1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
50 #include "descriptors.h"
52 #include "incremental.h"
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
73 // Initialize the free list. Creates a single free list node that
74 // describes the entire region of length LEN. If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
79 Free_list::init(off_t len, bool extend)
81 this->list_.push_front(Free_list_node(0, len));
82 this->last_remove_ = this->list_.begin();
83 this->extend_ = extend;
85 ++Free_list::num_lists;
86 ++Free_list::num_nodes;
89 // Remove a chunk from the free list. Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node. We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
99 Free_list::remove(off_t start, off_t end)
103 gold_assert(start < end);
105 ++Free_list::num_removes;
107 Iterator p = this->last_remove_;
108 if (p->start_ > start)
109 p = this->list_.begin();
111 for (; p != this->list_.end(); ++p)
113 ++Free_list::num_remove_visits;
114 // Find a node that wholly contains the indicated region.
115 if (p->start_ <= start && p->end_ >= end)
117 // Case 1: the indicated region spans the whole node.
118 // Add some fuzz to avoid creating tiny free chunks.
119 if (p->start_ + 3 >= start && p->end_ <= end + 3)
120 p = this->list_.erase(p);
121 // Case 2: remove a chunk from the start of the node.
122 else if (p->start_ + 3 >= start)
124 // Case 3: remove a chunk from the end of the node.
125 else if (p->end_ <= end + 3)
127 // Case 4: remove a chunk from the middle, and split
128 // the node into two.
131 Free_list_node newnode(p->start_, start);
133 this->list_.insert(p, newnode);
134 ++Free_list::num_nodes;
136 this->last_remove_ = p;
141 // Did not find a node containing the given chunk. This could happen
142 // because a small chunk was already removed due to the fuzz.
143 gold_debug(DEBUG_INCREMENTAL,
144 "Free_list::remove(%d,%d) not found",
145 static_cast<int>(start), static_cast<int>(end));
148 // Allocate a chunk of size LEN from the free list. Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 gold_debug(DEBUG_INCREMENTAL,
156 "Free_list::allocate(%08lx, %d, %08lx)",
157 static_cast<long>(len), static_cast<int>(align),
158 static_cast<long>(minoff));
160 return align_address(minoff, align);
162 ++Free_list::num_allocates;
164 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166 ++Free_list::num_allocate_visits;
167 off_t start = p->start_ > minoff ? p->start_ : minoff;
168 start = align_address(start, align);
169 off_t end = start + len;
172 if (p->start_ + 3 >= start && p->end_ <= end + 3)
173 this->list_.erase(p);
174 else if (p->start_ + 3 >= start)
176 else if (p->end_ <= end + 3)
180 Free_list_node newnode(p->start_, start);
182 this->list_.insert(p, newnode);
183 ++Free_list::num_nodes;
191 // Dump the free list (for debugging).
195 gold_info("Free list:\n start end length\n");
196 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
198 static_cast<long>(p->end_),
199 static_cast<long>(p->end_ - p->start_));
202 // Print the statistics for the free lists.
204 Free_list::print_stats()
206 fprintf(stderr, _("%s: total free lists: %u\n"),
207 program_name, Free_list::num_lists);
208 fprintf(stderr, _("%s: total free list nodes: %u\n"),
209 program_name, Free_list::num_nodes);
210 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211 program_name, Free_list::num_removes);
212 fprintf(stderr, _("%s: nodes visited: %u\n"),
213 program_name, Free_list::num_remove_visits);
214 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215 program_name, Free_list::num_allocates);
216 fprintf(stderr, _("%s: nodes visited: %u\n"),
217 program_name, Free_list::num_allocate_visits);
220 // Layout::Relaxation_debug_check methods.
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228 const Layout::Section_list& sections,
229 const Layout::Data_list& special_outputs)
231 for(Layout::Section_list::const_iterator p = sections.begin();
234 gold_assert((*p)->address_and_file_offset_have_reset_values());
236 for(Layout::Data_list::const_iterator p = special_outputs.begin();
237 p != special_outputs.end();
239 gold_assert((*p)->address_and_file_offset_have_reset_values());
242 // Save information of SECTIONS for checking later.
245 Layout::Relaxation_debug_check::read_sections(
246 const Layout::Section_list& sections)
248 for(Layout::Section_list::const_iterator p = sections.begin();
252 Output_section* os = *p;
254 info.output_section = os;
255 info.address = os->is_address_valid() ? os->address() : 0;
256 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257 info.offset = os->is_offset_valid()? os->offset() : -1 ;
258 this->section_infos_.push_back(info);
262 // Verify SECTIONS using previously recorded information.
265 Layout::Relaxation_debug_check::verify_sections(
266 const Layout::Section_list& sections)
269 for(Layout::Section_list::const_iterator p = sections.begin();
273 Output_section* os = *p;
274 uint64_t address = os->is_address_valid() ? os->address() : 0;
275 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
278 if (i >= this->section_infos_.size())
280 gold_fatal("Section_info of %s missing.\n", os->name());
282 const Section_info& info = this->section_infos_[i];
283 if (os != info.output_section)
284 gold_fatal("Section order changed. Expecting %s but see %s\n",
285 info.output_section->name(), os->name());
286 if (address != info.address
287 || data_size != info.data_size
288 || offset != info.offset)
289 gold_fatal("Section %s changed.\n", os->name());
293 // Layout_task_runner methods.
295 // Lay out the sections. This is called after all the input objects
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
301 Layout* layout = this->layout_;
302 off_t file_size = layout->finalize(this->input_objects_,
307 // Now we know the final size of the output file and we know where
308 // each piece of information goes.
310 if (this->mapfile_ != NULL)
312 this->mapfile_->print_discarded_sections(this->input_objects_);
313 layout->print_to_mapfile(this->mapfile_);
317 if (layout->incremental_base() == NULL)
319 of = new Output_file(parameters->options().output_file_name());
320 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
321 of->set_is_temporary();
326 of = layout->incremental_base()->output_file();
328 // Apply the incremental relocations for symbols whose values
329 // have changed. We do this before we resize the file and start
330 // writing anything else to it, so that we can read the old
331 // incremental information from the file before (possibly)
333 if (parameters->incremental_update())
334 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
338 of->resize(file_size);
341 // Queue up the final set of tasks.
342 gold::queue_final_tasks(this->options_, this->input_objects_,
343 this->symtab_, layout, workqueue, of);
348 Layout::Layout(int number_of_input_files, Script_options* script_options)
349 : number_of_input_files_(number_of_input_files),
350 script_options_(script_options),
358 unattached_section_list_(),
359 special_output_list_(),
360 section_headers_(NULL),
362 relro_segment_(NULL),
363 interp_segment_(NULL),
365 symtab_section_(NULL),
366 symtab_xindex_(NULL),
367 dynsym_section_(NULL),
368 dynsym_xindex_(NULL),
369 dynamic_section_(NULL),
370 dynamic_symbol_(NULL),
372 eh_frame_section_(NULL),
373 eh_frame_data_(NULL),
374 added_eh_frame_data_(false),
375 eh_frame_hdr_section_(NULL),
376 build_id_note_(NULL),
380 output_file_size_(-1),
381 have_added_input_section_(false),
382 sections_are_attached_(false),
383 input_requires_executable_stack_(false),
384 input_with_gnu_stack_note_(false),
385 input_without_gnu_stack_note_(false),
386 has_static_tls_(false),
387 any_postprocessing_sections_(false),
388 resized_signatures_(false),
389 have_stabstr_section_(false),
390 incremental_inputs_(NULL),
391 record_output_section_data_from_script_(false),
392 script_output_section_data_list_(),
393 segment_states_(NULL),
394 relaxation_debug_check_(NULL),
395 incremental_base_(NULL),
398 // Make space for more than enough segments for a typical file.
399 // This is just for efficiency--it's OK if we wind up needing more.
400 this->segment_list_.reserve(12);
402 // We expect two unattached Output_data objects: the file header and
403 // the segment headers.
404 this->special_output_list_.reserve(2);
406 // Initialize structure needed for an incremental build.
407 if (parameters->incremental())
408 this->incremental_inputs_ = new Incremental_inputs;
410 // The section name pool is worth optimizing in all cases, because
411 // it is small, but there are often overlaps due to .rel sections.
412 this->namepool_.set_optimize();
415 // For incremental links, record the base file to be modified.
418 Layout::set_incremental_base(Incremental_binary* base)
420 this->incremental_base_ = base;
421 this->free_list_.init(base->output_file()->filesize(), true);
424 // Hash a key we use to look up an output section mapping.
427 Layout::Hash_key::operator()(const Layout::Key& k) const
429 return k.first + k.second.first + k.second.second;
432 // Returns whether the given section is in the list of
433 // debug-sections-used-by-some-version-of-gdb. Currently,
434 // we've checked versions of gdb up to and including 6.7.1.
436 static const char* gdb_sections[] =
438 // ".debug_aranges", // not used by gdb as of 6.7.1
445 // ".debug_pubnames", // not used by gdb as of 6.7.1
450 static const char* lines_only_debug_sections[] =
452 // ".debug_aranges", // not used by gdb as of 6.7.1
459 // ".debug_pubnames", // not used by gdb as of 6.7.1
465 is_gdb_debug_section(const char* str)
467 // We can do this faster: binary search or a hashtable. But why bother?
468 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
469 if (strcmp(str, gdb_sections[i]) == 0)
475 is_lines_only_debug_section(const char* str)
477 // We can do this faster: binary search or a hashtable. But why bother?
479 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
481 if (strcmp(str, lines_only_debug_sections[i]) == 0)
486 // Sometimes we compress sections. This is typically done for
487 // sections that are not part of normal program execution (such as
488 // .debug_* sections), and where the readers of these sections know
489 // how to deal with compressed sections. This routine doesn't say for
490 // certain whether we'll compress -- it depends on commandline options
491 // as well -- just whether this section is a candidate for compression.
492 // (The Output_compressed_section class decides whether to compress
493 // a given section, and picks the name of the compressed section.)
496 is_compressible_debug_section(const char* secname)
498 return (is_prefix_of(".debug", secname));
501 // We may see compressed debug sections in input files. Return TRUE
502 // if this is the name of a compressed debug section.
505 is_compressed_debug_section(const char* secname)
507 return (is_prefix_of(".zdebug", secname));
510 // Whether to include this section in the link.
512 template<int size, bool big_endian>
514 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
515 const elfcpp::Shdr<size, big_endian>& shdr)
517 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
520 switch (shdr.get_sh_type())
522 case elfcpp::SHT_NULL:
523 case elfcpp::SHT_SYMTAB:
524 case elfcpp::SHT_DYNSYM:
525 case elfcpp::SHT_HASH:
526 case elfcpp::SHT_DYNAMIC:
527 case elfcpp::SHT_SYMTAB_SHNDX:
530 case elfcpp::SHT_STRTAB:
531 // Discard the sections which have special meanings in the ELF
532 // ABI. Keep others (e.g., .stabstr). We could also do this by
533 // checking the sh_link fields of the appropriate sections.
534 return (strcmp(name, ".dynstr") != 0
535 && strcmp(name, ".strtab") != 0
536 && strcmp(name, ".shstrtab") != 0);
538 case elfcpp::SHT_RELA:
539 case elfcpp::SHT_REL:
540 case elfcpp::SHT_GROUP:
541 // If we are emitting relocations these should be handled
543 gold_assert(!parameters->options().relocatable()
544 && !parameters->options().emit_relocs());
547 case elfcpp::SHT_PROGBITS:
548 if (parameters->options().strip_debug()
549 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
551 if (is_debug_info_section(name))
554 if (parameters->options().strip_debug_non_line()
555 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
557 // Debugging sections can only be recognized by name.
558 if (is_prefix_of(".debug", name)
559 && !is_lines_only_debug_section(name))
562 if (parameters->options().strip_debug_gdb()
563 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
565 // Debugging sections can only be recognized by name.
566 if (is_prefix_of(".debug", name)
567 && !is_gdb_debug_section(name))
570 if (parameters->options().strip_lto_sections()
571 && !parameters->options().relocatable()
572 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
574 // Ignore LTO sections containing intermediate code.
575 if (is_prefix_of(".gnu.lto_", name))
578 // The GNU linker strips .gnu_debuglink sections, so we do too.
579 // This is a feature used to keep debugging information in
581 if (strcmp(name, ".gnu_debuglink") == 0)
590 // Return an output section named NAME, or NULL if there is none.
593 Layout::find_output_section(const char* name) const
595 for (Section_list::const_iterator p = this->section_list_.begin();
596 p != this->section_list_.end();
598 if (strcmp((*p)->name(), name) == 0)
603 // Return an output segment of type TYPE, with segment flags SET set
604 // and segment flags CLEAR clear. Return NULL if there is none.
607 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
608 elfcpp::Elf_Word clear) const
610 for (Segment_list::const_iterator p = this->segment_list_.begin();
611 p != this->segment_list_.end();
613 if (static_cast<elfcpp::PT>((*p)->type()) == type
614 && ((*p)->flags() & set) == set
615 && ((*p)->flags() & clear) == 0)
620 // Return the output section to use for section NAME with type TYPE
621 // and section flags FLAGS. NAME must be canonicalized in the string
622 // pool, and NAME_KEY is the key. ORDER is where this should appear
623 // in the output sections. IS_RELRO is true for a relro section.
626 Layout::get_output_section(const char* name, Stringpool::Key name_key,
627 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
628 Output_section_order order, bool is_relro)
630 elfcpp::Elf_Xword lookup_flags = flags;
632 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
633 // read-write with read-only sections. Some other ELF linkers do
634 // not do this. FIXME: Perhaps there should be an option
636 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
638 const Key key(name_key, std::make_pair(type, lookup_flags));
639 const std::pair<Key, Output_section*> v(key, NULL);
640 std::pair<Section_name_map::iterator, bool> ins(
641 this->section_name_map_.insert(v));
644 return ins.first->second;
647 // This is the first time we've seen this name/type/flags
648 // combination. For compatibility with the GNU linker, we
649 // combine sections with contents and zero flags with sections
650 // with non-zero flags. This is a workaround for cases where
651 // assembler code forgets to set section flags. FIXME: Perhaps
652 // there should be an option to control this.
653 Output_section* os = NULL;
655 if (type == elfcpp::SHT_PROGBITS)
659 Output_section* same_name = this->find_output_section(name);
660 if (same_name != NULL
661 && same_name->type() == elfcpp::SHT_PROGBITS
662 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
665 else if ((flags & elfcpp::SHF_TLS) == 0)
667 elfcpp::Elf_Xword zero_flags = 0;
668 const Key zero_key(name_key, std::make_pair(type, zero_flags));
669 Section_name_map::iterator p =
670 this->section_name_map_.find(zero_key);
671 if (p != this->section_name_map_.end())
677 os = this->make_output_section(name, type, flags, order, is_relro);
679 ins.first->second = os;
684 // Pick the output section to use for section NAME, in input file
685 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
686 // linker created section. IS_INPUT_SECTION is true if we are
687 // choosing an output section for an input section found in a input
688 // file. ORDER is where this section should appear in the output
689 // sections. IS_RELRO is true for a relro section. This will return
690 // NULL if the input section should be discarded.
693 Layout::choose_output_section(const Relobj* relobj, const char* name,
694 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
695 bool is_input_section, Output_section_order order,
698 // We should not see any input sections after we have attached
699 // sections to segments.
700 gold_assert(!is_input_section || !this->sections_are_attached_);
702 // Some flags in the input section should not be automatically
703 // copied to the output section.
704 flags &= ~ (elfcpp::SHF_INFO_LINK
707 | elfcpp::SHF_STRINGS);
709 // We only clear the SHF_LINK_ORDER flag in for
710 // a non-relocatable link.
711 if (!parameters->options().relocatable())
712 flags &= ~elfcpp::SHF_LINK_ORDER;
714 if (this->script_options_->saw_sections_clause())
716 // We are using a SECTIONS clause, so the output section is
717 // chosen based only on the name.
719 Script_sections* ss = this->script_options_->script_sections();
720 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
721 Output_section** output_section_slot;
722 Script_sections::Section_type script_section_type;
723 const char* orig_name = name;
724 name = ss->output_section_name(file_name, name, &output_section_slot,
725 &script_section_type);
728 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
729 "because it is not allowed by the "
730 "SECTIONS clause of the linker script"),
732 // The SECTIONS clause says to discard this input section.
736 // We can only handle script section types ST_NONE and ST_NOLOAD.
737 switch (script_section_type)
739 case Script_sections::ST_NONE:
741 case Script_sections::ST_NOLOAD:
742 flags &= elfcpp::SHF_ALLOC;
748 // If this is an orphan section--one not mentioned in the linker
749 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
750 // default processing below.
752 if (output_section_slot != NULL)
754 if (*output_section_slot != NULL)
756 (*output_section_slot)->update_flags_for_input_section(flags);
757 return *output_section_slot;
760 // We don't put sections found in the linker script into
761 // SECTION_NAME_MAP_. That keeps us from getting confused
762 // if an orphan section is mapped to a section with the same
763 // name as one in the linker script.
765 name = this->namepool_.add(name, false, NULL);
767 Output_section* os = this->make_output_section(name, type, flags,
770 os->set_found_in_sections_clause();
772 // Special handling for NOLOAD sections.
773 if (script_section_type == Script_sections::ST_NOLOAD)
777 // The constructor of Output_section sets addresses of non-ALLOC
778 // sections to 0 by default. We don't want that for NOLOAD
779 // sections even if they have no SHF_ALLOC flag.
780 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
781 && os->is_address_valid())
783 gold_assert(os->address() == 0
784 && !os->is_offset_valid()
785 && !os->is_data_size_valid());
786 os->reset_address_and_file_offset();
790 *output_section_slot = os;
795 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
797 size_t len = strlen(name);
798 char* uncompressed_name = NULL;
800 // Compressed debug sections should be mapped to the corresponding
801 // uncompressed section.
802 if (is_compressed_debug_section(name))
804 uncompressed_name = new char[len];
805 uncompressed_name[0] = '.';
806 gold_assert(name[0] == '.' && name[1] == 'z');
807 strncpy(&uncompressed_name[1], &name[2], len - 2);
808 uncompressed_name[len - 1] = '\0';
810 name = uncompressed_name;
813 // Turn NAME from the name of the input section into the name of the
816 && !this->script_options_->saw_sections_clause()
817 && !parameters->options().relocatable())
818 name = Layout::output_section_name(name, &len);
820 Stringpool::Key name_key;
821 name = this->namepool_.add_with_length(name, len, true, &name_key);
823 if (uncompressed_name != NULL)
824 delete[] uncompressed_name;
826 // Find or make the output section. The output section is selected
827 // based on the section name, type, and flags.
828 return this->get_output_section(name, name_key, type, flags, order, is_relro);
831 // For incremental links, record the initial fixed layout of a section
832 // from the base file, and return a pointer to the Output_section.
834 template<int size, bool big_endian>
836 Layout::init_fixed_output_section(const char* name,
837 elfcpp::Shdr<size, big_endian>& shdr)
839 unsigned int sh_type = shdr.get_sh_type();
841 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
842 // All others will be created from scratch and reallocated.
843 if (sh_type != elfcpp::SHT_PROGBITS
844 && sh_type != elfcpp::SHT_NOBITS
845 && sh_type != elfcpp::SHT_NOTE)
848 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
849 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
850 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
851 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
852 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
853 shdr.get_sh_addralign();
855 // Make the output section.
856 Stringpool::Key name_key;
857 name = this->namepool_.add(name, true, &name_key);
858 Output_section* os = this->get_output_section(name, name_key, sh_type,
859 sh_flags, ORDER_INVALID, false);
860 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
861 if (sh_type != elfcpp::SHT_NOBITS)
862 this->free_list_.remove(sh_offset, sh_offset + sh_size);
866 // Return the output section to use for input section SHNDX, with name
867 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
868 // index of a relocation section which applies to this section, or 0
869 // if none, or -1U if more than one. RELOC_TYPE is the type of the
870 // relocation section if there is one. Set *OFF to the offset of this
871 // input section without the output section. Return NULL if the
872 // section should be discarded. Set *OFF to -1 if the section
873 // contents should not be written directly to the output file, but
874 // will instead receive special handling.
876 template<int size, bool big_endian>
878 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
879 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
880 unsigned int reloc_shndx, unsigned int, off_t* off)
884 if (!this->include_section(object, name, shdr))
889 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
890 // correct section types. Force them here.
891 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
892 if (sh_type == elfcpp::SHT_PROGBITS)
894 static const char init_array_prefix[] = ".init_array";
895 static const char preinit_array_prefix[] = ".preinit_array";
896 static const char fini_array_prefix[] = ".fini_array";
897 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
898 static size_t preinit_array_prefix_size =
899 sizeof(preinit_array_prefix) - 1;
900 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
902 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
903 sh_type = elfcpp::SHT_INIT_ARRAY;
904 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
906 sh_type = elfcpp::SHT_PREINIT_ARRAY;
907 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
908 sh_type = elfcpp::SHT_FINI_ARRAY;
911 // In a relocatable link a grouped section must not be combined with
912 // any other sections.
913 if (parameters->options().relocatable()
914 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
916 name = this->namepool_.add(name, true, NULL);
917 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
918 ORDER_INVALID, false);
922 os = this->choose_output_section(object, name, sh_type,
923 shdr.get_sh_flags(), true,
924 ORDER_INVALID, false);
929 // By default the GNU linker sorts input sections whose names match
930 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
931 // are sorted by name. This is used to implement constructor
932 // priority ordering. We are compatible.
933 if (!this->script_options_->saw_sections_clause()
934 && (is_prefix_of(".ctors.", name)
935 || is_prefix_of(".dtors.", name)
936 || is_prefix_of(".init_array.", name)
937 || is_prefix_of(".fini_array.", name)))
938 os->set_must_sort_attached_input_sections();
940 // FIXME: Handle SHF_LINK_ORDER somewhere.
942 elfcpp::Elf_Xword orig_flags = os->flags();
944 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
945 this->script_options_->saw_sections_clause());
947 // If the flags changed, we may have to change the order.
948 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
950 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
951 elfcpp::Elf_Xword new_flags =
952 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
953 if (orig_flags != new_flags)
954 os->set_order(this->default_section_order(os, false));
957 this->have_added_input_section_ = true;
962 // Handle a relocation section when doing a relocatable link.
964 template<int size, bool big_endian>
966 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
968 const elfcpp::Shdr<size, big_endian>& shdr,
969 Output_section* data_section,
970 Relocatable_relocs* rr)
972 gold_assert(parameters->options().relocatable()
973 || parameters->options().emit_relocs());
975 int sh_type = shdr.get_sh_type();
978 if (sh_type == elfcpp::SHT_REL)
980 else if (sh_type == elfcpp::SHT_RELA)
984 name += data_section->name();
986 // In a relocatable link relocs for a grouped section must not be
987 // combined with other reloc sections.
989 if (!parameters->options().relocatable()
990 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
991 os = this->choose_output_section(object, name.c_str(), sh_type,
992 shdr.get_sh_flags(), false,
993 ORDER_INVALID, false);
996 const char* n = this->namepool_.add(name.c_str(), true, NULL);
997 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
998 ORDER_INVALID, false);
1001 os->set_should_link_to_symtab();
1002 os->set_info_section(data_section);
1004 Output_section_data* posd;
1005 if (sh_type == elfcpp::SHT_REL)
1007 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1008 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1012 else if (sh_type == elfcpp::SHT_RELA)
1014 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1015 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1022 os->add_output_section_data(posd);
1023 rr->set_output_data(posd);
1028 // Handle a group section when doing a relocatable link.
1030 template<int size, bool big_endian>
1032 Layout::layout_group(Symbol_table* symtab,
1033 Sized_relobj_file<size, big_endian>* object,
1035 const char* group_section_name,
1036 const char* signature,
1037 const elfcpp::Shdr<size, big_endian>& shdr,
1038 elfcpp::Elf_Word flags,
1039 std::vector<unsigned int>* shndxes)
1041 gold_assert(parameters->options().relocatable());
1042 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1043 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1044 Output_section* os = this->make_output_section(group_section_name,
1046 shdr.get_sh_flags(),
1047 ORDER_INVALID, false);
1049 // We need to find a symbol with the signature in the symbol table.
1050 // If we don't find one now, we need to look again later.
1051 Symbol* sym = symtab->lookup(signature, NULL);
1053 os->set_info_symndx(sym);
1056 // Reserve some space to minimize reallocations.
1057 if (this->group_signatures_.empty())
1058 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1060 // We will wind up using a symbol whose name is the signature.
1061 // So just put the signature in the symbol name pool to save it.
1062 signature = symtab->canonicalize_name(signature);
1063 this->group_signatures_.push_back(Group_signature(os, signature));
1066 os->set_should_link_to_symtab();
1069 section_size_type entry_count =
1070 convert_to_section_size_type(shdr.get_sh_size() / 4);
1071 Output_section_data* posd =
1072 new Output_data_group<size, big_endian>(object, entry_count, flags,
1074 os->add_output_section_data(posd);
1077 // Special GNU handling of sections name .eh_frame. They will
1078 // normally hold exception frame data as defined by the C++ ABI
1079 // (http://codesourcery.com/cxx-abi/).
1081 template<int size, bool big_endian>
1083 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1084 const unsigned char* symbols,
1086 const unsigned char* symbol_names,
1087 off_t symbol_names_size,
1089 const elfcpp::Shdr<size, big_endian>& shdr,
1090 unsigned int reloc_shndx, unsigned int reloc_type,
1093 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1094 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1096 const char* const name = ".eh_frame";
1097 Output_section* os = this->choose_output_section(object, name,
1098 elfcpp::SHT_PROGBITS,
1099 elfcpp::SHF_ALLOC, false,
1100 ORDER_EHFRAME, false);
1104 if (this->eh_frame_section_ == NULL)
1106 this->eh_frame_section_ = os;
1107 this->eh_frame_data_ = new Eh_frame();
1109 // For incremental linking, we do not optimize .eh_frame sections
1110 // or create a .eh_frame_hdr section.
1111 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1113 Output_section* hdr_os =
1114 this->choose_output_section(NULL, ".eh_frame_hdr",
1115 elfcpp::SHT_PROGBITS,
1116 elfcpp::SHF_ALLOC, false,
1117 ORDER_EHFRAME, false);
1121 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1122 this->eh_frame_data_);
1123 hdr_os->add_output_section_data(hdr_posd);
1125 hdr_os->set_after_input_sections();
1127 if (!this->script_options_->saw_phdrs_clause())
1129 Output_segment* hdr_oseg;
1130 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1132 hdr_oseg->add_output_section_to_nonload(hdr_os,
1136 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1141 gold_assert(this->eh_frame_section_ == os);
1143 elfcpp::Elf_Xword orig_flags = os->flags();
1145 if (!parameters->incremental()
1146 && this->eh_frame_data_->add_ehframe_input_section(object,
1155 os->update_flags_for_input_section(shdr.get_sh_flags());
1157 // A writable .eh_frame section is a RELRO section.
1158 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1159 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1162 os->set_order(ORDER_RELRO);
1165 // We found a .eh_frame section we are going to optimize, so now
1166 // we can add the set of optimized sections to the output
1167 // section. We need to postpone adding this until we've found a
1168 // section we can optimize so that the .eh_frame section in
1169 // crtbegin.o winds up at the start of the output section.
1170 if (!this->added_eh_frame_data_)
1172 os->add_output_section_data(this->eh_frame_data_);
1173 this->added_eh_frame_data_ = true;
1179 // We couldn't handle this .eh_frame section for some reason.
1180 // Add it as a normal section.
1181 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1182 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1183 saw_sections_clause);
1184 this->have_added_input_section_ = true;
1186 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1187 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1188 os->set_order(this->default_section_order(os, false));
1194 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1195 // the output section.
1198 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1199 elfcpp::Elf_Xword flags,
1200 Output_section_data* posd,
1201 Output_section_order order, bool is_relro)
1203 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1204 false, order, is_relro);
1206 os->add_output_section_data(posd);
1210 // Map section flags to segment flags.
1213 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1215 elfcpp::Elf_Word ret = elfcpp::PF_R;
1216 if ((flags & elfcpp::SHF_WRITE) != 0)
1217 ret |= elfcpp::PF_W;
1218 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1219 ret |= elfcpp::PF_X;
1223 // Make a new Output_section, and attach it to segments as
1224 // appropriate. ORDER is the order in which this section should
1225 // appear in the output segment. IS_RELRO is true if this is a relro
1226 // (read-only after relocations) section.
1229 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1230 elfcpp::Elf_Xword flags,
1231 Output_section_order order, bool is_relro)
1234 if ((flags & elfcpp::SHF_ALLOC) == 0
1235 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1236 && is_compressible_debug_section(name))
1237 os = new Output_compressed_section(¶meters->options(), name, type,
1239 else if ((flags & elfcpp::SHF_ALLOC) == 0
1240 && parameters->options().strip_debug_non_line()
1241 && strcmp(".debug_abbrev", name) == 0)
1243 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1245 if (this->debug_info_)
1246 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1248 else if ((flags & elfcpp::SHF_ALLOC) == 0
1249 && parameters->options().strip_debug_non_line()
1250 && strcmp(".debug_info", name) == 0)
1252 os = this->debug_info_ = new Output_reduced_debug_info_section(
1254 if (this->debug_abbrev_)
1255 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1259 // FIXME: const_cast is ugly.
1260 Target* target = const_cast<Target*>(¶meters->target());
1261 os = target->make_output_section(name, type, flags);
1264 // With -z relro, we have to recognize the special sections by name.
1265 // There is no other way.
1266 bool is_relro_local = false;
1267 if (!this->script_options_->saw_sections_clause()
1268 && parameters->options().relro()
1269 && type == elfcpp::SHT_PROGBITS
1270 && (flags & elfcpp::SHF_ALLOC) != 0
1271 && (flags & elfcpp::SHF_WRITE) != 0)
1273 if (strcmp(name, ".data.rel.ro") == 0)
1275 else if (strcmp(name, ".data.rel.ro.local") == 0)
1278 is_relro_local = true;
1280 else if (type == elfcpp::SHT_INIT_ARRAY
1281 || type == elfcpp::SHT_FINI_ARRAY
1282 || type == elfcpp::SHT_PREINIT_ARRAY)
1284 else if (strcmp(name, ".ctors") == 0
1285 || strcmp(name, ".dtors") == 0
1286 || strcmp(name, ".jcr") == 0)
1293 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1294 order = this->default_section_order(os, is_relro_local);
1296 os->set_order(order);
1298 parameters->target().new_output_section(os);
1300 this->section_list_.push_back(os);
1302 // The GNU linker by default sorts some sections by priority, so we
1303 // do the same. We need to know that this might happen before we
1304 // attach any input sections.
1305 if (!this->script_options_->saw_sections_clause()
1306 && (strcmp(name, ".ctors") == 0
1307 || strcmp(name, ".dtors") == 0
1308 || strcmp(name, ".init_array") == 0
1309 || strcmp(name, ".fini_array") == 0))
1310 os->set_may_sort_attached_input_sections();
1312 // Check for .stab*str sections, as .stab* sections need to link to
1314 if (type == elfcpp::SHT_STRTAB
1315 && !this->have_stabstr_section_
1316 && strncmp(name, ".stab", 5) == 0
1317 && strcmp(name + strlen(name) - 3, "str") == 0)
1318 this->have_stabstr_section_ = true;
1320 // If we have already attached the sections to segments, then we
1321 // need to attach this one now. This happens for sections created
1322 // directly by the linker.
1323 if (this->sections_are_attached_)
1324 this->attach_section_to_segment(os);
1329 // Return the default order in which a section should be placed in an
1330 // output segment. This function captures a lot of the ideas in
1331 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1332 // linker created section is normally set when the section is created;
1333 // this function is used for input sections.
1335 Output_section_order
1336 Layout::default_section_order(Output_section* os, bool is_relro_local)
1338 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1339 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1340 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1341 bool is_bss = false;
1346 case elfcpp::SHT_PROGBITS:
1348 case elfcpp::SHT_NOBITS:
1351 case elfcpp::SHT_RELA:
1352 case elfcpp::SHT_REL:
1354 return ORDER_DYNAMIC_RELOCS;
1356 case elfcpp::SHT_HASH:
1357 case elfcpp::SHT_DYNAMIC:
1358 case elfcpp::SHT_SHLIB:
1359 case elfcpp::SHT_DYNSYM:
1360 case elfcpp::SHT_GNU_HASH:
1361 case elfcpp::SHT_GNU_verdef:
1362 case elfcpp::SHT_GNU_verneed:
1363 case elfcpp::SHT_GNU_versym:
1365 return ORDER_DYNAMIC_LINKER;
1367 case elfcpp::SHT_NOTE:
1368 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1371 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1372 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1374 if (!is_bss && !is_write)
1378 if (strcmp(os->name(), ".init") == 0)
1380 else if (strcmp(os->name(), ".fini") == 0)
1383 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1387 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1389 if (os->is_small_section())
1390 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1391 if (os->is_large_section())
1392 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1394 return is_bss ? ORDER_BSS : ORDER_DATA;
1397 // Attach output sections to segments. This is called after we have
1398 // seen all the input sections.
1401 Layout::attach_sections_to_segments()
1403 for (Section_list::iterator p = this->section_list_.begin();
1404 p != this->section_list_.end();
1406 this->attach_section_to_segment(*p);
1408 this->sections_are_attached_ = true;
1411 // Attach an output section to a segment.
1414 Layout::attach_section_to_segment(Output_section* os)
1416 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1417 this->unattached_section_list_.push_back(os);
1419 this->attach_allocated_section_to_segment(os);
1422 // Attach an allocated output section to a segment.
1425 Layout::attach_allocated_section_to_segment(Output_section* os)
1427 elfcpp::Elf_Xword flags = os->flags();
1428 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1430 if (parameters->options().relocatable())
1433 // If we have a SECTIONS clause, we can't handle the attachment to
1434 // segments until after we've seen all the sections.
1435 if (this->script_options_->saw_sections_clause())
1438 gold_assert(!this->script_options_->saw_phdrs_clause());
1440 // This output section goes into a PT_LOAD segment.
1442 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1444 // Check for --section-start.
1446 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1448 // In general the only thing we really care about for PT_LOAD
1449 // segments is whether or not they are writable or executable,
1450 // so that is how we search for them.
1451 // Large data sections also go into their own PT_LOAD segment.
1452 // People who need segments sorted on some other basis will
1453 // have to use a linker script.
1455 Segment_list::const_iterator p;
1456 for (p = this->segment_list_.begin();
1457 p != this->segment_list_.end();
1460 if ((*p)->type() != elfcpp::PT_LOAD)
1462 if (!parameters->options().omagic()
1463 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1465 if (parameters->options().rosegment()
1466 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1468 // If -Tbss was specified, we need to separate the data and BSS
1470 if (parameters->options().user_set_Tbss())
1472 if ((os->type() == elfcpp::SHT_NOBITS)
1473 == (*p)->has_any_data_sections())
1476 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1481 if ((*p)->are_addresses_set())
1484 (*p)->add_initial_output_data(os);
1485 (*p)->update_flags_for_output_section(seg_flags);
1486 (*p)->set_addresses(addr, addr);
1490 (*p)->add_output_section_to_load(this, os, seg_flags);
1494 if (p == this->segment_list_.end())
1496 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1498 if (os->is_large_data_section())
1499 oseg->set_is_large_data_segment();
1500 oseg->add_output_section_to_load(this, os, seg_flags);
1502 oseg->set_addresses(addr, addr);
1505 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1507 if (os->type() == elfcpp::SHT_NOTE)
1509 // See if we already have an equivalent PT_NOTE segment.
1510 for (p = this->segment_list_.begin();
1511 p != segment_list_.end();
1514 if ((*p)->type() == elfcpp::PT_NOTE
1515 && (((*p)->flags() & elfcpp::PF_W)
1516 == (seg_flags & elfcpp::PF_W)))
1518 (*p)->add_output_section_to_nonload(os, seg_flags);
1523 if (p == this->segment_list_.end())
1525 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1527 oseg->add_output_section_to_nonload(os, seg_flags);
1531 // If we see a loadable SHF_TLS section, we create a PT_TLS
1532 // segment. There can only be one such segment.
1533 if ((flags & elfcpp::SHF_TLS) != 0)
1535 if (this->tls_segment_ == NULL)
1536 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1537 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1540 // If -z relro is in effect, and we see a relro section, we create a
1541 // PT_GNU_RELRO segment. There can only be one such segment.
1542 if (os->is_relro() && parameters->options().relro())
1544 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1545 if (this->relro_segment_ == NULL)
1546 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1547 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1550 // If we are making a shared library, and we see a section named
1551 // .interp, and the -dynamic-linker option was not used, then put
1552 // the .interp section into a PT_INTERP segment. This is for GNU ld
1553 // compatibility. If making an executable, or if the
1554 // -dynamic-linker option was used, we will create the section and
1555 // segment in Layout::create_interp.
1556 if (strcmp(os->name(), ".interp") == 0
1557 && parameters->options().shared()
1558 && parameters->options().dynamic_linker() == NULL)
1560 if (this->interp_segment_ == NULL)
1561 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1562 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1566 // Make an output section for a script.
1569 Layout::make_output_section_for_script(
1571 Script_sections::Section_type section_type)
1573 name = this->namepool_.add(name, false, NULL);
1574 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1575 if (section_type == Script_sections::ST_NOLOAD)
1577 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1578 sh_flags, ORDER_INVALID,
1580 os->set_found_in_sections_clause();
1581 if (section_type == Script_sections::ST_NOLOAD)
1582 os->set_is_noload();
1586 // Return the number of segments we expect to see.
1589 Layout::expected_segment_count() const
1591 size_t ret = this->segment_list_.size();
1593 // If we didn't see a SECTIONS clause in a linker script, we should
1594 // already have the complete list of segments. Otherwise we ask the
1595 // SECTIONS clause how many segments it expects, and add in the ones
1596 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1598 if (!this->script_options_->saw_sections_clause())
1602 const Script_sections* ss = this->script_options_->script_sections();
1603 return ret + ss->expected_segment_count(this);
1607 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1608 // is whether we saw a .note.GNU-stack section in the object file.
1609 // GNU_STACK_FLAGS is the section flags. The flags give the
1610 // protection required for stack memory. We record this in an
1611 // executable as a PT_GNU_STACK segment. If an object file does not
1612 // have a .note.GNU-stack segment, we must assume that it is an old
1613 // object. On some targets that will force an executable stack.
1616 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1619 if (!seen_gnu_stack)
1621 this->input_without_gnu_stack_note_ = true;
1622 if (parameters->options().warn_execstack()
1623 && parameters->target().is_default_stack_executable())
1624 gold_warning(_("%s: missing .note.GNU-stack section"
1625 " implies executable stack"),
1626 obj->name().c_str());
1630 this->input_with_gnu_stack_note_ = true;
1631 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1633 this->input_requires_executable_stack_ = true;
1634 if (parameters->options().warn_execstack()
1635 || parameters->options().is_stack_executable())
1636 gold_warning(_("%s: requires executable stack"),
1637 obj->name().c_str());
1642 // Create automatic note sections.
1645 Layout::create_notes()
1647 this->create_gold_note();
1648 this->create_executable_stack_info();
1649 this->create_build_id();
1652 // Create the dynamic sections which are needed before we read the
1656 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1658 if (parameters->doing_static_link())
1661 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1662 elfcpp::SHT_DYNAMIC,
1664 | elfcpp::SHF_WRITE),
1668 this->dynamic_symbol_ =
1669 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1670 this->dynamic_section_, 0, 0,
1671 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1672 elfcpp::STV_HIDDEN, 0, false, false);
1674 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1676 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1679 // For each output section whose name can be represented as C symbol,
1680 // define __start and __stop symbols for the section. This is a GNU
1684 Layout::define_section_symbols(Symbol_table* symtab)
1686 for (Section_list::const_iterator p = this->section_list_.begin();
1687 p != this->section_list_.end();
1690 const char* const name = (*p)->name();
1691 if (is_cident(name))
1693 const std::string name_string(name);
1694 const std::string start_name(cident_section_start_prefix
1696 const std::string stop_name(cident_section_stop_prefix
1699 symtab->define_in_output_data(start_name.c_str(),
1701 Symbol_table::PREDEFINED,
1707 elfcpp::STV_DEFAULT,
1709 false, // offset_is_from_end
1710 true); // only_if_ref
1712 symtab->define_in_output_data(stop_name.c_str(),
1714 Symbol_table::PREDEFINED,
1720 elfcpp::STV_DEFAULT,
1722 true, // offset_is_from_end
1723 true); // only_if_ref
1728 // Define symbols for group signatures.
1731 Layout::define_group_signatures(Symbol_table* symtab)
1733 for (Group_signatures::iterator p = this->group_signatures_.begin();
1734 p != this->group_signatures_.end();
1737 Symbol* sym = symtab->lookup(p->signature, NULL);
1739 p->section->set_info_symndx(sym);
1742 // Force the name of the group section to the group
1743 // signature, and use the group's section symbol as the
1744 // signature symbol.
1745 if (strcmp(p->section->name(), p->signature) != 0)
1747 const char* name = this->namepool_.add(p->signature,
1749 p->section->set_name(name);
1751 p->section->set_needs_symtab_index();
1752 p->section->set_info_section_symndx(p->section);
1756 this->group_signatures_.clear();
1759 // Find the first read-only PT_LOAD segment, creating one if
1763 Layout::find_first_load_seg()
1765 Output_segment* best = NULL;
1766 for (Segment_list::const_iterator p = this->segment_list_.begin();
1767 p != this->segment_list_.end();
1770 if ((*p)->type() == elfcpp::PT_LOAD
1771 && ((*p)->flags() & elfcpp::PF_R) != 0
1772 && (parameters->options().omagic()
1773 || ((*p)->flags() & elfcpp::PF_W) == 0))
1775 if (best == NULL || this->segment_precedes(*p, best))
1782 gold_assert(!this->script_options_->saw_phdrs_clause());
1784 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1789 // Save states of all current output segments. Store saved states
1790 // in SEGMENT_STATES.
1793 Layout::save_segments(Segment_states* segment_states)
1795 for (Segment_list::const_iterator p = this->segment_list_.begin();
1796 p != this->segment_list_.end();
1799 Output_segment* segment = *p;
1801 Output_segment* copy = new Output_segment(*segment);
1802 (*segment_states)[segment] = copy;
1806 // Restore states of output segments and delete any segment not found in
1810 Layout::restore_segments(const Segment_states* segment_states)
1812 // Go through the segment list and remove any segment added in the
1814 this->tls_segment_ = NULL;
1815 this->relro_segment_ = NULL;
1816 Segment_list::iterator list_iter = this->segment_list_.begin();
1817 while (list_iter != this->segment_list_.end())
1819 Output_segment* segment = *list_iter;
1820 Segment_states::const_iterator states_iter =
1821 segment_states->find(segment);
1822 if (states_iter != segment_states->end())
1824 const Output_segment* copy = states_iter->second;
1825 // Shallow copy to restore states.
1828 // Also fix up TLS and RELRO segment pointers as appropriate.
1829 if (segment->type() == elfcpp::PT_TLS)
1830 this->tls_segment_ = segment;
1831 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1832 this->relro_segment_ = segment;
1838 list_iter = this->segment_list_.erase(list_iter);
1839 // This is a segment created during section layout. It should be
1840 // safe to remove it since we should have removed all pointers to it.
1846 // Clean up after relaxation so that sections can be laid out again.
1849 Layout::clean_up_after_relaxation()
1851 // Restore the segments to point state just prior to the relaxation loop.
1852 Script_sections* script_section = this->script_options_->script_sections();
1853 script_section->release_segments();
1854 this->restore_segments(this->segment_states_);
1856 // Reset section addresses and file offsets
1857 for (Section_list::iterator p = this->section_list_.begin();
1858 p != this->section_list_.end();
1861 (*p)->restore_states();
1863 // If an input section changes size because of relaxation,
1864 // we need to adjust the section offsets of all input sections.
1865 // after such a section.
1866 if ((*p)->section_offsets_need_adjustment())
1867 (*p)->adjust_section_offsets();
1869 (*p)->reset_address_and_file_offset();
1872 // Reset special output object address and file offsets.
1873 for (Data_list::iterator p = this->special_output_list_.begin();
1874 p != this->special_output_list_.end();
1876 (*p)->reset_address_and_file_offset();
1878 // A linker script may have created some output section data objects.
1879 // They are useless now.
1880 for (Output_section_data_list::const_iterator p =
1881 this->script_output_section_data_list_.begin();
1882 p != this->script_output_section_data_list_.end();
1885 this->script_output_section_data_list_.clear();
1888 // Prepare for relaxation.
1891 Layout::prepare_for_relaxation()
1893 // Create an relaxation debug check if in debugging mode.
1894 if (is_debugging_enabled(DEBUG_RELAXATION))
1895 this->relaxation_debug_check_ = new Relaxation_debug_check();
1897 // Save segment states.
1898 this->segment_states_ = new Segment_states();
1899 this->save_segments(this->segment_states_);
1901 for(Section_list::const_iterator p = this->section_list_.begin();
1902 p != this->section_list_.end();
1904 (*p)->save_states();
1906 if (is_debugging_enabled(DEBUG_RELAXATION))
1907 this->relaxation_debug_check_->check_output_data_for_reset_values(
1908 this->section_list_, this->special_output_list_);
1910 // Also enable recording of output section data from scripts.
1911 this->record_output_section_data_from_script_ = true;
1914 // Relaxation loop body: If target has no relaxation, this runs only once
1915 // Otherwise, the target relaxation hook is called at the end of
1916 // each iteration. If the hook returns true, it means re-layout of
1917 // section is required.
1919 // The number of segments created by a linking script without a PHDRS
1920 // clause may be affected by section sizes and alignments. There is
1921 // a remote chance that relaxation causes different number of PT_LOAD
1922 // segments are created and sections are attached to different segments.
1923 // Therefore, we always throw away all segments created during section
1924 // layout. In order to be able to restart the section layout, we keep
1925 // a copy of the segment list right before the relaxation loop and use
1926 // that to restore the segments.
1928 // PASS is the current relaxation pass number.
1929 // SYMTAB is a symbol table.
1930 // PLOAD_SEG is the address of a pointer for the load segment.
1931 // PHDR_SEG is a pointer to the PHDR segment.
1932 // SEGMENT_HEADERS points to the output segment header.
1933 // FILE_HEADER points to the output file header.
1934 // PSHNDX is the address to store the output section index.
1937 Layout::relaxation_loop_body(
1940 Symbol_table* symtab,
1941 Output_segment** pload_seg,
1942 Output_segment* phdr_seg,
1943 Output_segment_headers* segment_headers,
1944 Output_file_header* file_header,
1945 unsigned int* pshndx)
1947 // If this is not the first iteration, we need to clean up after
1948 // relaxation so that we can lay out the sections again.
1950 this->clean_up_after_relaxation();
1952 // If there is a SECTIONS clause, put all the input sections into
1953 // the required order.
1954 Output_segment* load_seg;
1955 if (this->script_options_->saw_sections_clause())
1956 load_seg = this->set_section_addresses_from_script(symtab);
1957 else if (parameters->options().relocatable())
1960 load_seg = this->find_first_load_seg();
1962 if (parameters->options().oformat_enum()
1963 != General_options::OBJECT_FORMAT_ELF)
1966 // If the user set the address of the text segment, that may not be
1967 // compatible with putting the segment headers and file headers into
1969 if (parameters->options().user_set_Ttext())
1972 gold_assert(phdr_seg == NULL
1974 || this->script_options_->saw_sections_clause());
1976 // If the address of the load segment we found has been set by
1977 // --section-start rather than by a script, then adjust the VMA and
1978 // LMA downward if possible to include the file and section headers.
1979 uint64_t header_gap = 0;
1980 if (load_seg != NULL
1981 && load_seg->are_addresses_set()
1982 && !this->script_options_->saw_sections_clause()
1983 && !parameters->options().relocatable())
1985 file_header->finalize_data_size();
1986 segment_headers->finalize_data_size();
1987 size_t sizeof_headers = (file_header->data_size()
1988 + segment_headers->data_size());
1989 const uint64_t abi_pagesize = target->abi_pagesize();
1990 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1991 hdr_paddr &= ~(abi_pagesize - 1);
1992 uint64_t subtract = load_seg->paddr() - hdr_paddr;
1993 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1997 load_seg->set_addresses(load_seg->vaddr() - subtract,
1998 load_seg->paddr() - subtract);
1999 header_gap = subtract - sizeof_headers;
2003 // Lay out the segment headers.
2004 if (!parameters->options().relocatable())
2006 gold_assert(segment_headers != NULL);
2007 if (header_gap != 0 && load_seg != NULL)
2009 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2010 load_seg->add_initial_output_data(z);
2012 if (load_seg != NULL)
2013 load_seg->add_initial_output_data(segment_headers);
2014 if (phdr_seg != NULL)
2015 phdr_seg->add_initial_output_data(segment_headers);
2018 // Lay out the file header.
2019 if (load_seg != NULL)
2020 load_seg->add_initial_output_data(file_header);
2022 if (this->script_options_->saw_phdrs_clause()
2023 && !parameters->options().relocatable())
2025 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2026 // clause in a linker script.
2027 Script_sections* ss = this->script_options_->script_sections();
2028 ss->put_headers_in_phdrs(file_header, segment_headers);
2031 // We set the output section indexes in set_segment_offsets and
2032 // set_section_indexes.
2035 // Set the file offsets of all the segments, and all the sections
2038 if (!parameters->options().relocatable())
2039 off = this->set_segment_offsets(target, load_seg, pshndx);
2041 off = this->set_relocatable_section_offsets(file_header, pshndx);
2043 // Verify that the dummy relaxation does not change anything.
2044 if (is_debugging_enabled(DEBUG_RELAXATION))
2047 this->relaxation_debug_check_->read_sections(this->section_list_);
2049 this->relaxation_debug_check_->verify_sections(this->section_list_);
2052 *pload_seg = load_seg;
2056 // Search the list of patterns and find the postion of the given section
2057 // name in the output section. If the section name matches a glob
2058 // pattern and a non-glob name, then the non-glob position takes
2059 // precedence. Return 0 if no match is found.
2062 Layout::find_section_order_index(const std::string& section_name)
2064 Unordered_map<std::string, unsigned int>::iterator map_it;
2065 map_it = this->input_section_position_.find(section_name);
2066 if (map_it != this->input_section_position_.end())
2067 return map_it->second;
2069 // Absolute match failed. Linear search the glob patterns.
2070 std::vector<std::string>::iterator it;
2071 for (it = this->input_section_glob_.begin();
2072 it != this->input_section_glob_.end();
2075 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2077 map_it = this->input_section_position_.find(*it);
2078 gold_assert(map_it != this->input_section_position_.end());
2079 return map_it->second;
2085 // Read the sequence of input sections from the file specified with
2086 // --section-ordering-file.
2089 Layout::read_layout_from_file()
2091 const char* filename = parameters->options().section_ordering_file();
2097 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2098 filename, strerror(errno));
2100 std::getline(in, line); // this chops off the trailing \n, if any
2101 unsigned int position = 1;
2105 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2106 line.resize(line.length() - 1);
2107 // Ignore comments, beginning with '#'
2110 std::getline(in, line);
2113 this->input_section_position_[line] = position;
2114 // Store all glob patterns in a vector.
2115 if (is_wildcard_string(line.c_str()))
2116 this->input_section_glob_.push_back(line);
2118 std::getline(in, line);
2122 // Finalize the layout. When this is called, we have created all the
2123 // output sections and all the output segments which are based on
2124 // input sections. We have several things to do, and we have to do
2125 // them in the right order, so that we get the right results correctly
2128 // 1) Finalize the list of output segments and create the segment
2131 // 2) Finalize the dynamic symbol table and associated sections.
2133 // 3) Determine the final file offset of all the output segments.
2135 // 4) Determine the final file offset of all the SHF_ALLOC output
2138 // 5) Create the symbol table sections and the section name table
2141 // 6) Finalize the symbol table: set symbol values to their final
2142 // value and make a final determination of which symbols are going
2143 // into the output symbol table.
2145 // 7) Create the section table header.
2147 // 8) Determine the final file offset of all the output sections which
2148 // are not SHF_ALLOC, including the section table header.
2150 // 9) Finalize the ELF file header.
2152 // This function returns the size of the output file.
2155 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2156 Target* target, const Task* task)
2158 target->finalize_sections(this, input_objects, symtab);
2160 this->count_local_symbols(task, input_objects);
2162 this->link_stabs_sections();
2164 Output_segment* phdr_seg = NULL;
2165 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2167 // There was a dynamic object in the link. We need to create
2168 // some information for the dynamic linker.
2170 // Create the PT_PHDR segment which will hold the program
2172 if (!this->script_options_->saw_phdrs_clause())
2173 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2175 // Create the dynamic symbol table, including the hash table.
2176 Output_section* dynstr;
2177 std::vector<Symbol*> dynamic_symbols;
2178 unsigned int local_dynamic_count;
2179 Versions versions(*this->script_options()->version_script_info(),
2181 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2182 &local_dynamic_count, &dynamic_symbols,
2185 // Create the .interp section to hold the name of the
2186 // interpreter, and put it in a PT_INTERP segment.
2187 if (!parameters->options().shared()
2188 || parameters->options().dynamic_linker() != NULL)
2189 this->create_interp(target);
2191 // Finish the .dynamic section to hold the dynamic data, and put
2192 // it in a PT_DYNAMIC segment.
2193 this->finish_dynamic_section(input_objects, symtab);
2195 // We should have added everything we need to the dynamic string
2197 this->dynpool_.set_string_offsets();
2199 // Create the version sections. We can't do this until the
2200 // dynamic string table is complete.
2201 this->create_version_sections(&versions, symtab, local_dynamic_count,
2202 dynamic_symbols, dynstr);
2204 // Set the size of the _DYNAMIC symbol. We can't do this until
2205 // after we call create_version_sections.
2206 this->set_dynamic_symbol_size(symtab);
2209 // Create segment headers.
2210 Output_segment_headers* segment_headers =
2211 (parameters->options().relocatable()
2213 : new Output_segment_headers(this->segment_list_));
2215 // Lay out the file header.
2216 Output_file_header* file_header = new Output_file_header(target, symtab,
2219 this->special_output_list_.push_back(file_header);
2220 if (segment_headers != NULL)
2221 this->special_output_list_.push_back(segment_headers);
2223 // Find approriate places for orphan output sections if we are using
2225 if (this->script_options_->saw_sections_clause())
2226 this->place_orphan_sections_in_script();
2228 Output_segment* load_seg;
2233 // Take a snapshot of the section layout as needed.
2234 if (target->may_relax())
2235 this->prepare_for_relaxation();
2237 // Run the relaxation loop to lay out sections.
2240 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2241 phdr_seg, segment_headers, file_header,
2245 while (target->may_relax()
2246 && target->relax(pass, input_objects, symtab, this, task));
2248 // Set the file offsets of all the non-data sections we've seen so
2249 // far which don't have to wait for the input sections. We need
2250 // this in order to finalize local symbols in non-allocated
2252 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2254 // Set the section indexes of all unallocated sections seen so far,
2255 // in case any of them are somehow referenced by a symbol.
2256 shndx = this->set_section_indexes(shndx);
2258 // Create the symbol table sections.
2259 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2260 if (!parameters->doing_static_link())
2261 this->assign_local_dynsym_offsets(input_objects);
2263 // Process any symbol assignments from a linker script. This must
2264 // be called after the symbol table has been finalized.
2265 this->script_options_->finalize_symbols(symtab, this);
2267 // Create the incremental inputs sections.
2268 if (this->incremental_inputs_)
2270 this->incremental_inputs_->finalize();
2271 this->create_incremental_info_sections(symtab);
2274 // Create the .shstrtab section.
2275 Output_section* shstrtab_section = this->create_shstrtab();
2277 // Set the file offsets of the rest of the non-data sections which
2278 // don't have to wait for the input sections.
2279 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2281 // Now that all sections have been created, set the section indexes
2282 // for any sections which haven't been done yet.
2283 shndx = this->set_section_indexes(shndx);
2285 // Create the section table header.
2286 this->create_shdrs(shstrtab_section, &off);
2288 // If there are no sections which require postprocessing, we can
2289 // handle the section names now, and avoid a resize later.
2290 if (!this->any_postprocessing_sections_)
2292 off = this->set_section_offsets(off,
2293 POSTPROCESSING_SECTIONS_PASS);
2295 this->set_section_offsets(off,
2296 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2299 file_header->set_section_info(this->section_headers_, shstrtab_section);
2301 // Now we know exactly where everything goes in the output file
2302 // (except for non-allocated sections which require postprocessing).
2303 Output_data::layout_complete();
2305 this->output_file_size_ = off;
2310 // Create a note header following the format defined in the ELF ABI.
2311 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2312 // of the section to create, DESCSZ is the size of the descriptor.
2313 // ALLOCATE is true if the section should be allocated in memory.
2314 // This returns the new note section. It sets *TRAILING_PADDING to
2315 // the number of trailing zero bytes required.
2318 Layout::create_note(const char* name, int note_type,
2319 const char* section_name, size_t descsz,
2320 bool allocate, size_t* trailing_padding)
2322 // Authorities all agree that the values in a .note field should
2323 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2324 // they differ on what the alignment is for 64-bit binaries.
2325 // The GABI says unambiguously they take 8-byte alignment:
2326 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2327 // Other documentation says alignment should always be 4 bytes:
2328 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2329 // GNU ld and GNU readelf both support the latter (at least as of
2330 // version 2.16.91), and glibc always generates the latter for
2331 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2333 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2334 const int size = parameters->target().get_size();
2336 const int size = 32;
2339 // The contents of the .note section.
2340 size_t namesz = strlen(name) + 1;
2341 size_t aligned_namesz = align_address(namesz, size / 8);
2342 size_t aligned_descsz = align_address(descsz, size / 8);
2344 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2346 unsigned char* buffer = new unsigned char[notehdrsz];
2347 memset(buffer, 0, notehdrsz);
2349 bool is_big_endian = parameters->target().is_big_endian();
2355 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2356 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2357 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2361 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2362 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2363 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2366 else if (size == 64)
2370 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2371 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2372 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2376 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2377 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2378 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2384 memcpy(buffer + 3 * (size / 8), name, namesz);
2386 elfcpp::Elf_Xword flags = 0;
2387 Output_section_order order = ORDER_INVALID;
2390 flags = elfcpp::SHF_ALLOC;
2391 order = ORDER_RO_NOTE;
2393 Output_section* os = this->choose_output_section(NULL, section_name,
2395 flags, false, order, false);
2399 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2402 os->add_output_section_data(posd);
2404 *trailing_padding = aligned_descsz - descsz;
2409 // For an executable or shared library, create a note to record the
2410 // version of gold used to create the binary.
2413 Layout::create_gold_note()
2415 if (parameters->options().relocatable()
2416 || parameters->incremental_update())
2419 std::string desc = std::string("gold ") + gold::get_version_string();
2421 size_t trailing_padding;
2422 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2423 ".note.gnu.gold-version", desc.size(),
2424 false, &trailing_padding);
2428 Output_section_data* posd = new Output_data_const(desc, 4);
2429 os->add_output_section_data(posd);
2431 if (trailing_padding > 0)
2433 posd = new Output_data_zero_fill(trailing_padding, 0);
2434 os->add_output_section_data(posd);
2438 // Record whether the stack should be executable. This can be set
2439 // from the command line using the -z execstack or -z noexecstack
2440 // options. Otherwise, if any input file has a .note.GNU-stack
2441 // section with the SHF_EXECINSTR flag set, the stack should be
2442 // executable. Otherwise, if at least one input file a
2443 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2444 // section, we use the target default for whether the stack should be
2445 // executable. Otherwise, we don't generate a stack note. When
2446 // generating a object file, we create a .note.GNU-stack section with
2447 // the appropriate marking. When generating an executable or shared
2448 // library, we create a PT_GNU_STACK segment.
2451 Layout::create_executable_stack_info()
2453 bool is_stack_executable;
2454 if (parameters->options().is_execstack_set())
2455 is_stack_executable = parameters->options().is_stack_executable();
2456 else if (!this->input_with_gnu_stack_note_)
2460 if (this->input_requires_executable_stack_)
2461 is_stack_executable = true;
2462 else if (this->input_without_gnu_stack_note_)
2463 is_stack_executable =
2464 parameters->target().is_default_stack_executable();
2466 is_stack_executable = false;
2469 if (parameters->options().relocatable())
2471 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2472 elfcpp::Elf_Xword flags = 0;
2473 if (is_stack_executable)
2474 flags |= elfcpp::SHF_EXECINSTR;
2475 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2476 ORDER_INVALID, false);
2480 if (this->script_options_->saw_phdrs_clause())
2482 int flags = elfcpp::PF_R | elfcpp::PF_W;
2483 if (is_stack_executable)
2484 flags |= elfcpp::PF_X;
2485 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2489 // If --build-id was used, set up the build ID note.
2492 Layout::create_build_id()
2494 if (!parameters->options().user_set_build_id())
2497 const char* style = parameters->options().build_id();
2498 if (strcmp(style, "none") == 0)
2501 // Set DESCSZ to the size of the note descriptor. When possible,
2502 // set DESC to the note descriptor contents.
2505 if (strcmp(style, "md5") == 0)
2507 else if (strcmp(style, "sha1") == 0)
2509 else if (strcmp(style, "uuid") == 0)
2511 const size_t uuidsz = 128 / 8;
2513 char buffer[uuidsz];
2514 memset(buffer, 0, uuidsz);
2516 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2518 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2522 ssize_t got = ::read(descriptor, buffer, uuidsz);
2523 release_descriptor(descriptor, true);
2525 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2526 else if (static_cast<size_t>(got) != uuidsz)
2527 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2531 desc.assign(buffer, uuidsz);
2534 else if (strncmp(style, "0x", 2) == 0)
2537 const char* p = style + 2;
2540 if (hex_p(p[0]) && hex_p(p[1]))
2542 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2546 else if (*p == '-' || *p == ':')
2549 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2552 descsz = desc.size();
2555 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2558 size_t trailing_padding;
2559 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2560 ".note.gnu.build-id", descsz, true,
2567 // We know the value already, so we fill it in now.
2568 gold_assert(desc.size() == descsz);
2570 Output_section_data* posd = new Output_data_const(desc, 4);
2571 os->add_output_section_data(posd);
2573 if (trailing_padding != 0)
2575 posd = new Output_data_zero_fill(trailing_padding, 0);
2576 os->add_output_section_data(posd);
2581 // We need to compute a checksum after we have completed the
2583 gold_assert(trailing_padding == 0);
2584 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2585 os->add_output_section_data(this->build_id_note_);
2589 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2590 // field of the former should point to the latter. I'm not sure who
2591 // started this, but the GNU linker does it, and some tools depend
2595 Layout::link_stabs_sections()
2597 if (!this->have_stabstr_section_)
2600 for (Section_list::iterator p = this->section_list_.begin();
2601 p != this->section_list_.end();
2604 if ((*p)->type() != elfcpp::SHT_STRTAB)
2607 const char* name = (*p)->name();
2608 if (strncmp(name, ".stab", 5) != 0)
2611 size_t len = strlen(name);
2612 if (strcmp(name + len - 3, "str") != 0)
2615 std::string stab_name(name, len - 3);
2616 Output_section* stab_sec;
2617 stab_sec = this->find_output_section(stab_name.c_str());
2618 if (stab_sec != NULL)
2619 stab_sec->set_link_section(*p);
2623 // Create .gnu_incremental_inputs and related sections needed
2624 // for the next run of incremental linking to check what has changed.
2627 Layout::create_incremental_info_sections(Symbol_table* symtab)
2629 Incremental_inputs* incr = this->incremental_inputs_;
2631 gold_assert(incr != NULL);
2633 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2634 incr->create_data_sections(symtab);
2636 // Add the .gnu_incremental_inputs section.
2637 const char* incremental_inputs_name =
2638 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2639 Output_section* incremental_inputs_os =
2640 this->make_output_section(incremental_inputs_name,
2641 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2642 ORDER_INVALID, false);
2643 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2645 // Add the .gnu_incremental_symtab section.
2646 const char* incremental_symtab_name =
2647 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2648 Output_section* incremental_symtab_os =
2649 this->make_output_section(incremental_symtab_name,
2650 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2651 ORDER_INVALID, false);
2652 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2653 incremental_symtab_os->set_entsize(4);
2655 // Add the .gnu_incremental_relocs section.
2656 const char* incremental_relocs_name =
2657 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2658 Output_section* incremental_relocs_os =
2659 this->make_output_section(incremental_relocs_name,
2660 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2661 ORDER_INVALID, false);
2662 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2663 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2665 // Add the .gnu_incremental_got_plt section.
2666 const char* incremental_got_plt_name =
2667 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2668 Output_section* incremental_got_plt_os =
2669 this->make_output_section(incremental_got_plt_name,
2670 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2671 ORDER_INVALID, false);
2672 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2674 // Add the .gnu_incremental_strtab section.
2675 const char* incremental_strtab_name =
2676 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2677 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2678 elfcpp::SHT_STRTAB, 0,
2679 ORDER_INVALID, false);
2680 Output_data_strtab* strtab_data =
2681 new Output_data_strtab(incr->get_stringpool());
2682 incremental_strtab_os->add_output_section_data(strtab_data);
2684 incremental_inputs_os->set_after_input_sections();
2685 incremental_symtab_os->set_after_input_sections();
2686 incremental_relocs_os->set_after_input_sections();
2687 incremental_got_plt_os->set_after_input_sections();
2689 incremental_inputs_os->set_link_section(incremental_strtab_os);
2690 incremental_symtab_os->set_link_section(incremental_inputs_os);
2691 incremental_relocs_os->set_link_section(incremental_inputs_os);
2692 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2695 // Return whether SEG1 should be before SEG2 in the output file. This
2696 // is based entirely on the segment type and flags. When this is
2697 // called the segment addresses has normally not yet been set.
2700 Layout::segment_precedes(const Output_segment* seg1,
2701 const Output_segment* seg2)
2703 elfcpp::Elf_Word type1 = seg1->type();
2704 elfcpp::Elf_Word type2 = seg2->type();
2706 // The single PT_PHDR segment is required to precede any loadable
2707 // segment. We simply make it always first.
2708 if (type1 == elfcpp::PT_PHDR)
2710 gold_assert(type2 != elfcpp::PT_PHDR);
2713 if (type2 == elfcpp::PT_PHDR)
2716 // The single PT_INTERP segment is required to precede any loadable
2717 // segment. We simply make it always second.
2718 if (type1 == elfcpp::PT_INTERP)
2720 gold_assert(type2 != elfcpp::PT_INTERP);
2723 if (type2 == elfcpp::PT_INTERP)
2726 // We then put PT_LOAD segments before any other segments.
2727 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2729 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2732 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2733 // segment, because that is where the dynamic linker expects to find
2734 // it (this is just for efficiency; other positions would also work
2736 if (type1 == elfcpp::PT_TLS
2737 && type2 != elfcpp::PT_TLS
2738 && type2 != elfcpp::PT_GNU_RELRO)
2740 if (type2 == elfcpp::PT_TLS
2741 && type1 != elfcpp::PT_TLS
2742 && type1 != elfcpp::PT_GNU_RELRO)
2745 // We put the PT_GNU_RELRO segment last, because that is where the
2746 // dynamic linker expects to find it (as with PT_TLS, this is just
2748 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2750 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2753 const elfcpp::Elf_Word flags1 = seg1->flags();
2754 const elfcpp::Elf_Word flags2 = seg2->flags();
2756 // The order of non-PT_LOAD segments is unimportant. We simply sort
2757 // by the numeric segment type and flags values. There should not
2758 // be more than one segment with the same type and flags.
2759 if (type1 != elfcpp::PT_LOAD)
2762 return type1 < type2;
2763 gold_assert(flags1 != flags2);
2764 return flags1 < flags2;
2767 // If the addresses are set already, sort by load address.
2768 if (seg1->are_addresses_set())
2770 if (!seg2->are_addresses_set())
2773 unsigned int section_count1 = seg1->output_section_count();
2774 unsigned int section_count2 = seg2->output_section_count();
2775 if (section_count1 == 0 && section_count2 > 0)
2777 if (section_count1 > 0 && section_count2 == 0)
2780 uint64_t paddr1 = (seg1->are_addresses_set()
2782 : seg1->first_section_load_address());
2783 uint64_t paddr2 = (seg2->are_addresses_set()
2785 : seg2->first_section_load_address());
2787 if (paddr1 != paddr2)
2788 return paddr1 < paddr2;
2790 else if (seg2->are_addresses_set())
2793 // A segment which holds large data comes after a segment which does
2794 // not hold large data.
2795 if (seg1->is_large_data_segment())
2797 if (!seg2->is_large_data_segment())
2800 else if (seg2->is_large_data_segment())
2803 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2804 // segments come before writable segments. Then writable segments
2805 // with data come before writable segments without data. Then
2806 // executable segments come before non-executable segments. Then
2807 // the unlikely case of a non-readable segment comes before the
2808 // normal case of a readable segment. If there are multiple
2809 // segments with the same type and flags, we require that the
2810 // address be set, and we sort by virtual address and then physical
2812 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2813 return (flags1 & elfcpp::PF_W) == 0;
2814 if ((flags1 & elfcpp::PF_W) != 0
2815 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2816 return seg1->has_any_data_sections();
2817 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2818 return (flags1 & elfcpp::PF_X) != 0;
2819 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2820 return (flags1 & elfcpp::PF_R) == 0;
2822 // We shouldn't get here--we shouldn't create segments which we
2823 // can't distinguish.
2827 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2830 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2832 uint64_t unsigned_off = off;
2833 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2834 | (addr & (abi_pagesize - 1)));
2835 if (aligned_off < unsigned_off)
2836 aligned_off += abi_pagesize;
2840 // Set the file offsets of all the segments, and all the sections they
2841 // contain. They have all been created. LOAD_SEG must be be laid out
2842 // first. Return the offset of the data to follow.
2845 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2846 unsigned int* pshndx)
2848 // Sort them into the final order.
2849 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2850 Layout::Compare_segments());
2852 // Find the PT_LOAD segments, and set their addresses and offsets
2853 // and their section's addresses and offsets.
2855 if (parameters->options().user_set_Ttext())
2856 addr = parameters->options().Ttext();
2857 else if (parameters->options().output_is_position_independent())
2860 addr = target->default_text_segment_address();
2863 // If LOAD_SEG is NULL, then the file header and segment headers
2864 // will not be loadable. But they still need to be at offset 0 in
2865 // the file. Set their offsets now.
2866 if (load_seg == NULL)
2868 for (Data_list::iterator p = this->special_output_list_.begin();
2869 p != this->special_output_list_.end();
2872 off = align_address(off, (*p)->addralign());
2873 (*p)->set_address_and_file_offset(0, off);
2874 off += (*p)->data_size();
2878 unsigned int increase_relro = this->increase_relro_;
2879 if (this->script_options_->saw_sections_clause())
2882 const bool check_sections = parameters->options().check_sections();
2883 Output_segment* last_load_segment = NULL;
2885 for (Segment_list::iterator p = this->segment_list_.begin();
2886 p != this->segment_list_.end();
2889 if ((*p)->type() == elfcpp::PT_LOAD)
2891 if (load_seg != NULL && load_seg != *p)
2895 bool are_addresses_set = (*p)->are_addresses_set();
2896 if (are_addresses_set)
2898 // When it comes to setting file offsets, we care about
2899 // the physical address.
2900 addr = (*p)->paddr();
2902 else if (parameters->options().user_set_Tdata()
2903 && ((*p)->flags() & elfcpp::PF_W) != 0
2904 && (!parameters->options().user_set_Tbss()
2905 || (*p)->has_any_data_sections()))
2907 addr = parameters->options().Tdata();
2908 are_addresses_set = true;
2910 else if (parameters->options().user_set_Tbss()
2911 && ((*p)->flags() & elfcpp::PF_W) != 0
2912 && !(*p)->has_any_data_sections())
2914 addr = parameters->options().Tbss();
2915 are_addresses_set = true;
2918 uint64_t orig_addr = addr;
2919 uint64_t orig_off = off;
2921 uint64_t aligned_addr = 0;
2922 uint64_t abi_pagesize = target->abi_pagesize();
2923 uint64_t common_pagesize = target->common_pagesize();
2925 if (!parameters->options().nmagic()
2926 && !parameters->options().omagic())
2927 (*p)->set_minimum_p_align(common_pagesize);
2929 if (!are_addresses_set)
2931 // Skip the address forward one page, maintaining the same
2932 // position within the page. This lets us store both segments
2933 // overlapping on a single page in the file, but the loader will
2934 // put them on different pages in memory. We will revisit this
2935 // decision once we know the size of the segment.
2937 addr = align_address(addr, (*p)->maximum_alignment());
2938 aligned_addr = addr;
2940 if ((addr & (abi_pagesize - 1)) != 0)
2941 addr = addr + abi_pagesize;
2943 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2946 if (!parameters->options().nmagic()
2947 && !parameters->options().omagic())
2948 off = align_file_offset(off, addr, abi_pagesize);
2949 else if (load_seg == NULL)
2951 // This is -N or -n with a section script which prevents
2952 // us from using a load segment. We need to ensure that
2953 // the file offset is aligned to the alignment of the
2954 // segment. This is because the linker script
2955 // implicitly assumed a zero offset. If we don't align
2956 // here, then the alignment of the sections in the
2957 // linker script may not match the alignment of the
2958 // sections in the set_section_addresses call below,
2959 // causing an error about dot moving backward.
2960 off = align_address(off, (*p)->maximum_alignment());
2963 unsigned int shndx_hold = *pshndx;
2964 bool has_relro = false;
2965 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2970 // Now that we know the size of this segment, we may be able
2971 // to save a page in memory, at the cost of wasting some
2972 // file space, by instead aligning to the start of a new
2973 // page. Here we use the real machine page size rather than
2974 // the ABI mandated page size. If the segment has been
2975 // aligned so that the relro data ends at a page boundary,
2976 // we do not try to realign it.
2978 if (!are_addresses_set
2980 && aligned_addr != addr
2981 && !parameters->incremental())
2983 uint64_t first_off = (common_pagesize
2985 & (common_pagesize - 1)));
2986 uint64_t last_off = new_addr & (common_pagesize - 1);
2989 && ((aligned_addr & ~ (common_pagesize - 1))
2990 != (new_addr & ~ (common_pagesize - 1)))
2991 && first_off + last_off <= common_pagesize)
2993 *pshndx = shndx_hold;
2994 addr = align_address(aligned_addr, common_pagesize);
2995 addr = align_address(addr, (*p)->maximum_alignment());
2996 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2997 off = align_file_offset(off, addr, abi_pagesize);
2999 increase_relro = this->increase_relro_;
3000 if (this->script_options_->saw_sections_clause())
3004 new_addr = (*p)->set_section_addresses(this, true, addr,
3013 // Implement --check-sections. We know that the segments
3014 // are sorted by LMA.
3015 if (check_sections && last_load_segment != NULL)
3017 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3018 if (last_load_segment->paddr() + last_load_segment->memsz()
3021 unsigned long long lb1 = last_load_segment->paddr();
3022 unsigned long long le1 = lb1 + last_load_segment->memsz();
3023 unsigned long long lb2 = (*p)->paddr();
3024 unsigned long long le2 = lb2 + (*p)->memsz();
3025 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3026 "[0x%llx -> 0x%llx]"),
3027 lb1, le1, lb2, le2);
3030 last_load_segment = *p;
3034 // Handle the non-PT_LOAD segments, setting their offsets from their
3035 // section's offsets.
3036 for (Segment_list::iterator p = this->segment_list_.begin();
3037 p != this->segment_list_.end();
3040 if ((*p)->type() != elfcpp::PT_LOAD)
3041 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3046 // Set the TLS offsets for each section in the PT_TLS segment.
3047 if (this->tls_segment_ != NULL)
3048 this->tls_segment_->set_tls_offsets();
3053 // Set the offsets of all the allocated sections when doing a
3054 // relocatable link. This does the same jobs as set_segment_offsets,
3055 // only for a relocatable link.
3058 Layout::set_relocatable_section_offsets(Output_data* file_header,
3059 unsigned int* pshndx)
3063 file_header->set_address_and_file_offset(0, 0);
3064 off += file_header->data_size();
3066 for (Section_list::iterator p = this->section_list_.begin();
3067 p != this->section_list_.end();
3070 // We skip unallocated sections here, except that group sections
3071 // have to come first.
3072 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3073 && (*p)->type() != elfcpp::SHT_GROUP)
3076 off = align_address(off, (*p)->addralign());
3078 // The linker script might have set the address.
3079 if (!(*p)->is_address_valid())
3080 (*p)->set_address(0);
3081 (*p)->set_file_offset(off);
3082 (*p)->finalize_data_size();
3083 off += (*p)->data_size();
3085 (*p)->set_out_shndx(*pshndx);
3092 // Set the file offset of all the sections not associated with a
3096 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3098 off_t startoff = off;
3101 for (Section_list::iterator p = this->unattached_section_list_.begin();
3102 p != this->unattached_section_list_.end();
3105 // The symtab section is handled in create_symtab_sections.
3106 if (*p == this->symtab_section_)
3109 // If we've already set the data size, don't set it again.
3110 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3113 if (pass == BEFORE_INPUT_SECTIONS_PASS
3114 && (*p)->requires_postprocessing())
3116 (*p)->create_postprocessing_buffer();
3117 this->any_postprocessing_sections_ = true;
3120 if (pass == BEFORE_INPUT_SECTIONS_PASS
3121 && (*p)->after_input_sections())
3123 else if (pass == POSTPROCESSING_SECTIONS_PASS
3124 && (!(*p)->after_input_sections()
3125 || (*p)->type() == elfcpp::SHT_STRTAB))
3127 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3128 && (!(*p)->after_input_sections()
3129 || (*p)->type() != elfcpp::SHT_STRTAB))
3132 if (!parameters->incremental_update())
3134 off = align_address(off, (*p)->addralign());
3135 (*p)->set_file_offset(off);
3136 (*p)->finalize_data_size();
3140 // Incremental update: allocate file space from free list.
3141 (*p)->pre_finalize_data_size();
3142 off_t current_size = (*p)->current_data_size();
3143 off = this->allocate(current_size, (*p)->addralign(), startoff);
3146 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3147 this->free_list_.dump();
3148 gold_assert((*p)->output_section() != NULL);
3149 gold_fallback(_("out of patch space for section %s; "
3150 "relink with --incremental-full"),
3151 (*p)->output_section()->name());
3153 (*p)->set_file_offset(off);
3154 (*p)->finalize_data_size();
3155 if ((*p)->data_size() > current_size)
3157 gold_assert((*p)->output_section() != NULL);
3158 gold_fallback(_("%s: section changed size; "
3159 "relink with --incremental-full"),
3160 (*p)->output_section()->name());
3162 gold_debug(DEBUG_INCREMENTAL,
3163 "set_section_offsets: %08lx %08lx %s",
3164 static_cast<long>(off),
3165 static_cast<long>((*p)->data_size()),
3166 ((*p)->output_section() != NULL
3167 ? (*p)->output_section()->name() : "(special)"));
3170 off += (*p)->data_size();
3174 // At this point the name must be set.
3175 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3176 this->namepool_.add((*p)->name(), false, NULL);
3181 // Set the section indexes of all the sections not associated with a
3185 Layout::set_section_indexes(unsigned int shndx)
3187 for (Section_list::iterator p = this->unattached_section_list_.begin();
3188 p != this->unattached_section_list_.end();
3191 if (!(*p)->has_out_shndx())
3193 (*p)->set_out_shndx(shndx);
3200 // Set the section addresses according to the linker script. This is
3201 // only called when we see a SECTIONS clause. This returns the
3202 // program segment which should hold the file header and segment
3203 // headers, if any. It will return NULL if they should not be in a
3207 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3209 Script_sections* ss = this->script_options_->script_sections();
3210 gold_assert(ss->saw_sections_clause());
3211 return this->script_options_->set_section_addresses(symtab, this);
3214 // Place the orphan sections in the linker script.
3217 Layout::place_orphan_sections_in_script()
3219 Script_sections* ss = this->script_options_->script_sections();
3220 gold_assert(ss->saw_sections_clause());
3222 // Place each orphaned output section in the script.
3223 for (Section_list::iterator p = this->section_list_.begin();
3224 p != this->section_list_.end();
3227 if (!(*p)->found_in_sections_clause())
3228 ss->place_orphan(*p);
3232 // Count the local symbols in the regular symbol table and the dynamic
3233 // symbol table, and build the respective string pools.
3236 Layout::count_local_symbols(const Task* task,
3237 const Input_objects* input_objects)
3239 // First, figure out an upper bound on the number of symbols we'll
3240 // be inserting into each pool. This helps us create the pools with
3241 // the right size, to avoid unnecessary hashtable resizing.
3242 unsigned int symbol_count = 0;
3243 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3244 p != input_objects->relobj_end();
3246 symbol_count += (*p)->local_symbol_count();
3248 // Go from "upper bound" to "estimate." We overcount for two
3249 // reasons: we double-count symbols that occur in more than one
3250 // object file, and we count symbols that are dropped from the
3251 // output. Add it all together and assume we overcount by 100%.
3254 // We assume all symbols will go into both the sympool and dynpool.
3255 this->sympool_.reserve(symbol_count);
3256 this->dynpool_.reserve(symbol_count);
3258 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3259 p != input_objects->relobj_end();
3262 Task_lock_obj<Object> tlo(task, *p);
3263 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3267 // Create the symbol table sections. Here we also set the final
3268 // values of the symbols. At this point all the loadable sections are
3269 // fully laid out. SHNUM is the number of sections so far.
3272 Layout::create_symtab_sections(const Input_objects* input_objects,
3273 Symbol_table* symtab,
3279 if (parameters->target().get_size() == 32)
3281 symsize = elfcpp::Elf_sizes<32>::sym_size;
3284 else if (parameters->target().get_size() == 64)
3286 symsize = elfcpp::Elf_sizes<64>::sym_size;
3292 // Compute file offsets relative to the start of the symtab section.
3295 // Save space for the dummy symbol at the start of the section. We
3296 // never bother to write this out--it will just be left as zero.
3298 unsigned int local_symbol_index = 1;
3300 // Add STT_SECTION symbols for each Output section which needs one.
3301 for (Section_list::iterator p = this->section_list_.begin();
3302 p != this->section_list_.end();
3305 if (!(*p)->needs_symtab_index())
3306 (*p)->set_symtab_index(-1U);
3309 (*p)->set_symtab_index(local_symbol_index);
3310 ++local_symbol_index;
3315 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3316 p != input_objects->relobj_end();
3319 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3321 off += (index - local_symbol_index) * symsize;
3322 local_symbol_index = index;
3325 unsigned int local_symcount = local_symbol_index;
3326 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3329 size_t dyn_global_index;
3331 if (this->dynsym_section_ == NULL)
3334 dyn_global_index = 0;
3339 dyn_global_index = this->dynsym_section_->info();
3340 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3341 dynoff = this->dynsym_section_->offset() + locsize;
3342 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3343 gold_assert(static_cast<off_t>(dyncount * symsize)
3344 == this->dynsym_section_->data_size() - locsize);
3347 off_t global_off = off;
3348 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3349 &this->sympool_, &local_symcount);
3351 if (!parameters->options().strip_all())
3353 this->sympool_.set_string_offsets();
3355 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3356 Output_section* osymtab = this->make_output_section(symtab_name,
3360 this->symtab_section_ = osymtab;
3362 Output_section_data* pos = new Output_data_fixed_space(off, align,
3364 osymtab->add_output_section_data(pos);
3366 // We generate a .symtab_shndx section if we have more than
3367 // SHN_LORESERVE sections. Technically it is possible that we
3368 // don't need one, because it is possible that there are no
3369 // symbols in any of sections with indexes larger than
3370 // SHN_LORESERVE. That is probably unusual, though, and it is
3371 // easier to always create one than to compute section indexes
3372 // twice (once here, once when writing out the symbols).
3373 if (shnum >= elfcpp::SHN_LORESERVE)
3375 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3377 Output_section* osymtab_xindex =
3378 this->make_output_section(symtab_xindex_name,
3379 elfcpp::SHT_SYMTAB_SHNDX, 0,
3380 ORDER_INVALID, false);
3382 size_t symcount = off / symsize;
3383 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3385 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3387 osymtab_xindex->set_link_section(osymtab);
3388 osymtab_xindex->set_addralign(4);
3389 osymtab_xindex->set_entsize(4);
3391 osymtab_xindex->set_after_input_sections();
3393 // This tells the driver code to wait until the symbol table
3394 // has written out before writing out the postprocessing
3395 // sections, including the .symtab_shndx section.
3396 this->any_postprocessing_sections_ = true;
3399 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3400 Output_section* ostrtab = this->make_output_section(strtab_name,
3405 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3406 ostrtab->add_output_section_data(pstr);
3409 if (!parameters->incremental_update())
3410 symtab_off = align_address(*poff, align);
3413 symtab_off = this->allocate(off, align, *poff);
3415 gold_fallback(_("out of patch space for symbol table; "
3416 "relink with --incremental-full"));
3417 gold_debug(DEBUG_INCREMENTAL,
3418 "create_symtab_sections: %08lx %08lx .symtab",
3419 static_cast<long>(symtab_off),
3420 static_cast<long>(off));
3423 symtab->set_file_offset(symtab_off + global_off);
3424 osymtab->set_file_offset(symtab_off);
3425 osymtab->finalize_data_size();
3426 osymtab->set_link_section(ostrtab);
3427 osymtab->set_info(local_symcount);
3428 osymtab->set_entsize(symsize);
3430 if (symtab_off + off > *poff)
3431 *poff = symtab_off + off;
3435 // Create the .shstrtab section, which holds the names of the
3436 // sections. At the time this is called, we have created all the
3437 // output sections except .shstrtab itself.
3440 Layout::create_shstrtab()
3442 // FIXME: We don't need to create a .shstrtab section if we are
3443 // stripping everything.
3445 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3447 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3448 ORDER_INVALID, false);
3450 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3452 // We can't write out this section until we've set all the
3453 // section names, and we don't set the names of compressed
3454 // output sections until relocations are complete. FIXME: With
3455 // the current names we use, this is unnecessary.
3456 os->set_after_input_sections();
3459 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3460 os->add_output_section_data(posd);
3465 // Create the section headers. SIZE is 32 or 64. OFF is the file
3469 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3471 Output_section_headers* oshdrs;
3472 oshdrs = new Output_section_headers(this,
3473 &this->segment_list_,
3474 &this->section_list_,
3475 &this->unattached_section_list_,
3479 if (!parameters->incremental_update())
3480 off = align_address(*poff, oshdrs->addralign());
3483 oshdrs->pre_finalize_data_size();
3484 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3486 gold_fallback(_("out of patch space for section header table; "
3487 "relink with --incremental-full"));
3488 gold_debug(DEBUG_INCREMENTAL,
3489 "create_shdrs: %08lx %08lx (section header table)",
3490 static_cast<long>(off),
3491 static_cast<long>(off + oshdrs->data_size()));
3493 oshdrs->set_address_and_file_offset(0, off);
3494 off += oshdrs->data_size();
3497 this->section_headers_ = oshdrs;
3500 // Count the allocated sections.
3503 Layout::allocated_output_section_count() const
3505 size_t section_count = 0;
3506 for (Segment_list::const_iterator p = this->segment_list_.begin();
3507 p != this->segment_list_.end();
3509 section_count += (*p)->output_section_count();
3510 return section_count;
3513 // Create the dynamic symbol table.
3516 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3517 Symbol_table* symtab,
3518 Output_section** pdynstr,
3519 unsigned int* plocal_dynamic_count,
3520 std::vector<Symbol*>* pdynamic_symbols,
3521 Versions* pversions)
3523 // Count all the symbols in the dynamic symbol table, and set the
3524 // dynamic symbol indexes.
3526 // Skip symbol 0, which is always all zeroes.
3527 unsigned int index = 1;
3529 // Add STT_SECTION symbols for each Output section which needs one.
3530 for (Section_list::iterator p = this->section_list_.begin();
3531 p != this->section_list_.end();
3534 if (!(*p)->needs_dynsym_index())
3535 (*p)->set_dynsym_index(-1U);
3538 (*p)->set_dynsym_index(index);
3543 // Count the local symbols that need to go in the dynamic symbol table,
3544 // and set the dynamic symbol indexes.
3545 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3546 p != input_objects->relobj_end();
3549 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3553 unsigned int local_symcount = index;
3554 *plocal_dynamic_count = local_symcount;
3556 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3557 &this->dynpool_, pversions);
3561 const int size = parameters->target().get_size();
3564 symsize = elfcpp::Elf_sizes<32>::sym_size;
3567 else if (size == 64)
3569 symsize = elfcpp::Elf_sizes<64>::sym_size;
3575 // Create the dynamic symbol table section.
3577 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3581 ORDER_DYNAMIC_LINKER,
3584 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3587 dynsym->add_output_section_data(odata);
3589 dynsym->set_info(local_symcount);
3590 dynsym->set_entsize(symsize);
3591 dynsym->set_addralign(align);
3593 this->dynsym_section_ = dynsym;
3595 Output_data_dynamic* const odyn = this->dynamic_data_;
3596 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3597 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3599 // If there are more than SHN_LORESERVE allocated sections, we
3600 // create a .dynsym_shndx section. It is possible that we don't
3601 // need one, because it is possible that there are no dynamic
3602 // symbols in any of the sections with indexes larger than
3603 // SHN_LORESERVE. This is probably unusual, though, and at this
3604 // time we don't know the actual section indexes so it is
3605 // inconvenient to check.
3606 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3608 Output_section* dynsym_xindex =
3609 this->choose_output_section(NULL, ".dynsym_shndx",
3610 elfcpp::SHT_SYMTAB_SHNDX,
3612 false, ORDER_DYNAMIC_LINKER, false);
3614 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3616 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3618 dynsym_xindex->set_link_section(dynsym);
3619 dynsym_xindex->set_addralign(4);
3620 dynsym_xindex->set_entsize(4);
3622 dynsym_xindex->set_after_input_sections();
3624 // This tells the driver code to wait until the symbol table has
3625 // written out before writing out the postprocessing sections,
3626 // including the .dynsym_shndx section.
3627 this->any_postprocessing_sections_ = true;
3630 // Create the dynamic string table section.
3632 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3636 ORDER_DYNAMIC_LINKER,
3639 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3640 dynstr->add_output_section_data(strdata);
3642 dynsym->set_link_section(dynstr);
3643 this->dynamic_section_->set_link_section(dynstr);
3645 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3646 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3650 // Create the hash tables.
3652 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3653 || strcmp(parameters->options().hash_style(), "both") == 0)
3655 unsigned char* phash;
3656 unsigned int hashlen;
3657 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3660 Output_section* hashsec =
3661 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3662 elfcpp::SHF_ALLOC, false,
3663 ORDER_DYNAMIC_LINKER, false);
3665 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3669 hashsec->add_output_section_data(hashdata);
3671 hashsec->set_link_section(dynsym);
3672 hashsec->set_entsize(4);
3674 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3677 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3678 || strcmp(parameters->options().hash_style(), "both") == 0)
3680 unsigned char* phash;
3681 unsigned int hashlen;
3682 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3685 Output_section* hashsec =
3686 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3687 elfcpp::SHF_ALLOC, false,
3688 ORDER_DYNAMIC_LINKER, false);
3690 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3694 hashsec->add_output_section_data(hashdata);
3696 hashsec->set_link_section(dynsym);
3698 // For a 64-bit target, the entries in .gnu.hash do not have a
3699 // uniform size, so we only set the entry size for a 32-bit
3701 if (parameters->target().get_size() == 32)
3702 hashsec->set_entsize(4);
3704 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3708 // Assign offsets to each local portion of the dynamic symbol table.
3711 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3713 Output_section* dynsym = this->dynsym_section_;
3714 gold_assert(dynsym != NULL);
3716 off_t off = dynsym->offset();
3718 // Skip the dummy symbol at the start of the section.
3719 off += dynsym->entsize();
3721 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3722 p != input_objects->relobj_end();
3725 unsigned int count = (*p)->set_local_dynsym_offset(off);
3726 off += count * dynsym->entsize();
3730 // Create the version sections.
3733 Layout::create_version_sections(const Versions* versions,
3734 const Symbol_table* symtab,
3735 unsigned int local_symcount,
3736 const std::vector<Symbol*>& dynamic_symbols,
3737 const Output_section* dynstr)
3739 if (!versions->any_defs() && !versions->any_needs())
3742 switch (parameters->size_and_endianness())
3744 #ifdef HAVE_TARGET_32_LITTLE
3745 case Parameters::TARGET_32_LITTLE:
3746 this->sized_create_version_sections<32, false>(versions, symtab,
3748 dynamic_symbols, dynstr);
3751 #ifdef HAVE_TARGET_32_BIG
3752 case Parameters::TARGET_32_BIG:
3753 this->sized_create_version_sections<32, true>(versions, symtab,
3755 dynamic_symbols, dynstr);
3758 #ifdef HAVE_TARGET_64_LITTLE
3759 case Parameters::TARGET_64_LITTLE:
3760 this->sized_create_version_sections<64, false>(versions, symtab,
3762 dynamic_symbols, dynstr);
3765 #ifdef HAVE_TARGET_64_BIG
3766 case Parameters::TARGET_64_BIG:
3767 this->sized_create_version_sections<64, true>(versions, symtab,
3769 dynamic_symbols, dynstr);
3777 // Create the version sections, sized version.
3779 template<int size, bool big_endian>
3781 Layout::sized_create_version_sections(
3782 const Versions* versions,
3783 const Symbol_table* symtab,
3784 unsigned int local_symcount,
3785 const std::vector<Symbol*>& dynamic_symbols,
3786 const Output_section* dynstr)
3788 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3789 elfcpp::SHT_GNU_versym,
3792 ORDER_DYNAMIC_LINKER,
3795 unsigned char* vbuf;
3797 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3802 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3805 vsec->add_output_section_data(vdata);
3806 vsec->set_entsize(2);
3807 vsec->set_link_section(this->dynsym_section_);
3809 Output_data_dynamic* const odyn = this->dynamic_data_;
3810 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3812 if (versions->any_defs())
3814 Output_section* vdsec;
3815 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3816 elfcpp::SHT_GNU_verdef,
3818 false, ORDER_DYNAMIC_LINKER, false);
3820 unsigned char* vdbuf;
3821 unsigned int vdsize;
3822 unsigned int vdentries;
3823 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3824 &vdsize, &vdentries);
3826 Output_section_data* vddata =
3827 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3829 vdsec->add_output_section_data(vddata);
3830 vdsec->set_link_section(dynstr);
3831 vdsec->set_info(vdentries);
3833 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3834 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3837 if (versions->any_needs())
3839 Output_section* vnsec;
3840 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3841 elfcpp::SHT_GNU_verneed,
3843 false, ORDER_DYNAMIC_LINKER, false);
3845 unsigned char* vnbuf;
3846 unsigned int vnsize;
3847 unsigned int vnentries;
3848 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3852 Output_section_data* vndata =
3853 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3855 vnsec->add_output_section_data(vndata);
3856 vnsec->set_link_section(dynstr);
3857 vnsec->set_info(vnentries);
3859 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3860 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3864 // Create the .interp section and PT_INTERP segment.
3867 Layout::create_interp(const Target* target)
3869 gold_assert(this->interp_segment_ == NULL);
3871 const char* interp = parameters->options().dynamic_linker();
3874 interp = target->dynamic_linker();
3875 gold_assert(interp != NULL);
3878 size_t len = strlen(interp) + 1;
3880 Output_section_data* odata = new Output_data_const(interp, len, 1);
3882 Output_section* osec;
3884 // If we are using a SECTIONS clause, let it decide where the
3885 // .interp section should go. Otherwise always create a new section
3886 // so that this .interp section does not get confused with any
3887 // section of the same name in the program.
3888 if (this->script_options_->saw_sections_clause())
3889 osec = this->choose_output_section(NULL, ".interp", elfcpp::SHT_PROGBITS,
3890 elfcpp::SHF_ALLOC, false, ORDER_INTERP,
3894 const char* n = this->namepool_.add("interp", false, NULL);
3895 osec = this->make_output_section(n, elfcpp::SHT_PROGBITS,
3896 elfcpp::SHF_ALLOC, ORDER_INTERP, false);
3899 osec->add_output_section_data(odata);
3901 if (!this->script_options_->saw_phdrs_clause())
3903 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3905 oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3909 // Add dynamic tags for the PLT and the dynamic relocs. This is
3910 // called by the target-specific code. This does nothing if not doing
3913 // USE_REL is true for REL relocs rather than RELA relocs.
3915 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3917 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3918 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3919 // some targets have multiple reloc sections in PLT_REL.
3921 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3922 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3924 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3928 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3929 const Output_data* plt_rel,
3930 const Output_data_reloc_generic* dyn_rel,
3931 bool add_debug, bool dynrel_includes_plt)
3933 Output_data_dynamic* odyn = this->dynamic_data_;
3937 if (plt_got != NULL && plt_got->output_section() != NULL)
3938 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3940 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3942 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3943 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3944 odyn->add_constant(elfcpp::DT_PLTREL,
3945 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3948 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3950 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3952 if (plt_rel != NULL && dynrel_includes_plt)
3953 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3956 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3958 const int size = parameters->target().get_size();
3963 rel_tag = elfcpp::DT_RELENT;
3965 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3966 else if (size == 64)
3967 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3973 rel_tag = elfcpp::DT_RELAENT;
3975 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3976 else if (size == 64)
3977 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3981 odyn->add_constant(rel_tag, rel_size);
3983 if (parameters->options().combreloc())
3985 size_t c = dyn_rel->relative_reloc_count();
3987 odyn->add_constant((use_rel
3988 ? elfcpp::DT_RELCOUNT
3989 : elfcpp::DT_RELACOUNT),
3994 if (add_debug && !parameters->options().shared())
3996 // The value of the DT_DEBUG tag is filled in by the dynamic
3997 // linker at run time, and used by the debugger.
3998 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4002 // Finish the .dynamic section and PT_DYNAMIC segment.
4005 Layout::finish_dynamic_section(const Input_objects* input_objects,
4006 const Symbol_table* symtab)
4008 if (!this->script_options_->saw_phdrs_clause())
4010 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4013 oseg->add_output_section_to_nonload(this->dynamic_section_,
4014 elfcpp::PF_R | elfcpp::PF_W);
4017 Output_data_dynamic* const odyn = this->dynamic_data_;
4019 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4020 p != input_objects->dynobj_end();
4023 if (!(*p)->is_needed() && (*p)->as_needed())
4025 // This dynamic object was linked with --as-needed, but it
4030 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4033 if (parameters->options().shared())
4035 const char* soname = parameters->options().soname();
4037 odyn->add_string(elfcpp::DT_SONAME, soname);
4040 Symbol* sym = symtab->lookup(parameters->options().init());
4041 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4042 odyn->add_symbol(elfcpp::DT_INIT, sym);
4044 sym = symtab->lookup(parameters->options().fini());
4045 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4046 odyn->add_symbol(elfcpp::DT_FINI, sym);
4048 // Look for .init_array, .preinit_array and .fini_array by checking
4050 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4051 p != this->section_list_.end();
4053 switch((*p)->type())
4055 case elfcpp::SHT_FINI_ARRAY:
4056 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4057 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4059 case elfcpp::SHT_INIT_ARRAY:
4060 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4061 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4063 case elfcpp::SHT_PREINIT_ARRAY:
4064 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4065 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4071 // Add a DT_RPATH entry if needed.
4072 const General_options::Dir_list& rpath(parameters->options().rpath());
4075 std::string rpath_val;
4076 for (General_options::Dir_list::const_iterator p = rpath.begin();
4080 if (rpath_val.empty())
4081 rpath_val = p->name();
4084 // Eliminate duplicates.
4085 General_options::Dir_list::const_iterator q;
4086 for (q = rpath.begin(); q != p; ++q)
4087 if (q->name() == p->name())
4092 rpath_val += p->name();
4097 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4098 if (parameters->options().enable_new_dtags())
4099 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4102 // Look for text segments that have dynamic relocations.
4103 bool have_textrel = false;
4104 if (!this->script_options_->saw_sections_clause())
4106 for (Segment_list::const_iterator p = this->segment_list_.begin();
4107 p != this->segment_list_.end();
4110 if (((*p)->flags() & elfcpp::PF_W) == 0
4111 && (*p)->has_dynamic_reloc())
4113 have_textrel = true;
4120 // We don't know the section -> segment mapping, so we are
4121 // conservative and just look for readonly sections with
4122 // relocations. If those sections wind up in writable segments,
4123 // then we have created an unnecessary DT_TEXTREL entry.
4124 for (Section_list::const_iterator p = this->section_list_.begin();
4125 p != this->section_list_.end();
4128 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4129 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4130 && ((*p)->has_dynamic_reloc()))
4132 have_textrel = true;
4138 // Add a DT_FLAGS entry. We add it even if no flags are set so that
4139 // post-link tools can easily modify these flags if desired.
4140 unsigned int flags = 0;
4143 // Add a DT_TEXTREL for compatibility with older loaders.
4144 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4145 flags |= elfcpp::DF_TEXTREL;
4147 if (parameters->options().text())
4148 gold_error(_("read-only segment has dynamic relocations"));
4149 else if (parameters->options().warn_shared_textrel()
4150 && parameters->options().shared())
4151 gold_warning(_("shared library text segment is not shareable"));
4153 if (parameters->options().shared() && this->has_static_tls())
4154 flags |= elfcpp::DF_STATIC_TLS;
4155 if (parameters->options().origin())
4156 flags |= elfcpp::DF_ORIGIN;
4157 if (parameters->options().Bsymbolic())
4159 flags |= elfcpp::DF_SYMBOLIC;
4160 // Add DT_SYMBOLIC for compatibility with older loaders.
4161 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4163 if (parameters->options().now())
4164 flags |= elfcpp::DF_BIND_NOW;
4165 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4168 if (parameters->options().initfirst())
4169 flags |= elfcpp::DF_1_INITFIRST;
4170 if (parameters->options().interpose())
4171 flags |= elfcpp::DF_1_INTERPOSE;
4172 if (parameters->options().loadfltr())
4173 flags |= elfcpp::DF_1_LOADFLTR;
4174 if (parameters->options().nodefaultlib())
4175 flags |= elfcpp::DF_1_NODEFLIB;
4176 if (parameters->options().nodelete())
4177 flags |= elfcpp::DF_1_NODELETE;
4178 if (parameters->options().nodlopen())
4179 flags |= elfcpp::DF_1_NOOPEN;
4180 if (parameters->options().nodump())
4181 flags |= elfcpp::DF_1_NODUMP;
4182 if (!parameters->options().shared())
4183 flags &= ~(elfcpp::DF_1_INITFIRST
4184 | elfcpp::DF_1_NODELETE
4185 | elfcpp::DF_1_NOOPEN);
4186 if (parameters->options().origin())
4187 flags |= elfcpp::DF_1_ORIGIN;
4188 if (parameters->options().now())
4189 flags |= elfcpp::DF_1_NOW;
4191 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4194 // Set the size of the _DYNAMIC symbol table to be the size of the
4198 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4200 Output_data_dynamic* const odyn = this->dynamic_data_;
4201 odyn->finalize_data_size();
4202 off_t data_size = odyn->data_size();
4203 const int size = parameters->target().get_size();
4205 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4206 else if (size == 64)
4207 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4212 // The mapping of input section name prefixes to output section names.
4213 // In some cases one prefix is itself a prefix of another prefix; in
4214 // such a case the longer prefix must come first. These prefixes are
4215 // based on the GNU linker default ELF linker script.
4217 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4218 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4220 MAPPING_INIT(".text.", ".text"),
4221 MAPPING_INIT(".ctors.", ".ctors"),
4222 MAPPING_INIT(".dtors.", ".dtors"),
4223 MAPPING_INIT(".rodata.", ".rodata"),
4224 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4225 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4226 MAPPING_INIT(".data.", ".data"),
4227 MAPPING_INIT(".bss.", ".bss"),
4228 MAPPING_INIT(".tdata.", ".tdata"),
4229 MAPPING_INIT(".tbss.", ".tbss"),
4230 MAPPING_INIT(".init_array.", ".init_array"),
4231 MAPPING_INIT(".fini_array.", ".fini_array"),
4232 MAPPING_INIT(".sdata.", ".sdata"),
4233 MAPPING_INIT(".sbss.", ".sbss"),
4234 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4235 // differently depending on whether it is creating a shared library.
4236 MAPPING_INIT(".sdata2.", ".sdata"),
4237 MAPPING_INIT(".sbss2.", ".sbss"),
4238 MAPPING_INIT(".lrodata.", ".lrodata"),
4239 MAPPING_INIT(".ldata.", ".ldata"),
4240 MAPPING_INIT(".lbss.", ".lbss"),
4241 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4242 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4243 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4244 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4245 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4246 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4247 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4248 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4249 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4250 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4251 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4252 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4253 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4254 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4255 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4256 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4257 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4258 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4259 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4260 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4261 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4265 const int Layout::section_name_mapping_count =
4266 (sizeof(Layout::section_name_mapping)
4267 / sizeof(Layout::section_name_mapping[0]));
4269 // Choose the output section name to use given an input section name.
4270 // Set *PLEN to the length of the name. *PLEN is initialized to the
4274 Layout::output_section_name(const char* name, size_t* plen)
4276 // gcc 4.3 generates the following sorts of section names when it
4277 // needs a section name specific to a function:
4283 // .data.rel.local.FN
4285 // .data.rel.ro.local.FN
4292 // The GNU linker maps all of those to the part before the .FN,
4293 // except that .data.rel.local.FN is mapped to .data, and
4294 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4295 // beginning with .data.rel.ro.local are grouped together.
4297 // For an anonymous namespace, the string FN can contain a '.'.
4299 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4300 // GNU linker maps to .rodata.
4302 // The .data.rel.ro sections are used with -z relro. The sections
4303 // are recognized by name. We use the same names that the GNU
4304 // linker does for these sections.
4306 // It is hard to handle this in a principled way, so we don't even
4307 // try. We use a table of mappings. If the input section name is
4308 // not found in the table, we simply use it as the output section
4311 const Section_name_mapping* psnm = section_name_mapping;
4312 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4314 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4316 *plen = psnm->tolen;
4324 // Check if a comdat group or .gnu.linkonce section with the given
4325 // NAME is selected for the link. If there is already a section,
4326 // *KEPT_SECTION is set to point to the existing section and the
4327 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4328 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4329 // *KEPT_SECTION is set to the internal copy and the function returns
4333 Layout::find_or_add_kept_section(const std::string& name,
4338 Kept_section** kept_section)
4340 // It's normal to see a couple of entries here, for the x86 thunk
4341 // sections. If we see more than a few, we're linking a C++
4342 // program, and we resize to get more space to minimize rehashing.
4343 if (this->signatures_.size() > 4
4344 && !this->resized_signatures_)
4346 reserve_unordered_map(&this->signatures_,
4347 this->number_of_input_files_ * 64);
4348 this->resized_signatures_ = true;
4351 Kept_section candidate;
4352 std::pair<Signatures::iterator, bool> ins =
4353 this->signatures_.insert(std::make_pair(name, candidate));
4355 if (kept_section != NULL)
4356 *kept_section = &ins.first->second;
4359 // This is the first time we've seen this signature.
4360 ins.first->second.set_object(object);
4361 ins.first->second.set_shndx(shndx);
4363 ins.first->second.set_is_comdat();
4365 ins.first->second.set_is_group_name();
4369 // We have already seen this signature.
4371 if (ins.first->second.is_group_name())
4373 // We've already seen a real section group with this signature.
4374 // If the kept group is from a plugin object, and we're in the
4375 // replacement phase, accept the new one as a replacement.
4376 if (ins.first->second.object() == NULL
4377 && parameters->options().plugins()->in_replacement_phase())
4379 ins.first->second.set_object(object);
4380 ins.first->second.set_shndx(shndx);
4385 else if (is_group_name)
4387 // This is a real section group, and we've already seen a
4388 // linkonce section with this signature. Record that we've seen
4389 // a section group, and don't include this section group.
4390 ins.first->second.set_is_group_name();
4395 // We've already seen a linkonce section and this is a linkonce
4396 // section. These don't block each other--this may be the same
4397 // symbol name with different section types.
4402 // Store the allocated sections into the section list.
4405 Layout::get_allocated_sections(Section_list* section_list) const
4407 for (Section_list::const_iterator p = this->section_list_.begin();
4408 p != this->section_list_.end();
4410 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4411 section_list->push_back(*p);
4414 // Create an output segment.
4417 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4419 gold_assert(!parameters->options().relocatable());
4420 Output_segment* oseg = new Output_segment(type, flags);
4421 this->segment_list_.push_back(oseg);
4423 if (type == elfcpp::PT_TLS)
4424 this->tls_segment_ = oseg;
4425 else if (type == elfcpp::PT_GNU_RELRO)
4426 this->relro_segment_ = oseg;
4427 else if (type == elfcpp::PT_INTERP)
4428 this->interp_segment_ = oseg;
4433 // Return the file offset of the normal symbol table.
4436 Layout::symtab_section_offset() const
4438 if (this->symtab_section_ != NULL)
4439 return this->symtab_section_->offset();
4443 // Write out the Output_sections. Most won't have anything to write,
4444 // since most of the data will come from input sections which are
4445 // handled elsewhere. But some Output_sections do have Output_data.
4448 Layout::write_output_sections(Output_file* of) const
4450 for (Section_list::const_iterator p = this->section_list_.begin();
4451 p != this->section_list_.end();
4454 if (!(*p)->after_input_sections())
4459 // Write out data not associated with a section or the symbol table.
4462 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4464 if (!parameters->options().strip_all())
4466 const Output_section* symtab_section = this->symtab_section_;
4467 for (Section_list::const_iterator p = this->section_list_.begin();
4468 p != this->section_list_.end();
4471 if ((*p)->needs_symtab_index())
4473 gold_assert(symtab_section != NULL);
4474 unsigned int index = (*p)->symtab_index();
4475 gold_assert(index > 0 && index != -1U);
4476 off_t off = (symtab_section->offset()
4477 + index * symtab_section->entsize());
4478 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4483 const Output_section* dynsym_section = this->dynsym_section_;
4484 for (Section_list::const_iterator p = this->section_list_.begin();
4485 p != this->section_list_.end();
4488 if ((*p)->needs_dynsym_index())
4490 gold_assert(dynsym_section != NULL);
4491 unsigned int index = (*p)->dynsym_index();
4492 gold_assert(index > 0 && index != -1U);
4493 off_t off = (dynsym_section->offset()
4494 + index * dynsym_section->entsize());
4495 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4499 // Write out the Output_data which are not in an Output_section.
4500 for (Data_list::const_iterator p = this->special_output_list_.begin();
4501 p != this->special_output_list_.end();
4506 // Write out the Output_sections which can only be written after the
4507 // input sections are complete.
4510 Layout::write_sections_after_input_sections(Output_file* of)
4512 // Determine the final section offsets, and thus the final output
4513 // file size. Note we finalize the .shstrab last, to allow the
4514 // after_input_section sections to modify their section-names before
4516 if (this->any_postprocessing_sections_)
4518 off_t off = this->output_file_size_;
4519 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4521 // Now that we've finalized the names, we can finalize the shstrab.
4523 this->set_section_offsets(off,
4524 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4526 if (off > this->output_file_size_)
4529 this->output_file_size_ = off;
4533 for (Section_list::const_iterator p = this->section_list_.begin();
4534 p != this->section_list_.end();
4537 if ((*p)->after_input_sections())
4541 this->section_headers_->write(of);
4544 // If the build ID requires computing a checksum, do so here, and
4545 // write it out. We compute a checksum over the entire file because
4546 // that is simplest.
4549 Layout::write_build_id(Output_file* of) const
4551 if (this->build_id_note_ == NULL)
4554 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4556 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4557 this->build_id_note_->data_size());
4559 const char* style = parameters->options().build_id();
4560 if (strcmp(style, "sha1") == 0)
4563 sha1_init_ctx(&ctx);
4564 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4565 sha1_finish_ctx(&ctx, ov);
4567 else if (strcmp(style, "md5") == 0)
4571 md5_process_bytes(iv, this->output_file_size_, &ctx);
4572 md5_finish_ctx(&ctx, ov);
4577 of->write_output_view(this->build_id_note_->offset(),
4578 this->build_id_note_->data_size(),
4581 of->free_input_view(0, this->output_file_size_, iv);
4584 // Write out a binary file. This is called after the link is
4585 // complete. IN is the temporary output file we used to generate the
4586 // ELF code. We simply walk through the segments, read them from
4587 // their file offset in IN, and write them to their load address in
4588 // the output file. FIXME: with a bit more work, we could support
4589 // S-records and/or Intel hex format here.
4592 Layout::write_binary(Output_file* in) const
4594 gold_assert(parameters->options().oformat_enum()
4595 == General_options::OBJECT_FORMAT_BINARY);
4597 // Get the size of the binary file.
4598 uint64_t max_load_address = 0;
4599 for (Segment_list::const_iterator p = this->segment_list_.begin();
4600 p != this->segment_list_.end();
4603 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4605 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4606 if (max_paddr > max_load_address)
4607 max_load_address = max_paddr;
4611 Output_file out(parameters->options().output_file_name());
4612 out.open(max_load_address);
4614 for (Segment_list::const_iterator p = this->segment_list_.begin();
4615 p != this->segment_list_.end();
4618 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4620 const unsigned char* vin = in->get_input_view((*p)->offset(),
4622 unsigned char* vout = out.get_output_view((*p)->paddr(),
4624 memcpy(vout, vin, (*p)->filesz());
4625 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4626 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4633 // Print the output sections to the map file.
4636 Layout::print_to_mapfile(Mapfile* mapfile) const
4638 for (Segment_list::const_iterator p = this->segment_list_.begin();
4639 p != this->segment_list_.end();
4641 (*p)->print_sections_to_mapfile(mapfile);
4644 // Print statistical information to stderr. This is used for --stats.
4647 Layout::print_stats() const
4649 this->namepool_.print_stats("section name pool");
4650 this->sympool_.print_stats("output symbol name pool");
4651 this->dynpool_.print_stats("dynamic name pool");
4653 for (Section_list::const_iterator p = this->section_list_.begin();
4654 p != this->section_list_.end();
4656 (*p)->print_merge_stats();
4659 // Write_sections_task methods.
4661 // We can always run this task.
4664 Write_sections_task::is_runnable()
4669 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4673 Write_sections_task::locks(Task_locker* tl)
4675 tl->add(this, this->output_sections_blocker_);
4676 tl->add(this, this->final_blocker_);
4679 // Run the task--write out the data.
4682 Write_sections_task::run(Workqueue*)
4684 this->layout_->write_output_sections(this->of_);
4687 // Write_data_task methods.
4689 // We can always run this task.
4692 Write_data_task::is_runnable()
4697 // We need to unlock FINAL_BLOCKER when finished.
4700 Write_data_task::locks(Task_locker* tl)
4702 tl->add(this, this->final_blocker_);
4705 // Run the task--write out the data.
4708 Write_data_task::run(Workqueue*)
4710 this->layout_->write_data(this->symtab_, this->of_);
4713 // Write_symbols_task methods.
4715 // We can always run this task.
4718 Write_symbols_task::is_runnable()
4723 // We need to unlock FINAL_BLOCKER when finished.
4726 Write_symbols_task::locks(Task_locker* tl)
4728 tl->add(this, this->final_blocker_);
4731 // Run the task--write out the symbols.
4734 Write_symbols_task::run(Workqueue*)
4736 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4737 this->layout_->symtab_xindex(),
4738 this->layout_->dynsym_xindex(), this->of_);
4741 // Write_after_input_sections_task methods.
4743 // We can only run this task after the input sections have completed.
4746 Write_after_input_sections_task::is_runnable()
4748 if (this->input_sections_blocker_->is_blocked())
4749 return this->input_sections_blocker_;
4753 // We need to unlock FINAL_BLOCKER when finished.
4756 Write_after_input_sections_task::locks(Task_locker* tl)
4758 tl->add(this, this->final_blocker_);
4764 Write_after_input_sections_task::run(Workqueue*)
4766 this->layout_->write_sections_after_input_sections(this->of_);
4769 // Close_task_runner methods.
4771 // Run the task--close the file.
4774 Close_task_runner::run(Workqueue*, const Task*)
4776 // If we need to compute a checksum for the BUILD if, we do so here.
4777 this->layout_->write_build_id(this->of_);
4779 // If we've been asked to create a binary file, we do so here.
4780 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4781 this->layout_->write_binary(this->of_);
4786 // Instantiate the templates we need. We could use the configure
4787 // script to restrict this to only the ones for implemented targets.
4789 #ifdef HAVE_TARGET_32_LITTLE
4792 Layout::init_fixed_output_section<32, false>(
4794 elfcpp::Shdr<32, false>& shdr);
4797 #ifdef HAVE_TARGET_32_BIG
4800 Layout::init_fixed_output_section<32, true>(
4802 elfcpp::Shdr<32, true>& shdr);
4805 #ifdef HAVE_TARGET_64_LITTLE
4808 Layout::init_fixed_output_section<64, false>(
4810 elfcpp::Shdr<64, false>& shdr);
4813 #ifdef HAVE_TARGET_64_BIG
4816 Layout::init_fixed_output_section<64, true>(
4818 elfcpp::Shdr<64, true>& shdr);
4821 #ifdef HAVE_TARGET_32_LITTLE
4824 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4827 const elfcpp::Shdr<32, false>& shdr,
4828 unsigned int, unsigned int, off_t*);
4831 #ifdef HAVE_TARGET_32_BIG
4834 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4837 const elfcpp::Shdr<32, true>& shdr,
4838 unsigned int, unsigned int, off_t*);
4841 #ifdef HAVE_TARGET_64_LITTLE
4844 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4847 const elfcpp::Shdr<64, false>& shdr,
4848 unsigned int, unsigned int, off_t*);
4851 #ifdef HAVE_TARGET_64_BIG
4854 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
4857 const elfcpp::Shdr<64, true>& shdr,
4858 unsigned int, unsigned int, off_t*);
4861 #ifdef HAVE_TARGET_32_LITTLE
4864 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
4865 unsigned int reloc_shndx,
4866 const elfcpp::Shdr<32, false>& shdr,
4867 Output_section* data_section,
4868 Relocatable_relocs* rr);
4871 #ifdef HAVE_TARGET_32_BIG
4874 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
4875 unsigned int reloc_shndx,
4876 const elfcpp::Shdr<32, true>& shdr,
4877 Output_section* data_section,
4878 Relocatable_relocs* rr);
4881 #ifdef HAVE_TARGET_64_LITTLE
4884 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
4885 unsigned int reloc_shndx,
4886 const elfcpp::Shdr<64, false>& shdr,
4887 Output_section* data_section,
4888 Relocatable_relocs* rr);
4891 #ifdef HAVE_TARGET_64_BIG
4894 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
4895 unsigned int reloc_shndx,
4896 const elfcpp::Shdr<64, true>& shdr,
4897 Output_section* data_section,
4898 Relocatable_relocs* rr);
4901 #ifdef HAVE_TARGET_32_LITTLE
4904 Layout::layout_group<32, false>(Symbol_table* symtab,
4905 Sized_relobj_file<32, false>* object,
4907 const char* group_section_name,
4908 const char* signature,
4909 const elfcpp::Shdr<32, false>& shdr,
4910 elfcpp::Elf_Word flags,
4911 std::vector<unsigned int>* shndxes);
4914 #ifdef HAVE_TARGET_32_BIG
4917 Layout::layout_group<32, true>(Symbol_table* symtab,
4918 Sized_relobj_file<32, true>* object,
4920 const char* group_section_name,
4921 const char* signature,
4922 const elfcpp::Shdr<32, true>& shdr,
4923 elfcpp::Elf_Word flags,
4924 std::vector<unsigned int>* shndxes);
4927 #ifdef HAVE_TARGET_64_LITTLE
4930 Layout::layout_group<64, false>(Symbol_table* symtab,
4931 Sized_relobj_file<64, false>* object,
4933 const char* group_section_name,
4934 const char* signature,
4935 const elfcpp::Shdr<64, false>& shdr,
4936 elfcpp::Elf_Word flags,
4937 std::vector<unsigned int>* shndxes);
4940 #ifdef HAVE_TARGET_64_BIG
4943 Layout::layout_group<64, true>(Symbol_table* symtab,
4944 Sized_relobj_file<64, true>* object,
4946 const char* group_section_name,
4947 const char* signature,
4948 const elfcpp::Shdr<64, true>& shdr,
4949 elfcpp::Elf_Word flags,
4950 std::vector<unsigned int>* shndxes);
4953 #ifdef HAVE_TARGET_32_LITTLE
4956 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
4957 const unsigned char* symbols,
4959 const unsigned char* symbol_names,
4960 off_t symbol_names_size,
4962 const elfcpp::Shdr<32, false>& shdr,
4963 unsigned int reloc_shndx,
4964 unsigned int reloc_type,
4968 #ifdef HAVE_TARGET_32_BIG
4971 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
4972 const unsigned char* symbols,
4974 const unsigned char* symbol_names,
4975 off_t symbol_names_size,
4977 const elfcpp::Shdr<32, true>& shdr,
4978 unsigned int reloc_shndx,
4979 unsigned int reloc_type,
4983 #ifdef HAVE_TARGET_64_LITTLE
4986 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
4987 const unsigned char* symbols,
4989 const unsigned char* symbol_names,
4990 off_t symbol_names_size,
4992 const elfcpp::Shdr<64, false>& shdr,
4993 unsigned int reloc_shndx,
4994 unsigned int reloc_type,
4998 #ifdef HAVE_TARGET_64_BIG
5001 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5002 const unsigned char* symbols,
5004 const unsigned char* symbol_names,
5005 off_t symbol_names_size,
5007 const elfcpp::Shdr<64, true>& shdr,
5008 unsigned int reloc_shndx,
5009 unsigned int reloc_type,
5013 } // End namespace gold.