a3e60d52d186d09740e6327be597ae7ba2faf72d
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Class Free_list.
59
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
72
73 // Initialize the free list.  Creates a single free list node that
74 // describes the entire region of length LEN.  If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
76 // length.
77
78 void
79 Free_list::init(off_t len, bool extend)
80 {
81   this->list_.push_front(Free_list_node(0, len));
82   this->last_remove_ = this->list_.begin();
83   this->extend_ = extend;
84   this->length_ = len;
85   ++Free_list::num_lists;
86   ++Free_list::num_nodes;
87 }
88
89 // Remove a chunk from the free list.  Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node.  We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
96 // performance.
97
98 void
99 Free_list::remove(off_t start, off_t end)
100 {
101   if (start == end)
102     return;
103   gold_assert(start < end);
104
105   ++Free_list::num_removes;
106
107   Iterator p = this->last_remove_;
108   if (p->start_ > start)
109     p = this->list_.begin();
110
111   for (; p != this->list_.end(); ++p)
112     {
113       ++Free_list::num_remove_visits;
114       // Find a node that wholly contains the indicated region.
115       if (p->start_ <= start && p->end_ >= end)
116         {
117           // Case 1: the indicated region spans the whole node.
118           // Add some fuzz to avoid creating tiny free chunks.
119           if (p->start_ + 3 >= start && p->end_ <= end + 3)
120             p = this->list_.erase(p);
121           // Case 2: remove a chunk from the start of the node.
122           else if (p->start_ + 3 >= start)
123             p->start_ = end;
124           // Case 3: remove a chunk from the end of the node.
125           else if (p->end_ <= end + 3)
126             p->end_ = start;
127           // Case 4: remove a chunk from the middle, and split
128           // the node into two.
129           else
130             {
131               Free_list_node newnode(p->start_, start);
132               p->start_ = end;
133               this->list_.insert(p, newnode);
134               ++Free_list::num_nodes;
135             }
136           this->last_remove_ = p;
137           return;
138         }
139     }
140
141   // Did not find a node containing the given chunk.  This could happen
142   // because a small chunk was already removed due to the fuzz.
143   gold_debug(DEBUG_INCREMENTAL,
144              "Free_list::remove(%d,%d) not found",
145              static_cast<int>(start), static_cast<int>(end));
146 }
147
148 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
151
152 off_t
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
154 {
155   gold_debug(DEBUG_INCREMENTAL,
156              "Free_list::allocate(%08lx, %d, %08lx)",
157              static_cast<long>(len), static_cast<int>(align),
158              static_cast<long>(minoff));
159   if (len == 0)
160     return align_address(minoff, align);
161
162   ++Free_list::num_allocates;
163
164   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
165     {
166       ++Free_list::num_allocate_visits;
167       off_t start = p->start_ > minoff ? p->start_ : minoff;
168       start = align_address(start, align);
169       off_t end = start + len;
170       if (end <= p->end_)
171         {
172           if (p->start_ + 3 >= start && p->end_ <= end + 3)
173             this->list_.erase(p);
174           else if (p->start_ + 3 >= start)
175             p->start_ = end;
176           else if (p->end_ <= end + 3)
177             p->end_ = start;
178           else
179             {
180               Free_list_node newnode(p->start_, start);
181               p->start_ = end;
182               this->list_.insert(p, newnode);
183               ++Free_list::num_nodes;
184             }
185           return start;
186         }
187     }
188   return -1;
189 }
190
191 // Dump the free list (for debugging).
192 void
193 Free_list::dump()
194 {
195   gold_info("Free list:\n     start      end   length\n");
196   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
198               static_cast<long>(p->end_),
199               static_cast<long>(p->end_ - p->start_));
200 }
201
202 // Print the statistics for the free lists.
203 void
204 Free_list::print_stats()
205 {
206   fprintf(stderr, _("%s: total free lists: %u\n"),
207           program_name, Free_list::num_lists);
208   fprintf(stderr, _("%s: total free list nodes: %u\n"),
209           program_name, Free_list::num_nodes);
210   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211           program_name, Free_list::num_removes);
212   fprintf(stderr, _("%s: nodes visited: %u\n"),
213           program_name, Free_list::num_remove_visits);
214   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215           program_name, Free_list::num_allocates);
216   fprintf(stderr, _("%s: nodes visited: %u\n"),
217           program_name, Free_list::num_allocate_visits);
218 }
219
220 // Layout::Relaxation_debug_check methods.
221
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
226 void
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228     const Layout::Section_list& sections,
229     const Layout::Data_list& special_outputs)
230 {
231   for(Layout::Section_list::const_iterator p = sections.begin();
232       p != sections.end();
233       ++p)
234     gold_assert((*p)->address_and_file_offset_have_reset_values());
235
236   for(Layout::Data_list::const_iterator p = special_outputs.begin();
237       p != special_outputs.end();
238       ++p)
239     gold_assert((*p)->address_and_file_offset_have_reset_values());
240 }
241   
242 // Save information of SECTIONS for checking later.
243
244 void
245 Layout::Relaxation_debug_check::read_sections(
246     const Layout::Section_list& sections)
247 {
248   for(Layout::Section_list::const_iterator p = sections.begin();
249       p != sections.end();
250       ++p)
251     {
252       Output_section* os = *p;
253       Section_info info;
254       info.output_section = os;
255       info.address = os->is_address_valid() ? os->address() : 0;
256       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257       info.offset = os->is_offset_valid()? os->offset() : -1 ;
258       this->section_infos_.push_back(info);
259     }
260 }
261
262 // Verify SECTIONS using previously recorded information.
263
264 void
265 Layout::Relaxation_debug_check::verify_sections(
266     const Layout::Section_list& sections)
267 {
268   size_t i = 0;
269   for(Layout::Section_list::const_iterator p = sections.begin();
270       p != sections.end();
271       ++p, ++i)
272     {
273       Output_section* os = *p;
274       uint64_t address = os->is_address_valid() ? os->address() : 0;
275       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
277
278       if (i >= this->section_infos_.size())
279         {
280           gold_fatal("Section_info of %s missing.\n", os->name());
281         }
282       const Section_info& info = this->section_infos_[i];
283       if (os != info.output_section)
284         gold_fatal("Section order changed.  Expecting %s but see %s\n",
285                    info.output_section->name(), os->name());
286       if (address != info.address
287           || data_size != info.data_size
288           || offset != info.offset)
289         gold_fatal("Section %s changed.\n", os->name());
290     }
291 }
292
293 // Layout_task_runner methods.
294
295 // Lay out the sections.  This is called after all the input objects
296 // have been read.
297
298 void
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
300 {
301   Layout* layout = this->layout_;
302   off_t file_size = layout->finalize(this->input_objects_,
303                                      this->symtab_,
304                                      this->target_,
305                                      task);
306
307   // Now we know the final size of the output file and we know where
308   // each piece of information goes.
309
310   if (this->mapfile_ != NULL)
311     {
312       this->mapfile_->print_discarded_sections(this->input_objects_);
313       layout->print_to_mapfile(this->mapfile_);
314     }
315
316   Output_file* of;
317   if (layout->incremental_base() == NULL)
318     {
319       of = new Output_file(parameters->options().output_file_name());
320       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
321         of->set_is_temporary();
322       of->open(file_size);
323     }
324   else
325     {
326       of = layout->incremental_base()->output_file();
327
328       // Apply the incremental relocations for symbols whose values
329       // have changed.  We do this before we resize the file and start
330       // writing anything else to it, so that we can read the old
331       // incremental information from the file before (possibly)
332       // overwriting it.
333       if (parameters->incremental_update())
334         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
335                                                              this->layout_,
336                                                              of);
337
338       of->resize(file_size);
339     }
340
341   // Queue up the final set of tasks.
342   gold::queue_final_tasks(this->options_, this->input_objects_,
343                           this->symtab_, layout, workqueue, of);
344 }
345
346 // Layout methods.
347
348 Layout::Layout(int number_of_input_files, Script_options* script_options)
349   : number_of_input_files_(number_of_input_files),
350     script_options_(script_options),
351     namepool_(),
352     sympool_(),
353     dynpool_(),
354     signatures_(),
355     section_name_map_(),
356     segment_list_(),
357     section_list_(),
358     unattached_section_list_(),
359     special_output_list_(),
360     section_headers_(NULL),
361     tls_segment_(NULL),
362     relro_segment_(NULL),
363     interp_segment_(NULL),
364     increase_relro_(0),
365     symtab_section_(NULL),
366     symtab_xindex_(NULL),
367     dynsym_section_(NULL),
368     dynsym_xindex_(NULL),
369     dynamic_section_(NULL),
370     dynamic_symbol_(NULL),
371     dynamic_data_(NULL),
372     eh_frame_section_(NULL),
373     eh_frame_data_(NULL),
374     added_eh_frame_data_(false),
375     eh_frame_hdr_section_(NULL),
376     build_id_note_(NULL),
377     debug_abbrev_(NULL),
378     debug_info_(NULL),
379     group_signatures_(),
380     output_file_size_(-1),
381     have_added_input_section_(false),
382     sections_are_attached_(false),
383     input_requires_executable_stack_(false),
384     input_with_gnu_stack_note_(false),
385     input_without_gnu_stack_note_(false),
386     has_static_tls_(false),
387     any_postprocessing_sections_(false),
388     resized_signatures_(false),
389     have_stabstr_section_(false),
390     incremental_inputs_(NULL),
391     record_output_section_data_from_script_(false),
392     script_output_section_data_list_(),
393     segment_states_(NULL),
394     relaxation_debug_check_(NULL),
395     incremental_base_(NULL),
396     free_list_()
397 {
398   // Make space for more than enough segments for a typical file.
399   // This is just for efficiency--it's OK if we wind up needing more.
400   this->segment_list_.reserve(12);
401
402   // We expect two unattached Output_data objects: the file header and
403   // the segment headers.
404   this->special_output_list_.reserve(2);
405
406   // Initialize structure needed for an incremental build.
407   if (parameters->incremental())
408     this->incremental_inputs_ = new Incremental_inputs;
409
410   // The section name pool is worth optimizing in all cases, because
411   // it is small, but there are often overlaps due to .rel sections.
412   this->namepool_.set_optimize();
413 }
414
415 // For incremental links, record the base file to be modified.
416
417 void
418 Layout::set_incremental_base(Incremental_binary* base)
419 {
420   this->incremental_base_ = base;
421   this->free_list_.init(base->output_file()->filesize(), true);
422 }
423
424 // Hash a key we use to look up an output section mapping.
425
426 size_t
427 Layout::Hash_key::operator()(const Layout::Key& k) const
428 {
429  return k.first + k.second.first + k.second.second;
430 }
431
432 // Returns whether the given section is in the list of
433 // debug-sections-used-by-some-version-of-gdb.  Currently,
434 // we've checked versions of gdb up to and including 6.7.1.
435
436 static const char* gdb_sections[] =
437 { ".debug_abbrev",
438   // ".debug_aranges",   // not used by gdb as of 6.7.1
439   ".debug_frame",
440   ".debug_info",
441   ".debug_types",
442   ".debug_line",
443   ".debug_loc",
444   ".debug_macinfo",
445   // ".debug_pubnames",  // not used by gdb as of 6.7.1
446   ".debug_ranges",
447   ".debug_str",
448 };
449
450 static const char* lines_only_debug_sections[] =
451 { ".debug_abbrev",
452   // ".debug_aranges",   // not used by gdb as of 6.7.1
453   // ".debug_frame",
454   ".debug_info",
455   // ".debug_types",
456   ".debug_line",
457   // ".debug_loc",
458   // ".debug_macinfo",
459   // ".debug_pubnames",  // not used by gdb as of 6.7.1
460   // ".debug_ranges",
461   ".debug_str",
462 };
463
464 static inline bool
465 is_gdb_debug_section(const char* str)
466 {
467   // We can do this faster: binary search or a hashtable.  But why bother?
468   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
469     if (strcmp(str, gdb_sections[i]) == 0)
470       return true;
471   return false;
472 }
473
474 static inline bool
475 is_lines_only_debug_section(const char* str)
476 {
477   // We can do this faster: binary search or a hashtable.  But why bother?
478   for (size_t i = 0;
479        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
480        ++i)
481     if (strcmp(str, lines_only_debug_sections[i]) == 0)
482       return true;
483   return false;
484 }
485
486 // Sometimes we compress sections.  This is typically done for
487 // sections that are not part of normal program execution (such as
488 // .debug_* sections), and where the readers of these sections know
489 // how to deal with compressed sections.  This routine doesn't say for
490 // certain whether we'll compress -- it depends on commandline options
491 // as well -- just whether this section is a candidate for compression.
492 // (The Output_compressed_section class decides whether to compress
493 // a given section, and picks the name of the compressed section.)
494
495 static bool
496 is_compressible_debug_section(const char* secname)
497 {
498   return (is_prefix_of(".debug", secname));
499 }
500
501 // We may see compressed debug sections in input files.  Return TRUE
502 // if this is the name of a compressed debug section.
503
504 bool
505 is_compressed_debug_section(const char* secname)
506 {
507   return (is_prefix_of(".zdebug", secname));
508 }
509
510 // Whether to include this section in the link.
511
512 template<int size, bool big_endian>
513 bool
514 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
515                         const elfcpp::Shdr<size, big_endian>& shdr)
516 {
517   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
518     return false;
519
520   switch (shdr.get_sh_type())
521     {
522     case elfcpp::SHT_NULL:
523     case elfcpp::SHT_SYMTAB:
524     case elfcpp::SHT_DYNSYM:
525     case elfcpp::SHT_HASH:
526     case elfcpp::SHT_DYNAMIC:
527     case elfcpp::SHT_SYMTAB_SHNDX:
528       return false;
529
530     case elfcpp::SHT_STRTAB:
531       // Discard the sections which have special meanings in the ELF
532       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
533       // checking the sh_link fields of the appropriate sections.
534       return (strcmp(name, ".dynstr") != 0
535               && strcmp(name, ".strtab") != 0
536               && strcmp(name, ".shstrtab") != 0);
537
538     case elfcpp::SHT_RELA:
539     case elfcpp::SHT_REL:
540     case elfcpp::SHT_GROUP:
541       // If we are emitting relocations these should be handled
542       // elsewhere.
543       gold_assert(!parameters->options().relocatable()
544                   && !parameters->options().emit_relocs());
545       return false;
546
547     case elfcpp::SHT_PROGBITS:
548       if (parameters->options().strip_debug()
549           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
550         {
551           if (is_debug_info_section(name))
552             return false;
553         }
554       if (parameters->options().strip_debug_non_line()
555           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
556         {
557           // Debugging sections can only be recognized by name.
558           if (is_prefix_of(".debug", name)
559               && !is_lines_only_debug_section(name))
560             return false;
561         }
562       if (parameters->options().strip_debug_gdb()
563           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
564         {
565           // Debugging sections can only be recognized by name.
566           if (is_prefix_of(".debug", name)
567               && !is_gdb_debug_section(name))
568             return false;
569         }
570       if (parameters->options().strip_lto_sections()
571           && !parameters->options().relocatable()
572           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573         {
574           // Ignore LTO sections containing intermediate code.
575           if (is_prefix_of(".gnu.lto_", name))
576             return false;
577         }
578       // The GNU linker strips .gnu_debuglink sections, so we do too.
579       // This is a feature used to keep debugging information in
580       // separate files.
581       if (strcmp(name, ".gnu_debuglink") == 0)
582         return false;
583       return true;
584
585     default:
586       return true;
587     }
588 }
589
590 // Return an output section named NAME, or NULL if there is none.
591
592 Output_section*
593 Layout::find_output_section(const char* name) const
594 {
595   for (Section_list::const_iterator p = this->section_list_.begin();
596        p != this->section_list_.end();
597        ++p)
598     if (strcmp((*p)->name(), name) == 0)
599       return *p;
600   return NULL;
601 }
602
603 // Return an output segment of type TYPE, with segment flags SET set
604 // and segment flags CLEAR clear.  Return NULL if there is none.
605
606 Output_segment*
607 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
608                             elfcpp::Elf_Word clear) const
609 {
610   for (Segment_list::const_iterator p = this->segment_list_.begin();
611        p != this->segment_list_.end();
612        ++p)
613     if (static_cast<elfcpp::PT>((*p)->type()) == type
614         && ((*p)->flags() & set) == set
615         && ((*p)->flags() & clear) == 0)
616       return *p;
617   return NULL;
618 }
619
620 // Return the output section to use for section NAME with type TYPE
621 // and section flags FLAGS.  NAME must be canonicalized in the string
622 // pool, and NAME_KEY is the key.  ORDER is where this should appear
623 // in the output sections.  IS_RELRO is true for a relro section.
624
625 Output_section*
626 Layout::get_output_section(const char* name, Stringpool::Key name_key,
627                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
628                            Output_section_order order, bool is_relro)
629 {
630   elfcpp::Elf_Xword lookup_flags = flags;
631
632   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
633   // read-write with read-only sections.  Some other ELF linkers do
634   // not do this.  FIXME: Perhaps there should be an option
635   // controlling this.
636   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
637
638   const Key key(name_key, std::make_pair(type, lookup_flags));
639   const std::pair<Key, Output_section*> v(key, NULL);
640   std::pair<Section_name_map::iterator, bool> ins(
641     this->section_name_map_.insert(v));
642
643   if (!ins.second)
644     return ins.first->second;
645   else
646     {
647       // This is the first time we've seen this name/type/flags
648       // combination.  For compatibility with the GNU linker, we
649       // combine sections with contents and zero flags with sections
650       // with non-zero flags.  This is a workaround for cases where
651       // assembler code forgets to set section flags.  FIXME: Perhaps
652       // there should be an option to control this.
653       Output_section* os = NULL;
654
655       if (type == elfcpp::SHT_PROGBITS)
656         {
657           if (flags == 0)
658             {
659               Output_section* same_name = this->find_output_section(name);
660               if (same_name != NULL
661                   && same_name->type() == elfcpp::SHT_PROGBITS
662                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
663                 os = same_name;
664             }
665           else if ((flags & elfcpp::SHF_TLS) == 0)
666             {
667               elfcpp::Elf_Xword zero_flags = 0;
668               const Key zero_key(name_key, std::make_pair(type, zero_flags));
669               Section_name_map::iterator p =
670                   this->section_name_map_.find(zero_key);
671               if (p != this->section_name_map_.end())
672                 os = p->second;
673             }
674         }
675
676       if (os == NULL)
677         os = this->make_output_section(name, type, flags, order, is_relro);
678
679       ins.first->second = os;
680       return os;
681     }
682 }
683
684 // Pick the output section to use for section NAME, in input file
685 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
686 // linker created section.  IS_INPUT_SECTION is true if we are
687 // choosing an output section for an input section found in a input
688 // file.  ORDER is where this section should appear in the output
689 // sections.  IS_RELRO is true for a relro section.  This will return
690 // NULL if the input section should be discarded.
691
692 Output_section*
693 Layout::choose_output_section(const Relobj* relobj, const char* name,
694                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
695                               bool is_input_section, Output_section_order order,
696                               bool is_relro)
697 {
698   // We should not see any input sections after we have attached
699   // sections to segments.
700   gold_assert(!is_input_section || !this->sections_are_attached_);
701
702   // Some flags in the input section should not be automatically
703   // copied to the output section.
704   flags &= ~ (elfcpp::SHF_INFO_LINK
705               | elfcpp::SHF_GROUP
706               | elfcpp::SHF_MERGE
707               | elfcpp::SHF_STRINGS);
708
709   // We only clear the SHF_LINK_ORDER flag in for
710   // a non-relocatable link.
711   if (!parameters->options().relocatable())
712     flags &= ~elfcpp::SHF_LINK_ORDER;
713
714   if (this->script_options_->saw_sections_clause())
715     {
716       // We are using a SECTIONS clause, so the output section is
717       // chosen based only on the name.
718
719       Script_sections* ss = this->script_options_->script_sections();
720       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
721       Output_section** output_section_slot;
722       Script_sections::Section_type script_section_type;
723       const char* orig_name = name;
724       name = ss->output_section_name(file_name, name, &output_section_slot,
725                                      &script_section_type);
726       if (name == NULL)
727         {
728           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
729                                      "because it is not allowed by the "
730                                      "SECTIONS clause of the linker script"),
731                      orig_name);
732           // The SECTIONS clause says to discard this input section.
733           return NULL;
734         }
735
736       // We can only handle script section types ST_NONE and ST_NOLOAD.
737       switch (script_section_type)
738         {
739         case Script_sections::ST_NONE:
740           break;
741         case Script_sections::ST_NOLOAD:
742           flags &= elfcpp::SHF_ALLOC;
743           break;
744         default:
745           gold_unreachable();
746         }
747
748       // If this is an orphan section--one not mentioned in the linker
749       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
750       // default processing below.
751
752       if (output_section_slot != NULL)
753         {
754           if (*output_section_slot != NULL)
755             {
756               (*output_section_slot)->update_flags_for_input_section(flags);
757               return *output_section_slot;
758             }
759
760           // We don't put sections found in the linker script into
761           // SECTION_NAME_MAP_.  That keeps us from getting confused
762           // if an orphan section is mapped to a section with the same
763           // name as one in the linker script.
764
765           name = this->namepool_.add(name, false, NULL);
766
767           Output_section* os = this->make_output_section(name, type, flags,
768                                                          order, is_relro);
769
770           os->set_found_in_sections_clause();
771
772           // Special handling for NOLOAD sections.
773           if (script_section_type == Script_sections::ST_NOLOAD)
774             {
775               os->set_is_noload();
776
777               // The constructor of Output_section sets addresses of non-ALLOC
778               // sections to 0 by default.  We don't want that for NOLOAD
779               // sections even if they have no SHF_ALLOC flag.
780               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
781                   && os->is_address_valid())
782                 {
783                   gold_assert(os->address() == 0
784                               && !os->is_offset_valid()
785                               && !os->is_data_size_valid());
786                   os->reset_address_and_file_offset();
787                 }
788             }
789
790           *output_section_slot = os;
791           return os;
792         }
793     }
794
795   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
796
797   size_t len = strlen(name);
798   char* uncompressed_name = NULL;
799
800   // Compressed debug sections should be mapped to the corresponding
801   // uncompressed section.
802   if (is_compressed_debug_section(name))
803     {
804       uncompressed_name = new char[len];
805       uncompressed_name[0] = '.';
806       gold_assert(name[0] == '.' && name[1] == 'z');
807       strncpy(&uncompressed_name[1], &name[2], len - 2);
808       uncompressed_name[len - 1] = '\0';
809       len -= 1;
810       name = uncompressed_name;
811     }
812
813   // Turn NAME from the name of the input section into the name of the
814   // output section.
815   if (is_input_section
816       && !this->script_options_->saw_sections_clause()
817       && !parameters->options().relocatable())
818     name = Layout::output_section_name(name, &len);
819
820   Stringpool::Key name_key;
821   name = this->namepool_.add_with_length(name, len, true, &name_key);
822
823   if (uncompressed_name != NULL)
824     delete[] uncompressed_name;
825
826   // Find or make the output section.  The output section is selected
827   // based on the section name, type, and flags.
828   return this->get_output_section(name, name_key, type, flags, order, is_relro);
829 }
830
831 // For incremental links, record the initial fixed layout of a section
832 // from the base file, and return a pointer to the Output_section.
833
834 template<int size, bool big_endian>
835 Output_section*
836 Layout::init_fixed_output_section(const char* name,
837                                   elfcpp::Shdr<size, big_endian>& shdr)
838 {
839   unsigned int sh_type = shdr.get_sh_type();
840
841   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
842   // All others will be created from scratch and reallocated.
843   if (sh_type != elfcpp::SHT_PROGBITS
844       && sh_type != elfcpp::SHT_NOBITS
845       && sh_type != elfcpp::SHT_NOTE)
846     return NULL;
847
848   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
849   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
850   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
851   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
852   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
853       shdr.get_sh_addralign();
854
855   // Make the output section.
856   Stringpool::Key name_key;
857   name = this->namepool_.add(name, true, &name_key);
858   Output_section* os = this->get_output_section(name, name_key, sh_type,
859                                                 sh_flags, ORDER_INVALID, false);
860   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
861   if (sh_type != elfcpp::SHT_NOBITS)
862     this->free_list_.remove(sh_offset, sh_offset + sh_size);
863   return os;
864 }
865
866 // Return the output section to use for input section SHNDX, with name
867 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
868 // index of a relocation section which applies to this section, or 0
869 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
870 // relocation section if there is one.  Set *OFF to the offset of this
871 // input section without the output section.  Return NULL if the
872 // section should be discarded.  Set *OFF to -1 if the section
873 // contents should not be written directly to the output file, but
874 // will instead receive special handling.
875
876 template<int size, bool big_endian>
877 Output_section*
878 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
879                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
880                unsigned int reloc_shndx, unsigned int, off_t* off)
881 {
882   *off = 0;
883
884   if (!this->include_section(object, name, shdr))
885     return NULL;
886
887   Output_section* os;
888
889   // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
890   // correct section types.  Force them here.
891   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
892   if (sh_type == elfcpp::SHT_PROGBITS)
893     {
894       static const char init_array_prefix[] = ".init_array";
895       static const char preinit_array_prefix[] = ".preinit_array";
896       static const char fini_array_prefix[] = ".fini_array";
897       static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
898       static size_t preinit_array_prefix_size =
899         sizeof(preinit_array_prefix) - 1;
900       static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
901
902       if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
903         sh_type = elfcpp::SHT_INIT_ARRAY;
904       else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
905                == 0)
906         sh_type = elfcpp::SHT_PREINIT_ARRAY;
907       else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
908         sh_type = elfcpp::SHT_FINI_ARRAY;
909     }
910
911   // In a relocatable link a grouped section must not be combined with
912   // any other sections.
913   if (parameters->options().relocatable()
914       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
915     {
916       name = this->namepool_.add(name, true, NULL);
917       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
918                                      ORDER_INVALID, false);
919     }
920   else
921     {
922       os = this->choose_output_section(object, name, sh_type,
923                                        shdr.get_sh_flags(), true,
924                                        ORDER_INVALID, false);
925       if (os == NULL)
926         return NULL;
927     }
928
929   // By default the GNU linker sorts input sections whose names match
930   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
931   // are sorted by name.  This is used to implement constructor
932   // priority ordering.  We are compatible.
933   if (!this->script_options_->saw_sections_clause()
934       && (is_prefix_of(".ctors.", name)
935           || is_prefix_of(".dtors.", name)
936           || is_prefix_of(".init_array.", name)
937           || is_prefix_of(".fini_array.", name)))
938     os->set_must_sort_attached_input_sections();
939
940   // FIXME: Handle SHF_LINK_ORDER somewhere.
941
942   elfcpp::Elf_Xword orig_flags = os->flags();
943
944   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
945                                this->script_options_->saw_sections_clause());
946
947   // If the flags changed, we may have to change the order.
948   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
949     {
950       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
951       elfcpp::Elf_Xword new_flags =
952         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
953       if (orig_flags != new_flags)
954         os->set_order(this->default_section_order(os, false));
955     }
956
957   this->have_added_input_section_ = true;
958
959   return os;
960 }
961
962 // Handle a relocation section when doing a relocatable link.
963
964 template<int size, bool big_endian>
965 Output_section*
966 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
967                      unsigned int,
968                      const elfcpp::Shdr<size, big_endian>& shdr,
969                      Output_section* data_section,
970                      Relocatable_relocs* rr)
971 {
972   gold_assert(parameters->options().relocatable()
973               || parameters->options().emit_relocs());
974
975   int sh_type = shdr.get_sh_type();
976
977   std::string name;
978   if (sh_type == elfcpp::SHT_REL)
979     name = ".rel";
980   else if (sh_type == elfcpp::SHT_RELA)
981     name = ".rela";
982   else
983     gold_unreachable();
984   name += data_section->name();
985
986   // In a relocatable link relocs for a grouped section must not be
987   // combined with other reloc sections.
988   Output_section* os;
989   if (!parameters->options().relocatable()
990       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
991     os = this->choose_output_section(object, name.c_str(), sh_type,
992                                      shdr.get_sh_flags(), false,
993                                      ORDER_INVALID, false);
994   else
995     {
996       const char* n = this->namepool_.add(name.c_str(), true, NULL);
997       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
998                                      ORDER_INVALID, false);
999     }
1000
1001   os->set_should_link_to_symtab();
1002   os->set_info_section(data_section);
1003
1004   Output_section_data* posd;
1005   if (sh_type == elfcpp::SHT_REL)
1006     {
1007       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1008       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1009                                            size,
1010                                            big_endian>(rr);
1011     }
1012   else if (sh_type == elfcpp::SHT_RELA)
1013     {
1014       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1015       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1016                                            size,
1017                                            big_endian>(rr);
1018     }
1019   else
1020     gold_unreachable();
1021
1022   os->add_output_section_data(posd);
1023   rr->set_output_data(posd);
1024
1025   return os;
1026 }
1027
1028 // Handle a group section when doing a relocatable link.
1029
1030 template<int size, bool big_endian>
1031 void
1032 Layout::layout_group(Symbol_table* symtab,
1033                      Sized_relobj_file<size, big_endian>* object,
1034                      unsigned int,
1035                      const char* group_section_name,
1036                      const char* signature,
1037                      const elfcpp::Shdr<size, big_endian>& shdr,
1038                      elfcpp::Elf_Word flags,
1039                      std::vector<unsigned int>* shndxes)
1040 {
1041   gold_assert(parameters->options().relocatable());
1042   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1043   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1044   Output_section* os = this->make_output_section(group_section_name,
1045                                                  elfcpp::SHT_GROUP,
1046                                                  shdr.get_sh_flags(),
1047                                                  ORDER_INVALID, false);
1048
1049   // We need to find a symbol with the signature in the symbol table.
1050   // If we don't find one now, we need to look again later.
1051   Symbol* sym = symtab->lookup(signature, NULL);
1052   if (sym != NULL)
1053     os->set_info_symndx(sym);
1054   else
1055     {
1056       // Reserve some space to minimize reallocations.
1057       if (this->group_signatures_.empty())
1058         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1059
1060       // We will wind up using a symbol whose name is the signature.
1061       // So just put the signature in the symbol name pool to save it.
1062       signature = symtab->canonicalize_name(signature);
1063       this->group_signatures_.push_back(Group_signature(os, signature));
1064     }
1065
1066   os->set_should_link_to_symtab();
1067   os->set_entsize(4);
1068
1069   section_size_type entry_count =
1070     convert_to_section_size_type(shdr.get_sh_size() / 4);
1071   Output_section_data* posd =
1072     new Output_data_group<size, big_endian>(object, entry_count, flags,
1073                                             shndxes);
1074   os->add_output_section_data(posd);
1075 }
1076
1077 // Special GNU handling of sections name .eh_frame.  They will
1078 // normally hold exception frame data as defined by the C++ ABI
1079 // (http://codesourcery.com/cxx-abi/).
1080
1081 template<int size, bool big_endian>
1082 Output_section*
1083 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1084                         const unsigned char* symbols,
1085                         off_t symbols_size,
1086                         const unsigned char* symbol_names,
1087                         off_t symbol_names_size,
1088                         unsigned int shndx,
1089                         const elfcpp::Shdr<size, big_endian>& shdr,
1090                         unsigned int reloc_shndx, unsigned int reloc_type,
1091                         off_t* off)
1092 {
1093   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1094   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1095
1096   const char* const name = ".eh_frame";
1097   Output_section* os = this->choose_output_section(object, name,
1098                                                    elfcpp::SHT_PROGBITS,
1099                                                    elfcpp::SHF_ALLOC, false,
1100                                                    ORDER_EHFRAME, false);
1101   if (os == NULL)
1102     return NULL;
1103
1104   if (this->eh_frame_section_ == NULL)
1105     {
1106       this->eh_frame_section_ = os;
1107       this->eh_frame_data_ = new Eh_frame();
1108
1109       // For incremental linking, we do not optimize .eh_frame sections
1110       // or create a .eh_frame_hdr section.
1111       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1112         {
1113           Output_section* hdr_os =
1114             this->choose_output_section(NULL, ".eh_frame_hdr",
1115                                         elfcpp::SHT_PROGBITS,
1116                                         elfcpp::SHF_ALLOC, false,
1117                                         ORDER_EHFRAME, false);
1118
1119           if (hdr_os != NULL)
1120             {
1121               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1122                                                         this->eh_frame_data_);
1123               hdr_os->add_output_section_data(hdr_posd);
1124
1125               hdr_os->set_after_input_sections();
1126
1127               if (!this->script_options_->saw_phdrs_clause())
1128                 {
1129                   Output_segment* hdr_oseg;
1130                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1131                                                        elfcpp::PF_R);
1132                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1133                                                           elfcpp::PF_R);
1134                 }
1135
1136               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1137             }
1138         }
1139     }
1140
1141   gold_assert(this->eh_frame_section_ == os);
1142
1143   elfcpp::Elf_Xword orig_flags = os->flags();
1144
1145   if (!parameters->incremental()
1146       && this->eh_frame_data_->add_ehframe_input_section(object,
1147                                                          symbols,
1148                                                          symbols_size,
1149                                                          symbol_names,
1150                                                          symbol_names_size,
1151                                                          shndx,
1152                                                          reloc_shndx,
1153                                                          reloc_type))
1154     {
1155       os->update_flags_for_input_section(shdr.get_sh_flags());
1156
1157       // A writable .eh_frame section is a RELRO section.
1158       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1159           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1160         {
1161           os->set_is_relro();
1162           os->set_order(ORDER_RELRO);
1163         }
1164
1165       // We found a .eh_frame section we are going to optimize, so now
1166       // we can add the set of optimized sections to the output
1167       // section.  We need to postpone adding this until we've found a
1168       // section we can optimize so that the .eh_frame section in
1169       // crtbegin.o winds up at the start of the output section.
1170       if (!this->added_eh_frame_data_)
1171         {
1172           os->add_output_section_data(this->eh_frame_data_);
1173           this->added_eh_frame_data_ = true;
1174         }
1175       *off = -1;
1176     }
1177   else
1178     {
1179       // We couldn't handle this .eh_frame section for some reason.
1180       // Add it as a normal section.
1181       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1182       *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1183                                    saw_sections_clause);
1184       this->have_added_input_section_ = true;
1185
1186       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1187           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1188         os->set_order(this->default_section_order(os, false));
1189     }
1190
1191   return os;
1192 }
1193
1194 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1195 // the output section.
1196
1197 Output_section*
1198 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1199                                 elfcpp::Elf_Xword flags,
1200                                 Output_section_data* posd,
1201                                 Output_section_order order, bool is_relro)
1202 {
1203   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1204                                                    false, order, is_relro);
1205   if (os != NULL)
1206     os->add_output_section_data(posd);
1207   return os;
1208 }
1209
1210 // Map section flags to segment flags.
1211
1212 elfcpp::Elf_Word
1213 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1214 {
1215   elfcpp::Elf_Word ret = elfcpp::PF_R;
1216   if ((flags & elfcpp::SHF_WRITE) != 0)
1217     ret |= elfcpp::PF_W;
1218   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1219     ret |= elfcpp::PF_X;
1220   return ret;
1221 }
1222
1223 // Make a new Output_section, and attach it to segments as
1224 // appropriate.  ORDER is the order in which this section should
1225 // appear in the output segment.  IS_RELRO is true if this is a relro
1226 // (read-only after relocations) section.
1227
1228 Output_section*
1229 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1230                             elfcpp::Elf_Xword flags,
1231                             Output_section_order order, bool is_relro)
1232 {
1233   Output_section* os;
1234   if ((flags & elfcpp::SHF_ALLOC) == 0
1235       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1236       && is_compressible_debug_section(name))
1237     os = new Output_compressed_section(&parameters->options(), name, type,
1238                                        flags);
1239   else if ((flags & elfcpp::SHF_ALLOC) == 0
1240            && parameters->options().strip_debug_non_line()
1241            && strcmp(".debug_abbrev", name) == 0)
1242     {
1243       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1244           name, type, flags);
1245       if (this->debug_info_)
1246         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1247     }
1248   else if ((flags & elfcpp::SHF_ALLOC) == 0
1249            && parameters->options().strip_debug_non_line()
1250            && strcmp(".debug_info", name) == 0)
1251     {
1252       os = this->debug_info_ = new Output_reduced_debug_info_section(
1253           name, type, flags);
1254       if (this->debug_abbrev_)
1255         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1256     }
1257   else
1258     {
1259       // FIXME: const_cast is ugly.
1260       Target* target = const_cast<Target*>(&parameters->target());
1261       os = target->make_output_section(name, type, flags);
1262     }
1263
1264   // With -z relro, we have to recognize the special sections by name.
1265   // There is no other way.
1266   bool is_relro_local = false;
1267   if (!this->script_options_->saw_sections_clause()
1268       && parameters->options().relro()
1269       && type == elfcpp::SHT_PROGBITS
1270       && (flags & elfcpp::SHF_ALLOC) != 0
1271       && (flags & elfcpp::SHF_WRITE) != 0)
1272     {
1273       if (strcmp(name, ".data.rel.ro") == 0)
1274         is_relro = true;
1275       else if (strcmp(name, ".data.rel.ro.local") == 0)
1276         {
1277           is_relro = true;
1278           is_relro_local = true;
1279         }
1280       else if (type == elfcpp::SHT_INIT_ARRAY
1281                || type == elfcpp::SHT_FINI_ARRAY
1282                || type == elfcpp::SHT_PREINIT_ARRAY)
1283         is_relro = true;
1284       else if (strcmp(name, ".ctors") == 0
1285                || strcmp(name, ".dtors") == 0
1286                || strcmp(name, ".jcr") == 0)
1287         is_relro = true;
1288     }
1289
1290   if (is_relro)
1291     os->set_is_relro();
1292
1293   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1294     order = this->default_section_order(os, is_relro_local);
1295
1296   os->set_order(order);
1297
1298   parameters->target().new_output_section(os);
1299
1300   this->section_list_.push_back(os);
1301
1302   // The GNU linker by default sorts some sections by priority, so we
1303   // do the same.  We need to know that this might happen before we
1304   // attach any input sections.
1305   if (!this->script_options_->saw_sections_clause()
1306       && (strcmp(name, ".ctors") == 0
1307           || strcmp(name, ".dtors") == 0
1308           || strcmp(name, ".init_array") == 0
1309           || strcmp(name, ".fini_array") == 0))
1310     os->set_may_sort_attached_input_sections();
1311
1312   // Check for .stab*str sections, as .stab* sections need to link to
1313   // them.
1314   if (type == elfcpp::SHT_STRTAB
1315       && !this->have_stabstr_section_
1316       && strncmp(name, ".stab", 5) == 0
1317       && strcmp(name + strlen(name) - 3, "str") == 0)
1318     this->have_stabstr_section_ = true;
1319
1320   // If we have already attached the sections to segments, then we
1321   // need to attach this one now.  This happens for sections created
1322   // directly by the linker.
1323   if (this->sections_are_attached_)
1324     this->attach_section_to_segment(os);
1325
1326   return os;
1327 }
1328
1329 // Return the default order in which a section should be placed in an
1330 // output segment.  This function captures a lot of the ideas in
1331 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1332 // linker created section is normally set when the section is created;
1333 // this function is used for input sections.
1334
1335 Output_section_order
1336 Layout::default_section_order(Output_section* os, bool is_relro_local)
1337 {
1338   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1339   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1340   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1341   bool is_bss = false;
1342
1343   switch (os->type())
1344     {
1345     default:
1346     case elfcpp::SHT_PROGBITS:
1347       break;
1348     case elfcpp::SHT_NOBITS:
1349       is_bss = true;
1350       break;
1351     case elfcpp::SHT_RELA:
1352     case elfcpp::SHT_REL:
1353       if (!is_write)
1354         return ORDER_DYNAMIC_RELOCS;
1355       break;
1356     case elfcpp::SHT_HASH:
1357     case elfcpp::SHT_DYNAMIC:
1358     case elfcpp::SHT_SHLIB:
1359     case elfcpp::SHT_DYNSYM:
1360     case elfcpp::SHT_GNU_HASH:
1361     case elfcpp::SHT_GNU_verdef:
1362     case elfcpp::SHT_GNU_verneed:
1363     case elfcpp::SHT_GNU_versym:
1364       if (!is_write)
1365         return ORDER_DYNAMIC_LINKER;
1366       break;
1367     case elfcpp::SHT_NOTE:
1368       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1369     }
1370
1371   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1372     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1373
1374   if (!is_bss && !is_write)
1375     {
1376       if (is_execinstr)
1377         {
1378           if (strcmp(os->name(), ".init") == 0)
1379             return ORDER_INIT;
1380           else if (strcmp(os->name(), ".fini") == 0)
1381             return ORDER_FINI;
1382         }
1383       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1384     }
1385
1386   if (os->is_relro())
1387     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1388
1389   if (os->is_small_section())
1390     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1391   if (os->is_large_section())
1392     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1393
1394   return is_bss ? ORDER_BSS : ORDER_DATA;
1395 }
1396
1397 // Attach output sections to segments.  This is called after we have
1398 // seen all the input sections.
1399
1400 void
1401 Layout::attach_sections_to_segments()
1402 {
1403   for (Section_list::iterator p = this->section_list_.begin();
1404        p != this->section_list_.end();
1405        ++p)
1406     this->attach_section_to_segment(*p);
1407
1408   this->sections_are_attached_ = true;
1409 }
1410
1411 // Attach an output section to a segment.
1412
1413 void
1414 Layout::attach_section_to_segment(Output_section* os)
1415 {
1416   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1417     this->unattached_section_list_.push_back(os);
1418   else
1419     this->attach_allocated_section_to_segment(os);
1420 }
1421
1422 // Attach an allocated output section to a segment.
1423
1424 void
1425 Layout::attach_allocated_section_to_segment(Output_section* os)
1426 {
1427   elfcpp::Elf_Xword flags = os->flags();
1428   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1429
1430   if (parameters->options().relocatable())
1431     return;
1432
1433   // If we have a SECTIONS clause, we can't handle the attachment to
1434   // segments until after we've seen all the sections.
1435   if (this->script_options_->saw_sections_clause())
1436     return;
1437
1438   gold_assert(!this->script_options_->saw_phdrs_clause());
1439
1440   // This output section goes into a PT_LOAD segment.
1441
1442   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1443
1444   // Check for --section-start.
1445   uint64_t addr;
1446   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1447
1448   // In general the only thing we really care about for PT_LOAD
1449   // segments is whether or not they are writable or executable,
1450   // so that is how we search for them.
1451   // Large data sections also go into their own PT_LOAD segment.
1452   // People who need segments sorted on some other basis will
1453   // have to use a linker script.
1454
1455   Segment_list::const_iterator p;
1456   for (p = this->segment_list_.begin();
1457        p != this->segment_list_.end();
1458        ++p)
1459     {
1460       if ((*p)->type() != elfcpp::PT_LOAD)
1461         continue;
1462       if (!parameters->options().omagic()
1463           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1464         continue;
1465       if (parameters->options().rosegment()
1466           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1467         continue;
1468       // If -Tbss was specified, we need to separate the data and BSS
1469       // segments.
1470       if (parameters->options().user_set_Tbss())
1471         {
1472           if ((os->type() == elfcpp::SHT_NOBITS)
1473               == (*p)->has_any_data_sections())
1474             continue;
1475         }
1476       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1477         continue;
1478
1479       if (is_address_set)
1480         {
1481           if ((*p)->are_addresses_set())
1482             continue;
1483
1484           (*p)->add_initial_output_data(os);
1485           (*p)->update_flags_for_output_section(seg_flags);
1486           (*p)->set_addresses(addr, addr);
1487           break;
1488         }
1489
1490       (*p)->add_output_section_to_load(this, os, seg_flags);
1491       break;
1492     }
1493
1494   if (p == this->segment_list_.end())
1495     {
1496       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1497                                                        seg_flags);
1498       if (os->is_large_data_section())
1499         oseg->set_is_large_data_segment();
1500       oseg->add_output_section_to_load(this, os, seg_flags);
1501       if (is_address_set)
1502         oseg->set_addresses(addr, addr);
1503     }
1504
1505   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1506   // segment.
1507   if (os->type() == elfcpp::SHT_NOTE)
1508     {
1509       // See if we already have an equivalent PT_NOTE segment.
1510       for (p = this->segment_list_.begin();
1511            p != segment_list_.end();
1512            ++p)
1513         {
1514           if ((*p)->type() == elfcpp::PT_NOTE
1515               && (((*p)->flags() & elfcpp::PF_W)
1516                   == (seg_flags & elfcpp::PF_W)))
1517             {
1518               (*p)->add_output_section_to_nonload(os, seg_flags);
1519               break;
1520             }
1521         }
1522
1523       if (p == this->segment_list_.end())
1524         {
1525           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1526                                                            seg_flags);
1527           oseg->add_output_section_to_nonload(os, seg_flags);
1528         }
1529     }
1530
1531   // If we see a loadable SHF_TLS section, we create a PT_TLS
1532   // segment.  There can only be one such segment.
1533   if ((flags & elfcpp::SHF_TLS) != 0)
1534     {
1535       if (this->tls_segment_ == NULL)
1536         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1537       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1538     }
1539
1540   // If -z relro is in effect, and we see a relro section, we create a
1541   // PT_GNU_RELRO segment.  There can only be one such segment.
1542   if (os->is_relro() && parameters->options().relro())
1543     {
1544       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1545       if (this->relro_segment_ == NULL)
1546         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1547       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1548     }
1549
1550   // If we are making a shared library, and we see a section named
1551   // .interp, and the -dynamic-linker option was not used, then put
1552   // the .interp section into a PT_INTERP segment.  This is for GNU ld
1553   // compatibility.  If making an executable, or if the
1554   // -dynamic-linker option was used, we will create the section and
1555   // segment in Layout::create_interp.
1556   if (strcmp(os->name(), ".interp") == 0
1557       && parameters->options().shared()
1558       && parameters->options().dynamic_linker() == NULL)
1559     {
1560       if (this->interp_segment_ == NULL)
1561         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1562       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1563     }
1564 }
1565
1566 // Make an output section for a script.
1567
1568 Output_section*
1569 Layout::make_output_section_for_script(
1570     const char* name,
1571     Script_sections::Section_type section_type)
1572 {
1573   name = this->namepool_.add(name, false, NULL);
1574   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1575   if (section_type == Script_sections::ST_NOLOAD)
1576     sh_flags = 0;
1577   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1578                                                  sh_flags, ORDER_INVALID,
1579                                                  false);
1580   os->set_found_in_sections_clause();
1581   if (section_type == Script_sections::ST_NOLOAD)
1582     os->set_is_noload();
1583   return os;
1584 }
1585
1586 // Return the number of segments we expect to see.
1587
1588 size_t
1589 Layout::expected_segment_count() const
1590 {
1591   size_t ret = this->segment_list_.size();
1592
1593   // If we didn't see a SECTIONS clause in a linker script, we should
1594   // already have the complete list of segments.  Otherwise we ask the
1595   // SECTIONS clause how many segments it expects, and add in the ones
1596   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1597
1598   if (!this->script_options_->saw_sections_clause())
1599     return ret;
1600   else
1601     {
1602       const Script_sections* ss = this->script_options_->script_sections();
1603       return ret + ss->expected_segment_count(this);
1604     }
1605 }
1606
1607 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1608 // is whether we saw a .note.GNU-stack section in the object file.
1609 // GNU_STACK_FLAGS is the section flags.  The flags give the
1610 // protection required for stack memory.  We record this in an
1611 // executable as a PT_GNU_STACK segment.  If an object file does not
1612 // have a .note.GNU-stack segment, we must assume that it is an old
1613 // object.  On some targets that will force an executable stack.
1614
1615 void
1616 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1617                          const Object* obj)
1618 {
1619   if (!seen_gnu_stack)
1620     {
1621       this->input_without_gnu_stack_note_ = true;
1622       if (parameters->options().warn_execstack()
1623           && parameters->target().is_default_stack_executable())
1624         gold_warning(_("%s: missing .note.GNU-stack section"
1625                        " implies executable stack"),
1626                      obj->name().c_str());
1627     }
1628   else
1629     {
1630       this->input_with_gnu_stack_note_ = true;
1631       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1632         {
1633           this->input_requires_executable_stack_ = true;
1634           if (parameters->options().warn_execstack()
1635               || parameters->options().is_stack_executable())
1636             gold_warning(_("%s: requires executable stack"),
1637                          obj->name().c_str());
1638         }
1639     }
1640 }
1641
1642 // Create automatic note sections.
1643
1644 void
1645 Layout::create_notes()
1646 {
1647   this->create_gold_note();
1648   this->create_executable_stack_info();
1649   this->create_build_id();
1650 }
1651
1652 // Create the dynamic sections which are needed before we read the
1653 // relocs.
1654
1655 void
1656 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1657 {
1658   if (parameters->doing_static_link())
1659     return;
1660
1661   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1662                                                        elfcpp::SHT_DYNAMIC,
1663                                                        (elfcpp::SHF_ALLOC
1664                                                         | elfcpp::SHF_WRITE),
1665                                                        false, ORDER_RELRO,
1666                                                        true);
1667
1668   this->dynamic_symbol_ =
1669     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1670                                   this->dynamic_section_, 0, 0,
1671                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1672                                   elfcpp::STV_HIDDEN, 0, false, false);
1673
1674   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1675
1676   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1677 }
1678
1679 // For each output section whose name can be represented as C symbol,
1680 // define __start and __stop symbols for the section.  This is a GNU
1681 // extension.
1682
1683 void
1684 Layout::define_section_symbols(Symbol_table* symtab)
1685 {
1686   for (Section_list::const_iterator p = this->section_list_.begin();
1687        p != this->section_list_.end();
1688        ++p)
1689     {
1690       const char* const name = (*p)->name();
1691       if (is_cident(name))
1692         {
1693           const std::string name_string(name);
1694           const std::string start_name(cident_section_start_prefix
1695                                        + name_string);
1696           const std::string stop_name(cident_section_stop_prefix
1697                                       + name_string);
1698
1699           symtab->define_in_output_data(start_name.c_str(),
1700                                         NULL, // version
1701                                         Symbol_table::PREDEFINED,
1702                                         *p,
1703                                         0, // value
1704                                         0, // symsize
1705                                         elfcpp::STT_NOTYPE,
1706                                         elfcpp::STB_GLOBAL,
1707                                         elfcpp::STV_DEFAULT,
1708                                         0, // nonvis
1709                                         false, // offset_is_from_end
1710                                         true); // only_if_ref
1711
1712           symtab->define_in_output_data(stop_name.c_str(),
1713                                         NULL, // version
1714                                         Symbol_table::PREDEFINED,
1715                                         *p,
1716                                         0, // value
1717                                         0, // symsize
1718                                         elfcpp::STT_NOTYPE,
1719                                         elfcpp::STB_GLOBAL,
1720                                         elfcpp::STV_DEFAULT,
1721                                         0, // nonvis
1722                                         true, // offset_is_from_end
1723                                         true); // only_if_ref
1724         }
1725     }
1726 }
1727
1728 // Define symbols for group signatures.
1729
1730 void
1731 Layout::define_group_signatures(Symbol_table* symtab)
1732 {
1733   for (Group_signatures::iterator p = this->group_signatures_.begin();
1734        p != this->group_signatures_.end();
1735        ++p)
1736     {
1737       Symbol* sym = symtab->lookup(p->signature, NULL);
1738       if (sym != NULL)
1739         p->section->set_info_symndx(sym);
1740       else
1741         {
1742           // Force the name of the group section to the group
1743           // signature, and use the group's section symbol as the
1744           // signature symbol.
1745           if (strcmp(p->section->name(), p->signature) != 0)
1746             {
1747               const char* name = this->namepool_.add(p->signature,
1748                                                      true, NULL);
1749               p->section->set_name(name);
1750             }
1751           p->section->set_needs_symtab_index();
1752           p->section->set_info_section_symndx(p->section);
1753         }
1754     }
1755
1756   this->group_signatures_.clear();
1757 }
1758
1759 // Find the first read-only PT_LOAD segment, creating one if
1760 // necessary.
1761
1762 Output_segment*
1763 Layout::find_first_load_seg()
1764 {
1765   Output_segment* best = NULL;
1766   for (Segment_list::const_iterator p = this->segment_list_.begin();
1767        p != this->segment_list_.end();
1768        ++p)
1769     {
1770       if ((*p)->type() == elfcpp::PT_LOAD
1771           && ((*p)->flags() & elfcpp::PF_R) != 0
1772           && (parameters->options().omagic()
1773               || ((*p)->flags() & elfcpp::PF_W) == 0))
1774         {
1775           if (best == NULL || this->segment_precedes(*p, best))
1776             best = *p;
1777         }
1778     }
1779   if (best != NULL)
1780     return best;
1781
1782   gold_assert(!this->script_options_->saw_phdrs_clause());
1783
1784   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1785                                                        elfcpp::PF_R);
1786   return load_seg;
1787 }
1788
1789 // Save states of all current output segments.  Store saved states
1790 // in SEGMENT_STATES.
1791
1792 void
1793 Layout::save_segments(Segment_states* segment_states)
1794 {
1795   for (Segment_list::const_iterator p = this->segment_list_.begin();
1796        p != this->segment_list_.end();
1797        ++p)
1798     {
1799       Output_segment* segment = *p;
1800       // Shallow copy.
1801       Output_segment* copy = new Output_segment(*segment);
1802       (*segment_states)[segment] = copy;
1803     }
1804 }
1805
1806 // Restore states of output segments and delete any segment not found in
1807 // SEGMENT_STATES.
1808
1809 void
1810 Layout::restore_segments(const Segment_states* segment_states)
1811 {
1812   // Go through the segment list and remove any segment added in the
1813   // relaxation loop.
1814   this->tls_segment_ = NULL;
1815   this->relro_segment_ = NULL;
1816   Segment_list::iterator list_iter = this->segment_list_.begin();
1817   while (list_iter != this->segment_list_.end())
1818     {
1819       Output_segment* segment = *list_iter;
1820       Segment_states::const_iterator states_iter =
1821           segment_states->find(segment);
1822       if (states_iter != segment_states->end())
1823         {
1824           const Output_segment* copy = states_iter->second;
1825           // Shallow copy to restore states.
1826           *segment = *copy;
1827
1828           // Also fix up TLS and RELRO segment pointers as appropriate.
1829           if (segment->type() == elfcpp::PT_TLS)
1830             this->tls_segment_ = segment;
1831           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1832             this->relro_segment_ = segment;
1833
1834           ++list_iter;
1835         } 
1836       else
1837         {
1838           list_iter = this->segment_list_.erase(list_iter); 
1839           // This is a segment created during section layout.  It should be
1840           // safe to remove it since we should have removed all pointers to it.
1841           delete segment;
1842         }
1843     }
1844 }
1845
1846 // Clean up after relaxation so that sections can be laid out again.
1847
1848 void
1849 Layout::clean_up_after_relaxation()
1850 {
1851   // Restore the segments to point state just prior to the relaxation loop.
1852   Script_sections* script_section = this->script_options_->script_sections();
1853   script_section->release_segments();
1854   this->restore_segments(this->segment_states_);
1855
1856   // Reset section addresses and file offsets
1857   for (Section_list::iterator p = this->section_list_.begin();
1858        p != this->section_list_.end();
1859        ++p)
1860     {
1861       (*p)->restore_states();
1862
1863       // If an input section changes size because of relaxation,
1864       // we need to adjust the section offsets of all input sections.
1865       // after such a section.
1866       if ((*p)->section_offsets_need_adjustment())
1867         (*p)->adjust_section_offsets();
1868
1869       (*p)->reset_address_and_file_offset();
1870     }
1871   
1872   // Reset special output object address and file offsets.
1873   for (Data_list::iterator p = this->special_output_list_.begin();
1874        p != this->special_output_list_.end();
1875        ++p)
1876     (*p)->reset_address_and_file_offset();
1877
1878   // A linker script may have created some output section data objects.
1879   // They are useless now.
1880   for (Output_section_data_list::const_iterator p =
1881          this->script_output_section_data_list_.begin();
1882        p != this->script_output_section_data_list_.end();
1883        ++p)
1884     delete *p;
1885   this->script_output_section_data_list_.clear(); 
1886 }
1887
1888 // Prepare for relaxation.
1889
1890 void
1891 Layout::prepare_for_relaxation()
1892 {
1893   // Create an relaxation debug check if in debugging mode.
1894   if (is_debugging_enabled(DEBUG_RELAXATION))
1895     this->relaxation_debug_check_ = new Relaxation_debug_check();
1896
1897   // Save segment states.
1898   this->segment_states_ = new Segment_states();
1899   this->save_segments(this->segment_states_);
1900
1901   for(Section_list::const_iterator p = this->section_list_.begin();
1902       p != this->section_list_.end();
1903       ++p)
1904     (*p)->save_states();
1905
1906   if (is_debugging_enabled(DEBUG_RELAXATION))
1907     this->relaxation_debug_check_->check_output_data_for_reset_values(
1908         this->section_list_, this->special_output_list_);
1909
1910   // Also enable recording of output section data from scripts.
1911   this->record_output_section_data_from_script_ = true;
1912 }
1913
1914 // Relaxation loop body:  If target has no relaxation, this runs only once
1915 // Otherwise, the target relaxation hook is called at the end of
1916 // each iteration.  If the hook returns true, it means re-layout of
1917 // section is required.  
1918 //
1919 // The number of segments created by a linking script without a PHDRS
1920 // clause may be affected by section sizes and alignments.  There is
1921 // a remote chance that relaxation causes different number of PT_LOAD
1922 // segments are created and sections are attached to different segments.
1923 // Therefore, we always throw away all segments created during section
1924 // layout.  In order to be able to restart the section layout, we keep
1925 // a copy of the segment list right before the relaxation loop and use
1926 // that to restore the segments.
1927 // 
1928 // PASS is the current relaxation pass number. 
1929 // SYMTAB is a symbol table.
1930 // PLOAD_SEG is the address of a pointer for the load segment.
1931 // PHDR_SEG is a pointer to the PHDR segment.
1932 // SEGMENT_HEADERS points to the output segment header.
1933 // FILE_HEADER points to the output file header.
1934 // PSHNDX is the address to store the output section index.
1935
1936 off_t inline
1937 Layout::relaxation_loop_body(
1938     int pass,
1939     Target* target,
1940     Symbol_table* symtab,
1941     Output_segment** pload_seg,
1942     Output_segment* phdr_seg,
1943     Output_segment_headers* segment_headers,
1944     Output_file_header* file_header,
1945     unsigned int* pshndx)
1946 {
1947   // If this is not the first iteration, we need to clean up after
1948   // relaxation so that we can lay out the sections again.
1949   if (pass != 0)
1950     this->clean_up_after_relaxation();
1951
1952   // If there is a SECTIONS clause, put all the input sections into
1953   // the required order.
1954   Output_segment* load_seg;
1955   if (this->script_options_->saw_sections_clause())
1956     load_seg = this->set_section_addresses_from_script(symtab);
1957   else if (parameters->options().relocatable())
1958     load_seg = NULL;
1959   else
1960     load_seg = this->find_first_load_seg();
1961
1962   if (parameters->options().oformat_enum()
1963       != General_options::OBJECT_FORMAT_ELF)
1964     load_seg = NULL;
1965
1966   // If the user set the address of the text segment, that may not be
1967   // compatible with putting the segment headers and file headers into
1968   // that segment.
1969   if (parameters->options().user_set_Ttext())
1970     load_seg = NULL;
1971
1972   gold_assert(phdr_seg == NULL
1973               || load_seg != NULL
1974               || this->script_options_->saw_sections_clause());
1975
1976   // If the address of the load segment we found has been set by
1977   // --section-start rather than by a script, then adjust the VMA and
1978   // LMA downward if possible to include the file and section headers.
1979   uint64_t header_gap = 0;
1980   if (load_seg != NULL
1981       && load_seg->are_addresses_set()
1982       && !this->script_options_->saw_sections_clause()
1983       && !parameters->options().relocatable())
1984     {
1985       file_header->finalize_data_size();
1986       segment_headers->finalize_data_size();
1987       size_t sizeof_headers = (file_header->data_size()
1988                                + segment_headers->data_size());
1989       const uint64_t abi_pagesize = target->abi_pagesize();
1990       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1991       hdr_paddr &= ~(abi_pagesize - 1);
1992       uint64_t subtract = load_seg->paddr() - hdr_paddr;
1993       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1994         load_seg = NULL;
1995       else
1996         {
1997           load_seg->set_addresses(load_seg->vaddr() - subtract,
1998                                   load_seg->paddr() - subtract);
1999           header_gap = subtract - sizeof_headers;
2000         }
2001     }
2002
2003   // Lay out the segment headers.
2004   if (!parameters->options().relocatable())
2005     {
2006       gold_assert(segment_headers != NULL);
2007       if (header_gap != 0 && load_seg != NULL)
2008         {
2009           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2010           load_seg->add_initial_output_data(z);
2011         }
2012       if (load_seg != NULL)
2013         load_seg->add_initial_output_data(segment_headers);
2014       if (phdr_seg != NULL)
2015         phdr_seg->add_initial_output_data(segment_headers);
2016     }
2017
2018   // Lay out the file header.
2019   if (load_seg != NULL)
2020     load_seg->add_initial_output_data(file_header);
2021
2022   if (this->script_options_->saw_phdrs_clause()
2023       && !parameters->options().relocatable())
2024     {
2025       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2026       // clause in a linker script.
2027       Script_sections* ss = this->script_options_->script_sections();
2028       ss->put_headers_in_phdrs(file_header, segment_headers);
2029     }
2030
2031   // We set the output section indexes in set_segment_offsets and
2032   // set_section_indexes.
2033   *pshndx = 1;
2034
2035   // Set the file offsets of all the segments, and all the sections
2036   // they contain.
2037   off_t off;
2038   if (!parameters->options().relocatable())
2039     off = this->set_segment_offsets(target, load_seg, pshndx);
2040   else
2041     off = this->set_relocatable_section_offsets(file_header, pshndx);
2042
2043    // Verify that the dummy relaxation does not change anything.
2044   if (is_debugging_enabled(DEBUG_RELAXATION))
2045     {
2046       if (pass == 0)
2047         this->relaxation_debug_check_->read_sections(this->section_list_);
2048       else
2049         this->relaxation_debug_check_->verify_sections(this->section_list_);
2050     }
2051
2052   *pload_seg = load_seg;
2053   return off;
2054 }
2055
2056 // Search the list of patterns and find the postion of the given section
2057 // name in the output section.  If the section name matches a glob
2058 // pattern and a non-glob name, then the non-glob position takes
2059 // precedence.  Return 0 if no match is found.
2060
2061 unsigned int
2062 Layout::find_section_order_index(const std::string& section_name)
2063 {
2064   Unordered_map<std::string, unsigned int>::iterator map_it;
2065   map_it = this->input_section_position_.find(section_name);
2066   if (map_it != this->input_section_position_.end())
2067     return map_it->second;
2068
2069   // Absolute match failed.  Linear search the glob patterns.
2070   std::vector<std::string>::iterator it;
2071   for (it = this->input_section_glob_.begin();
2072        it != this->input_section_glob_.end();
2073        ++it)
2074     {
2075        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2076          {
2077            map_it = this->input_section_position_.find(*it);
2078            gold_assert(map_it != this->input_section_position_.end());
2079            return map_it->second;
2080          }
2081     }
2082   return 0;
2083 }
2084
2085 // Read the sequence of input sections from the file specified with
2086 // --section-ordering-file.
2087
2088 void
2089 Layout::read_layout_from_file()
2090 {
2091   const char* filename = parameters->options().section_ordering_file();
2092   std::ifstream in;
2093   std::string line;
2094
2095   in.open(filename);
2096   if (!in)
2097     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2098                filename, strerror(errno));
2099
2100   std::getline(in, line);   // this chops off the trailing \n, if any
2101   unsigned int position = 1;
2102
2103   while (in)
2104     {
2105       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2106         line.resize(line.length() - 1);
2107       // Ignore comments, beginning with '#'
2108       if (line[0] == '#')
2109         {
2110           std::getline(in, line);
2111           continue;
2112         }
2113       this->input_section_position_[line] = position;
2114       // Store all glob patterns in a vector.
2115       if (is_wildcard_string(line.c_str()))
2116         this->input_section_glob_.push_back(line);
2117       position++;
2118       std::getline(in, line);
2119     }
2120 }
2121
2122 // Finalize the layout.  When this is called, we have created all the
2123 // output sections and all the output segments which are based on
2124 // input sections.  We have several things to do, and we have to do
2125 // them in the right order, so that we get the right results correctly
2126 // and efficiently.
2127
2128 // 1) Finalize the list of output segments and create the segment
2129 // table header.
2130
2131 // 2) Finalize the dynamic symbol table and associated sections.
2132
2133 // 3) Determine the final file offset of all the output segments.
2134
2135 // 4) Determine the final file offset of all the SHF_ALLOC output
2136 // sections.
2137
2138 // 5) Create the symbol table sections and the section name table
2139 // section.
2140
2141 // 6) Finalize the symbol table: set symbol values to their final
2142 // value and make a final determination of which symbols are going
2143 // into the output symbol table.
2144
2145 // 7) Create the section table header.
2146
2147 // 8) Determine the final file offset of all the output sections which
2148 // are not SHF_ALLOC, including the section table header.
2149
2150 // 9) Finalize the ELF file header.
2151
2152 // This function returns the size of the output file.
2153
2154 off_t
2155 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2156                  Target* target, const Task* task)
2157 {
2158   target->finalize_sections(this, input_objects, symtab);
2159
2160   this->count_local_symbols(task, input_objects);
2161
2162   this->link_stabs_sections();
2163
2164   Output_segment* phdr_seg = NULL;
2165   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2166     {
2167       // There was a dynamic object in the link.  We need to create
2168       // some information for the dynamic linker.
2169
2170       // Create the PT_PHDR segment which will hold the program
2171       // headers.
2172       if (!this->script_options_->saw_phdrs_clause())
2173         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2174
2175       // Create the dynamic symbol table, including the hash table.
2176       Output_section* dynstr;
2177       std::vector<Symbol*> dynamic_symbols;
2178       unsigned int local_dynamic_count;
2179       Versions versions(*this->script_options()->version_script_info(),
2180                         &this->dynpool_);
2181       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2182                                   &local_dynamic_count, &dynamic_symbols,
2183                                   &versions);
2184
2185       // Create the .interp section to hold the name of the
2186       // interpreter, and put it in a PT_INTERP segment.
2187       if (!parameters->options().shared()
2188           || parameters->options().dynamic_linker() != NULL)
2189         this->create_interp(target);
2190
2191       // Finish the .dynamic section to hold the dynamic data, and put
2192       // it in a PT_DYNAMIC segment.
2193       this->finish_dynamic_section(input_objects, symtab);
2194
2195       // We should have added everything we need to the dynamic string
2196       // table.
2197       this->dynpool_.set_string_offsets();
2198
2199       // Create the version sections.  We can't do this until the
2200       // dynamic string table is complete.
2201       this->create_version_sections(&versions, symtab, local_dynamic_count,
2202                                     dynamic_symbols, dynstr);
2203
2204       // Set the size of the _DYNAMIC symbol.  We can't do this until
2205       // after we call create_version_sections.
2206       this->set_dynamic_symbol_size(symtab);
2207     }
2208   
2209   // Create segment headers.
2210   Output_segment_headers* segment_headers =
2211     (parameters->options().relocatable()
2212      ? NULL
2213      : new Output_segment_headers(this->segment_list_));
2214
2215   // Lay out the file header.
2216   Output_file_header* file_header = new Output_file_header(target, symtab,
2217                                                            segment_headers);
2218
2219   this->special_output_list_.push_back(file_header);
2220   if (segment_headers != NULL)
2221     this->special_output_list_.push_back(segment_headers);
2222
2223   // Find approriate places for orphan output sections if we are using
2224   // a linker script.
2225   if (this->script_options_->saw_sections_clause())
2226     this->place_orphan_sections_in_script();
2227   
2228   Output_segment* load_seg;
2229   off_t off;
2230   unsigned int shndx;
2231   int pass = 0;
2232
2233   // Take a snapshot of the section layout as needed.
2234   if (target->may_relax())
2235     this->prepare_for_relaxation();
2236   
2237   // Run the relaxation loop to lay out sections.
2238   do
2239     {
2240       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2241                                        phdr_seg, segment_headers, file_header,
2242                                        &shndx);
2243       pass++;
2244     }
2245   while (target->may_relax()
2246          && target->relax(pass, input_objects, symtab, this, task));
2247
2248   // Set the file offsets of all the non-data sections we've seen so
2249   // far which don't have to wait for the input sections.  We need
2250   // this in order to finalize local symbols in non-allocated
2251   // sections.
2252   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2253
2254   // Set the section indexes of all unallocated sections seen so far,
2255   // in case any of them are somehow referenced by a symbol.
2256   shndx = this->set_section_indexes(shndx);
2257
2258   // Create the symbol table sections.
2259   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2260   if (!parameters->doing_static_link())
2261     this->assign_local_dynsym_offsets(input_objects);
2262
2263   // Process any symbol assignments from a linker script.  This must
2264   // be called after the symbol table has been finalized.
2265   this->script_options_->finalize_symbols(symtab, this);
2266
2267   // Create the incremental inputs sections.
2268   if (this->incremental_inputs_)
2269     {
2270       this->incremental_inputs_->finalize();
2271       this->create_incremental_info_sections(symtab);
2272     }
2273
2274   // Create the .shstrtab section.
2275   Output_section* shstrtab_section = this->create_shstrtab();
2276
2277   // Set the file offsets of the rest of the non-data sections which
2278   // don't have to wait for the input sections.
2279   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2280
2281   // Now that all sections have been created, set the section indexes
2282   // for any sections which haven't been done yet.
2283   shndx = this->set_section_indexes(shndx);
2284
2285   // Create the section table header.
2286   this->create_shdrs(shstrtab_section, &off);
2287
2288   // If there are no sections which require postprocessing, we can
2289   // handle the section names now, and avoid a resize later.
2290   if (!this->any_postprocessing_sections_)
2291     {
2292       off = this->set_section_offsets(off,
2293                                       POSTPROCESSING_SECTIONS_PASS);
2294       off =
2295           this->set_section_offsets(off,
2296                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2297     }
2298
2299   file_header->set_section_info(this->section_headers_, shstrtab_section);
2300
2301   // Now we know exactly where everything goes in the output file
2302   // (except for non-allocated sections which require postprocessing).
2303   Output_data::layout_complete();
2304
2305   this->output_file_size_ = off;
2306
2307   return off;
2308 }
2309
2310 // Create a note header following the format defined in the ELF ABI.
2311 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2312 // of the section to create, DESCSZ is the size of the descriptor.
2313 // ALLOCATE is true if the section should be allocated in memory.
2314 // This returns the new note section.  It sets *TRAILING_PADDING to
2315 // the number of trailing zero bytes required.
2316
2317 Output_section*
2318 Layout::create_note(const char* name, int note_type,
2319                     const char* section_name, size_t descsz,
2320                     bool allocate, size_t* trailing_padding)
2321 {
2322   // Authorities all agree that the values in a .note field should
2323   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2324   // they differ on what the alignment is for 64-bit binaries.
2325   // The GABI says unambiguously they take 8-byte alignment:
2326   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2327   // Other documentation says alignment should always be 4 bytes:
2328   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2329   // GNU ld and GNU readelf both support the latter (at least as of
2330   // version 2.16.91), and glibc always generates the latter for
2331   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2332   // here.
2333 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2334   const int size = parameters->target().get_size();
2335 #else
2336   const int size = 32;
2337 #endif
2338
2339   // The contents of the .note section.
2340   size_t namesz = strlen(name) + 1;
2341   size_t aligned_namesz = align_address(namesz, size / 8);
2342   size_t aligned_descsz = align_address(descsz, size / 8);
2343
2344   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2345
2346   unsigned char* buffer = new unsigned char[notehdrsz];
2347   memset(buffer, 0, notehdrsz);
2348
2349   bool is_big_endian = parameters->target().is_big_endian();
2350
2351   if (size == 32)
2352     {
2353       if (!is_big_endian)
2354         {
2355           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2356           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2357           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2358         }
2359       else
2360         {
2361           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2362           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2363           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2364         }
2365     }
2366   else if (size == 64)
2367     {
2368       if (!is_big_endian)
2369         {
2370           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2371           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2372           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2373         }
2374       else
2375         {
2376           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2377           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2378           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2379         }
2380     }
2381   else
2382     gold_unreachable();
2383
2384   memcpy(buffer + 3 * (size / 8), name, namesz);
2385
2386   elfcpp::Elf_Xword flags = 0;
2387   Output_section_order order = ORDER_INVALID;
2388   if (allocate)
2389     {
2390       flags = elfcpp::SHF_ALLOC;
2391       order = ORDER_RO_NOTE;
2392     }
2393   Output_section* os = this->choose_output_section(NULL, section_name,
2394                                                    elfcpp::SHT_NOTE,
2395                                                    flags, false, order, false);
2396   if (os == NULL)
2397     return NULL;
2398
2399   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2400                                                            size / 8,
2401                                                            "** note header");
2402   os->add_output_section_data(posd);
2403
2404   *trailing_padding = aligned_descsz - descsz;
2405
2406   return os;
2407 }
2408
2409 // For an executable or shared library, create a note to record the
2410 // version of gold used to create the binary.
2411
2412 void
2413 Layout::create_gold_note()
2414 {
2415   if (parameters->options().relocatable()
2416       || parameters->incremental_update())
2417     return;
2418
2419   std::string desc = std::string("gold ") + gold::get_version_string();
2420
2421   size_t trailing_padding;
2422   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2423                                          ".note.gnu.gold-version", desc.size(),
2424                                          false, &trailing_padding);
2425   if (os == NULL)
2426     return;
2427
2428   Output_section_data* posd = new Output_data_const(desc, 4);
2429   os->add_output_section_data(posd);
2430
2431   if (trailing_padding > 0)
2432     {
2433       posd = new Output_data_zero_fill(trailing_padding, 0);
2434       os->add_output_section_data(posd);
2435     }
2436 }
2437
2438 // Record whether the stack should be executable.  This can be set
2439 // from the command line using the -z execstack or -z noexecstack
2440 // options.  Otherwise, if any input file has a .note.GNU-stack
2441 // section with the SHF_EXECINSTR flag set, the stack should be
2442 // executable.  Otherwise, if at least one input file a
2443 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2444 // section, we use the target default for whether the stack should be
2445 // executable.  Otherwise, we don't generate a stack note.  When
2446 // generating a object file, we create a .note.GNU-stack section with
2447 // the appropriate marking.  When generating an executable or shared
2448 // library, we create a PT_GNU_STACK segment.
2449
2450 void
2451 Layout::create_executable_stack_info()
2452 {
2453   bool is_stack_executable;
2454   if (parameters->options().is_execstack_set())
2455     is_stack_executable = parameters->options().is_stack_executable();
2456   else if (!this->input_with_gnu_stack_note_)
2457     return;
2458   else
2459     {
2460       if (this->input_requires_executable_stack_)
2461         is_stack_executable = true;
2462       else if (this->input_without_gnu_stack_note_)
2463         is_stack_executable =
2464           parameters->target().is_default_stack_executable();
2465       else
2466         is_stack_executable = false;
2467     }
2468
2469   if (parameters->options().relocatable())
2470     {
2471       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2472       elfcpp::Elf_Xword flags = 0;
2473       if (is_stack_executable)
2474         flags |= elfcpp::SHF_EXECINSTR;
2475       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2476                                 ORDER_INVALID, false);
2477     }
2478   else
2479     {
2480       if (this->script_options_->saw_phdrs_clause())
2481         return;
2482       int flags = elfcpp::PF_R | elfcpp::PF_W;
2483       if (is_stack_executable)
2484         flags |= elfcpp::PF_X;
2485       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2486     }
2487 }
2488
2489 // If --build-id was used, set up the build ID note.
2490
2491 void
2492 Layout::create_build_id()
2493 {
2494   if (!parameters->options().user_set_build_id())
2495     return;
2496
2497   const char* style = parameters->options().build_id();
2498   if (strcmp(style, "none") == 0)
2499     return;
2500
2501   // Set DESCSZ to the size of the note descriptor.  When possible,
2502   // set DESC to the note descriptor contents.
2503   size_t descsz;
2504   std::string desc;
2505   if (strcmp(style, "md5") == 0)
2506     descsz = 128 / 8;
2507   else if (strcmp(style, "sha1") == 0)
2508     descsz = 160 / 8;
2509   else if (strcmp(style, "uuid") == 0)
2510     {
2511       const size_t uuidsz = 128 / 8;
2512
2513       char buffer[uuidsz];
2514       memset(buffer, 0, uuidsz);
2515
2516       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2517       if (descriptor < 0)
2518         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2519                    strerror(errno));
2520       else
2521         {
2522           ssize_t got = ::read(descriptor, buffer, uuidsz);
2523           release_descriptor(descriptor, true);
2524           if (got < 0)
2525             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2526           else if (static_cast<size_t>(got) != uuidsz)
2527             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2528                        uuidsz, got);
2529         }
2530
2531       desc.assign(buffer, uuidsz);
2532       descsz = uuidsz;
2533     }
2534   else if (strncmp(style, "0x", 2) == 0)
2535     {
2536       hex_init();
2537       const char* p = style + 2;
2538       while (*p != '\0')
2539         {
2540           if (hex_p(p[0]) && hex_p(p[1]))
2541             {
2542               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2543               desc += c;
2544               p += 2;
2545             }
2546           else if (*p == '-' || *p == ':')
2547             ++p;
2548           else
2549             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2550                        style);
2551         }
2552       descsz = desc.size();
2553     }
2554   else
2555     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2556
2557   // Create the note.
2558   size_t trailing_padding;
2559   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2560                                          ".note.gnu.build-id", descsz, true,
2561                                          &trailing_padding);
2562   if (os == NULL)
2563     return;
2564
2565   if (!desc.empty())
2566     {
2567       // We know the value already, so we fill it in now.
2568       gold_assert(desc.size() == descsz);
2569
2570       Output_section_data* posd = new Output_data_const(desc, 4);
2571       os->add_output_section_data(posd);
2572
2573       if (trailing_padding != 0)
2574         {
2575           posd = new Output_data_zero_fill(trailing_padding, 0);
2576           os->add_output_section_data(posd);
2577         }
2578     }
2579   else
2580     {
2581       // We need to compute a checksum after we have completed the
2582       // link.
2583       gold_assert(trailing_padding == 0);
2584       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2585       os->add_output_section_data(this->build_id_note_);
2586     }
2587 }
2588
2589 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2590 // field of the former should point to the latter.  I'm not sure who
2591 // started this, but the GNU linker does it, and some tools depend
2592 // upon it.
2593
2594 void
2595 Layout::link_stabs_sections()
2596 {
2597   if (!this->have_stabstr_section_)
2598     return;
2599
2600   for (Section_list::iterator p = this->section_list_.begin();
2601        p != this->section_list_.end();
2602        ++p)
2603     {
2604       if ((*p)->type() != elfcpp::SHT_STRTAB)
2605         continue;
2606
2607       const char* name = (*p)->name();
2608       if (strncmp(name, ".stab", 5) != 0)
2609         continue;
2610
2611       size_t len = strlen(name);
2612       if (strcmp(name + len - 3, "str") != 0)
2613         continue;
2614
2615       std::string stab_name(name, len - 3);
2616       Output_section* stab_sec;
2617       stab_sec = this->find_output_section(stab_name.c_str());
2618       if (stab_sec != NULL)
2619         stab_sec->set_link_section(*p);
2620     }
2621 }
2622
2623 // Create .gnu_incremental_inputs and related sections needed
2624 // for the next run of incremental linking to check what has changed.
2625
2626 void
2627 Layout::create_incremental_info_sections(Symbol_table* symtab)
2628 {
2629   Incremental_inputs* incr = this->incremental_inputs_;
2630
2631   gold_assert(incr != NULL);
2632
2633   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2634   incr->create_data_sections(symtab);
2635
2636   // Add the .gnu_incremental_inputs section.
2637   const char* incremental_inputs_name =
2638     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2639   Output_section* incremental_inputs_os =
2640     this->make_output_section(incremental_inputs_name,
2641                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2642                               ORDER_INVALID, false);
2643   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2644
2645   // Add the .gnu_incremental_symtab section.
2646   const char* incremental_symtab_name =
2647     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2648   Output_section* incremental_symtab_os =
2649     this->make_output_section(incremental_symtab_name,
2650                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2651                               ORDER_INVALID, false);
2652   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2653   incremental_symtab_os->set_entsize(4);
2654
2655   // Add the .gnu_incremental_relocs section.
2656   const char* incremental_relocs_name =
2657     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2658   Output_section* incremental_relocs_os =
2659     this->make_output_section(incremental_relocs_name,
2660                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2661                               ORDER_INVALID, false);
2662   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2663   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2664
2665   // Add the .gnu_incremental_got_plt section.
2666   const char* incremental_got_plt_name =
2667     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2668   Output_section* incremental_got_plt_os =
2669     this->make_output_section(incremental_got_plt_name,
2670                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2671                               ORDER_INVALID, false);
2672   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2673
2674   // Add the .gnu_incremental_strtab section.
2675   const char* incremental_strtab_name =
2676     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2677   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2678                                                         elfcpp::SHT_STRTAB, 0,
2679                                                         ORDER_INVALID, false);
2680   Output_data_strtab* strtab_data =
2681       new Output_data_strtab(incr->get_stringpool());
2682   incremental_strtab_os->add_output_section_data(strtab_data);
2683
2684   incremental_inputs_os->set_after_input_sections();
2685   incremental_symtab_os->set_after_input_sections();
2686   incremental_relocs_os->set_after_input_sections();
2687   incremental_got_plt_os->set_after_input_sections();
2688
2689   incremental_inputs_os->set_link_section(incremental_strtab_os);
2690   incremental_symtab_os->set_link_section(incremental_inputs_os);
2691   incremental_relocs_os->set_link_section(incremental_inputs_os);
2692   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2693 }
2694
2695 // Return whether SEG1 should be before SEG2 in the output file.  This
2696 // is based entirely on the segment type and flags.  When this is
2697 // called the segment addresses has normally not yet been set.
2698
2699 bool
2700 Layout::segment_precedes(const Output_segment* seg1,
2701                          const Output_segment* seg2)
2702 {
2703   elfcpp::Elf_Word type1 = seg1->type();
2704   elfcpp::Elf_Word type2 = seg2->type();
2705
2706   // The single PT_PHDR segment is required to precede any loadable
2707   // segment.  We simply make it always first.
2708   if (type1 == elfcpp::PT_PHDR)
2709     {
2710       gold_assert(type2 != elfcpp::PT_PHDR);
2711       return true;
2712     }
2713   if (type2 == elfcpp::PT_PHDR)
2714     return false;
2715
2716   // The single PT_INTERP segment is required to precede any loadable
2717   // segment.  We simply make it always second.
2718   if (type1 == elfcpp::PT_INTERP)
2719     {
2720       gold_assert(type2 != elfcpp::PT_INTERP);
2721       return true;
2722     }
2723   if (type2 == elfcpp::PT_INTERP)
2724     return false;
2725
2726   // We then put PT_LOAD segments before any other segments.
2727   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2728     return true;
2729   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2730     return false;
2731
2732   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2733   // segment, because that is where the dynamic linker expects to find
2734   // it (this is just for efficiency; other positions would also work
2735   // correctly).
2736   if (type1 == elfcpp::PT_TLS
2737       && type2 != elfcpp::PT_TLS
2738       && type2 != elfcpp::PT_GNU_RELRO)
2739     return false;
2740   if (type2 == elfcpp::PT_TLS
2741       && type1 != elfcpp::PT_TLS
2742       && type1 != elfcpp::PT_GNU_RELRO)
2743     return true;
2744
2745   // We put the PT_GNU_RELRO segment last, because that is where the
2746   // dynamic linker expects to find it (as with PT_TLS, this is just
2747   // for efficiency).
2748   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2749     return false;
2750   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2751     return true;
2752
2753   const elfcpp::Elf_Word flags1 = seg1->flags();
2754   const elfcpp::Elf_Word flags2 = seg2->flags();
2755
2756   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2757   // by the numeric segment type and flags values.  There should not
2758   // be more than one segment with the same type and flags.
2759   if (type1 != elfcpp::PT_LOAD)
2760     {
2761       if (type1 != type2)
2762         return type1 < type2;
2763       gold_assert(flags1 != flags2);
2764       return flags1 < flags2;
2765     }
2766
2767   // If the addresses are set already, sort by load address.
2768   if (seg1->are_addresses_set())
2769     {
2770       if (!seg2->are_addresses_set())
2771         return true;
2772
2773       unsigned int section_count1 = seg1->output_section_count();
2774       unsigned int section_count2 = seg2->output_section_count();
2775       if (section_count1 == 0 && section_count2 > 0)
2776         return true;
2777       if (section_count1 > 0 && section_count2 == 0)
2778         return false;
2779
2780       uint64_t paddr1 = (seg1->are_addresses_set()
2781                          ? seg1->paddr()
2782                          : seg1->first_section_load_address());
2783       uint64_t paddr2 = (seg2->are_addresses_set()
2784                          ? seg2->paddr()
2785                          : seg2->first_section_load_address());
2786
2787       if (paddr1 != paddr2)
2788         return paddr1 < paddr2;
2789     }
2790   else if (seg2->are_addresses_set())
2791     return false;
2792
2793   // A segment which holds large data comes after a segment which does
2794   // not hold large data.
2795   if (seg1->is_large_data_segment())
2796     {
2797       if (!seg2->is_large_data_segment())
2798         return false;
2799     }
2800   else if (seg2->is_large_data_segment())
2801     return true;
2802
2803   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2804   // segments come before writable segments.  Then writable segments
2805   // with data come before writable segments without data.  Then
2806   // executable segments come before non-executable segments.  Then
2807   // the unlikely case of a non-readable segment comes before the
2808   // normal case of a readable segment.  If there are multiple
2809   // segments with the same type and flags, we require that the
2810   // address be set, and we sort by virtual address and then physical
2811   // address.
2812   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2813     return (flags1 & elfcpp::PF_W) == 0;
2814   if ((flags1 & elfcpp::PF_W) != 0
2815       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2816     return seg1->has_any_data_sections();
2817   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2818     return (flags1 & elfcpp::PF_X) != 0;
2819   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2820     return (flags1 & elfcpp::PF_R) == 0;
2821
2822   // We shouldn't get here--we shouldn't create segments which we
2823   // can't distinguish.
2824   gold_unreachable();
2825 }
2826
2827 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2828
2829 static off_t
2830 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2831 {
2832   uint64_t unsigned_off = off;
2833   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2834                           | (addr & (abi_pagesize - 1)));
2835   if (aligned_off < unsigned_off)
2836     aligned_off += abi_pagesize;
2837   return aligned_off;
2838 }
2839
2840 // Set the file offsets of all the segments, and all the sections they
2841 // contain.  They have all been created.  LOAD_SEG must be be laid out
2842 // first.  Return the offset of the data to follow.
2843
2844 off_t
2845 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2846                             unsigned int* pshndx)
2847 {
2848   // Sort them into the final order.
2849   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2850             Layout::Compare_segments());
2851
2852   // Find the PT_LOAD segments, and set their addresses and offsets
2853   // and their section's addresses and offsets.
2854   uint64_t addr;
2855   if (parameters->options().user_set_Ttext())
2856     addr = parameters->options().Ttext();
2857   else if (parameters->options().output_is_position_independent())
2858     addr = 0;
2859   else
2860     addr = target->default_text_segment_address();
2861   off_t off = 0;
2862
2863   // If LOAD_SEG is NULL, then the file header and segment headers
2864   // will not be loadable.  But they still need to be at offset 0 in
2865   // the file.  Set their offsets now.
2866   if (load_seg == NULL)
2867     {
2868       for (Data_list::iterator p = this->special_output_list_.begin();
2869            p != this->special_output_list_.end();
2870            ++p)
2871         {
2872           off = align_address(off, (*p)->addralign());
2873           (*p)->set_address_and_file_offset(0, off);
2874           off += (*p)->data_size();
2875         }
2876     }
2877
2878   unsigned int increase_relro = this->increase_relro_;
2879   if (this->script_options_->saw_sections_clause())
2880     increase_relro = 0;
2881
2882   const bool check_sections = parameters->options().check_sections();
2883   Output_segment* last_load_segment = NULL;
2884
2885   for (Segment_list::iterator p = this->segment_list_.begin();
2886        p != this->segment_list_.end();
2887        ++p)
2888     {
2889       if ((*p)->type() == elfcpp::PT_LOAD)
2890         {
2891           if (load_seg != NULL && load_seg != *p)
2892             gold_unreachable();
2893           load_seg = NULL;
2894
2895           bool are_addresses_set = (*p)->are_addresses_set();
2896           if (are_addresses_set)
2897             {
2898               // When it comes to setting file offsets, we care about
2899               // the physical address.
2900               addr = (*p)->paddr();
2901             }
2902           else if (parameters->options().user_set_Tdata()
2903                    && ((*p)->flags() & elfcpp::PF_W) != 0
2904                    && (!parameters->options().user_set_Tbss()
2905                        || (*p)->has_any_data_sections()))
2906             {
2907               addr = parameters->options().Tdata();
2908               are_addresses_set = true;
2909             }
2910           else if (parameters->options().user_set_Tbss()
2911                    && ((*p)->flags() & elfcpp::PF_W) != 0
2912                    && !(*p)->has_any_data_sections())
2913             {
2914               addr = parameters->options().Tbss();
2915               are_addresses_set = true;
2916             }
2917
2918           uint64_t orig_addr = addr;
2919           uint64_t orig_off = off;
2920
2921           uint64_t aligned_addr = 0;
2922           uint64_t abi_pagesize = target->abi_pagesize();
2923           uint64_t common_pagesize = target->common_pagesize();
2924
2925           if (!parameters->options().nmagic()
2926               && !parameters->options().omagic())
2927             (*p)->set_minimum_p_align(common_pagesize);
2928
2929           if (!are_addresses_set)
2930             {
2931               // Skip the address forward one page, maintaining the same
2932               // position within the page.  This lets us store both segments
2933               // overlapping on a single page in the file, but the loader will
2934               // put them on different pages in memory. We will revisit this
2935               // decision once we know the size of the segment.
2936
2937               addr = align_address(addr, (*p)->maximum_alignment());
2938               aligned_addr = addr;
2939
2940               if ((addr & (abi_pagesize - 1)) != 0)
2941                 addr = addr + abi_pagesize;
2942
2943               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2944             }
2945
2946           if (!parameters->options().nmagic()
2947               && !parameters->options().omagic())
2948             off = align_file_offset(off, addr, abi_pagesize);
2949           else if (load_seg == NULL)
2950             {
2951               // This is -N or -n with a section script which prevents
2952               // us from using a load segment.  We need to ensure that
2953               // the file offset is aligned to the alignment of the
2954               // segment.  This is because the linker script
2955               // implicitly assumed a zero offset.  If we don't align
2956               // here, then the alignment of the sections in the
2957               // linker script may not match the alignment of the
2958               // sections in the set_section_addresses call below,
2959               // causing an error about dot moving backward.
2960               off = align_address(off, (*p)->maximum_alignment());
2961             }
2962
2963           unsigned int shndx_hold = *pshndx;
2964           bool has_relro = false;
2965           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2966                                                           &increase_relro,
2967                                                           &has_relro,
2968                                                           &off, pshndx);
2969
2970           // Now that we know the size of this segment, we may be able
2971           // to save a page in memory, at the cost of wasting some
2972           // file space, by instead aligning to the start of a new
2973           // page.  Here we use the real machine page size rather than
2974           // the ABI mandated page size.  If the segment has been
2975           // aligned so that the relro data ends at a page boundary,
2976           // we do not try to realign it.
2977
2978           if (!are_addresses_set
2979               && !has_relro
2980               && aligned_addr != addr
2981               && !parameters->incremental())
2982             {
2983               uint64_t first_off = (common_pagesize
2984                                     - (aligned_addr
2985                                        & (common_pagesize - 1)));
2986               uint64_t last_off = new_addr & (common_pagesize - 1);
2987               if (first_off > 0
2988                   && last_off > 0
2989                   && ((aligned_addr & ~ (common_pagesize - 1))
2990                       != (new_addr & ~ (common_pagesize - 1)))
2991                   && first_off + last_off <= common_pagesize)
2992                 {
2993                   *pshndx = shndx_hold;
2994                   addr = align_address(aligned_addr, common_pagesize);
2995                   addr = align_address(addr, (*p)->maximum_alignment());
2996                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2997                   off = align_file_offset(off, addr, abi_pagesize);
2998
2999                   increase_relro = this->increase_relro_;
3000                   if (this->script_options_->saw_sections_clause())
3001                     increase_relro = 0;
3002                   has_relro = false;
3003
3004                   new_addr = (*p)->set_section_addresses(this, true, addr,
3005                                                          &increase_relro,
3006                                                          &has_relro,
3007                                                          &off, pshndx);
3008                 }
3009             }
3010
3011           addr = new_addr;
3012
3013           // Implement --check-sections.  We know that the segments
3014           // are sorted by LMA.
3015           if (check_sections && last_load_segment != NULL)
3016             {
3017               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3018               if (last_load_segment->paddr() + last_load_segment->memsz()
3019                   > (*p)->paddr())
3020                 {
3021                   unsigned long long lb1 = last_load_segment->paddr();
3022                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3023                   unsigned long long lb2 = (*p)->paddr();
3024                   unsigned long long le2 = lb2 + (*p)->memsz();
3025                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3026                                "[0x%llx -> 0x%llx]"),
3027                              lb1, le1, lb2, le2);
3028                 }
3029             }
3030           last_load_segment = *p;
3031         }
3032     }
3033
3034   // Handle the non-PT_LOAD segments, setting their offsets from their
3035   // section's offsets.
3036   for (Segment_list::iterator p = this->segment_list_.begin();
3037        p != this->segment_list_.end();
3038        ++p)
3039     {
3040       if ((*p)->type() != elfcpp::PT_LOAD)
3041         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3042                          ? increase_relro
3043                          : 0);
3044     }
3045
3046   // Set the TLS offsets for each section in the PT_TLS segment.
3047   if (this->tls_segment_ != NULL)
3048     this->tls_segment_->set_tls_offsets();
3049
3050   return off;
3051 }
3052
3053 // Set the offsets of all the allocated sections when doing a
3054 // relocatable link.  This does the same jobs as set_segment_offsets,
3055 // only for a relocatable link.
3056
3057 off_t
3058 Layout::set_relocatable_section_offsets(Output_data* file_header,
3059                                         unsigned int* pshndx)
3060 {
3061   off_t off = 0;
3062
3063   file_header->set_address_and_file_offset(0, 0);
3064   off += file_header->data_size();
3065
3066   for (Section_list::iterator p = this->section_list_.begin();
3067        p != this->section_list_.end();
3068        ++p)
3069     {
3070       // We skip unallocated sections here, except that group sections
3071       // have to come first.
3072       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3073           && (*p)->type() != elfcpp::SHT_GROUP)
3074         continue;
3075
3076       off = align_address(off, (*p)->addralign());
3077
3078       // The linker script might have set the address.
3079       if (!(*p)->is_address_valid())
3080         (*p)->set_address(0);
3081       (*p)->set_file_offset(off);
3082       (*p)->finalize_data_size();
3083       off += (*p)->data_size();
3084
3085       (*p)->set_out_shndx(*pshndx);
3086       ++*pshndx;
3087     }
3088
3089   return off;
3090 }
3091
3092 // Set the file offset of all the sections not associated with a
3093 // segment.
3094
3095 off_t
3096 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3097 {
3098   off_t startoff = off;
3099   off_t maxoff = off;
3100
3101   for (Section_list::iterator p = this->unattached_section_list_.begin();
3102        p != this->unattached_section_list_.end();
3103        ++p)
3104     {
3105       // The symtab section is handled in create_symtab_sections.
3106       if (*p == this->symtab_section_)
3107         continue;
3108
3109       // If we've already set the data size, don't set it again.
3110       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3111         continue;
3112
3113       if (pass == BEFORE_INPUT_SECTIONS_PASS
3114           && (*p)->requires_postprocessing())
3115         {
3116           (*p)->create_postprocessing_buffer();
3117           this->any_postprocessing_sections_ = true;
3118         }
3119
3120       if (pass == BEFORE_INPUT_SECTIONS_PASS
3121           && (*p)->after_input_sections())
3122         continue;
3123       else if (pass == POSTPROCESSING_SECTIONS_PASS
3124                && (!(*p)->after_input_sections()
3125                    || (*p)->type() == elfcpp::SHT_STRTAB))
3126         continue;
3127       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3128                && (!(*p)->after_input_sections()
3129                    || (*p)->type() != elfcpp::SHT_STRTAB))
3130         continue;
3131
3132       if (!parameters->incremental_update())
3133         {
3134           off = align_address(off, (*p)->addralign());
3135           (*p)->set_file_offset(off);
3136           (*p)->finalize_data_size();
3137         }
3138       else
3139         {
3140           // Incremental update: allocate file space from free list.
3141           (*p)->pre_finalize_data_size();
3142           off_t current_size = (*p)->current_data_size();
3143           off = this->allocate(current_size, (*p)->addralign(), startoff);
3144           if (off == -1)
3145             {
3146               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3147                 this->free_list_.dump();
3148               gold_assert((*p)->output_section() != NULL);
3149               gold_fallback(_("out of patch space for section %s; "
3150                               "relink with --incremental-full"),
3151                             (*p)->output_section()->name());
3152             }
3153           (*p)->set_file_offset(off);
3154           (*p)->finalize_data_size();
3155           if ((*p)->data_size() > current_size)
3156             {
3157               gold_assert((*p)->output_section() != NULL);
3158               gold_fallback(_("%s: section changed size; "
3159                               "relink with --incremental-full"),
3160                             (*p)->output_section()->name());
3161             }
3162           gold_debug(DEBUG_INCREMENTAL,
3163                      "set_section_offsets: %08lx %08lx %s",
3164                      static_cast<long>(off),
3165                      static_cast<long>((*p)->data_size()),
3166                      ((*p)->output_section() != NULL
3167                       ? (*p)->output_section()->name() : "(special)"));
3168         }
3169
3170       off += (*p)->data_size();
3171       if (off > maxoff)
3172         maxoff = off;
3173
3174       // At this point the name must be set.
3175       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3176         this->namepool_.add((*p)->name(), false, NULL);
3177     }
3178   return maxoff;
3179 }
3180
3181 // Set the section indexes of all the sections not associated with a
3182 // segment.
3183
3184 unsigned int
3185 Layout::set_section_indexes(unsigned int shndx)
3186 {
3187   for (Section_list::iterator p = this->unattached_section_list_.begin();
3188        p != this->unattached_section_list_.end();
3189        ++p)
3190     {
3191       if (!(*p)->has_out_shndx())
3192         {
3193           (*p)->set_out_shndx(shndx);
3194           ++shndx;
3195         }
3196     }
3197   return shndx;
3198 }
3199
3200 // Set the section addresses according to the linker script.  This is
3201 // only called when we see a SECTIONS clause.  This returns the
3202 // program segment which should hold the file header and segment
3203 // headers, if any.  It will return NULL if they should not be in a
3204 // segment.
3205
3206 Output_segment*
3207 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3208 {
3209   Script_sections* ss = this->script_options_->script_sections();
3210   gold_assert(ss->saw_sections_clause());
3211   return this->script_options_->set_section_addresses(symtab, this);
3212 }
3213
3214 // Place the orphan sections in the linker script.
3215
3216 void
3217 Layout::place_orphan_sections_in_script()
3218 {
3219   Script_sections* ss = this->script_options_->script_sections();
3220   gold_assert(ss->saw_sections_clause());
3221
3222   // Place each orphaned output section in the script.
3223   for (Section_list::iterator p = this->section_list_.begin();
3224        p != this->section_list_.end();
3225        ++p)
3226     {
3227       if (!(*p)->found_in_sections_clause())
3228         ss->place_orphan(*p);
3229     }
3230 }
3231
3232 // Count the local symbols in the regular symbol table and the dynamic
3233 // symbol table, and build the respective string pools.
3234
3235 void
3236 Layout::count_local_symbols(const Task* task,
3237                             const Input_objects* input_objects)
3238 {
3239   // First, figure out an upper bound on the number of symbols we'll
3240   // be inserting into each pool.  This helps us create the pools with
3241   // the right size, to avoid unnecessary hashtable resizing.
3242   unsigned int symbol_count = 0;
3243   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3244        p != input_objects->relobj_end();
3245        ++p)
3246     symbol_count += (*p)->local_symbol_count();
3247
3248   // Go from "upper bound" to "estimate."  We overcount for two
3249   // reasons: we double-count symbols that occur in more than one
3250   // object file, and we count symbols that are dropped from the
3251   // output.  Add it all together and assume we overcount by 100%.
3252   symbol_count /= 2;
3253
3254   // We assume all symbols will go into both the sympool and dynpool.
3255   this->sympool_.reserve(symbol_count);
3256   this->dynpool_.reserve(symbol_count);
3257
3258   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3259        p != input_objects->relobj_end();
3260        ++p)
3261     {
3262       Task_lock_obj<Object> tlo(task, *p);
3263       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3264     }
3265 }
3266
3267 // Create the symbol table sections.  Here we also set the final
3268 // values of the symbols.  At this point all the loadable sections are
3269 // fully laid out.  SHNUM is the number of sections so far.
3270
3271 void
3272 Layout::create_symtab_sections(const Input_objects* input_objects,
3273                                Symbol_table* symtab,
3274                                unsigned int shnum,
3275                                off_t* poff)
3276 {
3277   int symsize;
3278   unsigned int align;
3279   if (parameters->target().get_size() == 32)
3280     {
3281       symsize = elfcpp::Elf_sizes<32>::sym_size;
3282       align = 4;
3283     }
3284   else if (parameters->target().get_size() == 64)
3285     {
3286       symsize = elfcpp::Elf_sizes<64>::sym_size;
3287       align = 8;
3288     }
3289   else
3290     gold_unreachable();
3291
3292   // Compute file offsets relative to the start of the symtab section.
3293   off_t off = 0;
3294
3295   // Save space for the dummy symbol at the start of the section.  We
3296   // never bother to write this out--it will just be left as zero.
3297   off += symsize;
3298   unsigned int local_symbol_index = 1;
3299
3300   // Add STT_SECTION symbols for each Output section which needs one.
3301   for (Section_list::iterator p = this->section_list_.begin();
3302        p != this->section_list_.end();
3303        ++p)
3304     {
3305       if (!(*p)->needs_symtab_index())
3306         (*p)->set_symtab_index(-1U);
3307       else
3308         {
3309           (*p)->set_symtab_index(local_symbol_index);
3310           ++local_symbol_index;
3311           off += symsize;
3312         }
3313     }
3314
3315   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3316        p != input_objects->relobj_end();
3317        ++p)
3318     {
3319       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3320                                                         off, symtab);
3321       off += (index - local_symbol_index) * symsize;
3322       local_symbol_index = index;
3323     }
3324
3325   unsigned int local_symcount = local_symbol_index;
3326   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3327
3328   off_t dynoff;
3329   size_t dyn_global_index;
3330   size_t dyncount;
3331   if (this->dynsym_section_ == NULL)
3332     {
3333       dynoff = 0;
3334       dyn_global_index = 0;
3335       dyncount = 0;
3336     }
3337   else
3338     {
3339       dyn_global_index = this->dynsym_section_->info();
3340       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3341       dynoff = this->dynsym_section_->offset() + locsize;
3342       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3343       gold_assert(static_cast<off_t>(dyncount * symsize)
3344                   == this->dynsym_section_->data_size() - locsize);
3345     }
3346
3347   off_t global_off = off;
3348   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3349                          &this->sympool_, &local_symcount);
3350
3351   if (!parameters->options().strip_all())
3352     {
3353       this->sympool_.set_string_offsets();
3354
3355       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3356       Output_section* osymtab = this->make_output_section(symtab_name,
3357                                                           elfcpp::SHT_SYMTAB,
3358                                                           0, ORDER_INVALID,
3359                                                           false);
3360       this->symtab_section_ = osymtab;
3361
3362       Output_section_data* pos = new Output_data_fixed_space(off, align,
3363                                                              "** symtab");
3364       osymtab->add_output_section_data(pos);
3365
3366       // We generate a .symtab_shndx section if we have more than
3367       // SHN_LORESERVE sections.  Technically it is possible that we
3368       // don't need one, because it is possible that there are no
3369       // symbols in any of sections with indexes larger than
3370       // SHN_LORESERVE.  That is probably unusual, though, and it is
3371       // easier to always create one than to compute section indexes
3372       // twice (once here, once when writing out the symbols).
3373       if (shnum >= elfcpp::SHN_LORESERVE)
3374         {
3375           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3376                                                                false, NULL);
3377           Output_section* osymtab_xindex =
3378             this->make_output_section(symtab_xindex_name,
3379                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3380                                       ORDER_INVALID, false);
3381
3382           size_t symcount = off / symsize;
3383           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3384
3385           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3386
3387           osymtab_xindex->set_link_section(osymtab);
3388           osymtab_xindex->set_addralign(4);
3389           osymtab_xindex->set_entsize(4);
3390
3391           osymtab_xindex->set_after_input_sections();
3392
3393           // This tells the driver code to wait until the symbol table
3394           // has written out before writing out the postprocessing
3395           // sections, including the .symtab_shndx section.
3396           this->any_postprocessing_sections_ = true;
3397         }
3398
3399       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3400       Output_section* ostrtab = this->make_output_section(strtab_name,
3401                                                           elfcpp::SHT_STRTAB,
3402                                                           0, ORDER_INVALID,
3403                                                           false);
3404
3405       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3406       ostrtab->add_output_section_data(pstr);
3407
3408       off_t symtab_off;
3409       if (!parameters->incremental_update())
3410         symtab_off = align_address(*poff, align);
3411       else
3412         {
3413           symtab_off = this->allocate(off, align, *poff);
3414           if (off == -1)
3415             gold_fallback(_("out of patch space for symbol table; "
3416                             "relink with --incremental-full"));
3417           gold_debug(DEBUG_INCREMENTAL,
3418                      "create_symtab_sections: %08lx %08lx .symtab",
3419                      static_cast<long>(symtab_off),
3420                      static_cast<long>(off));
3421         }
3422
3423       symtab->set_file_offset(symtab_off + global_off);
3424       osymtab->set_file_offset(symtab_off);
3425       osymtab->finalize_data_size();
3426       osymtab->set_link_section(ostrtab);
3427       osymtab->set_info(local_symcount);
3428       osymtab->set_entsize(symsize);
3429
3430       if (symtab_off + off > *poff)
3431         *poff = symtab_off + off;
3432     }
3433 }
3434
3435 // Create the .shstrtab section, which holds the names of the
3436 // sections.  At the time this is called, we have created all the
3437 // output sections except .shstrtab itself.
3438
3439 Output_section*
3440 Layout::create_shstrtab()
3441 {
3442   // FIXME: We don't need to create a .shstrtab section if we are
3443   // stripping everything.
3444
3445   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3446
3447   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3448                                                  ORDER_INVALID, false);
3449
3450   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3451     {
3452       // We can't write out this section until we've set all the
3453       // section names, and we don't set the names of compressed
3454       // output sections until relocations are complete.  FIXME: With
3455       // the current names we use, this is unnecessary.
3456       os->set_after_input_sections();
3457     }
3458
3459   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3460   os->add_output_section_data(posd);
3461
3462   return os;
3463 }
3464
3465 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3466 // offset.
3467
3468 void
3469 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3470 {
3471   Output_section_headers* oshdrs;
3472   oshdrs = new Output_section_headers(this,
3473                                       &this->segment_list_,
3474                                       &this->section_list_,
3475                                       &this->unattached_section_list_,
3476                                       &this->namepool_,
3477                                       shstrtab_section);
3478   off_t off;
3479   if (!parameters->incremental_update())
3480     off = align_address(*poff, oshdrs->addralign());
3481   else
3482     {
3483       oshdrs->pre_finalize_data_size();
3484       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3485       if (off == -1)
3486           gold_fallback(_("out of patch space for section header table; "
3487                           "relink with --incremental-full"));
3488       gold_debug(DEBUG_INCREMENTAL,
3489                  "create_shdrs: %08lx %08lx (section header table)",
3490                  static_cast<long>(off),
3491                  static_cast<long>(off + oshdrs->data_size()));
3492     }
3493   oshdrs->set_address_and_file_offset(0, off);
3494   off += oshdrs->data_size();
3495   if (off > *poff)
3496     *poff = off;
3497   this->section_headers_ = oshdrs;
3498 }
3499
3500 // Count the allocated sections.
3501
3502 size_t
3503 Layout::allocated_output_section_count() const
3504 {
3505   size_t section_count = 0;
3506   for (Segment_list::const_iterator p = this->segment_list_.begin();
3507        p != this->segment_list_.end();
3508        ++p)
3509     section_count += (*p)->output_section_count();
3510   return section_count;
3511 }
3512
3513 // Create the dynamic symbol table.
3514
3515 void
3516 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3517                               Symbol_table* symtab,
3518                               Output_section** pdynstr,
3519                               unsigned int* plocal_dynamic_count,
3520                               std::vector<Symbol*>* pdynamic_symbols,
3521                               Versions* pversions)
3522 {
3523   // Count all the symbols in the dynamic symbol table, and set the
3524   // dynamic symbol indexes.
3525
3526   // Skip symbol 0, which is always all zeroes.
3527   unsigned int index = 1;
3528
3529   // Add STT_SECTION symbols for each Output section which needs one.
3530   for (Section_list::iterator p = this->section_list_.begin();
3531        p != this->section_list_.end();
3532        ++p)
3533     {
3534       if (!(*p)->needs_dynsym_index())
3535         (*p)->set_dynsym_index(-1U);
3536       else
3537         {
3538           (*p)->set_dynsym_index(index);
3539           ++index;
3540         }
3541     }
3542
3543   // Count the local symbols that need to go in the dynamic symbol table,
3544   // and set the dynamic symbol indexes.
3545   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3546        p != input_objects->relobj_end();
3547        ++p)
3548     {
3549       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3550       index = new_index;
3551     }
3552
3553   unsigned int local_symcount = index;
3554   *plocal_dynamic_count = local_symcount;
3555
3556   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3557                                      &this->dynpool_, pversions);
3558
3559   int symsize;
3560   unsigned int align;
3561   const int size = parameters->target().get_size();
3562   if (size == 32)
3563     {
3564       symsize = elfcpp::Elf_sizes<32>::sym_size;
3565       align = 4;
3566     }
3567   else if (size == 64)
3568     {
3569       symsize = elfcpp::Elf_sizes<64>::sym_size;
3570       align = 8;
3571     }
3572   else
3573     gold_unreachable();
3574
3575   // Create the dynamic symbol table section.
3576
3577   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3578                                                        elfcpp::SHT_DYNSYM,
3579                                                        elfcpp::SHF_ALLOC,
3580                                                        false,
3581                                                        ORDER_DYNAMIC_LINKER,
3582                                                        false);
3583
3584   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3585                                                            align,
3586                                                            "** dynsym");
3587   dynsym->add_output_section_data(odata);
3588
3589   dynsym->set_info(local_symcount);
3590   dynsym->set_entsize(symsize);
3591   dynsym->set_addralign(align);
3592
3593   this->dynsym_section_ = dynsym;
3594
3595   Output_data_dynamic* const odyn = this->dynamic_data_;
3596   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3597   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3598
3599   // If there are more than SHN_LORESERVE allocated sections, we
3600   // create a .dynsym_shndx section.  It is possible that we don't
3601   // need one, because it is possible that there are no dynamic
3602   // symbols in any of the sections with indexes larger than
3603   // SHN_LORESERVE.  This is probably unusual, though, and at this
3604   // time we don't know the actual section indexes so it is
3605   // inconvenient to check.
3606   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3607     {
3608       Output_section* dynsym_xindex =
3609         this->choose_output_section(NULL, ".dynsym_shndx",
3610                                     elfcpp::SHT_SYMTAB_SHNDX,
3611                                     elfcpp::SHF_ALLOC,
3612                                     false, ORDER_DYNAMIC_LINKER, false);
3613
3614       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3615
3616       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3617
3618       dynsym_xindex->set_link_section(dynsym);
3619       dynsym_xindex->set_addralign(4);
3620       dynsym_xindex->set_entsize(4);
3621
3622       dynsym_xindex->set_after_input_sections();
3623
3624       // This tells the driver code to wait until the symbol table has
3625       // written out before writing out the postprocessing sections,
3626       // including the .dynsym_shndx section.
3627       this->any_postprocessing_sections_ = true;
3628     }
3629
3630   // Create the dynamic string table section.
3631
3632   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3633                                                        elfcpp::SHT_STRTAB,
3634                                                        elfcpp::SHF_ALLOC,
3635                                                        false,
3636                                                        ORDER_DYNAMIC_LINKER,
3637                                                        false);
3638
3639   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3640   dynstr->add_output_section_data(strdata);
3641
3642   dynsym->set_link_section(dynstr);
3643   this->dynamic_section_->set_link_section(dynstr);
3644
3645   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3646   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3647
3648   *pdynstr = dynstr;
3649
3650   // Create the hash tables.
3651
3652   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3653       || strcmp(parameters->options().hash_style(), "both") == 0)
3654     {
3655       unsigned char* phash;
3656       unsigned int hashlen;
3657       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3658                                     &phash, &hashlen);
3659
3660       Output_section* hashsec =
3661         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3662                                     elfcpp::SHF_ALLOC, false,
3663                                     ORDER_DYNAMIC_LINKER, false);
3664
3665       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3666                                                                    hashlen,
3667                                                                    align,
3668                                                                    "** hash");
3669       hashsec->add_output_section_data(hashdata);
3670
3671       hashsec->set_link_section(dynsym);
3672       hashsec->set_entsize(4);
3673
3674       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3675     }
3676
3677   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3678       || strcmp(parameters->options().hash_style(), "both") == 0)
3679     {
3680       unsigned char* phash;
3681       unsigned int hashlen;
3682       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3683                                     &phash, &hashlen);
3684
3685       Output_section* hashsec =
3686         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3687                                     elfcpp::SHF_ALLOC, false,
3688                                     ORDER_DYNAMIC_LINKER, false);
3689
3690       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3691                                                                    hashlen,
3692                                                                    align,
3693                                                                    "** hash");
3694       hashsec->add_output_section_data(hashdata);
3695
3696       hashsec->set_link_section(dynsym);
3697
3698       // For a 64-bit target, the entries in .gnu.hash do not have a
3699       // uniform size, so we only set the entry size for a 32-bit
3700       // target.
3701       if (parameters->target().get_size() == 32)
3702         hashsec->set_entsize(4);
3703
3704       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3705     }
3706 }
3707
3708 // Assign offsets to each local portion of the dynamic symbol table.
3709
3710 void
3711 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3712 {
3713   Output_section* dynsym = this->dynsym_section_;
3714   gold_assert(dynsym != NULL);
3715
3716   off_t off = dynsym->offset();
3717
3718   // Skip the dummy symbol at the start of the section.
3719   off += dynsym->entsize();
3720
3721   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3722        p != input_objects->relobj_end();
3723        ++p)
3724     {
3725       unsigned int count = (*p)->set_local_dynsym_offset(off);
3726       off += count * dynsym->entsize();
3727     }
3728 }
3729
3730 // Create the version sections.
3731
3732 void
3733 Layout::create_version_sections(const Versions* versions,
3734                                 const Symbol_table* symtab,
3735                                 unsigned int local_symcount,
3736                                 const std::vector<Symbol*>& dynamic_symbols,
3737                                 const Output_section* dynstr)
3738 {
3739   if (!versions->any_defs() && !versions->any_needs())
3740     return;
3741
3742   switch (parameters->size_and_endianness())
3743     {
3744 #ifdef HAVE_TARGET_32_LITTLE
3745     case Parameters::TARGET_32_LITTLE:
3746       this->sized_create_version_sections<32, false>(versions, symtab,
3747                                                      local_symcount,
3748                                                      dynamic_symbols, dynstr);
3749       break;
3750 #endif
3751 #ifdef HAVE_TARGET_32_BIG
3752     case Parameters::TARGET_32_BIG:
3753       this->sized_create_version_sections<32, true>(versions, symtab,
3754                                                     local_symcount,
3755                                                     dynamic_symbols, dynstr);
3756       break;
3757 #endif
3758 #ifdef HAVE_TARGET_64_LITTLE
3759     case Parameters::TARGET_64_LITTLE:
3760       this->sized_create_version_sections<64, false>(versions, symtab,
3761                                                      local_symcount,
3762                                                      dynamic_symbols, dynstr);
3763       break;
3764 #endif
3765 #ifdef HAVE_TARGET_64_BIG
3766     case Parameters::TARGET_64_BIG:
3767       this->sized_create_version_sections<64, true>(versions, symtab,
3768                                                     local_symcount,
3769                                                     dynamic_symbols, dynstr);
3770       break;
3771 #endif
3772     default:
3773       gold_unreachable();
3774     }
3775 }
3776
3777 // Create the version sections, sized version.
3778
3779 template<int size, bool big_endian>
3780 void
3781 Layout::sized_create_version_sections(
3782     const Versions* versions,
3783     const Symbol_table* symtab,
3784     unsigned int local_symcount,
3785     const std::vector<Symbol*>& dynamic_symbols,
3786     const Output_section* dynstr)
3787 {
3788   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3789                                                      elfcpp::SHT_GNU_versym,
3790                                                      elfcpp::SHF_ALLOC,
3791                                                      false,
3792                                                      ORDER_DYNAMIC_LINKER,
3793                                                      false);
3794
3795   unsigned char* vbuf;
3796   unsigned int vsize;
3797   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3798                                                       local_symcount,
3799                                                       dynamic_symbols,
3800                                                       &vbuf, &vsize);
3801
3802   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3803                                                             "** versions");
3804
3805   vsec->add_output_section_data(vdata);
3806   vsec->set_entsize(2);
3807   vsec->set_link_section(this->dynsym_section_);
3808
3809   Output_data_dynamic* const odyn = this->dynamic_data_;
3810   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3811
3812   if (versions->any_defs())
3813     {
3814       Output_section* vdsec;
3815       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3816                                          elfcpp::SHT_GNU_verdef,
3817                                          elfcpp::SHF_ALLOC,
3818                                          false, ORDER_DYNAMIC_LINKER, false);
3819
3820       unsigned char* vdbuf;
3821       unsigned int vdsize;
3822       unsigned int vdentries;
3823       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3824                                                        &vdsize, &vdentries);
3825
3826       Output_section_data* vddata =
3827         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3828
3829       vdsec->add_output_section_data(vddata);
3830       vdsec->set_link_section(dynstr);
3831       vdsec->set_info(vdentries);
3832
3833       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3834       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3835     }
3836
3837   if (versions->any_needs())
3838     {
3839       Output_section* vnsec;
3840       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3841                                           elfcpp::SHT_GNU_verneed,
3842                                           elfcpp::SHF_ALLOC,
3843                                           false, ORDER_DYNAMIC_LINKER, false);
3844
3845       unsigned char* vnbuf;
3846       unsigned int vnsize;
3847       unsigned int vnentries;
3848       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3849                                                         &vnbuf, &vnsize,
3850                                                         &vnentries);
3851
3852       Output_section_data* vndata =
3853         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3854
3855       vnsec->add_output_section_data(vndata);
3856       vnsec->set_link_section(dynstr);
3857       vnsec->set_info(vnentries);
3858
3859       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3860       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3861     }
3862 }
3863
3864 // Create the .interp section and PT_INTERP segment.
3865
3866 void
3867 Layout::create_interp(const Target* target)
3868 {
3869   gold_assert(this->interp_segment_ == NULL);
3870
3871   const char* interp = parameters->options().dynamic_linker();
3872   if (interp == NULL)
3873     {
3874       interp = target->dynamic_linker();
3875       gold_assert(interp != NULL);
3876     }
3877
3878   size_t len = strlen(interp) + 1;
3879
3880   Output_section_data* odata = new Output_data_const(interp, len, 1);
3881
3882   Output_section* osec;
3883
3884   // If we are using a SECTIONS clause, let it decide where the
3885   // .interp section should go.  Otherwise always create a new section
3886   // so that this .interp section does not get confused with any
3887   // section of the same name in the program.
3888   if (this->script_options_->saw_sections_clause())
3889     osec = this->choose_output_section(NULL, ".interp", elfcpp::SHT_PROGBITS,
3890                                        elfcpp::SHF_ALLOC, false, ORDER_INTERP,
3891                                        false);
3892   else
3893     {
3894       const char* n = this->namepool_.add("interp", false, NULL);
3895       osec = this->make_output_section(n, elfcpp::SHT_PROGBITS,
3896                                        elfcpp::SHF_ALLOC, ORDER_INTERP, false);
3897     }
3898
3899   osec->add_output_section_data(odata);
3900
3901   if (!this->script_options_->saw_phdrs_clause())
3902     {
3903       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3904                                                        elfcpp::PF_R);
3905       oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3906     }
3907 }
3908
3909 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3910 // called by the target-specific code.  This does nothing if not doing
3911 // a dynamic link.
3912
3913 // USE_REL is true for REL relocs rather than RELA relocs.
3914
3915 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3916
3917 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3918 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3919 // some targets have multiple reloc sections in PLT_REL.
3920
3921 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3922 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3923
3924 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3925 // executable.
3926
3927 void
3928 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3929                                 const Output_data* plt_rel,
3930                                 const Output_data_reloc_generic* dyn_rel,
3931                                 bool add_debug, bool dynrel_includes_plt)
3932 {
3933   Output_data_dynamic* odyn = this->dynamic_data_;
3934   if (odyn == NULL)
3935     return;
3936
3937   if (plt_got != NULL && plt_got->output_section() != NULL)
3938     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3939
3940   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3941     {
3942       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3943       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3944       odyn->add_constant(elfcpp::DT_PLTREL,
3945                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3946     }
3947
3948   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3949     {
3950       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3951                                 dyn_rel);
3952       if (plt_rel != NULL && dynrel_includes_plt)
3953         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3954                                dyn_rel, plt_rel);
3955       else
3956         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3957                                dyn_rel);
3958       const int size = parameters->target().get_size();
3959       elfcpp::DT rel_tag;
3960       int rel_size;
3961       if (use_rel)
3962         {
3963           rel_tag = elfcpp::DT_RELENT;
3964           if (size == 32)
3965             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3966           else if (size == 64)
3967             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3968           else
3969             gold_unreachable();
3970         }
3971       else
3972         {
3973           rel_tag = elfcpp::DT_RELAENT;
3974           if (size == 32)
3975             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3976           else if (size == 64)
3977             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3978           else
3979             gold_unreachable();
3980         }
3981       odyn->add_constant(rel_tag, rel_size);
3982
3983       if (parameters->options().combreloc())
3984         {
3985           size_t c = dyn_rel->relative_reloc_count();
3986           if (c > 0)
3987             odyn->add_constant((use_rel
3988                                 ? elfcpp::DT_RELCOUNT
3989                                 : elfcpp::DT_RELACOUNT),
3990                                c);
3991         }
3992     }
3993
3994   if (add_debug && !parameters->options().shared())
3995     {
3996       // The value of the DT_DEBUG tag is filled in by the dynamic
3997       // linker at run time, and used by the debugger.
3998       odyn->add_constant(elfcpp::DT_DEBUG, 0);
3999     }
4000 }
4001
4002 // Finish the .dynamic section and PT_DYNAMIC segment.
4003
4004 void
4005 Layout::finish_dynamic_section(const Input_objects* input_objects,
4006                                const Symbol_table* symtab)
4007 {
4008   if (!this->script_options_->saw_phdrs_clause())
4009     {
4010       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4011                                                        (elfcpp::PF_R
4012                                                         | elfcpp::PF_W));
4013       oseg->add_output_section_to_nonload(this->dynamic_section_,
4014                                           elfcpp::PF_R | elfcpp::PF_W);
4015     }
4016
4017   Output_data_dynamic* const odyn = this->dynamic_data_;
4018
4019   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4020        p != input_objects->dynobj_end();
4021        ++p)
4022     {
4023       if (!(*p)->is_needed() && (*p)->as_needed())
4024         {
4025           // This dynamic object was linked with --as-needed, but it
4026           // is not needed.
4027           continue;
4028         }
4029
4030       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4031     }
4032
4033   if (parameters->options().shared())
4034     {
4035       const char* soname = parameters->options().soname();
4036       if (soname != NULL)
4037         odyn->add_string(elfcpp::DT_SONAME, soname);
4038     }
4039
4040   Symbol* sym = symtab->lookup(parameters->options().init());
4041   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4042     odyn->add_symbol(elfcpp::DT_INIT, sym);
4043
4044   sym = symtab->lookup(parameters->options().fini());
4045   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4046     odyn->add_symbol(elfcpp::DT_FINI, sym);
4047
4048   // Look for .init_array, .preinit_array and .fini_array by checking
4049   // section types.
4050   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4051       p != this->section_list_.end();
4052       ++p)
4053     switch((*p)->type())
4054       {
4055       case elfcpp::SHT_FINI_ARRAY:
4056         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4057         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4058         break;
4059       case elfcpp::SHT_INIT_ARRAY:
4060         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4061         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4062         break;
4063       case elfcpp::SHT_PREINIT_ARRAY:
4064         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4065         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4066         break;
4067       default:
4068         break;
4069       }
4070   
4071   // Add a DT_RPATH entry if needed.
4072   const General_options::Dir_list& rpath(parameters->options().rpath());
4073   if (!rpath.empty())
4074     {
4075       std::string rpath_val;
4076       for (General_options::Dir_list::const_iterator p = rpath.begin();
4077            p != rpath.end();
4078            ++p)
4079         {
4080           if (rpath_val.empty())
4081             rpath_val = p->name();
4082           else
4083             {
4084               // Eliminate duplicates.
4085               General_options::Dir_list::const_iterator q;
4086               for (q = rpath.begin(); q != p; ++q)
4087                 if (q->name() == p->name())
4088                   break;
4089               if (q == p)
4090                 {
4091                   rpath_val += ':';
4092                   rpath_val += p->name();
4093                 }
4094             }
4095         }
4096
4097       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4098       if (parameters->options().enable_new_dtags())
4099         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4100     }
4101
4102   // Look for text segments that have dynamic relocations.
4103   bool have_textrel = false;
4104   if (!this->script_options_->saw_sections_clause())
4105     {
4106       for (Segment_list::const_iterator p = this->segment_list_.begin();
4107            p != this->segment_list_.end();
4108            ++p)
4109         {
4110           if (((*p)->flags() & elfcpp::PF_W) == 0
4111               && (*p)->has_dynamic_reloc())
4112             {
4113               have_textrel = true;
4114               break;
4115             }
4116         }
4117     }
4118   else
4119     {
4120       // We don't know the section -> segment mapping, so we are
4121       // conservative and just look for readonly sections with
4122       // relocations.  If those sections wind up in writable segments,
4123       // then we have created an unnecessary DT_TEXTREL entry.
4124       for (Section_list::const_iterator p = this->section_list_.begin();
4125            p != this->section_list_.end();
4126            ++p)
4127         {
4128           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4129               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4130               && ((*p)->has_dynamic_reloc()))
4131             {
4132               have_textrel = true;
4133               break;
4134             }
4135         }
4136     }
4137
4138   // Add a DT_FLAGS entry. We add it even if no flags are set so that
4139   // post-link tools can easily modify these flags if desired.
4140   unsigned int flags = 0;
4141   if (have_textrel)
4142     {
4143       // Add a DT_TEXTREL for compatibility with older loaders.
4144       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4145       flags |= elfcpp::DF_TEXTREL;
4146
4147       if (parameters->options().text())
4148         gold_error(_("read-only segment has dynamic relocations"));
4149       else if (parameters->options().warn_shared_textrel()
4150                && parameters->options().shared())
4151         gold_warning(_("shared library text segment is not shareable"));
4152     }
4153   if (parameters->options().shared() && this->has_static_tls())
4154     flags |= elfcpp::DF_STATIC_TLS;
4155   if (parameters->options().origin())
4156     flags |= elfcpp::DF_ORIGIN;
4157   if (parameters->options().Bsymbolic())
4158     {
4159       flags |= elfcpp::DF_SYMBOLIC;
4160       // Add DT_SYMBOLIC for compatibility with older loaders.
4161       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4162     }
4163   if (parameters->options().now())
4164     flags |= elfcpp::DF_BIND_NOW;
4165   odyn->add_constant(elfcpp::DT_FLAGS, flags);
4166
4167   flags = 0;
4168   if (parameters->options().initfirst())
4169     flags |= elfcpp::DF_1_INITFIRST;
4170   if (parameters->options().interpose())
4171     flags |= elfcpp::DF_1_INTERPOSE;
4172   if (parameters->options().loadfltr())
4173     flags |= elfcpp::DF_1_LOADFLTR;
4174   if (parameters->options().nodefaultlib())
4175     flags |= elfcpp::DF_1_NODEFLIB;
4176   if (parameters->options().nodelete())
4177     flags |= elfcpp::DF_1_NODELETE;
4178   if (parameters->options().nodlopen())
4179     flags |= elfcpp::DF_1_NOOPEN;
4180   if (parameters->options().nodump())
4181     flags |= elfcpp::DF_1_NODUMP;
4182   if (!parameters->options().shared())
4183     flags &= ~(elfcpp::DF_1_INITFIRST
4184                | elfcpp::DF_1_NODELETE
4185                | elfcpp::DF_1_NOOPEN);
4186   if (parameters->options().origin())
4187     flags |= elfcpp::DF_1_ORIGIN;
4188   if (parameters->options().now())
4189     flags |= elfcpp::DF_1_NOW;
4190   if (flags)
4191     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4192 }
4193
4194 // Set the size of the _DYNAMIC symbol table to be the size of the
4195 // dynamic data.
4196
4197 void
4198 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4199 {
4200   Output_data_dynamic* const odyn = this->dynamic_data_;
4201   odyn->finalize_data_size();
4202   off_t data_size = odyn->data_size();
4203   const int size = parameters->target().get_size();
4204   if (size == 32)
4205     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4206   else if (size == 64)
4207     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4208   else
4209     gold_unreachable();
4210 }
4211
4212 // The mapping of input section name prefixes to output section names.
4213 // In some cases one prefix is itself a prefix of another prefix; in
4214 // such a case the longer prefix must come first.  These prefixes are
4215 // based on the GNU linker default ELF linker script.
4216
4217 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4218 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4219 {
4220   MAPPING_INIT(".text.", ".text"),
4221   MAPPING_INIT(".ctors.", ".ctors"),
4222   MAPPING_INIT(".dtors.", ".dtors"),
4223   MAPPING_INIT(".rodata.", ".rodata"),
4224   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4225   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4226   MAPPING_INIT(".data.", ".data"),
4227   MAPPING_INIT(".bss.", ".bss"),
4228   MAPPING_INIT(".tdata.", ".tdata"),
4229   MAPPING_INIT(".tbss.", ".tbss"),
4230   MAPPING_INIT(".init_array.", ".init_array"),
4231   MAPPING_INIT(".fini_array.", ".fini_array"),
4232   MAPPING_INIT(".sdata.", ".sdata"),
4233   MAPPING_INIT(".sbss.", ".sbss"),
4234   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4235   // differently depending on whether it is creating a shared library.
4236   MAPPING_INIT(".sdata2.", ".sdata"),
4237   MAPPING_INIT(".sbss2.", ".sbss"),
4238   MAPPING_INIT(".lrodata.", ".lrodata"),
4239   MAPPING_INIT(".ldata.", ".ldata"),
4240   MAPPING_INIT(".lbss.", ".lbss"),
4241   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4242   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4243   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4244   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4245   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4246   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4247   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4248   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4249   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4250   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4251   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4252   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4253   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4254   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4255   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4256   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4257   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4258   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4259   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4260   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4261   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4262 };
4263 #undef MAPPING_INIT
4264
4265 const int Layout::section_name_mapping_count =
4266   (sizeof(Layout::section_name_mapping)
4267    / sizeof(Layout::section_name_mapping[0]));
4268
4269 // Choose the output section name to use given an input section name.
4270 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4271 // length of NAME.
4272
4273 const char*
4274 Layout::output_section_name(const char* name, size_t* plen)
4275 {
4276   // gcc 4.3 generates the following sorts of section names when it
4277   // needs a section name specific to a function:
4278   //   .text.FN
4279   //   .rodata.FN
4280   //   .sdata2.FN
4281   //   .data.FN
4282   //   .data.rel.FN
4283   //   .data.rel.local.FN
4284   //   .data.rel.ro.FN
4285   //   .data.rel.ro.local.FN
4286   //   .sdata.FN
4287   //   .bss.FN
4288   //   .sbss.FN
4289   //   .tdata.FN
4290   //   .tbss.FN
4291
4292   // The GNU linker maps all of those to the part before the .FN,
4293   // except that .data.rel.local.FN is mapped to .data, and
4294   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4295   // beginning with .data.rel.ro.local are grouped together.
4296
4297   // For an anonymous namespace, the string FN can contain a '.'.
4298
4299   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4300   // GNU linker maps to .rodata.
4301
4302   // The .data.rel.ro sections are used with -z relro.  The sections
4303   // are recognized by name.  We use the same names that the GNU
4304   // linker does for these sections.
4305
4306   // It is hard to handle this in a principled way, so we don't even
4307   // try.  We use a table of mappings.  If the input section name is
4308   // not found in the table, we simply use it as the output section
4309   // name.
4310
4311   const Section_name_mapping* psnm = section_name_mapping;
4312   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4313     {
4314       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4315         {
4316           *plen = psnm->tolen;
4317           return psnm->to;
4318         }
4319     }
4320
4321   return name;
4322 }
4323
4324 // Check if a comdat group or .gnu.linkonce section with the given
4325 // NAME is selected for the link.  If there is already a section,
4326 // *KEPT_SECTION is set to point to the existing section and the
4327 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4328 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4329 // *KEPT_SECTION is set to the internal copy and the function returns
4330 // true.
4331
4332 bool
4333 Layout::find_or_add_kept_section(const std::string& name,
4334                                  Relobj* object,
4335                                  unsigned int shndx,
4336                                  bool is_comdat,
4337                                  bool is_group_name,
4338                                  Kept_section** kept_section)
4339 {
4340   // It's normal to see a couple of entries here, for the x86 thunk
4341   // sections.  If we see more than a few, we're linking a C++
4342   // program, and we resize to get more space to minimize rehashing.
4343   if (this->signatures_.size() > 4
4344       && !this->resized_signatures_)
4345     {
4346       reserve_unordered_map(&this->signatures_,
4347                             this->number_of_input_files_ * 64);
4348       this->resized_signatures_ = true;
4349     }
4350
4351   Kept_section candidate;
4352   std::pair<Signatures::iterator, bool> ins =
4353     this->signatures_.insert(std::make_pair(name, candidate));
4354
4355   if (kept_section != NULL)
4356     *kept_section = &ins.first->second;
4357   if (ins.second)
4358     {
4359       // This is the first time we've seen this signature.
4360       ins.first->second.set_object(object);
4361       ins.first->second.set_shndx(shndx);
4362       if (is_comdat)
4363         ins.first->second.set_is_comdat();
4364       if (is_group_name)
4365         ins.first->second.set_is_group_name();
4366       return true;
4367     }
4368
4369   // We have already seen this signature.
4370
4371   if (ins.first->second.is_group_name())
4372     {
4373       // We've already seen a real section group with this signature.
4374       // If the kept group is from a plugin object, and we're in the
4375       // replacement phase, accept the new one as a replacement.
4376       if (ins.first->second.object() == NULL
4377           && parameters->options().plugins()->in_replacement_phase())
4378         {
4379           ins.first->second.set_object(object);
4380           ins.first->second.set_shndx(shndx);
4381           return true;
4382         }
4383       return false;
4384     }
4385   else if (is_group_name)
4386     {
4387       // This is a real section group, and we've already seen a
4388       // linkonce section with this signature.  Record that we've seen
4389       // a section group, and don't include this section group.
4390       ins.first->second.set_is_group_name();
4391       return false;
4392     }
4393   else
4394     {
4395       // We've already seen a linkonce section and this is a linkonce
4396       // section.  These don't block each other--this may be the same
4397       // symbol name with different section types.
4398       return true;
4399     }
4400 }
4401
4402 // Store the allocated sections into the section list.
4403
4404 void
4405 Layout::get_allocated_sections(Section_list* section_list) const
4406 {
4407   for (Section_list::const_iterator p = this->section_list_.begin();
4408        p != this->section_list_.end();
4409        ++p)
4410     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4411       section_list->push_back(*p);
4412 }
4413
4414 // Create an output segment.
4415
4416 Output_segment*
4417 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4418 {
4419   gold_assert(!parameters->options().relocatable());
4420   Output_segment* oseg = new Output_segment(type, flags);
4421   this->segment_list_.push_back(oseg);
4422
4423   if (type == elfcpp::PT_TLS)
4424     this->tls_segment_ = oseg;
4425   else if (type == elfcpp::PT_GNU_RELRO)
4426     this->relro_segment_ = oseg;
4427   else if (type == elfcpp::PT_INTERP)
4428     this->interp_segment_ = oseg;
4429
4430   return oseg;
4431 }
4432
4433 // Return the file offset of the normal symbol table.
4434
4435 off_t
4436 Layout::symtab_section_offset() const
4437 {
4438   if (this->symtab_section_ != NULL)
4439     return this->symtab_section_->offset();
4440   return 0;
4441 }
4442
4443 // Write out the Output_sections.  Most won't have anything to write,
4444 // since most of the data will come from input sections which are
4445 // handled elsewhere.  But some Output_sections do have Output_data.
4446
4447 void
4448 Layout::write_output_sections(Output_file* of) const
4449 {
4450   for (Section_list::const_iterator p = this->section_list_.begin();
4451        p != this->section_list_.end();
4452        ++p)
4453     {
4454       if (!(*p)->after_input_sections())
4455         (*p)->write(of);
4456     }
4457 }
4458
4459 // Write out data not associated with a section or the symbol table.
4460
4461 void
4462 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4463 {
4464   if (!parameters->options().strip_all())
4465     {
4466       const Output_section* symtab_section = this->symtab_section_;
4467       for (Section_list::const_iterator p = this->section_list_.begin();
4468            p != this->section_list_.end();
4469            ++p)
4470         {
4471           if ((*p)->needs_symtab_index())
4472             {
4473               gold_assert(symtab_section != NULL);
4474               unsigned int index = (*p)->symtab_index();
4475               gold_assert(index > 0 && index != -1U);
4476               off_t off = (symtab_section->offset()
4477                            + index * symtab_section->entsize());
4478               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4479             }
4480         }
4481     }
4482
4483   const Output_section* dynsym_section = this->dynsym_section_;
4484   for (Section_list::const_iterator p = this->section_list_.begin();
4485        p != this->section_list_.end();
4486        ++p)
4487     {
4488       if ((*p)->needs_dynsym_index())
4489         {
4490           gold_assert(dynsym_section != NULL);
4491           unsigned int index = (*p)->dynsym_index();
4492           gold_assert(index > 0 && index != -1U);
4493           off_t off = (dynsym_section->offset()
4494                        + index * dynsym_section->entsize());
4495           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4496         }
4497     }
4498
4499   // Write out the Output_data which are not in an Output_section.
4500   for (Data_list::const_iterator p = this->special_output_list_.begin();
4501        p != this->special_output_list_.end();
4502        ++p)
4503     (*p)->write(of);
4504 }
4505
4506 // Write out the Output_sections which can only be written after the
4507 // input sections are complete.
4508
4509 void
4510 Layout::write_sections_after_input_sections(Output_file* of)
4511 {
4512   // Determine the final section offsets, and thus the final output
4513   // file size.  Note we finalize the .shstrab last, to allow the
4514   // after_input_section sections to modify their section-names before
4515   // writing.
4516   if (this->any_postprocessing_sections_)
4517     {
4518       off_t off = this->output_file_size_;
4519       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4520
4521       // Now that we've finalized the names, we can finalize the shstrab.
4522       off =
4523         this->set_section_offsets(off,
4524                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4525
4526       if (off > this->output_file_size_)
4527         {
4528           of->resize(off);
4529           this->output_file_size_ = off;
4530         }
4531     }
4532
4533   for (Section_list::const_iterator p = this->section_list_.begin();
4534        p != this->section_list_.end();
4535        ++p)
4536     {
4537       if ((*p)->after_input_sections())
4538         (*p)->write(of);
4539     }
4540
4541   this->section_headers_->write(of);
4542 }
4543
4544 // If the build ID requires computing a checksum, do so here, and
4545 // write it out.  We compute a checksum over the entire file because
4546 // that is simplest.
4547
4548 void
4549 Layout::write_build_id(Output_file* of) const
4550 {
4551   if (this->build_id_note_ == NULL)
4552     return;
4553
4554   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4555
4556   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4557                                           this->build_id_note_->data_size());
4558
4559   const char* style = parameters->options().build_id();
4560   if (strcmp(style, "sha1") == 0)
4561     {
4562       sha1_ctx ctx;
4563       sha1_init_ctx(&ctx);
4564       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4565       sha1_finish_ctx(&ctx, ov);
4566     }
4567   else if (strcmp(style, "md5") == 0)
4568     {
4569       md5_ctx ctx;
4570       md5_init_ctx(&ctx);
4571       md5_process_bytes(iv, this->output_file_size_, &ctx);
4572       md5_finish_ctx(&ctx, ov);
4573     }
4574   else
4575     gold_unreachable();
4576
4577   of->write_output_view(this->build_id_note_->offset(),
4578                         this->build_id_note_->data_size(),
4579                         ov);
4580
4581   of->free_input_view(0, this->output_file_size_, iv);
4582 }
4583
4584 // Write out a binary file.  This is called after the link is
4585 // complete.  IN is the temporary output file we used to generate the
4586 // ELF code.  We simply walk through the segments, read them from
4587 // their file offset in IN, and write them to their load address in
4588 // the output file.  FIXME: with a bit more work, we could support
4589 // S-records and/or Intel hex format here.
4590
4591 void
4592 Layout::write_binary(Output_file* in) const
4593 {
4594   gold_assert(parameters->options().oformat_enum()
4595               == General_options::OBJECT_FORMAT_BINARY);
4596
4597   // Get the size of the binary file.
4598   uint64_t max_load_address = 0;
4599   for (Segment_list::const_iterator p = this->segment_list_.begin();
4600        p != this->segment_list_.end();
4601        ++p)
4602     {
4603       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4604         {
4605           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4606           if (max_paddr > max_load_address)
4607             max_load_address = max_paddr;
4608         }
4609     }
4610
4611   Output_file out(parameters->options().output_file_name());
4612   out.open(max_load_address);
4613
4614   for (Segment_list::const_iterator p = this->segment_list_.begin();
4615        p != this->segment_list_.end();
4616        ++p)
4617     {
4618       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4619         {
4620           const unsigned char* vin = in->get_input_view((*p)->offset(),
4621                                                         (*p)->filesz());
4622           unsigned char* vout = out.get_output_view((*p)->paddr(),
4623                                                     (*p)->filesz());
4624           memcpy(vout, vin, (*p)->filesz());
4625           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4626           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4627         }
4628     }
4629
4630   out.close();
4631 }
4632
4633 // Print the output sections to the map file.
4634
4635 void
4636 Layout::print_to_mapfile(Mapfile* mapfile) const
4637 {
4638   for (Segment_list::const_iterator p = this->segment_list_.begin();
4639        p != this->segment_list_.end();
4640        ++p)
4641     (*p)->print_sections_to_mapfile(mapfile);
4642 }
4643
4644 // Print statistical information to stderr.  This is used for --stats.
4645
4646 void
4647 Layout::print_stats() const
4648 {
4649   this->namepool_.print_stats("section name pool");
4650   this->sympool_.print_stats("output symbol name pool");
4651   this->dynpool_.print_stats("dynamic name pool");
4652
4653   for (Section_list::const_iterator p = this->section_list_.begin();
4654        p != this->section_list_.end();
4655        ++p)
4656     (*p)->print_merge_stats();
4657 }
4658
4659 // Write_sections_task methods.
4660
4661 // We can always run this task.
4662
4663 Task_token*
4664 Write_sections_task::is_runnable()
4665 {
4666   return NULL;
4667 }
4668
4669 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4670 // when finished.
4671
4672 void
4673 Write_sections_task::locks(Task_locker* tl)
4674 {
4675   tl->add(this, this->output_sections_blocker_);
4676   tl->add(this, this->final_blocker_);
4677 }
4678
4679 // Run the task--write out the data.
4680
4681 void
4682 Write_sections_task::run(Workqueue*)
4683 {
4684   this->layout_->write_output_sections(this->of_);
4685 }
4686
4687 // Write_data_task methods.
4688
4689 // We can always run this task.
4690
4691 Task_token*
4692 Write_data_task::is_runnable()
4693 {
4694   return NULL;
4695 }
4696
4697 // We need to unlock FINAL_BLOCKER when finished.
4698
4699 void
4700 Write_data_task::locks(Task_locker* tl)
4701 {
4702   tl->add(this, this->final_blocker_);
4703 }
4704
4705 // Run the task--write out the data.
4706
4707 void
4708 Write_data_task::run(Workqueue*)
4709 {
4710   this->layout_->write_data(this->symtab_, this->of_);
4711 }
4712
4713 // Write_symbols_task methods.
4714
4715 // We can always run this task.
4716
4717 Task_token*
4718 Write_symbols_task::is_runnable()
4719 {
4720   return NULL;
4721 }
4722
4723 // We need to unlock FINAL_BLOCKER when finished.
4724
4725 void
4726 Write_symbols_task::locks(Task_locker* tl)
4727 {
4728   tl->add(this, this->final_blocker_);
4729 }
4730
4731 // Run the task--write out the symbols.
4732
4733 void
4734 Write_symbols_task::run(Workqueue*)
4735 {
4736   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4737                                this->layout_->symtab_xindex(),
4738                                this->layout_->dynsym_xindex(), this->of_);
4739 }
4740
4741 // Write_after_input_sections_task methods.
4742
4743 // We can only run this task after the input sections have completed.
4744
4745 Task_token*
4746 Write_after_input_sections_task::is_runnable()
4747 {
4748   if (this->input_sections_blocker_->is_blocked())
4749     return this->input_sections_blocker_;
4750   return NULL;
4751 }
4752
4753 // We need to unlock FINAL_BLOCKER when finished.
4754
4755 void
4756 Write_after_input_sections_task::locks(Task_locker* tl)
4757 {
4758   tl->add(this, this->final_blocker_);
4759 }
4760
4761 // Run the task.
4762
4763 void
4764 Write_after_input_sections_task::run(Workqueue*)
4765 {
4766   this->layout_->write_sections_after_input_sections(this->of_);
4767 }
4768
4769 // Close_task_runner methods.
4770
4771 // Run the task--close the file.
4772
4773 void
4774 Close_task_runner::run(Workqueue*, const Task*)
4775 {
4776   // If we need to compute a checksum for the BUILD if, we do so here.
4777   this->layout_->write_build_id(this->of_);
4778
4779   // If we've been asked to create a binary file, we do so here.
4780   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4781     this->layout_->write_binary(this->of_);
4782
4783   this->of_->close();
4784 }
4785
4786 // Instantiate the templates we need.  We could use the configure
4787 // script to restrict this to only the ones for implemented targets.
4788
4789 #ifdef HAVE_TARGET_32_LITTLE
4790 template
4791 Output_section*
4792 Layout::init_fixed_output_section<32, false>(
4793     const char* name,
4794     elfcpp::Shdr<32, false>& shdr);
4795 #endif
4796
4797 #ifdef HAVE_TARGET_32_BIG
4798 template
4799 Output_section*
4800 Layout::init_fixed_output_section<32, true>(
4801     const char* name,
4802     elfcpp::Shdr<32, true>& shdr);
4803 #endif
4804
4805 #ifdef HAVE_TARGET_64_LITTLE
4806 template
4807 Output_section*
4808 Layout::init_fixed_output_section<64, false>(
4809     const char* name,
4810     elfcpp::Shdr<64, false>& shdr);
4811 #endif
4812
4813 #ifdef HAVE_TARGET_64_BIG
4814 template
4815 Output_section*
4816 Layout::init_fixed_output_section<64, true>(
4817     const char* name,
4818     elfcpp::Shdr<64, true>& shdr);
4819 #endif
4820
4821 #ifdef HAVE_TARGET_32_LITTLE
4822 template
4823 Output_section*
4824 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4825                           unsigned int shndx,
4826                           const char* name,
4827                           const elfcpp::Shdr<32, false>& shdr,
4828                           unsigned int, unsigned int, off_t*);
4829 #endif
4830
4831 #ifdef HAVE_TARGET_32_BIG
4832 template
4833 Output_section*
4834 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4835                          unsigned int shndx,
4836                          const char* name,
4837                          const elfcpp::Shdr<32, true>& shdr,
4838                          unsigned int, unsigned int, off_t*);
4839 #endif
4840
4841 #ifdef HAVE_TARGET_64_LITTLE
4842 template
4843 Output_section*
4844 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4845                           unsigned int shndx,
4846                           const char* name,
4847                           const elfcpp::Shdr<64, false>& shdr,
4848                           unsigned int, unsigned int, off_t*);
4849 #endif
4850
4851 #ifdef HAVE_TARGET_64_BIG
4852 template
4853 Output_section*
4854 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
4855                          unsigned int shndx,
4856                          const char* name,
4857                          const elfcpp::Shdr<64, true>& shdr,
4858                          unsigned int, unsigned int, off_t*);
4859 #endif
4860
4861 #ifdef HAVE_TARGET_32_LITTLE
4862 template
4863 Output_section*
4864 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
4865                                 unsigned int reloc_shndx,
4866                                 const elfcpp::Shdr<32, false>& shdr,
4867                                 Output_section* data_section,
4868                                 Relocatable_relocs* rr);
4869 #endif
4870
4871 #ifdef HAVE_TARGET_32_BIG
4872 template
4873 Output_section*
4874 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
4875                                unsigned int reloc_shndx,
4876                                const elfcpp::Shdr<32, true>& shdr,
4877                                Output_section* data_section,
4878                                Relocatable_relocs* rr);
4879 #endif
4880
4881 #ifdef HAVE_TARGET_64_LITTLE
4882 template
4883 Output_section*
4884 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
4885                                 unsigned int reloc_shndx,
4886                                 const elfcpp::Shdr<64, false>& shdr,
4887                                 Output_section* data_section,
4888                                 Relocatable_relocs* rr);
4889 #endif
4890
4891 #ifdef HAVE_TARGET_64_BIG
4892 template
4893 Output_section*
4894 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
4895                                unsigned int reloc_shndx,
4896                                const elfcpp::Shdr<64, true>& shdr,
4897                                Output_section* data_section,
4898                                Relocatable_relocs* rr);
4899 #endif
4900
4901 #ifdef HAVE_TARGET_32_LITTLE
4902 template
4903 void
4904 Layout::layout_group<32, false>(Symbol_table* symtab,
4905                                 Sized_relobj_file<32, false>* object,
4906                                 unsigned int,
4907                                 const char* group_section_name,
4908                                 const char* signature,
4909                                 const elfcpp::Shdr<32, false>& shdr,
4910                                 elfcpp::Elf_Word flags,
4911                                 std::vector<unsigned int>* shndxes);
4912 #endif
4913
4914 #ifdef HAVE_TARGET_32_BIG
4915 template
4916 void
4917 Layout::layout_group<32, true>(Symbol_table* symtab,
4918                                Sized_relobj_file<32, true>* object,
4919                                unsigned int,
4920                                const char* group_section_name,
4921                                const char* signature,
4922                                const elfcpp::Shdr<32, true>& shdr,
4923                                elfcpp::Elf_Word flags,
4924                                std::vector<unsigned int>* shndxes);
4925 #endif
4926
4927 #ifdef HAVE_TARGET_64_LITTLE
4928 template
4929 void
4930 Layout::layout_group<64, false>(Symbol_table* symtab,
4931                                 Sized_relobj_file<64, false>* object,
4932                                 unsigned int,
4933                                 const char* group_section_name,
4934                                 const char* signature,
4935                                 const elfcpp::Shdr<64, false>& shdr,
4936                                 elfcpp::Elf_Word flags,
4937                                 std::vector<unsigned int>* shndxes);
4938 #endif
4939
4940 #ifdef HAVE_TARGET_64_BIG
4941 template
4942 void
4943 Layout::layout_group<64, true>(Symbol_table* symtab,
4944                                Sized_relobj_file<64, true>* object,
4945                                unsigned int,
4946                                const char* group_section_name,
4947                                const char* signature,
4948                                const elfcpp::Shdr<64, true>& shdr,
4949                                elfcpp::Elf_Word flags,
4950                                std::vector<unsigned int>* shndxes);
4951 #endif
4952
4953 #ifdef HAVE_TARGET_32_LITTLE
4954 template
4955 Output_section*
4956 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
4957                                    const unsigned char* symbols,
4958                                    off_t symbols_size,
4959                                    const unsigned char* symbol_names,
4960                                    off_t symbol_names_size,
4961                                    unsigned int shndx,
4962                                    const elfcpp::Shdr<32, false>& shdr,
4963                                    unsigned int reloc_shndx,
4964                                    unsigned int reloc_type,
4965                                    off_t* off);
4966 #endif
4967
4968 #ifdef HAVE_TARGET_32_BIG
4969 template
4970 Output_section*
4971 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
4972                                   const unsigned char* symbols,
4973                                   off_t symbols_size,
4974                                   const unsigned char* symbol_names,
4975                                   off_t symbol_names_size,
4976                                   unsigned int shndx,
4977                                   const elfcpp::Shdr<32, true>& shdr,
4978                                   unsigned int reloc_shndx,
4979                                   unsigned int reloc_type,
4980                                   off_t* off);
4981 #endif
4982
4983 #ifdef HAVE_TARGET_64_LITTLE
4984 template
4985 Output_section*
4986 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
4987                                    const unsigned char* symbols,
4988                                    off_t symbols_size,
4989                                    const unsigned char* symbol_names,
4990                                    off_t symbol_names_size,
4991                                    unsigned int shndx,
4992                                    const elfcpp::Shdr<64, false>& shdr,
4993                                    unsigned int reloc_shndx,
4994                                    unsigned int reloc_type,
4995                                    off_t* off);
4996 #endif
4997
4998 #ifdef HAVE_TARGET_64_BIG
4999 template
5000 Output_section*
5001 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5002                                   const unsigned char* symbols,
5003                                   off_t symbols_size,
5004                                   const unsigned char* symbol_names,
5005                                   off_t symbol_names_size,
5006                                   unsigned int shndx,
5007                                   const elfcpp::Shdr<64, true>& shdr,
5008                                   unsigned int reloc_shndx,
5009                                   unsigned int reloc_type,
5010                                   off_t* off);
5011 #endif
5012
5013 } // End namespace gold.