gas/
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections.  This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48   off_t file_size = this->layout_->finalize(this->input_objects_,
49                                             this->symtab_);
50
51   // Now we know the final size of the output file and we know where
52   // each piece of information goes.
53   Output_file* of = new Output_file(this->options_,
54                                     this->input_objects_->target());
55   of->open(file_size);
56
57   // Queue up the final set of tasks.
58   gold::queue_final_tasks(this->options_, this->input_objects_,
59                           this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66     section_name_map_(), segment_list_(), section_list_(),
67     unattached_section_list_(), special_output_list_(),
68     tls_segment_(NULL), symtab_section_(NULL),
69     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70     eh_frame_section_(NULL)
71 {
72   // Make space for more than enough segments for a typical file.
73   // This is just for efficiency--it's OK if we wind up needing more.
74   this->segment_list_.reserve(12);
75
76   // We expect three unattached Output_data objects: the file header,
77   // the segment headers, and the section headers.
78   this->special_output_list_.reserve(3);
79 }
80
81 // Hash a key we use to look up an output section mapping.
82
83 size_t
84 Layout::Hash_key::operator()(const Layout::Key& k) const
85 {
86  return k.first + k.second.first + k.second.second;
87 }
88
89 // Whether to include this section in the link.
90
91 template<int size, bool big_endian>
92 bool
93 Layout::include_section(Object*, const char*,
94                         const elfcpp::Shdr<size, big_endian>& shdr)
95 {
96   // Some section types are never linked.  Some are only linked when
97   // doing a relocateable link.
98   switch (shdr.get_sh_type())
99     {
100     case elfcpp::SHT_NULL:
101     case elfcpp::SHT_SYMTAB:
102     case elfcpp::SHT_DYNSYM:
103     case elfcpp::SHT_STRTAB:
104     case elfcpp::SHT_HASH:
105     case elfcpp::SHT_DYNAMIC:
106     case elfcpp::SHT_SYMTAB_SHNDX:
107       return false;
108
109     case elfcpp::SHT_RELA:
110     case elfcpp::SHT_REL:
111     case elfcpp::SHT_GROUP:
112       return parameters->output_is_object();
113
114     default:
115       // FIXME: Handle stripping debug sections here.
116       return true;
117     }
118 }
119
120 // Return an output section named NAME, or NULL if there is none.
121
122 Output_section*
123 Layout::find_output_section(const char* name) const
124 {
125   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
126        p != this->section_name_map_.end();
127        ++p)
128     if (strcmp(p->second->name(), name) == 0)
129       return p->second;
130   return NULL;
131 }
132
133 // Return an output segment of type TYPE, with segment flags SET set
134 // and segment flags CLEAR clear.  Return NULL if there is none.
135
136 Output_segment*
137 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
138                             elfcpp::Elf_Word clear) const
139 {
140   for (Segment_list::const_iterator p = this->segment_list_.begin();
141        p != this->segment_list_.end();
142        ++p)
143     if (static_cast<elfcpp::PT>((*p)->type()) == type
144         && ((*p)->flags() & set) == set
145         && ((*p)->flags() & clear) == 0)
146       return *p;
147   return NULL;
148 }
149
150 // Return the output section to use for section NAME with type TYPE
151 // and section flags FLAGS.
152
153 Output_section*
154 Layout::get_output_section(const char* name, Stringpool::Key name_key,
155                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
156 {
157   // We should ignore some flags.
158   flags &= ~ (elfcpp::SHF_INFO_LINK
159               | elfcpp::SHF_LINK_ORDER
160               | elfcpp::SHF_GROUP
161               | elfcpp::SHF_MERGE
162               | elfcpp::SHF_STRINGS);
163
164   const Key key(name_key, std::make_pair(type, flags));
165   const std::pair<Key, Output_section*> v(key, NULL);
166   std::pair<Section_name_map::iterator, bool> ins(
167     this->section_name_map_.insert(v));
168
169   if (!ins.second)
170     return ins.first->second;
171   else
172     {
173       // This is the first time we've seen this name/type/flags
174       // combination.
175       Output_section* os = this->make_output_section(name, type, flags);
176       ins.first->second = os;
177       return os;
178     }
179 }
180
181 // Return the output section to use for input section SHNDX, with name
182 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
183 // offset of this input section without the output section.
184
185 template<int size, bool big_endian>
186 Output_section*
187 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
188                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
189 {
190   if (!this->include_section(object, name, shdr))
191     return NULL;
192
193   // If we are not doing a relocateable link, choose the name to use
194   // for the output section.
195   size_t len = strlen(name);
196   if (!parameters->output_is_object())
197     name = Layout::output_section_name(name, &len);
198
199   // FIXME: Handle SHF_OS_NONCONFORMING here.
200
201   // Canonicalize the section name.
202   Stringpool::Key name_key;
203   name = this->namepool_.add(name, len, &name_key);
204
205   // Find the output section.  The output section is selected based on
206   // the section name, type, and flags.
207   Output_section* os = this->get_output_section(name, name_key,
208                                                 shdr.get_sh_type(),
209                                                 shdr.get_sh_flags());
210
211   // Special GNU handling of sections named .eh_frame.
212   if (!parameters->output_is_object()
213       && strcmp(name, ".eh_frame") == 0
214       && shdr.get_sh_size() > 0
215       && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
216       && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
217     {
218       this->layout_eh_frame(object, shndx, name, shdr, os, off);
219       return os;
220     }
221
222   // FIXME: Handle SHF_LINK_ORDER somewhere.
223
224   *off = os->add_input_section(object, shndx, name, shdr);
225
226   return os;
227 }
228
229 // Special GNU handling of sections named .eh_frame.  They will
230 // normally hold exception frame data.
231
232 template<int size, bool big_endian>
233 void
234 Layout::layout_eh_frame(Relobj* object,
235                         unsigned int shndx,
236                         const char* name,
237                         const elfcpp::Shdr<size, big_endian>& shdr,
238                         Output_section* os, off_t* off)
239 {
240   if (this->eh_frame_section_ == NULL)
241     {
242       this->eh_frame_section_ = os;
243
244       if (this->options_.create_eh_frame_hdr())
245         {
246           Stringpool::Key hdr_name_key;
247           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
248                                                      &hdr_name_key);
249           Output_section* hdr_os =
250             this->get_output_section(hdr_name, hdr_name_key,
251                                      elfcpp::SHT_PROGBITS,
252                                      elfcpp::SHF_ALLOC);
253
254           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
255           hdr_os->add_output_section_data(hdr_posd);
256
257           Output_segment* hdr_oseg =
258             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
259           this->segment_list_.push_back(hdr_oseg);
260           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
261         }
262     }
263
264   gold_assert(this->eh_frame_section_ == os);
265
266   *off = os->add_input_section(object, shndx, name, shdr);
267 }
268
269 // Add POSD to an output section using NAME, TYPE, and FLAGS.
270
271 void
272 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
273                                 elfcpp::Elf_Xword flags,
274                                 Output_section_data* posd)
275 {
276   // Canonicalize the name.
277   Stringpool::Key name_key;
278   name = this->namepool_.add(name, &name_key);
279
280   Output_section* os = this->get_output_section(name, name_key, type, flags);
281   os->add_output_section_data(posd);
282 }
283
284 // Map section flags to segment flags.
285
286 elfcpp::Elf_Word
287 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
288 {
289   elfcpp::Elf_Word ret = elfcpp::PF_R;
290   if ((flags & elfcpp::SHF_WRITE) != 0)
291     ret |= elfcpp::PF_W;
292   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
293     ret |= elfcpp::PF_X;
294   return ret;
295 }
296
297 // Make a new Output_section, and attach it to segments as
298 // appropriate.
299
300 Output_section*
301 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
302                             elfcpp::Elf_Xword flags)
303 {
304   Output_section* os = new Output_section(name, type, flags);
305   this->section_list_.push_back(os);
306
307   if ((flags & elfcpp::SHF_ALLOC) == 0)
308     this->unattached_section_list_.push_back(os);
309   else
310     {
311       // This output section goes into a PT_LOAD segment.
312
313       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
314
315       // The only thing we really care about for PT_LOAD segments is
316       // whether or not they are writable, so that is how we search
317       // for them.  People who need segments sorted on some other
318       // basis will have to wait until we implement a mechanism for
319       // them to describe the segments they want.
320
321       Segment_list::const_iterator p;
322       for (p = this->segment_list_.begin();
323            p != this->segment_list_.end();
324            ++p)
325         {
326           if ((*p)->type() == elfcpp::PT_LOAD
327               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
328             {
329               (*p)->add_output_section(os, seg_flags);
330               break;
331             }
332         }
333
334       if (p == this->segment_list_.end())
335         {
336           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
337                                                     seg_flags);
338           this->segment_list_.push_back(oseg);
339           oseg->add_output_section(os, seg_flags);
340         }
341
342       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
343       // segment.
344       if (type == elfcpp::SHT_NOTE)
345         {
346           // See if we already have an equivalent PT_NOTE segment.
347           for (p = this->segment_list_.begin();
348                p != segment_list_.end();
349                ++p)
350             {
351               if ((*p)->type() == elfcpp::PT_NOTE
352                   && (((*p)->flags() & elfcpp::PF_W)
353                       == (seg_flags & elfcpp::PF_W)))
354                 {
355                   (*p)->add_output_section(os, seg_flags);
356                   break;
357                 }
358             }
359
360           if (p == this->segment_list_.end())
361             {
362               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
363                                                         seg_flags);
364               this->segment_list_.push_back(oseg);
365               oseg->add_output_section(os, seg_flags);
366             }
367         }
368
369       // If we see a loadable SHF_TLS section, we create a PT_TLS
370       // segment.  There can only be one such segment.
371       if ((flags & elfcpp::SHF_TLS) != 0)
372         {
373           if (this->tls_segment_ == NULL)
374             {
375               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
376                                                       seg_flags);
377               this->segment_list_.push_back(this->tls_segment_);
378             }
379           this->tls_segment_->add_output_section(os, seg_flags);
380         }
381     }
382
383   return os;
384 }
385
386 // Create the dynamic sections which are needed before we read the
387 // relocs.
388
389 void
390 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
391                                         Symbol_table* symtab)
392 {
393   if (!input_objects->any_dynamic())
394     return;
395
396   const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
397   this->dynamic_section_ = this->make_output_section(dynamic_name,
398                                                      elfcpp::SHT_DYNAMIC,
399                                                      (elfcpp::SHF_ALLOC
400                                                       | elfcpp::SHF_WRITE));
401
402   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
403                                 this->dynamic_section_, 0, 0,
404                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
405                                 elfcpp::STV_HIDDEN, 0, false, false);
406
407   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
408
409   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
410 }
411
412 // For each output section whose name can be represented as C symbol,
413 // define __start and __stop symbols for the section.  This is a GNU
414 // extension.
415
416 void
417 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
418 {
419   for (Section_list::const_iterator p = this->section_list_.begin();
420        p != this->section_list_.end();
421        ++p)
422     {
423       const char* const name = (*p)->name();
424       if (name[strspn(name,
425                       ("0123456789"
426                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
427                        "abcdefghijklmnopqrstuvwxyz"
428                        "_"))]
429           == '\0')
430         {
431           const std::string name_string(name);
432           const std::string start_name("__start_" + name_string);
433           const std::string stop_name("__stop_" + name_string);
434
435           symtab->define_in_output_data(target,
436                                         start_name.c_str(),
437                                         NULL, // version
438                                         *p,
439                                         0, // value
440                                         0, // symsize
441                                         elfcpp::STT_NOTYPE,
442                                         elfcpp::STB_GLOBAL,
443                                         elfcpp::STV_DEFAULT,
444                                         0, // nonvis
445                                         false, // offset_is_from_end
446                                         false); // only_if_ref
447
448           symtab->define_in_output_data(target,
449                                         stop_name.c_str(),
450                                         NULL, // version
451                                         *p,
452                                         0, // value
453                                         0, // symsize
454                                         elfcpp::STT_NOTYPE,
455                                         elfcpp::STB_GLOBAL,
456                                         elfcpp::STV_DEFAULT,
457                                         0, // nonvis
458                                         true, // offset_is_from_end
459                                         false); // only_if_ref
460         }
461     }
462 }
463
464 // Find the first read-only PT_LOAD segment, creating one if
465 // necessary.
466
467 Output_segment*
468 Layout::find_first_load_seg()
469 {
470   for (Segment_list::const_iterator p = this->segment_list_.begin();
471        p != this->segment_list_.end();
472        ++p)
473     {
474       if ((*p)->type() == elfcpp::PT_LOAD
475           && ((*p)->flags() & elfcpp::PF_R) != 0
476           && ((*p)->flags() & elfcpp::PF_W) == 0)
477         return *p;
478     }
479
480   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
481   this->segment_list_.push_back(load_seg);
482   return load_seg;
483 }
484
485 // Finalize the layout.  When this is called, we have created all the
486 // output sections and all the output segments which are based on
487 // input sections.  We have several things to do, and we have to do
488 // them in the right order, so that we get the right results correctly
489 // and efficiently.
490
491 // 1) Finalize the list of output segments and create the segment
492 // table header.
493
494 // 2) Finalize the dynamic symbol table and associated sections.
495
496 // 3) Determine the final file offset of all the output segments.
497
498 // 4) Determine the final file offset of all the SHF_ALLOC output
499 // sections.
500
501 // 5) Create the symbol table sections and the section name table
502 // section.
503
504 // 6) Finalize the symbol table: set symbol values to their final
505 // value and make a final determination of which symbols are going
506 // into the output symbol table.
507
508 // 7) Create the section table header.
509
510 // 8) Determine the final file offset of all the output sections which
511 // are not SHF_ALLOC, including the section table header.
512
513 // 9) Finalize the ELF file header.
514
515 // This function returns the size of the output file.
516
517 off_t
518 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
519 {
520   Target* const target = input_objects->target();
521
522   target->finalize_sections(this);
523
524   Output_segment* phdr_seg = NULL;
525   if (input_objects->any_dynamic())
526     {
527       // There was a dynamic object in the link.  We need to create
528       // some information for the dynamic linker.
529
530       // Create the PT_PHDR segment which will hold the program
531       // headers.
532       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
533       this->segment_list_.push_back(phdr_seg);
534
535       // Create the dynamic symbol table, including the hash table.
536       Output_section* dynstr;
537       std::vector<Symbol*> dynamic_symbols;
538       unsigned int local_dynamic_count;
539       Versions versions;
540       this->create_dynamic_symtab(target, symtab, &dynstr,
541                                   &local_dynamic_count, &dynamic_symbols,
542                                   &versions);
543
544       // Create the .interp section to hold the name of the
545       // interpreter, and put it in a PT_INTERP segment.
546       this->create_interp(target);
547
548       // Finish the .dynamic section to hold the dynamic data, and put
549       // it in a PT_DYNAMIC segment.
550       this->finish_dynamic_section(input_objects, symtab);
551
552       // We should have added everything we need to the dynamic string
553       // table.
554       this->dynpool_.set_string_offsets();
555
556       // Create the version sections.  We can't do this until the
557       // dynamic string table is complete.
558       this->create_version_sections(&versions, local_dynamic_count,
559                                     dynamic_symbols, dynstr);
560     }
561
562   // FIXME: Handle PT_GNU_STACK.
563
564   Output_segment* load_seg = this->find_first_load_seg();
565
566   // Lay out the segment headers.
567   Output_segment_headers* segment_headers;
568   segment_headers = new Output_segment_headers(this->segment_list_);
569   load_seg->add_initial_output_data(segment_headers);
570   this->special_output_list_.push_back(segment_headers);
571   if (phdr_seg != NULL)
572     phdr_seg->add_initial_output_data(segment_headers);
573
574   // Lay out the file header.
575   Output_file_header* file_header;
576   file_header = new Output_file_header(target, symtab, segment_headers);
577   load_seg->add_initial_output_data(file_header);
578   this->special_output_list_.push_back(file_header);
579
580   // We set the output section indexes in set_segment_offsets and
581   // set_section_offsets.
582   unsigned int shndx = 1;
583
584   // Set the file offsets of all the segments, and all the sections
585   // they contain.
586   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
587
588   // Create the symbol table sections.
589   this->create_symtab_sections(input_objects, symtab, &off);
590
591   // Create the .shstrtab section.
592   Output_section* shstrtab_section = this->create_shstrtab();
593
594   // Set the file offsets of all the sections not associated with
595   // segments.
596   off = this->set_section_offsets(off, &shndx);
597
598   // Create the section table header.
599   Output_section_headers* oshdrs = this->create_shdrs(&off);
600
601   file_header->set_section_info(oshdrs, shstrtab_section);
602
603   // Now we know exactly where everything goes in the output file.
604   Output_data::layout_complete();
605
606   return off;
607 }
608
609 // Return whether SEG1 should be before SEG2 in the output file.  This
610 // is based entirely on the segment type and flags.  When this is
611 // called the segment addresses has normally not yet been set.
612
613 bool
614 Layout::segment_precedes(const Output_segment* seg1,
615                          const Output_segment* seg2)
616 {
617   elfcpp::Elf_Word type1 = seg1->type();
618   elfcpp::Elf_Word type2 = seg2->type();
619
620   // The single PT_PHDR segment is required to precede any loadable
621   // segment.  We simply make it always first.
622   if (type1 == elfcpp::PT_PHDR)
623     {
624       gold_assert(type2 != elfcpp::PT_PHDR);
625       return true;
626     }
627   if (type2 == elfcpp::PT_PHDR)
628     return false;
629
630   // The single PT_INTERP segment is required to precede any loadable
631   // segment.  We simply make it always second.
632   if (type1 == elfcpp::PT_INTERP)
633     {
634       gold_assert(type2 != elfcpp::PT_INTERP);
635       return true;
636     }
637   if (type2 == elfcpp::PT_INTERP)
638     return false;
639
640   // We then put PT_LOAD segments before any other segments.
641   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
642     return true;
643   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
644     return false;
645
646   // We put the PT_TLS segment last, because that is where the dynamic
647   // linker expects to find it (this is just for efficiency; other
648   // positions would also work correctly).
649   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
650     return false;
651   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
652     return true;
653
654   const elfcpp::Elf_Word flags1 = seg1->flags();
655   const elfcpp::Elf_Word flags2 = seg2->flags();
656
657   // The order of non-PT_LOAD segments is unimportant.  We simply sort
658   // by the numeric segment type and flags values.  There should not
659   // be more than one segment with the same type and flags.
660   if (type1 != elfcpp::PT_LOAD)
661     {
662       if (type1 != type2)
663         return type1 < type2;
664       gold_assert(flags1 != flags2);
665       return flags1 < flags2;
666     }
667
668   // We sort PT_LOAD segments based on the flags.  Readonly segments
669   // come before writable segments.  Then executable segments come
670   // before non-executable segments.  Then the unlikely case of a
671   // non-readable segment comes before the normal case of a readable
672   // segment.  If there are multiple segments with the same type and
673   // flags, we require that the address be set, and we sort by
674   // virtual address and then physical address.
675   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
676     return (flags1 & elfcpp::PF_W) == 0;
677   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
678     return (flags1 & elfcpp::PF_X) != 0;
679   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
680     return (flags1 & elfcpp::PF_R) == 0;
681
682   uint64_t vaddr1 = seg1->vaddr();
683   uint64_t vaddr2 = seg2->vaddr();
684   if (vaddr1 != vaddr2)
685     return vaddr1 < vaddr2;
686
687   uint64_t paddr1 = seg1->paddr();
688   uint64_t paddr2 = seg2->paddr();
689   gold_assert(paddr1 != paddr2);
690   return paddr1 < paddr2;
691 }
692
693 // Set the file offsets of all the segments, and all the sections they
694 // contain.  They have all been created.  LOAD_SEG must be be laid out
695 // first.  Return the offset of the data to follow.
696
697 off_t
698 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
699                             unsigned int *pshndx)
700 {
701   // Sort them into the final order.
702   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
703             Layout::Compare_segments());
704
705   // Find the PT_LOAD segments, and set their addresses and offsets
706   // and their section's addresses and offsets.
707   uint64_t addr = target->text_segment_address();
708   off_t off = 0;
709   bool was_readonly = false;
710   for (Segment_list::iterator p = this->segment_list_.begin();
711        p != this->segment_list_.end();
712        ++p)
713     {
714       if ((*p)->type() == elfcpp::PT_LOAD)
715         {
716           if (load_seg != NULL && load_seg != *p)
717             gold_unreachable();
718           load_seg = NULL;
719
720           // If the last segment was readonly, and this one is not,
721           // then skip the address forward one page, maintaining the
722           // same position within the page.  This lets us store both
723           // segments overlapping on a single page in the file, but
724           // the loader will put them on different pages in memory.
725
726           uint64_t orig_addr = addr;
727           uint64_t orig_off = off;
728
729           uint64_t aligned_addr = addr;
730           uint64_t abi_pagesize = target->abi_pagesize();
731
732           // FIXME: This should depend on the -n and -N options.
733           (*p)->set_minimum_addralign(target->common_pagesize());
734
735           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
736             {
737               uint64_t align = (*p)->addralign();
738
739               addr = align_address(addr, align);
740               aligned_addr = addr;
741               if ((addr & (abi_pagesize - 1)) != 0)
742                 addr = addr + abi_pagesize;
743             }
744
745           unsigned int shndx_hold = *pshndx;
746           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
747           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
748
749           // Now that we know the size of this segment, we may be able
750           // to save a page in memory, at the cost of wasting some
751           // file space, by instead aligning to the start of a new
752           // page.  Here we use the real machine page size rather than
753           // the ABI mandated page size.
754
755           if (aligned_addr != addr)
756             {
757               uint64_t common_pagesize = target->common_pagesize();
758               uint64_t first_off = (common_pagesize
759                                     - (aligned_addr
760                                        & (common_pagesize - 1)));
761               uint64_t last_off = new_addr & (common_pagesize - 1);
762               if (first_off > 0
763                   && last_off > 0
764                   && ((aligned_addr & ~ (common_pagesize - 1))
765                       != (new_addr & ~ (common_pagesize - 1)))
766                   && first_off + last_off <= common_pagesize)
767                 {
768                   *pshndx = shndx_hold;
769                   addr = align_address(aligned_addr, common_pagesize);
770                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
771                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
772                 }
773             }
774
775           addr = new_addr;
776
777           if (((*p)->flags() & elfcpp::PF_W) == 0)
778             was_readonly = true;
779         }
780     }
781
782   // Handle the non-PT_LOAD segments, setting their offsets from their
783   // section's offsets.
784   for (Segment_list::iterator p = this->segment_list_.begin();
785        p != this->segment_list_.end();
786        ++p)
787     {
788       if ((*p)->type() != elfcpp::PT_LOAD)
789         (*p)->set_offset();
790     }
791
792   return off;
793 }
794
795 // Set the file offset of all the sections not associated with a
796 // segment.
797
798 off_t
799 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
800 {
801   for (Section_list::iterator p = this->unattached_section_list_.begin();
802        p != this->unattached_section_list_.end();
803        ++p)
804     {
805       (*p)->set_out_shndx(*pshndx);
806       ++*pshndx;
807       if ((*p)->offset() != -1)
808         continue;
809       off = align_address(off, (*p)->addralign());
810       (*p)->set_address(0, off);
811       off += (*p)->data_size();
812     }
813   return off;
814 }
815
816 // Create the symbol table sections.  Here we also set the final
817 // values of the symbols.  At this point all the loadable sections are
818 // fully laid out.
819
820 void
821 Layout::create_symtab_sections(const Input_objects* input_objects,
822                                Symbol_table* symtab,
823                                off_t* poff)
824 {
825   int symsize;
826   unsigned int align;
827   if (parameters->get_size() == 32)
828     {
829       symsize = elfcpp::Elf_sizes<32>::sym_size;
830       align = 4;
831     }
832   else if (parameters->get_size() == 64)
833     {
834       symsize = elfcpp::Elf_sizes<64>::sym_size;
835       align = 8;
836     }
837   else
838     gold_unreachable();
839
840   off_t off = *poff;
841   off = align_address(off, align);
842   off_t startoff = off;
843
844   // Save space for the dummy symbol at the start of the section.  We
845   // never bother to write this out--it will just be left as zero.
846   off += symsize;
847   unsigned int local_symbol_index = 1;
848
849   // Add STT_SECTION symbols for each Output section which needs one.
850   for (Section_list::iterator p = this->section_list_.begin();
851        p != this->section_list_.end();
852        ++p)
853     {
854       if (!(*p)->needs_symtab_index())
855         (*p)->set_symtab_index(-1U);
856       else
857         {
858           (*p)->set_symtab_index(local_symbol_index);
859           ++local_symbol_index;
860           off += symsize;
861         }
862     }
863
864   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
865        p != input_objects->relobj_end();
866        ++p)
867     {
868       Task_lock_obj<Object> tlo(**p);
869       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
870                                                         off,
871                                                         &this->sympool_);
872       off += (index - local_symbol_index) * symsize;
873       local_symbol_index = index;
874     }
875
876   unsigned int local_symcount = local_symbol_index;
877   gold_assert(local_symcount * symsize == off - startoff);
878
879   off_t dynoff;
880   size_t dyn_global_index;
881   size_t dyncount;
882   if (this->dynsym_section_ == NULL)
883     {
884       dynoff = 0;
885       dyn_global_index = 0;
886       dyncount = 0;
887     }
888   else
889     {
890       dyn_global_index = this->dynsym_section_->info();
891       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
892       dynoff = this->dynsym_section_->offset() + locsize;
893       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
894       gold_assert(dyncount * symsize
895                   == this->dynsym_section_->data_size() - locsize);
896     }
897
898   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
899                          dyncount, &this->sympool_);
900
901   this->sympool_.set_string_offsets();
902
903   const char* symtab_name = this->namepool_.add(".symtab", NULL);
904   Output_section* osymtab = this->make_output_section(symtab_name,
905                                                       elfcpp::SHT_SYMTAB,
906                                                       0);
907   this->symtab_section_ = osymtab;
908
909   Output_section_data* pos = new Output_data_space(off - startoff,
910                                                    align);
911   osymtab->add_output_section_data(pos);
912
913   const char* strtab_name = this->namepool_.add(".strtab", NULL);
914   Output_section* ostrtab = this->make_output_section(strtab_name,
915                                                       elfcpp::SHT_STRTAB,
916                                                       0);
917
918   Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
919   ostrtab->add_output_section_data(pstr);
920
921   osymtab->set_address(0, startoff);
922   osymtab->set_link_section(ostrtab);
923   osymtab->set_info(local_symcount);
924   osymtab->set_entsize(symsize);
925
926   *poff = off;
927 }
928
929 // Create the .shstrtab section, which holds the names of the
930 // sections.  At the time this is called, we have created all the
931 // output sections except .shstrtab itself.
932
933 Output_section*
934 Layout::create_shstrtab()
935 {
936   // FIXME: We don't need to create a .shstrtab section if we are
937   // stripping everything.
938
939   const char* name = this->namepool_.add(".shstrtab", NULL);
940
941   this->namepool_.set_string_offsets();
942
943   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
944
945   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
946   os->add_output_section_data(posd);
947
948   return os;
949 }
950
951 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
952 // offset.
953
954 Output_section_headers*
955 Layout::create_shdrs(off_t* poff)
956 {
957   Output_section_headers* oshdrs;
958   oshdrs = new Output_section_headers(this,
959                                       &this->segment_list_,
960                                       &this->unattached_section_list_,
961                                       &this->namepool_);
962   off_t off = align_address(*poff, oshdrs->addralign());
963   oshdrs->set_address(0, off);
964   off += oshdrs->data_size();
965   *poff = off;
966   this->special_output_list_.push_back(oshdrs);
967   return oshdrs;
968 }
969
970 // Create the dynamic symbol table.
971
972 void
973 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
974                               Output_section **pdynstr,
975                               unsigned int* plocal_dynamic_count,
976                               std::vector<Symbol*>* pdynamic_symbols,
977                               Versions* pversions)
978 {
979   // Count all the symbols in the dynamic symbol table, and set the
980   // dynamic symbol indexes.
981
982   // Skip symbol 0, which is always all zeroes.
983   unsigned int index = 1;
984
985   // Add STT_SECTION symbols for each Output section which needs one.
986   for (Section_list::iterator p = this->section_list_.begin();
987        p != this->section_list_.end();
988        ++p)
989     {
990       if (!(*p)->needs_dynsym_index())
991         (*p)->set_dynsym_index(-1U);
992       else
993         {
994           (*p)->set_dynsym_index(index);
995           ++index;
996         }
997     }
998
999   // FIXME: Some targets apparently require local symbols in the
1000   // dynamic symbol table.  Here is where we will have to count them,
1001   // and set the dynamic symbol indexes, and add the names to
1002   // this->dynpool_.
1003
1004   unsigned int local_symcount = index;
1005   *plocal_dynamic_count = local_symcount;
1006
1007   // FIXME: We have to tell set_dynsym_indexes whether the
1008   // -E/--export-dynamic option was used.
1009   index = symtab->set_dynsym_indexes(&this->options_, target, index,
1010                                      pdynamic_symbols, &this->dynpool_,
1011                                      pversions);
1012
1013   int symsize;
1014   unsigned int align;
1015   const int size = parameters->get_size();
1016   if (size == 32)
1017     {
1018       symsize = elfcpp::Elf_sizes<32>::sym_size;
1019       align = 4;
1020     }
1021   else if (size == 64)
1022     {
1023       symsize = elfcpp::Elf_sizes<64>::sym_size;
1024       align = 8;
1025     }
1026   else
1027     gold_unreachable();
1028
1029   // Create the dynamic symbol table section.
1030
1031   const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
1032   Output_section* dynsym = this->make_output_section(dynsym_name,
1033                                                      elfcpp::SHT_DYNSYM,
1034                                                      elfcpp::SHF_ALLOC);
1035
1036   Output_section_data* odata = new Output_data_space(index * symsize,
1037                                                      align);
1038   dynsym->add_output_section_data(odata);
1039
1040   dynsym->set_info(local_symcount);
1041   dynsym->set_entsize(symsize);
1042   dynsym->set_addralign(align);
1043
1044   this->dynsym_section_ = dynsym;
1045
1046   Output_data_dynamic* const odyn = this->dynamic_data_;
1047   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1048   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1049
1050   // Create the dynamic string table section.
1051
1052   const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
1053   Output_section* dynstr = this->make_output_section(dynstr_name,
1054                                                      elfcpp::SHT_STRTAB,
1055                                                      elfcpp::SHF_ALLOC);
1056
1057   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1058   dynstr->add_output_section_data(strdata);
1059
1060   dynsym->set_link_section(dynstr);
1061   this->dynamic_section_->set_link_section(dynstr);
1062
1063   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1064   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1065
1066   *pdynstr = dynstr;
1067
1068   // Create the hash tables.
1069
1070   // FIXME: We need an option to create a GNU hash table.
1071
1072   unsigned char* phash;
1073   unsigned int hashlen;
1074   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1075                                 &phash, &hashlen);
1076
1077   const char* hash_name = this->namepool_.add(".hash", NULL);
1078   Output_section* hashsec = this->make_output_section(hash_name,
1079                                                       elfcpp::SHT_HASH,
1080                                                       elfcpp::SHF_ALLOC);
1081
1082   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1083                                                                hashlen,
1084                                                                align);
1085   hashsec->add_output_section_data(hashdata);
1086
1087   hashsec->set_link_section(dynsym);
1088   hashsec->set_entsize(4);
1089
1090   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1091 }
1092
1093 // Create the version sections.
1094
1095 void
1096 Layout::create_version_sections(const Versions* versions,
1097                                 unsigned int local_symcount,
1098                                 const std::vector<Symbol*>& dynamic_symbols,
1099                                 const Output_section* dynstr)
1100 {
1101   if (!versions->any_defs() && !versions->any_needs())
1102     return;
1103
1104   if (parameters->get_size() == 32)
1105     {
1106       if (parameters->is_big_endian())
1107         {
1108 #ifdef HAVE_TARGET_32_BIG
1109           this->sized_create_version_sections
1110               SELECT_SIZE_ENDIAN_NAME(32, true)(
1111                   versions, local_symcount, dynamic_symbols, dynstr
1112                   SELECT_SIZE_ENDIAN(32, true));
1113 #else
1114           gold_unreachable();
1115 #endif
1116         }
1117       else
1118         {
1119 #ifdef HAVE_TARGET_32_LITTLE
1120           this->sized_create_version_sections
1121               SELECT_SIZE_ENDIAN_NAME(32, false)(
1122                   versions, local_symcount, dynamic_symbols, dynstr
1123                   SELECT_SIZE_ENDIAN(32, false));
1124 #else
1125           gold_unreachable();
1126 #endif
1127         }
1128     }
1129   else if (parameters->get_size() == 64)
1130     {
1131       if (parameters->is_big_endian())
1132         {
1133 #ifdef HAVE_TARGET_64_BIG
1134           this->sized_create_version_sections
1135               SELECT_SIZE_ENDIAN_NAME(64, true)(
1136                   versions, local_symcount, dynamic_symbols, dynstr
1137                   SELECT_SIZE_ENDIAN(64, true));
1138 #else
1139           gold_unreachable();
1140 #endif
1141         }
1142       else
1143         {
1144 #ifdef HAVE_TARGET_64_LITTLE
1145           this->sized_create_version_sections
1146               SELECT_SIZE_ENDIAN_NAME(64, false)(
1147                   versions, local_symcount, dynamic_symbols, dynstr
1148                   SELECT_SIZE_ENDIAN(64, false));
1149 #else
1150           gold_unreachable();
1151 #endif
1152         }
1153     }
1154   else
1155     gold_unreachable();
1156 }
1157
1158 // Create the version sections, sized version.
1159
1160 template<int size, bool big_endian>
1161 void
1162 Layout::sized_create_version_sections(
1163     const Versions* versions,
1164     unsigned int local_symcount,
1165     const std::vector<Symbol*>& dynamic_symbols,
1166     const Output_section* dynstr
1167     ACCEPT_SIZE_ENDIAN)
1168 {
1169   const char* vname = this->namepool_.add(".gnu.version", NULL);
1170   Output_section* vsec = this->make_output_section(vname,
1171                                                    elfcpp::SHT_GNU_versym,
1172                                                    elfcpp::SHF_ALLOC);
1173
1174   unsigned char* vbuf;
1175   unsigned int vsize;
1176   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1177       &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1178       SELECT_SIZE_ENDIAN(size, big_endian));
1179
1180   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1181
1182   vsec->add_output_section_data(vdata);
1183   vsec->set_entsize(2);
1184   vsec->set_link_section(this->dynsym_section_);
1185
1186   Output_data_dynamic* const odyn = this->dynamic_data_;
1187   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1188
1189   if (versions->any_defs())
1190     {
1191       const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1192       Output_section *vdsec;
1193       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1194                                         elfcpp::SHF_ALLOC);
1195
1196       unsigned char* vdbuf;
1197       unsigned int vdsize;
1198       unsigned int vdentries;
1199       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1200           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1201           SELECT_SIZE_ENDIAN(size, big_endian));
1202
1203       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1204                                                                  vdsize,
1205                                                                  4);
1206
1207       vdsec->add_output_section_data(vddata);
1208       vdsec->set_link_section(dynstr);
1209       vdsec->set_info(vdentries);
1210
1211       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1212       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1213     }
1214
1215   if (versions->any_needs())
1216     {
1217       const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1218       Output_section* vnsec;
1219       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1220                                         elfcpp::SHF_ALLOC);
1221
1222       unsigned char* vnbuf;
1223       unsigned int vnsize;
1224       unsigned int vnentries;
1225       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1226         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1227          SELECT_SIZE_ENDIAN(size, big_endian));
1228
1229       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1230                                                                  vnsize,
1231                                                                  4);
1232
1233       vnsec->add_output_section_data(vndata);
1234       vnsec->set_link_section(dynstr);
1235       vnsec->set_info(vnentries);
1236
1237       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1238       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1239     }
1240 }
1241
1242 // Create the .interp section and PT_INTERP segment.
1243
1244 void
1245 Layout::create_interp(const Target* target)
1246 {
1247   const char* interp = this->options_.dynamic_linker();
1248   if (interp == NULL)
1249     {
1250       interp = target->dynamic_linker();
1251       gold_assert(interp != NULL);
1252     }
1253
1254   size_t len = strlen(interp) + 1;
1255
1256   Output_section_data* odata = new Output_data_const(interp, len, 1);
1257
1258   const char* interp_name = this->namepool_.add(".interp", NULL);
1259   Output_section* osec = this->make_output_section(interp_name,
1260                                                    elfcpp::SHT_PROGBITS,
1261                                                    elfcpp::SHF_ALLOC);
1262   osec->add_output_section_data(odata);
1263
1264   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1265   this->segment_list_.push_back(oseg);
1266   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1267 }
1268
1269 // Finish the .dynamic section and PT_DYNAMIC segment.
1270
1271 void
1272 Layout::finish_dynamic_section(const Input_objects* input_objects,
1273                                const Symbol_table* symtab)
1274 {
1275   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1276                                             elfcpp::PF_R | elfcpp::PF_W);
1277   this->segment_list_.push_back(oseg);
1278   oseg->add_initial_output_section(this->dynamic_section_,
1279                                    elfcpp::PF_R | elfcpp::PF_W);
1280
1281   Output_data_dynamic* const odyn = this->dynamic_data_;
1282
1283   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1284        p != input_objects->dynobj_end();
1285        ++p)
1286     {
1287       // FIXME: Handle --as-needed.
1288       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1289     }
1290
1291   // FIXME: Support --init and --fini.
1292   Symbol* sym = symtab->lookup("_init");
1293   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1294     odyn->add_symbol(elfcpp::DT_INIT, sym);
1295
1296   sym = symtab->lookup("_fini");
1297   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1298     odyn->add_symbol(elfcpp::DT_FINI, sym);
1299
1300   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1301
1302   // Add a DT_RPATH entry if needed.
1303   const General_options::Dir_list& rpath(this->options_.rpath());
1304   if (!rpath.empty())
1305     {
1306       std::string rpath_val;
1307       for (General_options::Dir_list::const_iterator p = rpath.begin();
1308            p != rpath.end();
1309            ++p)
1310         {
1311           if (rpath_val.empty())
1312             rpath_val = *p;
1313           else
1314             {
1315               // Eliminate duplicates.
1316               General_options::Dir_list::const_iterator q;
1317               for (q = rpath.begin(); q != p; ++q)
1318                 if (strcmp(*q, *p) == 0)
1319                   break;
1320               if (q == p)
1321                 {
1322                   rpath_val += ':';
1323                   rpath_val += *p;
1324                 }
1325             }
1326         }
1327
1328       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1329     }
1330 }
1331
1332 // The mapping of .gnu.linkonce section names to real section names.
1333
1334 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1335 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1336 {
1337   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1338   MAPPING_INIT("t", ".text"),
1339   MAPPING_INIT("r", ".rodata"),
1340   MAPPING_INIT("d", ".data"),
1341   MAPPING_INIT("b", ".bss"),
1342   MAPPING_INIT("s", ".sdata"),
1343   MAPPING_INIT("sb", ".sbss"),
1344   MAPPING_INIT("s2", ".sdata2"),
1345   MAPPING_INIT("sb2", ".sbss2"),
1346   MAPPING_INIT("wi", ".debug_info"),
1347   MAPPING_INIT("td", ".tdata"),
1348   MAPPING_INIT("tb", ".tbss"),
1349   MAPPING_INIT("lr", ".lrodata"),
1350   MAPPING_INIT("l", ".ldata"),
1351   MAPPING_INIT("lb", ".lbss"),
1352 };
1353 #undef MAPPING_INIT
1354
1355 const int Layout::linkonce_mapping_count =
1356   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1357
1358 // Return the name of the output section to use for a .gnu.linkonce
1359 // section.  This is based on the default ELF linker script of the old
1360 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1361 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1362 // initialized to the length of NAME.
1363
1364 const char*
1365 Layout::linkonce_output_name(const char* name, size_t *plen)
1366 {
1367   const char* s = name + sizeof(".gnu.linkonce") - 1;
1368   if (*s != '.')
1369     return name;
1370   ++s;
1371   const Linkonce_mapping* plm = linkonce_mapping;
1372   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1373     {
1374       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1375         {
1376           *plen = plm->tolen;
1377           return plm->to;
1378         }
1379     }
1380   return name;
1381 }
1382
1383 // Choose the output section name to use given an input section name.
1384 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1385 // length of NAME.
1386
1387 const char*
1388 Layout::output_section_name(const char* name, size_t* plen)
1389 {
1390   if (Layout::is_linkonce(name))
1391     {
1392       // .gnu.linkonce sections are laid out as though they were named
1393       // for the sections are placed into.
1394       return Layout::linkonce_output_name(name, plen);
1395     }
1396
1397   // If the section name has no '.', or only an initial '.', we use
1398   // the name unchanged (i.e., ".text" is unchanged).
1399
1400   // Otherwise, if the section name does not include ".rel", we drop
1401   // the last '.'  and everything that follows (i.e., ".text.XXX"
1402   // becomes ".text").
1403
1404   // Otherwise, if the section name has zero or one '.' after the
1405   // ".rel", we use the name unchanged (i.e., ".rel.text" is
1406   // unchanged).
1407
1408   // Otherwise, we drop the last '.' and everything that follows
1409   // (i.e., ".rel.text.XXX" becomes ".rel.text").
1410
1411   const char* s = name;
1412   if (*s == '.')
1413     ++s;
1414   const char* sdot = strchr(s, '.');
1415   if (sdot == NULL)
1416     return name;
1417
1418   const char* srel = strstr(s, ".rel");
1419   if (srel == NULL)
1420     {
1421       *plen = sdot - name;
1422       return name;
1423     }
1424
1425   sdot = strchr(srel + 1, '.');
1426   if (sdot == NULL)
1427     return name;
1428   sdot = strchr(sdot + 1, '.');
1429   if (sdot == NULL)
1430     return name;
1431
1432   *plen = sdot - name;
1433   return name;
1434 }
1435
1436 // Record the signature of a comdat section, and return whether to
1437 // include it in the link.  If GROUP is true, this is a regular
1438 // section group.  If GROUP is false, this is a group signature
1439 // derived from the name of a linkonce section.  We want linkonce
1440 // signatures and group signatures to block each other, but we don't
1441 // want a linkonce signature to block another linkonce signature.
1442
1443 bool
1444 Layout::add_comdat(const char* signature, bool group)
1445 {
1446   std::string sig(signature);
1447   std::pair<Signatures::iterator, bool> ins(
1448     this->signatures_.insert(std::make_pair(sig, group)));
1449
1450   if (ins.second)
1451     {
1452       // This is the first time we've seen this signature.
1453       return true;
1454     }
1455
1456   if (ins.first->second)
1457     {
1458       // We've already seen a real section group with this signature.
1459       return false;
1460     }
1461   else if (group)
1462     {
1463       // This is a real section group, and we've already seen a
1464       // linkonce section with this signature.  Record that we've seen
1465       // a section group, and don't include this section group.
1466       ins.first->second = true;
1467       return false;
1468     }
1469   else
1470     {
1471       // We've already seen a linkonce section and this is a linkonce
1472       // section.  These don't block each other--this may be the same
1473       // symbol name with different section types.
1474       return true;
1475     }
1476 }
1477
1478 // Write out data not associated with a section or the symbol table.
1479
1480 void
1481 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1482 {
1483   const Output_section* symtab_section = this->symtab_section_;
1484   for (Section_list::const_iterator p = this->section_list_.begin();
1485        p != this->section_list_.end();
1486        ++p)
1487     {
1488       if ((*p)->needs_symtab_index())
1489         {
1490           gold_assert(symtab_section != NULL);
1491           unsigned int index = (*p)->symtab_index();
1492           gold_assert(index > 0 && index != -1U);
1493           off_t off = (symtab_section->offset()
1494                        + index * symtab_section->entsize());
1495           symtab->write_section_symbol(*p, of, off);
1496         }
1497     }
1498
1499   const Output_section* dynsym_section = this->dynsym_section_;
1500   for (Section_list::const_iterator p = this->section_list_.begin();
1501        p != this->section_list_.end();
1502        ++p)
1503     {
1504       if ((*p)->needs_dynsym_index())
1505         {
1506           gold_assert(dynsym_section != NULL);
1507           unsigned int index = (*p)->dynsym_index();
1508           gold_assert(index > 0 && index != -1U);
1509           off_t off = (dynsym_section->offset()
1510                        + index * dynsym_section->entsize());
1511           symtab->write_section_symbol(*p, of, off);
1512         }
1513     }
1514
1515   // Write out the Output_sections.  Most won't have anything to
1516   // write, since most of the data will come from input sections which
1517   // are handled elsewhere.  But some Output_sections do have
1518   // Output_data.
1519   for (Section_list::const_iterator p = this->section_list_.begin();
1520        p != this->section_list_.end();
1521        ++p)
1522     (*p)->write(of);
1523
1524   // Write out the Output_data which are not in an Output_section.
1525   for (Data_list::const_iterator p = this->special_output_list_.begin();
1526        p != this->special_output_list_.end();
1527        ++p)
1528     (*p)->write(of);
1529 }
1530
1531 // Write_data_task methods.
1532
1533 // We can always run this task.
1534
1535 Task::Is_runnable_type
1536 Write_data_task::is_runnable(Workqueue*)
1537 {
1538   return IS_RUNNABLE;
1539 }
1540
1541 // We need to unlock FINAL_BLOCKER when finished.
1542
1543 Task_locker*
1544 Write_data_task::locks(Workqueue* workqueue)
1545 {
1546   return new Task_locker_block(*this->final_blocker_, workqueue);
1547 }
1548
1549 // Run the task--write out the data.
1550
1551 void
1552 Write_data_task::run(Workqueue*)
1553 {
1554   this->layout_->write_data(this->symtab_, this->of_);
1555 }
1556
1557 // Write_symbols_task methods.
1558
1559 // We can always run this task.
1560
1561 Task::Is_runnable_type
1562 Write_symbols_task::is_runnable(Workqueue*)
1563 {
1564   return IS_RUNNABLE;
1565 }
1566
1567 // We need to unlock FINAL_BLOCKER when finished.
1568
1569 Task_locker*
1570 Write_symbols_task::locks(Workqueue* workqueue)
1571 {
1572   return new Task_locker_block(*this->final_blocker_, workqueue);
1573 }
1574
1575 // Run the task--write out the symbols.
1576
1577 void
1578 Write_symbols_task::run(Workqueue*)
1579 {
1580   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1581                                this->of_);
1582 }
1583
1584 // Close_task_runner methods.
1585
1586 // Run the task--close the file.
1587
1588 void
1589 Close_task_runner::run(Workqueue*)
1590 {
1591   this->of_->close();
1592 }
1593
1594 // Instantiate the templates we need.  We could use the configure
1595 // script to restrict this to only the ones for implemented targets.
1596
1597 #ifdef HAVE_TARGET_32_LITTLE
1598 template
1599 Output_section*
1600 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1601                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1602 #endif
1603
1604 #ifdef HAVE_TARGET_32_BIG
1605 template
1606 Output_section*
1607 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1608                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1609 #endif
1610
1611 #ifdef HAVE_TARGET_64_LITTLE
1612 template
1613 Output_section*
1614 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1615                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1616 #endif
1617
1618 #ifdef HAVE_TARGET_64_BIG
1619 template
1620 Output_section*
1621 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1622                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1623 #endif
1624
1625
1626 } // End namespace gold.