d0726ae2ef05e11ec1874101c1ffacede1dcde68
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64     const Layout::Section_list& sections,
65     const Layout::Data_list& special_outputs)
66 {
67   for(Layout::Section_list::const_iterator p = sections.begin();
68       p != sections.end();
69       ++p)
70     gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72   for(Layout::Data_list::const_iterator p = special_outputs.begin();
73       p != special_outputs.end();
74       ++p)
75     gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77   
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82     const Layout::Section_list& sections)
83 {
84   for(Layout::Section_list::const_iterator p = sections.begin();
85       p != sections.end();
86       ++p)
87     {
88       Output_section* os = *p;
89       Section_info info;
90       info.output_section = os;
91       info.address = os->is_address_valid() ? os->address() : 0;
92       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93       info.offset = os->is_offset_valid()? os->offset() : -1 ;
94       this->section_infos_.push_back(info);
95     }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102     const Layout::Section_list& sections)
103 {
104   size_t i = 0;
105   for(Layout::Section_list::const_iterator p = sections.begin();
106       p != sections.end();
107       ++p, ++i)
108     {
109       Output_section* os = *p;
110       uint64_t address = os->is_address_valid() ? os->address() : 0;
111       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114       if (i >= this->section_infos_.size())
115         {
116           gold_fatal("Section_info of %s missing.\n", os->name());
117         }
118       const Section_info& info = this->section_infos_[i];
119       if (os != info.output_section)
120         gold_fatal("Section order changed.  Expecting %s but see %s\n",
121                    info.output_section->name(), os->name());
122       if (address != info.address
123           || data_size != info.data_size
124           || offset != info.offset)
125         gold_fatal("Section %s changed.\n", os->name());
126     }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections.  This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137   off_t file_size = this->layout_->finalize(this->input_objects_,
138                                             this->symtab_,
139                                             this->target_,
140                                             task);
141
142   // Now we know the final size of the output file and we know where
143   // each piece of information goes.
144
145   if (this->mapfile_ != NULL)
146     {
147       this->mapfile_->print_discarded_sections(this->input_objects_);
148       this->layout_->print_to_mapfile(this->mapfile_);
149     }
150
151   Output_file* of = new Output_file(parameters->options().output_file_name());
152   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153     of->set_is_temporary();
154   of->open(file_size);
155
156   // Queue up the final set of tasks.
157   gold::queue_final_tasks(this->options_, this->input_objects_,
158                           this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164   : number_of_input_files_(number_of_input_files),
165     script_options_(script_options),
166     namepool_(),
167     sympool_(),
168     dynpool_(),
169     signatures_(),
170     section_name_map_(),
171     segment_list_(),
172     section_list_(),
173     unattached_section_list_(),
174     special_output_list_(),
175     section_headers_(NULL),
176     tls_segment_(NULL),
177     relro_segment_(NULL),
178     symtab_section_(NULL),
179     symtab_xindex_(NULL),
180     dynsym_section_(NULL),
181     dynsym_xindex_(NULL),
182     dynamic_section_(NULL),
183     dynamic_symbol_(NULL),
184     dynamic_data_(NULL),
185     eh_frame_section_(NULL),
186     eh_frame_data_(NULL),
187     added_eh_frame_data_(false),
188     eh_frame_hdr_section_(NULL),
189     build_id_note_(NULL),
190     debug_abbrev_(NULL),
191     debug_info_(NULL),
192     group_signatures_(),
193     output_file_size_(-1),
194     sections_are_attached_(false),
195     input_requires_executable_stack_(false),
196     input_with_gnu_stack_note_(false),
197     input_without_gnu_stack_note_(false),
198     has_static_tls_(false),
199     any_postprocessing_sections_(false),
200     resized_signatures_(false),
201     have_stabstr_section_(false),
202     incremental_inputs_(NULL),
203     record_output_section_data_from_script_(false),
204     script_output_section_data_list_(),
205     segment_states_(NULL),
206     relaxation_debug_check_(NULL)
207 {
208   // Make space for more than enough segments for a typical file.
209   // This is just for efficiency--it's OK if we wind up needing more.
210   this->segment_list_.reserve(12);
211
212   // We expect two unattached Output_data objects: the file header and
213   // the segment headers.
214   this->special_output_list_.reserve(2);
215
216   // Initialize structure needed for an incremental build.
217   if (parameters->options().incremental())
218     this->incremental_inputs_ = new Incremental_inputs;
219
220   // The section name pool is worth optimizing in all cases, because
221   // it is small, but there are often overlaps due to .rel sections.
222   this->namepool_.set_optimize();
223 }
224
225 // Hash a key we use to look up an output section mapping.
226
227 size_t
228 Layout::Hash_key::operator()(const Layout::Key& k) const
229 {
230  return k.first + k.second.first + k.second.second;
231 }
232
233 // Returns whether the given section is in the list of
234 // debug-sections-used-by-some-version-of-gdb.  Currently,
235 // we've checked versions of gdb up to and including 6.7.1.
236
237 static const char* gdb_sections[] =
238 { ".debug_abbrev",
239   // ".debug_aranges",   // not used by gdb as of 6.7.1
240   ".debug_frame",
241   ".debug_info",
242   ".debug_line",
243   ".debug_loc",
244   ".debug_macinfo",
245   // ".debug_pubnames",  // not used by gdb as of 6.7.1
246   ".debug_ranges",
247   ".debug_str",
248 };
249
250 static const char* lines_only_debug_sections[] =
251 { ".debug_abbrev",
252   // ".debug_aranges",   // not used by gdb as of 6.7.1
253   // ".debug_frame",
254   ".debug_info",
255   ".debug_line",
256   // ".debug_loc",
257   // ".debug_macinfo",
258   // ".debug_pubnames",  // not used by gdb as of 6.7.1
259   // ".debug_ranges",
260   ".debug_str",
261 };
262
263 static inline bool
264 is_gdb_debug_section(const char* str)
265 {
266   // We can do this faster: binary search or a hashtable.  But why bother?
267   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
268     if (strcmp(str, gdb_sections[i]) == 0)
269       return true;
270   return false;
271 }
272
273 static inline bool
274 is_lines_only_debug_section(const char* str)
275 {
276   // We can do this faster: binary search or a hashtable.  But why bother?
277   for (size_t i = 0;
278        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
279        ++i)
280     if (strcmp(str, lines_only_debug_sections[i]) == 0)
281       return true;
282   return false;
283 }
284
285 // Whether to include this section in the link.
286
287 template<int size, bool big_endian>
288 bool
289 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
290                         const elfcpp::Shdr<size, big_endian>& shdr)
291 {
292   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
293     return false;
294
295   switch (shdr.get_sh_type())
296     {
297     case elfcpp::SHT_NULL:
298     case elfcpp::SHT_SYMTAB:
299     case elfcpp::SHT_DYNSYM:
300     case elfcpp::SHT_HASH:
301     case elfcpp::SHT_DYNAMIC:
302     case elfcpp::SHT_SYMTAB_SHNDX:
303       return false;
304
305     case elfcpp::SHT_STRTAB:
306       // Discard the sections which have special meanings in the ELF
307       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
308       // checking the sh_link fields of the appropriate sections.
309       return (strcmp(name, ".dynstr") != 0
310               && strcmp(name, ".strtab") != 0
311               && strcmp(name, ".shstrtab") != 0);
312
313     case elfcpp::SHT_RELA:
314     case elfcpp::SHT_REL:
315     case elfcpp::SHT_GROUP:
316       // If we are emitting relocations these should be handled
317       // elsewhere.
318       gold_assert(!parameters->options().relocatable()
319                   && !parameters->options().emit_relocs());
320       return false;
321
322     case elfcpp::SHT_PROGBITS:
323       if (parameters->options().strip_debug()
324           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
325         {
326           if (is_debug_info_section(name))
327             return false;
328         }
329       if (parameters->options().strip_debug_non_line()
330           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
331         {
332           // Debugging sections can only be recognized by name.
333           if (is_prefix_of(".debug", name)
334               && !is_lines_only_debug_section(name))
335             return false;
336         }
337       if (parameters->options().strip_debug_gdb()
338           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
339         {
340           // Debugging sections can only be recognized by name.
341           if (is_prefix_of(".debug", name)
342               && !is_gdb_debug_section(name))
343             return false;
344         }
345       if (parameters->options().strip_lto_sections()
346           && !parameters->options().relocatable()
347           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
348         {
349           // Ignore LTO sections containing intermediate code.
350           if (is_prefix_of(".gnu.lto_", name))
351             return false;
352         }
353       return true;
354
355     default:
356       return true;
357     }
358 }
359
360 // Return an output section named NAME, or NULL if there is none.
361
362 Output_section*
363 Layout::find_output_section(const char* name) const
364 {
365   for (Section_list::const_iterator p = this->section_list_.begin();
366        p != this->section_list_.end();
367        ++p)
368     if (strcmp((*p)->name(), name) == 0)
369       return *p;
370   return NULL;
371 }
372
373 // Return an output segment of type TYPE, with segment flags SET set
374 // and segment flags CLEAR clear.  Return NULL if there is none.
375
376 Output_segment*
377 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
378                             elfcpp::Elf_Word clear) const
379 {
380   for (Segment_list::const_iterator p = this->segment_list_.begin();
381        p != this->segment_list_.end();
382        ++p)
383     if (static_cast<elfcpp::PT>((*p)->type()) == type
384         && ((*p)->flags() & set) == set
385         && ((*p)->flags() & clear) == 0)
386       return *p;
387   return NULL;
388 }
389
390 // Return the output section to use for section NAME with type TYPE
391 // and section flags FLAGS.  NAME must be canonicalized in the string
392 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
393 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
394 // is used by the dynamic linker.
395
396 Output_section*
397 Layout::get_output_section(const char* name, Stringpool::Key name_key,
398                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
399                            bool is_interp, bool is_dynamic_linker_section)
400 {
401   elfcpp::Elf_Xword lookup_flags = flags;
402
403   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
404   // read-write with read-only sections.  Some other ELF linkers do
405   // not do this.  FIXME: Perhaps there should be an option
406   // controlling this.
407   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
408
409   const Key key(name_key, std::make_pair(type, lookup_flags));
410   const std::pair<Key, Output_section*> v(key, NULL);
411   std::pair<Section_name_map::iterator, bool> ins(
412     this->section_name_map_.insert(v));
413
414   if (!ins.second)
415     return ins.first->second;
416   else
417     {
418       // This is the first time we've seen this name/type/flags
419       // combination.  For compatibility with the GNU linker, we
420       // combine sections with contents and zero flags with sections
421       // with non-zero flags.  This is a workaround for cases where
422       // assembler code forgets to set section flags.  FIXME: Perhaps
423       // there should be an option to control this.
424       Output_section* os = NULL;
425
426       if (type == elfcpp::SHT_PROGBITS)
427         {
428           if (flags == 0)
429             {
430               Output_section* same_name = this->find_output_section(name);
431               if (same_name != NULL
432                   && same_name->type() == elfcpp::SHT_PROGBITS
433                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
434                 os = same_name;
435             }
436           else if ((flags & elfcpp::SHF_TLS) == 0)
437             {
438               elfcpp::Elf_Xword zero_flags = 0;
439               const Key zero_key(name_key, std::make_pair(type, zero_flags));
440               Section_name_map::iterator p =
441                   this->section_name_map_.find(zero_key);
442               if (p != this->section_name_map_.end())
443                 os = p->second;
444             }
445         }
446
447       if (os == NULL)
448         os = this->make_output_section(name, type, flags, is_interp,
449                                        is_dynamic_linker_section);
450       ins.first->second = os;
451       return os;
452     }
453 }
454
455 // Pick the output section to use for section NAME, in input file
456 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
457 // linker created section.  IS_INPUT_SECTION is true if we are
458 // choosing an output section for an input section found in a input
459 // file.  IS_INTERP is true if this is the .interp section.
460 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
461 // dynamic linker.  This will return NULL if the input section should
462 // be discarded.
463
464 Output_section*
465 Layout::choose_output_section(const Relobj* relobj, const char* name,
466                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
467                               bool is_input_section, bool is_interp,
468                               bool is_dynamic_linker_section)
469 {
470   // We should not see any input sections after we have attached
471   // sections to segments.
472   gold_assert(!is_input_section || !this->sections_are_attached_);
473
474   // Some flags in the input section should not be automatically
475   // copied to the output section.
476   flags &= ~ (elfcpp::SHF_INFO_LINK
477               | elfcpp::SHF_LINK_ORDER
478               | elfcpp::SHF_GROUP
479               | elfcpp::SHF_MERGE
480               | elfcpp::SHF_STRINGS);
481
482   if (this->script_options_->saw_sections_clause())
483     {
484       // We are using a SECTIONS clause, so the output section is
485       // chosen based only on the name.
486
487       Script_sections* ss = this->script_options_->script_sections();
488       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
489       Output_section** output_section_slot;
490       name = ss->output_section_name(file_name, name, &output_section_slot);
491       if (name == NULL)
492         {
493           // The SECTIONS clause says to discard this input section.
494           return NULL;
495         }
496
497       // If this is an orphan section--one not mentioned in the linker
498       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
499       // default processing below.
500
501       if (output_section_slot != NULL)
502         {
503           if (*output_section_slot != NULL)
504             {
505               (*output_section_slot)->update_flags_for_input_section(flags);
506               return *output_section_slot;
507             }
508
509           // We don't put sections found in the linker script into
510           // SECTION_NAME_MAP_.  That keeps us from getting confused
511           // if an orphan section is mapped to a section with the same
512           // name as one in the linker script.
513
514           name = this->namepool_.add(name, false, NULL);
515
516           Output_section* os =
517             this->make_output_section(name, type, flags, is_interp,
518                                       is_dynamic_linker_section);
519           os->set_found_in_sections_clause();
520           *output_section_slot = os;
521           return os;
522         }
523     }
524
525   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
526
527   // Turn NAME from the name of the input section into the name of the
528   // output section.
529
530   size_t len = strlen(name);
531   if (is_input_section
532       && !this->script_options_->saw_sections_clause()
533       && !parameters->options().relocatable())
534     name = Layout::output_section_name(name, &len);
535
536   Stringpool::Key name_key;
537   name = this->namepool_.add_with_length(name, len, true, &name_key);
538
539   // Find or make the output section.  The output section is selected
540   // based on the section name, type, and flags.
541   return this->get_output_section(name, name_key, type, flags, is_interp,
542                                   is_dynamic_linker_section);
543 }
544
545 // Return the output section to use for input section SHNDX, with name
546 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
547 // index of a relocation section which applies to this section, or 0
548 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
549 // relocation section if there is one.  Set *OFF to the offset of this
550 // input section without the output section.  Return NULL if the
551 // section should be discarded.  Set *OFF to -1 if the section
552 // contents should not be written directly to the output file, but
553 // will instead receive special handling.
554
555 template<int size, bool big_endian>
556 Output_section*
557 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
558                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
559                unsigned int reloc_shndx, unsigned int, off_t* off)
560 {
561   *off = 0;
562
563   if (!this->include_section(object, name, shdr))
564     return NULL;
565
566   Output_section* os;
567
568   // In a relocatable link a grouped section must not be combined with
569   // any other sections.
570   if (parameters->options().relocatable()
571       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
572     {
573       name = this->namepool_.add(name, true, NULL);
574       os = this->make_output_section(name, shdr.get_sh_type(),
575                                      shdr.get_sh_flags(), false, false);
576     }
577   else
578     {
579       os = this->choose_output_section(object, name, shdr.get_sh_type(),
580                                        shdr.get_sh_flags(), true, false,
581                                        false);
582       if (os == NULL)
583         return NULL;
584     }
585
586   // By default the GNU linker sorts input sections whose names match
587   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
588   // are sorted by name.  This is used to implement constructor
589   // priority ordering.  We are compatible.
590   if (!this->script_options_->saw_sections_clause()
591       && (is_prefix_of(".ctors.", name)
592           || is_prefix_of(".dtors.", name)
593           || is_prefix_of(".init_array.", name)
594           || is_prefix_of(".fini_array.", name)))
595     os->set_must_sort_attached_input_sections();
596
597   // FIXME: Handle SHF_LINK_ORDER somewhere.
598
599   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
600                                this->script_options_->saw_sections_clause());
601
602   return os;
603 }
604
605 // Handle a relocation section when doing a relocatable link.
606
607 template<int size, bool big_endian>
608 Output_section*
609 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
610                      unsigned int,
611                      const elfcpp::Shdr<size, big_endian>& shdr,
612                      Output_section* data_section,
613                      Relocatable_relocs* rr)
614 {
615   gold_assert(parameters->options().relocatable()
616               || parameters->options().emit_relocs());
617
618   int sh_type = shdr.get_sh_type();
619
620   std::string name;
621   if (sh_type == elfcpp::SHT_REL)
622     name = ".rel";
623   else if (sh_type == elfcpp::SHT_RELA)
624     name = ".rela";
625   else
626     gold_unreachable();
627   name += data_section->name();
628
629   Output_section* os = this->choose_output_section(object, name.c_str(),
630                                                    sh_type,
631                                                    shdr.get_sh_flags(),
632                                                    false, false, false);
633
634   os->set_should_link_to_symtab();
635   os->set_info_section(data_section);
636
637   Output_section_data* posd;
638   if (sh_type == elfcpp::SHT_REL)
639     {
640       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
641       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
642                                            size,
643                                            big_endian>(rr);
644     }
645   else if (sh_type == elfcpp::SHT_RELA)
646     {
647       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
648       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
649                                            size,
650                                            big_endian>(rr);
651     }
652   else
653     gold_unreachable();
654
655   os->add_output_section_data(posd);
656   rr->set_output_data(posd);
657
658   return os;
659 }
660
661 // Handle a group section when doing a relocatable link.
662
663 template<int size, bool big_endian>
664 void
665 Layout::layout_group(Symbol_table* symtab,
666                      Sized_relobj<size, big_endian>* object,
667                      unsigned int,
668                      const char* group_section_name,
669                      const char* signature,
670                      const elfcpp::Shdr<size, big_endian>& shdr,
671                      elfcpp::Elf_Word flags,
672                      std::vector<unsigned int>* shndxes)
673 {
674   gold_assert(parameters->options().relocatable());
675   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
676   group_section_name = this->namepool_.add(group_section_name, true, NULL);
677   Output_section* os = this->make_output_section(group_section_name,
678                                                  elfcpp::SHT_GROUP,
679                                                  shdr.get_sh_flags(),
680                                                  false, false);
681
682   // We need to find a symbol with the signature in the symbol table.
683   // If we don't find one now, we need to look again later.
684   Symbol* sym = symtab->lookup(signature, NULL);
685   if (sym != NULL)
686     os->set_info_symndx(sym);
687   else
688     {
689       // Reserve some space to minimize reallocations.
690       if (this->group_signatures_.empty())
691         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
692
693       // We will wind up using a symbol whose name is the signature.
694       // So just put the signature in the symbol name pool to save it.
695       signature = symtab->canonicalize_name(signature);
696       this->group_signatures_.push_back(Group_signature(os, signature));
697     }
698
699   os->set_should_link_to_symtab();
700   os->set_entsize(4);
701
702   section_size_type entry_count =
703     convert_to_section_size_type(shdr.get_sh_size() / 4);
704   Output_section_data* posd =
705     new Output_data_group<size, big_endian>(object, entry_count, flags,
706                                             shndxes);
707   os->add_output_section_data(posd);
708 }
709
710 // Special GNU handling of sections name .eh_frame.  They will
711 // normally hold exception frame data as defined by the C++ ABI
712 // (http://codesourcery.com/cxx-abi/).
713
714 template<int size, bool big_endian>
715 Output_section*
716 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
717                         const unsigned char* symbols,
718                         off_t symbols_size,
719                         const unsigned char* symbol_names,
720                         off_t symbol_names_size,
721                         unsigned int shndx,
722                         const elfcpp::Shdr<size, big_endian>& shdr,
723                         unsigned int reloc_shndx, unsigned int reloc_type,
724                         off_t* off)
725 {
726   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
727   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
728
729   const char* const name = ".eh_frame";
730   Output_section* os = this->choose_output_section(object,
731                                                    name,
732                                                    elfcpp::SHT_PROGBITS,
733                                                    elfcpp::SHF_ALLOC,
734                                                    false, false, false);
735   if (os == NULL)
736     return NULL;
737
738   if (this->eh_frame_section_ == NULL)
739     {
740       this->eh_frame_section_ = os;
741       this->eh_frame_data_ = new Eh_frame();
742
743       if (parameters->options().eh_frame_hdr())
744         {
745           Output_section* hdr_os =
746             this->choose_output_section(NULL,
747                                         ".eh_frame_hdr",
748                                         elfcpp::SHT_PROGBITS,
749                                         elfcpp::SHF_ALLOC,
750                                         false, false, false);
751
752           if (hdr_os != NULL)
753             {
754               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
755                                                         this->eh_frame_data_);
756               hdr_os->add_output_section_data(hdr_posd);
757
758               hdr_os->set_after_input_sections();
759
760               if (!this->script_options_->saw_phdrs_clause())
761                 {
762                   Output_segment* hdr_oseg;
763                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
764                                                        elfcpp::PF_R);
765                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R, false);
766                 }
767
768               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
769             }
770         }
771     }
772
773   gold_assert(this->eh_frame_section_ == os);
774
775   if (this->eh_frame_data_->add_ehframe_input_section(object,
776                                                       symbols,
777                                                       symbols_size,
778                                                       symbol_names,
779                                                       symbol_names_size,
780                                                       shndx,
781                                                       reloc_shndx,
782                                                       reloc_type))
783     {
784       os->update_flags_for_input_section(shdr.get_sh_flags());
785
786       // We found a .eh_frame section we are going to optimize, so now
787       // we can add the set of optimized sections to the output
788       // section.  We need to postpone adding this until we've found a
789       // section we can optimize so that the .eh_frame section in
790       // crtbegin.o winds up at the start of the output section.
791       if (!this->added_eh_frame_data_)
792         {
793           os->add_output_section_data(this->eh_frame_data_);
794           this->added_eh_frame_data_ = true;
795         }
796       *off = -1;
797     }
798   else
799     {
800       // We couldn't handle this .eh_frame section for some reason.
801       // Add it as a normal section.
802       bool saw_sections_clause = this->script_options_->saw_sections_clause();
803       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
804                                    saw_sections_clause);
805     }
806
807   return os;
808 }
809
810 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
811 // the output section.
812
813 Output_section*
814 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
815                                 elfcpp::Elf_Xword flags,
816                                 Output_section_data* posd,
817                                 bool is_dynamic_linker_section)
818 {
819   Output_section* os = this->choose_output_section(NULL, name, type, flags,
820                                                    false, false,
821                                                    is_dynamic_linker_section);
822   if (os != NULL)
823     os->add_output_section_data(posd);
824   return os;
825 }
826
827 // Map section flags to segment flags.
828
829 elfcpp::Elf_Word
830 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
831 {
832   elfcpp::Elf_Word ret = elfcpp::PF_R;
833   if ((flags & elfcpp::SHF_WRITE) != 0)
834     ret |= elfcpp::PF_W;
835   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
836     ret |= elfcpp::PF_X;
837   return ret;
838 }
839
840 // Sometimes we compress sections.  This is typically done for
841 // sections that are not part of normal program execution (such as
842 // .debug_* sections), and where the readers of these sections know
843 // how to deal with compressed sections.  This routine doesn't say for
844 // certain whether we'll compress -- it depends on commandline options
845 // as well -- just whether this section is a candidate for compression.
846 // (The Output_compressed_section class decides whether to compress
847 // a given section, and picks the name of the compressed section.)
848
849 static bool
850 is_compressible_debug_section(const char* secname)
851 {
852   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
853 }
854
855 // Make a new Output_section, and attach it to segments as
856 // appropriate.  IS_INTERP is true if this is the .interp section.
857 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
858 // dynamic linker.
859
860 Output_section*
861 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
862                             elfcpp::Elf_Xword flags, bool is_interp,
863                             bool is_dynamic_linker_section)
864 {
865   Output_section* os;
866   if ((flags & elfcpp::SHF_ALLOC) == 0
867       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
868       && is_compressible_debug_section(name))
869     os = new Output_compressed_section(&parameters->options(), name, type,
870                                        flags);
871   else if ((flags & elfcpp::SHF_ALLOC) == 0
872            && parameters->options().strip_debug_non_line()
873            && strcmp(".debug_abbrev", name) == 0)
874     {
875       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
876           name, type, flags);
877       if (this->debug_info_)
878         this->debug_info_->set_abbreviations(this->debug_abbrev_);
879     }
880   else if ((flags & elfcpp::SHF_ALLOC) == 0
881            && parameters->options().strip_debug_non_line()
882            && strcmp(".debug_info", name) == 0)
883     {
884       os = this->debug_info_ = new Output_reduced_debug_info_section(
885           name, type, flags);
886       if (this->debug_abbrev_)
887         this->debug_info_->set_abbreviations(this->debug_abbrev_);
888     }
889  else
890     {
891       // FIXME: const_cast is ugly.
892       Target* target = const_cast<Target*>(&parameters->target());
893       os = target->make_output_section(name, type, flags);
894     }
895
896   if (is_interp)
897     os->set_is_interp();
898   if (is_dynamic_linker_section)
899     os->set_is_dynamic_linker_section();
900
901   parameters->target().new_output_section(os);
902
903   this->section_list_.push_back(os);
904
905   // The GNU linker by default sorts some sections by priority, so we
906   // do the same.  We need to know that this might happen before we
907   // attach any input sections.
908   if (!this->script_options_->saw_sections_clause()
909       && (strcmp(name, ".ctors") == 0
910           || strcmp(name, ".dtors") == 0
911           || strcmp(name, ".init_array") == 0
912           || strcmp(name, ".fini_array") == 0))
913     os->set_may_sort_attached_input_sections();
914
915   // With -z relro, we have to recognize the special sections by name.
916   // There is no other way.
917   if (!this->script_options_->saw_sections_clause()
918       && parameters->options().relro()
919       && type == elfcpp::SHT_PROGBITS
920       && (flags & elfcpp::SHF_ALLOC) != 0
921       && (flags & elfcpp::SHF_WRITE) != 0)
922     {
923       if (strcmp(name, ".data.rel.ro") == 0)
924         os->set_is_relro();
925       else if (strcmp(name, ".data.rel.ro.local") == 0)
926         {
927           os->set_is_relro();
928           os->set_is_relro_local();
929         }
930     }
931
932   // Check for .stab*str sections, as .stab* sections need to link to
933   // them.
934   if (type == elfcpp::SHT_STRTAB
935       && !this->have_stabstr_section_
936       && strncmp(name, ".stab", 5) == 0
937       && strcmp(name + strlen(name) - 3, "str") == 0)
938     this->have_stabstr_section_ = true;
939
940   // If we have already attached the sections to segments, then we
941   // need to attach this one now.  This happens for sections created
942   // directly by the linker.
943   if (this->sections_are_attached_)
944     this->attach_section_to_segment(os);
945
946   return os;
947 }
948
949 // Attach output sections to segments.  This is called after we have
950 // seen all the input sections.
951
952 void
953 Layout::attach_sections_to_segments()
954 {
955   for (Section_list::iterator p = this->section_list_.begin();
956        p != this->section_list_.end();
957        ++p)
958     this->attach_section_to_segment(*p);
959
960   this->sections_are_attached_ = true;
961 }
962
963 // Attach an output section to a segment.
964
965 void
966 Layout::attach_section_to_segment(Output_section* os)
967 {
968   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
969     this->unattached_section_list_.push_back(os);
970   else
971     this->attach_allocated_section_to_segment(os);
972 }
973
974 // Attach an allocated output section to a segment.
975
976 void
977 Layout::attach_allocated_section_to_segment(Output_section* os)
978 {
979   elfcpp::Elf_Xword flags = os->flags();
980   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
981
982   if (parameters->options().relocatable())
983     return;
984
985   // If we have a SECTIONS clause, we can't handle the attachment to
986   // segments until after we've seen all the sections.
987   if (this->script_options_->saw_sections_clause())
988     return;
989
990   gold_assert(!this->script_options_->saw_phdrs_clause());
991
992   // This output section goes into a PT_LOAD segment.
993
994   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
995
996   bool sort_sections = !this->script_options_->saw_sections_clause();
997
998   // In general the only thing we really care about for PT_LOAD
999   // segments is whether or not they are writable, so that is how we
1000   // search for them.  Large data sections also go into their own
1001   // PT_LOAD segment.  People who need segments sorted on some other
1002   // basis will have to use a linker script.
1003
1004   Segment_list::const_iterator p;
1005   for (p = this->segment_list_.begin();
1006        p != this->segment_list_.end();
1007        ++p)
1008     {
1009       if ((*p)->type() != elfcpp::PT_LOAD)
1010         continue;
1011       if (!parameters->options().omagic()
1012           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1013         continue;
1014       // If -Tbss was specified, we need to separate the data and BSS
1015       // segments.
1016       if (parameters->options().user_set_Tbss())
1017         {
1018           if ((os->type() == elfcpp::SHT_NOBITS)
1019               == (*p)->has_any_data_sections())
1020             continue;
1021         }
1022       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1023         continue;
1024
1025       (*p)->add_output_section(os, seg_flags, sort_sections);
1026       break;
1027     }
1028
1029   if (p == this->segment_list_.end())
1030     {
1031       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1032                                                        seg_flags);
1033       if (os->is_large_data_section())
1034         oseg->set_is_large_data_segment();
1035       oseg->add_output_section(os, seg_flags, sort_sections);
1036     }
1037
1038   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1039   // segment.
1040   if (os->type() == elfcpp::SHT_NOTE)
1041     {
1042       // See if we already have an equivalent PT_NOTE segment.
1043       for (p = this->segment_list_.begin();
1044            p != segment_list_.end();
1045            ++p)
1046         {
1047           if ((*p)->type() == elfcpp::PT_NOTE
1048               && (((*p)->flags() & elfcpp::PF_W)
1049                   == (seg_flags & elfcpp::PF_W)))
1050             {
1051               (*p)->add_output_section(os, seg_flags, false);
1052               break;
1053             }
1054         }
1055
1056       if (p == this->segment_list_.end())
1057         {
1058           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1059                                                            seg_flags);
1060           oseg->add_output_section(os, seg_flags, false);
1061         }
1062     }
1063
1064   // If we see a loadable SHF_TLS section, we create a PT_TLS
1065   // segment.  There can only be one such segment.
1066   if ((flags & elfcpp::SHF_TLS) != 0)
1067     {
1068       if (this->tls_segment_ == NULL)
1069         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1070       this->tls_segment_->add_output_section(os, seg_flags, false);
1071     }
1072
1073   // If -z relro is in effect, and we see a relro section, we create a
1074   // PT_GNU_RELRO segment.  There can only be one such segment.
1075   if (os->is_relro() && parameters->options().relro())
1076     {
1077       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1078       if (this->relro_segment_ == NULL)
1079         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1080       this->relro_segment_->add_output_section(os, seg_flags, false);
1081     }
1082 }
1083
1084 // Make an output section for a script.
1085
1086 Output_section*
1087 Layout::make_output_section_for_script(const char* name)
1088 {
1089   name = this->namepool_.add(name, false, NULL);
1090   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1091                                                  elfcpp::SHF_ALLOC, false,
1092                                                  false);
1093   os->set_found_in_sections_clause();
1094   return os;
1095 }
1096
1097 // Return the number of segments we expect to see.
1098
1099 size_t
1100 Layout::expected_segment_count() const
1101 {
1102   size_t ret = this->segment_list_.size();
1103
1104   // If we didn't see a SECTIONS clause in a linker script, we should
1105   // already have the complete list of segments.  Otherwise we ask the
1106   // SECTIONS clause how many segments it expects, and add in the ones
1107   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1108
1109   if (!this->script_options_->saw_sections_clause())
1110     return ret;
1111   else
1112     {
1113       const Script_sections* ss = this->script_options_->script_sections();
1114       return ret + ss->expected_segment_count(this);
1115     }
1116 }
1117
1118 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1119 // is whether we saw a .note.GNU-stack section in the object file.
1120 // GNU_STACK_FLAGS is the section flags.  The flags give the
1121 // protection required for stack memory.  We record this in an
1122 // executable as a PT_GNU_STACK segment.  If an object file does not
1123 // have a .note.GNU-stack segment, we must assume that it is an old
1124 // object.  On some targets that will force an executable stack.
1125
1126 void
1127 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1128 {
1129   if (!seen_gnu_stack)
1130     this->input_without_gnu_stack_note_ = true;
1131   else
1132     {
1133       this->input_with_gnu_stack_note_ = true;
1134       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1135         this->input_requires_executable_stack_ = true;
1136     }
1137 }
1138
1139 // Create automatic note sections.
1140
1141 void
1142 Layout::create_notes()
1143 {
1144   this->create_gold_note();
1145   this->create_executable_stack_info();
1146   this->create_build_id();
1147 }
1148
1149 // Create the dynamic sections which are needed before we read the
1150 // relocs.
1151
1152 void
1153 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1154 {
1155   if (parameters->doing_static_link())
1156     return;
1157
1158   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1159                                                        elfcpp::SHT_DYNAMIC,
1160                                                        (elfcpp::SHF_ALLOC
1161                                                         | elfcpp::SHF_WRITE),
1162                                                        false, false, true);
1163   this->dynamic_section_->set_is_relro();
1164
1165   this->dynamic_symbol_ =
1166     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1167                                   this->dynamic_section_, 0, 0,
1168                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1169                                   elfcpp::STV_HIDDEN, 0, false, false);
1170
1171   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1172
1173   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1174 }
1175
1176 // For each output section whose name can be represented as C symbol,
1177 // define __start and __stop symbols for the section.  This is a GNU
1178 // extension.
1179
1180 void
1181 Layout::define_section_symbols(Symbol_table* symtab)
1182 {
1183   for (Section_list::const_iterator p = this->section_list_.begin();
1184        p != this->section_list_.end();
1185        ++p)
1186     {
1187       const char* const name = (*p)->name();
1188       if (name[strspn(name,
1189                       ("0123456789"
1190                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1191                        "abcdefghijklmnopqrstuvwxyz"
1192                        "_"))]
1193           == '\0')
1194         {
1195           const std::string name_string(name);
1196           const std::string start_name("__start_" + name_string);
1197           const std::string stop_name("__stop_" + name_string);
1198
1199           symtab->define_in_output_data(start_name.c_str(),
1200                                         NULL, // version
1201                                         Symbol_table::PREDEFINED,
1202                                         *p,
1203                                         0, // value
1204                                         0, // symsize
1205                                         elfcpp::STT_NOTYPE,
1206                                         elfcpp::STB_GLOBAL,
1207                                         elfcpp::STV_DEFAULT,
1208                                         0, // nonvis
1209                                         false, // offset_is_from_end
1210                                         true); // only_if_ref
1211
1212           symtab->define_in_output_data(stop_name.c_str(),
1213                                         NULL, // version
1214                                         Symbol_table::PREDEFINED,
1215                                         *p,
1216                                         0, // value
1217                                         0, // symsize
1218                                         elfcpp::STT_NOTYPE,
1219                                         elfcpp::STB_GLOBAL,
1220                                         elfcpp::STV_DEFAULT,
1221                                         0, // nonvis
1222                                         true, // offset_is_from_end
1223                                         true); // only_if_ref
1224         }
1225     }
1226 }
1227
1228 // Define symbols for group signatures.
1229
1230 void
1231 Layout::define_group_signatures(Symbol_table* symtab)
1232 {
1233   for (Group_signatures::iterator p = this->group_signatures_.begin();
1234        p != this->group_signatures_.end();
1235        ++p)
1236     {
1237       Symbol* sym = symtab->lookup(p->signature, NULL);
1238       if (sym != NULL)
1239         p->section->set_info_symndx(sym);
1240       else
1241         {
1242           // Force the name of the group section to the group
1243           // signature, and use the group's section symbol as the
1244           // signature symbol.
1245           if (strcmp(p->section->name(), p->signature) != 0)
1246             {
1247               const char* name = this->namepool_.add(p->signature,
1248                                                      true, NULL);
1249               p->section->set_name(name);
1250             }
1251           p->section->set_needs_symtab_index();
1252           p->section->set_info_section_symndx(p->section);
1253         }
1254     }
1255
1256   this->group_signatures_.clear();
1257 }
1258
1259 // Find the first read-only PT_LOAD segment, creating one if
1260 // necessary.
1261
1262 Output_segment*
1263 Layout::find_first_load_seg()
1264 {
1265   for (Segment_list::const_iterator p = this->segment_list_.begin();
1266        p != this->segment_list_.end();
1267        ++p)
1268     {
1269       if ((*p)->type() == elfcpp::PT_LOAD
1270           && ((*p)->flags() & elfcpp::PF_R) != 0
1271           && (parameters->options().omagic()
1272               || ((*p)->flags() & elfcpp::PF_W) == 0))
1273         return *p;
1274     }
1275
1276   gold_assert(!this->script_options_->saw_phdrs_clause());
1277
1278   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1279                                                        elfcpp::PF_R);
1280   return load_seg;
1281 }
1282
1283 // Save states of all current output segments.  Store saved states
1284 // in SEGMENT_STATES.
1285
1286 void
1287 Layout::save_segments(Segment_states* segment_states)
1288 {
1289   for (Segment_list::const_iterator p = this->segment_list_.begin();
1290        p != this->segment_list_.end();
1291        ++p)
1292     {
1293       Output_segment* segment = *p;
1294       // Shallow copy.
1295       Output_segment* copy = new Output_segment(*segment);
1296       (*segment_states)[segment] = copy;
1297     }
1298 }
1299
1300 // Restore states of output segments and delete any segment not found in
1301 // SEGMENT_STATES.
1302
1303 void
1304 Layout::restore_segments(const Segment_states* segment_states)
1305 {
1306   // Go through the segment list and remove any segment added in the
1307   // relaxation loop.
1308   this->tls_segment_ = NULL;
1309   this->relro_segment_ = NULL;
1310   Segment_list::iterator list_iter = this->segment_list_.begin();
1311   while (list_iter != this->segment_list_.end())
1312     {
1313       Output_segment* segment = *list_iter;
1314       Segment_states::const_iterator states_iter =
1315           segment_states->find(segment);
1316       if (states_iter != segment_states->end())
1317         {
1318           const Output_segment* copy = states_iter->second;
1319           // Shallow copy to restore states.
1320           *segment = *copy;
1321
1322           // Also fix up TLS and RELRO segment pointers as appropriate.
1323           if (segment->type() == elfcpp::PT_TLS)
1324             this->tls_segment_ = segment;
1325           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1326             this->relro_segment_ = segment;
1327
1328           ++list_iter;
1329         } 
1330       else
1331         {
1332           list_iter = this->segment_list_.erase(list_iter); 
1333           // This is a segment created during section layout.  It should be
1334           // safe to remove it since we should have removed all pointers to it.
1335           delete segment;
1336         }
1337     }
1338 }
1339
1340 // Clean up after relaxation so that sections can be laid out again.
1341
1342 void
1343 Layout::clean_up_after_relaxation()
1344 {
1345   // Restore the segments to point state just prior to the relaxation loop.
1346   Script_sections* script_section = this->script_options_->script_sections();
1347   script_section->release_segments();
1348   this->restore_segments(this->segment_states_);
1349
1350   // Reset section addresses and file offsets
1351   for (Section_list::iterator p = this->section_list_.begin();
1352        p != this->section_list_.end();
1353        ++p)
1354     {
1355       (*p)->reset_address_and_file_offset();
1356       (*p)->restore_states();
1357     }
1358   
1359   // Reset special output object address and file offsets.
1360   for (Data_list::iterator p = this->special_output_list_.begin();
1361        p != this->special_output_list_.end();
1362        ++p)
1363     (*p)->reset_address_and_file_offset();
1364
1365   // A linker script may have created some output section data objects.
1366   // They are useless now.
1367   for (Output_section_data_list::const_iterator p =
1368          this->script_output_section_data_list_.begin();
1369        p != this->script_output_section_data_list_.end();
1370        ++p)
1371     delete *p;
1372   this->script_output_section_data_list_.clear(); 
1373 }
1374
1375 // Prepare for relaxation.
1376
1377 void
1378 Layout::prepare_for_relaxation()
1379 {
1380   // Create an relaxation debug check if in debugging mode.
1381   if (is_debugging_enabled(DEBUG_RELAXATION))
1382     this->relaxation_debug_check_ = new Relaxation_debug_check();
1383
1384   // Save segment states.
1385   this->segment_states_ = new Segment_states();
1386   this->save_segments(this->segment_states_);
1387
1388   for(Section_list::const_iterator p = this->section_list_.begin();
1389       p != this->section_list_.end();
1390       ++p)
1391     (*p)->save_states();
1392
1393   if (is_debugging_enabled(DEBUG_RELAXATION))
1394     this->relaxation_debug_check_->check_output_data_for_reset_values(
1395         this->section_list_, this->special_output_list_);
1396
1397   // Also enable recording of output section data from scripts.
1398   this->record_output_section_data_from_script_ = true;
1399 }
1400
1401 // Relaxation loop body:  If target has no relaxation, this runs only once
1402 // Otherwise, the target relaxation hook is called at the end of
1403 // each iteration.  If the hook returns true, it means re-layout of
1404 // section is required.  
1405 //
1406 // The number of segments created by a linking script without a PHDRS
1407 // clause may be affected by section sizes and alignments.  There is
1408 // a remote chance that relaxation causes different number of PT_LOAD
1409 // segments are created and sections are attached to different segments.
1410 // Therefore, we always throw away all segments created during section
1411 // layout.  In order to be able to restart the section layout, we keep
1412 // a copy of the segment list right before the relaxation loop and use
1413 // that to restore the segments.
1414 // 
1415 // PASS is the current relaxation pass number. 
1416 // SYMTAB is a symbol table.
1417 // PLOAD_SEG is the address of a pointer for the load segment.
1418 // PHDR_SEG is a pointer to the PHDR segment.
1419 // SEGMENT_HEADERS points to the output segment header.
1420 // FILE_HEADER points to the output file header.
1421 // PSHNDX is the address to store the output section index.
1422
1423 off_t inline
1424 Layout::relaxation_loop_body(
1425     int pass,
1426     Target* target,
1427     Symbol_table* symtab,
1428     Output_segment** pload_seg,
1429     Output_segment* phdr_seg,
1430     Output_segment_headers* segment_headers,
1431     Output_file_header* file_header,
1432     unsigned int* pshndx)
1433 {
1434   // If this is not the first iteration, we need to clean up after
1435   // relaxation so that we can lay out the sections again.
1436   if (pass != 0)
1437     this->clean_up_after_relaxation();
1438
1439   // If there is a SECTIONS clause, put all the input sections into
1440   // the required order.
1441   Output_segment* load_seg;
1442   if (this->script_options_->saw_sections_clause())
1443     load_seg = this->set_section_addresses_from_script(symtab);
1444   else if (parameters->options().relocatable())
1445     load_seg = NULL;
1446   else
1447     load_seg = this->find_first_load_seg();
1448
1449   if (parameters->options().oformat_enum()
1450       != General_options::OBJECT_FORMAT_ELF)
1451     load_seg = NULL;
1452
1453   gold_assert(phdr_seg == NULL
1454               || load_seg != NULL
1455               || this->script_options_->saw_sections_clause());
1456
1457   // Lay out the segment headers.
1458   if (!parameters->options().relocatable())
1459     {
1460       gold_assert(segment_headers != NULL);
1461       if (load_seg != NULL)
1462         load_seg->add_initial_output_data(segment_headers);
1463       if (phdr_seg != NULL)
1464         phdr_seg->add_initial_output_data(segment_headers);
1465     }
1466
1467   // Lay out the file header.
1468   if (load_seg != NULL)
1469     load_seg->add_initial_output_data(file_header);
1470
1471   if (this->script_options_->saw_phdrs_clause()
1472       && !parameters->options().relocatable())
1473     {
1474       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1475       // clause in a linker script.
1476       Script_sections* ss = this->script_options_->script_sections();
1477       ss->put_headers_in_phdrs(file_header, segment_headers);
1478     }
1479
1480   // We set the output section indexes in set_segment_offsets and
1481   // set_section_indexes.
1482   *pshndx = 1;
1483
1484   // Set the file offsets of all the segments, and all the sections
1485   // they contain.
1486   off_t off;
1487   if (!parameters->options().relocatable())
1488     off = this->set_segment_offsets(target, load_seg, pshndx);
1489   else
1490     off = this->set_relocatable_section_offsets(file_header, pshndx);
1491
1492    // Verify that the dummy relaxation does not change anything.
1493   if (is_debugging_enabled(DEBUG_RELAXATION))
1494     {
1495       if (pass == 0)
1496         this->relaxation_debug_check_->read_sections(this->section_list_);
1497       else
1498         this->relaxation_debug_check_->verify_sections(this->section_list_);
1499     }
1500
1501   *pload_seg = load_seg;
1502   return off;
1503 }
1504
1505 // Finalize the layout.  When this is called, we have created all the
1506 // output sections and all the output segments which are based on
1507 // input sections.  We have several things to do, and we have to do
1508 // them in the right order, so that we get the right results correctly
1509 // and efficiently.
1510
1511 // 1) Finalize the list of output segments and create the segment
1512 // table header.
1513
1514 // 2) Finalize the dynamic symbol table and associated sections.
1515
1516 // 3) Determine the final file offset of all the output segments.
1517
1518 // 4) Determine the final file offset of all the SHF_ALLOC output
1519 // sections.
1520
1521 // 5) Create the symbol table sections and the section name table
1522 // section.
1523
1524 // 6) Finalize the symbol table: set symbol values to their final
1525 // value and make a final determination of which symbols are going
1526 // into the output symbol table.
1527
1528 // 7) Create the section table header.
1529
1530 // 8) Determine the final file offset of all the output sections which
1531 // are not SHF_ALLOC, including the section table header.
1532
1533 // 9) Finalize the ELF file header.
1534
1535 // This function returns the size of the output file.
1536
1537 off_t
1538 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1539                  Target* target, const Task* task)
1540 {
1541   target->finalize_sections(this, input_objects, symtab);
1542
1543   this->count_local_symbols(task, input_objects);
1544
1545   this->link_stabs_sections();
1546
1547   Output_segment* phdr_seg = NULL;
1548   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1549     {
1550       // There was a dynamic object in the link.  We need to create
1551       // some information for the dynamic linker.
1552
1553       // Create the PT_PHDR segment which will hold the program
1554       // headers.
1555       if (!this->script_options_->saw_phdrs_clause())
1556         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1557
1558       // Create the dynamic symbol table, including the hash table.
1559       Output_section* dynstr;
1560       std::vector<Symbol*> dynamic_symbols;
1561       unsigned int local_dynamic_count;
1562       Versions versions(*this->script_options()->version_script_info(),
1563                         &this->dynpool_);
1564       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1565                                   &local_dynamic_count, &dynamic_symbols,
1566                                   &versions);
1567
1568       // Create the .interp section to hold the name of the
1569       // interpreter, and put it in a PT_INTERP segment.
1570       if (!parameters->options().shared())
1571         this->create_interp(target);
1572
1573       // Finish the .dynamic section to hold the dynamic data, and put
1574       // it in a PT_DYNAMIC segment.
1575       this->finish_dynamic_section(input_objects, symtab);
1576
1577       // We should have added everything we need to the dynamic string
1578       // table.
1579       this->dynpool_.set_string_offsets();
1580
1581       // Create the version sections.  We can't do this until the
1582       // dynamic string table is complete.
1583       this->create_version_sections(&versions, symtab, local_dynamic_count,
1584                                     dynamic_symbols, dynstr);
1585
1586       // Set the size of the _DYNAMIC symbol.  We can't do this until
1587       // after we call create_version_sections.
1588       this->set_dynamic_symbol_size(symtab);
1589     }
1590   
1591   if (this->incremental_inputs_)
1592     {
1593       this->incremental_inputs_->finalize();
1594       this->create_incremental_info_sections();
1595     }
1596
1597   // Create segment headers.
1598   Output_segment_headers* segment_headers =
1599     (parameters->options().relocatable()
1600      ? NULL
1601      : new Output_segment_headers(this->segment_list_));
1602
1603   // Lay out the file header.
1604   Output_file_header* file_header
1605     = new Output_file_header(target, symtab, segment_headers,
1606                              parameters->options().entry());
1607
1608   this->special_output_list_.push_back(file_header);
1609   if (segment_headers != NULL)
1610     this->special_output_list_.push_back(segment_headers);
1611
1612   // Find approriate places for orphan output sections if we are using
1613   // a linker script.
1614   if (this->script_options_->saw_sections_clause())
1615     this->place_orphan_sections_in_script();
1616   
1617   Output_segment* load_seg;
1618   off_t off;
1619   unsigned int shndx;
1620   int pass = 0;
1621
1622   // Take a snapshot of the section layout as needed.
1623   if (target->may_relax())
1624     this->prepare_for_relaxation();
1625   
1626   // Run the relaxation loop to lay out sections.
1627   do
1628     {
1629       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1630                                        phdr_seg, segment_headers, file_header,
1631                                        &shndx);
1632       pass++;
1633     }
1634   while (target->may_relax()
1635          && target->relax(pass, input_objects, symtab, this));
1636
1637   // Set the file offsets of all the non-data sections we've seen so
1638   // far which don't have to wait for the input sections.  We need
1639   // this in order to finalize local symbols in non-allocated
1640   // sections.
1641   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1642
1643   // Set the section indexes of all unallocated sections seen so far,
1644   // in case any of them are somehow referenced by a symbol.
1645   shndx = this->set_section_indexes(shndx);
1646
1647   // Create the symbol table sections.
1648   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1649   if (!parameters->doing_static_link())
1650     this->assign_local_dynsym_offsets(input_objects);
1651
1652   // Process any symbol assignments from a linker script.  This must
1653   // be called after the symbol table has been finalized.
1654   this->script_options_->finalize_symbols(symtab, this);
1655
1656   // Create the .shstrtab section.
1657   Output_section* shstrtab_section = this->create_shstrtab();
1658
1659   // Set the file offsets of the rest of the non-data sections which
1660   // don't have to wait for the input sections.
1661   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1662
1663   // Now that all sections have been created, set the section indexes
1664   // for any sections which haven't been done yet.
1665   shndx = this->set_section_indexes(shndx);
1666
1667   // Create the section table header.
1668   this->create_shdrs(shstrtab_section, &off);
1669
1670   // If there are no sections which require postprocessing, we can
1671   // handle the section names now, and avoid a resize later.
1672   if (!this->any_postprocessing_sections_)
1673     off = this->set_section_offsets(off,
1674                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1675
1676   file_header->set_section_info(this->section_headers_, shstrtab_section);
1677
1678   // Now we know exactly where everything goes in the output file
1679   // (except for non-allocated sections which require postprocessing).
1680   Output_data::layout_complete();
1681
1682   this->output_file_size_ = off;
1683
1684   return off;
1685 }
1686
1687 // Create a note header following the format defined in the ELF ABI.
1688 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1689 // of the section to create, DESCSZ is the size of the descriptor.
1690 // ALLOCATE is true if the section should be allocated in memory.
1691 // This returns the new note section.  It sets *TRAILING_PADDING to
1692 // the number of trailing zero bytes required.
1693
1694 Output_section*
1695 Layout::create_note(const char* name, int note_type,
1696                     const char* section_name, size_t descsz,
1697                     bool allocate, size_t* trailing_padding)
1698 {
1699   // Authorities all agree that the values in a .note field should
1700   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1701   // they differ on what the alignment is for 64-bit binaries.
1702   // The GABI says unambiguously they take 8-byte alignment:
1703   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1704   // Other documentation says alignment should always be 4 bytes:
1705   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1706   // GNU ld and GNU readelf both support the latter (at least as of
1707   // version 2.16.91), and glibc always generates the latter for
1708   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1709   // here.
1710 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1711   const int size = parameters->target().get_size();
1712 #else
1713   const int size = 32;
1714 #endif
1715
1716   // The contents of the .note section.
1717   size_t namesz = strlen(name) + 1;
1718   size_t aligned_namesz = align_address(namesz, size / 8);
1719   size_t aligned_descsz = align_address(descsz, size / 8);
1720
1721   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1722
1723   unsigned char* buffer = new unsigned char[notehdrsz];
1724   memset(buffer, 0, notehdrsz);
1725
1726   bool is_big_endian = parameters->target().is_big_endian();
1727
1728   if (size == 32)
1729     {
1730       if (!is_big_endian)
1731         {
1732           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1733           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1734           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1735         }
1736       else
1737         {
1738           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1739           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1740           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1741         }
1742     }
1743   else if (size == 64)
1744     {
1745       if (!is_big_endian)
1746         {
1747           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1748           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1749           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1750         }
1751       else
1752         {
1753           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1754           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1755           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1756         }
1757     }
1758   else
1759     gold_unreachable();
1760
1761   memcpy(buffer + 3 * (size / 8), name, namesz);
1762
1763   elfcpp::Elf_Xword flags = 0;
1764   if (allocate)
1765     flags = elfcpp::SHF_ALLOC;
1766   Output_section* os = this->choose_output_section(NULL, section_name,
1767                                                    elfcpp::SHT_NOTE,
1768                                                    flags, false, false,
1769                                                    false);
1770   if (os == NULL)
1771     return NULL;
1772
1773   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1774                                                            size / 8,
1775                                                            "** note header");
1776   os->add_output_section_data(posd);
1777
1778   *trailing_padding = aligned_descsz - descsz;
1779
1780   return os;
1781 }
1782
1783 // For an executable or shared library, create a note to record the
1784 // version of gold used to create the binary.
1785
1786 void
1787 Layout::create_gold_note()
1788 {
1789   if (parameters->options().relocatable())
1790     return;
1791
1792   std::string desc = std::string("gold ") + gold::get_version_string();
1793
1794   size_t trailing_padding;
1795   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1796                                          ".note.gnu.gold-version", desc.size(),
1797                                          false, &trailing_padding);
1798   if (os == NULL)
1799     return;
1800
1801   Output_section_data* posd = new Output_data_const(desc, 4);
1802   os->add_output_section_data(posd);
1803
1804   if (trailing_padding > 0)
1805     {
1806       posd = new Output_data_zero_fill(trailing_padding, 0);
1807       os->add_output_section_data(posd);
1808     }
1809 }
1810
1811 // Record whether the stack should be executable.  This can be set
1812 // from the command line using the -z execstack or -z noexecstack
1813 // options.  Otherwise, if any input file has a .note.GNU-stack
1814 // section with the SHF_EXECINSTR flag set, the stack should be
1815 // executable.  Otherwise, if at least one input file a
1816 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1817 // section, we use the target default for whether the stack should be
1818 // executable.  Otherwise, we don't generate a stack note.  When
1819 // generating a object file, we create a .note.GNU-stack section with
1820 // the appropriate marking.  When generating an executable or shared
1821 // library, we create a PT_GNU_STACK segment.
1822
1823 void
1824 Layout::create_executable_stack_info()
1825 {
1826   bool is_stack_executable;
1827   if (parameters->options().is_execstack_set())
1828     is_stack_executable = parameters->options().is_stack_executable();
1829   else if (!this->input_with_gnu_stack_note_)
1830     return;
1831   else
1832     {
1833       if (this->input_requires_executable_stack_)
1834         is_stack_executable = true;
1835       else if (this->input_without_gnu_stack_note_)
1836         is_stack_executable =
1837           parameters->target().is_default_stack_executable();
1838       else
1839         is_stack_executable = false;
1840     }
1841
1842   if (parameters->options().relocatable())
1843     {
1844       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1845       elfcpp::Elf_Xword flags = 0;
1846       if (is_stack_executable)
1847         flags |= elfcpp::SHF_EXECINSTR;
1848       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, false,
1849                                 false);
1850     }
1851   else
1852     {
1853       if (this->script_options_->saw_phdrs_clause())
1854         return;
1855       int flags = elfcpp::PF_R | elfcpp::PF_W;
1856       if (is_stack_executable)
1857         flags |= elfcpp::PF_X;
1858       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1859     }
1860 }
1861
1862 // If --build-id was used, set up the build ID note.
1863
1864 void
1865 Layout::create_build_id()
1866 {
1867   if (!parameters->options().user_set_build_id())
1868     return;
1869
1870   const char* style = parameters->options().build_id();
1871   if (strcmp(style, "none") == 0)
1872     return;
1873
1874   // Set DESCSZ to the size of the note descriptor.  When possible,
1875   // set DESC to the note descriptor contents.
1876   size_t descsz;
1877   std::string desc;
1878   if (strcmp(style, "md5") == 0)
1879     descsz = 128 / 8;
1880   else if (strcmp(style, "sha1") == 0)
1881     descsz = 160 / 8;
1882   else if (strcmp(style, "uuid") == 0)
1883     {
1884       const size_t uuidsz = 128 / 8;
1885
1886       char buffer[uuidsz];
1887       memset(buffer, 0, uuidsz);
1888
1889       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1890       if (descriptor < 0)
1891         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1892                    strerror(errno));
1893       else
1894         {
1895           ssize_t got = ::read(descriptor, buffer, uuidsz);
1896           release_descriptor(descriptor, true);
1897           if (got < 0)
1898             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1899           else if (static_cast<size_t>(got) != uuidsz)
1900             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1901                        uuidsz, got);
1902         }
1903
1904       desc.assign(buffer, uuidsz);
1905       descsz = uuidsz;
1906     }
1907   else if (strncmp(style, "0x", 2) == 0)
1908     {
1909       hex_init();
1910       const char* p = style + 2;
1911       while (*p != '\0')
1912         {
1913           if (hex_p(p[0]) && hex_p(p[1]))
1914             {
1915               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1916               desc += c;
1917               p += 2;
1918             }
1919           else if (*p == '-' || *p == ':')
1920             ++p;
1921           else
1922             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1923                        style);
1924         }
1925       descsz = desc.size();
1926     }
1927   else
1928     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1929
1930   // Create the note.
1931   size_t trailing_padding;
1932   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1933                                          ".note.gnu.build-id", descsz, true,
1934                                          &trailing_padding);
1935   if (os == NULL)
1936     return;
1937
1938   if (!desc.empty())
1939     {
1940       // We know the value already, so we fill it in now.
1941       gold_assert(desc.size() == descsz);
1942
1943       Output_section_data* posd = new Output_data_const(desc, 4);
1944       os->add_output_section_data(posd);
1945
1946       if (trailing_padding != 0)
1947         {
1948           posd = new Output_data_zero_fill(trailing_padding, 0);
1949           os->add_output_section_data(posd);
1950         }
1951     }
1952   else
1953     {
1954       // We need to compute a checksum after we have completed the
1955       // link.
1956       gold_assert(trailing_padding == 0);
1957       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1958       os->add_output_section_data(this->build_id_note_);
1959     }
1960 }
1961
1962 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1963 // field of the former should point to the latter.  I'm not sure who
1964 // started this, but the GNU linker does it, and some tools depend
1965 // upon it.
1966
1967 void
1968 Layout::link_stabs_sections()
1969 {
1970   if (!this->have_stabstr_section_)
1971     return;
1972
1973   for (Section_list::iterator p = this->section_list_.begin();
1974        p != this->section_list_.end();
1975        ++p)
1976     {
1977       if ((*p)->type() != elfcpp::SHT_STRTAB)
1978         continue;
1979
1980       const char* name = (*p)->name();
1981       if (strncmp(name, ".stab", 5) != 0)
1982         continue;
1983
1984       size_t len = strlen(name);
1985       if (strcmp(name + len - 3, "str") != 0)
1986         continue;
1987
1988       std::string stab_name(name, len - 3);
1989       Output_section* stab_sec;
1990       stab_sec = this->find_output_section(stab_name.c_str());
1991       if (stab_sec != NULL)
1992         stab_sec->set_link_section(*p);
1993     }
1994 }
1995
1996 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1997 // for the next run of incremental linking to check what has changed.
1998
1999 void
2000 Layout::create_incremental_info_sections()
2001 {
2002   gold_assert(this->incremental_inputs_ != NULL);
2003
2004   // Add the .gnu_incremental_inputs section.
2005   const char *incremental_inputs_name =
2006     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2007   Output_section* inputs_os =
2008     this->make_output_section(incremental_inputs_name,
2009                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2010                               false, false);
2011   Output_section_data* posd =
2012       this->incremental_inputs_->create_incremental_inputs_section_data();
2013   inputs_os->add_output_section_data(posd);
2014   
2015   // Add the .gnu_incremental_strtab section.
2016   const char *incremental_strtab_name =
2017     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2018   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2019                                                         elfcpp::SHT_STRTAB,
2020                                                         0, false, false);
2021   Output_data_strtab* strtab_data =
2022     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2023   strtab_os->add_output_section_data(strtab_data);
2024   
2025   inputs_os->set_link_section(strtab_data);
2026 }
2027
2028 // Return whether SEG1 should be before SEG2 in the output file.  This
2029 // is based entirely on the segment type and flags.  When this is
2030 // called the segment addresses has normally not yet been set.
2031
2032 bool
2033 Layout::segment_precedes(const Output_segment* seg1,
2034                          const Output_segment* seg2)
2035 {
2036   elfcpp::Elf_Word type1 = seg1->type();
2037   elfcpp::Elf_Word type2 = seg2->type();
2038
2039   // The single PT_PHDR segment is required to precede any loadable
2040   // segment.  We simply make it always first.
2041   if (type1 == elfcpp::PT_PHDR)
2042     {
2043       gold_assert(type2 != elfcpp::PT_PHDR);
2044       return true;
2045     }
2046   if (type2 == elfcpp::PT_PHDR)
2047     return false;
2048
2049   // The single PT_INTERP segment is required to precede any loadable
2050   // segment.  We simply make it always second.
2051   if (type1 == elfcpp::PT_INTERP)
2052     {
2053       gold_assert(type2 != elfcpp::PT_INTERP);
2054       return true;
2055     }
2056   if (type2 == elfcpp::PT_INTERP)
2057     return false;
2058
2059   // We then put PT_LOAD segments before any other segments.
2060   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2061     return true;
2062   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2063     return false;
2064
2065   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2066   // segment, because that is where the dynamic linker expects to find
2067   // it (this is just for efficiency; other positions would also work
2068   // correctly).
2069   if (type1 == elfcpp::PT_TLS
2070       && type2 != elfcpp::PT_TLS
2071       && type2 != elfcpp::PT_GNU_RELRO)
2072     return false;
2073   if (type2 == elfcpp::PT_TLS
2074       && type1 != elfcpp::PT_TLS
2075       && type1 != elfcpp::PT_GNU_RELRO)
2076     return true;
2077
2078   // We put the PT_GNU_RELRO segment last, because that is where the
2079   // dynamic linker expects to find it (as with PT_TLS, this is just
2080   // for efficiency).
2081   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2082     return false;
2083   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2084     return true;
2085
2086   const elfcpp::Elf_Word flags1 = seg1->flags();
2087   const elfcpp::Elf_Word flags2 = seg2->flags();
2088
2089   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2090   // by the numeric segment type and flags values.  There should not
2091   // be more than one segment with the same type and flags.
2092   if (type1 != elfcpp::PT_LOAD)
2093     {
2094       if (type1 != type2)
2095         return type1 < type2;
2096       gold_assert(flags1 != flags2);
2097       return flags1 < flags2;
2098     }
2099
2100   // If the addresses are set already, sort by load address.
2101   if (seg1->are_addresses_set())
2102     {
2103       if (!seg2->are_addresses_set())
2104         return true;
2105
2106       unsigned int section_count1 = seg1->output_section_count();
2107       unsigned int section_count2 = seg2->output_section_count();
2108       if (section_count1 == 0 && section_count2 > 0)
2109         return true;
2110       if (section_count1 > 0 && section_count2 == 0)
2111         return false;
2112
2113       uint64_t paddr1 = seg1->first_section_load_address();
2114       uint64_t paddr2 = seg2->first_section_load_address();
2115       if (paddr1 != paddr2)
2116         return paddr1 < paddr2;
2117     }
2118   else if (seg2->are_addresses_set())
2119     return false;
2120
2121   // A segment which holds large data comes after a segment which does
2122   // not hold large data.
2123   if (seg1->is_large_data_segment())
2124     {
2125       if (!seg2->is_large_data_segment())
2126         return false;
2127     }
2128   else if (seg2->is_large_data_segment())
2129     return true;
2130
2131   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2132   // segments come before writable segments.  Then writable segments
2133   // with data come before writable segments without data.  Then
2134   // executable segments come before non-executable segments.  Then
2135   // the unlikely case of a non-readable segment comes before the
2136   // normal case of a readable segment.  If there are multiple
2137   // segments with the same type and flags, we require that the
2138   // address be set, and we sort by virtual address and then physical
2139   // address.
2140   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2141     return (flags1 & elfcpp::PF_W) == 0;
2142   if ((flags1 & elfcpp::PF_W) != 0
2143       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2144     return seg1->has_any_data_sections();
2145   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2146     return (flags1 & elfcpp::PF_X) != 0;
2147   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2148     return (flags1 & elfcpp::PF_R) == 0;
2149
2150   // We shouldn't get here--we shouldn't create segments which we
2151   // can't distinguish.
2152   gold_unreachable();
2153 }
2154
2155 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2156
2157 static off_t
2158 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2159 {
2160   uint64_t unsigned_off = off;
2161   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2162                           | (addr & (abi_pagesize - 1)));
2163   if (aligned_off < unsigned_off)
2164     aligned_off += abi_pagesize;
2165   return aligned_off;
2166 }
2167
2168 // Set the file offsets of all the segments, and all the sections they
2169 // contain.  They have all been created.  LOAD_SEG must be be laid out
2170 // first.  Return the offset of the data to follow.
2171
2172 off_t
2173 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2174                             unsigned int *pshndx)
2175 {
2176   // Sort them into the final order.
2177   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2178             Layout::Compare_segments());
2179
2180   // Find the PT_LOAD segments, and set their addresses and offsets
2181   // and their section's addresses and offsets.
2182   uint64_t addr;
2183   if (parameters->options().user_set_Ttext())
2184     addr = parameters->options().Ttext();
2185   else if (parameters->options().output_is_position_independent())
2186     addr = 0;
2187   else
2188     addr = target->default_text_segment_address();
2189   off_t off = 0;
2190
2191   // If LOAD_SEG is NULL, then the file header and segment headers
2192   // will not be loadable.  But they still need to be at offset 0 in
2193   // the file.  Set their offsets now.
2194   if (load_seg == NULL)
2195     {
2196       for (Data_list::iterator p = this->special_output_list_.begin();
2197            p != this->special_output_list_.end();
2198            ++p)
2199         {
2200           off = align_address(off, (*p)->addralign());
2201           (*p)->set_address_and_file_offset(0, off);
2202           off += (*p)->data_size();
2203         }
2204     }
2205
2206   const bool check_sections = parameters->options().check_sections();
2207   Output_segment* last_load_segment = NULL;
2208
2209   bool was_readonly = false;
2210   for (Segment_list::iterator p = this->segment_list_.begin();
2211        p != this->segment_list_.end();
2212        ++p)
2213     {
2214       if ((*p)->type() == elfcpp::PT_LOAD)
2215         {
2216           if (load_seg != NULL && load_seg != *p)
2217             gold_unreachable();
2218           load_seg = NULL;
2219
2220           bool are_addresses_set = (*p)->are_addresses_set();
2221           if (are_addresses_set)
2222             {
2223               // When it comes to setting file offsets, we care about
2224               // the physical address.
2225               addr = (*p)->paddr();
2226             }
2227           else if (parameters->options().user_set_Tdata()
2228                    && ((*p)->flags() & elfcpp::PF_W) != 0
2229                    && (!parameters->options().user_set_Tbss()
2230                        || (*p)->has_any_data_sections()))
2231             {
2232               addr = parameters->options().Tdata();
2233               are_addresses_set = true;
2234             }
2235           else if (parameters->options().user_set_Tbss()
2236                    && ((*p)->flags() & elfcpp::PF_W) != 0
2237                    && !(*p)->has_any_data_sections())
2238             {
2239               addr = parameters->options().Tbss();
2240               are_addresses_set = true;
2241             }
2242
2243           uint64_t orig_addr = addr;
2244           uint64_t orig_off = off;
2245
2246           uint64_t aligned_addr = 0;
2247           uint64_t abi_pagesize = target->abi_pagesize();
2248           uint64_t common_pagesize = target->common_pagesize();
2249
2250           if (!parameters->options().nmagic()
2251               && !parameters->options().omagic())
2252             (*p)->set_minimum_p_align(common_pagesize);
2253
2254           if (!are_addresses_set)
2255             {
2256               // If the last segment was readonly, and this one is
2257               // not, then skip the address forward one page,
2258               // maintaining the same position within the page.  This
2259               // lets us store both segments overlapping on a single
2260               // page in the file, but the loader will put them on
2261               // different pages in memory.
2262
2263               addr = align_address(addr, (*p)->maximum_alignment());
2264               aligned_addr = addr;
2265
2266               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2267                 {
2268                   if ((addr & (abi_pagesize - 1)) != 0)
2269                     addr = addr + abi_pagesize;
2270                 }
2271
2272               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2273             }
2274
2275           if (!parameters->options().nmagic()
2276               && !parameters->options().omagic())
2277             off = align_file_offset(off, addr, abi_pagesize);
2278           else if (load_seg == NULL)
2279             {
2280               // This is -N or -n with a section script which prevents
2281               // us from using a load segment.  We need to ensure that
2282               // the file offset is aligned to the alignment of the
2283               // segment.  This is because the linker script
2284               // implicitly assumed a zero offset.  If we don't align
2285               // here, then the alignment of the sections in the
2286               // linker script may not match the alignment of the
2287               // sections in the set_section_addresses call below,
2288               // causing an error about dot moving backward.
2289               off = align_address(off, (*p)->maximum_alignment());
2290             }
2291
2292           unsigned int shndx_hold = *pshndx;
2293           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2294                                                           &off, pshndx);
2295
2296           // Now that we know the size of this segment, we may be able
2297           // to save a page in memory, at the cost of wasting some
2298           // file space, by instead aligning to the start of a new
2299           // page.  Here we use the real machine page size rather than
2300           // the ABI mandated page size.
2301
2302           if (!are_addresses_set && aligned_addr != addr)
2303             {
2304               uint64_t first_off = (common_pagesize
2305                                     - (aligned_addr
2306                                        & (common_pagesize - 1)));
2307               uint64_t last_off = new_addr & (common_pagesize - 1);
2308               if (first_off > 0
2309                   && last_off > 0
2310                   && ((aligned_addr & ~ (common_pagesize - 1))
2311                       != (new_addr & ~ (common_pagesize - 1)))
2312                   && first_off + last_off <= common_pagesize)
2313                 {
2314                   *pshndx = shndx_hold;
2315                   addr = align_address(aligned_addr, common_pagesize);
2316                   addr = align_address(addr, (*p)->maximum_alignment());
2317                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2318                   off = align_file_offset(off, addr, abi_pagesize);
2319                   new_addr = (*p)->set_section_addresses(this, true, addr,
2320                                                          &off, pshndx);
2321                 }
2322             }
2323
2324           addr = new_addr;
2325
2326           if (((*p)->flags() & elfcpp::PF_W) == 0)
2327             was_readonly = true;
2328
2329           // Implement --check-sections.  We know that the segments
2330           // are sorted by LMA.
2331           if (check_sections && last_load_segment != NULL)
2332             {
2333               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2334               if (last_load_segment->paddr() + last_load_segment->memsz()
2335                   > (*p)->paddr())
2336                 {
2337                   unsigned long long lb1 = last_load_segment->paddr();
2338                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2339                   unsigned long long lb2 = (*p)->paddr();
2340                   unsigned long long le2 = lb2 + (*p)->memsz();
2341                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2342                                "[0x%llx -> 0x%llx]"),
2343                              lb1, le1, lb2, le2);
2344                 }
2345             }
2346           last_load_segment = *p;
2347         }
2348     }
2349
2350   // Handle the non-PT_LOAD segments, setting their offsets from their
2351   // section's offsets.
2352   for (Segment_list::iterator p = this->segment_list_.begin();
2353        p != this->segment_list_.end();
2354        ++p)
2355     {
2356       if ((*p)->type() != elfcpp::PT_LOAD)
2357         (*p)->set_offset();
2358     }
2359
2360   // Set the TLS offsets for each section in the PT_TLS segment.
2361   if (this->tls_segment_ != NULL)
2362     this->tls_segment_->set_tls_offsets();
2363
2364   return off;
2365 }
2366
2367 // Set the offsets of all the allocated sections when doing a
2368 // relocatable link.  This does the same jobs as set_segment_offsets,
2369 // only for a relocatable link.
2370
2371 off_t
2372 Layout::set_relocatable_section_offsets(Output_data* file_header,
2373                                         unsigned int *pshndx)
2374 {
2375   off_t off = 0;
2376
2377   file_header->set_address_and_file_offset(0, 0);
2378   off += file_header->data_size();
2379
2380   for (Section_list::iterator p = this->section_list_.begin();
2381        p != this->section_list_.end();
2382        ++p)
2383     {
2384       // We skip unallocated sections here, except that group sections
2385       // have to come first.
2386       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2387           && (*p)->type() != elfcpp::SHT_GROUP)
2388         continue;
2389
2390       off = align_address(off, (*p)->addralign());
2391
2392       // The linker script might have set the address.
2393       if (!(*p)->is_address_valid())
2394         (*p)->set_address(0);
2395       (*p)->set_file_offset(off);
2396       (*p)->finalize_data_size();
2397       off += (*p)->data_size();
2398
2399       (*p)->set_out_shndx(*pshndx);
2400       ++*pshndx;
2401     }
2402
2403   return off;
2404 }
2405
2406 // Set the file offset of all the sections not associated with a
2407 // segment.
2408
2409 off_t
2410 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2411 {
2412   for (Section_list::iterator p = this->unattached_section_list_.begin();
2413        p != this->unattached_section_list_.end();
2414        ++p)
2415     {
2416       // The symtab section is handled in create_symtab_sections.
2417       if (*p == this->symtab_section_)
2418         continue;
2419
2420       // If we've already set the data size, don't set it again.
2421       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2422         continue;
2423
2424       if (pass == BEFORE_INPUT_SECTIONS_PASS
2425           && (*p)->requires_postprocessing())
2426         {
2427           (*p)->create_postprocessing_buffer();
2428           this->any_postprocessing_sections_ = true;
2429         }
2430
2431       if (pass == BEFORE_INPUT_SECTIONS_PASS
2432           && (*p)->after_input_sections())
2433         continue;
2434       else if (pass == POSTPROCESSING_SECTIONS_PASS
2435                && (!(*p)->after_input_sections()
2436                    || (*p)->type() == elfcpp::SHT_STRTAB))
2437         continue;
2438       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2439                && (!(*p)->after_input_sections()
2440                    || (*p)->type() != elfcpp::SHT_STRTAB))
2441         continue;
2442
2443       off = align_address(off, (*p)->addralign());
2444       (*p)->set_file_offset(off);
2445       (*p)->finalize_data_size();
2446       off += (*p)->data_size();
2447
2448       // At this point the name must be set.
2449       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2450         this->namepool_.add((*p)->name(), false, NULL);
2451     }
2452   return off;
2453 }
2454
2455 // Set the section indexes of all the sections not associated with a
2456 // segment.
2457
2458 unsigned int
2459 Layout::set_section_indexes(unsigned int shndx)
2460 {
2461   for (Section_list::iterator p = this->unattached_section_list_.begin();
2462        p != this->unattached_section_list_.end();
2463        ++p)
2464     {
2465       if (!(*p)->has_out_shndx())
2466         {
2467           (*p)->set_out_shndx(shndx);
2468           ++shndx;
2469         }
2470     }
2471   return shndx;
2472 }
2473
2474 // Set the section addresses according to the linker script.  This is
2475 // only called when we see a SECTIONS clause.  This returns the
2476 // program segment which should hold the file header and segment
2477 // headers, if any.  It will return NULL if they should not be in a
2478 // segment.
2479
2480 Output_segment*
2481 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2482 {
2483   Script_sections* ss = this->script_options_->script_sections();
2484   gold_assert(ss->saw_sections_clause());
2485   return this->script_options_->set_section_addresses(symtab, this);
2486 }
2487
2488 // Place the orphan sections in the linker script.
2489
2490 void
2491 Layout::place_orphan_sections_in_script()
2492 {
2493   Script_sections* ss = this->script_options_->script_sections();
2494   gold_assert(ss->saw_sections_clause());
2495
2496   // Place each orphaned output section in the script.
2497   for (Section_list::iterator p = this->section_list_.begin();
2498        p != this->section_list_.end();
2499        ++p)
2500     {
2501       if (!(*p)->found_in_sections_clause())
2502         ss->place_orphan(*p);
2503     }
2504 }
2505
2506 // Count the local symbols in the regular symbol table and the dynamic
2507 // symbol table, and build the respective string pools.
2508
2509 void
2510 Layout::count_local_symbols(const Task* task,
2511                             const Input_objects* input_objects)
2512 {
2513   // First, figure out an upper bound on the number of symbols we'll
2514   // be inserting into each pool.  This helps us create the pools with
2515   // the right size, to avoid unnecessary hashtable resizing.
2516   unsigned int symbol_count = 0;
2517   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2518        p != input_objects->relobj_end();
2519        ++p)
2520     symbol_count += (*p)->local_symbol_count();
2521
2522   // Go from "upper bound" to "estimate."  We overcount for two
2523   // reasons: we double-count symbols that occur in more than one
2524   // object file, and we count symbols that are dropped from the
2525   // output.  Add it all together and assume we overcount by 100%.
2526   symbol_count /= 2;
2527
2528   // We assume all symbols will go into both the sympool and dynpool.
2529   this->sympool_.reserve(symbol_count);
2530   this->dynpool_.reserve(symbol_count);
2531
2532   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2533        p != input_objects->relobj_end();
2534        ++p)
2535     {
2536       Task_lock_obj<Object> tlo(task, *p);
2537       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2538     }
2539 }
2540
2541 // Create the symbol table sections.  Here we also set the final
2542 // values of the symbols.  At this point all the loadable sections are
2543 // fully laid out.  SHNUM is the number of sections so far.
2544
2545 void
2546 Layout::create_symtab_sections(const Input_objects* input_objects,
2547                                Symbol_table* symtab,
2548                                unsigned int shnum,
2549                                off_t* poff)
2550 {
2551   int symsize;
2552   unsigned int align;
2553   if (parameters->target().get_size() == 32)
2554     {
2555       symsize = elfcpp::Elf_sizes<32>::sym_size;
2556       align = 4;
2557     }
2558   else if (parameters->target().get_size() == 64)
2559     {
2560       symsize = elfcpp::Elf_sizes<64>::sym_size;
2561       align = 8;
2562     }
2563   else
2564     gold_unreachable();
2565
2566   off_t off = *poff;
2567   off = align_address(off, align);
2568   off_t startoff = off;
2569
2570   // Save space for the dummy symbol at the start of the section.  We
2571   // never bother to write this out--it will just be left as zero.
2572   off += symsize;
2573   unsigned int local_symbol_index = 1;
2574
2575   // Add STT_SECTION symbols for each Output section which needs one.
2576   for (Section_list::iterator p = this->section_list_.begin();
2577        p != this->section_list_.end();
2578        ++p)
2579     {
2580       if (!(*p)->needs_symtab_index())
2581         (*p)->set_symtab_index(-1U);
2582       else
2583         {
2584           (*p)->set_symtab_index(local_symbol_index);
2585           ++local_symbol_index;
2586           off += symsize;
2587         }
2588     }
2589
2590   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2591        p != input_objects->relobj_end();
2592        ++p)
2593     {
2594       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2595                                                         off, symtab);
2596       off += (index - local_symbol_index) * symsize;
2597       local_symbol_index = index;
2598     }
2599
2600   unsigned int local_symcount = local_symbol_index;
2601   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2602
2603   off_t dynoff;
2604   size_t dyn_global_index;
2605   size_t dyncount;
2606   if (this->dynsym_section_ == NULL)
2607     {
2608       dynoff = 0;
2609       dyn_global_index = 0;
2610       dyncount = 0;
2611     }
2612   else
2613     {
2614       dyn_global_index = this->dynsym_section_->info();
2615       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2616       dynoff = this->dynsym_section_->offset() + locsize;
2617       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2618       gold_assert(static_cast<off_t>(dyncount * symsize)
2619                   == this->dynsym_section_->data_size() - locsize);
2620     }
2621
2622   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2623                          &this->sympool_, &local_symcount);
2624
2625   if (!parameters->options().strip_all())
2626     {
2627       this->sympool_.set_string_offsets();
2628
2629       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2630       Output_section* osymtab = this->make_output_section(symtab_name,
2631                                                           elfcpp::SHT_SYMTAB,
2632                                                           0, false, false);
2633       this->symtab_section_ = osymtab;
2634
2635       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2636                                                              align,
2637                                                              "** symtab");
2638       osymtab->add_output_section_data(pos);
2639
2640       // We generate a .symtab_shndx section if we have more than
2641       // SHN_LORESERVE sections.  Technically it is possible that we
2642       // don't need one, because it is possible that there are no
2643       // symbols in any of sections with indexes larger than
2644       // SHN_LORESERVE.  That is probably unusual, though, and it is
2645       // easier to always create one than to compute section indexes
2646       // twice (once here, once when writing out the symbols).
2647       if (shnum >= elfcpp::SHN_LORESERVE)
2648         {
2649           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2650                                                                false, NULL);
2651           Output_section* osymtab_xindex =
2652             this->make_output_section(symtab_xindex_name,
2653                                       elfcpp::SHT_SYMTAB_SHNDX, 0, false,
2654                                       false);
2655
2656           size_t symcount = (off - startoff) / symsize;
2657           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2658
2659           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2660
2661           osymtab_xindex->set_link_section(osymtab);
2662           osymtab_xindex->set_addralign(4);
2663           osymtab_xindex->set_entsize(4);
2664
2665           osymtab_xindex->set_after_input_sections();
2666
2667           // This tells the driver code to wait until the symbol table
2668           // has written out before writing out the postprocessing
2669           // sections, including the .symtab_shndx section.
2670           this->any_postprocessing_sections_ = true;
2671         }
2672
2673       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2674       Output_section* ostrtab = this->make_output_section(strtab_name,
2675                                                           elfcpp::SHT_STRTAB,
2676                                                           0, false, false);
2677
2678       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2679       ostrtab->add_output_section_data(pstr);
2680
2681       osymtab->set_file_offset(startoff);
2682       osymtab->finalize_data_size();
2683       osymtab->set_link_section(ostrtab);
2684       osymtab->set_info(local_symcount);
2685       osymtab->set_entsize(symsize);
2686
2687       *poff = off;
2688     }
2689 }
2690
2691 // Create the .shstrtab section, which holds the names of the
2692 // sections.  At the time this is called, we have created all the
2693 // output sections except .shstrtab itself.
2694
2695 Output_section*
2696 Layout::create_shstrtab()
2697 {
2698   // FIXME: We don't need to create a .shstrtab section if we are
2699   // stripping everything.
2700
2701   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2702
2703   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2704                                                  false, false);
2705
2706   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
2707     {
2708       // We can't write out this section until we've set all the
2709       // section names, and we don't set the names of compressed
2710       // output sections until relocations are complete.  FIXME: With
2711       // the current names we use, this is unnecessary.
2712       os->set_after_input_sections();
2713     }
2714
2715   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2716   os->add_output_section_data(posd);
2717
2718   return os;
2719 }
2720
2721 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2722 // offset.
2723
2724 void
2725 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2726 {
2727   Output_section_headers* oshdrs;
2728   oshdrs = new Output_section_headers(this,
2729                                       &this->segment_list_,
2730                                       &this->section_list_,
2731                                       &this->unattached_section_list_,
2732                                       &this->namepool_,
2733                                       shstrtab_section);
2734   off_t off = align_address(*poff, oshdrs->addralign());
2735   oshdrs->set_address_and_file_offset(0, off);
2736   off += oshdrs->data_size();
2737   *poff = off;
2738   this->section_headers_ = oshdrs;
2739 }
2740
2741 // Count the allocated sections.
2742
2743 size_t
2744 Layout::allocated_output_section_count() const
2745 {
2746   size_t section_count = 0;
2747   for (Segment_list::const_iterator p = this->segment_list_.begin();
2748        p != this->segment_list_.end();
2749        ++p)
2750     section_count += (*p)->output_section_count();
2751   return section_count;
2752 }
2753
2754 // Create the dynamic symbol table.
2755
2756 void
2757 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2758                               Symbol_table* symtab,
2759                               Output_section **pdynstr,
2760                               unsigned int* plocal_dynamic_count,
2761                               std::vector<Symbol*>* pdynamic_symbols,
2762                               Versions* pversions)
2763 {
2764   // Count all the symbols in the dynamic symbol table, and set the
2765   // dynamic symbol indexes.
2766
2767   // Skip symbol 0, which is always all zeroes.
2768   unsigned int index = 1;
2769
2770   // Add STT_SECTION symbols for each Output section which needs one.
2771   for (Section_list::iterator p = this->section_list_.begin();
2772        p != this->section_list_.end();
2773        ++p)
2774     {
2775       if (!(*p)->needs_dynsym_index())
2776         (*p)->set_dynsym_index(-1U);
2777       else
2778         {
2779           (*p)->set_dynsym_index(index);
2780           ++index;
2781         }
2782     }
2783
2784   // Count the local symbols that need to go in the dynamic symbol table,
2785   // and set the dynamic symbol indexes.
2786   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2787        p != input_objects->relobj_end();
2788        ++p)
2789     {
2790       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2791       index = new_index;
2792     }
2793
2794   unsigned int local_symcount = index;
2795   *plocal_dynamic_count = local_symcount;
2796
2797   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2798                                      &this->dynpool_, pversions);
2799
2800   int symsize;
2801   unsigned int align;
2802   const int size = parameters->target().get_size();
2803   if (size == 32)
2804     {
2805       symsize = elfcpp::Elf_sizes<32>::sym_size;
2806       align = 4;
2807     }
2808   else if (size == 64)
2809     {
2810       symsize = elfcpp::Elf_sizes<64>::sym_size;
2811       align = 8;
2812     }
2813   else
2814     gold_unreachable();
2815
2816   // Create the dynamic symbol table section.
2817
2818   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2819                                                        elfcpp::SHT_DYNSYM,
2820                                                        elfcpp::SHF_ALLOC,
2821                                                        false, false, true);
2822
2823   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2824                                                            align,
2825                                                            "** dynsym");
2826   dynsym->add_output_section_data(odata);
2827
2828   dynsym->set_info(local_symcount);
2829   dynsym->set_entsize(symsize);
2830   dynsym->set_addralign(align);
2831
2832   this->dynsym_section_ = dynsym;
2833
2834   Output_data_dynamic* const odyn = this->dynamic_data_;
2835   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2836   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2837
2838   // If there are more than SHN_LORESERVE allocated sections, we
2839   // create a .dynsym_shndx section.  It is possible that we don't
2840   // need one, because it is possible that there are no dynamic
2841   // symbols in any of the sections with indexes larger than
2842   // SHN_LORESERVE.  This is probably unusual, though, and at this
2843   // time we don't know the actual section indexes so it is
2844   // inconvenient to check.
2845   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2846     {
2847       Output_section* dynsym_xindex =
2848         this->choose_output_section(NULL, ".dynsym_shndx",
2849                                     elfcpp::SHT_SYMTAB_SHNDX,
2850                                     elfcpp::SHF_ALLOC,
2851                                     false, false, true);
2852
2853       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2854
2855       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2856
2857       dynsym_xindex->set_link_section(dynsym);
2858       dynsym_xindex->set_addralign(4);
2859       dynsym_xindex->set_entsize(4);
2860
2861       dynsym_xindex->set_after_input_sections();
2862
2863       // This tells the driver code to wait until the symbol table has
2864       // written out before writing out the postprocessing sections,
2865       // including the .dynsym_shndx section.
2866       this->any_postprocessing_sections_ = true;
2867     }
2868
2869   // Create the dynamic string table section.
2870
2871   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2872                                                        elfcpp::SHT_STRTAB,
2873                                                        elfcpp::SHF_ALLOC,
2874                                                        false, false, true);
2875
2876   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2877   dynstr->add_output_section_data(strdata);
2878
2879   dynsym->set_link_section(dynstr);
2880   this->dynamic_section_->set_link_section(dynstr);
2881
2882   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2883   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2884
2885   *pdynstr = dynstr;
2886
2887   // Create the hash tables.
2888
2889   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2890       || strcmp(parameters->options().hash_style(), "both") == 0)
2891     {
2892       unsigned char* phash;
2893       unsigned int hashlen;
2894       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2895                                     &phash, &hashlen);
2896
2897       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2898                                                             elfcpp::SHT_HASH,
2899                                                             elfcpp::SHF_ALLOC,
2900                                                             false, false, true);
2901
2902       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2903                                                                    hashlen,
2904                                                                    align,
2905                                                                    "** hash");
2906       hashsec->add_output_section_data(hashdata);
2907
2908       hashsec->set_link_section(dynsym);
2909       hashsec->set_entsize(4);
2910
2911       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2912     }
2913
2914   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2915       || strcmp(parameters->options().hash_style(), "both") == 0)
2916     {
2917       unsigned char* phash;
2918       unsigned int hashlen;
2919       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2920                                     &phash, &hashlen);
2921
2922       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2923                                                             elfcpp::SHT_GNU_HASH,
2924                                                             elfcpp::SHF_ALLOC,
2925                                                             false, false, true);
2926
2927       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2928                                                                    hashlen,
2929                                                                    align,
2930                                                                    "** hash");
2931       hashsec->add_output_section_data(hashdata);
2932
2933       hashsec->set_link_section(dynsym);
2934       hashsec->set_entsize(4);
2935
2936       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2937     }
2938 }
2939
2940 // Assign offsets to each local portion of the dynamic symbol table.
2941
2942 void
2943 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2944 {
2945   Output_section* dynsym = this->dynsym_section_;
2946   gold_assert(dynsym != NULL);
2947
2948   off_t off = dynsym->offset();
2949
2950   // Skip the dummy symbol at the start of the section.
2951   off += dynsym->entsize();
2952
2953   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2954        p != input_objects->relobj_end();
2955        ++p)
2956     {
2957       unsigned int count = (*p)->set_local_dynsym_offset(off);
2958       off += count * dynsym->entsize();
2959     }
2960 }
2961
2962 // Create the version sections.
2963
2964 void
2965 Layout::create_version_sections(const Versions* versions,
2966                                 const Symbol_table* symtab,
2967                                 unsigned int local_symcount,
2968                                 const std::vector<Symbol*>& dynamic_symbols,
2969                                 const Output_section* dynstr)
2970 {
2971   if (!versions->any_defs() && !versions->any_needs())
2972     return;
2973
2974   switch (parameters->size_and_endianness())
2975     {
2976 #ifdef HAVE_TARGET_32_LITTLE
2977     case Parameters::TARGET_32_LITTLE:
2978       this->sized_create_version_sections<32, false>(versions, symtab,
2979                                                      local_symcount,
2980                                                      dynamic_symbols, dynstr);
2981       break;
2982 #endif
2983 #ifdef HAVE_TARGET_32_BIG
2984     case Parameters::TARGET_32_BIG:
2985       this->sized_create_version_sections<32, true>(versions, symtab,
2986                                                     local_symcount,
2987                                                     dynamic_symbols, dynstr);
2988       break;
2989 #endif
2990 #ifdef HAVE_TARGET_64_LITTLE
2991     case Parameters::TARGET_64_LITTLE:
2992       this->sized_create_version_sections<64, false>(versions, symtab,
2993                                                      local_symcount,
2994                                                      dynamic_symbols, dynstr);
2995       break;
2996 #endif
2997 #ifdef HAVE_TARGET_64_BIG
2998     case Parameters::TARGET_64_BIG:
2999       this->sized_create_version_sections<64, true>(versions, symtab,
3000                                                     local_symcount,
3001                                                     dynamic_symbols, dynstr);
3002       break;
3003 #endif
3004     default:
3005       gold_unreachable();
3006     }
3007 }
3008
3009 // Create the version sections, sized version.
3010
3011 template<int size, bool big_endian>
3012 void
3013 Layout::sized_create_version_sections(
3014     const Versions* versions,
3015     const Symbol_table* symtab,
3016     unsigned int local_symcount,
3017     const std::vector<Symbol*>& dynamic_symbols,
3018     const Output_section* dynstr)
3019 {
3020   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3021                                                      elfcpp::SHT_GNU_versym,
3022                                                      elfcpp::SHF_ALLOC,
3023                                                      false, false, true);
3024
3025   unsigned char* vbuf;
3026   unsigned int vsize;
3027   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3028                                                       local_symcount,
3029                                                       dynamic_symbols,
3030                                                       &vbuf, &vsize);
3031
3032   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3033                                                             "** versions");
3034
3035   vsec->add_output_section_data(vdata);
3036   vsec->set_entsize(2);
3037   vsec->set_link_section(this->dynsym_section_);
3038
3039   Output_data_dynamic* const odyn = this->dynamic_data_;
3040   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3041
3042   if (versions->any_defs())
3043     {
3044       Output_section* vdsec;
3045       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3046                                          elfcpp::SHT_GNU_verdef,
3047                                          elfcpp::SHF_ALLOC,
3048                                          false, false, true);
3049
3050       unsigned char* vdbuf;
3051       unsigned int vdsize;
3052       unsigned int vdentries;
3053       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3054                                                        &vdsize, &vdentries);
3055
3056       Output_section_data* vddata =
3057         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3058
3059       vdsec->add_output_section_data(vddata);
3060       vdsec->set_link_section(dynstr);
3061       vdsec->set_info(vdentries);
3062
3063       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3064       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3065     }
3066
3067   if (versions->any_needs())
3068     {
3069       Output_section* vnsec;
3070       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3071                                           elfcpp::SHT_GNU_verneed,
3072                                           elfcpp::SHF_ALLOC,
3073                                           false, false, true);
3074
3075       unsigned char* vnbuf;
3076       unsigned int vnsize;
3077       unsigned int vnentries;
3078       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3079                                                         &vnbuf, &vnsize,
3080                                                         &vnentries);
3081
3082       Output_section_data* vndata =
3083         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3084
3085       vnsec->add_output_section_data(vndata);
3086       vnsec->set_link_section(dynstr);
3087       vnsec->set_info(vnentries);
3088
3089       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3090       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3091     }
3092 }
3093
3094 // Create the .interp section and PT_INTERP segment.
3095
3096 void
3097 Layout::create_interp(const Target* target)
3098 {
3099   const char* interp = parameters->options().dynamic_linker();
3100   if (interp == NULL)
3101     {
3102       interp = target->dynamic_linker();
3103       gold_assert(interp != NULL);
3104     }
3105
3106   size_t len = strlen(interp) + 1;
3107
3108   Output_section_data* odata = new Output_data_const(interp, len, 1);
3109
3110   Output_section* osec = this->choose_output_section(NULL, ".interp",
3111                                                      elfcpp::SHT_PROGBITS,
3112                                                      elfcpp::SHF_ALLOC,
3113                                                      false, true, true);
3114   osec->add_output_section_data(odata);
3115
3116   if (!this->script_options_->saw_phdrs_clause())
3117     {
3118       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3119                                                        elfcpp::PF_R);
3120       oseg->add_output_section(osec, elfcpp::PF_R, false);
3121     }
3122 }
3123
3124 // Finish the .dynamic section and PT_DYNAMIC segment.
3125
3126 void
3127 Layout::finish_dynamic_section(const Input_objects* input_objects,
3128                                const Symbol_table* symtab)
3129 {
3130   if (!this->script_options_->saw_phdrs_clause())
3131     {
3132       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3133                                                        (elfcpp::PF_R
3134                                                         | elfcpp::PF_W));
3135       oseg->add_output_section(this->dynamic_section_,
3136                                elfcpp::PF_R | elfcpp::PF_W,
3137                                false);
3138     }
3139
3140   Output_data_dynamic* const odyn = this->dynamic_data_;
3141
3142   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3143        p != input_objects->dynobj_end();
3144        ++p)
3145     {
3146       if (!(*p)->is_needed()
3147           && (*p)->input_file()->options().as_needed())
3148         {
3149           // This dynamic object was linked with --as-needed, but it
3150           // is not needed.
3151           continue;
3152         }
3153
3154       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3155     }
3156
3157   if (parameters->options().shared())
3158     {
3159       const char* soname = parameters->options().soname();
3160       if (soname != NULL)
3161         odyn->add_string(elfcpp::DT_SONAME, soname);
3162     }
3163
3164   Symbol* sym = symtab->lookup(parameters->options().init());
3165   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3166     odyn->add_symbol(elfcpp::DT_INIT, sym);
3167
3168   sym = symtab->lookup(parameters->options().fini());
3169   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3170     odyn->add_symbol(elfcpp::DT_FINI, sym);
3171
3172   // Look for .init_array, .preinit_array and .fini_array by checking
3173   // section types.
3174   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3175       p != this->section_list_.end();
3176       ++p)
3177     switch((*p)->type())
3178       {
3179       case elfcpp::SHT_FINI_ARRAY:
3180         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3181         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3182         break;
3183       case elfcpp::SHT_INIT_ARRAY:
3184         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3185         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3186         break;
3187       case elfcpp::SHT_PREINIT_ARRAY:
3188         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3189         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3190         break;
3191       default:
3192         break;
3193       }
3194   
3195   // Add a DT_RPATH entry if needed.
3196   const General_options::Dir_list& rpath(parameters->options().rpath());
3197   if (!rpath.empty())
3198     {
3199       std::string rpath_val;
3200       for (General_options::Dir_list::const_iterator p = rpath.begin();
3201            p != rpath.end();
3202            ++p)
3203         {
3204           if (rpath_val.empty())
3205             rpath_val = p->name();
3206           else
3207             {
3208               // Eliminate duplicates.
3209               General_options::Dir_list::const_iterator q;
3210               for (q = rpath.begin(); q != p; ++q)
3211                 if (q->name() == p->name())
3212                   break;
3213               if (q == p)
3214                 {
3215                   rpath_val += ':';
3216                   rpath_val += p->name();
3217                 }
3218             }
3219         }
3220
3221       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3222       if (parameters->options().enable_new_dtags())
3223         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3224     }
3225
3226   // Look for text segments that have dynamic relocations.
3227   bool have_textrel = false;
3228   if (!this->script_options_->saw_sections_clause())
3229     {
3230       for (Segment_list::const_iterator p = this->segment_list_.begin();
3231            p != this->segment_list_.end();
3232            ++p)
3233         {
3234           if (((*p)->flags() & elfcpp::PF_W) == 0
3235               && (*p)->dynamic_reloc_count() > 0)
3236             {
3237               have_textrel = true;
3238               break;
3239             }
3240         }
3241     }
3242   else
3243     {
3244       // We don't know the section -> segment mapping, so we are
3245       // conservative and just look for readonly sections with
3246       // relocations.  If those sections wind up in writable segments,
3247       // then we have created an unnecessary DT_TEXTREL entry.
3248       for (Section_list::const_iterator p = this->section_list_.begin();
3249            p != this->section_list_.end();
3250            ++p)
3251         {
3252           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3253               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3254               && ((*p)->dynamic_reloc_count() > 0))
3255             {
3256               have_textrel = true;
3257               break;
3258             }
3259         }
3260     }
3261
3262   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3263   // post-link tools can easily modify these flags if desired.
3264   unsigned int flags = 0;
3265   if (have_textrel)
3266     {
3267       // Add a DT_TEXTREL for compatibility with older loaders.
3268       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3269       flags |= elfcpp::DF_TEXTREL;
3270     }
3271   if (parameters->options().shared() && this->has_static_tls())
3272     flags |= elfcpp::DF_STATIC_TLS;
3273   if (parameters->options().origin())
3274     flags |= elfcpp::DF_ORIGIN;
3275   if (parameters->options().Bsymbolic())
3276     {
3277       flags |= elfcpp::DF_SYMBOLIC;
3278       // Add DT_SYMBOLIC for compatibility with older loaders.
3279       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3280     }
3281   if (parameters->options().now())
3282     flags |= elfcpp::DF_BIND_NOW;
3283   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3284
3285   flags = 0;
3286   if (parameters->options().initfirst())
3287     flags |= elfcpp::DF_1_INITFIRST;
3288   if (parameters->options().interpose())
3289     flags |= elfcpp::DF_1_INTERPOSE;
3290   if (parameters->options().loadfltr())
3291     flags |= elfcpp::DF_1_LOADFLTR;
3292   if (parameters->options().nodefaultlib())
3293     flags |= elfcpp::DF_1_NODEFLIB;
3294   if (parameters->options().nodelete())
3295     flags |= elfcpp::DF_1_NODELETE;
3296   if (parameters->options().nodlopen())
3297     flags |= elfcpp::DF_1_NOOPEN;
3298   if (parameters->options().nodump())
3299     flags |= elfcpp::DF_1_NODUMP;
3300   if (!parameters->options().shared())
3301     flags &= ~(elfcpp::DF_1_INITFIRST
3302                | elfcpp::DF_1_NODELETE
3303                | elfcpp::DF_1_NOOPEN);
3304   if (parameters->options().origin())
3305     flags |= elfcpp::DF_1_ORIGIN;
3306   if (parameters->options().now())
3307     flags |= elfcpp::DF_1_NOW;
3308   if (flags)
3309     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3310 }
3311
3312 // Set the size of the _DYNAMIC symbol table to be the size of the
3313 // dynamic data.
3314
3315 void
3316 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3317 {
3318   Output_data_dynamic* const odyn = this->dynamic_data_;
3319   odyn->finalize_data_size();
3320   off_t data_size = odyn->data_size();
3321   const int size = parameters->target().get_size();
3322   if (size == 32)
3323     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3324   else if (size == 64)
3325     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3326   else
3327     gold_unreachable();
3328 }
3329
3330 // The mapping of input section name prefixes to output section names.
3331 // In some cases one prefix is itself a prefix of another prefix; in
3332 // such a case the longer prefix must come first.  These prefixes are
3333 // based on the GNU linker default ELF linker script.
3334
3335 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3336 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3337 {
3338   MAPPING_INIT(".text.", ".text"),
3339   MAPPING_INIT(".ctors.", ".ctors"),
3340   MAPPING_INIT(".dtors.", ".dtors"),
3341   MAPPING_INIT(".rodata.", ".rodata"),
3342   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3343   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3344   MAPPING_INIT(".data.", ".data"),
3345   MAPPING_INIT(".bss.", ".bss"),
3346   MAPPING_INIT(".tdata.", ".tdata"),
3347   MAPPING_INIT(".tbss.", ".tbss"),
3348   MAPPING_INIT(".init_array.", ".init_array"),
3349   MAPPING_INIT(".fini_array.", ".fini_array"),
3350   MAPPING_INIT(".sdata.", ".sdata"),
3351   MAPPING_INIT(".sbss.", ".sbss"),
3352   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3353   // differently depending on whether it is creating a shared library.
3354   MAPPING_INIT(".sdata2.", ".sdata"),
3355   MAPPING_INIT(".sbss2.", ".sbss"),
3356   MAPPING_INIT(".lrodata.", ".lrodata"),
3357   MAPPING_INIT(".ldata.", ".ldata"),
3358   MAPPING_INIT(".lbss.", ".lbss"),
3359   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3360   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3361   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3362   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3363   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3364   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3365   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3366   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3367   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3368   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3369   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3370   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3371   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3372   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3373   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3374   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3375   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3376   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3377   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3378   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3379   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3380 };
3381 #undef MAPPING_INIT
3382
3383 const int Layout::section_name_mapping_count =
3384   (sizeof(Layout::section_name_mapping)
3385    / sizeof(Layout::section_name_mapping[0]));
3386
3387 // Choose the output section name to use given an input section name.
3388 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3389 // length of NAME.
3390
3391 const char*
3392 Layout::output_section_name(const char* name, size_t* plen)
3393 {
3394   // gcc 4.3 generates the following sorts of section names when it
3395   // needs a section name specific to a function:
3396   //   .text.FN
3397   //   .rodata.FN
3398   //   .sdata2.FN
3399   //   .data.FN
3400   //   .data.rel.FN
3401   //   .data.rel.local.FN
3402   //   .data.rel.ro.FN
3403   //   .data.rel.ro.local.FN
3404   //   .sdata.FN
3405   //   .bss.FN
3406   //   .sbss.FN
3407   //   .tdata.FN
3408   //   .tbss.FN
3409
3410   // The GNU linker maps all of those to the part before the .FN,
3411   // except that .data.rel.local.FN is mapped to .data, and
3412   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3413   // beginning with .data.rel.ro.local are grouped together.
3414
3415   // For an anonymous namespace, the string FN can contain a '.'.
3416
3417   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3418   // GNU linker maps to .rodata.
3419
3420   // The .data.rel.ro sections are used with -z relro.  The sections
3421   // are recognized by name.  We use the same names that the GNU
3422   // linker does for these sections.
3423
3424   // It is hard to handle this in a principled way, so we don't even
3425   // try.  We use a table of mappings.  If the input section name is
3426   // not found in the table, we simply use it as the output section
3427   // name.
3428
3429   const Section_name_mapping* psnm = section_name_mapping;
3430   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3431     {
3432       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3433         {
3434           *plen = psnm->tolen;
3435           return psnm->to;
3436         }
3437     }
3438
3439   return name;
3440 }
3441
3442 // Check if a comdat group or .gnu.linkonce section with the given
3443 // NAME is selected for the link.  If there is already a section,
3444 // *KEPT_SECTION is set to point to the existing section and the
3445 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3446 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3447 // *KEPT_SECTION is set to the internal copy and the function returns
3448 // true.
3449
3450 bool
3451 Layout::find_or_add_kept_section(const std::string& name,
3452                                  Relobj* object,
3453                                  unsigned int shndx,
3454                                  bool is_comdat,
3455                                  bool is_group_name,
3456                                  Kept_section** kept_section)
3457 {
3458   // It's normal to see a couple of entries here, for the x86 thunk
3459   // sections.  If we see more than a few, we're linking a C++
3460   // program, and we resize to get more space to minimize rehashing.
3461   if (this->signatures_.size() > 4
3462       && !this->resized_signatures_)
3463     {
3464       reserve_unordered_map(&this->signatures_,
3465                             this->number_of_input_files_ * 64);
3466       this->resized_signatures_ = true;
3467     }
3468
3469   Kept_section candidate;
3470   std::pair<Signatures::iterator, bool> ins =
3471     this->signatures_.insert(std::make_pair(name, candidate));
3472
3473   if (kept_section != NULL)
3474     *kept_section = &ins.first->second;
3475   if (ins.second)
3476     {
3477       // This is the first time we've seen this signature.
3478       ins.first->second.set_object(object);
3479       ins.first->second.set_shndx(shndx);
3480       if (is_comdat)
3481         ins.first->second.set_is_comdat();
3482       if (is_group_name)
3483         ins.first->second.set_is_group_name();
3484       return true;
3485     }
3486
3487   // We have already seen this signature.
3488
3489   if (ins.first->second.is_group_name())
3490     {
3491       // We've already seen a real section group with this signature.
3492       // If the kept group is from a plugin object, and we're in the
3493       // replacement phase, accept the new one as a replacement.
3494       if (ins.first->second.object() == NULL
3495           && parameters->options().plugins()->in_replacement_phase())
3496         {
3497           ins.first->second.set_object(object);
3498           ins.first->second.set_shndx(shndx);
3499           return true;
3500         }
3501       return false;
3502     }
3503   else if (is_group_name)
3504     {
3505       // This is a real section group, and we've already seen a
3506       // linkonce section with this signature.  Record that we've seen
3507       // a section group, and don't include this section group.
3508       ins.first->second.set_is_group_name();
3509       return false;
3510     }
3511   else
3512     {
3513       // We've already seen a linkonce section and this is a linkonce
3514       // section.  These don't block each other--this may be the same
3515       // symbol name with different section types.
3516       return true;
3517     }
3518 }
3519
3520 // Store the allocated sections into the section list.
3521
3522 void
3523 Layout::get_allocated_sections(Section_list* section_list) const
3524 {
3525   for (Section_list::const_iterator p = this->section_list_.begin();
3526        p != this->section_list_.end();
3527        ++p)
3528     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3529       section_list->push_back(*p);
3530 }
3531
3532 // Create an output segment.
3533
3534 Output_segment*
3535 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3536 {
3537   gold_assert(!parameters->options().relocatable());
3538   Output_segment* oseg = new Output_segment(type, flags);
3539   this->segment_list_.push_back(oseg);
3540
3541   if (type == elfcpp::PT_TLS)
3542     this->tls_segment_ = oseg;
3543   else if (type == elfcpp::PT_GNU_RELRO)
3544     this->relro_segment_ = oseg;
3545
3546   return oseg;
3547 }
3548
3549 // Write out the Output_sections.  Most won't have anything to write,
3550 // since most of the data will come from input sections which are
3551 // handled elsewhere.  But some Output_sections do have Output_data.
3552
3553 void
3554 Layout::write_output_sections(Output_file* of) const
3555 {
3556   for (Section_list::const_iterator p = this->section_list_.begin();
3557        p != this->section_list_.end();
3558        ++p)
3559     {
3560       if (!(*p)->after_input_sections())
3561         (*p)->write(of);
3562     }
3563 }
3564
3565 // Write out data not associated with a section or the symbol table.
3566
3567 void
3568 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3569 {
3570   if (!parameters->options().strip_all())
3571     {
3572       const Output_section* symtab_section = this->symtab_section_;
3573       for (Section_list::const_iterator p = this->section_list_.begin();
3574            p != this->section_list_.end();
3575            ++p)
3576         {
3577           if ((*p)->needs_symtab_index())
3578             {
3579               gold_assert(symtab_section != NULL);
3580               unsigned int index = (*p)->symtab_index();
3581               gold_assert(index > 0 && index != -1U);
3582               off_t off = (symtab_section->offset()
3583                            + index * symtab_section->entsize());
3584               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3585             }
3586         }
3587     }
3588
3589   const Output_section* dynsym_section = this->dynsym_section_;
3590   for (Section_list::const_iterator p = this->section_list_.begin();
3591        p != this->section_list_.end();
3592        ++p)
3593     {
3594       if ((*p)->needs_dynsym_index())
3595         {
3596           gold_assert(dynsym_section != NULL);
3597           unsigned int index = (*p)->dynsym_index();
3598           gold_assert(index > 0 && index != -1U);
3599           off_t off = (dynsym_section->offset()
3600                        + index * dynsym_section->entsize());
3601           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3602         }
3603     }
3604
3605   // Write out the Output_data which are not in an Output_section.
3606   for (Data_list::const_iterator p = this->special_output_list_.begin();
3607        p != this->special_output_list_.end();
3608        ++p)
3609     (*p)->write(of);
3610 }
3611
3612 // Write out the Output_sections which can only be written after the
3613 // input sections are complete.
3614
3615 void
3616 Layout::write_sections_after_input_sections(Output_file* of)
3617 {
3618   // Determine the final section offsets, and thus the final output
3619   // file size.  Note we finalize the .shstrab last, to allow the
3620   // after_input_section sections to modify their section-names before
3621   // writing.
3622   if (this->any_postprocessing_sections_)
3623     {
3624       off_t off = this->output_file_size_;
3625       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3626
3627       // Now that we've finalized the names, we can finalize the shstrab.
3628       off =
3629         this->set_section_offsets(off,
3630                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3631
3632       if (off > this->output_file_size_)
3633         {
3634           of->resize(off);
3635           this->output_file_size_ = off;
3636         }
3637     }
3638
3639   for (Section_list::const_iterator p = this->section_list_.begin();
3640        p != this->section_list_.end();
3641        ++p)
3642     {
3643       if ((*p)->after_input_sections())
3644         (*p)->write(of);
3645     }
3646
3647   this->section_headers_->write(of);
3648 }
3649
3650 // If the build ID requires computing a checksum, do so here, and
3651 // write it out.  We compute a checksum over the entire file because
3652 // that is simplest.
3653
3654 void
3655 Layout::write_build_id(Output_file* of) const
3656 {
3657   if (this->build_id_note_ == NULL)
3658     return;
3659
3660   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3661
3662   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3663                                           this->build_id_note_->data_size());
3664
3665   const char* style = parameters->options().build_id();
3666   if (strcmp(style, "sha1") == 0)
3667     {
3668       sha1_ctx ctx;
3669       sha1_init_ctx(&ctx);
3670       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3671       sha1_finish_ctx(&ctx, ov);
3672     }
3673   else if (strcmp(style, "md5") == 0)
3674     {
3675       md5_ctx ctx;
3676       md5_init_ctx(&ctx);
3677       md5_process_bytes(iv, this->output_file_size_, &ctx);
3678       md5_finish_ctx(&ctx, ov);
3679     }
3680   else
3681     gold_unreachable();
3682
3683   of->write_output_view(this->build_id_note_->offset(),
3684                         this->build_id_note_->data_size(),
3685                         ov);
3686
3687   of->free_input_view(0, this->output_file_size_, iv);
3688 }
3689
3690 // Write out a binary file.  This is called after the link is
3691 // complete.  IN is the temporary output file we used to generate the
3692 // ELF code.  We simply walk through the segments, read them from
3693 // their file offset in IN, and write them to their load address in
3694 // the output file.  FIXME: with a bit more work, we could support
3695 // S-records and/or Intel hex format here.
3696
3697 void
3698 Layout::write_binary(Output_file* in) const
3699 {
3700   gold_assert(parameters->options().oformat_enum()
3701               == General_options::OBJECT_FORMAT_BINARY);
3702
3703   // Get the size of the binary file.
3704   uint64_t max_load_address = 0;
3705   for (Segment_list::const_iterator p = this->segment_list_.begin();
3706        p != this->segment_list_.end();
3707        ++p)
3708     {
3709       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3710         {
3711           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3712           if (max_paddr > max_load_address)
3713             max_load_address = max_paddr;
3714         }
3715     }
3716
3717   Output_file out(parameters->options().output_file_name());
3718   out.open(max_load_address);
3719
3720   for (Segment_list::const_iterator p = this->segment_list_.begin();
3721        p != this->segment_list_.end();
3722        ++p)
3723     {
3724       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3725         {
3726           const unsigned char* vin = in->get_input_view((*p)->offset(),
3727                                                         (*p)->filesz());
3728           unsigned char* vout = out.get_output_view((*p)->paddr(),
3729                                                     (*p)->filesz());
3730           memcpy(vout, vin, (*p)->filesz());
3731           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3732           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3733         }
3734     }
3735
3736   out.close();
3737 }
3738
3739 // Print the output sections to the map file.
3740
3741 void
3742 Layout::print_to_mapfile(Mapfile* mapfile) const
3743 {
3744   for (Segment_list::const_iterator p = this->segment_list_.begin();
3745        p != this->segment_list_.end();
3746        ++p)
3747     (*p)->print_sections_to_mapfile(mapfile);
3748 }
3749
3750 // Print statistical information to stderr.  This is used for --stats.
3751
3752 void
3753 Layout::print_stats() const
3754 {
3755   this->namepool_.print_stats("section name pool");
3756   this->sympool_.print_stats("output symbol name pool");
3757   this->dynpool_.print_stats("dynamic name pool");
3758
3759   for (Section_list::const_iterator p = this->section_list_.begin();
3760        p != this->section_list_.end();
3761        ++p)
3762     (*p)->print_merge_stats();
3763 }
3764
3765 // Write_sections_task methods.
3766
3767 // We can always run this task.
3768
3769 Task_token*
3770 Write_sections_task::is_runnable()
3771 {
3772   return NULL;
3773 }
3774
3775 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3776 // when finished.
3777
3778 void
3779 Write_sections_task::locks(Task_locker* tl)
3780 {
3781   tl->add(this, this->output_sections_blocker_);
3782   tl->add(this, this->final_blocker_);
3783 }
3784
3785 // Run the task--write out the data.
3786
3787 void
3788 Write_sections_task::run(Workqueue*)
3789 {
3790   this->layout_->write_output_sections(this->of_);
3791 }
3792
3793 // Write_data_task methods.
3794
3795 // We can always run this task.
3796
3797 Task_token*
3798 Write_data_task::is_runnable()
3799 {
3800   return NULL;
3801 }
3802
3803 // We need to unlock FINAL_BLOCKER when finished.
3804
3805 void
3806 Write_data_task::locks(Task_locker* tl)
3807 {
3808   tl->add(this, this->final_blocker_);
3809 }
3810
3811 // Run the task--write out the data.
3812
3813 void
3814 Write_data_task::run(Workqueue*)
3815 {
3816   this->layout_->write_data(this->symtab_, this->of_);
3817 }
3818
3819 // Write_symbols_task methods.
3820
3821 // We can always run this task.
3822
3823 Task_token*
3824 Write_symbols_task::is_runnable()
3825 {
3826   return NULL;
3827 }
3828
3829 // We need to unlock FINAL_BLOCKER when finished.
3830
3831 void
3832 Write_symbols_task::locks(Task_locker* tl)
3833 {
3834   tl->add(this, this->final_blocker_);
3835 }
3836
3837 // Run the task--write out the symbols.
3838
3839 void
3840 Write_symbols_task::run(Workqueue*)
3841 {
3842   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3843                                this->layout_->symtab_xindex(),
3844                                this->layout_->dynsym_xindex(), this->of_);
3845 }
3846
3847 // Write_after_input_sections_task methods.
3848
3849 // We can only run this task after the input sections have completed.
3850
3851 Task_token*
3852 Write_after_input_sections_task::is_runnable()
3853 {
3854   if (this->input_sections_blocker_->is_blocked())
3855     return this->input_sections_blocker_;
3856   return NULL;
3857 }
3858
3859 // We need to unlock FINAL_BLOCKER when finished.
3860
3861 void
3862 Write_after_input_sections_task::locks(Task_locker* tl)
3863 {
3864   tl->add(this, this->final_blocker_);
3865 }
3866
3867 // Run the task.
3868
3869 void
3870 Write_after_input_sections_task::run(Workqueue*)
3871 {
3872   this->layout_->write_sections_after_input_sections(this->of_);
3873 }
3874
3875 // Close_task_runner methods.
3876
3877 // Run the task--close the file.
3878
3879 void
3880 Close_task_runner::run(Workqueue*, const Task*)
3881 {
3882   // If we need to compute a checksum for the BUILD if, we do so here.
3883   this->layout_->write_build_id(this->of_);
3884
3885   // If we've been asked to create a binary file, we do so here.
3886   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3887     this->layout_->write_binary(this->of_);
3888
3889   this->of_->close();
3890 }
3891
3892 // Instantiate the templates we need.  We could use the configure
3893 // script to restrict this to only the ones for implemented targets.
3894
3895 #ifdef HAVE_TARGET_32_LITTLE
3896 template
3897 Output_section*
3898 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3899                           const char* name,
3900                           const elfcpp::Shdr<32, false>& shdr,
3901                           unsigned int, unsigned int, off_t*);
3902 #endif
3903
3904 #ifdef HAVE_TARGET_32_BIG
3905 template
3906 Output_section*
3907 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3908                          const char* name,
3909                          const elfcpp::Shdr<32, true>& shdr,
3910                          unsigned int, unsigned int, off_t*);
3911 #endif
3912
3913 #ifdef HAVE_TARGET_64_LITTLE
3914 template
3915 Output_section*
3916 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3917                           const char* name,
3918                           const elfcpp::Shdr<64, false>& shdr,
3919                           unsigned int, unsigned int, off_t*);
3920 #endif
3921
3922 #ifdef HAVE_TARGET_64_BIG
3923 template
3924 Output_section*
3925 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3926                          const char* name,
3927                          const elfcpp::Shdr<64, true>& shdr,
3928                          unsigned int, unsigned int, off_t*);
3929 #endif
3930
3931 #ifdef HAVE_TARGET_32_LITTLE
3932 template
3933 Output_section*
3934 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3935                                 unsigned int reloc_shndx,
3936                                 const elfcpp::Shdr<32, false>& shdr,
3937                                 Output_section* data_section,
3938                                 Relocatable_relocs* rr);
3939 #endif
3940
3941 #ifdef HAVE_TARGET_32_BIG
3942 template
3943 Output_section*
3944 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3945                                unsigned int reloc_shndx,
3946                                const elfcpp::Shdr<32, true>& shdr,
3947                                Output_section* data_section,
3948                                Relocatable_relocs* rr);
3949 #endif
3950
3951 #ifdef HAVE_TARGET_64_LITTLE
3952 template
3953 Output_section*
3954 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3955                                 unsigned int reloc_shndx,
3956                                 const elfcpp::Shdr<64, false>& shdr,
3957                                 Output_section* data_section,
3958                                 Relocatable_relocs* rr);
3959 #endif
3960
3961 #ifdef HAVE_TARGET_64_BIG
3962 template
3963 Output_section*
3964 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3965                                unsigned int reloc_shndx,
3966                                const elfcpp::Shdr<64, true>& shdr,
3967                                Output_section* data_section,
3968                                Relocatable_relocs* rr);
3969 #endif
3970
3971 #ifdef HAVE_TARGET_32_LITTLE
3972 template
3973 void
3974 Layout::layout_group<32, false>(Symbol_table* symtab,
3975                                 Sized_relobj<32, false>* object,
3976                                 unsigned int,
3977                                 const char* group_section_name,
3978                                 const char* signature,
3979                                 const elfcpp::Shdr<32, false>& shdr,
3980                                 elfcpp::Elf_Word flags,
3981                                 std::vector<unsigned int>* shndxes);
3982 #endif
3983
3984 #ifdef HAVE_TARGET_32_BIG
3985 template
3986 void
3987 Layout::layout_group<32, true>(Symbol_table* symtab,
3988                                Sized_relobj<32, true>* object,
3989                                unsigned int,
3990                                const char* group_section_name,
3991                                const char* signature,
3992                                const elfcpp::Shdr<32, true>& shdr,
3993                                elfcpp::Elf_Word flags,
3994                                std::vector<unsigned int>* shndxes);
3995 #endif
3996
3997 #ifdef HAVE_TARGET_64_LITTLE
3998 template
3999 void
4000 Layout::layout_group<64, false>(Symbol_table* symtab,
4001                                 Sized_relobj<64, false>* object,
4002                                 unsigned int,
4003                                 const char* group_section_name,
4004                                 const char* signature,
4005                                 const elfcpp::Shdr<64, false>& shdr,
4006                                 elfcpp::Elf_Word flags,
4007                                 std::vector<unsigned int>* shndxes);
4008 #endif
4009
4010 #ifdef HAVE_TARGET_64_BIG
4011 template
4012 void
4013 Layout::layout_group<64, true>(Symbol_table* symtab,
4014                                Sized_relobj<64, true>* object,
4015                                unsigned int,
4016                                const char* group_section_name,
4017                                const char* signature,
4018                                const elfcpp::Shdr<64, true>& shdr,
4019                                elfcpp::Elf_Word flags,
4020                                std::vector<unsigned int>* shndxes);
4021 #endif
4022
4023 #ifdef HAVE_TARGET_32_LITTLE
4024 template
4025 Output_section*
4026 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4027                                    const unsigned char* symbols,
4028                                    off_t symbols_size,
4029                                    const unsigned char* symbol_names,
4030                                    off_t symbol_names_size,
4031                                    unsigned int shndx,
4032                                    const elfcpp::Shdr<32, false>& shdr,
4033                                    unsigned int reloc_shndx,
4034                                    unsigned int reloc_type,
4035                                    off_t* off);
4036 #endif
4037
4038 #ifdef HAVE_TARGET_32_BIG
4039 template
4040 Output_section*
4041 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4042                                    const unsigned char* symbols,
4043                                    off_t symbols_size,
4044                                   const unsigned char* symbol_names,
4045                                   off_t symbol_names_size,
4046                                   unsigned int shndx,
4047                                   const elfcpp::Shdr<32, true>& shdr,
4048                                   unsigned int reloc_shndx,
4049                                   unsigned int reloc_type,
4050                                   off_t* off);
4051 #endif
4052
4053 #ifdef HAVE_TARGET_64_LITTLE
4054 template
4055 Output_section*
4056 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4057                                    const unsigned char* symbols,
4058                                    off_t symbols_size,
4059                                    const unsigned char* symbol_names,
4060                                    off_t symbol_names_size,
4061                                    unsigned int shndx,
4062                                    const elfcpp::Shdr<64, false>& shdr,
4063                                    unsigned int reloc_shndx,
4064                                    unsigned int reloc_type,
4065                                    off_t* off);
4066 #endif
4067
4068 #ifdef HAVE_TARGET_64_BIG
4069 template
4070 Output_section*
4071 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4072                                    const unsigned char* symbols,
4073                                    off_t symbols_size,
4074                                   const unsigned char* symbol_names,
4075                                   off_t symbol_names_size,
4076                                   unsigned int shndx,
4077                                   const elfcpp::Shdr<64, true>& shdr,
4078                                   unsigned int reloc_shndx,
4079                                   unsigned int reloc_type,
4080                                   off_t* off);
4081 #endif
4082
4083 } // End namespace gold.