constify to_open
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list.  Creates a single free list node that
76 // describes the entire region of length LEN.  If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83   this->list_.push_front(Free_list_node(0, len));
84   this->last_remove_ = this->list_.begin();
85   this->extend_ = extend;
86   this->length_ = len;
87   ++Free_list::num_lists;
88   ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list.  Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node.  We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103   if (start == end)
104     return;
105   gold_assert(start < end);
106
107   ++Free_list::num_removes;
108
109   Iterator p = this->last_remove_;
110   if (p->start_ > start)
111     p = this->list_.begin();
112
113   for (; p != this->list_.end(); ++p)
114     {
115       ++Free_list::num_remove_visits;
116       // Find a node that wholly contains the indicated region.
117       if (p->start_ <= start && p->end_ >= end)
118         {
119           // Case 1: the indicated region spans the whole node.
120           // Add some fuzz to avoid creating tiny free chunks.
121           if (p->start_ + 3 >= start && p->end_ <= end + 3)
122             p = this->list_.erase(p);
123           // Case 2: remove a chunk from the start of the node.
124           else if (p->start_ + 3 >= start)
125             p->start_ = end;
126           // Case 3: remove a chunk from the end of the node.
127           else if (p->end_ <= end + 3)
128             p->end_ = start;
129           // Case 4: remove a chunk from the middle, and split
130           // the node into two.
131           else
132             {
133               Free_list_node newnode(p->start_, start);
134               p->start_ = end;
135               this->list_.insert(p, newnode);
136               ++Free_list::num_nodes;
137             }
138           this->last_remove_ = p;
139           return;
140         }
141     }
142
143   // Did not find a node containing the given chunk.  This could happen
144   // because a small chunk was already removed due to the fuzz.
145   gold_debug(DEBUG_INCREMENTAL,
146              "Free_list::remove(%d,%d) not found",
147              static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157   gold_debug(DEBUG_INCREMENTAL,
158              "Free_list::allocate(%08lx, %d, %08lx)",
159              static_cast<long>(len), static_cast<int>(align),
160              static_cast<long>(minoff));
161   if (len == 0)
162     return align_address(minoff, align);
163
164   ++Free_list::num_allocates;
165
166   // We usually want to drop free chunks smaller than 4 bytes.
167   // If we need to guarantee a minimum hole size, though, we need
168   // to keep track of all free chunks.
169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172     {
173       ++Free_list::num_allocate_visits;
174       off_t start = p->start_ > minoff ? p->start_ : minoff;
175       start = align_address(start, align);
176       off_t end = start + len;
177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178         {
179           this->length_ = end;
180           p->end_ = end;
181         }
182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183         {
184           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185             this->list_.erase(p);
186           else if (p->start_ + fuzz >= start)
187             p->start_ = end;
188           else if (p->end_ <= end + fuzz)
189             p->end_ = start;
190           else
191             {
192               Free_list_node newnode(p->start_, start);
193               p->start_ = end;
194               this->list_.insert(p, newnode);
195               ++Free_list::num_nodes;
196             }
197           return start;
198         }
199     }
200   if (this->extend_)
201     {
202       off_t start = align_address(this->length_, align);
203       this->length_ = start + len;
204       return start;
205     }
206   return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213   gold_info("Free list:\n     start      end   length\n");
214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
216               static_cast<long>(p->end_),
217               static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224   fprintf(stderr, _("%s: total free lists: %u\n"),
225           program_name, Free_list::num_lists);
226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
227           program_name, Free_list::num_nodes);
228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229           program_name, Free_list::num_removes);
230   fprintf(stderr, _("%s: nodes visited: %u\n"),
231           program_name, Free_list::num_remove_visits);
232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233           program_name, Free_list::num_allocates);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244  public:
245   Hash_task(const unsigned char* src,
246             size_t size,
247             unsigned char* dst,
248             Task_token* build_id_blocker,
249             Task_token* final_blocker)
250     : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251       final_blocker_(final_blocker)
252   { }
253
254   void
255   run(Workqueue*)
256   { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258   Task_token*
259   is_runnable();
260
261   // Unblock FINAL_BLOCKER_ when done.
262   void
263   locks(Task_locker* tl)
264   { tl->add(this, this->final_blocker_); }
265
266   std::string
267   get_name() const
268   { return "Hash_task"; }
269
270  private:
271   const unsigned char* const src_;
272   const size_t size_;
273   unsigned char* const dst_;
274   Task_token* const build_id_blocker_;
275   Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281   if (this->build_id_blocker_->is_blocked())
282     return this->build_id_blocker_;
283   return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     array_of_hashes_(NULL),
453     size_of_array_of_hashes_(0),
454     input_view_(NULL),
455     debug_abbrev_(NULL),
456     debug_info_(NULL),
457     group_signatures_(),
458     output_file_size_(-1),
459     have_added_input_section_(false),
460     sections_are_attached_(false),
461     input_requires_executable_stack_(false),
462     input_with_gnu_stack_note_(false),
463     input_without_gnu_stack_note_(false),
464     has_static_tls_(false),
465     any_postprocessing_sections_(false),
466     resized_signatures_(false),
467     have_stabstr_section_(false),
468     section_ordering_specified_(false),
469     unique_segment_for_sections_specified_(false),
470     incremental_inputs_(NULL),
471     record_output_section_data_from_script_(false),
472     script_output_section_data_list_(),
473     segment_states_(NULL),
474     relaxation_debug_check_(NULL),
475     section_order_map_(),
476     section_segment_map_(),
477     input_section_position_(),
478     input_section_glob_(),
479     incremental_base_(NULL),
480     free_list_()
481 {
482   // Make space for more than enough segments for a typical file.
483   // This is just for efficiency--it's OK if we wind up needing more.
484   this->segment_list_.reserve(12);
485
486   // We expect two unattached Output_data objects: the file header and
487   // the segment headers.
488   this->special_output_list_.reserve(2);
489
490   // Initialize structure needed for an incremental build.
491   if (parameters->incremental())
492     this->incremental_inputs_ = new Incremental_inputs;
493
494   // The section name pool is worth optimizing in all cases, because
495   // it is small, but there are often overlaps due to .rel sections.
496   this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504   this->incremental_base_ = base;
505   this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513  return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523   "abbrev",
524   "addr",         // Fission extension
525   // "aranges",   // not used by gdb as of 7.4
526   "frame",
527   "info",
528   "types",
529   "line",
530   "loc",
531   "macinfo",
532   "macro",
533   // "pubnames",  // not used by gdb as of 7.4
534   // "pubtypes",  // not used by gdb as of 7.4
535   "ranges",
536   "str",
537 };
538
539 // This is the minimum set of sections needed for line numbers.
540
541 static const char* lines_only_debug_sections[] =
542 {
543   "abbrev",
544   // "addr",      // Fission extension
545   // "aranges",   // not used by gdb as of 7.4
546   // "frame",
547   "info",
548   // "types",
549   "line",
550   // "loc",
551   // "macinfo",
552   // "macro",
553   // "pubnames",  // not used by gdb as of 7.4
554   // "pubtypes",  // not used by gdb as of 7.4
555   // "ranges",
556   "str",
557 };
558
559 // These sections are the DWARF fast-lookup tables, and are not needed
560 // when building a .gdb_index section.
561
562 static const char* gdb_fast_lookup_sections[] =
563 {
564   "aranges",
565   "pubnames",
566   "gnu_pubnames",
567   "pubtypes",
568   "gnu_pubtypes",
569 };
570
571 // Returns whether the given debug section is in the list of
572 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
573 // portion of the name following ".debug_" or ".zdebug_".
574
575 static inline bool
576 is_gdb_debug_section(const char* suffix)
577 {
578   // We can do this faster: binary search or a hashtable.  But why bother?
579   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
580     if (strcmp(suffix, gdb_sections[i]) == 0)
581       return true;
582   return false;
583 }
584
585 // Returns whether the given section is needed for lines-only debugging.
586
587 static inline bool
588 is_lines_only_debug_section(const char* suffix)
589 {
590   // We can do this faster: binary search or a hashtable.  But why bother?
591   for (size_t i = 0;
592        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
593        ++i)
594     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
595       return true;
596   return false;
597 }
598
599 // Returns whether the given section is a fast-lookup section that
600 // will not be needed when building a .gdb_index section.
601
602 static inline bool
603 is_gdb_fast_lookup_section(const char* suffix)
604 {
605   // We can do this faster: binary search or a hashtable.  But why bother?
606   for (size_t i = 0;
607        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
608        ++i)
609     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
610       return true;
611   return false;
612 }
613
614 // Sometimes we compress sections.  This is typically done for
615 // sections that are not part of normal program execution (such as
616 // .debug_* sections), and where the readers of these sections know
617 // how to deal with compressed sections.  This routine doesn't say for
618 // certain whether we'll compress -- it depends on commandline options
619 // as well -- just whether this section is a candidate for compression.
620 // (The Output_compressed_section class decides whether to compress
621 // a given section, and picks the name of the compressed section.)
622
623 static bool
624 is_compressible_debug_section(const char* secname)
625 {
626   return (is_prefix_of(".debug", secname));
627 }
628
629 // We may see compressed debug sections in input files.  Return TRUE
630 // if this is the name of a compressed debug section.
631
632 bool
633 is_compressed_debug_section(const char* secname)
634 {
635   return (is_prefix_of(".zdebug", secname));
636 }
637
638 // Whether to include this section in the link.
639
640 template<int size, bool big_endian>
641 bool
642 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
643                         const elfcpp::Shdr<size, big_endian>& shdr)
644 {
645   if (!parameters->options().relocatable()
646       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
647     return false;
648
649   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
650
651   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
652       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
653     return parameters->target().should_include_section(sh_type);
654
655   switch (sh_type)
656     {
657     case elfcpp::SHT_NULL:
658     case elfcpp::SHT_SYMTAB:
659     case elfcpp::SHT_DYNSYM:
660     case elfcpp::SHT_HASH:
661     case elfcpp::SHT_DYNAMIC:
662     case elfcpp::SHT_SYMTAB_SHNDX:
663       return false;
664
665     case elfcpp::SHT_STRTAB:
666       // Discard the sections which have special meanings in the ELF
667       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
668       // checking the sh_link fields of the appropriate sections.
669       return (strcmp(name, ".dynstr") != 0
670               && strcmp(name, ".strtab") != 0
671               && strcmp(name, ".shstrtab") != 0);
672
673     case elfcpp::SHT_RELA:
674     case elfcpp::SHT_REL:
675     case elfcpp::SHT_GROUP:
676       // If we are emitting relocations these should be handled
677       // elsewhere.
678       gold_assert(!parameters->options().relocatable());
679       return false;
680
681     case elfcpp::SHT_PROGBITS:
682       if (parameters->options().strip_debug()
683           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
684         {
685           if (is_debug_info_section(name))
686             return false;
687         }
688       if (parameters->options().strip_debug_non_line()
689           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
690         {
691           // Debugging sections can only be recognized by name.
692           if (is_prefix_of(".debug_", name)
693               && !is_lines_only_debug_section(name + 7))
694             return false;
695           if (is_prefix_of(".zdebug_", name)
696               && !is_lines_only_debug_section(name + 8))
697             return false;
698         }
699       if (parameters->options().strip_debug_gdb()
700           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
701         {
702           // Debugging sections can only be recognized by name.
703           if (is_prefix_of(".debug_", name)
704               && !is_gdb_debug_section(name + 7))
705             return false;
706           if (is_prefix_of(".zdebug_", name)
707               && !is_gdb_debug_section(name + 8))
708             return false;
709         }
710       if (parameters->options().gdb_index()
711           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
712         {
713           // When building .gdb_index, we can strip .debug_pubnames,
714           // .debug_pubtypes, and .debug_aranges sections.
715           if (is_prefix_of(".debug_", name)
716               && is_gdb_fast_lookup_section(name + 7))
717             return false;
718           if (is_prefix_of(".zdebug_", name)
719               && is_gdb_fast_lookup_section(name + 8))
720             return false;
721         }
722       if (parameters->options().strip_lto_sections()
723           && !parameters->options().relocatable()
724           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
725         {
726           // Ignore LTO sections containing intermediate code.
727           if (is_prefix_of(".gnu.lto_", name))
728             return false;
729         }
730       // The GNU linker strips .gnu_debuglink sections, so we do too.
731       // This is a feature used to keep debugging information in
732       // separate files.
733       if (strcmp(name, ".gnu_debuglink") == 0)
734         return false;
735       return true;
736
737     default:
738       return true;
739     }
740 }
741
742 // Return an output section named NAME, or NULL if there is none.
743
744 Output_section*
745 Layout::find_output_section(const char* name) const
746 {
747   for (Section_list::const_iterator p = this->section_list_.begin();
748        p != this->section_list_.end();
749        ++p)
750     if (strcmp((*p)->name(), name) == 0)
751       return *p;
752   return NULL;
753 }
754
755 // Return an output segment of type TYPE, with segment flags SET set
756 // and segment flags CLEAR clear.  Return NULL if there is none.
757
758 Output_segment*
759 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
760                             elfcpp::Elf_Word clear) const
761 {
762   for (Segment_list::const_iterator p = this->segment_list_.begin();
763        p != this->segment_list_.end();
764        ++p)
765     if (static_cast<elfcpp::PT>((*p)->type()) == type
766         && ((*p)->flags() & set) == set
767         && ((*p)->flags() & clear) == 0)
768       return *p;
769   return NULL;
770 }
771
772 // When we put a .ctors or .dtors section with more than one word into
773 // a .init_array or .fini_array section, we need to reverse the words
774 // in the .ctors/.dtors section.  This is because .init_array executes
775 // constructors front to back, where .ctors executes them back to
776 // front, and vice-versa for .fini_array/.dtors.  Although we do want
777 // to remap .ctors/.dtors into .init_array/.fini_array because it can
778 // be more efficient, we don't want to change the order in which
779 // constructors/destructors are run.  This set just keeps track of
780 // these sections which need to be reversed.  It is only changed by
781 // Layout::layout.  It should be a private member of Layout, but that
782 // would require layout.h to #include object.h to get the definition
783 // of Section_id.
784 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
785
786 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
787 // .init_array/.fini_array section.
788
789 bool
790 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
791 {
792   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
793           != ctors_sections_in_init_array.end());
794 }
795
796 // Return the output section to use for section NAME with type TYPE
797 // and section flags FLAGS.  NAME must be canonicalized in the string
798 // pool, and NAME_KEY is the key.  ORDER is where this should appear
799 // in the output sections.  IS_RELRO is true for a relro section.
800
801 Output_section*
802 Layout::get_output_section(const char* name, Stringpool::Key name_key,
803                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
804                            Output_section_order order, bool is_relro)
805 {
806   elfcpp::Elf_Word lookup_type = type;
807
808   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
809   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
810   // .init_array, .fini_array, and .preinit_array sections by name
811   // whatever their type in the input file.  We do this because the
812   // types are not always right in the input files.
813   if (lookup_type == elfcpp::SHT_INIT_ARRAY
814       || lookup_type == elfcpp::SHT_FINI_ARRAY
815       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
816     lookup_type = elfcpp::SHT_PROGBITS;
817
818   elfcpp::Elf_Xword lookup_flags = flags;
819
820   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
821   // read-write with read-only sections.  Some other ELF linkers do
822   // not do this.  FIXME: Perhaps there should be an option
823   // controlling this.
824   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
825
826   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
827   const std::pair<Key, Output_section*> v(key, NULL);
828   std::pair<Section_name_map::iterator, bool> ins(
829     this->section_name_map_.insert(v));
830
831   if (!ins.second)
832     return ins.first->second;
833   else
834     {
835       // This is the first time we've seen this name/type/flags
836       // combination.  For compatibility with the GNU linker, we
837       // combine sections with contents and zero flags with sections
838       // with non-zero flags.  This is a workaround for cases where
839       // assembler code forgets to set section flags.  FIXME: Perhaps
840       // there should be an option to control this.
841       Output_section* os = NULL;
842
843       if (lookup_type == elfcpp::SHT_PROGBITS)
844         {
845           if (flags == 0)
846             {
847               Output_section* same_name = this->find_output_section(name);
848               if (same_name != NULL
849                   && (same_name->type() == elfcpp::SHT_PROGBITS
850                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
851                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
852                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
853                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
854                 os = same_name;
855             }
856           else if ((flags & elfcpp::SHF_TLS) == 0)
857             {
858               elfcpp::Elf_Xword zero_flags = 0;
859               const Key zero_key(name_key, std::make_pair(lookup_type,
860                                                           zero_flags));
861               Section_name_map::iterator p =
862                   this->section_name_map_.find(zero_key);
863               if (p != this->section_name_map_.end())
864                 os = p->second;
865             }
866         }
867
868       if (os == NULL)
869         os = this->make_output_section(name, type, flags, order, is_relro);
870
871       ins.first->second = os;
872       return os;
873     }
874 }
875
876 // Returns TRUE iff NAME (an input section from RELOBJ) will
877 // be mapped to an output section that should be KEPT.
878
879 bool
880 Layout::keep_input_section(const Relobj* relobj, const char* name)
881 {
882   if (! this->script_options_->saw_sections_clause())
883     return false;
884
885   Script_sections* ss = this->script_options_->script_sections();
886   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
887   Output_section** output_section_slot;
888   Script_sections::Section_type script_section_type;
889   bool keep;
890
891   name = ss->output_section_name(file_name, name, &output_section_slot,
892                                  &script_section_type, &keep);
893   return name != NULL && keep;
894 }
895
896 // Clear the input section flags that should not be copied to the
897 // output section.
898
899 elfcpp::Elf_Xword
900 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
901 {
902   // Some flags in the input section should not be automatically
903   // copied to the output section.
904   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
905                             | elfcpp::SHF_GROUP
906                             | elfcpp::SHF_MERGE
907                             | elfcpp::SHF_STRINGS);
908
909   // We only clear the SHF_LINK_ORDER flag in for
910   // a non-relocatable link.
911   if (!parameters->options().relocatable())
912     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
913
914   return input_section_flags;
915 }
916
917 // Pick the output section to use for section NAME, in input file
918 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
919 // linker created section.  IS_INPUT_SECTION is true if we are
920 // choosing an output section for an input section found in a input
921 // file.  ORDER is where this section should appear in the output
922 // sections.  IS_RELRO is true for a relro section.  This will return
923 // NULL if the input section should be discarded.
924
925 Output_section*
926 Layout::choose_output_section(const Relobj* relobj, const char* name,
927                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
928                               bool is_input_section, Output_section_order order,
929                               bool is_relro)
930 {
931   // We should not see any input sections after we have attached
932   // sections to segments.
933   gold_assert(!is_input_section || !this->sections_are_attached_);
934
935   flags = this->get_output_section_flags(flags);
936
937   if (this->script_options_->saw_sections_clause())
938     {
939       // We are using a SECTIONS clause, so the output section is
940       // chosen based only on the name.
941
942       Script_sections* ss = this->script_options_->script_sections();
943       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
944       Output_section** output_section_slot;
945       Script_sections::Section_type script_section_type;
946       const char* orig_name = name;
947       bool keep;
948       name = ss->output_section_name(file_name, name, &output_section_slot,
949                                      &script_section_type, &keep);
950
951       if (name == NULL)
952         {
953           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
954                                      "because it is not allowed by the "
955                                      "SECTIONS clause of the linker script"),
956                      orig_name);
957           // The SECTIONS clause says to discard this input section.
958           return NULL;
959         }
960
961       // We can only handle script section types ST_NONE and ST_NOLOAD.
962       switch (script_section_type)
963         {
964         case Script_sections::ST_NONE:
965           break;
966         case Script_sections::ST_NOLOAD:
967           flags &= elfcpp::SHF_ALLOC;
968           break;
969         default:
970           gold_unreachable();
971         }
972
973       // If this is an orphan section--one not mentioned in the linker
974       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
975       // default processing below.
976
977       if (output_section_slot != NULL)
978         {
979           if (*output_section_slot != NULL)
980             {
981               (*output_section_slot)->update_flags_for_input_section(flags);
982               return *output_section_slot;
983             }
984
985           // We don't put sections found in the linker script into
986           // SECTION_NAME_MAP_.  That keeps us from getting confused
987           // if an orphan section is mapped to a section with the same
988           // name as one in the linker script.
989
990           name = this->namepool_.add(name, false, NULL);
991
992           Output_section* os = this->make_output_section(name, type, flags,
993                                                          order, is_relro);
994
995           os->set_found_in_sections_clause();
996
997           // Special handling for NOLOAD sections.
998           if (script_section_type == Script_sections::ST_NOLOAD)
999             {
1000               os->set_is_noload();
1001
1002               // The constructor of Output_section sets addresses of non-ALLOC
1003               // sections to 0 by default.  We don't want that for NOLOAD
1004               // sections even if they have no SHF_ALLOC flag.
1005               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1006                   && os->is_address_valid())
1007                 {
1008                   gold_assert(os->address() == 0
1009                               && !os->is_offset_valid()
1010                               && !os->is_data_size_valid());
1011                   os->reset_address_and_file_offset();
1012                 }
1013             }
1014
1015           *output_section_slot = os;
1016           return os;
1017         }
1018     }
1019
1020   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1021
1022   size_t len = strlen(name);
1023   char* uncompressed_name = NULL;
1024
1025   // Compressed debug sections should be mapped to the corresponding
1026   // uncompressed section.
1027   if (is_compressed_debug_section(name))
1028     {
1029       uncompressed_name = new char[len];
1030       uncompressed_name[0] = '.';
1031       gold_assert(name[0] == '.' && name[1] == 'z');
1032       strncpy(&uncompressed_name[1], &name[2], len - 2);
1033       uncompressed_name[len - 1] = '\0';
1034       len -= 1;
1035       name = uncompressed_name;
1036     }
1037
1038   // Turn NAME from the name of the input section into the name of the
1039   // output section.
1040   if (is_input_section
1041       && !this->script_options_->saw_sections_clause()
1042       && !parameters->options().relocatable())
1043     {
1044       const char *orig_name = name;
1045       name = parameters->target().output_section_name(relobj, name, &len);
1046       if (name == NULL)
1047         name = Layout::output_section_name(relobj, orig_name, &len);
1048     }
1049
1050   Stringpool::Key name_key;
1051   name = this->namepool_.add_with_length(name, len, true, &name_key);
1052
1053   if (uncompressed_name != NULL)
1054     delete[] uncompressed_name;
1055
1056   // Find or make the output section.  The output section is selected
1057   // based on the section name, type, and flags.
1058   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1059 }
1060
1061 // For incremental links, record the initial fixed layout of a section
1062 // from the base file, and return a pointer to the Output_section.
1063
1064 template<int size, bool big_endian>
1065 Output_section*
1066 Layout::init_fixed_output_section(const char* name,
1067                                   elfcpp::Shdr<size, big_endian>& shdr)
1068 {
1069   unsigned int sh_type = shdr.get_sh_type();
1070
1071   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1072   // PRE_INIT_ARRAY, and NOTE sections.
1073   // All others will be created from scratch and reallocated.
1074   if (!can_incremental_update(sh_type))
1075     return NULL;
1076
1077   // If we're generating a .gdb_index section, we need to regenerate
1078   // it from scratch.
1079   if (parameters->options().gdb_index()
1080       && sh_type == elfcpp::SHT_PROGBITS
1081       && strcmp(name, ".gdb_index") == 0)
1082     return NULL;
1083
1084   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1085   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1086   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1087   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1088   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1089       shdr.get_sh_addralign();
1090
1091   // Make the output section.
1092   Stringpool::Key name_key;
1093   name = this->namepool_.add(name, true, &name_key);
1094   Output_section* os = this->get_output_section(name, name_key, sh_type,
1095                                                 sh_flags, ORDER_INVALID, false);
1096   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1097   if (sh_type != elfcpp::SHT_NOBITS)
1098     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1099   return os;
1100 }
1101
1102 // Return the index by which an input section should be ordered.  This
1103 // is used to sort some .text sections, for compatibility with GNU ld.
1104
1105 int
1106 Layout::special_ordering_of_input_section(const char* name)
1107 {
1108   // The GNU linker has some special handling for some sections that
1109   // wind up in the .text section.  Sections that start with these
1110   // prefixes must appear first, and must appear in the order listed
1111   // here.
1112   static const char* const text_section_sort[] =
1113   {
1114     ".text.unlikely",
1115     ".text.exit",
1116     ".text.startup",
1117     ".text.hot"
1118   };
1119
1120   for (size_t i = 0;
1121        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1122        i++)
1123     if (is_prefix_of(text_section_sort[i], name))
1124       return i;
1125
1126   return -1;
1127 }
1128
1129 // Return the output section to use for input section SHNDX, with name
1130 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1131 // index of a relocation section which applies to this section, or 0
1132 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1133 // relocation section if there is one.  Set *OFF to the offset of this
1134 // input section without the output section.  Return NULL if the
1135 // section should be discarded.  Set *OFF to -1 if the section
1136 // contents should not be written directly to the output file, but
1137 // will instead receive special handling.
1138
1139 template<int size, bool big_endian>
1140 Output_section*
1141 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1142                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1143                unsigned int reloc_shndx, unsigned int, off_t* off)
1144 {
1145   *off = 0;
1146
1147   if (!this->include_section(object, name, shdr))
1148     return NULL;
1149
1150   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1151
1152   // In a relocatable link a grouped section must not be combined with
1153   // any other sections.
1154   Output_section* os;
1155   if (parameters->options().relocatable()
1156       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1157     {
1158       name = this->namepool_.add(name, true, NULL);
1159       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1160                                      ORDER_INVALID, false);
1161     }
1162   else
1163     {
1164       // Plugins can choose to place one or more subsets of sections in
1165       // unique segments and this is done by mapping these section subsets
1166       // to unique output sections.  Check if this section needs to be
1167       // remapped to a unique output section.
1168       Section_segment_map::iterator it
1169           = this->section_segment_map_.find(Const_section_id(object, shndx));
1170       if (it == this->section_segment_map_.end())
1171         {
1172           os = this->choose_output_section(object, name, sh_type,
1173                                            shdr.get_sh_flags(), true,
1174                                            ORDER_INVALID, false);
1175         }
1176       else
1177         {
1178           // We know the name of the output section, directly call
1179           // get_output_section here by-passing choose_output_section.
1180           elfcpp::Elf_Xword flags
1181             = this->get_output_section_flags(shdr.get_sh_flags());
1182
1183           const char* os_name = it->second->name;
1184           Stringpool::Key name_key;
1185           os_name = this->namepool_.add(os_name, true, &name_key);
1186           os = this->get_output_section(os_name, name_key, sh_type, flags,
1187                                         ORDER_INVALID, false);
1188           if (!os->is_unique_segment())
1189             {
1190               os->set_is_unique_segment();
1191               os->set_extra_segment_flags(it->second->flags);
1192               os->set_segment_alignment(it->second->align);
1193             }
1194         }
1195       if (os == NULL)
1196         return NULL;
1197     }
1198
1199   // By default the GNU linker sorts input sections whose names match
1200   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1201   // sections are sorted by name.  This is used to implement
1202   // constructor priority ordering.  We are compatible.  When we put
1203   // .ctor sections in .init_array and .dtor sections in .fini_array,
1204   // we must also sort plain .ctor and .dtor sections.
1205   if (!this->script_options_->saw_sections_clause()
1206       && !parameters->options().relocatable()
1207       && (is_prefix_of(".ctors.", name)
1208           || is_prefix_of(".dtors.", name)
1209           || is_prefix_of(".init_array.", name)
1210           || is_prefix_of(".fini_array.", name)
1211           || (parameters->options().ctors_in_init_array()
1212               && (strcmp(name, ".ctors") == 0
1213                   || strcmp(name, ".dtors") == 0))))
1214     os->set_must_sort_attached_input_sections();
1215
1216   // By default the GNU linker sorts some special text sections ahead
1217   // of others.  We are compatible.
1218   if (parameters->options().text_reorder()
1219       && !this->script_options_->saw_sections_clause()
1220       && !this->is_section_ordering_specified()
1221       && !parameters->options().relocatable()
1222       && Layout::special_ordering_of_input_section(name) >= 0)
1223     os->set_must_sort_attached_input_sections();
1224
1225   // If this is a .ctors or .ctors.* section being mapped to a
1226   // .init_array section, or a .dtors or .dtors.* section being mapped
1227   // to a .fini_array section, we will need to reverse the words if
1228   // there is more than one.  Record this section for later.  See
1229   // ctors_sections_in_init_array above.
1230   if (!this->script_options_->saw_sections_clause()
1231       && !parameters->options().relocatable()
1232       && shdr.get_sh_size() > size / 8
1233       && (((strcmp(name, ".ctors") == 0
1234             || is_prefix_of(".ctors.", name))
1235            && strcmp(os->name(), ".init_array") == 0)
1236           || ((strcmp(name, ".dtors") == 0
1237                || is_prefix_of(".dtors.", name))
1238               && strcmp(os->name(), ".fini_array") == 0)))
1239     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1240
1241   // FIXME: Handle SHF_LINK_ORDER somewhere.
1242
1243   elfcpp::Elf_Xword orig_flags = os->flags();
1244
1245   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1246                                this->script_options_->saw_sections_clause());
1247
1248   // If the flags changed, we may have to change the order.
1249   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1250     {
1251       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1252       elfcpp::Elf_Xword new_flags =
1253         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1254       if (orig_flags != new_flags)
1255         os->set_order(this->default_section_order(os, false));
1256     }
1257
1258   this->have_added_input_section_ = true;
1259
1260   return os;
1261 }
1262
1263 // Maps section SECN to SEGMENT s.
1264 void
1265 Layout::insert_section_segment_map(Const_section_id secn,
1266                                    Unique_segment_info *s)
1267 {
1268   gold_assert(this->unique_segment_for_sections_specified_);
1269   this->section_segment_map_[secn] = s;
1270 }
1271
1272 // Handle a relocation section when doing a relocatable link.
1273
1274 template<int size, bool big_endian>
1275 Output_section*
1276 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1277                      unsigned int,
1278                      const elfcpp::Shdr<size, big_endian>& shdr,
1279                      Output_section* data_section,
1280                      Relocatable_relocs* rr)
1281 {
1282   gold_assert(parameters->options().relocatable()
1283               || parameters->options().emit_relocs());
1284
1285   int sh_type = shdr.get_sh_type();
1286
1287   std::string name;
1288   if (sh_type == elfcpp::SHT_REL)
1289     name = ".rel";
1290   else if (sh_type == elfcpp::SHT_RELA)
1291     name = ".rela";
1292   else
1293     gold_unreachable();
1294   name += data_section->name();
1295
1296   // In a relocatable link relocs for a grouped section must not be
1297   // combined with other reloc sections.
1298   Output_section* os;
1299   if (!parameters->options().relocatable()
1300       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1301     os = this->choose_output_section(object, name.c_str(), sh_type,
1302                                      shdr.get_sh_flags(), false,
1303                                      ORDER_INVALID, false);
1304   else
1305     {
1306       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1307       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1308                                      ORDER_INVALID, false);
1309     }
1310
1311   os->set_should_link_to_symtab();
1312   os->set_info_section(data_section);
1313
1314   Output_section_data* posd;
1315   if (sh_type == elfcpp::SHT_REL)
1316     {
1317       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1318       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1319                                            size,
1320                                            big_endian>(rr);
1321     }
1322   else if (sh_type == elfcpp::SHT_RELA)
1323     {
1324       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1325       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1326                                            size,
1327                                            big_endian>(rr);
1328     }
1329   else
1330     gold_unreachable();
1331
1332   os->add_output_section_data(posd);
1333   rr->set_output_data(posd);
1334
1335   return os;
1336 }
1337
1338 // Handle a group section when doing a relocatable link.
1339
1340 template<int size, bool big_endian>
1341 void
1342 Layout::layout_group(Symbol_table* symtab,
1343                      Sized_relobj_file<size, big_endian>* object,
1344                      unsigned int,
1345                      const char* group_section_name,
1346                      const char* signature,
1347                      const elfcpp::Shdr<size, big_endian>& shdr,
1348                      elfcpp::Elf_Word flags,
1349                      std::vector<unsigned int>* shndxes)
1350 {
1351   gold_assert(parameters->options().relocatable());
1352   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1353   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1354   Output_section* os = this->make_output_section(group_section_name,
1355                                                  elfcpp::SHT_GROUP,
1356                                                  shdr.get_sh_flags(),
1357                                                  ORDER_INVALID, false);
1358
1359   // We need to find a symbol with the signature in the symbol table.
1360   // If we don't find one now, we need to look again later.
1361   Symbol* sym = symtab->lookup(signature, NULL);
1362   if (sym != NULL)
1363     os->set_info_symndx(sym);
1364   else
1365     {
1366       // Reserve some space to minimize reallocations.
1367       if (this->group_signatures_.empty())
1368         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1369
1370       // We will wind up using a symbol whose name is the signature.
1371       // So just put the signature in the symbol name pool to save it.
1372       signature = symtab->canonicalize_name(signature);
1373       this->group_signatures_.push_back(Group_signature(os, signature));
1374     }
1375
1376   os->set_should_link_to_symtab();
1377   os->set_entsize(4);
1378
1379   section_size_type entry_count =
1380     convert_to_section_size_type(shdr.get_sh_size() / 4);
1381   Output_section_data* posd =
1382     new Output_data_group<size, big_endian>(object, entry_count, flags,
1383                                             shndxes);
1384   os->add_output_section_data(posd);
1385 }
1386
1387 // Special GNU handling of sections name .eh_frame.  They will
1388 // normally hold exception frame data as defined by the C++ ABI
1389 // (http://codesourcery.com/cxx-abi/).
1390
1391 template<int size, bool big_endian>
1392 Output_section*
1393 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1394                         const unsigned char* symbols,
1395                         off_t symbols_size,
1396                         const unsigned char* symbol_names,
1397                         off_t symbol_names_size,
1398                         unsigned int shndx,
1399                         const elfcpp::Shdr<size, big_endian>& shdr,
1400                         unsigned int reloc_shndx, unsigned int reloc_type,
1401                         off_t* off)
1402 {
1403   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1404               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1405   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1406
1407   Output_section* os = this->make_eh_frame_section(object);
1408   if (os == NULL)
1409     return NULL;
1410
1411   gold_assert(this->eh_frame_section_ == os);
1412
1413   elfcpp::Elf_Xword orig_flags = os->flags();
1414
1415   if (!parameters->incremental()
1416       && this->eh_frame_data_->add_ehframe_input_section(object,
1417                                                          symbols,
1418                                                          symbols_size,
1419                                                          symbol_names,
1420                                                          symbol_names_size,
1421                                                          shndx,
1422                                                          reloc_shndx,
1423                                                          reloc_type))
1424     {
1425       os->update_flags_for_input_section(shdr.get_sh_flags());
1426
1427       // A writable .eh_frame section is a RELRO section.
1428       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1429           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1430         {
1431           os->set_is_relro();
1432           os->set_order(ORDER_RELRO);
1433         }
1434
1435       // We found a .eh_frame section we are going to optimize, so now
1436       // we can add the set of optimized sections to the output
1437       // section.  We need to postpone adding this until we've found a
1438       // section we can optimize so that the .eh_frame section in
1439       // crtbegin.o winds up at the start of the output section.
1440       if (!this->added_eh_frame_data_)
1441         {
1442           os->add_output_section_data(this->eh_frame_data_);
1443           this->added_eh_frame_data_ = true;
1444         }
1445       *off = -1;
1446     }
1447   else
1448     {
1449       // We couldn't handle this .eh_frame section for some reason.
1450       // Add it as a normal section.
1451       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1452       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1453                                    reloc_shndx, saw_sections_clause);
1454       this->have_added_input_section_ = true;
1455
1456       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1457           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1458         os->set_order(this->default_section_order(os, false));
1459     }
1460
1461   return os;
1462 }
1463
1464 // Create and return the magic .eh_frame section.  Create
1465 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1466 // input .eh_frame section; it may be NULL.
1467
1468 Output_section*
1469 Layout::make_eh_frame_section(const Relobj* object)
1470 {
1471   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1472   // SHT_PROGBITS.
1473   Output_section* os = this->choose_output_section(object, ".eh_frame",
1474                                                    elfcpp::SHT_PROGBITS,
1475                                                    elfcpp::SHF_ALLOC, false,
1476                                                    ORDER_EHFRAME, false);
1477   if (os == NULL)
1478     return NULL;
1479
1480   if (this->eh_frame_section_ == NULL)
1481     {
1482       this->eh_frame_section_ = os;
1483       this->eh_frame_data_ = new Eh_frame();
1484
1485       // For incremental linking, we do not optimize .eh_frame sections
1486       // or create a .eh_frame_hdr section.
1487       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1488         {
1489           Output_section* hdr_os =
1490             this->choose_output_section(NULL, ".eh_frame_hdr",
1491                                         elfcpp::SHT_PROGBITS,
1492                                         elfcpp::SHF_ALLOC, false,
1493                                         ORDER_EHFRAME, false);
1494
1495           if (hdr_os != NULL)
1496             {
1497               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1498                                                         this->eh_frame_data_);
1499               hdr_os->add_output_section_data(hdr_posd);
1500
1501               hdr_os->set_after_input_sections();
1502
1503               if (!this->script_options_->saw_phdrs_clause())
1504                 {
1505                   Output_segment* hdr_oseg;
1506                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1507                                                        elfcpp::PF_R);
1508                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1509                                                           elfcpp::PF_R);
1510                 }
1511
1512               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1513             }
1514         }
1515     }
1516
1517   return os;
1518 }
1519
1520 // Add an exception frame for a PLT.  This is called from target code.
1521
1522 void
1523 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1524                              size_t cie_length, const unsigned char* fde_data,
1525                              size_t fde_length)
1526 {
1527   if (parameters->incremental())
1528     {
1529       // FIXME: Maybe this could work some day....
1530       return;
1531     }
1532   Output_section* os = this->make_eh_frame_section(NULL);
1533   if (os == NULL)
1534     return;
1535   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1536                                             fde_data, fde_length);
1537   if (!this->added_eh_frame_data_)
1538     {
1539       os->add_output_section_data(this->eh_frame_data_);
1540       this->added_eh_frame_data_ = true;
1541     }
1542 }
1543
1544 // Scan a .debug_info or .debug_types section, and add summary
1545 // information to the .gdb_index section.
1546
1547 template<int size, bool big_endian>
1548 void
1549 Layout::add_to_gdb_index(bool is_type_unit,
1550                          Sized_relobj<size, big_endian>* object,
1551                          const unsigned char* symbols,
1552                          off_t symbols_size,
1553                          unsigned int shndx,
1554                          unsigned int reloc_shndx,
1555                          unsigned int reloc_type)
1556 {
1557   if (this->gdb_index_data_ == NULL)
1558     {
1559       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1560                                                        elfcpp::SHT_PROGBITS, 0,
1561                                                        false, ORDER_INVALID,
1562                                                        false);
1563       if (os == NULL)
1564         return;
1565
1566       this->gdb_index_data_ = new Gdb_index(os);
1567       os->add_output_section_data(this->gdb_index_data_);
1568       os->set_after_input_sections();
1569     }
1570
1571   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1572                                          symbols_size, shndx, reloc_shndx,
1573                                          reloc_type);
1574 }
1575
1576 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1577 // the output section.
1578
1579 Output_section*
1580 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1581                                 elfcpp::Elf_Xword flags,
1582                                 Output_section_data* posd,
1583                                 Output_section_order order, bool is_relro)
1584 {
1585   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1586                                                    false, order, is_relro);
1587   if (os != NULL)
1588     os->add_output_section_data(posd);
1589   return os;
1590 }
1591
1592 // Map section flags to segment flags.
1593
1594 elfcpp::Elf_Word
1595 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1596 {
1597   elfcpp::Elf_Word ret = elfcpp::PF_R;
1598   if ((flags & elfcpp::SHF_WRITE) != 0)
1599     ret |= elfcpp::PF_W;
1600   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1601     ret |= elfcpp::PF_X;
1602   return ret;
1603 }
1604
1605 // Make a new Output_section, and attach it to segments as
1606 // appropriate.  ORDER is the order in which this section should
1607 // appear in the output segment.  IS_RELRO is true if this is a relro
1608 // (read-only after relocations) section.
1609
1610 Output_section*
1611 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1612                             elfcpp::Elf_Xword flags,
1613                             Output_section_order order, bool is_relro)
1614 {
1615   Output_section* os;
1616   if ((flags & elfcpp::SHF_ALLOC) == 0
1617       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1618       && is_compressible_debug_section(name))
1619     os = new Output_compressed_section(&parameters->options(), name, type,
1620                                        flags);
1621   else if ((flags & elfcpp::SHF_ALLOC) == 0
1622            && parameters->options().strip_debug_non_line()
1623            && strcmp(".debug_abbrev", name) == 0)
1624     {
1625       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1626           name, type, flags);
1627       if (this->debug_info_)
1628         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1629     }
1630   else if ((flags & elfcpp::SHF_ALLOC) == 0
1631            && parameters->options().strip_debug_non_line()
1632            && strcmp(".debug_info", name) == 0)
1633     {
1634       os = this->debug_info_ = new Output_reduced_debug_info_section(
1635           name, type, flags);
1636       if (this->debug_abbrev_)
1637         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1638     }
1639   else
1640     {
1641       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1642       // not have correct section types.  Force them here.
1643       if (type == elfcpp::SHT_PROGBITS)
1644         {
1645           if (is_prefix_of(".init_array", name))
1646             type = elfcpp::SHT_INIT_ARRAY;
1647           else if (is_prefix_of(".preinit_array", name))
1648             type = elfcpp::SHT_PREINIT_ARRAY;
1649           else if (is_prefix_of(".fini_array", name))
1650             type = elfcpp::SHT_FINI_ARRAY;
1651         }
1652
1653       // FIXME: const_cast is ugly.
1654       Target* target = const_cast<Target*>(&parameters->target());
1655       os = target->make_output_section(name, type, flags);
1656     }
1657
1658   // With -z relro, we have to recognize the special sections by name.
1659   // There is no other way.
1660   bool is_relro_local = false;
1661   if (!this->script_options_->saw_sections_clause()
1662       && parameters->options().relro()
1663       && (flags & elfcpp::SHF_ALLOC) != 0
1664       && (flags & elfcpp::SHF_WRITE) != 0)
1665     {
1666       if (type == elfcpp::SHT_PROGBITS)
1667         {
1668           if ((flags & elfcpp::SHF_TLS) != 0)
1669             is_relro = true;
1670           else if (strcmp(name, ".data.rel.ro") == 0)
1671             is_relro = true;
1672           else if (strcmp(name, ".data.rel.ro.local") == 0)
1673             {
1674               is_relro = true;
1675               is_relro_local = true;
1676             }
1677           else if (strcmp(name, ".ctors") == 0
1678                    || strcmp(name, ".dtors") == 0
1679                    || strcmp(name, ".jcr") == 0)
1680             is_relro = true;
1681         }
1682       else if (type == elfcpp::SHT_INIT_ARRAY
1683                || type == elfcpp::SHT_FINI_ARRAY
1684                || type == elfcpp::SHT_PREINIT_ARRAY)
1685         is_relro = true;
1686     }
1687
1688   if (is_relro)
1689     os->set_is_relro();
1690
1691   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1692     order = this->default_section_order(os, is_relro_local);
1693
1694   os->set_order(order);
1695
1696   parameters->target().new_output_section(os);
1697
1698   this->section_list_.push_back(os);
1699
1700   // The GNU linker by default sorts some sections by priority, so we
1701   // do the same.  We need to know that this might happen before we
1702   // attach any input sections.
1703   if (!this->script_options_->saw_sections_clause()
1704       && !parameters->options().relocatable()
1705       && (strcmp(name, ".init_array") == 0
1706           || strcmp(name, ".fini_array") == 0
1707           || (!parameters->options().ctors_in_init_array()
1708               && (strcmp(name, ".ctors") == 0
1709                   || strcmp(name, ".dtors") == 0))))
1710     os->set_may_sort_attached_input_sections();
1711
1712   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1713   // sections before other .text sections.  We are compatible.  We
1714   // need to know that this might happen before we attach any input
1715   // sections.
1716   if (parameters->options().text_reorder()
1717       && !this->script_options_->saw_sections_clause()
1718       && !this->is_section_ordering_specified()
1719       && !parameters->options().relocatable()
1720       && strcmp(name, ".text") == 0)
1721     os->set_may_sort_attached_input_sections();
1722
1723   // GNU linker sorts section by name with --sort-section=name.
1724   if (strcmp(parameters->options().sort_section(), "name") == 0)
1725       os->set_must_sort_attached_input_sections();
1726
1727   // Check for .stab*str sections, as .stab* sections need to link to
1728   // them.
1729   if (type == elfcpp::SHT_STRTAB
1730       && !this->have_stabstr_section_
1731       && strncmp(name, ".stab", 5) == 0
1732       && strcmp(name + strlen(name) - 3, "str") == 0)
1733     this->have_stabstr_section_ = true;
1734
1735   // During a full incremental link, we add patch space to most
1736   // PROGBITS and NOBITS sections.  Flag those that may be
1737   // arbitrarily padded.
1738   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1739       && order != ORDER_INTERP
1740       && order != ORDER_INIT
1741       && order != ORDER_PLT
1742       && order != ORDER_FINI
1743       && order != ORDER_RELRO_LAST
1744       && order != ORDER_NON_RELRO_FIRST
1745       && strcmp(name, ".eh_frame") != 0
1746       && strcmp(name, ".ctors") != 0
1747       && strcmp(name, ".dtors") != 0
1748       && strcmp(name, ".jcr") != 0)
1749     {
1750       os->set_is_patch_space_allowed();
1751
1752       // Certain sections require "holes" to be filled with
1753       // specific fill patterns.  These fill patterns may have
1754       // a minimum size, so we must prevent allocations from the
1755       // free list that leave a hole smaller than the minimum.
1756       if (strcmp(name, ".debug_info") == 0)
1757         os->set_free_space_fill(new Output_fill_debug_info(false));
1758       else if (strcmp(name, ".debug_types") == 0)
1759         os->set_free_space_fill(new Output_fill_debug_info(true));
1760       else if (strcmp(name, ".debug_line") == 0)
1761         os->set_free_space_fill(new Output_fill_debug_line());
1762     }
1763
1764   // If we have already attached the sections to segments, then we
1765   // need to attach this one now.  This happens for sections created
1766   // directly by the linker.
1767   if (this->sections_are_attached_)
1768     this->attach_section_to_segment(&parameters->target(), os);
1769
1770   return os;
1771 }
1772
1773 // Return the default order in which a section should be placed in an
1774 // output segment.  This function captures a lot of the ideas in
1775 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1776 // linker created section is normally set when the section is created;
1777 // this function is used for input sections.
1778
1779 Output_section_order
1780 Layout::default_section_order(Output_section* os, bool is_relro_local)
1781 {
1782   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1783   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1784   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1785   bool is_bss = false;
1786
1787   switch (os->type())
1788     {
1789     default:
1790     case elfcpp::SHT_PROGBITS:
1791       break;
1792     case elfcpp::SHT_NOBITS:
1793       is_bss = true;
1794       break;
1795     case elfcpp::SHT_RELA:
1796     case elfcpp::SHT_REL:
1797       if (!is_write)
1798         return ORDER_DYNAMIC_RELOCS;
1799       break;
1800     case elfcpp::SHT_HASH:
1801     case elfcpp::SHT_DYNAMIC:
1802     case elfcpp::SHT_SHLIB:
1803     case elfcpp::SHT_DYNSYM:
1804     case elfcpp::SHT_GNU_HASH:
1805     case elfcpp::SHT_GNU_verdef:
1806     case elfcpp::SHT_GNU_verneed:
1807     case elfcpp::SHT_GNU_versym:
1808       if (!is_write)
1809         return ORDER_DYNAMIC_LINKER;
1810       break;
1811     case elfcpp::SHT_NOTE:
1812       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1813     }
1814
1815   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1816     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1817
1818   if (!is_bss && !is_write)
1819     {
1820       if (is_execinstr)
1821         {
1822           if (strcmp(os->name(), ".init") == 0)
1823             return ORDER_INIT;
1824           else if (strcmp(os->name(), ".fini") == 0)
1825             return ORDER_FINI;
1826         }
1827       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1828     }
1829
1830   if (os->is_relro())
1831     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1832
1833   if (os->is_small_section())
1834     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1835   if (os->is_large_section())
1836     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1837
1838   return is_bss ? ORDER_BSS : ORDER_DATA;
1839 }
1840
1841 // Attach output sections to segments.  This is called after we have
1842 // seen all the input sections.
1843
1844 void
1845 Layout::attach_sections_to_segments(const Target* target)
1846 {
1847   for (Section_list::iterator p = this->section_list_.begin();
1848        p != this->section_list_.end();
1849        ++p)
1850     this->attach_section_to_segment(target, *p);
1851
1852   this->sections_are_attached_ = true;
1853 }
1854
1855 // Attach an output section to a segment.
1856
1857 void
1858 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1859 {
1860   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1861     this->unattached_section_list_.push_back(os);
1862   else
1863     this->attach_allocated_section_to_segment(target, os);
1864 }
1865
1866 // Attach an allocated output section to a segment.
1867
1868 void
1869 Layout::attach_allocated_section_to_segment(const Target* target,
1870                                             Output_section* os)
1871 {
1872   elfcpp::Elf_Xword flags = os->flags();
1873   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1874
1875   if (parameters->options().relocatable())
1876     return;
1877
1878   // If we have a SECTIONS clause, we can't handle the attachment to
1879   // segments until after we've seen all the sections.
1880   if (this->script_options_->saw_sections_clause())
1881     return;
1882
1883   gold_assert(!this->script_options_->saw_phdrs_clause());
1884
1885   // This output section goes into a PT_LOAD segment.
1886
1887   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1888
1889   // If this output section's segment has extra flags that need to be set,
1890   // coming from a linker plugin, do that.
1891   seg_flags |= os->extra_segment_flags();
1892
1893   // Check for --section-start.
1894   uint64_t addr;
1895   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1896
1897   // In general the only thing we really care about for PT_LOAD
1898   // segments is whether or not they are writable or executable,
1899   // so that is how we search for them.
1900   // Large data sections also go into their own PT_LOAD segment.
1901   // People who need segments sorted on some other basis will
1902   // have to use a linker script.
1903
1904   Segment_list::const_iterator p;
1905   if (!os->is_unique_segment())
1906     {
1907       for (p = this->segment_list_.begin();
1908            p != this->segment_list_.end();
1909            ++p)
1910         {
1911           if ((*p)->type() != elfcpp::PT_LOAD)
1912             continue;
1913           if ((*p)->is_unique_segment())
1914             continue;
1915           if (!parameters->options().omagic()
1916               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1917             continue;
1918           if ((target->isolate_execinstr() || parameters->options().rosegment())
1919               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1920             continue;
1921           // If -Tbss was specified, we need to separate the data and BSS
1922           // segments.
1923           if (parameters->options().user_set_Tbss())
1924             {
1925               if ((os->type() == elfcpp::SHT_NOBITS)
1926                   == (*p)->has_any_data_sections())
1927                 continue;
1928             }
1929           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1930             continue;
1931
1932           if (is_address_set)
1933             {
1934               if ((*p)->are_addresses_set())
1935                 continue;
1936
1937               (*p)->add_initial_output_data(os);
1938               (*p)->update_flags_for_output_section(seg_flags);
1939               (*p)->set_addresses(addr, addr);
1940               break;
1941             }
1942
1943           (*p)->add_output_section_to_load(this, os, seg_flags);
1944           break;
1945         }
1946     }
1947
1948   if (p == this->segment_list_.end()
1949       || os->is_unique_segment())
1950     {
1951       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1952                                                        seg_flags);
1953       if (os->is_large_data_section())
1954         oseg->set_is_large_data_segment();
1955       oseg->add_output_section_to_load(this, os, seg_flags);
1956       if (is_address_set)
1957         oseg->set_addresses(addr, addr);
1958       // Check if segment should be marked unique.  For segments marked
1959       // unique by linker plugins, set the new alignment if specified.
1960       if (os->is_unique_segment())
1961         {
1962           oseg->set_is_unique_segment();
1963           if (os->segment_alignment() != 0)
1964             oseg->set_minimum_p_align(os->segment_alignment());
1965         }
1966     }
1967
1968   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1969   // segment.
1970   if (os->type() == elfcpp::SHT_NOTE)
1971     {
1972       // See if we already have an equivalent PT_NOTE segment.
1973       for (p = this->segment_list_.begin();
1974            p != segment_list_.end();
1975            ++p)
1976         {
1977           if ((*p)->type() == elfcpp::PT_NOTE
1978               && (((*p)->flags() & elfcpp::PF_W)
1979                   == (seg_flags & elfcpp::PF_W)))
1980             {
1981               (*p)->add_output_section_to_nonload(os, seg_flags);
1982               break;
1983             }
1984         }
1985
1986       if (p == this->segment_list_.end())
1987         {
1988           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1989                                                            seg_flags);
1990           oseg->add_output_section_to_nonload(os, seg_flags);
1991         }
1992     }
1993
1994   // If we see a loadable SHF_TLS section, we create a PT_TLS
1995   // segment.  There can only be one such segment.
1996   if ((flags & elfcpp::SHF_TLS) != 0)
1997     {
1998       if (this->tls_segment_ == NULL)
1999         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2000       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2001     }
2002
2003   // If -z relro is in effect, and we see a relro section, we create a
2004   // PT_GNU_RELRO segment.  There can only be one such segment.
2005   if (os->is_relro() && parameters->options().relro())
2006     {
2007       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2008       if (this->relro_segment_ == NULL)
2009         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2010       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2011     }
2012
2013   // If we see a section named .interp, put it into a PT_INTERP
2014   // segment.  This seems broken to me, but this is what GNU ld does,
2015   // and glibc expects it.
2016   if (strcmp(os->name(), ".interp") == 0
2017       && !this->script_options_->saw_phdrs_clause())
2018     {
2019       if (this->interp_segment_ == NULL)
2020         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2021       else
2022         gold_warning(_("multiple '.interp' sections in input files "
2023                        "may cause confusing PT_INTERP segment"));
2024       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2025     }
2026 }
2027
2028 // Make an output section for a script.
2029
2030 Output_section*
2031 Layout::make_output_section_for_script(
2032     const char* name,
2033     Script_sections::Section_type section_type)
2034 {
2035   name = this->namepool_.add(name, false, NULL);
2036   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2037   if (section_type == Script_sections::ST_NOLOAD)
2038     sh_flags = 0;
2039   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2040                                                  sh_flags, ORDER_INVALID,
2041                                                  false);
2042   os->set_found_in_sections_clause();
2043   if (section_type == Script_sections::ST_NOLOAD)
2044     os->set_is_noload();
2045   return os;
2046 }
2047
2048 // Return the number of segments we expect to see.
2049
2050 size_t
2051 Layout::expected_segment_count() const
2052 {
2053   size_t ret = this->segment_list_.size();
2054
2055   // If we didn't see a SECTIONS clause in a linker script, we should
2056   // already have the complete list of segments.  Otherwise we ask the
2057   // SECTIONS clause how many segments it expects, and add in the ones
2058   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2059
2060   if (!this->script_options_->saw_sections_clause())
2061     return ret;
2062   else
2063     {
2064       const Script_sections* ss = this->script_options_->script_sections();
2065       return ret + ss->expected_segment_count(this);
2066     }
2067 }
2068
2069 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2070 // is whether we saw a .note.GNU-stack section in the object file.
2071 // GNU_STACK_FLAGS is the section flags.  The flags give the
2072 // protection required for stack memory.  We record this in an
2073 // executable as a PT_GNU_STACK segment.  If an object file does not
2074 // have a .note.GNU-stack segment, we must assume that it is an old
2075 // object.  On some targets that will force an executable stack.
2076
2077 void
2078 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2079                          const Object* obj)
2080 {
2081   if (!seen_gnu_stack)
2082     {
2083       this->input_without_gnu_stack_note_ = true;
2084       if (parameters->options().warn_execstack()
2085           && parameters->target().is_default_stack_executable())
2086         gold_warning(_("%s: missing .note.GNU-stack section"
2087                        " implies executable stack"),
2088                      obj->name().c_str());
2089     }
2090   else
2091     {
2092       this->input_with_gnu_stack_note_ = true;
2093       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2094         {
2095           this->input_requires_executable_stack_ = true;
2096           if (parameters->options().warn_execstack()
2097               || parameters->options().is_stack_executable())
2098             gold_warning(_("%s: requires executable stack"),
2099                          obj->name().c_str());
2100         }
2101     }
2102 }
2103
2104 // Create automatic note sections.
2105
2106 void
2107 Layout::create_notes()
2108 {
2109   this->create_gold_note();
2110   this->create_executable_stack_info();
2111   this->create_build_id();
2112 }
2113
2114 // Create the dynamic sections which are needed before we read the
2115 // relocs.
2116
2117 void
2118 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2119 {
2120   if (parameters->doing_static_link())
2121     return;
2122
2123   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2124                                                        elfcpp::SHT_DYNAMIC,
2125                                                        (elfcpp::SHF_ALLOC
2126                                                         | elfcpp::SHF_WRITE),
2127                                                        false, ORDER_RELRO,
2128                                                        true);
2129
2130   // A linker script may discard .dynamic, so check for NULL.
2131   if (this->dynamic_section_ != NULL)
2132     {
2133       this->dynamic_symbol_ =
2134         symtab->define_in_output_data("_DYNAMIC", NULL,
2135                                       Symbol_table::PREDEFINED,
2136                                       this->dynamic_section_, 0, 0,
2137                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2138                                       elfcpp::STV_HIDDEN, 0, false, false);
2139
2140       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2141
2142       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2143     }
2144 }
2145
2146 // For each output section whose name can be represented as C symbol,
2147 // define __start and __stop symbols for the section.  This is a GNU
2148 // extension.
2149
2150 void
2151 Layout::define_section_symbols(Symbol_table* symtab)
2152 {
2153   for (Section_list::const_iterator p = this->section_list_.begin();
2154        p != this->section_list_.end();
2155        ++p)
2156     {
2157       const char* const name = (*p)->name();
2158       if (is_cident(name))
2159         {
2160           const std::string name_string(name);
2161           const std::string start_name(cident_section_start_prefix
2162                                        + name_string);
2163           const std::string stop_name(cident_section_stop_prefix
2164                                       + name_string);
2165
2166           symtab->define_in_output_data(start_name.c_str(),
2167                                         NULL, // version
2168                                         Symbol_table::PREDEFINED,
2169                                         *p,
2170                                         0, // value
2171                                         0, // symsize
2172                                         elfcpp::STT_NOTYPE,
2173                                         elfcpp::STB_GLOBAL,
2174                                         elfcpp::STV_DEFAULT,
2175                                         0, // nonvis
2176                                         false, // offset_is_from_end
2177                                         true); // only_if_ref
2178
2179           symtab->define_in_output_data(stop_name.c_str(),
2180                                         NULL, // version
2181                                         Symbol_table::PREDEFINED,
2182                                         *p,
2183                                         0, // value
2184                                         0, // symsize
2185                                         elfcpp::STT_NOTYPE,
2186                                         elfcpp::STB_GLOBAL,
2187                                         elfcpp::STV_DEFAULT,
2188                                         0, // nonvis
2189                                         true, // offset_is_from_end
2190                                         true); // only_if_ref
2191         }
2192     }
2193 }
2194
2195 // Define symbols for group signatures.
2196
2197 void
2198 Layout::define_group_signatures(Symbol_table* symtab)
2199 {
2200   for (Group_signatures::iterator p = this->group_signatures_.begin();
2201        p != this->group_signatures_.end();
2202        ++p)
2203     {
2204       Symbol* sym = symtab->lookup(p->signature, NULL);
2205       if (sym != NULL)
2206         p->section->set_info_symndx(sym);
2207       else
2208         {
2209           // Force the name of the group section to the group
2210           // signature, and use the group's section symbol as the
2211           // signature symbol.
2212           if (strcmp(p->section->name(), p->signature) != 0)
2213             {
2214               const char* name = this->namepool_.add(p->signature,
2215                                                      true, NULL);
2216               p->section->set_name(name);
2217             }
2218           p->section->set_needs_symtab_index();
2219           p->section->set_info_section_symndx(p->section);
2220         }
2221     }
2222
2223   this->group_signatures_.clear();
2224 }
2225
2226 // Find the first read-only PT_LOAD segment, creating one if
2227 // necessary.
2228
2229 Output_segment*
2230 Layout::find_first_load_seg(const Target* target)
2231 {
2232   Output_segment* best = NULL;
2233   for (Segment_list::const_iterator p = this->segment_list_.begin();
2234        p != this->segment_list_.end();
2235        ++p)
2236     {
2237       if ((*p)->type() == elfcpp::PT_LOAD
2238           && ((*p)->flags() & elfcpp::PF_R) != 0
2239           && (parameters->options().omagic()
2240               || ((*p)->flags() & elfcpp::PF_W) == 0)
2241           && (!target->isolate_execinstr()
2242               || ((*p)->flags() & elfcpp::PF_X) == 0))
2243         {
2244           if (best == NULL || this->segment_precedes(*p, best))
2245             best = *p;
2246         }
2247     }
2248   if (best != NULL)
2249     return best;
2250
2251   gold_assert(!this->script_options_->saw_phdrs_clause());
2252
2253   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2254                                                        elfcpp::PF_R);
2255   return load_seg;
2256 }
2257
2258 // Save states of all current output segments.  Store saved states
2259 // in SEGMENT_STATES.
2260
2261 void
2262 Layout::save_segments(Segment_states* segment_states)
2263 {
2264   for (Segment_list::const_iterator p = this->segment_list_.begin();
2265        p != this->segment_list_.end();
2266        ++p)
2267     {
2268       Output_segment* segment = *p;
2269       // Shallow copy.
2270       Output_segment* copy = new Output_segment(*segment);
2271       (*segment_states)[segment] = copy;
2272     }
2273 }
2274
2275 // Restore states of output segments and delete any segment not found in
2276 // SEGMENT_STATES.
2277
2278 void
2279 Layout::restore_segments(const Segment_states* segment_states)
2280 {
2281   // Go through the segment list and remove any segment added in the
2282   // relaxation loop.
2283   this->tls_segment_ = NULL;
2284   this->relro_segment_ = NULL;
2285   Segment_list::iterator list_iter = this->segment_list_.begin();
2286   while (list_iter != this->segment_list_.end())
2287     {
2288       Output_segment* segment = *list_iter;
2289       Segment_states::const_iterator states_iter =
2290           segment_states->find(segment);
2291       if (states_iter != segment_states->end())
2292         {
2293           const Output_segment* copy = states_iter->second;
2294           // Shallow copy to restore states.
2295           *segment = *copy;
2296
2297           // Also fix up TLS and RELRO segment pointers as appropriate.
2298           if (segment->type() == elfcpp::PT_TLS)
2299             this->tls_segment_ = segment;
2300           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2301             this->relro_segment_ = segment;
2302
2303           ++list_iter;
2304         }
2305       else
2306         {
2307           list_iter = this->segment_list_.erase(list_iter);
2308           // This is a segment created during section layout.  It should be
2309           // safe to remove it since we should have removed all pointers to it.
2310           delete segment;
2311         }
2312     }
2313 }
2314
2315 // Clean up after relaxation so that sections can be laid out again.
2316
2317 void
2318 Layout::clean_up_after_relaxation()
2319 {
2320   // Restore the segments to point state just prior to the relaxation loop.
2321   Script_sections* script_section = this->script_options_->script_sections();
2322   script_section->release_segments();
2323   this->restore_segments(this->segment_states_);
2324
2325   // Reset section addresses and file offsets
2326   for (Section_list::iterator p = this->section_list_.begin();
2327        p != this->section_list_.end();
2328        ++p)
2329     {
2330       (*p)->restore_states();
2331
2332       // If an input section changes size because of relaxation,
2333       // we need to adjust the section offsets of all input sections.
2334       // after such a section.
2335       if ((*p)->section_offsets_need_adjustment())
2336         (*p)->adjust_section_offsets();
2337
2338       (*p)->reset_address_and_file_offset();
2339     }
2340
2341   // Reset special output object address and file offsets.
2342   for (Data_list::iterator p = this->special_output_list_.begin();
2343        p != this->special_output_list_.end();
2344        ++p)
2345     (*p)->reset_address_and_file_offset();
2346
2347   // A linker script may have created some output section data objects.
2348   // They are useless now.
2349   for (Output_section_data_list::const_iterator p =
2350          this->script_output_section_data_list_.begin();
2351        p != this->script_output_section_data_list_.end();
2352        ++p)
2353     delete *p;
2354   this->script_output_section_data_list_.clear();
2355
2356   // Special-case fill output objects are recreated each time through
2357   // the relaxation loop.
2358   this->reset_relax_output();
2359 }
2360
2361 void
2362 Layout::reset_relax_output()
2363 {
2364   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2365        p != this->relax_output_list_.end();
2366        ++p)
2367     delete *p;
2368   this->relax_output_list_.clear();
2369 }
2370
2371 // Prepare for relaxation.
2372
2373 void
2374 Layout::prepare_for_relaxation()
2375 {
2376   // Create an relaxation debug check if in debugging mode.
2377   if (is_debugging_enabled(DEBUG_RELAXATION))
2378     this->relaxation_debug_check_ = new Relaxation_debug_check();
2379
2380   // Save segment states.
2381   this->segment_states_ = new Segment_states();
2382   this->save_segments(this->segment_states_);
2383
2384   for(Section_list::const_iterator p = this->section_list_.begin();
2385       p != this->section_list_.end();
2386       ++p)
2387     (*p)->save_states();
2388
2389   if (is_debugging_enabled(DEBUG_RELAXATION))
2390     this->relaxation_debug_check_->check_output_data_for_reset_values(
2391         this->section_list_, this->special_output_list_,
2392         this->relax_output_list_);
2393
2394   // Also enable recording of output section data from scripts.
2395   this->record_output_section_data_from_script_ = true;
2396 }
2397
2398 // If the user set the address of the text segment, that may not be
2399 // compatible with putting the segment headers and file headers into
2400 // that segment.  For isolate_execinstr() targets, it's the rodata
2401 // segment rather than text where we might put the headers.
2402 static inline bool
2403 load_seg_unusable_for_headers(const Target* target)
2404 {
2405   const General_options& options = parameters->options();
2406   if (target->isolate_execinstr())
2407     return (options.user_set_Trodata_segment()
2408             && options.Trodata_segment() % target->abi_pagesize() != 0);
2409   else
2410     return (options.user_set_Ttext()
2411             && options.Ttext() % target->abi_pagesize() != 0);
2412 }
2413
2414 // Relaxation loop body:  If target has no relaxation, this runs only once
2415 // Otherwise, the target relaxation hook is called at the end of
2416 // each iteration.  If the hook returns true, it means re-layout of
2417 // section is required.
2418 //
2419 // The number of segments created by a linking script without a PHDRS
2420 // clause may be affected by section sizes and alignments.  There is
2421 // a remote chance that relaxation causes different number of PT_LOAD
2422 // segments are created and sections are attached to different segments.
2423 // Therefore, we always throw away all segments created during section
2424 // layout.  In order to be able to restart the section layout, we keep
2425 // a copy of the segment list right before the relaxation loop and use
2426 // that to restore the segments.
2427 //
2428 // PASS is the current relaxation pass number.
2429 // SYMTAB is a symbol table.
2430 // PLOAD_SEG is the address of a pointer for the load segment.
2431 // PHDR_SEG is a pointer to the PHDR segment.
2432 // SEGMENT_HEADERS points to the output segment header.
2433 // FILE_HEADER points to the output file header.
2434 // PSHNDX is the address to store the output section index.
2435
2436 off_t inline
2437 Layout::relaxation_loop_body(
2438     int pass,
2439     Target* target,
2440     Symbol_table* symtab,
2441     Output_segment** pload_seg,
2442     Output_segment* phdr_seg,
2443     Output_segment_headers* segment_headers,
2444     Output_file_header* file_header,
2445     unsigned int* pshndx)
2446 {
2447   // If this is not the first iteration, we need to clean up after
2448   // relaxation so that we can lay out the sections again.
2449   if (pass != 0)
2450     this->clean_up_after_relaxation();
2451
2452   // If there is a SECTIONS clause, put all the input sections into
2453   // the required order.
2454   Output_segment* load_seg;
2455   if (this->script_options_->saw_sections_clause())
2456     load_seg = this->set_section_addresses_from_script(symtab);
2457   else if (parameters->options().relocatable())
2458     load_seg = NULL;
2459   else
2460     load_seg = this->find_first_load_seg(target);
2461
2462   if (parameters->options().oformat_enum()
2463       != General_options::OBJECT_FORMAT_ELF)
2464     load_seg = NULL;
2465
2466   if (load_seg_unusable_for_headers(target))
2467     {
2468       load_seg = NULL;
2469       phdr_seg = NULL;
2470     }
2471
2472   gold_assert(phdr_seg == NULL
2473               || load_seg != NULL
2474               || this->script_options_->saw_sections_clause());
2475
2476   // If the address of the load segment we found has been set by
2477   // --section-start rather than by a script, then adjust the VMA and
2478   // LMA downward if possible to include the file and section headers.
2479   uint64_t header_gap = 0;
2480   if (load_seg != NULL
2481       && load_seg->are_addresses_set()
2482       && !this->script_options_->saw_sections_clause()
2483       && !parameters->options().relocatable())
2484     {
2485       file_header->finalize_data_size();
2486       segment_headers->finalize_data_size();
2487       size_t sizeof_headers = (file_header->data_size()
2488                                + segment_headers->data_size());
2489       const uint64_t abi_pagesize = target->abi_pagesize();
2490       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2491       hdr_paddr &= ~(abi_pagesize - 1);
2492       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2493       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2494         load_seg = NULL;
2495       else
2496         {
2497           load_seg->set_addresses(load_seg->vaddr() - subtract,
2498                                   load_seg->paddr() - subtract);
2499           header_gap = subtract - sizeof_headers;
2500         }
2501     }
2502
2503   // Lay out the segment headers.
2504   if (!parameters->options().relocatable())
2505     {
2506       gold_assert(segment_headers != NULL);
2507       if (header_gap != 0 && load_seg != NULL)
2508         {
2509           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2510           load_seg->add_initial_output_data(z);
2511         }
2512       if (load_seg != NULL)
2513         load_seg->add_initial_output_data(segment_headers);
2514       if (phdr_seg != NULL)
2515         phdr_seg->add_initial_output_data(segment_headers);
2516     }
2517
2518   // Lay out the file header.
2519   if (load_seg != NULL)
2520     load_seg->add_initial_output_data(file_header);
2521
2522   if (this->script_options_->saw_phdrs_clause()
2523       && !parameters->options().relocatable())
2524     {
2525       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2526       // clause in a linker script.
2527       Script_sections* ss = this->script_options_->script_sections();
2528       ss->put_headers_in_phdrs(file_header, segment_headers);
2529     }
2530
2531   // We set the output section indexes in set_segment_offsets and
2532   // set_section_indexes.
2533   *pshndx = 1;
2534
2535   // Set the file offsets of all the segments, and all the sections
2536   // they contain.
2537   off_t off;
2538   if (!parameters->options().relocatable())
2539     off = this->set_segment_offsets(target, load_seg, pshndx);
2540   else
2541     off = this->set_relocatable_section_offsets(file_header, pshndx);
2542
2543    // Verify that the dummy relaxation does not change anything.
2544   if (is_debugging_enabled(DEBUG_RELAXATION))
2545     {
2546       if (pass == 0)
2547         this->relaxation_debug_check_->read_sections(this->section_list_);
2548       else
2549         this->relaxation_debug_check_->verify_sections(this->section_list_);
2550     }
2551
2552   *pload_seg = load_seg;
2553   return off;
2554 }
2555
2556 // Search the list of patterns and find the postion of the given section
2557 // name in the output section.  If the section name matches a glob
2558 // pattern and a non-glob name, then the non-glob position takes
2559 // precedence.  Return 0 if no match is found.
2560
2561 unsigned int
2562 Layout::find_section_order_index(const std::string& section_name)
2563 {
2564   Unordered_map<std::string, unsigned int>::iterator map_it;
2565   map_it = this->input_section_position_.find(section_name);
2566   if (map_it != this->input_section_position_.end())
2567     return map_it->second;
2568
2569   // Absolute match failed.  Linear search the glob patterns.
2570   std::vector<std::string>::iterator it;
2571   for (it = this->input_section_glob_.begin();
2572        it != this->input_section_glob_.end();
2573        ++it)
2574     {
2575        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2576          {
2577            map_it = this->input_section_position_.find(*it);
2578            gold_assert(map_it != this->input_section_position_.end());
2579            return map_it->second;
2580          }
2581     }
2582   return 0;
2583 }
2584
2585 // Read the sequence of input sections from the file specified with
2586 // option --section-ordering-file.
2587
2588 void
2589 Layout::read_layout_from_file()
2590 {
2591   const char* filename = parameters->options().section_ordering_file();
2592   std::ifstream in;
2593   std::string line;
2594
2595   in.open(filename);
2596   if (!in)
2597     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2598                filename, strerror(errno));
2599
2600   std::getline(in, line);   // this chops off the trailing \n, if any
2601   unsigned int position = 1;
2602   this->set_section_ordering_specified();
2603
2604   while (in)
2605     {
2606       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2607         line.resize(line.length() - 1);
2608       // Ignore comments, beginning with '#'
2609       if (line[0] == '#')
2610         {
2611           std::getline(in, line);
2612           continue;
2613         }
2614       this->input_section_position_[line] = position;
2615       // Store all glob patterns in a vector.
2616       if (is_wildcard_string(line.c_str()))
2617         this->input_section_glob_.push_back(line);
2618       position++;
2619       std::getline(in, line);
2620     }
2621 }
2622
2623 // Finalize the layout.  When this is called, we have created all the
2624 // output sections and all the output segments which are based on
2625 // input sections.  We have several things to do, and we have to do
2626 // them in the right order, so that we get the right results correctly
2627 // and efficiently.
2628
2629 // 1) Finalize the list of output segments and create the segment
2630 // table header.
2631
2632 // 2) Finalize the dynamic symbol table and associated sections.
2633
2634 // 3) Determine the final file offset of all the output segments.
2635
2636 // 4) Determine the final file offset of all the SHF_ALLOC output
2637 // sections.
2638
2639 // 5) Create the symbol table sections and the section name table
2640 // section.
2641
2642 // 6) Finalize the symbol table: set symbol values to their final
2643 // value and make a final determination of which symbols are going
2644 // into the output symbol table.
2645
2646 // 7) Create the section table header.
2647
2648 // 8) Determine the final file offset of all the output sections which
2649 // are not SHF_ALLOC, including the section table header.
2650
2651 // 9) Finalize the ELF file header.
2652
2653 // This function returns the size of the output file.
2654
2655 off_t
2656 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2657                  Target* target, const Task* task)
2658 {
2659   target->finalize_sections(this, input_objects, symtab);
2660
2661   this->count_local_symbols(task, input_objects);
2662
2663   this->link_stabs_sections();
2664
2665   Output_segment* phdr_seg = NULL;
2666   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2667     {
2668       // There was a dynamic object in the link.  We need to create
2669       // some information for the dynamic linker.
2670
2671       // Create the PT_PHDR segment which will hold the program
2672       // headers.
2673       if (!this->script_options_->saw_phdrs_clause())
2674         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2675
2676       // Create the dynamic symbol table, including the hash table.
2677       Output_section* dynstr;
2678       std::vector<Symbol*> dynamic_symbols;
2679       unsigned int local_dynamic_count;
2680       Versions versions(*this->script_options()->version_script_info(),
2681                         &this->dynpool_);
2682       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2683                                   &local_dynamic_count, &dynamic_symbols,
2684                                   &versions);
2685
2686       // Create the .interp section to hold the name of the
2687       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2688       // if we saw a .interp section in an input file.
2689       if ((!parameters->options().shared()
2690            || parameters->options().dynamic_linker() != NULL)
2691           && this->interp_segment_ == NULL)
2692         this->create_interp(target);
2693
2694       // Finish the .dynamic section to hold the dynamic data, and put
2695       // it in a PT_DYNAMIC segment.
2696       this->finish_dynamic_section(input_objects, symtab);
2697
2698       // We should have added everything we need to the dynamic string
2699       // table.
2700       this->dynpool_.set_string_offsets();
2701
2702       // Create the version sections.  We can't do this until the
2703       // dynamic string table is complete.
2704       this->create_version_sections(&versions, symtab, local_dynamic_count,
2705                                     dynamic_symbols, dynstr);
2706
2707       // Set the size of the _DYNAMIC symbol.  We can't do this until
2708       // after we call create_version_sections.
2709       this->set_dynamic_symbol_size(symtab);
2710     }
2711
2712   // Create segment headers.
2713   Output_segment_headers* segment_headers =
2714     (parameters->options().relocatable()
2715      ? NULL
2716      : new Output_segment_headers(this->segment_list_));
2717
2718   // Lay out the file header.
2719   Output_file_header* file_header = new Output_file_header(target, symtab,
2720                                                            segment_headers);
2721
2722   this->special_output_list_.push_back(file_header);
2723   if (segment_headers != NULL)
2724     this->special_output_list_.push_back(segment_headers);
2725
2726   // Find approriate places for orphan output sections if we are using
2727   // a linker script.
2728   if (this->script_options_->saw_sections_clause())
2729     this->place_orphan_sections_in_script();
2730
2731   Output_segment* load_seg;
2732   off_t off;
2733   unsigned int shndx;
2734   int pass = 0;
2735
2736   // Take a snapshot of the section layout as needed.
2737   if (target->may_relax())
2738     this->prepare_for_relaxation();
2739
2740   // Run the relaxation loop to lay out sections.
2741   do
2742     {
2743       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2744                                        phdr_seg, segment_headers, file_header,
2745                                        &shndx);
2746       pass++;
2747     }
2748   while (target->may_relax()
2749          && target->relax(pass, input_objects, symtab, this, task));
2750
2751   // If there is a load segment that contains the file and program headers,
2752   // provide a symbol __ehdr_start pointing there.
2753   // A program can use this to examine itself robustly.
2754   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2755   if (ehdr_start != NULL && ehdr_start->is_predefined())
2756     {
2757       if (load_seg != NULL)
2758         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2759       else
2760         ehdr_start->set_undefined();
2761     }
2762
2763   // Set the file offsets of all the non-data sections we've seen so
2764   // far which don't have to wait for the input sections.  We need
2765   // this in order to finalize local symbols in non-allocated
2766   // sections.
2767   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2768
2769   // Set the section indexes of all unallocated sections seen so far,
2770   // in case any of them are somehow referenced by a symbol.
2771   shndx = this->set_section_indexes(shndx);
2772
2773   // Create the symbol table sections.
2774   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2775   if (!parameters->doing_static_link())
2776     this->assign_local_dynsym_offsets(input_objects);
2777
2778   // Process any symbol assignments from a linker script.  This must
2779   // be called after the symbol table has been finalized.
2780   this->script_options_->finalize_symbols(symtab, this);
2781
2782   // Create the incremental inputs sections.
2783   if (this->incremental_inputs_)
2784     {
2785       this->incremental_inputs_->finalize();
2786       this->create_incremental_info_sections(symtab);
2787     }
2788
2789   // Create the .shstrtab section.
2790   Output_section* shstrtab_section = this->create_shstrtab();
2791
2792   // Set the file offsets of the rest of the non-data sections which
2793   // don't have to wait for the input sections.
2794   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2795
2796   // Now that all sections have been created, set the section indexes
2797   // for any sections which haven't been done yet.
2798   shndx = this->set_section_indexes(shndx);
2799
2800   // Create the section table header.
2801   this->create_shdrs(shstrtab_section, &off);
2802
2803   // If there are no sections which require postprocessing, we can
2804   // handle the section names now, and avoid a resize later.
2805   if (!this->any_postprocessing_sections_)
2806     {
2807       off = this->set_section_offsets(off,
2808                                       POSTPROCESSING_SECTIONS_PASS);
2809       off =
2810           this->set_section_offsets(off,
2811                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2812     }
2813
2814   file_header->set_section_info(this->section_headers_, shstrtab_section);
2815
2816   // Now we know exactly where everything goes in the output file
2817   // (except for non-allocated sections which require postprocessing).
2818   Output_data::layout_complete();
2819
2820   this->output_file_size_ = off;
2821
2822   return off;
2823 }
2824
2825 // Create a note header following the format defined in the ELF ABI.
2826 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2827 // of the section to create, DESCSZ is the size of the descriptor.
2828 // ALLOCATE is true if the section should be allocated in memory.
2829 // This returns the new note section.  It sets *TRAILING_PADDING to
2830 // the number of trailing zero bytes required.
2831
2832 Output_section*
2833 Layout::create_note(const char* name, int note_type,
2834                     const char* section_name, size_t descsz,
2835                     bool allocate, size_t* trailing_padding)
2836 {
2837   // Authorities all agree that the values in a .note field should
2838   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2839   // they differ on what the alignment is for 64-bit binaries.
2840   // The GABI says unambiguously they take 8-byte alignment:
2841   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2842   // Other documentation says alignment should always be 4 bytes:
2843   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2844   // GNU ld and GNU readelf both support the latter (at least as of
2845   // version 2.16.91), and glibc always generates the latter for
2846   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2847   // here.
2848 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2849   const int size = parameters->target().get_size();
2850 #else
2851   const int size = 32;
2852 #endif
2853
2854   // The contents of the .note section.
2855   size_t namesz = strlen(name) + 1;
2856   size_t aligned_namesz = align_address(namesz, size / 8);
2857   size_t aligned_descsz = align_address(descsz, size / 8);
2858
2859   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2860
2861   unsigned char* buffer = new unsigned char[notehdrsz];
2862   memset(buffer, 0, notehdrsz);
2863
2864   bool is_big_endian = parameters->target().is_big_endian();
2865
2866   if (size == 32)
2867     {
2868       if (!is_big_endian)
2869         {
2870           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2871           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2872           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2873         }
2874       else
2875         {
2876           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2877           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2878           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2879         }
2880     }
2881   else if (size == 64)
2882     {
2883       if (!is_big_endian)
2884         {
2885           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2886           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2887           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2888         }
2889       else
2890         {
2891           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2892           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2893           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2894         }
2895     }
2896   else
2897     gold_unreachable();
2898
2899   memcpy(buffer + 3 * (size / 8), name, namesz);
2900
2901   elfcpp::Elf_Xword flags = 0;
2902   Output_section_order order = ORDER_INVALID;
2903   if (allocate)
2904     {
2905       flags = elfcpp::SHF_ALLOC;
2906       order = ORDER_RO_NOTE;
2907     }
2908   Output_section* os = this->choose_output_section(NULL, section_name,
2909                                                    elfcpp::SHT_NOTE,
2910                                                    flags, false, order, false);
2911   if (os == NULL)
2912     return NULL;
2913
2914   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2915                                                            size / 8,
2916                                                            "** note header");
2917   os->add_output_section_data(posd);
2918
2919   *trailing_padding = aligned_descsz - descsz;
2920
2921   return os;
2922 }
2923
2924 // For an executable or shared library, create a note to record the
2925 // version of gold used to create the binary.
2926
2927 void
2928 Layout::create_gold_note()
2929 {
2930   if (parameters->options().relocatable()
2931       || parameters->incremental_update())
2932     return;
2933
2934   std::string desc = std::string("gold ") + gold::get_version_string();
2935
2936   size_t trailing_padding;
2937   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2938                                          ".note.gnu.gold-version", desc.size(),
2939                                          false, &trailing_padding);
2940   if (os == NULL)
2941     return;
2942
2943   Output_section_data* posd = new Output_data_const(desc, 4);
2944   os->add_output_section_data(posd);
2945
2946   if (trailing_padding > 0)
2947     {
2948       posd = new Output_data_zero_fill(trailing_padding, 0);
2949       os->add_output_section_data(posd);
2950     }
2951 }
2952
2953 // Record whether the stack should be executable.  This can be set
2954 // from the command line using the -z execstack or -z noexecstack
2955 // options.  Otherwise, if any input file has a .note.GNU-stack
2956 // section with the SHF_EXECINSTR flag set, the stack should be
2957 // executable.  Otherwise, if at least one input file a
2958 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2959 // section, we use the target default for whether the stack should be
2960 // executable.  Otherwise, we don't generate a stack note.  When
2961 // generating a object file, we create a .note.GNU-stack section with
2962 // the appropriate marking.  When generating an executable or shared
2963 // library, we create a PT_GNU_STACK segment.
2964
2965 void
2966 Layout::create_executable_stack_info()
2967 {
2968   bool is_stack_executable;
2969   if (parameters->options().is_execstack_set())
2970     is_stack_executable = parameters->options().is_stack_executable();
2971   else if (!this->input_with_gnu_stack_note_)
2972     return;
2973   else
2974     {
2975       if (this->input_requires_executable_stack_)
2976         is_stack_executable = true;
2977       else if (this->input_without_gnu_stack_note_)
2978         is_stack_executable =
2979           parameters->target().is_default_stack_executable();
2980       else
2981         is_stack_executable = false;
2982     }
2983
2984   if (parameters->options().relocatable())
2985     {
2986       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2987       elfcpp::Elf_Xword flags = 0;
2988       if (is_stack_executable)
2989         flags |= elfcpp::SHF_EXECINSTR;
2990       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2991                                 ORDER_INVALID, false);
2992     }
2993   else
2994     {
2995       if (this->script_options_->saw_phdrs_clause())
2996         return;
2997       int flags = elfcpp::PF_R | elfcpp::PF_W;
2998       if (is_stack_executable)
2999         flags |= elfcpp::PF_X;
3000       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3001     }
3002 }
3003
3004 // If --build-id was used, set up the build ID note.
3005
3006 void
3007 Layout::create_build_id()
3008 {
3009   if (!parameters->options().user_set_build_id())
3010     return;
3011
3012   const char* style = parameters->options().build_id();
3013   if (strcmp(style, "none") == 0)
3014     return;
3015
3016   // Set DESCSZ to the size of the note descriptor.  When possible,
3017   // set DESC to the note descriptor contents.
3018   size_t descsz;
3019   std::string desc;
3020   if (strcmp(style, "md5") == 0)
3021     descsz = 128 / 8;
3022   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3023     descsz = 160 / 8;
3024   else if (strcmp(style, "uuid") == 0)
3025     {
3026       const size_t uuidsz = 128 / 8;
3027
3028       char buffer[uuidsz];
3029       memset(buffer, 0, uuidsz);
3030
3031       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3032       if (descriptor < 0)
3033         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3034                    strerror(errno));
3035       else
3036         {
3037           ssize_t got = ::read(descriptor, buffer, uuidsz);
3038           release_descriptor(descriptor, true);
3039           if (got < 0)
3040             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3041           else if (static_cast<size_t>(got) != uuidsz)
3042             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3043                        uuidsz, got);
3044         }
3045
3046       desc.assign(buffer, uuidsz);
3047       descsz = uuidsz;
3048     }
3049   else if (strncmp(style, "0x", 2) == 0)
3050     {
3051       hex_init();
3052       const char* p = style + 2;
3053       while (*p != '\0')
3054         {
3055           if (hex_p(p[0]) && hex_p(p[1]))
3056             {
3057               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3058               desc += c;
3059               p += 2;
3060             }
3061           else if (*p == '-' || *p == ':')
3062             ++p;
3063           else
3064             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3065                        style);
3066         }
3067       descsz = desc.size();
3068     }
3069   else
3070     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3071
3072   // Create the note.
3073   size_t trailing_padding;
3074   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3075                                          ".note.gnu.build-id", descsz, true,
3076                                          &trailing_padding);
3077   if (os == NULL)
3078     return;
3079
3080   if (!desc.empty())
3081     {
3082       // We know the value already, so we fill it in now.
3083       gold_assert(desc.size() == descsz);
3084
3085       Output_section_data* posd = new Output_data_const(desc, 4);
3086       os->add_output_section_data(posd);
3087
3088       if (trailing_padding != 0)
3089         {
3090           posd = new Output_data_zero_fill(trailing_padding, 0);
3091           os->add_output_section_data(posd);
3092         }
3093     }
3094   else
3095     {
3096       // We need to compute a checksum after we have completed the
3097       // link.
3098       gold_assert(trailing_padding == 0);
3099       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3100       os->add_output_section_data(this->build_id_note_);
3101     }
3102 }
3103
3104 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3105 // field of the former should point to the latter.  I'm not sure who
3106 // started this, but the GNU linker does it, and some tools depend
3107 // upon it.
3108
3109 void
3110 Layout::link_stabs_sections()
3111 {
3112   if (!this->have_stabstr_section_)
3113     return;
3114
3115   for (Section_list::iterator p = this->section_list_.begin();
3116        p != this->section_list_.end();
3117        ++p)
3118     {
3119       if ((*p)->type() != elfcpp::SHT_STRTAB)
3120         continue;
3121
3122       const char* name = (*p)->name();
3123       if (strncmp(name, ".stab", 5) != 0)
3124         continue;
3125
3126       size_t len = strlen(name);
3127       if (strcmp(name + len - 3, "str") != 0)
3128         continue;
3129
3130       std::string stab_name(name, len - 3);
3131       Output_section* stab_sec;
3132       stab_sec = this->find_output_section(stab_name.c_str());
3133       if (stab_sec != NULL)
3134         stab_sec->set_link_section(*p);
3135     }
3136 }
3137
3138 // Create .gnu_incremental_inputs and related sections needed
3139 // for the next run of incremental linking to check what has changed.
3140
3141 void
3142 Layout::create_incremental_info_sections(Symbol_table* symtab)
3143 {
3144   Incremental_inputs* incr = this->incremental_inputs_;
3145
3146   gold_assert(incr != NULL);
3147
3148   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3149   incr->create_data_sections(symtab);
3150
3151   // Add the .gnu_incremental_inputs section.
3152   const char* incremental_inputs_name =
3153     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3154   Output_section* incremental_inputs_os =
3155     this->make_output_section(incremental_inputs_name,
3156                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3157                               ORDER_INVALID, false);
3158   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3159
3160   // Add the .gnu_incremental_symtab section.
3161   const char* incremental_symtab_name =
3162     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3163   Output_section* incremental_symtab_os =
3164     this->make_output_section(incremental_symtab_name,
3165                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3166                               ORDER_INVALID, false);
3167   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3168   incremental_symtab_os->set_entsize(4);
3169
3170   // Add the .gnu_incremental_relocs section.
3171   const char* incremental_relocs_name =
3172     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3173   Output_section* incremental_relocs_os =
3174     this->make_output_section(incremental_relocs_name,
3175                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3176                               ORDER_INVALID, false);
3177   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3178   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3179
3180   // Add the .gnu_incremental_got_plt section.
3181   const char* incremental_got_plt_name =
3182     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3183   Output_section* incremental_got_plt_os =
3184     this->make_output_section(incremental_got_plt_name,
3185                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3186                               ORDER_INVALID, false);
3187   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3188
3189   // Add the .gnu_incremental_strtab section.
3190   const char* incremental_strtab_name =
3191     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3192   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3193                                                         elfcpp::SHT_STRTAB, 0,
3194                                                         ORDER_INVALID, false);
3195   Output_data_strtab* strtab_data =
3196       new Output_data_strtab(incr->get_stringpool());
3197   incremental_strtab_os->add_output_section_data(strtab_data);
3198
3199   incremental_inputs_os->set_after_input_sections();
3200   incremental_symtab_os->set_after_input_sections();
3201   incremental_relocs_os->set_after_input_sections();
3202   incremental_got_plt_os->set_after_input_sections();
3203
3204   incremental_inputs_os->set_link_section(incremental_strtab_os);
3205   incremental_symtab_os->set_link_section(incremental_inputs_os);
3206   incremental_relocs_os->set_link_section(incremental_inputs_os);
3207   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3208 }
3209
3210 // Return whether SEG1 should be before SEG2 in the output file.  This
3211 // is based entirely on the segment type and flags.  When this is
3212 // called the segment addresses have normally not yet been set.
3213
3214 bool
3215 Layout::segment_precedes(const Output_segment* seg1,
3216                          const Output_segment* seg2)
3217 {
3218   elfcpp::Elf_Word type1 = seg1->type();
3219   elfcpp::Elf_Word type2 = seg2->type();
3220
3221   // The single PT_PHDR segment is required to precede any loadable
3222   // segment.  We simply make it always first.
3223   if (type1 == elfcpp::PT_PHDR)
3224     {
3225       gold_assert(type2 != elfcpp::PT_PHDR);
3226       return true;
3227     }
3228   if (type2 == elfcpp::PT_PHDR)
3229     return false;
3230
3231   // The single PT_INTERP segment is required to precede any loadable
3232   // segment.  We simply make it always second.
3233   if (type1 == elfcpp::PT_INTERP)
3234     {
3235       gold_assert(type2 != elfcpp::PT_INTERP);
3236       return true;
3237     }
3238   if (type2 == elfcpp::PT_INTERP)
3239     return false;
3240
3241   // We then put PT_LOAD segments before any other segments.
3242   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3243     return true;
3244   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3245     return false;
3246
3247   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3248   // segment, because that is where the dynamic linker expects to find
3249   // it (this is just for efficiency; other positions would also work
3250   // correctly).
3251   if (type1 == elfcpp::PT_TLS
3252       && type2 != elfcpp::PT_TLS
3253       && type2 != elfcpp::PT_GNU_RELRO)
3254     return false;
3255   if (type2 == elfcpp::PT_TLS
3256       && type1 != elfcpp::PT_TLS
3257       && type1 != elfcpp::PT_GNU_RELRO)
3258     return true;
3259
3260   // We put the PT_GNU_RELRO segment last, because that is where the
3261   // dynamic linker expects to find it (as with PT_TLS, this is just
3262   // for efficiency).
3263   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3264     return false;
3265   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3266     return true;
3267
3268   const elfcpp::Elf_Word flags1 = seg1->flags();
3269   const elfcpp::Elf_Word flags2 = seg2->flags();
3270
3271   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3272   // by the numeric segment type and flags values.  There should not
3273   // be more than one segment with the same type and flags, except
3274   // when a linker script specifies such.
3275   if (type1 != elfcpp::PT_LOAD)
3276     {
3277       if (type1 != type2)
3278         return type1 < type2;
3279       gold_assert(flags1 != flags2
3280                   || this->script_options_->saw_phdrs_clause());
3281       return flags1 < flags2;
3282     }
3283
3284   // If the addresses are set already, sort by load address.
3285   if (seg1->are_addresses_set())
3286     {
3287       if (!seg2->are_addresses_set())
3288         return true;
3289
3290       unsigned int section_count1 = seg1->output_section_count();
3291       unsigned int section_count2 = seg2->output_section_count();
3292       if (section_count1 == 0 && section_count2 > 0)
3293         return true;
3294       if (section_count1 > 0 && section_count2 == 0)
3295         return false;
3296
3297       uint64_t paddr1 = (seg1->are_addresses_set()
3298                          ? seg1->paddr()
3299                          : seg1->first_section_load_address());
3300       uint64_t paddr2 = (seg2->are_addresses_set()
3301                          ? seg2->paddr()
3302                          : seg2->first_section_load_address());
3303
3304       if (paddr1 != paddr2)
3305         return paddr1 < paddr2;
3306     }
3307   else if (seg2->are_addresses_set())
3308     return false;
3309
3310   // A segment which holds large data comes after a segment which does
3311   // not hold large data.
3312   if (seg1->is_large_data_segment())
3313     {
3314       if (!seg2->is_large_data_segment())
3315         return false;
3316     }
3317   else if (seg2->is_large_data_segment())
3318     return true;
3319
3320   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3321   // segments come before writable segments.  Then writable segments
3322   // with data come before writable segments without data.  Then
3323   // executable segments come before non-executable segments.  Then
3324   // the unlikely case of a non-readable segment comes before the
3325   // normal case of a readable segment.  If there are multiple
3326   // segments with the same type and flags, we require that the
3327   // address be set, and we sort by virtual address and then physical
3328   // address.
3329   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3330     return (flags1 & elfcpp::PF_W) == 0;
3331   if ((flags1 & elfcpp::PF_W) != 0
3332       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3333     return seg1->has_any_data_sections();
3334   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3335     return (flags1 & elfcpp::PF_X) != 0;
3336   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3337     return (flags1 & elfcpp::PF_R) == 0;
3338
3339   // We shouldn't get here--we shouldn't create segments which we
3340   // can't distinguish.  Unless of course we are using a weird linker
3341   // script or overlapping --section-start options.  We could also get
3342   // here if plugins want unique segments for subsets of sections.
3343   gold_assert(this->script_options_->saw_phdrs_clause()
3344               || parameters->options().any_section_start()
3345               || this->is_unique_segment_for_sections_specified());
3346   return false;
3347 }
3348
3349 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3350
3351 static off_t
3352 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3353 {
3354   uint64_t unsigned_off = off;
3355   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3356                           | (addr & (abi_pagesize - 1)));
3357   if (aligned_off < unsigned_off)
3358     aligned_off += abi_pagesize;
3359   return aligned_off;
3360 }
3361
3362 // On targets where the text segment contains only executable code,
3363 // a non-executable segment is never the text segment.
3364
3365 static inline bool
3366 is_text_segment(const Target* target, const Output_segment* seg)
3367 {
3368   elfcpp::Elf_Xword flags = seg->flags();
3369   if ((flags & elfcpp::PF_W) != 0)
3370     return false;
3371   if ((flags & elfcpp::PF_X) == 0)
3372     return !target->isolate_execinstr();
3373   return true;
3374 }
3375
3376 // Set the file offsets of all the segments, and all the sections they
3377 // contain.  They have all been created.  LOAD_SEG must be be laid out
3378 // first.  Return the offset of the data to follow.
3379
3380 off_t
3381 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3382                             unsigned int* pshndx)
3383 {
3384   // Sort them into the final order.  We use a stable sort so that we
3385   // don't randomize the order of indistinguishable segments created
3386   // by linker scripts.
3387   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3388                    Layout::Compare_segments(this));
3389
3390   // Find the PT_LOAD segments, and set their addresses and offsets
3391   // and their section's addresses and offsets.
3392   uint64_t start_addr;
3393   if (parameters->options().user_set_Ttext())
3394     start_addr = parameters->options().Ttext();
3395   else if (parameters->options().output_is_position_independent())
3396     start_addr = 0;
3397   else
3398     start_addr = target->default_text_segment_address();
3399
3400   uint64_t addr = start_addr;
3401   off_t off = 0;
3402
3403   // If LOAD_SEG is NULL, then the file header and segment headers
3404   // will not be loadable.  But they still need to be at offset 0 in
3405   // the file.  Set their offsets now.
3406   if (load_seg == NULL)
3407     {
3408       for (Data_list::iterator p = this->special_output_list_.begin();
3409            p != this->special_output_list_.end();
3410            ++p)
3411         {
3412           off = align_address(off, (*p)->addralign());
3413           (*p)->set_address_and_file_offset(0, off);
3414           off += (*p)->data_size();
3415         }
3416     }
3417
3418   unsigned int increase_relro = this->increase_relro_;
3419   if (this->script_options_->saw_sections_clause())
3420     increase_relro = 0;
3421
3422   const bool check_sections = parameters->options().check_sections();
3423   Output_segment* last_load_segment = NULL;
3424
3425   unsigned int shndx_begin = *pshndx;
3426   unsigned int shndx_load_seg = *pshndx;
3427
3428   for (Segment_list::iterator p = this->segment_list_.begin();
3429        p != this->segment_list_.end();
3430        ++p)
3431     {
3432       if ((*p)->type() == elfcpp::PT_LOAD)
3433         {
3434           if (target->isolate_execinstr())
3435             {
3436               // When we hit the segment that should contain the
3437               // file headers, reset the file offset so we place
3438               // it and subsequent segments appropriately.
3439               // We'll fix up the preceding segments below.
3440               if (load_seg == *p)
3441                 {
3442                   if (off == 0)
3443                     load_seg = NULL;
3444                   else
3445                     {
3446                       off = 0;
3447                       shndx_load_seg = *pshndx;
3448                     }
3449                 }
3450             }
3451           else
3452             {
3453               // Verify that the file headers fall into the first segment.
3454               if (load_seg != NULL && load_seg != *p)
3455                 gold_unreachable();
3456               load_seg = NULL;
3457             }
3458
3459           bool are_addresses_set = (*p)->are_addresses_set();
3460           if (are_addresses_set)
3461             {
3462               // When it comes to setting file offsets, we care about
3463               // the physical address.
3464               addr = (*p)->paddr();
3465             }
3466           else if (parameters->options().user_set_Ttext()
3467                    && (parameters->options().omagic()
3468                        || is_text_segment(target, *p)))
3469             {
3470               are_addresses_set = true;
3471             }
3472           else if (parameters->options().user_set_Trodata_segment()
3473                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3474             {
3475               addr = parameters->options().Trodata_segment();
3476               are_addresses_set = true;
3477             }
3478           else if (parameters->options().user_set_Tdata()
3479                    && ((*p)->flags() & elfcpp::PF_W) != 0
3480                    && (!parameters->options().user_set_Tbss()
3481                        || (*p)->has_any_data_sections()))
3482             {
3483               addr = parameters->options().Tdata();
3484               are_addresses_set = true;
3485             }
3486           else if (parameters->options().user_set_Tbss()
3487                    && ((*p)->flags() & elfcpp::PF_W) != 0
3488                    && !(*p)->has_any_data_sections())
3489             {
3490               addr = parameters->options().Tbss();
3491               are_addresses_set = true;
3492             }
3493
3494           uint64_t orig_addr = addr;
3495           uint64_t orig_off = off;
3496
3497           uint64_t aligned_addr = 0;
3498           uint64_t abi_pagesize = target->abi_pagesize();
3499           uint64_t common_pagesize = target->common_pagesize();
3500
3501           if (!parameters->options().nmagic()
3502               && !parameters->options().omagic())
3503             (*p)->set_minimum_p_align(abi_pagesize);
3504
3505           if (!are_addresses_set)
3506             {
3507               // Skip the address forward one page, maintaining the same
3508               // position within the page.  This lets us store both segments
3509               // overlapping on a single page in the file, but the loader will
3510               // put them on different pages in memory. We will revisit this
3511               // decision once we know the size of the segment.
3512
3513               addr = align_address(addr, (*p)->maximum_alignment());
3514               aligned_addr = addr;
3515
3516               if (load_seg == *p)
3517                 {
3518                   // This is the segment that will contain the file
3519                   // headers, so its offset will have to be exactly zero.
3520                   gold_assert(orig_off == 0);
3521
3522                   // If the target wants a fixed minimum distance from the
3523                   // text segment to the read-only segment, move up now.
3524                   uint64_t min_addr =
3525                     start_addr + (parameters->options().user_set_rosegment_gap()
3526                                   ? parameters->options().rosegment_gap()
3527                                   : target->rosegment_gap());
3528                   if (addr < min_addr)
3529                     addr = min_addr;
3530
3531                   // But this is not the first segment!  To make its
3532                   // address congruent with its offset, that address better
3533                   // be aligned to the ABI-mandated page size.
3534                   addr = align_address(addr, abi_pagesize);
3535                   aligned_addr = addr;
3536                 }
3537               else
3538                 {
3539                   if ((addr & (abi_pagesize - 1)) != 0)
3540                     addr = addr + abi_pagesize;
3541
3542                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3543                 }
3544             }
3545
3546           if (!parameters->options().nmagic()
3547               && !parameters->options().omagic())
3548             {
3549               // Here we are also taking care of the case when
3550               // the maximum segment alignment is larger than the page size.
3551               off = align_file_offset(off, addr,
3552                                       std::max(abi_pagesize,
3553                                                (*p)->maximum_alignment()));
3554             }
3555           else
3556             {
3557               // This is -N or -n with a section script which prevents
3558               // us from using a load segment.  We need to ensure that
3559               // the file offset is aligned to the alignment of the
3560               // segment.  This is because the linker script
3561               // implicitly assumed a zero offset.  If we don't align
3562               // here, then the alignment of the sections in the
3563               // linker script may not match the alignment of the
3564               // sections in the set_section_addresses call below,
3565               // causing an error about dot moving backward.
3566               off = align_address(off, (*p)->maximum_alignment());
3567             }
3568
3569           unsigned int shndx_hold = *pshndx;
3570           bool has_relro = false;
3571           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3572                                                           false, addr,
3573                                                           &increase_relro,
3574                                                           &has_relro,
3575                                                           &off, pshndx);
3576
3577           // Now that we know the size of this segment, we may be able
3578           // to save a page in memory, at the cost of wasting some
3579           // file space, by instead aligning to the start of a new
3580           // page.  Here we use the real machine page size rather than
3581           // the ABI mandated page size.  If the segment has been
3582           // aligned so that the relro data ends at a page boundary,
3583           // we do not try to realign it.
3584
3585           if (!are_addresses_set
3586               && !has_relro
3587               && aligned_addr != addr
3588               && !parameters->incremental())
3589             {
3590               uint64_t first_off = (common_pagesize
3591                                     - (aligned_addr
3592                                        & (common_pagesize - 1)));
3593               uint64_t last_off = new_addr & (common_pagesize - 1);
3594               if (first_off > 0
3595                   && last_off > 0
3596                   && ((aligned_addr & ~ (common_pagesize - 1))
3597                       != (new_addr & ~ (common_pagesize - 1)))
3598                   && first_off + last_off <= common_pagesize)
3599                 {
3600                   *pshndx = shndx_hold;
3601                   addr = align_address(aligned_addr, common_pagesize);
3602                   addr = align_address(addr, (*p)->maximum_alignment());
3603                   if ((addr & (abi_pagesize - 1)) != 0)
3604                     addr = addr + abi_pagesize;
3605                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3606                   off = align_file_offset(off, addr, abi_pagesize);
3607
3608                   increase_relro = this->increase_relro_;
3609                   if (this->script_options_->saw_sections_clause())
3610                     increase_relro = 0;
3611                   has_relro = false;
3612
3613                   new_addr = (*p)->set_section_addresses(target, this,
3614                                                          true, addr,
3615                                                          &increase_relro,
3616                                                          &has_relro,
3617                                                          &off, pshndx);
3618                 }
3619             }
3620
3621           addr = new_addr;
3622
3623           // Implement --check-sections.  We know that the segments
3624           // are sorted by LMA.
3625           if (check_sections && last_load_segment != NULL)
3626             {
3627               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3628               if (last_load_segment->paddr() + last_load_segment->memsz()
3629                   > (*p)->paddr())
3630                 {
3631                   unsigned long long lb1 = last_load_segment->paddr();
3632                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3633                   unsigned long long lb2 = (*p)->paddr();
3634                   unsigned long long le2 = lb2 + (*p)->memsz();
3635                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3636                                "[0x%llx -> 0x%llx]"),
3637                              lb1, le1, lb2, le2);
3638                 }
3639             }
3640           last_load_segment = *p;
3641         }
3642     }
3643
3644   if (load_seg != NULL && target->isolate_execinstr())
3645     {
3646       // Process the early segments again, setting their file offsets
3647       // so they land after the segments starting at LOAD_SEG.
3648       off = align_file_offset(off, 0, target->abi_pagesize());
3649
3650       this->reset_relax_output();
3651
3652       for (Segment_list::iterator p = this->segment_list_.begin();
3653            *p != load_seg;
3654            ++p)
3655         {
3656           if ((*p)->type() == elfcpp::PT_LOAD)
3657             {
3658               // We repeat the whole job of assigning addresses and
3659               // offsets, but we really only want to change the offsets and
3660               // must ensure that the addresses all come out the same as
3661               // they did the first time through.
3662               bool has_relro = false;
3663               const uint64_t old_addr = (*p)->vaddr();
3664               const uint64_t old_end = old_addr + (*p)->memsz();
3665               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3666                                                               true, old_addr,
3667                                                               &increase_relro,
3668                                                               &has_relro,
3669                                                               &off,
3670                                                               &shndx_begin);
3671               gold_assert(new_addr == old_end);
3672             }
3673         }
3674
3675       gold_assert(shndx_begin == shndx_load_seg);
3676     }
3677
3678   // Handle the non-PT_LOAD segments, setting their offsets from their
3679   // section's offsets.
3680   for (Segment_list::iterator p = this->segment_list_.begin();
3681        p != this->segment_list_.end();
3682        ++p)
3683     {
3684       if ((*p)->type() != elfcpp::PT_LOAD)
3685         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3686                          ? increase_relro
3687                          : 0);
3688     }
3689
3690   // Set the TLS offsets for each section in the PT_TLS segment.
3691   if (this->tls_segment_ != NULL)
3692     this->tls_segment_->set_tls_offsets();
3693
3694   return off;
3695 }
3696
3697 // Set the offsets of all the allocated sections when doing a
3698 // relocatable link.  This does the same jobs as set_segment_offsets,
3699 // only for a relocatable link.
3700
3701 off_t
3702 Layout::set_relocatable_section_offsets(Output_data* file_header,
3703                                         unsigned int* pshndx)
3704 {
3705   off_t off = 0;
3706
3707   file_header->set_address_and_file_offset(0, 0);
3708   off += file_header->data_size();
3709
3710   for (Section_list::iterator p = this->section_list_.begin();
3711        p != this->section_list_.end();
3712        ++p)
3713     {
3714       // We skip unallocated sections here, except that group sections
3715       // have to come first.
3716       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3717           && (*p)->type() != elfcpp::SHT_GROUP)
3718         continue;
3719
3720       off = align_address(off, (*p)->addralign());
3721
3722       // The linker script might have set the address.
3723       if (!(*p)->is_address_valid())
3724         (*p)->set_address(0);
3725       (*p)->set_file_offset(off);
3726       (*p)->finalize_data_size();
3727       if ((*p)->type() != elfcpp::SHT_NOBITS)
3728         off += (*p)->data_size();
3729
3730       (*p)->set_out_shndx(*pshndx);
3731       ++*pshndx;
3732     }
3733
3734   return off;
3735 }
3736
3737 // Set the file offset of all the sections not associated with a
3738 // segment.
3739
3740 off_t
3741 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3742 {
3743   off_t startoff = off;
3744   off_t maxoff = off;
3745
3746   for (Section_list::iterator p = this->unattached_section_list_.begin();
3747        p != this->unattached_section_list_.end();
3748        ++p)
3749     {
3750       // The symtab section is handled in create_symtab_sections.
3751       if (*p == this->symtab_section_)
3752         continue;
3753
3754       // If we've already set the data size, don't set it again.
3755       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3756         continue;
3757
3758       if (pass == BEFORE_INPUT_SECTIONS_PASS
3759           && (*p)->requires_postprocessing())
3760         {
3761           (*p)->create_postprocessing_buffer();
3762           this->any_postprocessing_sections_ = true;
3763         }
3764
3765       if (pass == BEFORE_INPUT_SECTIONS_PASS
3766           && (*p)->after_input_sections())
3767         continue;
3768       else if (pass == POSTPROCESSING_SECTIONS_PASS
3769                && (!(*p)->after_input_sections()
3770                    || (*p)->type() == elfcpp::SHT_STRTAB))
3771         continue;
3772       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3773                && (!(*p)->after_input_sections()
3774                    || (*p)->type() != elfcpp::SHT_STRTAB))
3775         continue;
3776
3777       if (!parameters->incremental_update())
3778         {
3779           off = align_address(off, (*p)->addralign());
3780           (*p)->set_file_offset(off);
3781           (*p)->finalize_data_size();
3782         }
3783       else
3784         {
3785           // Incremental update: allocate file space from free list.
3786           (*p)->pre_finalize_data_size();
3787           off_t current_size = (*p)->current_data_size();
3788           off = this->allocate(current_size, (*p)->addralign(), startoff);
3789           if (off == -1)
3790             {
3791               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3792                 this->free_list_.dump();
3793               gold_assert((*p)->output_section() != NULL);
3794               gold_fallback(_("out of patch space for section %s; "
3795                               "relink with --incremental-full"),
3796                             (*p)->output_section()->name());
3797             }
3798           (*p)->set_file_offset(off);
3799           (*p)->finalize_data_size();
3800           if ((*p)->data_size() > current_size)
3801             {
3802               gold_assert((*p)->output_section() != NULL);
3803               gold_fallback(_("%s: section changed size; "
3804                               "relink with --incremental-full"),
3805                             (*p)->output_section()->name());
3806             }
3807           gold_debug(DEBUG_INCREMENTAL,
3808                      "set_section_offsets: %08lx %08lx %s",
3809                      static_cast<long>(off),
3810                      static_cast<long>((*p)->data_size()),
3811                      ((*p)->output_section() != NULL
3812                       ? (*p)->output_section()->name() : "(special)"));
3813         }
3814
3815       off += (*p)->data_size();
3816       if (off > maxoff)
3817         maxoff = off;
3818
3819       // At this point the name must be set.
3820       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3821         this->namepool_.add((*p)->name(), false, NULL);
3822     }
3823   return maxoff;
3824 }
3825
3826 // Set the section indexes of all the sections not associated with a
3827 // segment.
3828
3829 unsigned int
3830 Layout::set_section_indexes(unsigned int shndx)
3831 {
3832   for (Section_list::iterator p = this->unattached_section_list_.begin();
3833        p != this->unattached_section_list_.end();
3834        ++p)
3835     {
3836       if (!(*p)->has_out_shndx())
3837         {
3838           (*p)->set_out_shndx(shndx);
3839           ++shndx;
3840         }
3841     }
3842   return shndx;
3843 }
3844
3845 // Set the section addresses according to the linker script.  This is
3846 // only called when we see a SECTIONS clause.  This returns the
3847 // program segment which should hold the file header and segment
3848 // headers, if any.  It will return NULL if they should not be in a
3849 // segment.
3850
3851 Output_segment*
3852 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3853 {
3854   Script_sections* ss = this->script_options_->script_sections();
3855   gold_assert(ss->saw_sections_clause());
3856   return this->script_options_->set_section_addresses(symtab, this);
3857 }
3858
3859 // Place the orphan sections in the linker script.
3860
3861 void
3862 Layout::place_orphan_sections_in_script()
3863 {
3864   Script_sections* ss = this->script_options_->script_sections();
3865   gold_assert(ss->saw_sections_clause());
3866
3867   // Place each orphaned output section in the script.
3868   for (Section_list::iterator p = this->section_list_.begin();
3869        p != this->section_list_.end();
3870        ++p)
3871     {
3872       if (!(*p)->found_in_sections_clause())
3873         ss->place_orphan(*p);
3874     }
3875 }
3876
3877 // Count the local symbols in the regular symbol table and the dynamic
3878 // symbol table, and build the respective string pools.
3879
3880 void
3881 Layout::count_local_symbols(const Task* task,
3882                             const Input_objects* input_objects)
3883 {
3884   // First, figure out an upper bound on the number of symbols we'll
3885   // be inserting into each pool.  This helps us create the pools with
3886   // the right size, to avoid unnecessary hashtable resizing.
3887   unsigned int symbol_count = 0;
3888   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3889        p != input_objects->relobj_end();
3890        ++p)
3891     symbol_count += (*p)->local_symbol_count();
3892
3893   // Go from "upper bound" to "estimate."  We overcount for two
3894   // reasons: we double-count symbols that occur in more than one
3895   // object file, and we count symbols that are dropped from the
3896   // output.  Add it all together and assume we overcount by 100%.
3897   symbol_count /= 2;
3898
3899   // We assume all symbols will go into both the sympool and dynpool.
3900   this->sympool_.reserve(symbol_count);
3901   this->dynpool_.reserve(symbol_count);
3902
3903   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3904        p != input_objects->relobj_end();
3905        ++p)
3906     {
3907       Task_lock_obj<Object> tlo(task, *p);
3908       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3909     }
3910 }
3911
3912 // Create the symbol table sections.  Here we also set the final
3913 // values of the symbols.  At this point all the loadable sections are
3914 // fully laid out.  SHNUM is the number of sections so far.
3915
3916 void
3917 Layout::create_symtab_sections(const Input_objects* input_objects,
3918                                Symbol_table* symtab,
3919                                unsigned int shnum,
3920                                off_t* poff)
3921 {
3922   int symsize;
3923   unsigned int align;
3924   if (parameters->target().get_size() == 32)
3925     {
3926       symsize = elfcpp::Elf_sizes<32>::sym_size;
3927       align = 4;
3928     }
3929   else if (parameters->target().get_size() == 64)
3930     {
3931       symsize = elfcpp::Elf_sizes<64>::sym_size;
3932       align = 8;
3933     }
3934   else
3935     gold_unreachable();
3936
3937   // Compute file offsets relative to the start of the symtab section.
3938   off_t off = 0;
3939
3940   // Save space for the dummy symbol at the start of the section.  We
3941   // never bother to write this out--it will just be left as zero.
3942   off += symsize;
3943   unsigned int local_symbol_index = 1;
3944
3945   // Add STT_SECTION symbols for each Output section which needs one.
3946   for (Section_list::iterator p = this->section_list_.begin();
3947        p != this->section_list_.end();
3948        ++p)
3949     {
3950       if (!(*p)->needs_symtab_index())
3951         (*p)->set_symtab_index(-1U);
3952       else
3953         {
3954           (*p)->set_symtab_index(local_symbol_index);
3955           ++local_symbol_index;
3956           off += symsize;
3957         }
3958     }
3959
3960   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3961        p != input_objects->relobj_end();
3962        ++p)
3963     {
3964       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3965                                                         off, symtab);
3966       off += (index - local_symbol_index) * symsize;
3967       local_symbol_index = index;
3968     }
3969
3970   unsigned int local_symcount = local_symbol_index;
3971   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3972
3973   off_t dynoff;
3974   size_t dyn_global_index;
3975   size_t dyncount;
3976   if (this->dynsym_section_ == NULL)
3977     {
3978       dynoff = 0;
3979       dyn_global_index = 0;
3980       dyncount = 0;
3981     }
3982   else
3983     {
3984       dyn_global_index = this->dynsym_section_->info();
3985       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3986       dynoff = this->dynsym_section_->offset() + locsize;
3987       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3988       gold_assert(static_cast<off_t>(dyncount * symsize)
3989                   == this->dynsym_section_->data_size() - locsize);
3990     }
3991
3992   off_t global_off = off;
3993   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3994                          &this->sympool_, &local_symcount);
3995
3996   if (!parameters->options().strip_all())
3997     {
3998       this->sympool_.set_string_offsets();
3999
4000       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4001       Output_section* osymtab = this->make_output_section(symtab_name,
4002                                                           elfcpp::SHT_SYMTAB,
4003                                                           0, ORDER_INVALID,
4004                                                           false);
4005       this->symtab_section_ = osymtab;
4006
4007       Output_section_data* pos = new Output_data_fixed_space(off, align,
4008                                                              "** symtab");
4009       osymtab->add_output_section_data(pos);
4010
4011       // We generate a .symtab_shndx section if we have more than
4012       // SHN_LORESERVE sections.  Technically it is possible that we
4013       // don't need one, because it is possible that there are no
4014       // symbols in any of sections with indexes larger than
4015       // SHN_LORESERVE.  That is probably unusual, though, and it is
4016       // easier to always create one than to compute section indexes
4017       // twice (once here, once when writing out the symbols).
4018       if (shnum >= elfcpp::SHN_LORESERVE)
4019         {
4020           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4021                                                                false, NULL);
4022           Output_section* osymtab_xindex =
4023             this->make_output_section(symtab_xindex_name,
4024                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4025                                       ORDER_INVALID, false);
4026
4027           size_t symcount = off / symsize;
4028           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4029
4030           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4031
4032           osymtab_xindex->set_link_section(osymtab);
4033           osymtab_xindex->set_addralign(4);
4034           osymtab_xindex->set_entsize(4);
4035
4036           osymtab_xindex->set_after_input_sections();
4037
4038           // This tells the driver code to wait until the symbol table
4039           // has written out before writing out the postprocessing
4040           // sections, including the .symtab_shndx section.
4041           this->any_postprocessing_sections_ = true;
4042         }
4043
4044       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4045       Output_section* ostrtab = this->make_output_section(strtab_name,
4046                                                           elfcpp::SHT_STRTAB,
4047                                                           0, ORDER_INVALID,
4048                                                           false);
4049
4050       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4051       ostrtab->add_output_section_data(pstr);
4052
4053       off_t symtab_off;
4054       if (!parameters->incremental_update())
4055         symtab_off = align_address(*poff, align);
4056       else
4057         {
4058           symtab_off = this->allocate(off, align, *poff);
4059           if (off == -1)
4060             gold_fallback(_("out of patch space for symbol table; "
4061                             "relink with --incremental-full"));
4062           gold_debug(DEBUG_INCREMENTAL,
4063                      "create_symtab_sections: %08lx %08lx .symtab",
4064                      static_cast<long>(symtab_off),
4065                      static_cast<long>(off));
4066         }
4067
4068       symtab->set_file_offset(symtab_off + global_off);
4069       osymtab->set_file_offset(symtab_off);
4070       osymtab->finalize_data_size();
4071       osymtab->set_link_section(ostrtab);
4072       osymtab->set_info(local_symcount);
4073       osymtab->set_entsize(symsize);
4074
4075       if (symtab_off + off > *poff)
4076         *poff = symtab_off + off;
4077     }
4078 }
4079
4080 // Create the .shstrtab section, which holds the names of the
4081 // sections.  At the time this is called, we have created all the
4082 // output sections except .shstrtab itself.
4083
4084 Output_section*
4085 Layout::create_shstrtab()
4086 {
4087   // FIXME: We don't need to create a .shstrtab section if we are
4088   // stripping everything.
4089
4090   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4091
4092   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4093                                                  ORDER_INVALID, false);
4094
4095   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4096     {
4097       // We can't write out this section until we've set all the
4098       // section names, and we don't set the names of compressed
4099       // output sections until relocations are complete.  FIXME: With
4100       // the current names we use, this is unnecessary.
4101       os->set_after_input_sections();
4102     }
4103
4104   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4105   os->add_output_section_data(posd);
4106
4107   return os;
4108 }
4109
4110 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4111 // offset.
4112
4113 void
4114 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4115 {
4116   Output_section_headers* oshdrs;
4117   oshdrs = new Output_section_headers(this,
4118                                       &this->segment_list_,
4119                                       &this->section_list_,
4120                                       &this->unattached_section_list_,
4121                                       &this->namepool_,
4122                                       shstrtab_section);
4123   off_t off;
4124   if (!parameters->incremental_update())
4125     off = align_address(*poff, oshdrs->addralign());
4126   else
4127     {
4128       oshdrs->pre_finalize_data_size();
4129       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4130       if (off == -1)
4131           gold_fallback(_("out of patch space for section header table; "
4132                           "relink with --incremental-full"));
4133       gold_debug(DEBUG_INCREMENTAL,
4134                  "create_shdrs: %08lx %08lx (section header table)",
4135                  static_cast<long>(off),
4136                  static_cast<long>(off + oshdrs->data_size()));
4137     }
4138   oshdrs->set_address_and_file_offset(0, off);
4139   off += oshdrs->data_size();
4140   if (off > *poff)
4141     *poff = off;
4142   this->section_headers_ = oshdrs;
4143 }
4144
4145 // Count the allocated sections.
4146
4147 size_t
4148 Layout::allocated_output_section_count() const
4149 {
4150   size_t section_count = 0;
4151   for (Segment_list::const_iterator p = this->segment_list_.begin();
4152        p != this->segment_list_.end();
4153        ++p)
4154     section_count += (*p)->output_section_count();
4155   return section_count;
4156 }
4157
4158 // Create the dynamic symbol table.
4159
4160 void
4161 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4162                               Symbol_table* symtab,
4163                               Output_section** pdynstr,
4164                               unsigned int* plocal_dynamic_count,
4165                               std::vector<Symbol*>* pdynamic_symbols,
4166                               Versions* pversions)
4167 {
4168   // Count all the symbols in the dynamic symbol table, and set the
4169   // dynamic symbol indexes.
4170
4171   // Skip symbol 0, which is always all zeroes.
4172   unsigned int index = 1;
4173
4174   // Add STT_SECTION symbols for each Output section which needs one.
4175   for (Section_list::iterator p = this->section_list_.begin();
4176        p != this->section_list_.end();
4177        ++p)
4178     {
4179       if (!(*p)->needs_dynsym_index())
4180         (*p)->set_dynsym_index(-1U);
4181       else
4182         {
4183           (*p)->set_dynsym_index(index);
4184           ++index;
4185         }
4186     }
4187
4188   // Count the local symbols that need to go in the dynamic symbol table,
4189   // and set the dynamic symbol indexes.
4190   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4191        p != input_objects->relobj_end();
4192        ++p)
4193     {
4194       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4195       index = new_index;
4196     }
4197
4198   unsigned int local_symcount = index;
4199   *plocal_dynamic_count = local_symcount;
4200
4201   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4202                                      &this->dynpool_, pversions);
4203
4204   int symsize;
4205   unsigned int align;
4206   const int size = parameters->target().get_size();
4207   if (size == 32)
4208     {
4209       symsize = elfcpp::Elf_sizes<32>::sym_size;
4210       align = 4;
4211     }
4212   else if (size == 64)
4213     {
4214       symsize = elfcpp::Elf_sizes<64>::sym_size;
4215       align = 8;
4216     }
4217   else
4218     gold_unreachable();
4219
4220   // Create the dynamic symbol table section.
4221
4222   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4223                                                        elfcpp::SHT_DYNSYM,
4224                                                        elfcpp::SHF_ALLOC,
4225                                                        false,
4226                                                        ORDER_DYNAMIC_LINKER,
4227                                                        false);
4228
4229   // Check for NULL as a linker script may discard .dynsym.
4230   if (dynsym != NULL)
4231     {
4232       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4233                                                                align,
4234                                                                "** dynsym");
4235       dynsym->add_output_section_data(odata);
4236
4237       dynsym->set_info(local_symcount);
4238       dynsym->set_entsize(symsize);
4239       dynsym->set_addralign(align);
4240
4241       this->dynsym_section_ = dynsym;
4242     }
4243
4244   Output_data_dynamic* const odyn = this->dynamic_data_;
4245   if (odyn != NULL)
4246     {
4247       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4248       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4249     }
4250
4251   // If there are more than SHN_LORESERVE allocated sections, we
4252   // create a .dynsym_shndx section.  It is possible that we don't
4253   // need one, because it is possible that there are no dynamic
4254   // symbols in any of the sections with indexes larger than
4255   // SHN_LORESERVE.  This is probably unusual, though, and at this
4256   // time we don't know the actual section indexes so it is
4257   // inconvenient to check.
4258   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4259     {
4260       Output_section* dynsym_xindex =
4261         this->choose_output_section(NULL, ".dynsym_shndx",
4262                                     elfcpp::SHT_SYMTAB_SHNDX,
4263                                     elfcpp::SHF_ALLOC,
4264                                     false, ORDER_DYNAMIC_LINKER, false);
4265
4266       if (dynsym_xindex != NULL)
4267         {
4268           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4269
4270           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4271
4272           dynsym_xindex->set_link_section(dynsym);
4273           dynsym_xindex->set_addralign(4);
4274           dynsym_xindex->set_entsize(4);
4275
4276           dynsym_xindex->set_after_input_sections();
4277
4278           // This tells the driver code to wait until the symbol table
4279           // has written out before writing out the postprocessing
4280           // sections, including the .dynsym_shndx section.
4281           this->any_postprocessing_sections_ = true;
4282         }
4283     }
4284
4285   // Create the dynamic string table section.
4286
4287   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4288                                                        elfcpp::SHT_STRTAB,
4289                                                        elfcpp::SHF_ALLOC,
4290                                                        false,
4291                                                        ORDER_DYNAMIC_LINKER,
4292                                                        false);
4293   *pdynstr = dynstr;
4294   if (dynstr != NULL)
4295     {
4296       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4297       dynstr->add_output_section_data(strdata);
4298
4299       if (dynsym != NULL)
4300         dynsym->set_link_section(dynstr);
4301       if (this->dynamic_section_ != NULL)
4302         this->dynamic_section_->set_link_section(dynstr);
4303
4304       if (odyn != NULL)
4305         {
4306           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4307           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4308         }
4309     }
4310
4311   // Create the hash tables.
4312
4313   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4314       || strcmp(parameters->options().hash_style(), "both") == 0)
4315     {
4316       unsigned char* phash;
4317       unsigned int hashlen;
4318       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4319                                     &phash, &hashlen);
4320
4321       Output_section* hashsec =
4322         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4323                                     elfcpp::SHF_ALLOC, false,
4324                                     ORDER_DYNAMIC_LINKER, false);
4325
4326       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4327                                                                    hashlen,
4328                                                                    align,
4329                                                                    "** hash");
4330       if (hashsec != NULL && hashdata != NULL)
4331         hashsec->add_output_section_data(hashdata);
4332
4333       if (hashsec != NULL)
4334         {
4335           if (dynsym != NULL)
4336             hashsec->set_link_section(dynsym);
4337           hashsec->set_entsize(4);
4338         }
4339
4340       if (odyn != NULL)
4341         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4342     }
4343
4344   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4345       || strcmp(parameters->options().hash_style(), "both") == 0)
4346     {
4347       unsigned char* phash;
4348       unsigned int hashlen;
4349       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4350                                     &phash, &hashlen);
4351
4352       Output_section* hashsec =
4353         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4354                                     elfcpp::SHF_ALLOC, false,
4355                                     ORDER_DYNAMIC_LINKER, false);
4356
4357       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4358                                                                    hashlen,
4359                                                                    align,
4360                                                                    "** hash");
4361       if (hashsec != NULL && hashdata != NULL)
4362         hashsec->add_output_section_data(hashdata);
4363
4364       if (hashsec != NULL)
4365         {
4366           if (dynsym != NULL)
4367             hashsec->set_link_section(dynsym);
4368
4369           // For a 64-bit target, the entries in .gnu.hash do not have
4370           // a uniform size, so we only set the entry size for a
4371           // 32-bit target.
4372           if (parameters->target().get_size() == 32)
4373             hashsec->set_entsize(4);
4374
4375           if (odyn != NULL)
4376             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4377         }
4378     }
4379 }
4380
4381 // Assign offsets to each local portion of the dynamic symbol table.
4382
4383 void
4384 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4385 {
4386   Output_section* dynsym = this->dynsym_section_;
4387   if (dynsym == NULL)
4388     return;
4389
4390   off_t off = dynsym->offset();
4391
4392   // Skip the dummy symbol at the start of the section.
4393   off += dynsym->entsize();
4394
4395   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4396        p != input_objects->relobj_end();
4397        ++p)
4398     {
4399       unsigned int count = (*p)->set_local_dynsym_offset(off);
4400       off += count * dynsym->entsize();
4401     }
4402 }
4403
4404 // Create the version sections.
4405
4406 void
4407 Layout::create_version_sections(const Versions* versions,
4408                                 const Symbol_table* symtab,
4409                                 unsigned int local_symcount,
4410                                 const std::vector<Symbol*>& dynamic_symbols,
4411                                 const Output_section* dynstr)
4412 {
4413   if (!versions->any_defs() && !versions->any_needs())
4414     return;
4415
4416   switch (parameters->size_and_endianness())
4417     {
4418 #ifdef HAVE_TARGET_32_LITTLE
4419     case Parameters::TARGET_32_LITTLE:
4420       this->sized_create_version_sections<32, false>(versions, symtab,
4421                                                      local_symcount,
4422                                                      dynamic_symbols, dynstr);
4423       break;
4424 #endif
4425 #ifdef HAVE_TARGET_32_BIG
4426     case Parameters::TARGET_32_BIG:
4427       this->sized_create_version_sections<32, true>(versions, symtab,
4428                                                     local_symcount,
4429                                                     dynamic_symbols, dynstr);
4430       break;
4431 #endif
4432 #ifdef HAVE_TARGET_64_LITTLE
4433     case Parameters::TARGET_64_LITTLE:
4434       this->sized_create_version_sections<64, false>(versions, symtab,
4435                                                      local_symcount,
4436                                                      dynamic_symbols, dynstr);
4437       break;
4438 #endif
4439 #ifdef HAVE_TARGET_64_BIG
4440     case Parameters::TARGET_64_BIG:
4441       this->sized_create_version_sections<64, true>(versions, symtab,
4442                                                     local_symcount,
4443                                                     dynamic_symbols, dynstr);
4444       break;
4445 #endif
4446     default:
4447       gold_unreachable();
4448     }
4449 }
4450
4451 // Create the version sections, sized version.
4452
4453 template<int size, bool big_endian>
4454 void
4455 Layout::sized_create_version_sections(
4456     const Versions* versions,
4457     const Symbol_table* symtab,
4458     unsigned int local_symcount,
4459     const std::vector<Symbol*>& dynamic_symbols,
4460     const Output_section* dynstr)
4461 {
4462   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4463                                                      elfcpp::SHT_GNU_versym,
4464                                                      elfcpp::SHF_ALLOC,
4465                                                      false,
4466                                                      ORDER_DYNAMIC_LINKER,
4467                                                      false);
4468
4469   // Check for NULL since a linker script may discard this section.
4470   if (vsec != NULL)
4471     {
4472       unsigned char* vbuf;
4473       unsigned int vsize;
4474       versions->symbol_section_contents<size, big_endian>(symtab,
4475                                                           &this->dynpool_,
4476                                                           local_symcount,
4477                                                           dynamic_symbols,
4478                                                           &vbuf, &vsize);
4479
4480       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4481                                                                 "** versions");
4482
4483       vsec->add_output_section_data(vdata);
4484       vsec->set_entsize(2);
4485       vsec->set_link_section(this->dynsym_section_);
4486     }
4487
4488   Output_data_dynamic* const odyn = this->dynamic_data_;
4489   if (odyn != NULL && vsec != NULL)
4490     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4491
4492   if (versions->any_defs())
4493     {
4494       Output_section* vdsec;
4495       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4496                                           elfcpp::SHT_GNU_verdef,
4497                                           elfcpp::SHF_ALLOC,
4498                                           false, ORDER_DYNAMIC_LINKER, false);
4499
4500       if (vdsec != NULL)
4501         {
4502           unsigned char* vdbuf;
4503           unsigned int vdsize;
4504           unsigned int vdentries;
4505           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4506                                                            &vdbuf, &vdsize,
4507                                                            &vdentries);
4508
4509           Output_section_data* vddata =
4510             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4511
4512           vdsec->add_output_section_data(vddata);
4513           vdsec->set_link_section(dynstr);
4514           vdsec->set_info(vdentries);
4515
4516           if (odyn != NULL)
4517             {
4518               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4519               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4520             }
4521         }
4522     }
4523
4524   if (versions->any_needs())
4525     {
4526       Output_section* vnsec;
4527       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4528                                           elfcpp::SHT_GNU_verneed,
4529                                           elfcpp::SHF_ALLOC,
4530                                           false, ORDER_DYNAMIC_LINKER, false);
4531
4532       if (vnsec != NULL)
4533         {
4534           unsigned char* vnbuf;
4535           unsigned int vnsize;
4536           unsigned int vnentries;
4537           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4538                                                             &vnbuf, &vnsize,
4539                                                             &vnentries);
4540
4541           Output_section_data* vndata =
4542             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4543
4544           vnsec->add_output_section_data(vndata);
4545           vnsec->set_link_section(dynstr);
4546           vnsec->set_info(vnentries);
4547
4548           if (odyn != NULL)
4549             {
4550               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4551               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4552             }
4553         }
4554     }
4555 }
4556
4557 // Create the .interp section and PT_INTERP segment.
4558
4559 void
4560 Layout::create_interp(const Target* target)
4561 {
4562   gold_assert(this->interp_segment_ == NULL);
4563
4564   const char* interp = parameters->options().dynamic_linker();
4565   if (interp == NULL)
4566     {
4567       interp = target->dynamic_linker();
4568       gold_assert(interp != NULL);
4569     }
4570
4571   size_t len = strlen(interp) + 1;
4572
4573   Output_section_data* odata = new Output_data_const(interp, len, 1);
4574
4575   Output_section* osec = this->choose_output_section(NULL, ".interp",
4576                                                      elfcpp::SHT_PROGBITS,
4577                                                      elfcpp::SHF_ALLOC,
4578                                                      false, ORDER_INTERP,
4579                                                      false);
4580   if (osec != NULL)
4581     osec->add_output_section_data(odata);
4582 }
4583
4584 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4585 // called by the target-specific code.  This does nothing if not doing
4586 // a dynamic link.
4587
4588 // USE_REL is true for REL relocs rather than RELA relocs.
4589
4590 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4591
4592 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4593 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4594 // some targets have multiple reloc sections in PLT_REL.
4595
4596 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4597 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4598 // section.
4599
4600 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4601 // executable.
4602
4603 void
4604 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4605                                 const Output_data* plt_rel,
4606                                 const Output_data_reloc_generic* dyn_rel,
4607                                 bool add_debug, bool dynrel_includes_plt)
4608 {
4609   Output_data_dynamic* odyn = this->dynamic_data_;
4610   if (odyn == NULL)
4611     return;
4612
4613   if (plt_got != NULL && plt_got->output_section() != NULL)
4614     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4615
4616   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4617     {
4618       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4619       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4620       odyn->add_constant(elfcpp::DT_PLTREL,
4621                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4622     }
4623
4624   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4625       || (dynrel_includes_plt
4626           && plt_rel != NULL
4627           && plt_rel->output_section() != NULL))
4628     {
4629       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4630       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4631       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4632                                 (have_dyn_rel
4633                                  ? dyn_rel->output_section()
4634                                  : plt_rel->output_section()));
4635       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4636       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4637         odyn->add_section_size(size_tag,
4638                                dyn_rel->output_section(),
4639                                plt_rel->output_section());
4640       else if (have_dyn_rel)
4641         odyn->add_section_size(size_tag, dyn_rel->output_section());
4642       else
4643         odyn->add_section_size(size_tag, plt_rel->output_section());
4644       const int size = parameters->target().get_size();
4645       elfcpp::DT rel_tag;
4646       int rel_size;
4647       if (use_rel)
4648         {
4649           rel_tag = elfcpp::DT_RELENT;
4650           if (size == 32)
4651             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4652           else if (size == 64)
4653             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4654           else
4655             gold_unreachable();
4656         }
4657       else
4658         {
4659           rel_tag = elfcpp::DT_RELAENT;
4660           if (size == 32)
4661             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4662           else if (size == 64)
4663             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4664           else
4665             gold_unreachable();
4666         }
4667       odyn->add_constant(rel_tag, rel_size);
4668
4669       if (parameters->options().combreloc() && have_dyn_rel)
4670         {
4671           size_t c = dyn_rel->relative_reloc_count();
4672           if (c > 0)
4673             odyn->add_constant((use_rel
4674                                 ? elfcpp::DT_RELCOUNT
4675                                 : elfcpp::DT_RELACOUNT),
4676                                c);
4677         }
4678     }
4679
4680   if (add_debug && !parameters->options().shared())
4681     {
4682       // The value of the DT_DEBUG tag is filled in by the dynamic
4683       // linker at run time, and used by the debugger.
4684       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4685     }
4686 }
4687
4688 // Finish the .dynamic section and PT_DYNAMIC segment.
4689
4690 void
4691 Layout::finish_dynamic_section(const Input_objects* input_objects,
4692                                const Symbol_table* symtab)
4693 {
4694   if (!this->script_options_->saw_phdrs_clause()
4695       && this->dynamic_section_ != NULL)
4696     {
4697       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4698                                                        (elfcpp::PF_R
4699                                                         | elfcpp::PF_W));
4700       oseg->add_output_section_to_nonload(this->dynamic_section_,
4701                                           elfcpp::PF_R | elfcpp::PF_W);
4702     }
4703
4704   Output_data_dynamic* const odyn = this->dynamic_data_;
4705   if (odyn == NULL)
4706     return;
4707
4708   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4709        p != input_objects->dynobj_end();
4710        ++p)
4711     {
4712       if (!(*p)->is_needed() && (*p)->as_needed())
4713         {
4714           // This dynamic object was linked with --as-needed, but it
4715           // is not needed.
4716           continue;
4717         }
4718
4719       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4720     }
4721
4722   if (parameters->options().shared())
4723     {
4724       const char* soname = parameters->options().soname();
4725       if (soname != NULL)
4726         odyn->add_string(elfcpp::DT_SONAME, soname);
4727     }
4728
4729   Symbol* sym = symtab->lookup(parameters->options().init());
4730   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4731     odyn->add_symbol(elfcpp::DT_INIT, sym);
4732
4733   sym = symtab->lookup(parameters->options().fini());
4734   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4735     odyn->add_symbol(elfcpp::DT_FINI, sym);
4736
4737   // Look for .init_array, .preinit_array and .fini_array by checking
4738   // section types.
4739   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4740       p != this->section_list_.end();
4741       ++p)
4742     switch((*p)->type())
4743       {
4744       case elfcpp::SHT_FINI_ARRAY:
4745         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4746         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4747         break;
4748       case elfcpp::SHT_INIT_ARRAY:
4749         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4750         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4751         break;
4752       case elfcpp::SHT_PREINIT_ARRAY:
4753         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4754         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4755         break;
4756       default:
4757         break;
4758       }
4759
4760   // Add a DT_RPATH entry if needed.
4761   const General_options::Dir_list& rpath(parameters->options().rpath());
4762   if (!rpath.empty())
4763     {
4764       std::string rpath_val;
4765       for (General_options::Dir_list::const_iterator p = rpath.begin();
4766            p != rpath.end();
4767            ++p)
4768         {
4769           if (rpath_val.empty())
4770             rpath_val = p->name();
4771           else
4772             {
4773               // Eliminate duplicates.
4774               General_options::Dir_list::const_iterator q;
4775               for (q = rpath.begin(); q != p; ++q)
4776                 if (q->name() == p->name())
4777                   break;
4778               if (q == p)
4779                 {
4780                   rpath_val += ':';
4781                   rpath_val += p->name();
4782                 }
4783             }
4784         }
4785
4786       if (!parameters->options().enable_new_dtags())
4787         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4788       else
4789         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4790     }
4791
4792   // Look for text segments that have dynamic relocations.
4793   bool have_textrel = false;
4794   if (!this->script_options_->saw_sections_clause())
4795     {
4796       for (Segment_list::const_iterator p = this->segment_list_.begin();
4797            p != this->segment_list_.end();
4798            ++p)
4799         {
4800           if ((*p)->type() == elfcpp::PT_LOAD
4801               && ((*p)->flags() & elfcpp::PF_W) == 0
4802               && (*p)->has_dynamic_reloc())
4803             {
4804               have_textrel = true;
4805               break;
4806             }
4807         }
4808     }
4809   else
4810     {
4811       // We don't know the section -> segment mapping, so we are
4812       // conservative and just look for readonly sections with
4813       // relocations.  If those sections wind up in writable segments,
4814       // then we have created an unnecessary DT_TEXTREL entry.
4815       for (Section_list::const_iterator p = this->section_list_.begin();
4816            p != this->section_list_.end();
4817            ++p)
4818         {
4819           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4820               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4821               && (*p)->has_dynamic_reloc())
4822             {
4823               have_textrel = true;
4824               break;
4825             }
4826         }
4827     }
4828
4829   if (parameters->options().filter() != NULL)
4830     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4831   if (parameters->options().any_auxiliary())
4832     {
4833       for (options::String_set::const_iterator p =
4834              parameters->options().auxiliary_begin();
4835            p != parameters->options().auxiliary_end();
4836            ++p)
4837         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4838     }
4839
4840   // Add a DT_FLAGS entry if necessary.
4841   unsigned int flags = 0;
4842   if (have_textrel)
4843     {
4844       // Add a DT_TEXTREL for compatibility with older loaders.
4845       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4846       flags |= elfcpp::DF_TEXTREL;
4847
4848       if (parameters->options().text())
4849         gold_error(_("read-only segment has dynamic relocations"));
4850       else if (parameters->options().warn_shared_textrel()
4851                && parameters->options().shared())
4852         gold_warning(_("shared library text segment is not shareable"));
4853     }
4854   if (parameters->options().shared() && this->has_static_tls())
4855     flags |= elfcpp::DF_STATIC_TLS;
4856   if (parameters->options().origin())
4857     flags |= elfcpp::DF_ORIGIN;
4858   if (parameters->options().Bsymbolic())
4859     {
4860       flags |= elfcpp::DF_SYMBOLIC;
4861       // Add DT_SYMBOLIC for compatibility with older loaders.
4862       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4863     }
4864   if (parameters->options().now())
4865     flags |= elfcpp::DF_BIND_NOW;
4866   if (flags != 0)
4867     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4868
4869   flags = 0;
4870   if (parameters->options().initfirst())
4871     flags |= elfcpp::DF_1_INITFIRST;
4872   if (parameters->options().interpose())
4873     flags |= elfcpp::DF_1_INTERPOSE;
4874   if (parameters->options().loadfltr())
4875     flags |= elfcpp::DF_1_LOADFLTR;
4876   if (parameters->options().nodefaultlib())
4877     flags |= elfcpp::DF_1_NODEFLIB;
4878   if (parameters->options().nodelete())
4879     flags |= elfcpp::DF_1_NODELETE;
4880   if (parameters->options().nodlopen())
4881     flags |= elfcpp::DF_1_NOOPEN;
4882   if (parameters->options().nodump())
4883     flags |= elfcpp::DF_1_NODUMP;
4884   if (!parameters->options().shared())
4885     flags &= ~(elfcpp::DF_1_INITFIRST
4886                | elfcpp::DF_1_NODELETE
4887                | elfcpp::DF_1_NOOPEN);
4888   if (parameters->options().origin())
4889     flags |= elfcpp::DF_1_ORIGIN;
4890   if (parameters->options().now())
4891     flags |= elfcpp::DF_1_NOW;
4892   if (parameters->options().Bgroup())
4893     flags |= elfcpp::DF_1_GROUP;
4894   if (flags != 0)
4895     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4896 }
4897
4898 // Set the size of the _DYNAMIC symbol table to be the size of the
4899 // dynamic data.
4900
4901 void
4902 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4903 {
4904   Output_data_dynamic* const odyn = this->dynamic_data_;
4905   if (odyn == NULL)
4906     return;
4907   odyn->finalize_data_size();
4908   if (this->dynamic_symbol_ == NULL)
4909     return;
4910   off_t data_size = odyn->data_size();
4911   const int size = parameters->target().get_size();
4912   if (size == 32)
4913     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4914   else if (size == 64)
4915     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4916   else
4917     gold_unreachable();
4918 }
4919
4920 // The mapping of input section name prefixes to output section names.
4921 // In some cases one prefix is itself a prefix of another prefix; in
4922 // such a case the longer prefix must come first.  These prefixes are
4923 // based on the GNU linker default ELF linker script.
4924
4925 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4926 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4927 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4928 {
4929   MAPPING_INIT(".text.", ".text"),
4930   MAPPING_INIT(".rodata.", ".rodata"),
4931   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4932   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4933   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4934   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4935   MAPPING_INIT(".data.", ".data"),
4936   MAPPING_INIT(".bss.", ".bss"),
4937   MAPPING_INIT(".tdata.", ".tdata"),
4938   MAPPING_INIT(".tbss.", ".tbss"),
4939   MAPPING_INIT(".init_array.", ".init_array"),
4940   MAPPING_INIT(".fini_array.", ".fini_array"),
4941   MAPPING_INIT(".sdata.", ".sdata"),
4942   MAPPING_INIT(".sbss.", ".sbss"),
4943   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4944   // differently depending on whether it is creating a shared library.
4945   MAPPING_INIT(".sdata2.", ".sdata"),
4946   MAPPING_INIT(".sbss2.", ".sbss"),
4947   MAPPING_INIT(".lrodata.", ".lrodata"),
4948   MAPPING_INIT(".ldata.", ".ldata"),
4949   MAPPING_INIT(".lbss.", ".lbss"),
4950   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4951   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4952   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4953   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4954   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4955   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4956   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4957   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4958   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4959   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4960   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4961   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4962   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4963   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4964   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4965   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4966   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4967   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4968   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4969   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4970   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4971 };
4972 #undef MAPPING_INIT
4973 #undef MAPPING_INIT_EXACT
4974
4975 const int Layout::section_name_mapping_count =
4976   (sizeof(Layout::section_name_mapping)
4977    / sizeof(Layout::section_name_mapping[0]));
4978
4979 // Choose the output section name to use given an input section name.
4980 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4981 // length of NAME.
4982
4983 const char*
4984 Layout::output_section_name(const Relobj* relobj, const char* name,
4985                             size_t* plen)
4986 {
4987   // gcc 4.3 generates the following sorts of section names when it
4988   // needs a section name specific to a function:
4989   //   .text.FN
4990   //   .rodata.FN
4991   //   .sdata2.FN
4992   //   .data.FN
4993   //   .data.rel.FN
4994   //   .data.rel.local.FN
4995   //   .data.rel.ro.FN
4996   //   .data.rel.ro.local.FN
4997   //   .sdata.FN
4998   //   .bss.FN
4999   //   .sbss.FN
5000   //   .tdata.FN
5001   //   .tbss.FN
5002
5003   // The GNU linker maps all of those to the part before the .FN,
5004   // except that .data.rel.local.FN is mapped to .data, and
5005   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5006   // beginning with .data.rel.ro.local are grouped together.
5007
5008   // For an anonymous namespace, the string FN can contain a '.'.
5009
5010   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5011   // GNU linker maps to .rodata.
5012
5013   // The .data.rel.ro sections are used with -z relro.  The sections
5014   // are recognized by name.  We use the same names that the GNU
5015   // linker does for these sections.
5016
5017   // It is hard to handle this in a principled way, so we don't even
5018   // try.  We use a table of mappings.  If the input section name is
5019   // not found in the table, we simply use it as the output section
5020   // name.
5021
5022   const Section_name_mapping* psnm = section_name_mapping;
5023   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5024     {
5025       if (psnm->fromlen > 0)
5026         {
5027           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5028             {
5029               *plen = psnm->tolen;
5030               return psnm->to;
5031             }
5032         }
5033       else
5034         {
5035           if (strcmp(name, psnm->from) == 0)
5036             {
5037               *plen = psnm->tolen;
5038               return psnm->to;
5039             }
5040         }
5041     }
5042
5043   // As an additional complication, .ctors sections are output in
5044   // either .ctors or .init_array sections, and .dtors sections are
5045   // output in either .dtors or .fini_array sections.
5046   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5047     {
5048       if (parameters->options().ctors_in_init_array())
5049         {
5050           *plen = 11;
5051           return name[1] == 'c' ? ".init_array" : ".fini_array";
5052         }
5053       else
5054         {
5055           *plen = 6;
5056           return name[1] == 'c' ? ".ctors" : ".dtors";
5057         }
5058     }
5059   if (parameters->options().ctors_in_init_array()
5060       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5061     {
5062       // To make .init_array/.fini_array work with gcc we must exclude
5063       // .ctors and .dtors sections from the crtbegin and crtend
5064       // files.
5065       if (relobj == NULL
5066           || (!Layout::match_file_name(relobj, "crtbegin")
5067               && !Layout::match_file_name(relobj, "crtend")))
5068         {
5069           *plen = 11;
5070           return name[1] == 'c' ? ".init_array" : ".fini_array";
5071         }
5072     }
5073
5074   return name;
5075 }
5076
5077 // Return true if RELOBJ is an input file whose base name matches
5078 // FILE_NAME.  The base name must have an extension of ".o", and must
5079 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5080 // to match crtbegin.o as well as crtbeginS.o without getting confused
5081 // by other possibilities.  Overall matching the file name this way is
5082 // a dreadful hack, but the GNU linker does it in order to better
5083 // support gcc, and we need to be compatible.
5084
5085 bool
5086 Layout::match_file_name(const Relobj* relobj, const char* match)
5087 {
5088   const std::string& file_name(relobj->name());
5089   const char* base_name = lbasename(file_name.c_str());
5090   size_t match_len = strlen(match);
5091   if (strncmp(base_name, match, match_len) != 0)
5092     return false;
5093   size_t base_len = strlen(base_name);
5094   if (base_len != match_len + 2 && base_len != match_len + 3)
5095     return false;
5096   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5097 }
5098
5099 // Check if a comdat group or .gnu.linkonce section with the given
5100 // NAME is selected for the link.  If there is already a section,
5101 // *KEPT_SECTION is set to point to the existing section and the
5102 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5103 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5104 // *KEPT_SECTION is set to the internal copy and the function returns
5105 // true.
5106
5107 bool
5108 Layout::find_or_add_kept_section(const std::string& name,
5109                                  Relobj* object,
5110                                  unsigned int shndx,
5111                                  bool is_comdat,
5112                                  bool is_group_name,
5113                                  Kept_section** kept_section)
5114 {
5115   // It's normal to see a couple of entries here, for the x86 thunk
5116   // sections.  If we see more than a few, we're linking a C++
5117   // program, and we resize to get more space to minimize rehashing.
5118   if (this->signatures_.size() > 4
5119       && !this->resized_signatures_)
5120     {
5121       reserve_unordered_map(&this->signatures_,
5122                             this->number_of_input_files_ * 64);
5123       this->resized_signatures_ = true;
5124     }
5125
5126   Kept_section candidate;
5127   std::pair<Signatures::iterator, bool> ins =
5128     this->signatures_.insert(std::make_pair(name, candidate));
5129
5130   if (kept_section != NULL)
5131     *kept_section = &ins.first->second;
5132   if (ins.second)
5133     {
5134       // This is the first time we've seen this signature.
5135       ins.first->second.set_object(object);
5136       ins.first->second.set_shndx(shndx);
5137       if (is_comdat)
5138         ins.first->second.set_is_comdat();
5139       if (is_group_name)
5140         ins.first->second.set_is_group_name();
5141       return true;
5142     }
5143
5144   // We have already seen this signature.
5145
5146   if (ins.first->second.is_group_name())
5147     {
5148       // We've already seen a real section group with this signature.
5149       // If the kept group is from a plugin object, and we're in the
5150       // replacement phase, accept the new one as a replacement.
5151       if (ins.first->second.object() == NULL
5152           && parameters->options().plugins()->in_replacement_phase())
5153         {
5154           ins.first->second.set_object(object);
5155           ins.first->second.set_shndx(shndx);
5156           return true;
5157         }
5158       return false;
5159     }
5160   else if (is_group_name)
5161     {
5162       // This is a real section group, and we've already seen a
5163       // linkonce section with this signature.  Record that we've seen
5164       // a section group, and don't include this section group.
5165       ins.first->second.set_is_group_name();
5166       return false;
5167     }
5168   else
5169     {
5170       // We've already seen a linkonce section and this is a linkonce
5171       // section.  These don't block each other--this may be the same
5172       // symbol name with different section types.
5173       return true;
5174     }
5175 }
5176
5177 // Store the allocated sections into the section list.
5178
5179 void
5180 Layout::get_allocated_sections(Section_list* section_list) const
5181 {
5182   for (Section_list::const_iterator p = this->section_list_.begin();
5183        p != this->section_list_.end();
5184        ++p)
5185     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5186       section_list->push_back(*p);
5187 }
5188
5189 // Store the executable sections into the section list.
5190
5191 void
5192 Layout::get_executable_sections(Section_list* section_list) const
5193 {
5194   for (Section_list::const_iterator p = this->section_list_.begin();
5195        p != this->section_list_.end();
5196        ++p)
5197     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5198         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5199       section_list->push_back(*p);
5200 }
5201
5202 // Create an output segment.
5203
5204 Output_segment*
5205 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5206 {
5207   gold_assert(!parameters->options().relocatable());
5208   Output_segment* oseg = new Output_segment(type, flags);
5209   this->segment_list_.push_back(oseg);
5210
5211   if (type == elfcpp::PT_TLS)
5212     this->tls_segment_ = oseg;
5213   else if (type == elfcpp::PT_GNU_RELRO)
5214     this->relro_segment_ = oseg;
5215   else if (type == elfcpp::PT_INTERP)
5216     this->interp_segment_ = oseg;
5217
5218   return oseg;
5219 }
5220
5221 // Return the file offset of the normal symbol table.
5222
5223 off_t
5224 Layout::symtab_section_offset() const
5225 {
5226   if (this->symtab_section_ != NULL)
5227     return this->symtab_section_->offset();
5228   return 0;
5229 }
5230
5231 // Return the section index of the normal symbol table.  It may have
5232 // been stripped by the -s/--strip-all option.
5233
5234 unsigned int
5235 Layout::symtab_section_shndx() const
5236 {
5237   if (this->symtab_section_ != NULL)
5238     return this->symtab_section_->out_shndx();
5239   return 0;
5240 }
5241
5242 // Write out the Output_sections.  Most won't have anything to write,
5243 // since most of the data will come from input sections which are
5244 // handled elsewhere.  But some Output_sections do have Output_data.
5245
5246 void
5247 Layout::write_output_sections(Output_file* of) const
5248 {
5249   for (Section_list::const_iterator p = this->section_list_.begin();
5250        p != this->section_list_.end();
5251        ++p)
5252     {
5253       if (!(*p)->after_input_sections())
5254         (*p)->write(of);
5255     }
5256 }
5257
5258 // Write out data not associated with a section or the symbol table.
5259
5260 void
5261 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5262 {
5263   if (!parameters->options().strip_all())
5264     {
5265       const Output_section* symtab_section = this->symtab_section_;
5266       for (Section_list::const_iterator p = this->section_list_.begin();
5267            p != this->section_list_.end();
5268            ++p)
5269         {
5270           if ((*p)->needs_symtab_index())
5271             {
5272               gold_assert(symtab_section != NULL);
5273               unsigned int index = (*p)->symtab_index();
5274               gold_assert(index > 0 && index != -1U);
5275               off_t off = (symtab_section->offset()
5276                            + index * symtab_section->entsize());
5277               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5278             }
5279         }
5280     }
5281
5282   const Output_section* dynsym_section = this->dynsym_section_;
5283   for (Section_list::const_iterator p = this->section_list_.begin();
5284        p != this->section_list_.end();
5285        ++p)
5286     {
5287       if ((*p)->needs_dynsym_index())
5288         {
5289           gold_assert(dynsym_section != NULL);
5290           unsigned int index = (*p)->dynsym_index();
5291           gold_assert(index > 0 && index != -1U);
5292           off_t off = (dynsym_section->offset()
5293                        + index * dynsym_section->entsize());
5294           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5295         }
5296     }
5297
5298   // Write out the Output_data which are not in an Output_section.
5299   for (Data_list::const_iterator p = this->special_output_list_.begin();
5300        p != this->special_output_list_.end();
5301        ++p)
5302     (*p)->write(of);
5303
5304   // Write out the Output_data which are not in an Output_section
5305   // and are regenerated in each iteration of relaxation.
5306   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5307        p != this->relax_output_list_.end();
5308        ++p)
5309     (*p)->write(of);
5310 }
5311
5312 // Write out the Output_sections which can only be written after the
5313 // input sections are complete.
5314
5315 void
5316 Layout::write_sections_after_input_sections(Output_file* of)
5317 {
5318   // Determine the final section offsets, and thus the final output
5319   // file size.  Note we finalize the .shstrab last, to allow the
5320   // after_input_section sections to modify their section-names before
5321   // writing.
5322   if (this->any_postprocessing_sections_)
5323     {
5324       off_t off = this->output_file_size_;
5325       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5326
5327       // Now that we've finalized the names, we can finalize the shstrab.
5328       off =
5329         this->set_section_offsets(off,
5330                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5331
5332       if (off > this->output_file_size_)
5333         {
5334           of->resize(off);
5335           this->output_file_size_ = off;
5336         }
5337     }
5338
5339   for (Section_list::const_iterator p = this->section_list_.begin();
5340        p != this->section_list_.end();
5341        ++p)
5342     {
5343       if ((*p)->after_input_sections())
5344         (*p)->write(of);
5345     }
5346
5347   this->section_headers_->write(of);
5348 }
5349
5350 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5351 // or as a "tree" where each chunk of the string is hashed and then those
5352 // hashes are put into a (much smaller) string which is hashed with sha1.
5353 // We compute a checksum over the entire file because that is simplest.
5354
5355 Task_token*
5356 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5357                              Output_file* of)
5358 {
5359   const size_t filesize = (this->output_file_size() <= 0 ? 0
5360                            : static_cast<size_t>(this->output_file_size()));
5361   if (this->build_id_note_ != NULL
5362       && strcmp(parameters->options().build_id(), "tree") == 0
5363       && parameters->options().build_id_chunk_size_for_treehash() > 0
5364       && filesize > 0
5365       && (filesize >=
5366           parameters->options().build_id_min_file_size_for_treehash()))
5367     {
5368       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5369       const size_t chunk_size =
5370           parameters->options().build_id_chunk_size_for_treehash();
5371       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5372       Task_token* post_hash_tasks_blocker = new Task_token(true);
5373       post_hash_tasks_blocker->add_blockers(num_hashes);
5374       this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5375       const unsigned char* src = of->get_input_view(0, filesize);
5376       this->input_view_ = src;
5377       unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5378       this->array_of_hashes_ = dst;
5379       for (size_t i = 0, src_offset = 0; i < num_hashes;
5380            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5381         {
5382           size_t size = std::min(chunk_size, filesize - src_offset);
5383           workqueue->queue(new Hash_task(src + src_offset,
5384                                          size,
5385                                          dst,
5386                                          build_id_blocker,
5387                                          post_hash_tasks_blocker));
5388         }
5389       return post_hash_tasks_blocker;
5390     }
5391   return build_id_blocker;
5392 }
5393
5394 // If a tree-style build ID was requested, the parallel part of that computation
5395 // is already done, and the final hash-of-hashes is computed here.  For other
5396 // types of build IDs, all the work is done here.
5397
5398 void
5399 Layout::write_build_id(Output_file* of) const
5400 {
5401   if (this->build_id_note_ == NULL)
5402     return;
5403
5404   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5405                                           this->build_id_note_->data_size());
5406
5407   if (this->array_of_hashes_ == NULL)
5408     {
5409       const size_t output_file_size = this->output_file_size();
5410       const unsigned char* iv = of->get_input_view(0, output_file_size);
5411       const char* style = parameters->options().build_id();
5412
5413       // If we get here with style == "tree" then the output must be
5414       // too small for chunking, and we use SHA-1 in that case.
5415       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5416         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5417       else if (strcmp(style, "md5") == 0)
5418         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5419       else
5420         gold_unreachable();
5421
5422       of->free_input_view(0, output_file_size, iv);
5423     }
5424   else
5425     {
5426       // Non-overlapping substrings of the output file have been hashed.
5427       // Compute SHA-1 hash of the hashes.
5428       sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5429                   this->size_of_array_of_hashes_, ov);
5430       delete[] this->array_of_hashes_;
5431       of->free_input_view(0, this->output_file_size(), this->input_view_);
5432     }
5433
5434   of->write_output_view(this->build_id_note_->offset(),
5435                         this->build_id_note_->data_size(),
5436                         ov);
5437 }
5438
5439 // Write out a binary file.  This is called after the link is
5440 // complete.  IN is the temporary output file we used to generate the
5441 // ELF code.  We simply walk through the segments, read them from
5442 // their file offset in IN, and write them to their load address in
5443 // the output file.  FIXME: with a bit more work, we could support
5444 // S-records and/or Intel hex format here.
5445
5446 void
5447 Layout::write_binary(Output_file* in) const
5448 {
5449   gold_assert(parameters->options().oformat_enum()
5450               == General_options::OBJECT_FORMAT_BINARY);
5451
5452   // Get the size of the binary file.
5453   uint64_t max_load_address = 0;
5454   for (Segment_list::const_iterator p = this->segment_list_.begin();
5455        p != this->segment_list_.end();
5456        ++p)
5457     {
5458       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5459         {
5460           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5461           if (max_paddr > max_load_address)
5462             max_load_address = max_paddr;
5463         }
5464     }
5465
5466   Output_file out(parameters->options().output_file_name());
5467   out.open(max_load_address);
5468
5469   for (Segment_list::const_iterator p = this->segment_list_.begin();
5470        p != this->segment_list_.end();
5471        ++p)
5472     {
5473       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5474         {
5475           const unsigned char* vin = in->get_input_view((*p)->offset(),
5476                                                         (*p)->filesz());
5477           unsigned char* vout = out.get_output_view((*p)->paddr(),
5478                                                     (*p)->filesz());
5479           memcpy(vout, vin, (*p)->filesz());
5480           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5481           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5482         }
5483     }
5484
5485   out.close();
5486 }
5487
5488 // Print the output sections to the map file.
5489
5490 void
5491 Layout::print_to_mapfile(Mapfile* mapfile) const
5492 {
5493   for (Segment_list::const_iterator p = this->segment_list_.begin();
5494        p != this->segment_list_.end();
5495        ++p)
5496     (*p)->print_sections_to_mapfile(mapfile);
5497   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5498        p != this->unattached_section_list_.end();
5499        ++p)
5500     (*p)->print_to_mapfile(mapfile);
5501 }
5502
5503 // Print statistical information to stderr.  This is used for --stats.
5504
5505 void
5506 Layout::print_stats() const
5507 {
5508   this->namepool_.print_stats("section name pool");
5509   this->sympool_.print_stats("output symbol name pool");
5510   this->dynpool_.print_stats("dynamic name pool");
5511
5512   for (Section_list::const_iterator p = this->section_list_.begin();
5513        p != this->section_list_.end();
5514        ++p)
5515     (*p)->print_merge_stats();
5516 }
5517
5518 // Write_sections_task methods.
5519
5520 // We can always run this task.
5521
5522 Task_token*
5523 Write_sections_task::is_runnable()
5524 {
5525   return NULL;
5526 }
5527
5528 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5529 // when finished.
5530
5531 void
5532 Write_sections_task::locks(Task_locker* tl)
5533 {
5534   tl->add(this, this->output_sections_blocker_);
5535   tl->add(this, this->final_blocker_);
5536 }
5537
5538 // Run the task--write out the data.
5539
5540 void
5541 Write_sections_task::run(Workqueue*)
5542 {
5543   this->layout_->write_output_sections(this->of_);
5544 }
5545
5546 // Write_data_task methods.
5547
5548 // We can always run this task.
5549
5550 Task_token*
5551 Write_data_task::is_runnable()
5552 {
5553   return NULL;
5554 }
5555
5556 // We need to unlock FINAL_BLOCKER when finished.
5557
5558 void
5559 Write_data_task::locks(Task_locker* tl)
5560 {
5561   tl->add(this, this->final_blocker_);
5562 }
5563
5564 // Run the task--write out the data.
5565
5566 void
5567 Write_data_task::run(Workqueue*)
5568 {
5569   this->layout_->write_data(this->symtab_, this->of_);
5570 }
5571
5572 // Write_symbols_task methods.
5573
5574 // We can always run this task.
5575
5576 Task_token*
5577 Write_symbols_task::is_runnable()
5578 {
5579   return NULL;
5580 }
5581
5582 // We need to unlock FINAL_BLOCKER when finished.
5583
5584 void
5585 Write_symbols_task::locks(Task_locker* tl)
5586 {
5587   tl->add(this, this->final_blocker_);
5588 }
5589
5590 // Run the task--write out the symbols.
5591
5592 void
5593 Write_symbols_task::run(Workqueue*)
5594 {
5595   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5596                                this->layout_->symtab_xindex(),
5597                                this->layout_->dynsym_xindex(), this->of_);
5598 }
5599
5600 // Write_after_input_sections_task methods.
5601
5602 // We can only run this task after the input sections have completed.
5603
5604 Task_token*
5605 Write_after_input_sections_task::is_runnable()
5606 {
5607   if (this->input_sections_blocker_->is_blocked())
5608     return this->input_sections_blocker_;
5609   return NULL;
5610 }
5611
5612 // We need to unlock FINAL_BLOCKER when finished.
5613
5614 void
5615 Write_after_input_sections_task::locks(Task_locker* tl)
5616 {
5617   tl->add(this, this->final_blocker_);
5618 }
5619
5620 // Run the task.
5621
5622 void
5623 Write_after_input_sections_task::run(Workqueue*)
5624 {
5625   this->layout_->write_sections_after_input_sections(this->of_);
5626 }
5627
5628 // Close_task_runner methods.
5629
5630 // Finish up the build ID computation, if necessary, and write a binary file,
5631 // if necessary.  Then close the output file.
5632
5633 void
5634 Close_task_runner::run(Workqueue*, const Task*)
5635 {
5636   // At this point the multi-threaded part of the build ID computation,
5637   // if any, is done.  See queue_build_id_tasks().
5638   this->layout_->write_build_id(this->of_);
5639
5640   // If we've been asked to create a binary file, we do so here.
5641   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5642     this->layout_->write_binary(this->of_);
5643
5644   this->of_->close();
5645 }
5646
5647 // Instantiate the templates we need.  We could use the configure
5648 // script to restrict this to only the ones for implemented targets.
5649
5650 #ifdef HAVE_TARGET_32_LITTLE
5651 template
5652 Output_section*
5653 Layout::init_fixed_output_section<32, false>(
5654     const char* name,
5655     elfcpp::Shdr<32, false>& shdr);
5656 #endif
5657
5658 #ifdef HAVE_TARGET_32_BIG
5659 template
5660 Output_section*
5661 Layout::init_fixed_output_section<32, true>(
5662     const char* name,
5663     elfcpp::Shdr<32, true>& shdr);
5664 #endif
5665
5666 #ifdef HAVE_TARGET_64_LITTLE
5667 template
5668 Output_section*
5669 Layout::init_fixed_output_section<64, false>(
5670     const char* name,
5671     elfcpp::Shdr<64, false>& shdr);
5672 #endif
5673
5674 #ifdef HAVE_TARGET_64_BIG
5675 template
5676 Output_section*
5677 Layout::init_fixed_output_section<64, true>(
5678     const char* name,
5679     elfcpp::Shdr<64, true>& shdr);
5680 #endif
5681
5682 #ifdef HAVE_TARGET_32_LITTLE
5683 template
5684 Output_section*
5685 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5686                           unsigned int shndx,
5687                           const char* name,
5688                           const elfcpp::Shdr<32, false>& shdr,
5689                           unsigned int, unsigned int, off_t*);
5690 #endif
5691
5692 #ifdef HAVE_TARGET_32_BIG
5693 template
5694 Output_section*
5695 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5696                          unsigned int shndx,
5697                          const char* name,
5698                          const elfcpp::Shdr<32, true>& shdr,
5699                          unsigned int, unsigned int, off_t*);
5700 #endif
5701
5702 #ifdef HAVE_TARGET_64_LITTLE
5703 template
5704 Output_section*
5705 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5706                           unsigned int shndx,
5707                           const char* name,
5708                           const elfcpp::Shdr<64, false>& shdr,
5709                           unsigned int, unsigned int, off_t*);
5710 #endif
5711
5712 #ifdef HAVE_TARGET_64_BIG
5713 template
5714 Output_section*
5715 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5716                          unsigned int shndx,
5717                          const char* name,
5718                          const elfcpp::Shdr<64, true>& shdr,
5719                          unsigned int, unsigned int, off_t*);
5720 #endif
5721
5722 #ifdef HAVE_TARGET_32_LITTLE
5723 template
5724 Output_section*
5725 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5726                                 unsigned int reloc_shndx,
5727                                 const elfcpp::Shdr<32, false>& shdr,
5728                                 Output_section* data_section,
5729                                 Relocatable_relocs* rr);
5730 #endif
5731
5732 #ifdef HAVE_TARGET_32_BIG
5733 template
5734 Output_section*
5735 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5736                                unsigned int reloc_shndx,
5737                                const elfcpp::Shdr<32, true>& shdr,
5738                                Output_section* data_section,
5739                                Relocatable_relocs* rr);
5740 #endif
5741
5742 #ifdef HAVE_TARGET_64_LITTLE
5743 template
5744 Output_section*
5745 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5746                                 unsigned int reloc_shndx,
5747                                 const elfcpp::Shdr<64, false>& shdr,
5748                                 Output_section* data_section,
5749                                 Relocatable_relocs* rr);
5750 #endif
5751
5752 #ifdef HAVE_TARGET_64_BIG
5753 template
5754 Output_section*
5755 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5756                                unsigned int reloc_shndx,
5757                                const elfcpp::Shdr<64, true>& shdr,
5758                                Output_section* data_section,
5759                                Relocatable_relocs* rr);
5760 #endif
5761
5762 #ifdef HAVE_TARGET_32_LITTLE
5763 template
5764 void
5765 Layout::layout_group<32, false>(Symbol_table* symtab,
5766                                 Sized_relobj_file<32, false>* object,
5767                                 unsigned int,
5768                                 const char* group_section_name,
5769                                 const char* signature,
5770                                 const elfcpp::Shdr<32, false>& shdr,
5771                                 elfcpp::Elf_Word flags,
5772                                 std::vector<unsigned int>* shndxes);
5773 #endif
5774
5775 #ifdef HAVE_TARGET_32_BIG
5776 template
5777 void
5778 Layout::layout_group<32, true>(Symbol_table* symtab,
5779                                Sized_relobj_file<32, true>* object,
5780                                unsigned int,
5781                                const char* group_section_name,
5782                                const char* signature,
5783                                const elfcpp::Shdr<32, true>& shdr,
5784                                elfcpp::Elf_Word flags,
5785                                std::vector<unsigned int>* shndxes);
5786 #endif
5787
5788 #ifdef HAVE_TARGET_64_LITTLE
5789 template
5790 void
5791 Layout::layout_group<64, false>(Symbol_table* symtab,
5792                                 Sized_relobj_file<64, false>* object,
5793                                 unsigned int,
5794                                 const char* group_section_name,
5795                                 const char* signature,
5796                                 const elfcpp::Shdr<64, false>& shdr,
5797                                 elfcpp::Elf_Word flags,
5798                                 std::vector<unsigned int>* shndxes);
5799 #endif
5800
5801 #ifdef HAVE_TARGET_64_BIG
5802 template
5803 void
5804 Layout::layout_group<64, true>(Symbol_table* symtab,
5805                                Sized_relobj_file<64, true>* object,
5806                                unsigned int,
5807                                const char* group_section_name,
5808                                const char* signature,
5809                                const elfcpp::Shdr<64, true>& shdr,
5810                                elfcpp::Elf_Word flags,
5811                                std::vector<unsigned int>* shndxes);
5812 #endif
5813
5814 #ifdef HAVE_TARGET_32_LITTLE
5815 template
5816 Output_section*
5817 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5818                                    const unsigned char* symbols,
5819                                    off_t symbols_size,
5820                                    const unsigned char* symbol_names,
5821                                    off_t symbol_names_size,
5822                                    unsigned int shndx,
5823                                    const elfcpp::Shdr<32, false>& shdr,
5824                                    unsigned int reloc_shndx,
5825                                    unsigned int reloc_type,
5826                                    off_t* off);
5827 #endif
5828
5829 #ifdef HAVE_TARGET_32_BIG
5830 template
5831 Output_section*
5832 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5833                                   const unsigned char* symbols,
5834                                   off_t symbols_size,
5835                                   const unsigned char* symbol_names,
5836                                   off_t symbol_names_size,
5837                                   unsigned int shndx,
5838                                   const elfcpp::Shdr<32, true>& shdr,
5839                                   unsigned int reloc_shndx,
5840                                   unsigned int reloc_type,
5841                                   off_t* off);
5842 #endif
5843
5844 #ifdef HAVE_TARGET_64_LITTLE
5845 template
5846 Output_section*
5847 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5848                                    const unsigned char* symbols,
5849                                    off_t symbols_size,
5850                                    const unsigned char* symbol_names,
5851                                    off_t symbol_names_size,
5852                                    unsigned int shndx,
5853                                    const elfcpp::Shdr<64, false>& shdr,
5854                                    unsigned int reloc_shndx,
5855                                    unsigned int reloc_type,
5856                                    off_t* off);
5857 #endif
5858
5859 #ifdef HAVE_TARGET_64_BIG
5860 template
5861 Output_section*
5862 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5863                                   const unsigned char* symbols,
5864                                   off_t symbols_size,
5865                                   const unsigned char* symbol_names,
5866                                   off_t symbol_names_size,
5867                                   unsigned int shndx,
5868                                   const elfcpp::Shdr<64, true>& shdr,
5869                                   unsigned int reloc_shndx,
5870                                   unsigned int reloc_type,
5871                                   off_t* off);
5872 #endif
5873
5874 #ifdef HAVE_TARGET_32_LITTLE
5875 template
5876 void
5877 Layout::add_to_gdb_index(bool is_type_unit,
5878                          Sized_relobj<32, false>* object,
5879                          const unsigned char* symbols,
5880                          off_t symbols_size,
5881                          unsigned int shndx,
5882                          unsigned int reloc_shndx,
5883                          unsigned int reloc_type);
5884 #endif
5885
5886 #ifdef HAVE_TARGET_32_BIG
5887 template
5888 void
5889 Layout::add_to_gdb_index(bool is_type_unit,
5890                          Sized_relobj<32, true>* object,
5891                          const unsigned char* symbols,
5892                          off_t symbols_size,
5893                          unsigned int shndx,
5894                          unsigned int reloc_shndx,
5895                          unsigned int reloc_type);
5896 #endif
5897
5898 #ifdef HAVE_TARGET_64_LITTLE
5899 template
5900 void
5901 Layout::add_to_gdb_index(bool is_type_unit,
5902                          Sized_relobj<64, false>* object,
5903                          const unsigned char* symbols,
5904                          off_t symbols_size,
5905                          unsigned int shndx,
5906                          unsigned int reloc_shndx,
5907                          unsigned int reloc_type);
5908 #endif
5909
5910 #ifdef HAVE_TARGET_64_BIG
5911 template
5912 void
5913 Layout::add_to_gdb_index(bool is_type_unit,
5914                          Sized_relobj<64, true>* object,
5915                          const unsigned char* symbols,
5916                          off_t symbols_size,
5917                          unsigned int shndx,
5918                          unsigned int reloc_shndx,
5919                          unsigned int reloc_type);
5920 #endif
5921
5922 } // End namespace gold.