1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
7 // This file is part of gold.
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
35 #include "libiberty.h"
39 #include "parameters.h"
43 #include "script-sections.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
53 #include "descriptors.h"
55 #include "incremental.h"
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
82 Free_list::init(off_t len, bool extend)
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
102 Free_list::remove(off_t start, off_t end)
106 gold_assert(start < end);
108 ++Free_list::num_removes;
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
114 for (; p != this->list_.end(); ++p)
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
134 Free_list_node newnode(p->start_, start);
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
139 this->last_remove_ = p;
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
163 return align_address(minoff, align);
165 ++Free_list::num_allocates;
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
189 else if (p->end_ <= end + fuzz)
193 Free_list_node newnode(p->start_, start);
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
210 // Dump the free list (for debugging).
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
221 // Print the statistics for the free lists.
223 Free_list::print_stats()
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
239 // Layout::Relaxation_debug_check methods.
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
250 for(Layout::Section_list::const_iterator p = sections.begin();
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
261 // Save information of SECTIONS for checking later.
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
267 for(Layout::Section_list::const_iterator p = sections.begin();
271 Output_section* os = *p;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
281 // Verify SECTIONS using previously recorded information.
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
288 for(Layout::Section_list::const_iterator p = sections.begin();
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
297 if (i >= this->section_infos_.size())
299 gold_fatal("Section_info of %s missing.\n", os->name());
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
312 // Layout_task_runner methods.
314 // Lay out the sections. This is called after all the input objects
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
320 // See if any of the input definitions violate the One Definition Rule.
321 // TODO: if this is too slow, do this as a task, rather than inline.
322 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
324 Layout* layout = this->layout_;
325 off_t file_size = layout->finalize(this->input_objects_,
330 // Now we know the final size of the output file and we know where
331 // each piece of information goes.
333 if (this->mapfile_ != NULL)
335 this->mapfile_->print_discarded_sections(this->input_objects_);
336 layout->print_to_mapfile(this->mapfile_);
340 if (layout->incremental_base() == NULL)
342 of = new Output_file(parameters->options().output_file_name());
343 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
344 of->set_is_temporary();
349 of = layout->incremental_base()->output_file();
351 // Apply the incremental relocations for symbols whose values
352 // have changed. We do this before we resize the file and start
353 // writing anything else to it, so that we can read the old
354 // incremental information from the file before (possibly)
356 if (parameters->incremental_update())
357 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
361 of->resize(file_size);
364 // Queue up the final set of tasks.
365 gold::queue_final_tasks(this->options_, this->input_objects_,
366 this->symtab_, layout, workqueue, of);
371 Layout::Layout(int number_of_input_files, Script_options* script_options)
372 : number_of_input_files_(number_of_input_files),
373 script_options_(script_options),
381 unattached_section_list_(),
382 special_output_list_(),
383 section_headers_(NULL),
385 relro_segment_(NULL),
386 interp_segment_(NULL),
388 symtab_section_(NULL),
389 symtab_xindex_(NULL),
390 dynsym_section_(NULL),
391 dynsym_xindex_(NULL),
392 dynamic_section_(NULL),
393 dynamic_symbol_(NULL),
395 eh_frame_section_(NULL),
396 eh_frame_data_(NULL),
397 added_eh_frame_data_(false),
398 eh_frame_hdr_section_(NULL),
399 gdb_index_data_(NULL),
400 build_id_note_(NULL),
404 output_file_size_(-1),
405 have_added_input_section_(false),
406 sections_are_attached_(false),
407 input_requires_executable_stack_(false),
408 input_with_gnu_stack_note_(false),
409 input_without_gnu_stack_note_(false),
410 has_static_tls_(false),
411 any_postprocessing_sections_(false),
412 resized_signatures_(false),
413 have_stabstr_section_(false),
414 section_ordering_specified_(false),
415 unique_segment_for_sections_specified_(false),
416 incremental_inputs_(NULL),
417 record_output_section_data_from_script_(false),
418 script_output_section_data_list_(),
419 segment_states_(NULL),
420 relaxation_debug_check_(NULL),
421 section_order_map_(),
422 section_segment_map_(),
423 input_section_position_(),
424 input_section_glob_(),
425 incremental_base_(NULL),
428 // Make space for more than enough segments for a typical file.
429 // This is just for efficiency--it's OK if we wind up needing more.
430 this->segment_list_.reserve(12);
432 // We expect two unattached Output_data objects: the file header and
433 // the segment headers.
434 this->special_output_list_.reserve(2);
436 // Initialize structure needed for an incremental build.
437 if (parameters->incremental())
438 this->incremental_inputs_ = new Incremental_inputs;
440 // The section name pool is worth optimizing in all cases, because
441 // it is small, but there are often overlaps due to .rel sections.
442 this->namepool_.set_optimize();
445 // For incremental links, record the base file to be modified.
448 Layout::set_incremental_base(Incremental_binary* base)
450 this->incremental_base_ = base;
451 this->free_list_.init(base->output_file()->filesize(), true);
454 // Hash a key we use to look up an output section mapping.
457 Layout::Hash_key::operator()(const Layout::Key& k) const
459 return k.first + k.second.first + k.second.second;
462 // These are the debug sections that are actually used by gdb.
463 // Currently, we've checked versions of gdb up to and including 7.4.
464 // We only check the part of the name that follows ".debug_" or
467 static const char* gdb_sections[] =
470 "addr", // Fission extension
471 // "aranges", // not used by gdb as of 7.4
479 // "pubnames", // not used by gdb as of 7.4
480 // "pubtypes", // not used by gdb as of 7.4
485 // This is the minimum set of sections needed for line numbers.
487 static const char* lines_only_debug_sections[] =
490 // "addr", // Fission extension
491 // "aranges", // not used by gdb as of 7.4
499 // "pubnames", // not used by gdb as of 7.4
500 // "pubtypes", // not used by gdb as of 7.4
505 // These sections are the DWARF fast-lookup tables, and are not needed
506 // when building a .gdb_index section.
508 static const char* gdb_fast_lookup_sections[] =
515 // Returns whether the given debug section is in the list of
516 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
517 // portion of the name following ".debug_" or ".zdebug_".
520 is_gdb_debug_section(const char* suffix)
522 // We can do this faster: binary search or a hashtable. But why bother?
523 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
524 if (strcmp(suffix, gdb_sections[i]) == 0)
529 // Returns whether the given section is needed for lines-only debugging.
532 is_lines_only_debug_section(const char* suffix)
534 // We can do this faster: binary search or a hashtable. But why bother?
536 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
538 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
543 // Returns whether the given section is a fast-lookup section that
544 // will not be needed when building a .gdb_index section.
547 is_gdb_fast_lookup_section(const char* suffix)
549 // We can do this faster: binary search or a hashtable. But why bother?
551 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
553 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
558 // Sometimes we compress sections. This is typically done for
559 // sections that are not part of normal program execution (such as
560 // .debug_* sections), and where the readers of these sections know
561 // how to deal with compressed sections. This routine doesn't say for
562 // certain whether we'll compress -- it depends on commandline options
563 // as well -- just whether this section is a candidate for compression.
564 // (The Output_compressed_section class decides whether to compress
565 // a given section, and picks the name of the compressed section.)
568 is_compressible_debug_section(const char* secname)
570 return (is_prefix_of(".debug", secname));
573 // We may see compressed debug sections in input files. Return TRUE
574 // if this is the name of a compressed debug section.
577 is_compressed_debug_section(const char* secname)
579 return (is_prefix_of(".zdebug", secname));
582 // Whether to include this section in the link.
584 template<int size, bool big_endian>
586 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
587 const elfcpp::Shdr<size, big_endian>& shdr)
589 if (!parameters->options().relocatable()
590 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
593 switch (shdr.get_sh_type())
595 case elfcpp::SHT_NULL:
596 case elfcpp::SHT_SYMTAB:
597 case elfcpp::SHT_DYNSYM:
598 case elfcpp::SHT_HASH:
599 case elfcpp::SHT_DYNAMIC:
600 case elfcpp::SHT_SYMTAB_SHNDX:
603 case elfcpp::SHT_STRTAB:
604 // Discard the sections which have special meanings in the ELF
605 // ABI. Keep others (e.g., .stabstr). We could also do this by
606 // checking the sh_link fields of the appropriate sections.
607 return (strcmp(name, ".dynstr") != 0
608 && strcmp(name, ".strtab") != 0
609 && strcmp(name, ".shstrtab") != 0);
611 case elfcpp::SHT_RELA:
612 case elfcpp::SHT_REL:
613 case elfcpp::SHT_GROUP:
614 // If we are emitting relocations these should be handled
616 gold_assert(!parameters->options().relocatable());
619 case elfcpp::SHT_PROGBITS:
620 if (parameters->options().strip_debug()
621 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
623 if (is_debug_info_section(name))
626 if (parameters->options().strip_debug_non_line()
627 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
629 // Debugging sections can only be recognized by name.
630 if (is_prefix_of(".debug_", name)
631 && !is_lines_only_debug_section(name + 7))
633 if (is_prefix_of(".zdebug_", name)
634 && !is_lines_only_debug_section(name + 8))
637 if (parameters->options().strip_debug_gdb()
638 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
640 // Debugging sections can only be recognized by name.
641 if (is_prefix_of(".debug_", name)
642 && !is_gdb_debug_section(name + 7))
644 if (is_prefix_of(".zdebug_", name)
645 && !is_gdb_debug_section(name + 8))
648 if (parameters->options().gdb_index()
649 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
651 // When building .gdb_index, we can strip .debug_pubnames,
652 // .debug_pubtypes, and .debug_aranges sections.
653 if (is_prefix_of(".debug_", name)
654 && is_gdb_fast_lookup_section(name + 7))
656 if (is_prefix_of(".zdebug_", name)
657 && is_gdb_fast_lookup_section(name + 8))
660 if (parameters->options().strip_lto_sections()
661 && !parameters->options().relocatable()
662 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
664 // Ignore LTO sections containing intermediate code.
665 if (is_prefix_of(".gnu.lto_", name))
668 // The GNU linker strips .gnu_debuglink sections, so we do too.
669 // This is a feature used to keep debugging information in
671 if (strcmp(name, ".gnu_debuglink") == 0)
680 // Return an output section named NAME, or NULL if there is none.
683 Layout::find_output_section(const char* name) const
685 for (Section_list::const_iterator p = this->section_list_.begin();
686 p != this->section_list_.end();
688 if (strcmp((*p)->name(), name) == 0)
693 // Return an output segment of type TYPE, with segment flags SET set
694 // and segment flags CLEAR clear. Return NULL if there is none.
697 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
698 elfcpp::Elf_Word clear) const
700 for (Segment_list::const_iterator p = this->segment_list_.begin();
701 p != this->segment_list_.end();
703 if (static_cast<elfcpp::PT>((*p)->type()) == type
704 && ((*p)->flags() & set) == set
705 && ((*p)->flags() & clear) == 0)
710 // When we put a .ctors or .dtors section with more than one word into
711 // a .init_array or .fini_array section, we need to reverse the words
712 // in the .ctors/.dtors section. This is because .init_array executes
713 // constructors front to back, where .ctors executes them back to
714 // front, and vice-versa for .fini_array/.dtors. Although we do want
715 // to remap .ctors/.dtors into .init_array/.fini_array because it can
716 // be more efficient, we don't want to change the order in which
717 // constructors/destructors are run. This set just keeps track of
718 // these sections which need to be reversed. It is only changed by
719 // Layout::layout. It should be a private member of Layout, but that
720 // would require layout.h to #include object.h to get the definition
722 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
724 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
725 // .init_array/.fini_array section.
728 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
730 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
731 != ctors_sections_in_init_array.end());
734 // Return the output section to use for section NAME with type TYPE
735 // and section flags FLAGS. NAME must be canonicalized in the string
736 // pool, and NAME_KEY is the key. ORDER is where this should appear
737 // in the output sections. IS_RELRO is true for a relro section.
740 Layout::get_output_section(const char* name, Stringpool::Key name_key,
741 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
742 Output_section_order order, bool is_relro)
744 elfcpp::Elf_Word lookup_type = type;
746 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
747 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
748 // .init_array, .fini_array, and .preinit_array sections by name
749 // whatever their type in the input file. We do this because the
750 // types are not always right in the input files.
751 if (lookup_type == elfcpp::SHT_INIT_ARRAY
752 || lookup_type == elfcpp::SHT_FINI_ARRAY
753 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
754 lookup_type = elfcpp::SHT_PROGBITS;
756 elfcpp::Elf_Xword lookup_flags = flags;
758 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
759 // read-write with read-only sections. Some other ELF linkers do
760 // not do this. FIXME: Perhaps there should be an option
762 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
764 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
765 const std::pair<Key, Output_section*> v(key, NULL);
766 std::pair<Section_name_map::iterator, bool> ins(
767 this->section_name_map_.insert(v));
770 return ins.first->second;
773 // This is the first time we've seen this name/type/flags
774 // combination. For compatibility with the GNU linker, we
775 // combine sections with contents and zero flags with sections
776 // with non-zero flags. This is a workaround for cases where
777 // assembler code forgets to set section flags. FIXME: Perhaps
778 // there should be an option to control this.
779 Output_section* os = NULL;
781 if (lookup_type == elfcpp::SHT_PROGBITS)
785 Output_section* same_name = this->find_output_section(name);
786 if (same_name != NULL
787 && (same_name->type() == elfcpp::SHT_PROGBITS
788 || same_name->type() == elfcpp::SHT_INIT_ARRAY
789 || same_name->type() == elfcpp::SHT_FINI_ARRAY
790 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
791 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
794 else if ((flags & elfcpp::SHF_TLS) == 0)
796 elfcpp::Elf_Xword zero_flags = 0;
797 const Key zero_key(name_key, std::make_pair(lookup_type,
799 Section_name_map::iterator p =
800 this->section_name_map_.find(zero_key);
801 if (p != this->section_name_map_.end())
807 os = this->make_output_section(name, type, flags, order, is_relro);
809 ins.first->second = os;
814 // Returns TRUE iff NAME (an input section from RELOBJ) will
815 // be mapped to an output section that should be KEPT.
818 Layout::keep_input_section(const Relobj* relobj, const char* name)
820 if (! this->script_options_->saw_sections_clause())
823 Script_sections* ss = this->script_options_->script_sections();
824 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
825 Output_section** output_section_slot;
826 Script_sections::Section_type script_section_type;
829 name = ss->output_section_name(file_name, name, &output_section_slot,
830 &script_section_type, &keep);
831 return name != NULL && keep;
834 // Clear the input section flags that should not be copied to the
838 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
840 // Some flags in the input section should not be automatically
841 // copied to the output section.
842 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
845 | elfcpp::SHF_STRINGS);
847 // We only clear the SHF_LINK_ORDER flag in for
848 // a non-relocatable link.
849 if (!parameters->options().relocatable())
850 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
852 return input_section_flags;
855 // Pick the output section to use for section NAME, in input file
856 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
857 // linker created section. IS_INPUT_SECTION is true if we are
858 // choosing an output section for an input section found in a input
859 // file. ORDER is where this section should appear in the output
860 // sections. IS_RELRO is true for a relro section. This will return
861 // NULL if the input section should be discarded.
864 Layout::choose_output_section(const Relobj* relobj, const char* name,
865 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
866 bool is_input_section, Output_section_order order,
869 // We should not see any input sections after we have attached
870 // sections to segments.
871 gold_assert(!is_input_section || !this->sections_are_attached_);
873 flags = this->get_output_section_flags(flags);
875 if (this->script_options_->saw_sections_clause())
877 // We are using a SECTIONS clause, so the output section is
878 // chosen based only on the name.
880 Script_sections* ss = this->script_options_->script_sections();
881 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
882 Output_section** output_section_slot;
883 Script_sections::Section_type script_section_type;
884 const char* orig_name = name;
886 name = ss->output_section_name(file_name, name, &output_section_slot,
887 &script_section_type, &keep);
891 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
892 "because it is not allowed by the "
893 "SECTIONS clause of the linker script"),
895 // The SECTIONS clause says to discard this input section.
899 // We can only handle script section types ST_NONE and ST_NOLOAD.
900 switch (script_section_type)
902 case Script_sections::ST_NONE:
904 case Script_sections::ST_NOLOAD:
905 flags &= elfcpp::SHF_ALLOC;
911 // If this is an orphan section--one not mentioned in the linker
912 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
913 // default processing below.
915 if (output_section_slot != NULL)
917 if (*output_section_slot != NULL)
919 (*output_section_slot)->update_flags_for_input_section(flags);
920 return *output_section_slot;
923 // We don't put sections found in the linker script into
924 // SECTION_NAME_MAP_. That keeps us from getting confused
925 // if an orphan section is mapped to a section with the same
926 // name as one in the linker script.
928 name = this->namepool_.add(name, false, NULL);
930 Output_section* os = this->make_output_section(name, type, flags,
933 os->set_found_in_sections_clause();
935 // Special handling for NOLOAD sections.
936 if (script_section_type == Script_sections::ST_NOLOAD)
940 // The constructor of Output_section sets addresses of non-ALLOC
941 // sections to 0 by default. We don't want that for NOLOAD
942 // sections even if they have no SHF_ALLOC flag.
943 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
944 && os->is_address_valid())
946 gold_assert(os->address() == 0
947 && !os->is_offset_valid()
948 && !os->is_data_size_valid());
949 os->reset_address_and_file_offset();
953 *output_section_slot = os;
958 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
960 size_t len = strlen(name);
961 char* uncompressed_name = NULL;
963 // Compressed debug sections should be mapped to the corresponding
964 // uncompressed section.
965 if (is_compressed_debug_section(name))
967 uncompressed_name = new char[len];
968 uncompressed_name[0] = '.';
969 gold_assert(name[0] == '.' && name[1] == 'z');
970 strncpy(&uncompressed_name[1], &name[2], len - 2);
971 uncompressed_name[len - 1] = '\0';
973 name = uncompressed_name;
976 // Turn NAME from the name of the input section into the name of the
979 && !this->script_options_->saw_sections_clause()
980 && !parameters->options().relocatable())
982 const char *orig_name = name;
983 name = parameters->target().output_section_name(relobj, name, &len);
985 name = Layout::output_section_name(relobj, orig_name, &len);
988 Stringpool::Key name_key;
989 name = this->namepool_.add_with_length(name, len, true, &name_key);
991 if (uncompressed_name != NULL)
992 delete[] uncompressed_name;
994 // Find or make the output section. The output section is selected
995 // based on the section name, type, and flags.
996 return this->get_output_section(name, name_key, type, flags, order, is_relro);
999 // For incremental links, record the initial fixed layout of a section
1000 // from the base file, and return a pointer to the Output_section.
1002 template<int size, bool big_endian>
1004 Layout::init_fixed_output_section(const char* name,
1005 elfcpp::Shdr<size, big_endian>& shdr)
1007 unsigned int sh_type = shdr.get_sh_type();
1009 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1010 // PRE_INIT_ARRAY, and NOTE sections.
1011 // All others will be created from scratch and reallocated.
1012 if (!can_incremental_update(sh_type))
1015 // If we're generating a .gdb_index section, we need to regenerate
1017 if (parameters->options().gdb_index()
1018 && sh_type == elfcpp::SHT_PROGBITS
1019 && strcmp(name, ".gdb_index") == 0)
1022 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1023 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1024 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1025 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1026 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1027 shdr.get_sh_addralign();
1029 // Make the output section.
1030 Stringpool::Key name_key;
1031 name = this->namepool_.add(name, true, &name_key);
1032 Output_section* os = this->get_output_section(name, name_key, sh_type,
1033 sh_flags, ORDER_INVALID, false);
1034 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1035 if (sh_type != elfcpp::SHT_NOBITS)
1036 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1040 // Return the index by which an input section should be ordered. This
1041 // is used to sort some .text sections, for compatibility with GNU ld.
1044 Layout::special_ordering_of_input_section(const char* name)
1046 // The GNU linker has some special handling for some sections that
1047 // wind up in the .text section. Sections that start with these
1048 // prefixes must appear first, and must appear in the order listed
1050 static const char* const text_section_sort[] =
1059 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1061 if (is_prefix_of(text_section_sort[i], name))
1067 // Return the output section to use for input section SHNDX, with name
1068 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1069 // index of a relocation section which applies to this section, or 0
1070 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1071 // relocation section if there is one. Set *OFF to the offset of this
1072 // input section without the output section. Return NULL if the
1073 // section should be discarded. Set *OFF to -1 if the section
1074 // contents should not be written directly to the output file, but
1075 // will instead receive special handling.
1077 template<int size, bool big_endian>
1079 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1080 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1081 unsigned int reloc_shndx, unsigned int, off_t* off)
1085 if (!this->include_section(object, name, shdr))
1088 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1090 // In a relocatable link a grouped section must not be combined with
1091 // any other sections.
1093 if (parameters->options().relocatable()
1094 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1096 name = this->namepool_.add(name, true, NULL);
1097 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1098 ORDER_INVALID, false);
1102 // Plugins can choose to place one or more subsets of sections in
1103 // unique segments and this is done by mapping these section subsets
1104 // to unique output sections. Check if this section needs to be
1105 // remapped to a unique output section.
1106 Section_segment_map::iterator it
1107 = this->section_segment_map_.find(Const_section_id(object, shndx));
1108 if (it == this->section_segment_map_.end())
1110 os = this->choose_output_section(object, name, sh_type,
1111 shdr.get_sh_flags(), true,
1112 ORDER_INVALID, false);
1116 // We know the name of the output section, directly call
1117 // get_output_section here by-passing choose_output_section.
1118 elfcpp::Elf_Xword flags
1119 = this->get_output_section_flags(shdr.get_sh_flags());
1121 const char* os_name = it->second->name;
1122 Stringpool::Key name_key;
1123 os_name = this->namepool_.add(os_name, true, &name_key);
1124 os = this->get_output_section(os_name, name_key, sh_type, flags,
1125 ORDER_INVALID, false);
1126 if (!os->is_unique_segment())
1128 os->set_is_unique_segment();
1129 os->set_extra_segment_flags(it->second->flags);
1130 os->set_segment_alignment(it->second->align);
1137 // By default the GNU linker sorts input sections whose names match
1138 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1139 // sections are sorted by name. This is used to implement
1140 // constructor priority ordering. We are compatible. When we put
1141 // .ctor sections in .init_array and .dtor sections in .fini_array,
1142 // we must also sort plain .ctor and .dtor sections.
1143 if (!this->script_options_->saw_sections_clause()
1144 && !parameters->options().relocatable()
1145 && (is_prefix_of(".ctors.", name)
1146 || is_prefix_of(".dtors.", name)
1147 || is_prefix_of(".init_array.", name)
1148 || is_prefix_of(".fini_array.", name)
1149 || (parameters->options().ctors_in_init_array()
1150 && (strcmp(name, ".ctors") == 0
1151 || strcmp(name, ".dtors") == 0))))
1152 os->set_must_sort_attached_input_sections();
1154 // By default the GNU linker sorts some special text sections ahead
1155 // of others. We are compatible.
1156 if (parameters->options().text_reorder()
1157 && !this->script_options_->saw_sections_clause()
1158 && !this->is_section_ordering_specified()
1159 && !parameters->options().relocatable()
1160 && Layout::special_ordering_of_input_section(name) >= 0)
1161 os->set_must_sort_attached_input_sections();
1163 // If this is a .ctors or .ctors.* section being mapped to a
1164 // .init_array section, or a .dtors or .dtors.* section being mapped
1165 // to a .fini_array section, we will need to reverse the words if
1166 // there is more than one. Record this section for later. See
1167 // ctors_sections_in_init_array above.
1168 if (!this->script_options_->saw_sections_clause()
1169 && !parameters->options().relocatable()
1170 && shdr.get_sh_size() > size / 8
1171 && (((strcmp(name, ".ctors") == 0
1172 || is_prefix_of(".ctors.", name))
1173 && strcmp(os->name(), ".init_array") == 0)
1174 || ((strcmp(name, ".dtors") == 0
1175 || is_prefix_of(".dtors.", name))
1176 && strcmp(os->name(), ".fini_array") == 0)))
1177 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1179 // FIXME: Handle SHF_LINK_ORDER somewhere.
1181 elfcpp::Elf_Xword orig_flags = os->flags();
1183 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1184 this->script_options_->saw_sections_clause());
1186 // If the flags changed, we may have to change the order.
1187 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1189 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1190 elfcpp::Elf_Xword new_flags =
1191 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1192 if (orig_flags != new_flags)
1193 os->set_order(this->default_section_order(os, false));
1196 this->have_added_input_section_ = true;
1201 // Maps section SECN to SEGMENT s.
1203 Layout::insert_section_segment_map(Const_section_id secn,
1204 Unique_segment_info *s)
1206 gold_assert(this->unique_segment_for_sections_specified_);
1207 this->section_segment_map_[secn] = s;
1210 // Handle a relocation section when doing a relocatable link.
1212 template<int size, bool big_endian>
1214 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1216 const elfcpp::Shdr<size, big_endian>& shdr,
1217 Output_section* data_section,
1218 Relocatable_relocs* rr)
1220 gold_assert(parameters->options().relocatable()
1221 || parameters->options().emit_relocs());
1223 int sh_type = shdr.get_sh_type();
1226 if (sh_type == elfcpp::SHT_REL)
1228 else if (sh_type == elfcpp::SHT_RELA)
1232 name += data_section->name();
1234 // In a relocatable link relocs for a grouped section must not be
1235 // combined with other reloc sections.
1237 if (!parameters->options().relocatable()
1238 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1239 os = this->choose_output_section(object, name.c_str(), sh_type,
1240 shdr.get_sh_flags(), false,
1241 ORDER_INVALID, false);
1244 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1245 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1246 ORDER_INVALID, false);
1249 os->set_should_link_to_symtab();
1250 os->set_info_section(data_section);
1252 Output_section_data* posd;
1253 if (sh_type == elfcpp::SHT_REL)
1255 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1256 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1260 else if (sh_type == elfcpp::SHT_RELA)
1262 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1263 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1270 os->add_output_section_data(posd);
1271 rr->set_output_data(posd);
1276 // Handle a group section when doing a relocatable link.
1278 template<int size, bool big_endian>
1280 Layout::layout_group(Symbol_table* symtab,
1281 Sized_relobj_file<size, big_endian>* object,
1283 const char* group_section_name,
1284 const char* signature,
1285 const elfcpp::Shdr<size, big_endian>& shdr,
1286 elfcpp::Elf_Word flags,
1287 std::vector<unsigned int>* shndxes)
1289 gold_assert(parameters->options().relocatable());
1290 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1291 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1292 Output_section* os = this->make_output_section(group_section_name,
1294 shdr.get_sh_flags(),
1295 ORDER_INVALID, false);
1297 // We need to find a symbol with the signature in the symbol table.
1298 // If we don't find one now, we need to look again later.
1299 Symbol* sym = symtab->lookup(signature, NULL);
1301 os->set_info_symndx(sym);
1304 // Reserve some space to minimize reallocations.
1305 if (this->group_signatures_.empty())
1306 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1308 // We will wind up using a symbol whose name is the signature.
1309 // So just put the signature in the symbol name pool to save it.
1310 signature = symtab->canonicalize_name(signature);
1311 this->group_signatures_.push_back(Group_signature(os, signature));
1314 os->set_should_link_to_symtab();
1317 section_size_type entry_count =
1318 convert_to_section_size_type(shdr.get_sh_size() / 4);
1319 Output_section_data* posd =
1320 new Output_data_group<size, big_endian>(object, entry_count, flags,
1322 os->add_output_section_data(posd);
1325 // Special GNU handling of sections name .eh_frame. They will
1326 // normally hold exception frame data as defined by the C++ ABI
1327 // (http://codesourcery.com/cxx-abi/).
1329 template<int size, bool big_endian>
1331 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1332 const unsigned char* symbols,
1334 const unsigned char* symbol_names,
1335 off_t symbol_names_size,
1337 const elfcpp::Shdr<size, big_endian>& shdr,
1338 unsigned int reloc_shndx, unsigned int reloc_type,
1341 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1342 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1343 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1345 Output_section* os = this->make_eh_frame_section(object);
1349 gold_assert(this->eh_frame_section_ == os);
1351 elfcpp::Elf_Xword orig_flags = os->flags();
1353 if (!parameters->incremental()
1354 && this->eh_frame_data_->add_ehframe_input_section(object,
1363 os->update_flags_for_input_section(shdr.get_sh_flags());
1365 // A writable .eh_frame section is a RELRO section.
1366 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1367 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1370 os->set_order(ORDER_RELRO);
1373 // We found a .eh_frame section we are going to optimize, so now
1374 // we can add the set of optimized sections to the output
1375 // section. We need to postpone adding this until we've found a
1376 // section we can optimize so that the .eh_frame section in
1377 // crtbegin.o winds up at the start of the output section.
1378 if (!this->added_eh_frame_data_)
1380 os->add_output_section_data(this->eh_frame_data_);
1381 this->added_eh_frame_data_ = true;
1387 // We couldn't handle this .eh_frame section for some reason.
1388 // Add it as a normal section.
1389 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1390 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1391 reloc_shndx, saw_sections_clause);
1392 this->have_added_input_section_ = true;
1394 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1395 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1396 os->set_order(this->default_section_order(os, false));
1402 // Create and return the magic .eh_frame section. Create
1403 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1404 // input .eh_frame section; it may be NULL.
1407 Layout::make_eh_frame_section(const Relobj* object)
1409 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1411 Output_section* os = this->choose_output_section(object, ".eh_frame",
1412 elfcpp::SHT_PROGBITS,
1413 elfcpp::SHF_ALLOC, false,
1414 ORDER_EHFRAME, false);
1418 if (this->eh_frame_section_ == NULL)
1420 this->eh_frame_section_ = os;
1421 this->eh_frame_data_ = new Eh_frame();
1423 // For incremental linking, we do not optimize .eh_frame sections
1424 // or create a .eh_frame_hdr section.
1425 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1427 Output_section* hdr_os =
1428 this->choose_output_section(NULL, ".eh_frame_hdr",
1429 elfcpp::SHT_PROGBITS,
1430 elfcpp::SHF_ALLOC, false,
1431 ORDER_EHFRAME, false);
1435 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1436 this->eh_frame_data_);
1437 hdr_os->add_output_section_data(hdr_posd);
1439 hdr_os->set_after_input_sections();
1441 if (!this->script_options_->saw_phdrs_clause())
1443 Output_segment* hdr_oseg;
1444 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1446 hdr_oseg->add_output_section_to_nonload(hdr_os,
1450 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1458 // Add an exception frame for a PLT. This is called from target code.
1461 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1462 size_t cie_length, const unsigned char* fde_data,
1465 if (parameters->incremental())
1467 // FIXME: Maybe this could work some day....
1470 Output_section* os = this->make_eh_frame_section(NULL);
1473 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1474 fde_data, fde_length);
1475 if (!this->added_eh_frame_data_)
1477 os->add_output_section_data(this->eh_frame_data_);
1478 this->added_eh_frame_data_ = true;
1482 // Scan a .debug_info or .debug_types section, and add summary
1483 // information to the .gdb_index section.
1485 template<int size, bool big_endian>
1487 Layout::add_to_gdb_index(bool is_type_unit,
1488 Sized_relobj<size, big_endian>* object,
1489 const unsigned char* symbols,
1492 unsigned int reloc_shndx,
1493 unsigned int reloc_type)
1495 if (this->gdb_index_data_ == NULL)
1497 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1498 elfcpp::SHT_PROGBITS, 0,
1499 false, ORDER_INVALID,
1504 this->gdb_index_data_ = new Gdb_index(os);
1505 os->add_output_section_data(this->gdb_index_data_);
1506 os->set_after_input_sections();
1509 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1510 symbols_size, shndx, reloc_shndx,
1514 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1515 // the output section.
1518 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1519 elfcpp::Elf_Xword flags,
1520 Output_section_data* posd,
1521 Output_section_order order, bool is_relro)
1523 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1524 false, order, is_relro);
1526 os->add_output_section_data(posd);
1530 // Map section flags to segment flags.
1533 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1535 elfcpp::Elf_Word ret = elfcpp::PF_R;
1536 if ((flags & elfcpp::SHF_WRITE) != 0)
1537 ret |= elfcpp::PF_W;
1538 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1539 ret |= elfcpp::PF_X;
1543 // Make a new Output_section, and attach it to segments as
1544 // appropriate. ORDER is the order in which this section should
1545 // appear in the output segment. IS_RELRO is true if this is a relro
1546 // (read-only after relocations) section.
1549 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1550 elfcpp::Elf_Xword flags,
1551 Output_section_order order, bool is_relro)
1554 if ((flags & elfcpp::SHF_ALLOC) == 0
1555 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1556 && is_compressible_debug_section(name))
1557 os = new Output_compressed_section(¶meters->options(), name, type,
1559 else if ((flags & elfcpp::SHF_ALLOC) == 0
1560 && parameters->options().strip_debug_non_line()
1561 && strcmp(".debug_abbrev", name) == 0)
1563 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1565 if (this->debug_info_)
1566 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1568 else if ((flags & elfcpp::SHF_ALLOC) == 0
1569 && parameters->options().strip_debug_non_line()
1570 && strcmp(".debug_info", name) == 0)
1572 os = this->debug_info_ = new Output_reduced_debug_info_section(
1574 if (this->debug_abbrev_)
1575 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1579 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1580 // not have correct section types. Force them here.
1581 if (type == elfcpp::SHT_PROGBITS)
1583 if (is_prefix_of(".init_array", name))
1584 type = elfcpp::SHT_INIT_ARRAY;
1585 else if (is_prefix_of(".preinit_array", name))
1586 type = elfcpp::SHT_PREINIT_ARRAY;
1587 else if (is_prefix_of(".fini_array", name))
1588 type = elfcpp::SHT_FINI_ARRAY;
1591 // FIXME: const_cast is ugly.
1592 Target* target = const_cast<Target*>(¶meters->target());
1593 os = target->make_output_section(name, type, flags);
1596 // With -z relro, we have to recognize the special sections by name.
1597 // There is no other way.
1598 bool is_relro_local = false;
1599 if (!this->script_options_->saw_sections_clause()
1600 && parameters->options().relro()
1601 && (flags & elfcpp::SHF_ALLOC) != 0
1602 && (flags & elfcpp::SHF_WRITE) != 0)
1604 if (type == elfcpp::SHT_PROGBITS)
1606 if ((flags & elfcpp::SHF_TLS) != 0)
1608 else if (strcmp(name, ".data.rel.ro") == 0)
1610 else if (strcmp(name, ".data.rel.ro.local") == 0)
1613 is_relro_local = true;
1615 else if (strcmp(name, ".ctors") == 0
1616 || strcmp(name, ".dtors") == 0
1617 || strcmp(name, ".jcr") == 0)
1620 else if (type == elfcpp::SHT_INIT_ARRAY
1621 || type == elfcpp::SHT_FINI_ARRAY
1622 || type == elfcpp::SHT_PREINIT_ARRAY)
1629 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1630 order = this->default_section_order(os, is_relro_local);
1632 os->set_order(order);
1634 parameters->target().new_output_section(os);
1636 this->section_list_.push_back(os);
1638 // The GNU linker by default sorts some sections by priority, so we
1639 // do the same. We need to know that this might happen before we
1640 // attach any input sections.
1641 if (!this->script_options_->saw_sections_clause()
1642 && !parameters->options().relocatable()
1643 && (strcmp(name, ".init_array") == 0
1644 || strcmp(name, ".fini_array") == 0
1645 || (!parameters->options().ctors_in_init_array()
1646 && (strcmp(name, ".ctors") == 0
1647 || strcmp(name, ".dtors") == 0))))
1648 os->set_may_sort_attached_input_sections();
1650 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1651 // sections before other .text sections. We are compatible. We
1652 // need to know that this might happen before we attach any input
1654 if (parameters->options().text_reorder()
1655 && !this->script_options_->saw_sections_clause()
1656 && !this->is_section_ordering_specified()
1657 && !parameters->options().relocatable()
1658 && strcmp(name, ".text") == 0)
1659 os->set_may_sort_attached_input_sections();
1661 // Check for .stab*str sections, as .stab* sections need to link to
1663 if (type == elfcpp::SHT_STRTAB
1664 && !this->have_stabstr_section_
1665 && strncmp(name, ".stab", 5) == 0
1666 && strcmp(name + strlen(name) - 3, "str") == 0)
1667 this->have_stabstr_section_ = true;
1669 // During a full incremental link, we add patch space to most
1670 // PROGBITS and NOBITS sections. Flag those that may be
1671 // arbitrarily padded.
1672 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1673 && order != ORDER_INTERP
1674 && order != ORDER_INIT
1675 && order != ORDER_PLT
1676 && order != ORDER_FINI
1677 && order != ORDER_RELRO_LAST
1678 && order != ORDER_NON_RELRO_FIRST
1679 && strcmp(name, ".eh_frame") != 0
1680 && strcmp(name, ".ctors") != 0
1681 && strcmp(name, ".dtors") != 0
1682 && strcmp(name, ".jcr") != 0)
1684 os->set_is_patch_space_allowed();
1686 // Certain sections require "holes" to be filled with
1687 // specific fill patterns. These fill patterns may have
1688 // a minimum size, so we must prevent allocations from the
1689 // free list that leave a hole smaller than the minimum.
1690 if (strcmp(name, ".debug_info") == 0)
1691 os->set_free_space_fill(new Output_fill_debug_info(false));
1692 else if (strcmp(name, ".debug_types") == 0)
1693 os->set_free_space_fill(new Output_fill_debug_info(true));
1694 else if (strcmp(name, ".debug_line") == 0)
1695 os->set_free_space_fill(new Output_fill_debug_line());
1698 // If we have already attached the sections to segments, then we
1699 // need to attach this one now. This happens for sections created
1700 // directly by the linker.
1701 if (this->sections_are_attached_)
1702 this->attach_section_to_segment(¶meters->target(), os);
1707 // Return the default order in which a section should be placed in an
1708 // output segment. This function captures a lot of the ideas in
1709 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1710 // linker created section is normally set when the section is created;
1711 // this function is used for input sections.
1713 Output_section_order
1714 Layout::default_section_order(Output_section* os, bool is_relro_local)
1716 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1717 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1718 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1719 bool is_bss = false;
1724 case elfcpp::SHT_PROGBITS:
1726 case elfcpp::SHT_NOBITS:
1729 case elfcpp::SHT_RELA:
1730 case elfcpp::SHT_REL:
1732 return ORDER_DYNAMIC_RELOCS;
1734 case elfcpp::SHT_HASH:
1735 case elfcpp::SHT_DYNAMIC:
1736 case elfcpp::SHT_SHLIB:
1737 case elfcpp::SHT_DYNSYM:
1738 case elfcpp::SHT_GNU_HASH:
1739 case elfcpp::SHT_GNU_verdef:
1740 case elfcpp::SHT_GNU_verneed:
1741 case elfcpp::SHT_GNU_versym:
1743 return ORDER_DYNAMIC_LINKER;
1745 case elfcpp::SHT_NOTE:
1746 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1749 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1750 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1752 if (!is_bss && !is_write)
1756 if (strcmp(os->name(), ".init") == 0)
1758 else if (strcmp(os->name(), ".fini") == 0)
1761 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1765 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1767 if (os->is_small_section())
1768 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1769 if (os->is_large_section())
1770 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1772 return is_bss ? ORDER_BSS : ORDER_DATA;
1775 // Attach output sections to segments. This is called after we have
1776 // seen all the input sections.
1779 Layout::attach_sections_to_segments(const Target* target)
1781 for (Section_list::iterator p = this->section_list_.begin();
1782 p != this->section_list_.end();
1784 this->attach_section_to_segment(target, *p);
1786 this->sections_are_attached_ = true;
1789 // Attach an output section to a segment.
1792 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1794 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1795 this->unattached_section_list_.push_back(os);
1797 this->attach_allocated_section_to_segment(target, os);
1800 // Attach an allocated output section to a segment.
1803 Layout::attach_allocated_section_to_segment(const Target* target,
1806 elfcpp::Elf_Xword flags = os->flags();
1807 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1809 if (parameters->options().relocatable())
1812 // If we have a SECTIONS clause, we can't handle the attachment to
1813 // segments until after we've seen all the sections.
1814 if (this->script_options_->saw_sections_clause())
1817 gold_assert(!this->script_options_->saw_phdrs_clause());
1819 // This output section goes into a PT_LOAD segment.
1821 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1823 // If this output section's segment has extra flags that need to be set,
1824 // coming from a linker plugin, do that.
1825 seg_flags |= os->extra_segment_flags();
1827 // Check for --section-start.
1829 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1831 // In general the only thing we really care about for PT_LOAD
1832 // segments is whether or not they are writable or executable,
1833 // so that is how we search for them.
1834 // Large data sections also go into their own PT_LOAD segment.
1835 // People who need segments sorted on some other basis will
1836 // have to use a linker script.
1838 Segment_list::const_iterator p;
1839 if (!os->is_unique_segment())
1841 for (p = this->segment_list_.begin();
1842 p != this->segment_list_.end();
1845 if ((*p)->type() != elfcpp::PT_LOAD)
1847 if ((*p)->is_unique_segment())
1849 if (!parameters->options().omagic()
1850 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1852 if ((target->isolate_execinstr() || parameters->options().rosegment())
1853 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1855 // If -Tbss was specified, we need to separate the data and BSS
1857 if (parameters->options().user_set_Tbss())
1859 if ((os->type() == elfcpp::SHT_NOBITS)
1860 == (*p)->has_any_data_sections())
1863 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1868 if ((*p)->are_addresses_set())
1871 (*p)->add_initial_output_data(os);
1872 (*p)->update_flags_for_output_section(seg_flags);
1873 (*p)->set_addresses(addr, addr);
1877 (*p)->add_output_section_to_load(this, os, seg_flags);
1882 if (p == this->segment_list_.end()
1883 || os->is_unique_segment())
1885 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1887 if (os->is_large_data_section())
1888 oseg->set_is_large_data_segment();
1889 oseg->add_output_section_to_load(this, os, seg_flags);
1891 oseg->set_addresses(addr, addr);
1892 // Check if segment should be marked unique. For segments marked
1893 // unique by linker plugins, set the new alignment if specified.
1894 if (os->is_unique_segment())
1896 oseg->set_is_unique_segment();
1897 if (os->segment_alignment() != 0)
1898 oseg->set_minimum_p_align(os->segment_alignment());
1902 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1904 if (os->type() == elfcpp::SHT_NOTE)
1906 // See if we already have an equivalent PT_NOTE segment.
1907 for (p = this->segment_list_.begin();
1908 p != segment_list_.end();
1911 if ((*p)->type() == elfcpp::PT_NOTE
1912 && (((*p)->flags() & elfcpp::PF_W)
1913 == (seg_flags & elfcpp::PF_W)))
1915 (*p)->add_output_section_to_nonload(os, seg_flags);
1920 if (p == this->segment_list_.end())
1922 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1924 oseg->add_output_section_to_nonload(os, seg_flags);
1928 // If we see a loadable SHF_TLS section, we create a PT_TLS
1929 // segment. There can only be one such segment.
1930 if ((flags & elfcpp::SHF_TLS) != 0)
1932 if (this->tls_segment_ == NULL)
1933 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1934 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1937 // If -z relro is in effect, and we see a relro section, we create a
1938 // PT_GNU_RELRO segment. There can only be one such segment.
1939 if (os->is_relro() && parameters->options().relro())
1941 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1942 if (this->relro_segment_ == NULL)
1943 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1944 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1947 // If we see a section named .interp, put it into a PT_INTERP
1948 // segment. This seems broken to me, but this is what GNU ld does,
1949 // and glibc expects it.
1950 if (strcmp(os->name(), ".interp") == 0
1951 && !this->script_options_->saw_phdrs_clause())
1953 if (this->interp_segment_ == NULL)
1954 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1956 gold_warning(_("multiple '.interp' sections in input files "
1957 "may cause confusing PT_INTERP segment"));
1958 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1962 // Make an output section for a script.
1965 Layout::make_output_section_for_script(
1967 Script_sections::Section_type section_type)
1969 name = this->namepool_.add(name, false, NULL);
1970 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1971 if (section_type == Script_sections::ST_NOLOAD)
1973 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1974 sh_flags, ORDER_INVALID,
1976 os->set_found_in_sections_clause();
1977 if (section_type == Script_sections::ST_NOLOAD)
1978 os->set_is_noload();
1982 // Return the number of segments we expect to see.
1985 Layout::expected_segment_count() const
1987 size_t ret = this->segment_list_.size();
1989 // If we didn't see a SECTIONS clause in a linker script, we should
1990 // already have the complete list of segments. Otherwise we ask the
1991 // SECTIONS clause how many segments it expects, and add in the ones
1992 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1994 if (!this->script_options_->saw_sections_clause())
1998 const Script_sections* ss = this->script_options_->script_sections();
1999 return ret + ss->expected_segment_count(this);
2003 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2004 // is whether we saw a .note.GNU-stack section in the object file.
2005 // GNU_STACK_FLAGS is the section flags. The flags give the
2006 // protection required for stack memory. We record this in an
2007 // executable as a PT_GNU_STACK segment. If an object file does not
2008 // have a .note.GNU-stack segment, we must assume that it is an old
2009 // object. On some targets that will force an executable stack.
2012 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2015 if (!seen_gnu_stack)
2017 this->input_without_gnu_stack_note_ = true;
2018 if (parameters->options().warn_execstack()
2019 && parameters->target().is_default_stack_executable())
2020 gold_warning(_("%s: missing .note.GNU-stack section"
2021 " implies executable stack"),
2022 obj->name().c_str());
2026 this->input_with_gnu_stack_note_ = true;
2027 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2029 this->input_requires_executable_stack_ = true;
2030 if (parameters->options().warn_execstack()
2031 || parameters->options().is_stack_executable())
2032 gold_warning(_("%s: requires executable stack"),
2033 obj->name().c_str());
2038 // Create automatic note sections.
2041 Layout::create_notes()
2043 this->create_gold_note();
2044 this->create_executable_stack_info();
2045 this->create_build_id();
2048 // Create the dynamic sections which are needed before we read the
2052 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2054 if (parameters->doing_static_link())
2057 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2058 elfcpp::SHT_DYNAMIC,
2060 | elfcpp::SHF_WRITE),
2064 // A linker script may discard .dynamic, so check for NULL.
2065 if (this->dynamic_section_ != NULL)
2067 this->dynamic_symbol_ =
2068 symtab->define_in_output_data("_DYNAMIC", NULL,
2069 Symbol_table::PREDEFINED,
2070 this->dynamic_section_, 0, 0,
2071 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2072 elfcpp::STV_HIDDEN, 0, false, false);
2074 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2076 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2080 // For each output section whose name can be represented as C symbol,
2081 // define __start and __stop symbols for the section. This is a GNU
2085 Layout::define_section_symbols(Symbol_table* symtab)
2087 for (Section_list::const_iterator p = this->section_list_.begin();
2088 p != this->section_list_.end();
2091 const char* const name = (*p)->name();
2092 if (is_cident(name))
2094 const std::string name_string(name);
2095 const std::string start_name(cident_section_start_prefix
2097 const std::string stop_name(cident_section_stop_prefix
2100 symtab->define_in_output_data(start_name.c_str(),
2102 Symbol_table::PREDEFINED,
2108 elfcpp::STV_DEFAULT,
2110 false, // offset_is_from_end
2111 true); // only_if_ref
2113 symtab->define_in_output_data(stop_name.c_str(),
2115 Symbol_table::PREDEFINED,
2121 elfcpp::STV_DEFAULT,
2123 true, // offset_is_from_end
2124 true); // only_if_ref
2129 // Define symbols for group signatures.
2132 Layout::define_group_signatures(Symbol_table* symtab)
2134 for (Group_signatures::iterator p = this->group_signatures_.begin();
2135 p != this->group_signatures_.end();
2138 Symbol* sym = symtab->lookup(p->signature, NULL);
2140 p->section->set_info_symndx(sym);
2143 // Force the name of the group section to the group
2144 // signature, and use the group's section symbol as the
2145 // signature symbol.
2146 if (strcmp(p->section->name(), p->signature) != 0)
2148 const char* name = this->namepool_.add(p->signature,
2150 p->section->set_name(name);
2152 p->section->set_needs_symtab_index();
2153 p->section->set_info_section_symndx(p->section);
2157 this->group_signatures_.clear();
2160 // Find the first read-only PT_LOAD segment, creating one if
2164 Layout::find_first_load_seg(const Target* target)
2166 Output_segment* best = NULL;
2167 for (Segment_list::const_iterator p = this->segment_list_.begin();
2168 p != this->segment_list_.end();
2171 if ((*p)->type() == elfcpp::PT_LOAD
2172 && ((*p)->flags() & elfcpp::PF_R) != 0
2173 && (parameters->options().omagic()
2174 || ((*p)->flags() & elfcpp::PF_W) == 0)
2175 && (!target->isolate_execinstr()
2176 || ((*p)->flags() & elfcpp::PF_X) == 0))
2178 if (best == NULL || this->segment_precedes(*p, best))
2185 gold_assert(!this->script_options_->saw_phdrs_clause());
2187 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2192 // Save states of all current output segments. Store saved states
2193 // in SEGMENT_STATES.
2196 Layout::save_segments(Segment_states* segment_states)
2198 for (Segment_list::const_iterator p = this->segment_list_.begin();
2199 p != this->segment_list_.end();
2202 Output_segment* segment = *p;
2204 Output_segment* copy = new Output_segment(*segment);
2205 (*segment_states)[segment] = copy;
2209 // Restore states of output segments and delete any segment not found in
2213 Layout::restore_segments(const Segment_states* segment_states)
2215 // Go through the segment list and remove any segment added in the
2217 this->tls_segment_ = NULL;
2218 this->relro_segment_ = NULL;
2219 Segment_list::iterator list_iter = this->segment_list_.begin();
2220 while (list_iter != this->segment_list_.end())
2222 Output_segment* segment = *list_iter;
2223 Segment_states::const_iterator states_iter =
2224 segment_states->find(segment);
2225 if (states_iter != segment_states->end())
2227 const Output_segment* copy = states_iter->second;
2228 // Shallow copy to restore states.
2231 // Also fix up TLS and RELRO segment pointers as appropriate.
2232 if (segment->type() == elfcpp::PT_TLS)
2233 this->tls_segment_ = segment;
2234 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2235 this->relro_segment_ = segment;
2241 list_iter = this->segment_list_.erase(list_iter);
2242 // This is a segment created during section layout. It should be
2243 // safe to remove it since we should have removed all pointers to it.
2249 // Clean up after relaxation so that sections can be laid out again.
2252 Layout::clean_up_after_relaxation()
2254 // Restore the segments to point state just prior to the relaxation loop.
2255 Script_sections* script_section = this->script_options_->script_sections();
2256 script_section->release_segments();
2257 this->restore_segments(this->segment_states_);
2259 // Reset section addresses and file offsets
2260 for (Section_list::iterator p = this->section_list_.begin();
2261 p != this->section_list_.end();
2264 (*p)->restore_states();
2266 // If an input section changes size because of relaxation,
2267 // we need to adjust the section offsets of all input sections.
2268 // after such a section.
2269 if ((*p)->section_offsets_need_adjustment())
2270 (*p)->adjust_section_offsets();
2272 (*p)->reset_address_and_file_offset();
2275 // Reset special output object address and file offsets.
2276 for (Data_list::iterator p = this->special_output_list_.begin();
2277 p != this->special_output_list_.end();
2279 (*p)->reset_address_and_file_offset();
2281 // A linker script may have created some output section data objects.
2282 // They are useless now.
2283 for (Output_section_data_list::const_iterator p =
2284 this->script_output_section_data_list_.begin();
2285 p != this->script_output_section_data_list_.end();
2288 this->script_output_section_data_list_.clear();
2291 // Prepare for relaxation.
2294 Layout::prepare_for_relaxation()
2296 // Create an relaxation debug check if in debugging mode.
2297 if (is_debugging_enabled(DEBUG_RELAXATION))
2298 this->relaxation_debug_check_ = new Relaxation_debug_check();
2300 // Save segment states.
2301 this->segment_states_ = new Segment_states();
2302 this->save_segments(this->segment_states_);
2304 for(Section_list::const_iterator p = this->section_list_.begin();
2305 p != this->section_list_.end();
2307 (*p)->save_states();
2309 if (is_debugging_enabled(DEBUG_RELAXATION))
2310 this->relaxation_debug_check_->check_output_data_for_reset_values(
2311 this->section_list_, this->special_output_list_);
2313 // Also enable recording of output section data from scripts.
2314 this->record_output_section_data_from_script_ = true;
2317 // Relaxation loop body: If target has no relaxation, this runs only once
2318 // Otherwise, the target relaxation hook is called at the end of
2319 // each iteration. If the hook returns true, it means re-layout of
2320 // section is required.
2322 // The number of segments created by a linking script without a PHDRS
2323 // clause may be affected by section sizes and alignments. There is
2324 // a remote chance that relaxation causes different number of PT_LOAD
2325 // segments are created and sections are attached to different segments.
2326 // Therefore, we always throw away all segments created during section
2327 // layout. In order to be able to restart the section layout, we keep
2328 // a copy of the segment list right before the relaxation loop and use
2329 // that to restore the segments.
2331 // PASS is the current relaxation pass number.
2332 // SYMTAB is a symbol table.
2333 // PLOAD_SEG is the address of a pointer for the load segment.
2334 // PHDR_SEG is a pointer to the PHDR segment.
2335 // SEGMENT_HEADERS points to the output segment header.
2336 // FILE_HEADER points to the output file header.
2337 // PSHNDX is the address to store the output section index.
2340 Layout::relaxation_loop_body(
2343 Symbol_table* symtab,
2344 Output_segment** pload_seg,
2345 Output_segment* phdr_seg,
2346 Output_segment_headers* segment_headers,
2347 Output_file_header* file_header,
2348 unsigned int* pshndx)
2350 // If this is not the first iteration, we need to clean up after
2351 // relaxation so that we can lay out the sections again.
2353 this->clean_up_after_relaxation();
2355 // If there is a SECTIONS clause, put all the input sections into
2356 // the required order.
2357 Output_segment* load_seg;
2358 if (this->script_options_->saw_sections_clause())
2359 load_seg = this->set_section_addresses_from_script(symtab);
2360 else if (parameters->options().relocatable())
2363 load_seg = this->find_first_load_seg(target);
2365 if (parameters->options().oformat_enum()
2366 != General_options::OBJECT_FORMAT_ELF)
2369 // If the user set the address of the text segment, that may not be
2370 // compatible with putting the segment headers and file headers into
2372 if (parameters->options().user_set_Ttext()
2373 && parameters->options().Ttext() % target->abi_pagesize() != 0)
2379 gold_assert(phdr_seg == NULL
2381 || this->script_options_->saw_sections_clause());
2383 // If the address of the load segment we found has been set by
2384 // --section-start rather than by a script, then adjust the VMA and
2385 // LMA downward if possible to include the file and section headers.
2386 uint64_t header_gap = 0;
2387 if (load_seg != NULL
2388 && load_seg->are_addresses_set()
2389 && !this->script_options_->saw_sections_clause()
2390 && !parameters->options().relocatable())
2392 file_header->finalize_data_size();
2393 segment_headers->finalize_data_size();
2394 size_t sizeof_headers = (file_header->data_size()
2395 + segment_headers->data_size());
2396 const uint64_t abi_pagesize = target->abi_pagesize();
2397 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2398 hdr_paddr &= ~(abi_pagesize - 1);
2399 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2400 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2404 load_seg->set_addresses(load_seg->vaddr() - subtract,
2405 load_seg->paddr() - subtract);
2406 header_gap = subtract - sizeof_headers;
2410 // Lay out the segment headers.
2411 if (!parameters->options().relocatable())
2413 gold_assert(segment_headers != NULL);
2414 if (header_gap != 0 && load_seg != NULL)
2416 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2417 load_seg->add_initial_output_data(z);
2419 if (load_seg != NULL)
2420 load_seg->add_initial_output_data(segment_headers);
2421 if (phdr_seg != NULL)
2422 phdr_seg->add_initial_output_data(segment_headers);
2425 // Lay out the file header.
2426 if (load_seg != NULL)
2427 load_seg->add_initial_output_data(file_header);
2429 if (this->script_options_->saw_phdrs_clause()
2430 && !parameters->options().relocatable())
2432 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2433 // clause in a linker script.
2434 Script_sections* ss = this->script_options_->script_sections();
2435 ss->put_headers_in_phdrs(file_header, segment_headers);
2438 // We set the output section indexes in set_segment_offsets and
2439 // set_section_indexes.
2442 // Set the file offsets of all the segments, and all the sections
2445 if (!parameters->options().relocatable())
2446 off = this->set_segment_offsets(target, load_seg, pshndx);
2448 off = this->set_relocatable_section_offsets(file_header, pshndx);
2450 // Verify that the dummy relaxation does not change anything.
2451 if (is_debugging_enabled(DEBUG_RELAXATION))
2454 this->relaxation_debug_check_->read_sections(this->section_list_);
2456 this->relaxation_debug_check_->verify_sections(this->section_list_);
2459 *pload_seg = load_seg;
2463 // Search the list of patterns and find the postion of the given section
2464 // name in the output section. If the section name matches a glob
2465 // pattern and a non-glob name, then the non-glob position takes
2466 // precedence. Return 0 if no match is found.
2469 Layout::find_section_order_index(const std::string& section_name)
2471 Unordered_map<std::string, unsigned int>::iterator map_it;
2472 map_it = this->input_section_position_.find(section_name);
2473 if (map_it != this->input_section_position_.end())
2474 return map_it->second;
2476 // Absolute match failed. Linear search the glob patterns.
2477 std::vector<std::string>::iterator it;
2478 for (it = this->input_section_glob_.begin();
2479 it != this->input_section_glob_.end();
2482 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2484 map_it = this->input_section_position_.find(*it);
2485 gold_assert(map_it != this->input_section_position_.end());
2486 return map_it->second;
2492 // Read the sequence of input sections from the file specified with
2493 // option --section-ordering-file.
2496 Layout::read_layout_from_file()
2498 const char* filename = parameters->options().section_ordering_file();
2504 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2505 filename, strerror(errno));
2507 std::getline(in, line); // this chops off the trailing \n, if any
2508 unsigned int position = 1;
2509 this->set_section_ordering_specified();
2513 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2514 line.resize(line.length() - 1);
2515 // Ignore comments, beginning with '#'
2518 std::getline(in, line);
2521 this->input_section_position_[line] = position;
2522 // Store all glob patterns in a vector.
2523 if (is_wildcard_string(line.c_str()))
2524 this->input_section_glob_.push_back(line);
2526 std::getline(in, line);
2530 // Finalize the layout. When this is called, we have created all the
2531 // output sections and all the output segments which are based on
2532 // input sections. We have several things to do, and we have to do
2533 // them in the right order, so that we get the right results correctly
2536 // 1) Finalize the list of output segments and create the segment
2539 // 2) Finalize the dynamic symbol table and associated sections.
2541 // 3) Determine the final file offset of all the output segments.
2543 // 4) Determine the final file offset of all the SHF_ALLOC output
2546 // 5) Create the symbol table sections and the section name table
2549 // 6) Finalize the symbol table: set symbol values to their final
2550 // value and make a final determination of which symbols are going
2551 // into the output symbol table.
2553 // 7) Create the section table header.
2555 // 8) Determine the final file offset of all the output sections which
2556 // are not SHF_ALLOC, including the section table header.
2558 // 9) Finalize the ELF file header.
2560 // This function returns the size of the output file.
2563 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2564 Target* target, const Task* task)
2566 target->finalize_sections(this, input_objects, symtab);
2568 this->count_local_symbols(task, input_objects);
2570 this->link_stabs_sections();
2572 Output_segment* phdr_seg = NULL;
2573 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2575 // There was a dynamic object in the link. We need to create
2576 // some information for the dynamic linker.
2578 // Create the PT_PHDR segment which will hold the program
2580 if (!this->script_options_->saw_phdrs_clause())
2581 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2583 // Create the dynamic symbol table, including the hash table.
2584 Output_section* dynstr;
2585 std::vector<Symbol*> dynamic_symbols;
2586 unsigned int local_dynamic_count;
2587 Versions versions(*this->script_options()->version_script_info(),
2589 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2590 &local_dynamic_count, &dynamic_symbols,
2593 // Create the .interp section to hold the name of the
2594 // interpreter, and put it in a PT_INTERP segment. Don't do it
2595 // if we saw a .interp section in an input file.
2596 if ((!parameters->options().shared()
2597 || parameters->options().dynamic_linker() != NULL)
2598 && this->interp_segment_ == NULL)
2599 this->create_interp(target);
2601 // Finish the .dynamic section to hold the dynamic data, and put
2602 // it in a PT_DYNAMIC segment.
2603 this->finish_dynamic_section(input_objects, symtab);
2605 // We should have added everything we need to the dynamic string
2607 this->dynpool_.set_string_offsets();
2609 // Create the version sections. We can't do this until the
2610 // dynamic string table is complete.
2611 this->create_version_sections(&versions, symtab, local_dynamic_count,
2612 dynamic_symbols, dynstr);
2614 // Set the size of the _DYNAMIC symbol. We can't do this until
2615 // after we call create_version_sections.
2616 this->set_dynamic_symbol_size(symtab);
2619 // Create segment headers.
2620 Output_segment_headers* segment_headers =
2621 (parameters->options().relocatable()
2623 : new Output_segment_headers(this->segment_list_));
2625 // Lay out the file header.
2626 Output_file_header* file_header = new Output_file_header(target, symtab,
2629 this->special_output_list_.push_back(file_header);
2630 if (segment_headers != NULL)
2631 this->special_output_list_.push_back(segment_headers);
2633 // Find approriate places for orphan output sections if we are using
2635 if (this->script_options_->saw_sections_clause())
2636 this->place_orphan_sections_in_script();
2638 Output_segment* load_seg;
2643 // Take a snapshot of the section layout as needed.
2644 if (target->may_relax())
2645 this->prepare_for_relaxation();
2647 // Run the relaxation loop to lay out sections.
2650 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2651 phdr_seg, segment_headers, file_header,
2655 while (target->may_relax()
2656 && target->relax(pass, input_objects, symtab, this, task));
2658 // If there is a load segment that contains the file and program headers,
2659 // provide a symbol __ehdr_start pointing there.
2660 // A program can use this to examine itself robustly.
2661 if (load_seg != NULL)
2662 symtab->define_in_output_segment("__ehdr_start", NULL,
2663 Symbol_table::PREDEFINED, load_seg, 0, 0,
2664 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2665 elfcpp::STV_DEFAULT, 0,
2666 Symbol::SEGMENT_START, true);
2668 // Set the file offsets of all the non-data sections we've seen so
2669 // far which don't have to wait for the input sections. We need
2670 // this in order to finalize local symbols in non-allocated
2672 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2674 // Set the section indexes of all unallocated sections seen so far,
2675 // in case any of them are somehow referenced by a symbol.
2676 shndx = this->set_section_indexes(shndx);
2678 // Create the symbol table sections.
2679 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2680 if (!parameters->doing_static_link())
2681 this->assign_local_dynsym_offsets(input_objects);
2683 // Process any symbol assignments from a linker script. This must
2684 // be called after the symbol table has been finalized.
2685 this->script_options_->finalize_symbols(symtab, this);
2687 // Create the incremental inputs sections.
2688 if (this->incremental_inputs_)
2690 this->incremental_inputs_->finalize();
2691 this->create_incremental_info_sections(symtab);
2694 // Create the .shstrtab section.
2695 Output_section* shstrtab_section = this->create_shstrtab();
2697 // Set the file offsets of the rest of the non-data sections which
2698 // don't have to wait for the input sections.
2699 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2701 // Now that all sections have been created, set the section indexes
2702 // for any sections which haven't been done yet.
2703 shndx = this->set_section_indexes(shndx);
2705 // Create the section table header.
2706 this->create_shdrs(shstrtab_section, &off);
2708 // If there are no sections which require postprocessing, we can
2709 // handle the section names now, and avoid a resize later.
2710 if (!this->any_postprocessing_sections_)
2712 off = this->set_section_offsets(off,
2713 POSTPROCESSING_SECTIONS_PASS);
2715 this->set_section_offsets(off,
2716 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2719 file_header->set_section_info(this->section_headers_, shstrtab_section);
2721 // Now we know exactly where everything goes in the output file
2722 // (except for non-allocated sections which require postprocessing).
2723 Output_data::layout_complete();
2725 this->output_file_size_ = off;
2730 // Create a note header following the format defined in the ELF ABI.
2731 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2732 // of the section to create, DESCSZ is the size of the descriptor.
2733 // ALLOCATE is true if the section should be allocated in memory.
2734 // This returns the new note section. It sets *TRAILING_PADDING to
2735 // the number of trailing zero bytes required.
2738 Layout::create_note(const char* name, int note_type,
2739 const char* section_name, size_t descsz,
2740 bool allocate, size_t* trailing_padding)
2742 // Authorities all agree that the values in a .note field should
2743 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2744 // they differ on what the alignment is for 64-bit binaries.
2745 // The GABI says unambiguously they take 8-byte alignment:
2746 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2747 // Other documentation says alignment should always be 4 bytes:
2748 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2749 // GNU ld and GNU readelf both support the latter (at least as of
2750 // version 2.16.91), and glibc always generates the latter for
2751 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2753 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2754 const int size = parameters->target().get_size();
2756 const int size = 32;
2759 // The contents of the .note section.
2760 size_t namesz = strlen(name) + 1;
2761 size_t aligned_namesz = align_address(namesz, size / 8);
2762 size_t aligned_descsz = align_address(descsz, size / 8);
2764 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2766 unsigned char* buffer = new unsigned char[notehdrsz];
2767 memset(buffer, 0, notehdrsz);
2769 bool is_big_endian = parameters->target().is_big_endian();
2775 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2776 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2777 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2781 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2782 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2783 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2786 else if (size == 64)
2790 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2791 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2792 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2796 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2797 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2798 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2804 memcpy(buffer + 3 * (size / 8), name, namesz);
2806 elfcpp::Elf_Xword flags = 0;
2807 Output_section_order order = ORDER_INVALID;
2810 flags = elfcpp::SHF_ALLOC;
2811 order = ORDER_RO_NOTE;
2813 Output_section* os = this->choose_output_section(NULL, section_name,
2815 flags, false, order, false);
2819 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2822 os->add_output_section_data(posd);
2824 *trailing_padding = aligned_descsz - descsz;
2829 // For an executable or shared library, create a note to record the
2830 // version of gold used to create the binary.
2833 Layout::create_gold_note()
2835 if (parameters->options().relocatable()
2836 || parameters->incremental_update())
2839 std::string desc = std::string("gold ") + gold::get_version_string();
2841 size_t trailing_padding;
2842 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2843 ".note.gnu.gold-version", desc.size(),
2844 false, &trailing_padding);
2848 Output_section_data* posd = new Output_data_const(desc, 4);
2849 os->add_output_section_data(posd);
2851 if (trailing_padding > 0)
2853 posd = new Output_data_zero_fill(trailing_padding, 0);
2854 os->add_output_section_data(posd);
2858 // Record whether the stack should be executable. This can be set
2859 // from the command line using the -z execstack or -z noexecstack
2860 // options. Otherwise, if any input file has a .note.GNU-stack
2861 // section with the SHF_EXECINSTR flag set, the stack should be
2862 // executable. Otherwise, if at least one input file a
2863 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2864 // section, we use the target default for whether the stack should be
2865 // executable. Otherwise, we don't generate a stack note. When
2866 // generating a object file, we create a .note.GNU-stack section with
2867 // the appropriate marking. When generating an executable or shared
2868 // library, we create a PT_GNU_STACK segment.
2871 Layout::create_executable_stack_info()
2873 bool is_stack_executable;
2874 if (parameters->options().is_execstack_set())
2875 is_stack_executable = parameters->options().is_stack_executable();
2876 else if (!this->input_with_gnu_stack_note_)
2880 if (this->input_requires_executable_stack_)
2881 is_stack_executable = true;
2882 else if (this->input_without_gnu_stack_note_)
2883 is_stack_executable =
2884 parameters->target().is_default_stack_executable();
2886 is_stack_executable = false;
2889 if (parameters->options().relocatable())
2891 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2892 elfcpp::Elf_Xword flags = 0;
2893 if (is_stack_executable)
2894 flags |= elfcpp::SHF_EXECINSTR;
2895 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2896 ORDER_INVALID, false);
2900 if (this->script_options_->saw_phdrs_clause())
2902 int flags = elfcpp::PF_R | elfcpp::PF_W;
2903 if (is_stack_executable)
2904 flags |= elfcpp::PF_X;
2905 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2909 // If --build-id was used, set up the build ID note.
2912 Layout::create_build_id()
2914 if (!parameters->options().user_set_build_id())
2917 const char* style = parameters->options().build_id();
2918 if (strcmp(style, "none") == 0)
2921 // Set DESCSZ to the size of the note descriptor. When possible,
2922 // set DESC to the note descriptor contents.
2925 if (strcmp(style, "md5") == 0)
2927 else if (strcmp(style, "sha1") == 0)
2929 else if (strcmp(style, "uuid") == 0)
2931 const size_t uuidsz = 128 / 8;
2933 char buffer[uuidsz];
2934 memset(buffer, 0, uuidsz);
2936 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2938 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2942 ssize_t got = ::read(descriptor, buffer, uuidsz);
2943 release_descriptor(descriptor, true);
2945 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2946 else if (static_cast<size_t>(got) != uuidsz)
2947 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2951 desc.assign(buffer, uuidsz);
2954 else if (strncmp(style, "0x", 2) == 0)
2957 const char* p = style + 2;
2960 if (hex_p(p[0]) && hex_p(p[1]))
2962 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2966 else if (*p == '-' || *p == ':')
2969 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2972 descsz = desc.size();
2975 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2978 size_t trailing_padding;
2979 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2980 ".note.gnu.build-id", descsz, true,
2987 // We know the value already, so we fill it in now.
2988 gold_assert(desc.size() == descsz);
2990 Output_section_data* posd = new Output_data_const(desc, 4);
2991 os->add_output_section_data(posd);
2993 if (trailing_padding != 0)
2995 posd = new Output_data_zero_fill(trailing_padding, 0);
2996 os->add_output_section_data(posd);
3001 // We need to compute a checksum after we have completed the
3003 gold_assert(trailing_padding == 0);
3004 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3005 os->add_output_section_data(this->build_id_note_);
3009 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3010 // field of the former should point to the latter. I'm not sure who
3011 // started this, but the GNU linker does it, and some tools depend
3015 Layout::link_stabs_sections()
3017 if (!this->have_stabstr_section_)
3020 for (Section_list::iterator p = this->section_list_.begin();
3021 p != this->section_list_.end();
3024 if ((*p)->type() != elfcpp::SHT_STRTAB)
3027 const char* name = (*p)->name();
3028 if (strncmp(name, ".stab", 5) != 0)
3031 size_t len = strlen(name);
3032 if (strcmp(name + len - 3, "str") != 0)
3035 std::string stab_name(name, len - 3);
3036 Output_section* stab_sec;
3037 stab_sec = this->find_output_section(stab_name.c_str());
3038 if (stab_sec != NULL)
3039 stab_sec->set_link_section(*p);
3043 // Create .gnu_incremental_inputs and related sections needed
3044 // for the next run of incremental linking to check what has changed.
3047 Layout::create_incremental_info_sections(Symbol_table* symtab)
3049 Incremental_inputs* incr = this->incremental_inputs_;
3051 gold_assert(incr != NULL);
3053 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3054 incr->create_data_sections(symtab);
3056 // Add the .gnu_incremental_inputs section.
3057 const char* incremental_inputs_name =
3058 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3059 Output_section* incremental_inputs_os =
3060 this->make_output_section(incremental_inputs_name,
3061 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3062 ORDER_INVALID, false);
3063 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3065 // Add the .gnu_incremental_symtab section.
3066 const char* incremental_symtab_name =
3067 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3068 Output_section* incremental_symtab_os =
3069 this->make_output_section(incremental_symtab_name,
3070 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3071 ORDER_INVALID, false);
3072 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3073 incremental_symtab_os->set_entsize(4);
3075 // Add the .gnu_incremental_relocs section.
3076 const char* incremental_relocs_name =
3077 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3078 Output_section* incremental_relocs_os =
3079 this->make_output_section(incremental_relocs_name,
3080 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3081 ORDER_INVALID, false);
3082 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3083 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3085 // Add the .gnu_incremental_got_plt section.
3086 const char* incremental_got_plt_name =
3087 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3088 Output_section* incremental_got_plt_os =
3089 this->make_output_section(incremental_got_plt_name,
3090 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3091 ORDER_INVALID, false);
3092 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3094 // Add the .gnu_incremental_strtab section.
3095 const char* incremental_strtab_name =
3096 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3097 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3098 elfcpp::SHT_STRTAB, 0,
3099 ORDER_INVALID, false);
3100 Output_data_strtab* strtab_data =
3101 new Output_data_strtab(incr->get_stringpool());
3102 incremental_strtab_os->add_output_section_data(strtab_data);
3104 incremental_inputs_os->set_after_input_sections();
3105 incremental_symtab_os->set_after_input_sections();
3106 incremental_relocs_os->set_after_input_sections();
3107 incremental_got_plt_os->set_after_input_sections();
3109 incremental_inputs_os->set_link_section(incremental_strtab_os);
3110 incremental_symtab_os->set_link_section(incremental_inputs_os);
3111 incremental_relocs_os->set_link_section(incremental_inputs_os);
3112 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3115 // Return whether SEG1 should be before SEG2 in the output file. This
3116 // is based entirely on the segment type and flags. When this is
3117 // called the segment addresses have normally not yet been set.
3120 Layout::segment_precedes(const Output_segment* seg1,
3121 const Output_segment* seg2)
3123 elfcpp::Elf_Word type1 = seg1->type();
3124 elfcpp::Elf_Word type2 = seg2->type();
3126 // The single PT_PHDR segment is required to precede any loadable
3127 // segment. We simply make it always first.
3128 if (type1 == elfcpp::PT_PHDR)
3130 gold_assert(type2 != elfcpp::PT_PHDR);
3133 if (type2 == elfcpp::PT_PHDR)
3136 // The single PT_INTERP segment is required to precede any loadable
3137 // segment. We simply make it always second.
3138 if (type1 == elfcpp::PT_INTERP)
3140 gold_assert(type2 != elfcpp::PT_INTERP);
3143 if (type2 == elfcpp::PT_INTERP)
3146 // We then put PT_LOAD segments before any other segments.
3147 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3149 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3152 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3153 // segment, because that is where the dynamic linker expects to find
3154 // it (this is just for efficiency; other positions would also work
3156 if (type1 == elfcpp::PT_TLS
3157 && type2 != elfcpp::PT_TLS
3158 && type2 != elfcpp::PT_GNU_RELRO)
3160 if (type2 == elfcpp::PT_TLS
3161 && type1 != elfcpp::PT_TLS
3162 && type1 != elfcpp::PT_GNU_RELRO)
3165 // We put the PT_GNU_RELRO segment last, because that is where the
3166 // dynamic linker expects to find it (as with PT_TLS, this is just
3168 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3170 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3173 const elfcpp::Elf_Word flags1 = seg1->flags();
3174 const elfcpp::Elf_Word flags2 = seg2->flags();
3176 // The order of non-PT_LOAD segments is unimportant. We simply sort
3177 // by the numeric segment type and flags values. There should not
3178 // be more than one segment with the same type and flags.
3179 if (type1 != elfcpp::PT_LOAD)
3182 return type1 < type2;
3183 gold_assert(flags1 != flags2);
3184 return flags1 < flags2;
3187 // If the addresses are set already, sort by load address.
3188 if (seg1->are_addresses_set())
3190 if (!seg2->are_addresses_set())
3193 unsigned int section_count1 = seg1->output_section_count();
3194 unsigned int section_count2 = seg2->output_section_count();
3195 if (section_count1 == 0 && section_count2 > 0)
3197 if (section_count1 > 0 && section_count2 == 0)
3200 uint64_t paddr1 = (seg1->are_addresses_set()
3202 : seg1->first_section_load_address());
3203 uint64_t paddr2 = (seg2->are_addresses_set()
3205 : seg2->first_section_load_address());
3207 if (paddr1 != paddr2)
3208 return paddr1 < paddr2;
3210 else if (seg2->are_addresses_set())
3213 // A segment which holds large data comes after a segment which does
3214 // not hold large data.
3215 if (seg1->is_large_data_segment())
3217 if (!seg2->is_large_data_segment())
3220 else if (seg2->is_large_data_segment())
3223 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3224 // segments come before writable segments. Then writable segments
3225 // with data come before writable segments without data. Then
3226 // executable segments come before non-executable segments. Then
3227 // the unlikely case of a non-readable segment comes before the
3228 // normal case of a readable segment. If there are multiple
3229 // segments with the same type and flags, we require that the
3230 // address be set, and we sort by virtual address and then physical
3232 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3233 return (flags1 & elfcpp::PF_W) == 0;
3234 if ((flags1 & elfcpp::PF_W) != 0
3235 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3236 return seg1->has_any_data_sections();
3237 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3238 return (flags1 & elfcpp::PF_X) != 0;
3239 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3240 return (flags1 & elfcpp::PF_R) == 0;
3242 // We shouldn't get here--we shouldn't create segments which we
3243 // can't distinguish. Unless of course we are using a weird linker
3244 // script or overlapping --section-start options. We could also get
3245 // here if plugins want unique segments for subsets of sections.
3246 gold_assert(this->script_options_->saw_phdrs_clause()
3247 || parameters->options().any_section_start()
3248 || this->is_unique_segment_for_sections_specified());
3252 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3255 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3257 uint64_t unsigned_off = off;
3258 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3259 | (addr & (abi_pagesize - 1)));
3260 if (aligned_off < unsigned_off)
3261 aligned_off += abi_pagesize;
3265 // Set the file offsets of all the segments, and all the sections they
3266 // contain. They have all been created. LOAD_SEG must be be laid out
3267 // first. Return the offset of the data to follow.
3270 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3271 unsigned int* pshndx)
3273 // Sort them into the final order. We use a stable sort so that we
3274 // don't randomize the order of indistinguishable segments created
3275 // by linker scripts.
3276 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3277 Layout::Compare_segments(this));
3279 // Find the PT_LOAD segments, and set their addresses and offsets
3280 // and their section's addresses and offsets.
3281 uint64_t start_addr;
3282 if (parameters->options().user_set_Ttext())
3283 start_addr = parameters->options().Ttext();
3284 else if (parameters->options().output_is_position_independent())
3287 start_addr = target->default_text_segment_address();
3289 uint64_t addr = start_addr;
3292 // If LOAD_SEG is NULL, then the file header and segment headers
3293 // will not be loadable. But they still need to be at offset 0 in
3294 // the file. Set their offsets now.
3295 if (load_seg == NULL)
3297 for (Data_list::iterator p = this->special_output_list_.begin();
3298 p != this->special_output_list_.end();
3301 off = align_address(off, (*p)->addralign());
3302 (*p)->set_address_and_file_offset(0, off);
3303 off += (*p)->data_size();
3307 unsigned int increase_relro = this->increase_relro_;
3308 if (this->script_options_->saw_sections_clause())
3311 const bool check_sections = parameters->options().check_sections();
3312 Output_segment* last_load_segment = NULL;
3314 unsigned int shndx_begin = *pshndx;
3315 unsigned int shndx_load_seg = *pshndx;
3317 for (Segment_list::iterator p = this->segment_list_.begin();
3318 p != this->segment_list_.end();
3321 if ((*p)->type() == elfcpp::PT_LOAD)
3323 if (target->isolate_execinstr())
3325 // When we hit the segment that should contain the
3326 // file headers, reset the file offset so we place
3327 // it and subsequent segments appropriately.
3328 // We'll fix up the preceding segments below.
3336 shndx_load_seg = *pshndx;
3342 // Verify that the file headers fall into the first segment.
3343 if (load_seg != NULL && load_seg != *p)
3348 bool are_addresses_set = (*p)->are_addresses_set();
3349 if (are_addresses_set)
3351 // When it comes to setting file offsets, we care about
3352 // the physical address.
3353 addr = (*p)->paddr();
3355 else if (parameters->options().user_set_Ttext()
3356 && (parameters->options().omagic()
3357 || ((*p)->flags() & elfcpp::PF_W) == 0))
3359 are_addresses_set = true;
3361 else if (parameters->options().user_set_Tdata()
3362 && ((*p)->flags() & elfcpp::PF_W) != 0
3363 && (!parameters->options().user_set_Tbss()
3364 || (*p)->has_any_data_sections()))
3366 addr = parameters->options().Tdata();
3367 are_addresses_set = true;
3369 else if (parameters->options().user_set_Tbss()
3370 && ((*p)->flags() & elfcpp::PF_W) != 0
3371 && !(*p)->has_any_data_sections())
3373 addr = parameters->options().Tbss();
3374 are_addresses_set = true;
3377 uint64_t orig_addr = addr;
3378 uint64_t orig_off = off;
3380 uint64_t aligned_addr = 0;
3381 uint64_t abi_pagesize = target->abi_pagesize();
3382 uint64_t common_pagesize = target->common_pagesize();
3384 if (!parameters->options().nmagic()
3385 && !parameters->options().omagic())
3386 (*p)->set_minimum_p_align(abi_pagesize);
3388 if (!are_addresses_set)
3390 // Skip the address forward one page, maintaining the same
3391 // position within the page. This lets us store both segments
3392 // overlapping on a single page in the file, but the loader will
3393 // put them on different pages in memory. We will revisit this
3394 // decision once we know the size of the segment.
3396 addr = align_address(addr, (*p)->maximum_alignment());
3397 aligned_addr = addr;
3401 // This is the segment that will contain the file
3402 // headers, so its offset will have to be exactly zero.
3403 gold_assert(orig_off == 0);
3405 // If the target wants a fixed minimum distance from the
3406 // text segment to the read-only segment, move up now.
3407 uint64_t min_addr = start_addr + target->rosegment_gap();
3408 if (addr < min_addr)
3411 // But this is not the first segment! To make its
3412 // address congruent with its offset, that address better
3413 // be aligned to the ABI-mandated page size.
3414 addr = align_address(addr, abi_pagesize);
3415 aligned_addr = addr;
3419 if ((addr & (abi_pagesize - 1)) != 0)
3420 addr = addr + abi_pagesize;
3422 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3426 if (!parameters->options().nmagic()
3427 && !parameters->options().omagic())
3428 off = align_file_offset(off, addr, abi_pagesize);
3431 // This is -N or -n with a section script which prevents
3432 // us from using a load segment. We need to ensure that
3433 // the file offset is aligned to the alignment of the
3434 // segment. This is because the linker script
3435 // implicitly assumed a zero offset. If we don't align
3436 // here, then the alignment of the sections in the
3437 // linker script may not match the alignment of the
3438 // sections in the set_section_addresses call below,
3439 // causing an error about dot moving backward.
3440 off = align_address(off, (*p)->maximum_alignment());
3443 unsigned int shndx_hold = *pshndx;
3444 bool has_relro = false;
3445 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3450 // Now that we know the size of this segment, we may be able
3451 // to save a page in memory, at the cost of wasting some
3452 // file space, by instead aligning to the start of a new
3453 // page. Here we use the real machine page size rather than
3454 // the ABI mandated page size. If the segment has been
3455 // aligned so that the relro data ends at a page boundary,
3456 // we do not try to realign it.
3458 if (!are_addresses_set
3460 && aligned_addr != addr
3461 && !parameters->incremental())
3463 uint64_t first_off = (common_pagesize
3465 & (common_pagesize - 1)));
3466 uint64_t last_off = new_addr & (common_pagesize - 1);
3469 && ((aligned_addr & ~ (common_pagesize - 1))
3470 != (new_addr & ~ (common_pagesize - 1)))
3471 && first_off + last_off <= common_pagesize)
3473 *pshndx = shndx_hold;
3474 addr = align_address(aligned_addr, common_pagesize);
3475 addr = align_address(addr, (*p)->maximum_alignment());
3476 if ((addr & (abi_pagesize - 1)) != 0)
3477 addr = addr + abi_pagesize;
3478 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3479 off = align_file_offset(off, addr, abi_pagesize);
3481 increase_relro = this->increase_relro_;
3482 if (this->script_options_->saw_sections_clause())
3486 new_addr = (*p)->set_section_addresses(this, true, addr,
3495 // Implement --check-sections. We know that the segments
3496 // are sorted by LMA.
3497 if (check_sections && last_load_segment != NULL)
3499 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3500 if (last_load_segment->paddr() + last_load_segment->memsz()
3503 unsigned long long lb1 = last_load_segment->paddr();
3504 unsigned long long le1 = lb1 + last_load_segment->memsz();
3505 unsigned long long lb2 = (*p)->paddr();
3506 unsigned long long le2 = lb2 + (*p)->memsz();
3507 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3508 "[0x%llx -> 0x%llx]"),
3509 lb1, le1, lb2, le2);
3512 last_load_segment = *p;
3516 if (load_seg != NULL && target->isolate_execinstr())
3518 // Process the early segments again, setting their file offsets
3519 // so they land after the segments starting at LOAD_SEG.
3520 off = align_file_offset(off, 0, target->abi_pagesize());
3522 for (Segment_list::iterator p = this->segment_list_.begin();
3526 if ((*p)->type() == elfcpp::PT_LOAD)
3528 // We repeat the whole job of assigning addresses and
3529 // offsets, but we really only want to change the offsets and
3530 // must ensure that the addresses all come out the same as
3531 // they did the first time through.
3532 bool has_relro = false;
3533 const uint64_t old_addr = (*p)->vaddr();
3534 const uint64_t old_end = old_addr + (*p)->memsz();
3535 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3541 gold_assert(new_addr == old_end);
3545 gold_assert(shndx_begin == shndx_load_seg);
3548 // Handle the non-PT_LOAD segments, setting their offsets from their
3549 // section's offsets.
3550 for (Segment_list::iterator p = this->segment_list_.begin();
3551 p != this->segment_list_.end();
3554 if ((*p)->type() != elfcpp::PT_LOAD)
3555 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3560 // Set the TLS offsets for each section in the PT_TLS segment.
3561 if (this->tls_segment_ != NULL)
3562 this->tls_segment_->set_tls_offsets();
3567 // Set the offsets of all the allocated sections when doing a
3568 // relocatable link. This does the same jobs as set_segment_offsets,
3569 // only for a relocatable link.
3572 Layout::set_relocatable_section_offsets(Output_data* file_header,
3573 unsigned int* pshndx)
3577 file_header->set_address_and_file_offset(0, 0);
3578 off += file_header->data_size();
3580 for (Section_list::iterator p = this->section_list_.begin();
3581 p != this->section_list_.end();
3584 // We skip unallocated sections here, except that group sections
3585 // have to come first.
3586 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3587 && (*p)->type() != elfcpp::SHT_GROUP)
3590 off = align_address(off, (*p)->addralign());
3592 // The linker script might have set the address.
3593 if (!(*p)->is_address_valid())
3594 (*p)->set_address(0);
3595 (*p)->set_file_offset(off);
3596 (*p)->finalize_data_size();
3597 off += (*p)->data_size();
3599 (*p)->set_out_shndx(*pshndx);
3606 // Set the file offset of all the sections not associated with a
3610 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3612 off_t startoff = off;
3615 for (Section_list::iterator p = this->unattached_section_list_.begin();
3616 p != this->unattached_section_list_.end();
3619 // The symtab section is handled in create_symtab_sections.
3620 if (*p == this->symtab_section_)
3623 // If we've already set the data size, don't set it again.
3624 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3627 if (pass == BEFORE_INPUT_SECTIONS_PASS
3628 && (*p)->requires_postprocessing())
3630 (*p)->create_postprocessing_buffer();
3631 this->any_postprocessing_sections_ = true;
3634 if (pass == BEFORE_INPUT_SECTIONS_PASS
3635 && (*p)->after_input_sections())
3637 else if (pass == POSTPROCESSING_SECTIONS_PASS
3638 && (!(*p)->after_input_sections()
3639 || (*p)->type() == elfcpp::SHT_STRTAB))
3641 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3642 && (!(*p)->after_input_sections()
3643 || (*p)->type() != elfcpp::SHT_STRTAB))
3646 if (!parameters->incremental_update())
3648 off = align_address(off, (*p)->addralign());
3649 (*p)->set_file_offset(off);
3650 (*p)->finalize_data_size();
3654 // Incremental update: allocate file space from free list.
3655 (*p)->pre_finalize_data_size();
3656 off_t current_size = (*p)->current_data_size();
3657 off = this->allocate(current_size, (*p)->addralign(), startoff);
3660 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3661 this->free_list_.dump();
3662 gold_assert((*p)->output_section() != NULL);
3663 gold_fallback(_("out of patch space for section %s; "
3664 "relink with --incremental-full"),
3665 (*p)->output_section()->name());
3667 (*p)->set_file_offset(off);
3668 (*p)->finalize_data_size();
3669 if ((*p)->data_size() > current_size)
3671 gold_assert((*p)->output_section() != NULL);
3672 gold_fallback(_("%s: section changed size; "
3673 "relink with --incremental-full"),
3674 (*p)->output_section()->name());
3676 gold_debug(DEBUG_INCREMENTAL,
3677 "set_section_offsets: %08lx %08lx %s",
3678 static_cast<long>(off),
3679 static_cast<long>((*p)->data_size()),
3680 ((*p)->output_section() != NULL
3681 ? (*p)->output_section()->name() : "(special)"));
3684 off += (*p)->data_size();
3688 // At this point the name must be set.
3689 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3690 this->namepool_.add((*p)->name(), false, NULL);
3695 // Set the section indexes of all the sections not associated with a
3699 Layout::set_section_indexes(unsigned int shndx)
3701 for (Section_list::iterator p = this->unattached_section_list_.begin();
3702 p != this->unattached_section_list_.end();
3705 if (!(*p)->has_out_shndx())
3707 (*p)->set_out_shndx(shndx);
3714 // Set the section addresses according to the linker script. This is
3715 // only called when we see a SECTIONS clause. This returns the
3716 // program segment which should hold the file header and segment
3717 // headers, if any. It will return NULL if they should not be in a
3721 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3723 Script_sections* ss = this->script_options_->script_sections();
3724 gold_assert(ss->saw_sections_clause());
3725 return this->script_options_->set_section_addresses(symtab, this);
3728 // Place the orphan sections in the linker script.
3731 Layout::place_orphan_sections_in_script()
3733 Script_sections* ss = this->script_options_->script_sections();
3734 gold_assert(ss->saw_sections_clause());
3736 // Place each orphaned output section in the script.
3737 for (Section_list::iterator p = this->section_list_.begin();
3738 p != this->section_list_.end();
3741 if (!(*p)->found_in_sections_clause())
3742 ss->place_orphan(*p);
3746 // Count the local symbols in the regular symbol table and the dynamic
3747 // symbol table, and build the respective string pools.
3750 Layout::count_local_symbols(const Task* task,
3751 const Input_objects* input_objects)
3753 // First, figure out an upper bound on the number of symbols we'll
3754 // be inserting into each pool. This helps us create the pools with
3755 // the right size, to avoid unnecessary hashtable resizing.
3756 unsigned int symbol_count = 0;
3757 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3758 p != input_objects->relobj_end();
3760 symbol_count += (*p)->local_symbol_count();
3762 // Go from "upper bound" to "estimate." We overcount for two
3763 // reasons: we double-count symbols that occur in more than one
3764 // object file, and we count symbols that are dropped from the
3765 // output. Add it all together and assume we overcount by 100%.
3768 // We assume all symbols will go into both the sympool and dynpool.
3769 this->sympool_.reserve(symbol_count);
3770 this->dynpool_.reserve(symbol_count);
3772 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3773 p != input_objects->relobj_end();
3776 Task_lock_obj<Object> tlo(task, *p);
3777 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3781 // Create the symbol table sections. Here we also set the final
3782 // values of the symbols. At this point all the loadable sections are
3783 // fully laid out. SHNUM is the number of sections so far.
3786 Layout::create_symtab_sections(const Input_objects* input_objects,
3787 Symbol_table* symtab,
3793 if (parameters->target().get_size() == 32)
3795 symsize = elfcpp::Elf_sizes<32>::sym_size;
3798 else if (parameters->target().get_size() == 64)
3800 symsize = elfcpp::Elf_sizes<64>::sym_size;
3806 // Compute file offsets relative to the start of the symtab section.
3809 // Save space for the dummy symbol at the start of the section. We
3810 // never bother to write this out--it will just be left as zero.
3812 unsigned int local_symbol_index = 1;
3814 // Add STT_SECTION symbols for each Output section which needs one.
3815 for (Section_list::iterator p = this->section_list_.begin();
3816 p != this->section_list_.end();
3819 if (!(*p)->needs_symtab_index())
3820 (*p)->set_symtab_index(-1U);
3823 (*p)->set_symtab_index(local_symbol_index);
3824 ++local_symbol_index;
3829 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3830 p != input_objects->relobj_end();
3833 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3835 off += (index - local_symbol_index) * symsize;
3836 local_symbol_index = index;
3839 unsigned int local_symcount = local_symbol_index;
3840 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3843 size_t dyn_global_index;
3845 if (this->dynsym_section_ == NULL)
3848 dyn_global_index = 0;
3853 dyn_global_index = this->dynsym_section_->info();
3854 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3855 dynoff = this->dynsym_section_->offset() + locsize;
3856 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3857 gold_assert(static_cast<off_t>(dyncount * symsize)
3858 == this->dynsym_section_->data_size() - locsize);
3861 off_t global_off = off;
3862 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3863 &this->sympool_, &local_symcount);
3865 if (!parameters->options().strip_all())
3867 this->sympool_.set_string_offsets();
3869 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3870 Output_section* osymtab = this->make_output_section(symtab_name,
3874 this->symtab_section_ = osymtab;
3876 Output_section_data* pos = new Output_data_fixed_space(off, align,
3878 osymtab->add_output_section_data(pos);
3880 // We generate a .symtab_shndx section if we have more than
3881 // SHN_LORESERVE sections. Technically it is possible that we
3882 // don't need one, because it is possible that there are no
3883 // symbols in any of sections with indexes larger than
3884 // SHN_LORESERVE. That is probably unusual, though, and it is
3885 // easier to always create one than to compute section indexes
3886 // twice (once here, once when writing out the symbols).
3887 if (shnum >= elfcpp::SHN_LORESERVE)
3889 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3891 Output_section* osymtab_xindex =
3892 this->make_output_section(symtab_xindex_name,
3893 elfcpp::SHT_SYMTAB_SHNDX, 0,
3894 ORDER_INVALID, false);
3896 size_t symcount = off / symsize;
3897 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3899 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3901 osymtab_xindex->set_link_section(osymtab);
3902 osymtab_xindex->set_addralign(4);
3903 osymtab_xindex->set_entsize(4);
3905 osymtab_xindex->set_after_input_sections();
3907 // This tells the driver code to wait until the symbol table
3908 // has written out before writing out the postprocessing
3909 // sections, including the .symtab_shndx section.
3910 this->any_postprocessing_sections_ = true;
3913 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3914 Output_section* ostrtab = this->make_output_section(strtab_name,
3919 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3920 ostrtab->add_output_section_data(pstr);
3923 if (!parameters->incremental_update())
3924 symtab_off = align_address(*poff, align);
3927 symtab_off = this->allocate(off, align, *poff);
3929 gold_fallback(_("out of patch space for symbol table; "
3930 "relink with --incremental-full"));
3931 gold_debug(DEBUG_INCREMENTAL,
3932 "create_symtab_sections: %08lx %08lx .symtab",
3933 static_cast<long>(symtab_off),
3934 static_cast<long>(off));
3937 symtab->set_file_offset(symtab_off + global_off);
3938 osymtab->set_file_offset(symtab_off);
3939 osymtab->finalize_data_size();
3940 osymtab->set_link_section(ostrtab);
3941 osymtab->set_info(local_symcount);
3942 osymtab->set_entsize(symsize);
3944 if (symtab_off + off > *poff)
3945 *poff = symtab_off + off;
3949 // Create the .shstrtab section, which holds the names of the
3950 // sections. At the time this is called, we have created all the
3951 // output sections except .shstrtab itself.
3954 Layout::create_shstrtab()
3956 // FIXME: We don't need to create a .shstrtab section if we are
3957 // stripping everything.
3959 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3961 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3962 ORDER_INVALID, false);
3964 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3966 // We can't write out this section until we've set all the
3967 // section names, and we don't set the names of compressed
3968 // output sections until relocations are complete. FIXME: With
3969 // the current names we use, this is unnecessary.
3970 os->set_after_input_sections();
3973 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3974 os->add_output_section_data(posd);
3979 // Create the section headers. SIZE is 32 or 64. OFF is the file
3983 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3985 Output_section_headers* oshdrs;
3986 oshdrs = new Output_section_headers(this,
3987 &this->segment_list_,
3988 &this->section_list_,
3989 &this->unattached_section_list_,
3993 if (!parameters->incremental_update())
3994 off = align_address(*poff, oshdrs->addralign());
3997 oshdrs->pre_finalize_data_size();
3998 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4000 gold_fallback(_("out of patch space for section header table; "
4001 "relink with --incremental-full"));
4002 gold_debug(DEBUG_INCREMENTAL,
4003 "create_shdrs: %08lx %08lx (section header table)",
4004 static_cast<long>(off),
4005 static_cast<long>(off + oshdrs->data_size()));
4007 oshdrs->set_address_and_file_offset(0, off);
4008 off += oshdrs->data_size();
4011 this->section_headers_ = oshdrs;
4014 // Count the allocated sections.
4017 Layout::allocated_output_section_count() const
4019 size_t section_count = 0;
4020 for (Segment_list::const_iterator p = this->segment_list_.begin();
4021 p != this->segment_list_.end();
4023 section_count += (*p)->output_section_count();
4024 return section_count;
4027 // Create the dynamic symbol table.
4030 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4031 Symbol_table* symtab,
4032 Output_section** pdynstr,
4033 unsigned int* plocal_dynamic_count,
4034 std::vector<Symbol*>* pdynamic_symbols,
4035 Versions* pversions)
4037 // Count all the symbols in the dynamic symbol table, and set the
4038 // dynamic symbol indexes.
4040 // Skip symbol 0, which is always all zeroes.
4041 unsigned int index = 1;
4043 // Add STT_SECTION symbols for each Output section which needs one.
4044 for (Section_list::iterator p = this->section_list_.begin();
4045 p != this->section_list_.end();
4048 if (!(*p)->needs_dynsym_index())
4049 (*p)->set_dynsym_index(-1U);
4052 (*p)->set_dynsym_index(index);
4057 // Count the local symbols that need to go in the dynamic symbol table,
4058 // and set the dynamic symbol indexes.
4059 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4060 p != input_objects->relobj_end();
4063 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4067 unsigned int local_symcount = index;
4068 *plocal_dynamic_count = local_symcount;
4070 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4071 &this->dynpool_, pversions);
4075 const int size = parameters->target().get_size();
4078 symsize = elfcpp::Elf_sizes<32>::sym_size;
4081 else if (size == 64)
4083 symsize = elfcpp::Elf_sizes<64>::sym_size;
4089 // Create the dynamic symbol table section.
4091 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4095 ORDER_DYNAMIC_LINKER,
4098 // Check for NULL as a linker script may discard .dynsym.
4101 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4104 dynsym->add_output_section_data(odata);
4106 dynsym->set_info(local_symcount);
4107 dynsym->set_entsize(symsize);
4108 dynsym->set_addralign(align);
4110 this->dynsym_section_ = dynsym;
4113 Output_data_dynamic* const odyn = this->dynamic_data_;
4116 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4117 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4120 // If there are more than SHN_LORESERVE allocated sections, we
4121 // create a .dynsym_shndx section. It is possible that we don't
4122 // need one, because it is possible that there are no dynamic
4123 // symbols in any of the sections with indexes larger than
4124 // SHN_LORESERVE. This is probably unusual, though, and at this
4125 // time we don't know the actual section indexes so it is
4126 // inconvenient to check.
4127 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4129 Output_section* dynsym_xindex =
4130 this->choose_output_section(NULL, ".dynsym_shndx",
4131 elfcpp::SHT_SYMTAB_SHNDX,
4133 false, ORDER_DYNAMIC_LINKER, false);
4135 if (dynsym_xindex != NULL)
4137 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4139 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4141 dynsym_xindex->set_link_section(dynsym);
4142 dynsym_xindex->set_addralign(4);
4143 dynsym_xindex->set_entsize(4);
4145 dynsym_xindex->set_after_input_sections();
4147 // This tells the driver code to wait until the symbol table
4148 // has written out before writing out the postprocessing
4149 // sections, including the .dynsym_shndx section.
4150 this->any_postprocessing_sections_ = true;
4154 // Create the dynamic string table section.
4156 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4160 ORDER_DYNAMIC_LINKER,
4165 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4166 dynstr->add_output_section_data(strdata);
4169 dynsym->set_link_section(dynstr);
4170 if (this->dynamic_section_ != NULL)
4171 this->dynamic_section_->set_link_section(dynstr);
4175 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4176 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4180 // Create the hash tables.
4182 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4183 || strcmp(parameters->options().hash_style(), "both") == 0)
4185 unsigned char* phash;
4186 unsigned int hashlen;
4187 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4190 Output_section* hashsec =
4191 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4192 elfcpp::SHF_ALLOC, false,
4193 ORDER_DYNAMIC_LINKER, false);
4195 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4199 if (hashsec != NULL && hashdata != NULL)
4200 hashsec->add_output_section_data(hashdata);
4202 if (hashsec != NULL)
4205 hashsec->set_link_section(dynsym);
4206 hashsec->set_entsize(4);
4210 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4213 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4214 || strcmp(parameters->options().hash_style(), "both") == 0)
4216 unsigned char* phash;
4217 unsigned int hashlen;
4218 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4221 Output_section* hashsec =
4222 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4223 elfcpp::SHF_ALLOC, false,
4224 ORDER_DYNAMIC_LINKER, false);
4226 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4230 if (hashsec != NULL && hashdata != NULL)
4231 hashsec->add_output_section_data(hashdata);
4233 if (hashsec != NULL)
4236 hashsec->set_link_section(dynsym);
4238 // For a 64-bit target, the entries in .gnu.hash do not have
4239 // a uniform size, so we only set the entry size for a
4241 if (parameters->target().get_size() == 32)
4242 hashsec->set_entsize(4);
4245 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4250 // Assign offsets to each local portion of the dynamic symbol table.
4253 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4255 Output_section* dynsym = this->dynsym_section_;
4259 off_t off = dynsym->offset();
4261 // Skip the dummy symbol at the start of the section.
4262 off += dynsym->entsize();
4264 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4265 p != input_objects->relobj_end();
4268 unsigned int count = (*p)->set_local_dynsym_offset(off);
4269 off += count * dynsym->entsize();
4273 // Create the version sections.
4276 Layout::create_version_sections(const Versions* versions,
4277 const Symbol_table* symtab,
4278 unsigned int local_symcount,
4279 const std::vector<Symbol*>& dynamic_symbols,
4280 const Output_section* dynstr)
4282 if (!versions->any_defs() && !versions->any_needs())
4285 switch (parameters->size_and_endianness())
4287 #ifdef HAVE_TARGET_32_LITTLE
4288 case Parameters::TARGET_32_LITTLE:
4289 this->sized_create_version_sections<32, false>(versions, symtab,
4291 dynamic_symbols, dynstr);
4294 #ifdef HAVE_TARGET_32_BIG
4295 case Parameters::TARGET_32_BIG:
4296 this->sized_create_version_sections<32, true>(versions, symtab,
4298 dynamic_symbols, dynstr);
4301 #ifdef HAVE_TARGET_64_LITTLE
4302 case Parameters::TARGET_64_LITTLE:
4303 this->sized_create_version_sections<64, false>(versions, symtab,
4305 dynamic_symbols, dynstr);
4308 #ifdef HAVE_TARGET_64_BIG
4309 case Parameters::TARGET_64_BIG:
4310 this->sized_create_version_sections<64, true>(versions, symtab,
4312 dynamic_symbols, dynstr);
4320 // Create the version sections, sized version.
4322 template<int size, bool big_endian>
4324 Layout::sized_create_version_sections(
4325 const Versions* versions,
4326 const Symbol_table* symtab,
4327 unsigned int local_symcount,
4328 const std::vector<Symbol*>& dynamic_symbols,
4329 const Output_section* dynstr)
4331 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4332 elfcpp::SHT_GNU_versym,
4335 ORDER_DYNAMIC_LINKER,
4338 // Check for NULL since a linker script may discard this section.
4341 unsigned char* vbuf;
4343 versions->symbol_section_contents<size, big_endian>(symtab,
4349 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4352 vsec->add_output_section_data(vdata);
4353 vsec->set_entsize(2);
4354 vsec->set_link_section(this->dynsym_section_);
4357 Output_data_dynamic* const odyn = this->dynamic_data_;
4358 if (odyn != NULL && vsec != NULL)
4359 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4361 if (versions->any_defs())
4363 Output_section* vdsec;
4364 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4365 elfcpp::SHT_GNU_verdef,
4367 false, ORDER_DYNAMIC_LINKER, false);
4371 unsigned char* vdbuf;
4372 unsigned int vdsize;
4373 unsigned int vdentries;
4374 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4378 Output_section_data* vddata =
4379 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4381 vdsec->add_output_section_data(vddata);
4382 vdsec->set_link_section(dynstr);
4383 vdsec->set_info(vdentries);
4387 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4388 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4393 if (versions->any_needs())
4395 Output_section* vnsec;
4396 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4397 elfcpp::SHT_GNU_verneed,
4399 false, ORDER_DYNAMIC_LINKER, false);
4403 unsigned char* vnbuf;
4404 unsigned int vnsize;
4405 unsigned int vnentries;
4406 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4410 Output_section_data* vndata =
4411 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4413 vnsec->add_output_section_data(vndata);
4414 vnsec->set_link_section(dynstr);
4415 vnsec->set_info(vnentries);
4419 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4420 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4426 // Create the .interp section and PT_INTERP segment.
4429 Layout::create_interp(const Target* target)
4431 gold_assert(this->interp_segment_ == NULL);
4433 const char* interp = parameters->options().dynamic_linker();
4436 interp = target->dynamic_linker();
4437 gold_assert(interp != NULL);
4440 size_t len = strlen(interp) + 1;
4442 Output_section_data* odata = new Output_data_const(interp, len, 1);
4444 Output_section* osec = this->choose_output_section(NULL, ".interp",
4445 elfcpp::SHT_PROGBITS,
4447 false, ORDER_INTERP,
4450 osec->add_output_section_data(odata);
4453 // Add dynamic tags for the PLT and the dynamic relocs. This is
4454 // called by the target-specific code. This does nothing if not doing
4457 // USE_REL is true for REL relocs rather than RELA relocs.
4459 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4461 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4462 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4463 // some targets have multiple reloc sections in PLT_REL.
4465 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4466 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4469 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4473 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4474 const Output_data* plt_rel,
4475 const Output_data_reloc_generic* dyn_rel,
4476 bool add_debug, bool dynrel_includes_plt)
4478 Output_data_dynamic* odyn = this->dynamic_data_;
4482 if (plt_got != NULL && plt_got->output_section() != NULL)
4483 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4485 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4487 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4488 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4489 odyn->add_constant(elfcpp::DT_PLTREL,
4490 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4493 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4494 || (dynrel_includes_plt
4496 && plt_rel->output_section() != NULL))
4498 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4499 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4500 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4502 ? dyn_rel->output_section()
4503 : plt_rel->output_section()));
4504 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4505 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4506 odyn->add_section_size(size_tag,
4507 dyn_rel->output_section(),
4508 plt_rel->output_section());
4509 else if (have_dyn_rel)
4510 odyn->add_section_size(size_tag, dyn_rel->output_section());
4512 odyn->add_section_size(size_tag, plt_rel->output_section());
4513 const int size = parameters->target().get_size();
4518 rel_tag = elfcpp::DT_RELENT;
4520 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4521 else if (size == 64)
4522 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4528 rel_tag = elfcpp::DT_RELAENT;
4530 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4531 else if (size == 64)
4532 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4536 odyn->add_constant(rel_tag, rel_size);
4538 if (parameters->options().combreloc() && have_dyn_rel)
4540 size_t c = dyn_rel->relative_reloc_count();
4542 odyn->add_constant((use_rel
4543 ? elfcpp::DT_RELCOUNT
4544 : elfcpp::DT_RELACOUNT),
4549 if (add_debug && !parameters->options().shared())
4551 // The value of the DT_DEBUG tag is filled in by the dynamic
4552 // linker at run time, and used by the debugger.
4553 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4557 // Finish the .dynamic section and PT_DYNAMIC segment.
4560 Layout::finish_dynamic_section(const Input_objects* input_objects,
4561 const Symbol_table* symtab)
4563 if (!this->script_options_->saw_phdrs_clause()
4564 && this->dynamic_section_ != NULL)
4566 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4569 oseg->add_output_section_to_nonload(this->dynamic_section_,
4570 elfcpp::PF_R | elfcpp::PF_W);
4573 Output_data_dynamic* const odyn = this->dynamic_data_;
4577 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4578 p != input_objects->dynobj_end();
4581 if (!(*p)->is_needed() && (*p)->as_needed())
4583 // This dynamic object was linked with --as-needed, but it
4588 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4591 if (parameters->options().shared())
4593 const char* soname = parameters->options().soname();
4595 odyn->add_string(elfcpp::DT_SONAME, soname);
4598 Symbol* sym = symtab->lookup(parameters->options().init());
4599 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4600 odyn->add_symbol(elfcpp::DT_INIT, sym);
4602 sym = symtab->lookup(parameters->options().fini());
4603 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4604 odyn->add_symbol(elfcpp::DT_FINI, sym);
4606 // Look for .init_array, .preinit_array and .fini_array by checking
4608 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4609 p != this->section_list_.end();
4611 switch((*p)->type())
4613 case elfcpp::SHT_FINI_ARRAY:
4614 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4615 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4617 case elfcpp::SHT_INIT_ARRAY:
4618 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4619 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4621 case elfcpp::SHT_PREINIT_ARRAY:
4622 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4623 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4629 // Add a DT_RPATH entry if needed.
4630 const General_options::Dir_list& rpath(parameters->options().rpath());
4633 std::string rpath_val;
4634 for (General_options::Dir_list::const_iterator p = rpath.begin();
4638 if (rpath_val.empty())
4639 rpath_val = p->name();
4642 // Eliminate duplicates.
4643 General_options::Dir_list::const_iterator q;
4644 for (q = rpath.begin(); q != p; ++q)
4645 if (q->name() == p->name())
4650 rpath_val += p->name();
4655 if (!parameters->options().enable_new_dtags())
4656 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4658 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4661 // Look for text segments that have dynamic relocations.
4662 bool have_textrel = false;
4663 if (!this->script_options_->saw_sections_clause())
4665 for (Segment_list::const_iterator p = this->segment_list_.begin();
4666 p != this->segment_list_.end();
4669 if ((*p)->type() == elfcpp::PT_LOAD
4670 && ((*p)->flags() & elfcpp::PF_W) == 0
4671 && (*p)->has_dynamic_reloc())
4673 have_textrel = true;
4680 // We don't know the section -> segment mapping, so we are
4681 // conservative and just look for readonly sections with
4682 // relocations. If those sections wind up in writable segments,
4683 // then we have created an unnecessary DT_TEXTREL entry.
4684 for (Section_list::const_iterator p = this->section_list_.begin();
4685 p != this->section_list_.end();
4688 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4689 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4690 && (*p)->has_dynamic_reloc())
4692 have_textrel = true;
4698 if (parameters->options().filter() != NULL)
4699 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4700 if (parameters->options().any_auxiliary())
4702 for (options::String_set::const_iterator p =
4703 parameters->options().auxiliary_begin();
4704 p != parameters->options().auxiliary_end();
4706 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4709 // Add a DT_FLAGS entry if necessary.
4710 unsigned int flags = 0;
4713 // Add a DT_TEXTREL for compatibility with older loaders.
4714 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4715 flags |= elfcpp::DF_TEXTREL;
4717 if (parameters->options().text())
4718 gold_error(_("read-only segment has dynamic relocations"));
4719 else if (parameters->options().warn_shared_textrel()
4720 && parameters->options().shared())
4721 gold_warning(_("shared library text segment is not shareable"));
4723 if (parameters->options().shared() && this->has_static_tls())
4724 flags |= elfcpp::DF_STATIC_TLS;
4725 if (parameters->options().origin())
4726 flags |= elfcpp::DF_ORIGIN;
4727 if (parameters->options().Bsymbolic())
4729 flags |= elfcpp::DF_SYMBOLIC;
4730 // Add DT_SYMBOLIC for compatibility with older loaders.
4731 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4733 if (parameters->options().now())
4734 flags |= elfcpp::DF_BIND_NOW;
4736 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4739 if (parameters->options().initfirst())
4740 flags |= elfcpp::DF_1_INITFIRST;
4741 if (parameters->options().interpose())
4742 flags |= elfcpp::DF_1_INTERPOSE;
4743 if (parameters->options().loadfltr())
4744 flags |= elfcpp::DF_1_LOADFLTR;
4745 if (parameters->options().nodefaultlib())
4746 flags |= elfcpp::DF_1_NODEFLIB;
4747 if (parameters->options().nodelete())
4748 flags |= elfcpp::DF_1_NODELETE;
4749 if (parameters->options().nodlopen())
4750 flags |= elfcpp::DF_1_NOOPEN;
4751 if (parameters->options().nodump())
4752 flags |= elfcpp::DF_1_NODUMP;
4753 if (!parameters->options().shared())
4754 flags &= ~(elfcpp::DF_1_INITFIRST
4755 | elfcpp::DF_1_NODELETE
4756 | elfcpp::DF_1_NOOPEN);
4757 if (parameters->options().origin())
4758 flags |= elfcpp::DF_1_ORIGIN;
4759 if (parameters->options().now())
4760 flags |= elfcpp::DF_1_NOW;
4761 if (parameters->options().Bgroup())
4762 flags |= elfcpp::DF_1_GROUP;
4764 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4767 // Set the size of the _DYNAMIC symbol table to be the size of the
4771 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4773 Output_data_dynamic* const odyn = this->dynamic_data_;
4776 odyn->finalize_data_size();
4777 if (this->dynamic_symbol_ == NULL)
4779 off_t data_size = odyn->data_size();
4780 const int size = parameters->target().get_size();
4782 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4783 else if (size == 64)
4784 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4789 // The mapping of input section name prefixes to output section names.
4790 // In some cases one prefix is itself a prefix of another prefix; in
4791 // such a case the longer prefix must come first. These prefixes are
4792 // based on the GNU linker default ELF linker script.
4794 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4795 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4796 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4798 MAPPING_INIT(".text.", ".text"),
4799 MAPPING_INIT(".rodata.", ".rodata"),
4800 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4801 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4802 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4803 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4804 MAPPING_INIT(".data.", ".data"),
4805 MAPPING_INIT(".bss.", ".bss"),
4806 MAPPING_INIT(".tdata.", ".tdata"),
4807 MAPPING_INIT(".tbss.", ".tbss"),
4808 MAPPING_INIT(".init_array.", ".init_array"),
4809 MAPPING_INIT(".fini_array.", ".fini_array"),
4810 MAPPING_INIT(".sdata.", ".sdata"),
4811 MAPPING_INIT(".sbss.", ".sbss"),
4812 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4813 // differently depending on whether it is creating a shared library.
4814 MAPPING_INIT(".sdata2.", ".sdata"),
4815 MAPPING_INIT(".sbss2.", ".sbss"),
4816 MAPPING_INIT(".lrodata.", ".lrodata"),
4817 MAPPING_INIT(".ldata.", ".ldata"),
4818 MAPPING_INIT(".lbss.", ".lbss"),
4819 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4820 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4821 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4822 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4823 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4824 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4825 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4826 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4827 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4828 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4829 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4830 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4831 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4832 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4833 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4834 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4835 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4836 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4837 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4838 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4839 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4842 #undef MAPPING_INIT_EXACT
4844 const int Layout::section_name_mapping_count =
4845 (sizeof(Layout::section_name_mapping)
4846 / sizeof(Layout::section_name_mapping[0]));
4848 // Choose the output section name to use given an input section name.
4849 // Set *PLEN to the length of the name. *PLEN is initialized to the
4853 Layout::output_section_name(const Relobj* relobj, const char* name,
4856 // gcc 4.3 generates the following sorts of section names when it
4857 // needs a section name specific to a function:
4863 // .data.rel.local.FN
4865 // .data.rel.ro.local.FN
4872 // The GNU linker maps all of those to the part before the .FN,
4873 // except that .data.rel.local.FN is mapped to .data, and
4874 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4875 // beginning with .data.rel.ro.local are grouped together.
4877 // For an anonymous namespace, the string FN can contain a '.'.
4879 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4880 // GNU linker maps to .rodata.
4882 // The .data.rel.ro sections are used with -z relro. The sections
4883 // are recognized by name. We use the same names that the GNU
4884 // linker does for these sections.
4886 // It is hard to handle this in a principled way, so we don't even
4887 // try. We use a table of mappings. If the input section name is
4888 // not found in the table, we simply use it as the output section
4891 const Section_name_mapping* psnm = section_name_mapping;
4892 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4894 if (psnm->fromlen > 0)
4896 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4898 *plen = psnm->tolen;
4904 if (strcmp(name, psnm->from) == 0)
4906 *plen = psnm->tolen;
4912 // As an additional complication, .ctors sections are output in
4913 // either .ctors or .init_array sections, and .dtors sections are
4914 // output in either .dtors or .fini_array sections.
4915 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4917 if (parameters->options().ctors_in_init_array())
4920 return name[1] == 'c' ? ".init_array" : ".fini_array";
4925 return name[1] == 'c' ? ".ctors" : ".dtors";
4928 if (parameters->options().ctors_in_init_array()
4929 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4931 // To make .init_array/.fini_array work with gcc we must exclude
4932 // .ctors and .dtors sections from the crtbegin and crtend
4935 || (!Layout::match_file_name(relobj, "crtbegin")
4936 && !Layout::match_file_name(relobj, "crtend")))
4939 return name[1] == 'c' ? ".init_array" : ".fini_array";
4946 // Return true if RELOBJ is an input file whose base name matches
4947 // FILE_NAME. The base name must have an extension of ".o", and must
4948 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4949 // to match crtbegin.o as well as crtbeginS.o without getting confused
4950 // by other possibilities. Overall matching the file name this way is
4951 // a dreadful hack, but the GNU linker does it in order to better
4952 // support gcc, and we need to be compatible.
4955 Layout::match_file_name(const Relobj* relobj, const char* match)
4957 const std::string& file_name(relobj->name());
4958 const char* base_name = lbasename(file_name.c_str());
4959 size_t match_len = strlen(match);
4960 if (strncmp(base_name, match, match_len) != 0)
4962 size_t base_len = strlen(base_name);
4963 if (base_len != match_len + 2 && base_len != match_len + 3)
4965 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4968 // Check if a comdat group or .gnu.linkonce section with the given
4969 // NAME is selected for the link. If there is already a section,
4970 // *KEPT_SECTION is set to point to the existing section and the
4971 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4972 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4973 // *KEPT_SECTION is set to the internal copy and the function returns
4977 Layout::find_or_add_kept_section(const std::string& name,
4982 Kept_section** kept_section)
4984 // It's normal to see a couple of entries here, for the x86 thunk
4985 // sections. If we see more than a few, we're linking a C++
4986 // program, and we resize to get more space to minimize rehashing.
4987 if (this->signatures_.size() > 4
4988 && !this->resized_signatures_)
4990 reserve_unordered_map(&this->signatures_,
4991 this->number_of_input_files_ * 64);
4992 this->resized_signatures_ = true;
4995 Kept_section candidate;
4996 std::pair<Signatures::iterator, bool> ins =
4997 this->signatures_.insert(std::make_pair(name, candidate));
4999 if (kept_section != NULL)
5000 *kept_section = &ins.first->second;
5003 // This is the first time we've seen this signature.
5004 ins.first->second.set_object(object);
5005 ins.first->second.set_shndx(shndx);
5007 ins.first->second.set_is_comdat();
5009 ins.first->second.set_is_group_name();
5013 // We have already seen this signature.
5015 if (ins.first->second.is_group_name())
5017 // We've already seen a real section group with this signature.
5018 // If the kept group is from a plugin object, and we're in the
5019 // replacement phase, accept the new one as a replacement.
5020 if (ins.first->second.object() == NULL
5021 && parameters->options().plugins()->in_replacement_phase())
5023 ins.first->second.set_object(object);
5024 ins.first->second.set_shndx(shndx);
5029 else if (is_group_name)
5031 // This is a real section group, and we've already seen a
5032 // linkonce section with this signature. Record that we've seen
5033 // a section group, and don't include this section group.
5034 ins.first->second.set_is_group_name();
5039 // We've already seen a linkonce section and this is a linkonce
5040 // section. These don't block each other--this may be the same
5041 // symbol name with different section types.
5046 // Store the allocated sections into the section list.
5049 Layout::get_allocated_sections(Section_list* section_list) const
5051 for (Section_list::const_iterator p = this->section_list_.begin();
5052 p != this->section_list_.end();
5054 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5055 section_list->push_back(*p);
5058 // Store the executable sections into the section list.
5061 Layout::get_executable_sections(Section_list* section_list) const
5063 for (Section_list::const_iterator p = this->section_list_.begin();
5064 p != this->section_list_.end();
5066 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5067 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5068 section_list->push_back(*p);
5071 // Create an output segment.
5074 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5076 gold_assert(!parameters->options().relocatable());
5077 Output_segment* oseg = new Output_segment(type, flags);
5078 this->segment_list_.push_back(oseg);
5080 if (type == elfcpp::PT_TLS)
5081 this->tls_segment_ = oseg;
5082 else if (type == elfcpp::PT_GNU_RELRO)
5083 this->relro_segment_ = oseg;
5084 else if (type == elfcpp::PT_INTERP)
5085 this->interp_segment_ = oseg;
5090 // Return the file offset of the normal symbol table.
5093 Layout::symtab_section_offset() const
5095 if (this->symtab_section_ != NULL)
5096 return this->symtab_section_->offset();
5100 // Return the section index of the normal symbol table. It may have
5101 // been stripped by the -s/--strip-all option.
5104 Layout::symtab_section_shndx() const
5106 if (this->symtab_section_ != NULL)
5107 return this->symtab_section_->out_shndx();
5111 // Write out the Output_sections. Most won't have anything to write,
5112 // since most of the data will come from input sections which are
5113 // handled elsewhere. But some Output_sections do have Output_data.
5116 Layout::write_output_sections(Output_file* of) const
5118 for (Section_list::const_iterator p = this->section_list_.begin();
5119 p != this->section_list_.end();
5122 if (!(*p)->after_input_sections())
5127 // Write out data not associated with a section or the symbol table.
5130 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5132 if (!parameters->options().strip_all())
5134 const Output_section* symtab_section = this->symtab_section_;
5135 for (Section_list::const_iterator p = this->section_list_.begin();
5136 p != this->section_list_.end();
5139 if ((*p)->needs_symtab_index())
5141 gold_assert(symtab_section != NULL);
5142 unsigned int index = (*p)->symtab_index();
5143 gold_assert(index > 0 && index != -1U);
5144 off_t off = (symtab_section->offset()
5145 + index * symtab_section->entsize());
5146 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5151 const Output_section* dynsym_section = this->dynsym_section_;
5152 for (Section_list::const_iterator p = this->section_list_.begin();
5153 p != this->section_list_.end();
5156 if ((*p)->needs_dynsym_index())
5158 gold_assert(dynsym_section != NULL);
5159 unsigned int index = (*p)->dynsym_index();
5160 gold_assert(index > 0 && index != -1U);
5161 off_t off = (dynsym_section->offset()
5162 + index * dynsym_section->entsize());
5163 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5167 // Write out the Output_data which are not in an Output_section.
5168 for (Data_list::const_iterator p = this->special_output_list_.begin();
5169 p != this->special_output_list_.end();
5174 // Write out the Output_sections which can only be written after the
5175 // input sections are complete.
5178 Layout::write_sections_after_input_sections(Output_file* of)
5180 // Determine the final section offsets, and thus the final output
5181 // file size. Note we finalize the .shstrab last, to allow the
5182 // after_input_section sections to modify their section-names before
5184 if (this->any_postprocessing_sections_)
5186 off_t off = this->output_file_size_;
5187 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5189 // Now that we've finalized the names, we can finalize the shstrab.
5191 this->set_section_offsets(off,
5192 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5194 if (off > this->output_file_size_)
5197 this->output_file_size_ = off;
5201 for (Section_list::const_iterator p = this->section_list_.begin();
5202 p != this->section_list_.end();
5205 if ((*p)->after_input_sections())
5209 this->section_headers_->write(of);
5212 // If the build ID requires computing a checksum, do so here, and
5213 // write it out. We compute a checksum over the entire file because
5214 // that is simplest.
5217 Layout::write_build_id(Output_file* of) const
5219 if (this->build_id_note_ == NULL)
5222 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5224 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5225 this->build_id_note_->data_size());
5227 const char* style = parameters->options().build_id();
5228 if (strcmp(style, "sha1") == 0)
5231 sha1_init_ctx(&ctx);
5232 sha1_process_bytes(iv, this->output_file_size_, &ctx);
5233 sha1_finish_ctx(&ctx, ov);
5235 else if (strcmp(style, "md5") == 0)
5239 md5_process_bytes(iv, this->output_file_size_, &ctx);
5240 md5_finish_ctx(&ctx, ov);
5245 of->write_output_view(this->build_id_note_->offset(),
5246 this->build_id_note_->data_size(),
5249 of->free_input_view(0, this->output_file_size_, iv);
5252 // Write out a binary file. This is called after the link is
5253 // complete. IN is the temporary output file we used to generate the
5254 // ELF code. We simply walk through the segments, read them from
5255 // their file offset in IN, and write them to their load address in
5256 // the output file. FIXME: with a bit more work, we could support
5257 // S-records and/or Intel hex format here.
5260 Layout::write_binary(Output_file* in) const
5262 gold_assert(parameters->options().oformat_enum()
5263 == General_options::OBJECT_FORMAT_BINARY);
5265 // Get the size of the binary file.
5266 uint64_t max_load_address = 0;
5267 for (Segment_list::const_iterator p = this->segment_list_.begin();
5268 p != this->segment_list_.end();
5271 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5273 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5274 if (max_paddr > max_load_address)
5275 max_load_address = max_paddr;
5279 Output_file out(parameters->options().output_file_name());
5280 out.open(max_load_address);
5282 for (Segment_list::const_iterator p = this->segment_list_.begin();
5283 p != this->segment_list_.end();
5286 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5288 const unsigned char* vin = in->get_input_view((*p)->offset(),
5290 unsigned char* vout = out.get_output_view((*p)->paddr(),
5292 memcpy(vout, vin, (*p)->filesz());
5293 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5294 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5301 // Print the output sections to the map file.
5304 Layout::print_to_mapfile(Mapfile* mapfile) const
5306 for (Segment_list::const_iterator p = this->segment_list_.begin();
5307 p != this->segment_list_.end();
5309 (*p)->print_sections_to_mapfile(mapfile);
5312 // Print statistical information to stderr. This is used for --stats.
5315 Layout::print_stats() const
5317 this->namepool_.print_stats("section name pool");
5318 this->sympool_.print_stats("output symbol name pool");
5319 this->dynpool_.print_stats("dynamic name pool");
5321 for (Section_list::const_iterator p = this->section_list_.begin();
5322 p != this->section_list_.end();
5324 (*p)->print_merge_stats();
5327 // Write_sections_task methods.
5329 // We can always run this task.
5332 Write_sections_task::is_runnable()
5337 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5341 Write_sections_task::locks(Task_locker* tl)
5343 tl->add(this, this->output_sections_blocker_);
5344 tl->add(this, this->final_blocker_);
5347 // Run the task--write out the data.
5350 Write_sections_task::run(Workqueue*)
5352 this->layout_->write_output_sections(this->of_);
5355 // Write_data_task methods.
5357 // We can always run this task.
5360 Write_data_task::is_runnable()
5365 // We need to unlock FINAL_BLOCKER when finished.
5368 Write_data_task::locks(Task_locker* tl)
5370 tl->add(this, this->final_blocker_);
5373 // Run the task--write out the data.
5376 Write_data_task::run(Workqueue*)
5378 this->layout_->write_data(this->symtab_, this->of_);
5381 // Write_symbols_task methods.
5383 // We can always run this task.
5386 Write_symbols_task::is_runnable()
5391 // We need to unlock FINAL_BLOCKER when finished.
5394 Write_symbols_task::locks(Task_locker* tl)
5396 tl->add(this, this->final_blocker_);
5399 // Run the task--write out the symbols.
5402 Write_symbols_task::run(Workqueue*)
5404 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5405 this->layout_->symtab_xindex(),
5406 this->layout_->dynsym_xindex(), this->of_);
5409 // Write_after_input_sections_task methods.
5411 // We can only run this task after the input sections have completed.
5414 Write_after_input_sections_task::is_runnable()
5416 if (this->input_sections_blocker_->is_blocked())
5417 return this->input_sections_blocker_;
5421 // We need to unlock FINAL_BLOCKER when finished.
5424 Write_after_input_sections_task::locks(Task_locker* tl)
5426 tl->add(this, this->final_blocker_);
5432 Write_after_input_sections_task::run(Workqueue*)
5434 this->layout_->write_sections_after_input_sections(this->of_);
5437 // Close_task_runner methods.
5439 // Run the task--close the file.
5442 Close_task_runner::run(Workqueue*, const Task*)
5444 // If we need to compute a checksum for the BUILD if, we do so here.
5445 this->layout_->write_build_id(this->of_);
5447 // If we've been asked to create a binary file, we do so here.
5448 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5449 this->layout_->write_binary(this->of_);
5454 // Instantiate the templates we need. We could use the configure
5455 // script to restrict this to only the ones for implemented targets.
5457 #ifdef HAVE_TARGET_32_LITTLE
5460 Layout::init_fixed_output_section<32, false>(
5462 elfcpp::Shdr<32, false>& shdr);
5465 #ifdef HAVE_TARGET_32_BIG
5468 Layout::init_fixed_output_section<32, true>(
5470 elfcpp::Shdr<32, true>& shdr);
5473 #ifdef HAVE_TARGET_64_LITTLE
5476 Layout::init_fixed_output_section<64, false>(
5478 elfcpp::Shdr<64, false>& shdr);
5481 #ifdef HAVE_TARGET_64_BIG
5484 Layout::init_fixed_output_section<64, true>(
5486 elfcpp::Shdr<64, true>& shdr);
5489 #ifdef HAVE_TARGET_32_LITTLE
5492 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5495 const elfcpp::Shdr<32, false>& shdr,
5496 unsigned int, unsigned int, off_t*);
5499 #ifdef HAVE_TARGET_32_BIG
5502 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5505 const elfcpp::Shdr<32, true>& shdr,
5506 unsigned int, unsigned int, off_t*);
5509 #ifdef HAVE_TARGET_64_LITTLE
5512 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5515 const elfcpp::Shdr<64, false>& shdr,
5516 unsigned int, unsigned int, off_t*);
5519 #ifdef HAVE_TARGET_64_BIG
5522 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5525 const elfcpp::Shdr<64, true>& shdr,
5526 unsigned int, unsigned int, off_t*);
5529 #ifdef HAVE_TARGET_32_LITTLE
5532 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5533 unsigned int reloc_shndx,
5534 const elfcpp::Shdr<32, false>& shdr,
5535 Output_section* data_section,
5536 Relocatable_relocs* rr);
5539 #ifdef HAVE_TARGET_32_BIG
5542 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5543 unsigned int reloc_shndx,
5544 const elfcpp::Shdr<32, true>& shdr,
5545 Output_section* data_section,
5546 Relocatable_relocs* rr);
5549 #ifdef HAVE_TARGET_64_LITTLE
5552 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5553 unsigned int reloc_shndx,
5554 const elfcpp::Shdr<64, false>& shdr,
5555 Output_section* data_section,
5556 Relocatable_relocs* rr);
5559 #ifdef HAVE_TARGET_64_BIG
5562 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5563 unsigned int reloc_shndx,
5564 const elfcpp::Shdr<64, true>& shdr,
5565 Output_section* data_section,
5566 Relocatable_relocs* rr);
5569 #ifdef HAVE_TARGET_32_LITTLE
5572 Layout::layout_group<32, false>(Symbol_table* symtab,
5573 Sized_relobj_file<32, false>* object,
5575 const char* group_section_name,
5576 const char* signature,
5577 const elfcpp::Shdr<32, false>& shdr,
5578 elfcpp::Elf_Word flags,
5579 std::vector<unsigned int>* shndxes);
5582 #ifdef HAVE_TARGET_32_BIG
5585 Layout::layout_group<32, true>(Symbol_table* symtab,
5586 Sized_relobj_file<32, true>* object,
5588 const char* group_section_name,
5589 const char* signature,
5590 const elfcpp::Shdr<32, true>& shdr,
5591 elfcpp::Elf_Word flags,
5592 std::vector<unsigned int>* shndxes);
5595 #ifdef HAVE_TARGET_64_LITTLE
5598 Layout::layout_group<64, false>(Symbol_table* symtab,
5599 Sized_relobj_file<64, false>* object,
5601 const char* group_section_name,
5602 const char* signature,
5603 const elfcpp::Shdr<64, false>& shdr,
5604 elfcpp::Elf_Word flags,
5605 std::vector<unsigned int>* shndxes);
5608 #ifdef HAVE_TARGET_64_BIG
5611 Layout::layout_group<64, true>(Symbol_table* symtab,
5612 Sized_relobj_file<64, true>* object,
5614 const char* group_section_name,
5615 const char* signature,
5616 const elfcpp::Shdr<64, true>& shdr,
5617 elfcpp::Elf_Word flags,
5618 std::vector<unsigned int>* shndxes);
5621 #ifdef HAVE_TARGET_32_LITTLE
5624 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5625 const unsigned char* symbols,
5627 const unsigned char* symbol_names,
5628 off_t symbol_names_size,
5630 const elfcpp::Shdr<32, false>& shdr,
5631 unsigned int reloc_shndx,
5632 unsigned int reloc_type,
5636 #ifdef HAVE_TARGET_32_BIG
5639 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5640 const unsigned char* symbols,
5642 const unsigned char* symbol_names,
5643 off_t symbol_names_size,
5645 const elfcpp::Shdr<32, true>& shdr,
5646 unsigned int reloc_shndx,
5647 unsigned int reloc_type,
5651 #ifdef HAVE_TARGET_64_LITTLE
5654 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5655 const unsigned char* symbols,
5657 const unsigned char* symbol_names,
5658 off_t symbol_names_size,
5660 const elfcpp::Shdr<64, false>& shdr,
5661 unsigned int reloc_shndx,
5662 unsigned int reloc_type,
5666 #ifdef HAVE_TARGET_64_BIG
5669 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5670 const unsigned char* symbols,
5672 const unsigned char* symbol_names,
5673 off_t symbol_names_size,
5675 const elfcpp::Shdr<64, true>& shdr,
5676 unsigned int reloc_shndx,
5677 unsigned int reloc_type,
5681 #ifdef HAVE_TARGET_32_LITTLE
5684 Layout::add_to_gdb_index(bool is_type_unit,
5685 Sized_relobj<32, false>* object,
5686 const unsigned char* symbols,
5689 unsigned int reloc_shndx,
5690 unsigned int reloc_type);
5693 #ifdef HAVE_TARGET_32_BIG
5696 Layout::add_to_gdb_index(bool is_type_unit,
5697 Sized_relobj<32, true>* object,
5698 const unsigned char* symbols,
5701 unsigned int reloc_shndx,
5702 unsigned int reloc_type);
5705 #ifdef HAVE_TARGET_64_LITTLE
5708 Layout::add_to_gdb_index(bool is_type_unit,
5709 Sized_relobj<64, false>* object,
5710 const unsigned char* symbols,
5713 unsigned int reloc_shndx,
5714 unsigned int reloc_type);
5717 #ifdef HAVE_TARGET_64_BIG
5720 Layout::add_to_gdb_index(bool is_type_unit,
5721 Sized_relobj<64, true>* object,
5722 const unsigned char* symbols,
5725 unsigned int reloc_shndx,
5726 unsigned int reloc_type);
5729 } // End namespace gold.