221   //   .data.rel.ro.local.FN
5222   //   .sdata.FN
5223   //   .bss.FN
5224   //   .sbss.FN
5225   //   .tdata.FN
5226   //   .tbss.FN
5227
5228   // The GNU linker maps all of those to the part before the .FN,
5229   // except that .data.rel.local.FN is mapped to .data, and
5230   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5231   // beginning with .data.rel.ro.local are grouped together.
5232
5233   // For an anonymous namespace, the string FN can contain a '.'.
5234
5235   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5236   // GNU linker maps to .rodata.
5237
5238   // The .data.rel.ro sections are used with -z relro.  The sections
5239   // are recognized by name.  We use the same names that the GNU
5240   // linker does for these sections.
5241
5242   // It is hard to handle this in a principled way, so we don't even
5243   // try.  We use a table of mappings.  If the input section name is
5244   // not found in the table, we simply use it as the output section
5245   // name.
5246
5247   if (parameters->options().keep_text_section_prefix()
5248       && is_prefix_of(".text", name))
5249     {
5250       const char* match = match_section_name(text_section_name_mapping,
5251                                              text_section_name_mapping_count,
5252                                              name, plen);
5253       if (match != NULL)
5254         return match;
5255     }
5256
5257   const char* match = match_section_name(section_name_mapping,
5258                                          section_name_mapping_count, name, plen);
5259   if (match != NULL)
5260     return match;
5261
5262   // As an additional complication, .ctors sections are output in
5263   // either .ctors or .init_array sections, and .dtors sections are
5264   // output in either .dtors or .fini_array sections.
5265   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5266     {
5267       if (parameters->options().ctors_in_init_array())
5268         {
5269           *plen = 11;
5270           return name[1] == 'c' ? ".init_array" : ".fini_array";
5271         }
5272       else
5273         {
5274           *plen = 6;
5275           return name[1] == 'c' ? ".ctors" : ".dtors";
5276         }
5277     }
5278   if (parameters->options().ctors_in_init_array()
5279       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5280     {
5281       // To make .init_array/.fini_array work with gcc we must exclude
5282       // .ctors and .dtors sections from the crtbegin and crtend
5283       // files.
5284       if (relobj == NULL
5285           || (!Layout::match_file_name(relobj, "crtbegin")
5286               && !Layout::match_file_name(relobj, "crtend")))
5287         {
5288           *plen = 11;
5289           return name[1] == 'c' ? ".init_array" : ".fini_array";
5290         }
5291     }
5292
5293   return name;
5294 }
5295
5296 // Return true if RELOBJ is an input file whose base name matches
5297 // FILE_NAME.  The base name must have an extension of ".o", and must
5298 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5299 // to match crtbegin.o as well as crtbeginS.o without getting confused
5300 // by other possibilities.  Overall matching the file name this way is
5301 // a dreadful hack, but the GNU linker does it in order to better
5302 // support gcc, and we need to be compatible.
5303
5304 bool
5305 Layout::match_file_name(const Relobj* relobj, const char* match)
5306 {
5307   const std::string& file_name(relobj->name());
5308   const char* base_name = lbasename(file_name.c_str());
5309   size_t match_len = strlen(match);
5310   if (strncmp(base_name, match, match_len) != 0)
5311     return false;
5312   size_t base_len = strlen(base_name);
5313   if (base_len != match_len + 2 && base_len != match_len + 3)
5314     return false;
5315   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5316 }
5317
5318 // Check if a comdat group or .gnu.linkonce section with the given
5319 // NAME is selected for the link.  If there is already a section,
5320 // *KEPT_SECTION is set to point to the existing section and the
5321 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5322 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5323 // *KEPT_SECTION is set to the internal copy and the function returns
5324 // true.
5325
5326 bool
5327 Layout::find_or_add_kept_section(const std::string& name,
5328                                  Relobj* object,
5329                                  unsigned int shndx,
5330                                  bool is_comdat,
5331                                  bool is_group_name,
5332                                  Kept_section** kept_section)
5333 {
5334   // It's normal to see a couple of entries here, for the x86 thunk
5335   // sections.  If we see more than a few, we're linking a C++
5336   // program, and we resize to get more space to minimize rehashing.
5337   if (this->signatures_.size() > 4
5338       && !this->resized_signatures_)
5339     {
5340       reserve_unordered_map(&this->signatures_,
5341                             this->number_of_input_files_ * 64);
5342       this->resized_signatures_ = true;
5343     }
5344
5345   Kept_section candidate;
5346   std::pair<Signatures::iterator, bool> ins =
5347     this->signatures_.insert(std::make_pair(name, candidate));
5348
5349   if (kept_section != NULL)
5350     *kept_section = &ins.first->second;
5351   if (ins.second)
5352     {
5353       // This is the first time we've seen this signature.
5354       ins.first->second.set_object(object);
5355       ins.first->second.set_shndx(shndx);
5356       if (is_comdat)
5357         ins.first->second.set_is_comdat();
5358       if (is_group_name)
5359         ins.first->second.set_is_group_name();
5360       return true;
5361     }
5362
5363   // We have already seen this signature.
5364
5365   if (ins.first->second.is_group_name())
5366     {
5367       // We've already seen a real section group with this signature.
5368       // If the kept group is from a plugin object, and we're in the
5369       // replacement phase, accept the new one as a replacement.
5370       if (ins.first->second.object() == NULL
5371           && parameters->options().plugins()->in_replacement_phase())
5372         {
5373           ins.first->second.set_object(object);
5374           ins.first->second.set_shndx(shndx);
5375           return true;
5376         }
5377       return false;
5378     }
5379   else if (is_group_name)
5380     {
5381       // This is a real section group, and we've already seen a
5382       // linkonce section with this signature.  Record that we've seen
5383       // a section group, and don't include this section group.
5384       ins.first->second.set_is_group_name();
5385       return false;
5386     }
5387   else
5388     {
5389       // We've already seen a linkonce section and this is a linkonce
5390       // section.  These don't block each other--this may be the same
5391       // symbol name with different section types.
5392       return true;
5393     }
5394 }
5395
5396 // Store the allocated sections into the section list.
5397
5398 void
5399 Layout::get_allocated_sections(Section_list* section_list) const
5400 {
5401   for (Section_list::const_iterator p = this->section_list_.begin();
5402        p != this->section_list_.end();
5403        ++p)
5404     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5405       section_list->push_back(*p);
5406 }
5407
5408 // Store the executable sections into the section list.
5409
5410 void
5411 Layout::get_executable_sections(Section_list* section_list) const
5412 {
5413   for (Section_list::const_iterator p = this->section_list_.begin();
5414        p != this->section_list_.end();
5415        ++p)
5416     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5417         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5418       section_list->push_back(*p);
5419 }
5420
5421 // Create an output segment.
5422
5423 Output_segment*
5424 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5425 {
5426   gold_assert(!parameters->options().relocatable());
5427   Output_segment* oseg = new Output_segment(type, flags);
5428   this->segment_list_.push_back(oseg);
5429
5430   if (type == elfcpp::PT_TLS)
5431     this->tls_segment_ = oseg;
5432   else if (type == elfcpp::PT_GNU_RELRO)
5433     this->relro_segment_ = oseg;
5434   else if (type == elfcpp::PT_INTERP)
5435     this->interp_segment_ = oseg;
5436
5437   return oseg;
5438 }
5439
5440 // Return the file offset of the normal symbol table.
5441
5442 off_t
5443 Layout::symtab_section_offset() const
5444 {
5445   if (this->symtab_section_ != NULL)
5446     return this->symtab_section_->offset();
5447   return 0;
5448 }
5449
5450 // Return the section index of the normal symbol table.  It may have
5451 // been stripped by the -s/--strip-all option.
5452
5453 unsigned int
5454 Layout::symtab_section_shndx() const
5455 {
5456   if (this->symtab_section_ != NULL)
5457     return this->symtab_section_->out_shndx();
5458   return 0;
5459 }
5460
5461 // Write out the Output_sections.  Most won't have anything to write,
5462 // since most of the data will come from input sections which are
5463 // handled elsewhere.  But some Output_sections do have Output_data.
5464
5465 void
5466 Layout::write_output_sections(Output_file* of) const
5467 {
5468   for (Section_list::const_iterator p = this->section_list_.begin();
5469        p != this->section_list_.end();
5470        ++p)
5471     {
5472       if (!(*p)->after_input_sections())
5473         (*p)->write(of);
5474     }
5475 }
5476
5477 // Write out data not associated with a section or the symbol table.
5478
5479 void
5480 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5481 {
5482   if (!parameters->options().strip_all())
5483     {
5484       const Output_section* symtab_section = this->symtab_section_;
5485       for (Section_list::const_iterator p = this->section_list_.begin();
5486            p != this->section_list_.end();
5487            ++p)
5488         {
5489           if ((*p)->needs_symtab_index())
5490             {
5491               gold_assert(symtab_section != NULL);
5492               unsigned int index = (*p)->symtab_index();
5493               gold_assert(index > 0 && index != -1U);
5494               off_t off = (symtab_section->offset()
5495                            + index * symtab_section->entsize());
5496               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5497             }
5498         }
5499     }
5500
5501   const Output_section* dynsym_section = this->dynsym_section_;
5502   for (Section_list::const_iterator p = this->section_list_.begin();
5503        p != this->section_list_.end();
5504        ++p)
5505     {
5506       if ((*p)->needs_dynsym_index())
5507         {
5508           gold_assert(dynsym_section != NULL);
5509           unsigned int index = (*p)->dynsym_index();
5510           gold_assert(index > 0 && index != -1U);
5511           off_t off = (dynsym_section->offset()
5512                        + index * dynsym_section->entsize());
5513           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5514         }
5515     }
5516
5517   // Write out the Output_data which are not in an Output_section.
5518   for (Data_list::const_iterator p = this->special_output_list_.begin();
5519        p != this->special_output_list_.end();
5520        ++p)
5521     (*p)->write(of);
5522
5523   // Write out the Output_data which are not in an Output_section
5524   // and are regenerated in each iteration of relaxation.
5525   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5526        p != this->relax_output_list_.end();
5527        ++p)
5528     (*p)->write(of);
5529 }
5530
5531 // Write out the Output_sections which can only be written after the
5532 // input sections are complete.
5533
5534 void
5535 Layout::write_sections_after_input_sections(Output_file* of)
5536 {
5537   // Determine the final section offsets, and thus the final output
5538   // file size.  Note we finalize the .shstrab last, to allow the
5539   // after_input_section sections to modify their section-names before
5540   // writing.
5541   if (this->any_postprocessing_sections_)
5542     {
5543       off_t off = this->output_file_size_;
5544       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5545
5546       // Now that we've finalized the names, we can finalize the shstrab.
5547       off =
5548         this->set_section_offsets(off,
5549                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5550
5551       if (off > this->output_file_size_)
5552         {
5553           of->resize(off);
5554           this->output_file_size_ = off;
5555         }
5556     }
5557
5558   for (Section_list::const_iterator p = this->section_list_.begin();
5559        p != this->section_list_.end();
5560        ++p)
5561     {
5562       if ((*p)->after_input_sections())
5563         (*p)->write(of);
5564     }
5565
5566   this->section_headers_->write(of);
5567 }
5568
5569 // If a tree-style build ID was requested, the parallel part of that computation
5570 // is already done, and the final hash-of-hashes is computed here.  For other
5571 // types of build IDs, all the work is done here.
5572
5573 void
5574 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5575                        size_t size_of_hashes) const
5576 {
5577   if (this->build_id_note_ == NULL)
5578     return;
5579
5580   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5581                                           this->build_id_note_->data_size());
5582
5583   if (array_of_hashes == NULL)
5584     {
5585       const size_t output_file_size = this->output_file_size();
5586       const unsigned char* iv = of->get_input_view(0, output_file_size);
5587       const char* style = parameters->options().build_id();
5588
5589       // If we get here with style == "tree" then the output must be
5590       // too small for chunking, and we use SHA-1 in that case.
5591       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5592         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5593       else if (strcmp(style, "md5") == 0)
5594         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5595       else
5596         gold_unreachable();
5597
5598       of->free_input_view(0, output_file_size, iv);
5599     }
5600   else
5601     {
5602       // Non-overlapping substrings of the output file have been hashed.
5603       // Compute SHA-1 hash of the hashes.
5604       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5605                   size_of_hashes, ov);
5606       delete[] array_of_hashes;
5607     }
5608
5609   of->write_output_view(this->build_id_note_->offset(),
5610                         this->build_id_note_->data_size(),
5611                         ov);
5612 }
5613
5614 // Write out a binary file.  This is called after the link is
5615 // complete.  IN is the temporary output file we used to generate the
5616 // ELF code.  We simply walk through the segments, read them from
5617 // their file offset in IN, and write them to their load address in
5618 // the output file.  FIXME: with a bit more work, we could support
5619 // S-records and/or Intel hex format here.
5620
5621 void
5622 Layout::write_binary(Output_file* in) const
5623 {
5624   gold_assert(parameters->options().oformat_enum()
5625               == General_options::OBJECT_FORMAT_BINARY);
5626
5627   // Get the size of the binary file.
5628   uint64_t max_load_address = 0;
5629   for (Segment_list::const_iterator p = this->segment_list_.begin();
5630        p != this->segment_list_.end();
5631        ++p)
5632     {
5633       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5634         {
5635           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5636           if (max_paddr > max_load_address)
5637             max_load_address = max_paddr;
5638         }
5639     }
5640
5641   Output_file out(parameters->options().output_file_name());
5642   out.open(max_load_address);
5643
5644   for (Segment_list::const_iterator p = this->segment_list_.begin();
5645        p != this->segment_list_.end();
5646        ++p)
5647     {
5648       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5649         {
5650           const unsigned char* vin = in->get_input_view((*p)->offset(),
5651                                                         (*p)->filesz());
5652           unsigned char* vout = out.get_output_view((*p)->paddr(),
5653                                                     (*p)->filesz());
5654           memcpy(vout, vin, (*p)->filesz());
5655           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5656           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5657         }
5658     }
5659
5660   out.close();
5661 }
5662
5663 // Print the output sections to the map file.
5664
5665 void
5666 Layout::print_to_mapfile(Mapfile* mapfile) const
5667 {
5668   for (Segment_list::const_iterator p = this->segment_list_.begin();
5669        p != this->segment_list_.end();
5670        ++p)
5671     (*p)->print_sections_to_mapfile(mapfile);
5672   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5673        p != this->unattached_section_list_.end();
5674        ++p)
5675     (*p)->print_to_mapfile(mapfile);
5676 }
5677
5678 // Print statistical information to stderr.  This is used for --stats.
5679
5680 void
5681 Layout::print_stats() const
5682 {
5683   this->namepool_.print_stats("section name pool");
5684   this->sympool_.print_stats("output symbol name pool");
5685   this->dynpool_.print_stats("dynamic name pool");
5686
5687   for (Section_list::const_iterator p = this->section_list_.begin();
5688        p != this->section_list_.end();
5689        ++p)
5690     (*p)->print_merge_stats();
5691 }
5692
5693 // Write_sections_task methods.
5694
5695 // We can always run this task.
5696
5697 Task_token*
5698 Write_sections_task::is_runnable()
5699 {
5700   return NULL;
5701 }
5702
5703 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5704 // when finished.
5705
5706 void
5707 Write_sections_task::locks(Task_locker* tl)
5708 {
5709   tl->add(this, this->output_sections_blocker_);
5710   if (this->input_sections_blocker_ != NULL)
5711     tl->add(this, this->input_sections_blocker_);
5712   tl->add(this, this->final_blocker_);
5713 }
5714
5715 // Run the task--write out the data.
5716
5717 void
5718 Write_sections_task::run(Workqueue*)
5719 {
5720   this->layout_->write_output_sections(this->of_);
5721 }
5722
5723 // Write_data_task methods.
5724
5725 // We can always run this task.
5726
5727 Task_token*
5728 Write_data_task::is_runnable()
5729 {
5730   return NULL;
5731 }
5732
5733 // We need to unlock FINAL_BLOCKER when finished.
5734
5735 void
5736 Write_data_task::locks(Task_locker* tl)
5737 {
5738   tl->add(this, this->final_blocker_);
5739 }
5740
5741 // Run the task--write out the data.
5742
5743 void
5744 Write_data_task::run(Workqueue*)
5745 {
5746   this->layout_->write_data(this->symtab_, this->of_);
5747 }
5748
5749 // Write_symbols_task methods.
5750
5751 // We can always run this task.
5752
5753 Task_token*
5754 Write_symbols_task::is_runnable()
5755 {
5756   return NULL;
5757 }
5758
5759 // We need to unlock FINAL_BLOCKER when finished.
5760
5761 void
5762 Write_symbols_task::locks(Task_locker* tl)
5763 {
5764   tl->add(this, this->final_blocker_);
5765 }
5766
5767 // Run the task--write out the symbols.
5768
5769 void
5770 Write_symbols_task::run(Workqueue*)
5771 {
5772   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5773                                this->layout_->symtab_xindex(),
5774                                this->layout_->dynsym_xindex(), this->of_);
5775 }
5776
5777 // Write_after_input_sections_task methods.
5778
5779 // We can only run this task after the input sections have completed.
5780
5781 Task_token*
5782 Write_after_input_sections_task::is_runnable()
5783 {
5784   if (this->input_sections_blocker_->is_blocked())
5785     return this->input_sections_blocker_;
5786   return NULL;
5787 }
5788
5789 // We need to unlock FINAL_BLOCKER when finished.
5790
5791 void
5792 Write_after_input_sections_task::locks(Task_locker* tl)
5793 {
5794   tl->add(this, this->final_blocker_);
5795 }
5796
5797 // Run the task.
5798
5799 void
5800 Write_after_input_sections_task::run(Workqueue*)
5801 {
5802   this->layout_->write_sections_after_input_sections(this->of_);
5803 }
5804
5805 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5806 // or as a "tree" where each chunk of the string is hashed and then those
5807 // hashes are put into a (much smaller) string which is hashed with sha1.
5808 // We compute a checksum over the entire file because that is simplest.
5809
5810 void
5811 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5812 {
5813   Task_token* post_hash_tasks_blocker = new Task_token(true);
5814   const Layout* layout = this->layout_;
5815   Output_file* of = this->of_;
5816   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5817                            : static_cast<size_t>(layout->output_file_size()));
5818   unsigned char* array_of_hashes = NULL;
5819   size_t size_of_hashes = 0;
5820
5821   if (strcmp(this->options_->build_id(), "tree") == 0
5822       && this->options_->build_id_chunk_size_for_treehash() > 0
5823       && filesize > 0
5824       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5825     {
5826       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5827       const size_t chunk_size =
5828           this->options_->build_id_chunk_size_for_treehash();
5829       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5830       post_hash_tasks_blocker->add_blockers(num_hashes);
5831       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5832       array_of_hashes = new unsigned char[size_of_hashes];
5833       unsigned char *dst = array_of_hashes;
5834       for (size_t i = 0, src_offset = 0; i < num_hashes;
5835            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5836         {
5837           size_t size = std::min(chunk_size, filesize - src_offset);
5838           workqueue->queue(new Hash_task(of,
5839                                          src_offset,
5840                                          size,
5841                                          dst,
5842                                          post_hash_tasks_blocker));
5843         }
5844     }
5845
5846   // Queue the final task to write the build id and close the output file.
5847   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5848                                                            layout,
5849                                                            of,
5850                                                            array_of_hashes,
5851                                                            size_of_hashes),
5852                                      post_hash_tasks_blocker,
5853                                      "Task_function Close_task_runner"));
5854 }
5855
5856 // Close_task_runner methods.
5857
5858 // Finish up the build ID computation, if necessary, and write a binary file,
5859 // if necessary.  Then close the output file.
5860
5861 void
5862 Close_task_runner::run(Workqueue*, const Task*)
5863 {
5864   // At this point the multi-threaded part of the build ID computation,
5865   // if any, is done.  See Build_id_task_runner.
5866   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5867                                 this->size_of_hashes_);
5868
5869   // If we've been asked to create a binary file, we do so here.
5870   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5871     this->layout_->write_binary(this->of_);
5872
5873   this->of_->close();
5874 }
5875
5876 // Instantiate the templates we need.  We could use the configure
5877 // script to restrict this to only the ones for implemented targets.
5878
5879 #ifdef HAVE_TARGET_32_LITTLE
5880 template
5881 Output_section*
5882 Layout::init_fixed_output_section<32, false>(
5883     const char* name,
5884     elfcpp::Shdr<32, false>& shdr);
5885 #endif
5886
5887 #ifdef HAVE_TARGET_32_BIG
5888 template
5889 Output_section*
5890 Layout::init_fixed_output_section<32, true>(
5891     const char* name,
5892     elfcpp::Shdr<32, true>& shdr);
5893 #endif
5894
5895 #ifdef HAVE_TARGET_64_LITTLE
5896 template
5897 Output_section*
5898 Layout::init_fixed_output_section<64, false>(
5899     const char* name,
5900     elfcpp::Shdr<64, false>& shdr);
5901 #endif
5902
5903 #ifdef HAVE_TARGET_64_BIG
5904 template
5905 Output_section*
5906 Layout::init_fixed_output_section<64, true>(
5907     const char* name,
5908     elfcpp::Shdr<64, true>& shdr);
5909 #endif
5910
5911 #ifdef HAVE_TARGET_32_LITTLE
5912 template
5913 Output_section*
5914 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5915                           unsigned int shndx,
5916                           const char* name,
5917                           const elfcpp::Shdr<32, false>& shdr,
5918                           unsigned int, unsigned int, off_t*);
5919 #endif
5920
5921 #ifdef HAVE_TARGET_32_BIG
5922 template
5923 Output_section*
5924 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5925                          unsigned int shndx,
5926                          const char* name,
5927                          const elfcpp::Shdr<32, true>& shdr,
5928                          unsigned int, unsigned int, off_t*);
5929 #endif
5930
5931 #ifdef HAVE_TARGET_64_LITTLE
5932 template
5933 Output_section*
5934 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5935                           unsigned int shndx,
5936                           const char* name,
5937                           const elfcpp::Shdr<64, false>& shdr,
5938                           unsigned int, unsigned int, off_t*);
5939 #endif
5940
5941 #ifdef HAVE_TARGET_64_BIG
5942 template
5943 Output_section*
5944 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5945                          unsigned int shndx,
5946                          const char* name,
5947                          const elfcpp::Shdr<64, true>& shdr,
5948                          unsigned int, unsigned int, off_t*);
5949 #endif
5950
5951 #ifdef HAVE_TARGET_32_LITTLE
5952 template
5953 Output_section*
5954 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5955                                 unsigned int reloc_shndx,
5956                                 const elfcpp::Shdr<32, false>& shdr,
5957                                 Output_section* data_section,
5958                                 Relocatable_relocs* rr);
5959 #endif
5960
5961 #ifdef HAVE_TARGET_32_BIG
5962 template
5963 Output_section*
5964 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5965                                unsigned int reloc_shndx,
5966                                const elfcpp::Shdr<32, true>& shdr,
5967                                Output_section* data_section,
5968                                Relocatable_relocs* rr);
5969 #endif
5970
5971 #ifdef HAVE_TARGET_64_LITTLE
5972 template
5973 Output_section*
5974 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5975                                 unsigned int reloc_shndx,
5976                                 const elfcpp::Shdr<64, false>& shdr,
5977                                 Output_section* data_section,
5978                                 Relocatable_relocs* rr);
5979 #endif
5980
5981 #ifdef HAVE_TARGET_64_BIG
5982 template
5983 Output_section*
5984 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5985                                unsigned int reloc_shndx,
5986                                const elfcpp::Shdr<64, true>& shdr,
5987                                Output_section* data_section,
5988                                Relocatable_relocs* rr);
5989 #endif
5990
5991 #ifdef HAVE_TARGET_32_LITTLE
5992 template
5993 void
5994 Layout::layout_group<32, false>(Symbol_table* symtab,
5995                                 Sized_relobj_file<32, false>* object,
5996                                 unsigned int,
5997                                 const char* group_section_name,
5998                                 const char* signature,
5999                                 const elfcpp::Shdr<32, false>& shdr,
6000                                 elfcpp::Elf_Word flags,
6001                                 std::vector<unsigned int>* shndxes);
6002 #endif
6003
6004 #ifdef HAVE_TARGET_32_BIG
6005 template
6006 void
6007 Layout::layout_group<32, true>(Symbol_table* symtab,
6008                                Sized_relobj_file<32, true>* object,
6009                                unsigned int,
6010                                const char* group_section_name,
6011                                const char* signature,
6012                                const elfcpp::Shdr<32, true>& shdr,
6013                                elfcpp::Elf_Word flags,
6014                                std::vector<unsigned int>* shndxes);
6015 #endif
6016
6017 #ifdef HAVE_TARGET_64_LITTLE
6018 template
6019 void
6020 Layout::layout_group<64, false>(Symbol_table* symtab,
6021                                 Sized_relobj_file<64, false>* object,
6022                                 unsigned int,
6023                                 const char* group_section_name,
6024                                 const char* signature,
6025                                 const elfcpp::Shdr<64, false>& shdr,
6026                                 elfcpp::Elf_Word flags,
6027                                 std::vector<unsigned int>* shndxes);
6028 #endif
6029
6030 #ifdef HAVE_TARGET_64_BIG
6031 template
6032 void
6033 Layout::layout_group<64, true>(Symbol_table* symtab,
6034                                Sized_relobj_file<64, true>* object,
6035                                unsigned int,
6036                                const char* group_section_name,
6037                                const char* signature,
6038                                const elfcpp::Shdr<64, true>& shdr,
6039                                elfcpp::Elf_Word flags,
6040                                std::vector<unsigned int>* shndxes);
6041 #endif
6042
6043 #ifdef HAVE_TARGET_32_LITTLE
6044 template
6045 Output_section*
6046 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6047                                    const unsigned char* symbols,
6048                                    off_t symbols_size,
6049                                    const unsigned char* symbol_names,
6050                                    off_t symbol_names_size,
6051                                    unsigned int shndx,
6052                                    const elfcpp::Shdr<32, false>& shdr,
6053                                    unsigned int reloc_shndx,
6054                                    unsigned int reloc_type,
6055                                    off_t* off);
6056 #endif
6057
6058 #ifdef HAVE_TARGET_32_BIG
6059 template
6060 Output_section*
6061 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6062                                   const unsigned char* symbols,
6063                                   off_t symbols_size,
6064                                   const unsigned char* symbol_names,
6065                                   off_t symbol_names_size,
6066                                   unsigned int shndx,
6067                                   const elfcpp::Shdr<32, true>& shdr,
6068                                   unsigned int reloc_shndx,
6069                                   unsigned int reloc_type,
6070                                   off_t* off);
6071 #endif
6072
6073 #ifdef HAVE_TARGET_64_LITTLE
6074 template
6075 Output_section*
6076 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6077                                    const unsigned char* symbols,
6078                                    off_t symbols_size,
6079                                    const unsigned char* symbol_names,
6080                                    off_t symbol_names_size,
6081                                    unsigned int shndx,
6082                                    const elfcpp::Shdr<64, false>& shdr,
6083                                    unsigned int reloc_shndx,
6084                                    unsigned int reloc_type,
6085                                    off_t* off);
6086 #endif
6087
6088 #ifdef HAVE_TARGET_64_BIG
6089 template
6090 Output_section*
6091 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6092                                   const unsigned char* symbols,
6093                                   off_t symbols_size,
6094                                   const unsigned char* symbol_names,
6095                                   off_t symbol_names_size,
6096                                   unsigned int shndx,
6097                                   const elfcpp::Shdr<64, true>& shdr,
6098                                   unsigned int reloc_shndx,
6099                                   unsigned int reloc_type,
6100                                   off_t* off);
6101 #endif
6102
6103 #ifdef HAVE_TARGET_32_LITTLE
6104 template
6105 void
6106 Layout::add_to_gdb_index(bool is_type_unit,
6107                          Sized_relobj<32, false>* object,
6108                          const unsigned char* symbols,
6109                          off_t symbols_size,
6110                          unsigned int shndx,
6111                          unsigned int reloc_shndx,
6112                          unsigned int reloc_type);
6113 #endif
6114
6115 #ifdef HAVE_TARGET_32_BIG
6116 template
6117 void
6118 Layout::add_to_gdb_index(bool is_type_unit,
6119                          Sized_relobj<32, true>* object,
6120                          const unsigned char* symbols,
6121                          off_t symbols_size,
6122                          unsigned int shndx,
6123                          unsigned int reloc_shndx,
6124                          unsigned int reloc_type);
6125 #endif
6126
6127 #ifdef HAVE_TARGET_64_LITTLE
6128 template
6129 void
6130 Layout::add_to_gdb_index(bool is_type_unit,
6131                          Sized_relobj<64, false>* object,
6132                          const unsigned char* symbols,
6133                          off_t symbols_size,
6134                          unsigned int shndx,
6135                          unsigned int reloc_shndx,
6136                          unsigned int reloc_type);
6137 #endif
6138
6139 #ifdef HAVE_TARGET_64_BIG
6140 template
6141 void
6142 Layout::add_to_gdb_index(bool is_type_unit,
6143                          Sized_relobj<64, true>* object,
6144                          const unsigned char* symbols,
6145                          off_t symbols_size,
6146                          unsigned int shndx,
6147                          unsigned int reloc_shndx,
6148                          unsigned int reloc_type);
6149 #endif
6150
6151 } // End namespace gold.