1 // layout.cc -- lay out output file sections for gold
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
52 #include "descriptors.h"
54 #include "incremental.h"
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
75 // Initialize the free list. Creates a single free list node that
76 // describes the entire region of length LEN. If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
81 Free_list::init(off_t len, bool extend)
83 this->list_.push_front(Free_list_node(0, len));
84 this->last_remove_ = this->list_.begin();
85 this->extend_ = extend;
87 ++Free_list::num_lists;
88 ++Free_list::num_nodes;
91 // Remove a chunk from the free list. Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node. We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
101 Free_list::remove(off_t start, off_t end)
105 gold_assert(start < end);
107 ++Free_list::num_removes;
109 Iterator p = this->last_remove_;
110 if (p->start_ > start)
111 p = this->list_.begin();
113 for (; p != this->list_.end(); ++p)
115 ++Free_list::num_remove_visits;
116 // Find a node that wholly contains the indicated region.
117 if (p->start_ <= start && p->end_ >= end)
119 // Case 1: the indicated region spans the whole node.
120 // Add some fuzz to avoid creating tiny free chunks.
121 if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 p = this->list_.erase(p);
123 // Case 2: remove a chunk from the start of the node.
124 else if (p->start_ + 3 >= start)
126 // Case 3: remove a chunk from the end of the node.
127 else if (p->end_ <= end + 3)
129 // Case 4: remove a chunk from the middle, and split
130 // the node into two.
133 Free_list_node newnode(p->start_, start);
135 this->list_.insert(p, newnode);
136 ++Free_list::num_nodes;
138 this->last_remove_ = p;
143 // Did not find a node containing the given chunk. This could happen
144 // because a small chunk was already removed due to the fuzz.
145 gold_debug(DEBUG_INCREMENTAL,
146 "Free_list::remove(%d,%d) not found",
147 static_cast<int>(start), static_cast<int>(end));
150 // Allocate a chunk of size LEN from the free list. Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 gold_debug(DEBUG_INCREMENTAL,
158 "Free_list::allocate(%08lx, %d, %08lx)",
159 static_cast<long>(len), static_cast<int>(align),
160 static_cast<long>(minoff));
162 return align_address(minoff, align);
164 ++Free_list::num_allocates;
166 // We usually want to drop free chunks smaller than 4 bytes.
167 // If we need to guarantee a minimum hole size, though, we need
168 // to keep track of all free chunks.
169 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 ++Free_list::num_allocate_visits;
174 off_t start = p->start_ > minoff ? p->start_ : minoff;
175 start = align_address(start, align);
176 off_t end = start + len;
177 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 this->list_.erase(p);
186 else if (p->start_ + fuzz >= start)
188 else if (p->end_ <= end + fuzz)
192 Free_list_node newnode(p->start_, start);
194 this->list_.insert(p, newnode);
195 ++Free_list::num_nodes;
202 off_t start = align_address(this->length_, align);
203 this->length_ = start + len;
209 // Dump the free list (for debugging).
213 gold_info("Free list:\n start end length\n");
214 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
216 static_cast<long>(p->end_),
217 static_cast<long>(p->end_ - p->start_));
220 // Print the statistics for the free lists.
222 Free_list::print_stats()
224 fprintf(stderr, _("%s: total free lists: %u\n"),
225 program_name, Free_list::num_lists);
226 fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 program_name, Free_list::num_nodes);
228 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 program_name, Free_list::num_removes);
230 fprintf(stderr, _("%s: nodes visited: %u\n"),
231 program_name, Free_list::num_remove_visits);
232 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 program_name, Free_list::num_allocates);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_allocate_visits);
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
242 class Hash_task : public Task
245 Hash_task(const unsigned char* src,
248 Task_token* build_id_blocker,
249 Task_token* final_blocker)
250 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251 final_blocker_(final_blocker)
256 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
261 // Unblock FINAL_BLOCKER_ when done.
263 locks(Task_locker* tl)
264 { tl->add(this, this->final_blocker_); }
268 { return "Hash_task"; }
271 const unsigned char* const src_;
273 unsigned char* const dst_;
274 Task_token* const build_id_blocker_;
275 Task_token* const final_blocker_;
279 Hash_task::is_runnable()
281 if (this->build_id_blocker_->is_blocked())
282 return this->build_id_blocker_;
286 // Layout::Relaxation_debug_check methods.
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
298 for(Layout::Section_list::const_iterator p = sections.begin();
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
308 gold_assert(relax_outputs.empty());
311 // Save information of SECTIONS for checking later.
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
317 for(Layout::Section_list::const_iterator p = sections.begin();
321 Output_section* os = *p;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
331 // Verify SECTIONS using previously recorded information.
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
338 for(Layout::Section_list::const_iterator p = sections.begin();
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
347 if (i >= this->section_infos_.size())
349 gold_fatal("Section_info of %s missing.\n", os->name());
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
362 // Layout_task_runner methods.
364 // Lay out the sections. This is called after all the input objects
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
383 if (this->mapfile_ != NULL)
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
390 if (layout->incremental_base() == NULL)
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
399 of = layout->incremental_base()->output_file();
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
411 of->resize(file_size);
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 array_of_hashes_(NULL),
453 size_of_array_of_hashes_(0),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL),
471 record_output_section_data_from_script_(false),
472 script_output_section_data_list_(),
473 segment_states_(NULL),
474 relaxation_debug_check_(NULL),
475 section_order_map_(),
476 section_segment_map_(),
477 input_section_position_(),
478 input_section_glob_(),
479 incremental_base_(NULL),
482 // Make space for more than enough segments for a typical file.
483 // This is just for efficiency--it's OK if we wind up needing more.
484 this->segment_list_.reserve(12);
486 // We expect two unattached Output_data objects: the file header and
487 // the segment headers.
488 this->special_output_list_.reserve(2);
490 // Initialize structure needed for an incremental build.
491 if (parameters->incremental())
492 this->incremental_inputs_ = new Incremental_inputs;
494 // The section name pool is worth optimizing in all cases, because
495 // it is small, but there are often overlaps due to .rel sections.
496 this->namepool_.set_optimize();
499 // For incremental links, record the base file to be modified.
502 Layout::set_incremental_base(Incremental_binary* base)
504 this->incremental_base_ = base;
505 this->free_list_.init(base->output_file()->filesize(), true);
508 // Hash a key we use to look up an output section mapping.
511 Layout::Hash_key::operator()(const Layout::Key& k) const
513 return k.first + k.second.first + k.second.second;
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
521 static const char* gdb_sections[] =
524 "addr", // Fission extension
525 // "aranges", // not used by gdb as of 7.4
533 // "pubnames", // not used by gdb as of 7.4
534 // "pubtypes", // not used by gdb as of 7.4
539 // This is the minimum set of sections needed for line numbers.
541 static const char* lines_only_debug_sections[] =
544 // "addr", // Fission extension
545 // "aranges", // not used by gdb as of 7.4
553 // "pubnames", // not used by gdb as of 7.4
554 // "pubtypes", // not used by gdb as of 7.4
559 // These sections are the DWARF fast-lookup tables, and are not needed
560 // when building a .gdb_index section.
562 static const char* gdb_fast_lookup_sections[] =
571 // Returns whether the given debug section is in the list of
572 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
573 // portion of the name following ".debug_" or ".zdebug_".
576 is_gdb_debug_section(const char* suffix)
578 // We can do this faster: binary search or a hashtable. But why bother?
579 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
580 if (strcmp(suffix, gdb_sections[i]) == 0)
585 // Returns whether the given section is needed for lines-only debugging.
588 is_lines_only_debug_section(const char* suffix)
590 // We can do this faster: binary search or a hashtable. But why bother?
592 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
594 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
599 // Returns whether the given section is a fast-lookup section that
600 // will not be needed when building a .gdb_index section.
603 is_gdb_fast_lookup_section(const char* suffix)
605 // We can do this faster: binary search or a hashtable. But why bother?
607 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
609 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
614 // Sometimes we compress sections. This is typically done for
615 // sections that are not part of normal program execution (such as
616 // .debug_* sections), and where the readers of these sections know
617 // how to deal with compressed sections. This routine doesn't say for
618 // certain whether we'll compress -- it depends on commandline options
619 // as well -- just whether this section is a candidate for compression.
620 // (The Output_compressed_section class decides whether to compress
621 // a given section, and picks the name of the compressed section.)
624 is_compressible_debug_section(const char* secname)
626 return (is_prefix_of(".debug", secname));
629 // We may see compressed debug sections in input files. Return TRUE
630 // if this is the name of a compressed debug section.
633 is_compressed_debug_section(const char* secname)
635 return (is_prefix_of(".zdebug", secname));
638 // Whether to include this section in the link.
640 template<int size, bool big_endian>
642 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
643 const elfcpp::Shdr<size, big_endian>& shdr)
645 if (!parameters->options().relocatable()
646 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
649 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
651 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
652 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
653 return parameters->target().should_include_section(sh_type);
657 case elfcpp::SHT_NULL:
658 case elfcpp::SHT_SYMTAB:
659 case elfcpp::SHT_DYNSYM:
660 case elfcpp::SHT_HASH:
661 case elfcpp::SHT_DYNAMIC:
662 case elfcpp::SHT_SYMTAB_SHNDX:
665 case elfcpp::SHT_STRTAB:
666 // Discard the sections which have special meanings in the ELF
667 // ABI. Keep others (e.g., .stabstr). We could also do this by
668 // checking the sh_link fields of the appropriate sections.
669 return (strcmp(name, ".dynstr") != 0
670 && strcmp(name, ".strtab") != 0
671 && strcmp(name, ".shstrtab") != 0);
673 case elfcpp::SHT_RELA:
674 case elfcpp::SHT_REL:
675 case elfcpp::SHT_GROUP:
676 // If we are emitting relocations these should be handled
678 gold_assert(!parameters->options().relocatable());
681 case elfcpp::SHT_PROGBITS:
682 if (parameters->options().strip_debug()
683 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
685 if (is_debug_info_section(name))
688 if (parameters->options().strip_debug_non_line()
689 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
691 // Debugging sections can only be recognized by name.
692 if (is_prefix_of(".debug_", name)
693 && !is_lines_only_debug_section(name + 7))
695 if (is_prefix_of(".zdebug_", name)
696 && !is_lines_only_debug_section(name + 8))
699 if (parameters->options().strip_debug_gdb()
700 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
702 // Debugging sections can only be recognized by name.
703 if (is_prefix_of(".debug_", name)
704 && !is_gdb_debug_section(name + 7))
706 if (is_prefix_of(".zdebug_", name)
707 && !is_gdb_debug_section(name + 8))
710 if (parameters->options().gdb_index()
711 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
713 // When building .gdb_index, we can strip .debug_pubnames,
714 // .debug_pubtypes, and .debug_aranges sections.
715 if (is_prefix_of(".debug_", name)
716 && is_gdb_fast_lookup_section(name + 7))
718 if (is_prefix_of(".zdebug_", name)
719 && is_gdb_fast_lookup_section(name + 8))
722 if (parameters->options().strip_lto_sections()
723 && !parameters->options().relocatable()
724 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726 // Ignore LTO sections containing intermediate code.
727 if (is_prefix_of(".gnu.lto_", name))
730 // The GNU linker strips .gnu_debuglink sections, so we do too.
731 // This is a feature used to keep debugging information in
733 if (strcmp(name, ".gnu_debuglink") == 0)
742 // Return an output section named NAME, or NULL if there is none.
745 Layout::find_output_section(const char* name) const
747 for (Section_list::const_iterator p = this->section_list_.begin();
748 p != this->section_list_.end();
750 if (strcmp((*p)->name(), name) == 0)
755 // Return an output segment of type TYPE, with segment flags SET set
756 // and segment flags CLEAR clear. Return NULL if there is none.
759 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
760 elfcpp::Elf_Word clear) const
762 for (Segment_list::const_iterator p = this->segment_list_.begin();
763 p != this->segment_list_.end();
765 if (static_cast<elfcpp::PT>((*p)->type()) == type
766 && ((*p)->flags() & set) == set
767 && ((*p)->flags() & clear) == 0)
772 // When we put a .ctors or .dtors section with more than one word into
773 // a .init_array or .fini_array section, we need to reverse the words
774 // in the .ctors/.dtors section. This is because .init_array executes
775 // constructors front to back, where .ctors executes them back to
776 // front, and vice-versa for .fini_array/.dtors. Although we do want
777 // to remap .ctors/.dtors into .init_array/.fini_array because it can
778 // be more efficient, we don't want to change the order in which
779 // constructors/destructors are run. This set just keeps track of
780 // these sections which need to be reversed. It is only changed by
781 // Layout::layout. It should be a private member of Layout, but that
782 // would require layout.h to #include object.h to get the definition
784 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
786 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
787 // .init_array/.fini_array section.
790 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
792 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
793 != ctors_sections_in_init_array.end());
796 // Return the output section to use for section NAME with type TYPE
797 // and section flags FLAGS. NAME must be canonicalized in the string
798 // pool, and NAME_KEY is the key. ORDER is where this should appear
799 // in the output sections. IS_RELRO is true for a relro section.
802 Layout::get_output_section(const char* name, Stringpool::Key name_key,
803 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
804 Output_section_order order, bool is_relro)
806 elfcpp::Elf_Word lookup_type = type;
808 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
809 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
810 // .init_array, .fini_array, and .preinit_array sections by name
811 // whatever their type in the input file. We do this because the
812 // types are not always right in the input files.
813 if (lookup_type == elfcpp::SHT_INIT_ARRAY
814 || lookup_type == elfcpp::SHT_FINI_ARRAY
815 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
816 lookup_type = elfcpp::SHT_PROGBITS;
818 elfcpp::Elf_Xword lookup_flags = flags;
820 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
821 // read-write with read-only sections. Some other ELF linkers do
822 // not do this. FIXME: Perhaps there should be an option
824 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
826 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
827 const std::pair<Key, Output_section*> v(key, NULL);
828 std::pair<Section_name_map::iterator, bool> ins(
829 this->section_name_map_.insert(v));
832 return ins.first->second;
835 // This is the first time we've seen this name/type/flags
836 // combination. For compatibility with the GNU linker, we
837 // combine sections with contents and zero flags with sections
838 // with non-zero flags. This is a workaround for cases where
839 // assembler code forgets to set section flags. FIXME: Perhaps
840 // there should be an option to control this.
841 Output_section* os = NULL;
843 if (lookup_type == elfcpp::SHT_PROGBITS)
847 Output_section* same_name = this->find_output_section(name);
848 if (same_name != NULL
849 && (same_name->type() == elfcpp::SHT_PROGBITS
850 || same_name->type() == elfcpp::SHT_INIT_ARRAY
851 || same_name->type() == elfcpp::SHT_FINI_ARRAY
852 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
853 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
856 else if ((flags & elfcpp::SHF_TLS) == 0)
858 elfcpp::Elf_Xword zero_flags = 0;
859 const Key zero_key(name_key, std::make_pair(lookup_type,
861 Section_name_map::iterator p =
862 this->section_name_map_.find(zero_key);
863 if (p != this->section_name_map_.end())
869 os = this->make_output_section(name, type, flags, order, is_relro);
871 ins.first->second = os;
876 // Returns TRUE iff NAME (an input section from RELOBJ) will
877 // be mapped to an output section that should be KEPT.
880 Layout::keep_input_section(const Relobj* relobj, const char* name)
882 if (! this->script_options_->saw_sections_clause())
885 Script_sections* ss = this->script_options_->script_sections();
886 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
887 Output_section** output_section_slot;
888 Script_sections::Section_type script_section_type;
891 name = ss->output_section_name(file_name, name, &output_section_slot,
892 &script_section_type, &keep);
893 return name != NULL && keep;
896 // Clear the input section flags that should not be copied to the
900 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
902 // Some flags in the input section should not be automatically
903 // copied to the output section.
904 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
907 | elfcpp::SHF_STRINGS);
909 // We only clear the SHF_LINK_ORDER flag in for
910 // a non-relocatable link.
911 if (!parameters->options().relocatable())
912 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
914 return input_section_flags;
917 // Pick the output section to use for section NAME, in input file
918 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
919 // linker created section. IS_INPUT_SECTION is true if we are
920 // choosing an output section for an input section found in a input
921 // file. ORDER is where this section should appear in the output
922 // sections. IS_RELRO is true for a relro section. This will return
923 // NULL if the input section should be discarded.
926 Layout::choose_output_section(const Relobj* relobj, const char* name,
927 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
928 bool is_input_section, Output_section_order order,
931 // We should not see any input sections after we have attached
932 // sections to segments.
933 gold_assert(!is_input_section || !this->sections_are_attached_);
935 flags = this->get_output_section_flags(flags);
937 if (this->script_options_->saw_sections_clause())
939 // We are using a SECTIONS clause, so the output section is
940 // chosen based only on the name.
942 Script_sections* ss = this->script_options_->script_sections();
943 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
944 Output_section** output_section_slot;
945 Script_sections::Section_type script_section_type;
946 const char* orig_name = name;
948 name = ss->output_section_name(file_name, name, &output_section_slot,
949 &script_section_type, &keep);
953 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
954 "because it is not allowed by the "
955 "SECTIONS clause of the linker script"),
957 // The SECTIONS clause says to discard this input section.
961 // We can only handle script section types ST_NONE and ST_NOLOAD.
962 switch (script_section_type)
964 case Script_sections::ST_NONE:
966 case Script_sections::ST_NOLOAD:
967 flags &= elfcpp::SHF_ALLOC;
973 // If this is an orphan section--one not mentioned in the linker
974 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
975 // default processing below.
977 if (output_section_slot != NULL)
979 if (*output_section_slot != NULL)
981 (*output_section_slot)->update_flags_for_input_section(flags);
982 return *output_section_slot;
985 // We don't put sections found in the linker script into
986 // SECTION_NAME_MAP_. That keeps us from getting confused
987 // if an orphan section is mapped to a section with the same
988 // name as one in the linker script.
990 name = this->namepool_.add(name, false, NULL);
992 Output_section* os = this->make_output_section(name, type, flags,
995 os->set_found_in_sections_clause();
997 // Special handling for NOLOAD sections.
998 if (script_section_type == Script_sections::ST_NOLOAD)
1000 os->set_is_noload();
1002 // The constructor of Output_section sets addresses of non-ALLOC
1003 // sections to 0 by default. We don't want that for NOLOAD
1004 // sections even if they have no SHF_ALLOC flag.
1005 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1006 && os->is_address_valid())
1008 gold_assert(os->address() == 0
1009 && !os->is_offset_valid()
1010 && !os->is_data_size_valid());
1011 os->reset_address_and_file_offset();
1015 *output_section_slot = os;
1020 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1022 size_t len = strlen(name);
1023 char* uncompressed_name = NULL;
1025 // Compressed debug sections should be mapped to the corresponding
1026 // uncompressed section.
1027 if (is_compressed_debug_section(name))
1029 uncompressed_name = new char[len];
1030 uncompressed_name[0] = '.';
1031 gold_assert(name[0] == '.' && name[1] == 'z');
1032 strncpy(&uncompressed_name[1], &name[2], len - 2);
1033 uncompressed_name[len - 1] = '\0';
1035 name = uncompressed_name;
1038 // Turn NAME from the name of the input section into the name of the
1040 if (is_input_section
1041 && !this->script_options_->saw_sections_clause()
1042 && !parameters->options().relocatable())
1044 const char *orig_name = name;
1045 name = parameters->target().output_section_name(relobj, name, &len);
1047 name = Layout::output_section_name(relobj, orig_name, &len);
1050 Stringpool::Key name_key;
1051 name = this->namepool_.add_with_length(name, len, true, &name_key);
1053 if (uncompressed_name != NULL)
1054 delete[] uncompressed_name;
1056 // Find or make the output section. The output section is selected
1057 // based on the section name, type, and flags.
1058 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1061 // For incremental links, record the initial fixed layout of a section
1062 // from the base file, and return a pointer to the Output_section.
1064 template<int size, bool big_endian>
1066 Layout::init_fixed_output_section(const char* name,
1067 elfcpp::Shdr<size, big_endian>& shdr)
1069 unsigned int sh_type = shdr.get_sh_type();
1071 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1072 // PRE_INIT_ARRAY, and NOTE sections.
1073 // All others will be created from scratch and reallocated.
1074 if (!can_incremental_update(sh_type))
1077 // If we're generating a .gdb_index section, we need to regenerate
1079 if (parameters->options().gdb_index()
1080 && sh_type == elfcpp::SHT_PROGBITS
1081 && strcmp(name, ".gdb_index") == 0)
1084 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1085 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1086 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1087 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1088 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1089 shdr.get_sh_addralign();
1091 // Make the output section.
1092 Stringpool::Key name_key;
1093 name = this->namepool_.add(name, true, &name_key);
1094 Output_section* os = this->get_output_section(name, name_key, sh_type,
1095 sh_flags, ORDER_INVALID, false);
1096 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1097 if (sh_type != elfcpp::SHT_NOBITS)
1098 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1102 // Return the index by which an input section should be ordered. This
1103 // is used to sort some .text sections, for compatibility with GNU ld.
1106 Layout::special_ordering_of_input_section(const char* name)
1108 // The GNU linker has some special handling for some sections that
1109 // wind up in the .text section. Sections that start with these
1110 // prefixes must appear first, and must appear in the order listed
1112 static const char* const text_section_sort[] =
1121 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1123 if (is_prefix_of(text_section_sort[i], name))
1129 // Return the output section to use for input section SHNDX, with name
1130 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1131 // index of a relocation section which applies to this section, or 0
1132 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1133 // relocation section if there is one. Set *OFF to the offset of this
1134 // input section without the output section. Return NULL if the
1135 // section should be discarded. Set *OFF to -1 if the section
1136 // contents should not be written directly to the output file, but
1137 // will instead receive special handling.
1139 template<int size, bool big_endian>
1141 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1142 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1143 unsigned int reloc_shndx, unsigned int, off_t* off)
1147 if (!this->include_section(object, name, shdr))
1150 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1152 // In a relocatable link a grouped section must not be combined with
1153 // any other sections.
1155 if (parameters->options().relocatable()
1156 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1158 name = this->namepool_.add(name, true, NULL);
1159 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1160 ORDER_INVALID, false);
1164 // Plugins can choose to place one or more subsets of sections in
1165 // unique segments and this is done by mapping these section subsets
1166 // to unique output sections. Check if this section needs to be
1167 // remapped to a unique output section.
1168 Section_segment_map::iterator it
1169 = this->section_segment_map_.find(Const_section_id(object, shndx));
1170 if (it == this->section_segment_map_.end())
1172 os = this->choose_output_section(object, name, sh_type,
1173 shdr.get_sh_flags(), true,
1174 ORDER_INVALID, false);
1178 // We know the name of the output section, directly call
1179 // get_output_section here by-passing choose_output_section.
1180 elfcpp::Elf_Xword flags
1181 = this->get_output_section_flags(shdr.get_sh_flags());
1183 const char* os_name = it->second->name;
1184 Stringpool::Key name_key;
1185 os_name = this->namepool_.add(os_name, true, &name_key);
1186 os = this->get_output_section(os_name, name_key, sh_type, flags,
1187 ORDER_INVALID, false);
1188 if (!os->is_unique_segment())
1190 os->set_is_unique_segment();
1191 os->set_extra_segment_flags(it->second->flags);
1192 os->set_segment_alignment(it->second->align);
1199 // By default the GNU linker sorts input sections whose names match
1200 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1201 // sections are sorted by name. This is used to implement
1202 // constructor priority ordering. We are compatible. When we put
1203 // .ctor sections in .init_array and .dtor sections in .fini_array,
1204 // we must also sort plain .ctor and .dtor sections.
1205 if (!this->script_options_->saw_sections_clause()
1206 && !parameters->options().relocatable()
1207 && (is_prefix_of(".ctors.", name)
1208 || is_prefix_of(".dtors.", name)
1209 || is_prefix_of(".init_array.", name)
1210 || is_prefix_of(".fini_array.", name)
1211 || (parameters->options().ctors_in_init_array()
1212 && (strcmp(name, ".ctors") == 0
1213 || strcmp(name, ".dtors") == 0))))
1214 os->set_must_sort_attached_input_sections();
1216 // By default the GNU linker sorts some special text sections ahead
1217 // of others. We are compatible.
1218 if (parameters->options().text_reorder()
1219 && !this->script_options_->saw_sections_clause()
1220 && !this->is_section_ordering_specified()
1221 && !parameters->options().relocatable()
1222 && Layout::special_ordering_of_input_section(name) >= 0)
1223 os->set_must_sort_attached_input_sections();
1225 // If this is a .ctors or .ctors.* section being mapped to a
1226 // .init_array section, or a .dtors or .dtors.* section being mapped
1227 // to a .fini_array section, we will need to reverse the words if
1228 // there is more than one. Record this section for later. See
1229 // ctors_sections_in_init_array above.
1230 if (!this->script_options_->saw_sections_clause()
1231 && !parameters->options().relocatable()
1232 && shdr.get_sh_size() > size / 8
1233 && (((strcmp(name, ".ctors") == 0
1234 || is_prefix_of(".ctors.", name))
1235 && strcmp(os->name(), ".init_array") == 0)
1236 || ((strcmp(name, ".dtors") == 0
1237 || is_prefix_of(".dtors.", name))
1238 && strcmp(os->name(), ".fini_array") == 0)))
1239 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1241 // FIXME: Handle SHF_LINK_ORDER somewhere.
1243 elfcpp::Elf_Xword orig_flags = os->flags();
1245 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1246 this->script_options_->saw_sections_clause());
1248 // If the flags changed, we may have to change the order.
1249 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1251 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1252 elfcpp::Elf_Xword new_flags =
1253 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1254 if (orig_flags != new_flags)
1255 os->set_order(this->default_section_order(os, false));
1258 this->have_added_input_section_ = true;
1263 // Maps section SECN to SEGMENT s.
1265 Layout::insert_section_segment_map(Const_section_id secn,
1266 Unique_segment_info *s)
1268 gold_assert(this->unique_segment_for_sections_specified_);
1269 this->section_segment_map_[secn] = s;
1272 // Handle a relocation section when doing a relocatable link.
1274 template<int size, bool big_endian>
1276 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1278 const elfcpp::Shdr<size, big_endian>& shdr,
1279 Output_section* data_section,
1280 Relocatable_relocs* rr)
1282 gold_assert(parameters->options().relocatable()
1283 || parameters->options().emit_relocs());
1285 int sh_type = shdr.get_sh_type();
1288 if (sh_type == elfcpp::SHT_REL)
1290 else if (sh_type == elfcpp::SHT_RELA)
1294 name += data_section->name();
1296 // In a relocatable link relocs for a grouped section must not be
1297 // combined with other reloc sections.
1299 if (!parameters->options().relocatable()
1300 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1301 os = this->choose_output_section(object, name.c_str(), sh_type,
1302 shdr.get_sh_flags(), false,
1303 ORDER_INVALID, false);
1306 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1307 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1308 ORDER_INVALID, false);
1311 os->set_should_link_to_symtab();
1312 os->set_info_section(data_section);
1314 Output_section_data* posd;
1315 if (sh_type == elfcpp::SHT_REL)
1317 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1318 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1322 else if (sh_type == elfcpp::SHT_RELA)
1324 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1325 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1332 os->add_output_section_data(posd);
1333 rr->set_output_data(posd);
1338 // Handle a group section when doing a relocatable link.
1340 template<int size, bool big_endian>
1342 Layout::layout_group(Symbol_table* symtab,
1343 Sized_relobj_file<size, big_endian>* object,
1345 const char* group_section_name,
1346 const char* signature,
1347 const elfcpp::Shdr<size, big_endian>& shdr,
1348 elfcpp::Elf_Word flags,
1349 std::vector<unsigned int>* shndxes)
1351 gold_assert(parameters->options().relocatable());
1352 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1353 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1354 Output_section* os = this->make_output_section(group_section_name,
1356 shdr.get_sh_flags(),
1357 ORDER_INVALID, false);
1359 // We need to find a symbol with the signature in the symbol table.
1360 // If we don't find one now, we need to look again later.
1361 Symbol* sym = symtab->lookup(signature, NULL);
1363 os->set_info_symndx(sym);
1366 // Reserve some space to minimize reallocations.
1367 if (this->group_signatures_.empty())
1368 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1370 // We will wind up using a symbol whose name is the signature.
1371 // So just put the signature in the symbol name pool to save it.
1372 signature = symtab->canonicalize_name(signature);
1373 this->group_signatures_.push_back(Group_signature(os, signature));
1376 os->set_should_link_to_symtab();
1379 section_size_type entry_count =
1380 convert_to_section_size_type(shdr.get_sh_size() / 4);
1381 Output_section_data* posd =
1382 new Output_data_group<size, big_endian>(object, entry_count, flags,
1384 os->add_output_section_data(posd);
1387 // Special GNU handling of sections name .eh_frame. They will
1388 // normally hold exception frame data as defined by the C++ ABI
1389 // (http://codesourcery.com/cxx-abi/).
1391 template<int size, bool big_endian>
1393 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1394 const unsigned char* symbols,
1396 const unsigned char* symbol_names,
1397 off_t symbol_names_size,
1399 const elfcpp::Shdr<size, big_endian>& shdr,
1400 unsigned int reloc_shndx, unsigned int reloc_type,
1403 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1404 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1405 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1407 Output_section* os = this->make_eh_frame_section(object);
1411 gold_assert(this->eh_frame_section_ == os);
1413 elfcpp::Elf_Xword orig_flags = os->flags();
1415 if (!parameters->incremental()
1416 && this->eh_frame_data_->add_ehframe_input_section(object,
1425 os->update_flags_for_input_section(shdr.get_sh_flags());
1427 // A writable .eh_frame section is a RELRO section.
1428 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1429 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1432 os->set_order(ORDER_RELRO);
1435 // We found a .eh_frame section we are going to optimize, so now
1436 // we can add the set of optimized sections to the output
1437 // section. We need to postpone adding this until we've found a
1438 // section we can optimize so that the .eh_frame section in
1439 // crtbegin.o winds up at the start of the output section.
1440 if (!this->added_eh_frame_data_)
1442 os->add_output_section_data(this->eh_frame_data_);
1443 this->added_eh_frame_data_ = true;
1449 // We couldn't handle this .eh_frame section for some reason.
1450 // Add it as a normal section.
1451 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1452 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1453 reloc_shndx, saw_sections_clause);
1454 this->have_added_input_section_ = true;
1456 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1457 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1458 os->set_order(this->default_section_order(os, false));
1464 // Create and return the magic .eh_frame section. Create
1465 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1466 // input .eh_frame section; it may be NULL.
1469 Layout::make_eh_frame_section(const Relobj* object)
1471 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1473 Output_section* os = this->choose_output_section(object, ".eh_frame",
1474 elfcpp::SHT_PROGBITS,
1475 elfcpp::SHF_ALLOC, false,
1476 ORDER_EHFRAME, false);
1480 if (this->eh_frame_section_ == NULL)
1482 this->eh_frame_section_ = os;
1483 this->eh_frame_data_ = new Eh_frame();
1485 // For incremental linking, we do not optimize .eh_frame sections
1486 // or create a .eh_frame_hdr section.
1487 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1489 Output_section* hdr_os =
1490 this->choose_output_section(NULL, ".eh_frame_hdr",
1491 elfcpp::SHT_PROGBITS,
1492 elfcpp::SHF_ALLOC, false,
1493 ORDER_EHFRAME, false);
1497 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1498 this->eh_frame_data_);
1499 hdr_os->add_output_section_data(hdr_posd);
1501 hdr_os->set_after_input_sections();
1503 if (!this->script_options_->saw_phdrs_clause())
1505 Output_segment* hdr_oseg;
1506 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1508 hdr_oseg->add_output_section_to_nonload(hdr_os,
1512 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1520 // Add an exception frame for a PLT. This is called from target code.
1523 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1524 size_t cie_length, const unsigned char* fde_data,
1527 if (parameters->incremental())
1529 // FIXME: Maybe this could work some day....
1532 Output_section* os = this->make_eh_frame_section(NULL);
1535 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1536 fde_data, fde_length);
1537 if (!this->added_eh_frame_data_)
1539 os->add_output_section_data(this->eh_frame_data_);
1540 this->added_eh_frame_data_ = true;
1544 // Scan a .debug_info or .debug_types section, and add summary
1545 // information to the .gdb_index section.
1547 template<int size, bool big_endian>
1549 Layout::add_to_gdb_index(bool is_type_unit,
1550 Sized_relobj<size, big_endian>* object,
1551 const unsigned char* symbols,
1554 unsigned int reloc_shndx,
1555 unsigned int reloc_type)
1557 if (this->gdb_index_data_ == NULL)
1559 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1560 elfcpp::SHT_PROGBITS, 0,
1561 false, ORDER_INVALID,
1566 this->gdb_index_data_ = new Gdb_index(os);
1567 os->add_output_section_data(this->gdb_index_data_);
1568 os->set_after_input_sections();
1571 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1572 symbols_size, shndx, reloc_shndx,
1576 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1577 // the output section.
1580 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1581 elfcpp::Elf_Xword flags,
1582 Output_section_data* posd,
1583 Output_section_order order, bool is_relro)
1585 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1586 false, order, is_relro);
1588 os->add_output_section_data(posd);
1592 // Map section flags to segment flags.
1595 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1597 elfcpp::Elf_Word ret = elfcpp::PF_R;
1598 if ((flags & elfcpp::SHF_WRITE) != 0)
1599 ret |= elfcpp::PF_W;
1600 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1601 ret |= elfcpp::PF_X;
1605 // Make a new Output_section, and attach it to segments as
1606 // appropriate. ORDER is the order in which this section should
1607 // appear in the output segment. IS_RELRO is true if this is a relro
1608 // (read-only after relocations) section.
1611 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1612 elfcpp::Elf_Xword flags,
1613 Output_section_order order, bool is_relro)
1616 if ((flags & elfcpp::SHF_ALLOC) == 0
1617 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1618 && is_compressible_debug_section(name))
1619 os = new Output_compressed_section(¶meters->options(), name, type,
1621 else if ((flags & elfcpp::SHF_ALLOC) == 0
1622 && parameters->options().strip_debug_non_line()
1623 && strcmp(".debug_abbrev", name) == 0)
1625 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1627 if (this->debug_info_)
1628 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1630 else if ((flags & elfcpp::SHF_ALLOC) == 0
1631 && parameters->options().strip_debug_non_line()
1632 && strcmp(".debug_info", name) == 0)
1634 os = this->debug_info_ = new Output_reduced_debug_info_section(
1636 if (this->debug_abbrev_)
1637 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1641 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1642 // not have correct section types. Force them here.
1643 if (type == elfcpp::SHT_PROGBITS)
1645 if (is_prefix_of(".init_array", name))
1646 type = elfcpp::SHT_INIT_ARRAY;
1647 else if (is_prefix_of(".preinit_array", name))
1648 type = elfcpp::SHT_PREINIT_ARRAY;
1649 else if (is_prefix_of(".fini_array", name))
1650 type = elfcpp::SHT_FINI_ARRAY;
1653 // FIXME: const_cast is ugly.
1654 Target* target = const_cast<Target*>(¶meters->target());
1655 os = target->make_output_section(name, type, flags);
1658 // With -z relro, we have to recognize the special sections by name.
1659 // There is no other way.
1660 bool is_relro_local = false;
1661 if (!this->script_options_->saw_sections_clause()
1662 && parameters->options().relro()
1663 && (flags & elfcpp::SHF_ALLOC) != 0
1664 && (flags & elfcpp::SHF_WRITE) != 0)
1666 if (type == elfcpp::SHT_PROGBITS)
1668 if ((flags & elfcpp::SHF_TLS) != 0)
1670 else if (strcmp(name, ".data.rel.ro") == 0)
1672 else if (strcmp(name, ".data.rel.ro.local") == 0)
1675 is_relro_local = true;
1677 else if (strcmp(name, ".ctors") == 0
1678 || strcmp(name, ".dtors") == 0
1679 || strcmp(name, ".jcr") == 0)
1682 else if (type == elfcpp::SHT_INIT_ARRAY
1683 || type == elfcpp::SHT_FINI_ARRAY
1684 || type == elfcpp::SHT_PREINIT_ARRAY)
1691 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1692 order = this->default_section_order(os, is_relro_local);
1694 os->set_order(order);
1696 parameters->target().new_output_section(os);
1698 this->section_list_.push_back(os);
1700 // The GNU linker by default sorts some sections by priority, so we
1701 // do the same. We need to know that this might happen before we
1702 // attach any input sections.
1703 if (!this->script_options_->saw_sections_clause()
1704 && !parameters->options().relocatable()
1705 && (strcmp(name, ".init_array") == 0
1706 || strcmp(name, ".fini_array") == 0
1707 || (!parameters->options().ctors_in_init_array()
1708 && (strcmp(name, ".ctors") == 0
1709 || strcmp(name, ".dtors") == 0))))
1710 os->set_may_sort_attached_input_sections();
1712 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1713 // sections before other .text sections. We are compatible. We
1714 // need to know that this might happen before we attach any input
1716 if (parameters->options().text_reorder()
1717 && !this->script_options_->saw_sections_clause()
1718 && !this->is_section_ordering_specified()
1719 && !parameters->options().relocatable()
1720 && strcmp(name, ".text") == 0)
1721 os->set_may_sort_attached_input_sections();
1723 // GNU linker sorts section by name with --sort-section=name.
1724 if (strcmp(parameters->options().sort_section(), "name") == 0)
1725 os->set_must_sort_attached_input_sections();
1727 // Check for .stab*str sections, as .stab* sections need to link to
1729 if (type == elfcpp::SHT_STRTAB
1730 && !this->have_stabstr_section_
1731 && strncmp(name, ".stab", 5) == 0
1732 && strcmp(name + strlen(name) - 3, "str") == 0)
1733 this->have_stabstr_section_ = true;
1735 // During a full incremental link, we add patch space to most
1736 // PROGBITS and NOBITS sections. Flag those that may be
1737 // arbitrarily padded.
1738 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1739 && order != ORDER_INTERP
1740 && order != ORDER_INIT
1741 && order != ORDER_PLT
1742 && order != ORDER_FINI
1743 && order != ORDER_RELRO_LAST
1744 && order != ORDER_NON_RELRO_FIRST
1745 && strcmp(name, ".eh_frame") != 0
1746 && strcmp(name, ".ctors") != 0
1747 && strcmp(name, ".dtors") != 0
1748 && strcmp(name, ".jcr") != 0)
1750 os->set_is_patch_space_allowed();
1752 // Certain sections require "holes" to be filled with
1753 // specific fill patterns. These fill patterns may have
1754 // a minimum size, so we must prevent allocations from the
1755 // free list that leave a hole smaller than the minimum.
1756 if (strcmp(name, ".debug_info") == 0)
1757 os->set_free_space_fill(new Output_fill_debug_info(false));
1758 else if (strcmp(name, ".debug_types") == 0)
1759 os->set_free_space_fill(new Output_fill_debug_info(true));
1760 else if (strcmp(name, ".debug_line") == 0)
1761 os->set_free_space_fill(new Output_fill_debug_line());
1764 // If we have already attached the sections to segments, then we
1765 // need to attach this one now. This happens for sections created
1766 // directly by the linker.
1767 if (this->sections_are_attached_)
1768 this->attach_section_to_segment(¶meters->target(), os);
1773 // Return the default order in which a section should be placed in an
1774 // output segment. This function captures a lot of the ideas in
1775 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1776 // linker created section is normally set when the section is created;
1777 // this function is used for input sections.
1779 Output_section_order
1780 Layout::default_section_order(Output_section* os, bool is_relro_local)
1782 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1783 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1784 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1785 bool is_bss = false;
1790 case elfcpp::SHT_PROGBITS:
1792 case elfcpp::SHT_NOBITS:
1795 case elfcpp::SHT_RELA:
1796 case elfcpp::SHT_REL:
1798 return ORDER_DYNAMIC_RELOCS;
1800 case elfcpp::SHT_HASH:
1801 case elfcpp::SHT_DYNAMIC:
1802 case elfcpp::SHT_SHLIB:
1803 case elfcpp::SHT_DYNSYM:
1804 case elfcpp::SHT_GNU_HASH:
1805 case elfcpp::SHT_GNU_verdef:
1806 case elfcpp::SHT_GNU_verneed:
1807 case elfcpp::SHT_GNU_versym:
1809 return ORDER_DYNAMIC_LINKER;
1811 case elfcpp::SHT_NOTE:
1812 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1815 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1816 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1818 if (!is_bss && !is_write)
1822 if (strcmp(os->name(), ".init") == 0)
1824 else if (strcmp(os->name(), ".fini") == 0)
1827 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1831 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1833 if (os->is_small_section())
1834 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1835 if (os->is_large_section())
1836 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1838 return is_bss ? ORDER_BSS : ORDER_DATA;
1841 // Attach output sections to segments. This is called after we have
1842 // seen all the input sections.
1845 Layout::attach_sections_to_segments(const Target* target)
1847 for (Section_list::iterator p = this->section_list_.begin();
1848 p != this->section_list_.end();
1850 this->attach_section_to_segment(target, *p);
1852 this->sections_are_attached_ = true;
1855 // Attach an output section to a segment.
1858 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1860 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1861 this->unattached_section_list_.push_back(os);
1863 this->attach_allocated_section_to_segment(target, os);
1866 // Attach an allocated output section to a segment.
1869 Layout::attach_allocated_section_to_segment(const Target* target,
1872 elfcpp::Elf_Xword flags = os->flags();
1873 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1875 if (parameters->options().relocatable())
1878 // If we have a SECTIONS clause, we can't handle the attachment to
1879 // segments until after we've seen all the sections.
1880 if (this->script_options_->saw_sections_clause())
1883 gold_assert(!this->script_options_->saw_phdrs_clause());
1885 // This output section goes into a PT_LOAD segment.
1887 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1889 // If this output section's segment has extra flags that need to be set,
1890 // coming from a linker plugin, do that.
1891 seg_flags |= os->extra_segment_flags();
1893 // Check for --section-start.
1895 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1897 // In general the only thing we really care about for PT_LOAD
1898 // segments is whether or not they are writable or executable,
1899 // so that is how we search for them.
1900 // Large data sections also go into their own PT_LOAD segment.
1901 // People who need segments sorted on some other basis will
1902 // have to use a linker script.
1904 Segment_list::const_iterator p;
1905 if (!os->is_unique_segment())
1907 for (p = this->segment_list_.begin();
1908 p != this->segment_list_.end();
1911 if ((*p)->type() != elfcpp::PT_LOAD)
1913 if ((*p)->is_unique_segment())
1915 if (!parameters->options().omagic()
1916 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1918 if ((target->isolate_execinstr() || parameters->options().rosegment())
1919 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1921 // If -Tbss was specified, we need to separate the data and BSS
1923 if (parameters->options().user_set_Tbss())
1925 if ((os->type() == elfcpp::SHT_NOBITS)
1926 == (*p)->has_any_data_sections())
1929 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1934 if ((*p)->are_addresses_set())
1937 (*p)->add_initial_output_data(os);
1938 (*p)->update_flags_for_output_section(seg_flags);
1939 (*p)->set_addresses(addr, addr);
1943 (*p)->add_output_section_to_load(this, os, seg_flags);
1948 if (p == this->segment_list_.end()
1949 || os->is_unique_segment())
1951 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1953 if (os->is_large_data_section())
1954 oseg->set_is_large_data_segment();
1955 oseg->add_output_section_to_load(this, os, seg_flags);
1957 oseg->set_addresses(addr, addr);
1958 // Check if segment should be marked unique. For segments marked
1959 // unique by linker plugins, set the new alignment if specified.
1960 if (os->is_unique_segment())
1962 oseg->set_is_unique_segment();
1963 if (os->segment_alignment() != 0)
1964 oseg->set_minimum_p_align(os->segment_alignment());
1968 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1970 if (os->type() == elfcpp::SHT_NOTE)
1972 // See if we already have an equivalent PT_NOTE segment.
1973 for (p = this->segment_list_.begin();
1974 p != segment_list_.end();
1977 if ((*p)->type() == elfcpp::PT_NOTE
1978 && (((*p)->flags() & elfcpp::PF_W)
1979 == (seg_flags & elfcpp::PF_W)))
1981 (*p)->add_output_section_to_nonload(os, seg_flags);
1986 if (p == this->segment_list_.end())
1988 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1990 oseg->add_output_section_to_nonload(os, seg_flags);
1994 // If we see a loadable SHF_TLS section, we create a PT_TLS
1995 // segment. There can only be one such segment.
1996 if ((flags & elfcpp::SHF_TLS) != 0)
1998 if (this->tls_segment_ == NULL)
1999 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2000 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2003 // If -z relro is in effect, and we see a relro section, we create a
2004 // PT_GNU_RELRO segment. There can only be one such segment.
2005 if (os->is_relro() && parameters->options().relro())
2007 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2008 if (this->relro_segment_ == NULL)
2009 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2010 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2013 // If we see a section named .interp, put it into a PT_INTERP
2014 // segment. This seems broken to me, but this is what GNU ld does,
2015 // and glibc expects it.
2016 if (strcmp(os->name(), ".interp") == 0
2017 && !this->script_options_->saw_phdrs_clause())
2019 if (this->interp_segment_ == NULL)
2020 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2022 gold_warning(_("multiple '.interp' sections in input files "
2023 "may cause confusing PT_INTERP segment"));
2024 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2028 // Make an output section for a script.
2031 Layout::make_output_section_for_script(
2033 Script_sections::Section_type section_type)
2035 name = this->namepool_.add(name, false, NULL);
2036 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2037 if (section_type == Script_sections::ST_NOLOAD)
2039 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2040 sh_flags, ORDER_INVALID,
2042 os->set_found_in_sections_clause();
2043 if (section_type == Script_sections::ST_NOLOAD)
2044 os->set_is_noload();
2048 // Return the number of segments we expect to see.
2051 Layout::expected_segment_count() const
2053 size_t ret = this->segment_list_.size();
2055 // If we didn't see a SECTIONS clause in a linker script, we should
2056 // already have the complete list of segments. Otherwise we ask the
2057 // SECTIONS clause how many segments it expects, and add in the ones
2058 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2060 if (!this->script_options_->saw_sections_clause())
2064 const Script_sections* ss = this->script_options_->script_sections();
2065 return ret + ss->expected_segment_count(this);
2069 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2070 // is whether we saw a .note.GNU-stack section in the object file.
2071 // GNU_STACK_FLAGS is the section flags. The flags give the
2072 // protection required for stack memory. We record this in an
2073 // executable as a PT_GNU_STACK segment. If an object file does not
2074 // have a .note.GNU-stack segment, we must assume that it is an old
2075 // object. On some targets that will force an executable stack.
2078 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2081 if (!seen_gnu_stack)
2083 this->input_without_gnu_stack_note_ = true;
2084 if (parameters->options().warn_execstack()
2085 && parameters->target().is_default_stack_executable())
2086 gold_warning(_("%s: missing .note.GNU-stack section"
2087 " implies executable stack"),
2088 obj->name().c_str());
2092 this->input_with_gnu_stack_note_ = true;
2093 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2095 this->input_requires_executable_stack_ = true;
2096 if (parameters->options().warn_execstack()
2097 || parameters->options().is_stack_executable())
2098 gold_warning(_("%s: requires executable stack"),
2099 obj->name().c_str());
2104 // Create automatic note sections.
2107 Layout::create_notes()
2109 this->create_gold_note();
2110 this->create_executable_stack_info();
2111 this->create_build_id();
2114 // Create the dynamic sections which are needed before we read the
2118 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2120 if (parameters->doing_static_link())
2123 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2124 elfcpp::SHT_DYNAMIC,
2126 | elfcpp::SHF_WRITE),
2130 // A linker script may discard .dynamic, so check for NULL.
2131 if (this->dynamic_section_ != NULL)
2133 this->dynamic_symbol_ =
2134 symtab->define_in_output_data("_DYNAMIC", NULL,
2135 Symbol_table::PREDEFINED,
2136 this->dynamic_section_, 0, 0,
2137 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2138 elfcpp::STV_HIDDEN, 0, false, false);
2140 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2142 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2146 // For each output section whose name can be represented as C symbol,
2147 // define __start and __stop symbols for the section. This is a GNU
2151 Layout::define_section_symbols(Symbol_table* symtab)
2153 for (Section_list::const_iterator p = this->section_list_.begin();
2154 p != this->section_list_.end();
2157 const char* const name = (*p)->name();
2158 if (is_cident(name))
2160 const std::string name_string(name);
2161 const std::string start_name(cident_section_start_prefix
2163 const std::string stop_name(cident_section_stop_prefix
2166 symtab->define_in_output_data(start_name.c_str(),
2168 Symbol_table::PREDEFINED,
2174 elfcpp::STV_DEFAULT,
2176 false, // offset_is_from_end
2177 true); // only_if_ref
2179 symtab->define_in_output_data(stop_name.c_str(),
2181 Symbol_table::PREDEFINED,
2187 elfcpp::STV_DEFAULT,
2189 true, // offset_is_from_end
2190 true); // only_if_ref
2195 // Define symbols for group signatures.
2198 Layout::define_group_signatures(Symbol_table* symtab)
2200 for (Group_signatures::iterator p = this->group_signatures_.begin();
2201 p != this->group_signatures_.end();
2204 Symbol* sym = symtab->lookup(p->signature, NULL);
2206 p->section->set_info_symndx(sym);
2209 // Force the name of the group section to the group
2210 // signature, and use the group's section symbol as the
2211 // signature symbol.
2212 if (strcmp(p->section->name(), p->signature) != 0)
2214 const char* name = this->namepool_.add(p->signature,
2216 p->section->set_name(name);
2218 p->section->set_needs_symtab_index();
2219 p->section->set_info_section_symndx(p->section);
2223 this->group_signatures_.clear();
2226 // Find the first read-only PT_LOAD segment, creating one if
2230 Layout::find_first_load_seg(const Target* target)
2232 Output_segment* best = NULL;
2233 for (Segment_list::const_iterator p = this->segment_list_.begin();
2234 p != this->segment_list_.end();
2237 if ((*p)->type() == elfcpp::PT_LOAD
2238 && ((*p)->flags() & elfcpp::PF_R) != 0
2239 && (parameters->options().omagic()
2240 || ((*p)->flags() & elfcpp::PF_W) == 0)
2241 && (!target->isolate_execinstr()
2242 || ((*p)->flags() & elfcpp::PF_X) == 0))
2244 if (best == NULL || this->segment_precedes(*p, best))
2251 gold_assert(!this->script_options_->saw_phdrs_clause());
2253 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2258 // Save states of all current output segments. Store saved states
2259 // in SEGMENT_STATES.
2262 Layout::save_segments(Segment_states* segment_states)
2264 for (Segment_list::const_iterator p = this->segment_list_.begin();
2265 p != this->segment_list_.end();
2268 Output_segment* segment = *p;
2270 Output_segment* copy = new Output_segment(*segment);
2271 (*segment_states)[segment] = copy;
2275 // Restore states of output segments and delete any segment not found in
2279 Layout::restore_segments(const Segment_states* segment_states)
2281 // Go through the segment list and remove any segment added in the
2283 this->tls_segment_ = NULL;
2284 this->relro_segment_ = NULL;
2285 Segment_list::iterator list_iter = this->segment_list_.begin();
2286 while (list_iter != this->segment_list_.end())
2288 Output_segment* segment = *list_iter;
2289 Segment_states::const_iterator states_iter =
2290 segment_states->find(segment);
2291 if (states_iter != segment_states->end())
2293 const Output_segment* copy = states_iter->second;
2294 // Shallow copy to restore states.
2297 // Also fix up TLS and RELRO segment pointers as appropriate.
2298 if (segment->type() == elfcpp::PT_TLS)
2299 this->tls_segment_ = segment;
2300 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2301 this->relro_segment_ = segment;
2307 list_iter = this->segment_list_.erase(list_iter);
2308 // This is a segment created during section layout. It should be
2309 // safe to remove it since we should have removed all pointers to it.
2315 // Clean up after relaxation so that sections can be laid out again.
2318 Layout::clean_up_after_relaxation()
2320 // Restore the segments to point state just prior to the relaxation loop.
2321 Script_sections* script_section = this->script_options_->script_sections();
2322 script_section->release_segments();
2323 this->restore_segments(this->segment_states_);
2325 // Reset section addresses and file offsets
2326 for (Section_list::iterator p = this->section_list_.begin();
2327 p != this->section_list_.end();
2330 (*p)->restore_states();
2332 // If an input section changes size because of relaxation,
2333 // we need to adjust the section offsets of all input sections.
2334 // after such a section.
2335 if ((*p)->section_offsets_need_adjustment())
2336 (*p)->adjust_section_offsets();
2338 (*p)->reset_address_and_file_offset();
2341 // Reset special output object address and file offsets.
2342 for (Data_list::iterator p = this->special_output_list_.begin();
2343 p != this->special_output_list_.end();
2345 (*p)->reset_address_and_file_offset();
2347 // A linker script may have created some output section data objects.
2348 // They are useless now.
2349 for (Output_section_data_list::const_iterator p =
2350 this->script_output_section_data_list_.begin();
2351 p != this->script_output_section_data_list_.end();
2354 this->script_output_section_data_list_.clear();
2356 // Special-case fill output objects are recreated each time through
2357 // the relaxation loop.
2358 this->reset_relax_output();
2362 Layout::reset_relax_output()
2364 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2365 p != this->relax_output_list_.end();
2368 this->relax_output_list_.clear();
2371 // Prepare for relaxation.
2374 Layout::prepare_for_relaxation()
2376 // Create an relaxation debug check if in debugging mode.
2377 if (is_debugging_enabled(DEBUG_RELAXATION))
2378 this->relaxation_debug_check_ = new Relaxation_debug_check();
2380 // Save segment states.
2381 this->segment_states_ = new Segment_states();
2382 this->save_segments(this->segment_states_);
2384 for(Section_list::const_iterator p = this->section_list_.begin();
2385 p != this->section_list_.end();
2387 (*p)->save_states();
2389 if (is_debugging_enabled(DEBUG_RELAXATION))
2390 this->relaxation_debug_check_->check_output_data_for_reset_values(
2391 this->section_list_, this->special_output_list_,
2392 this->relax_output_list_);
2394 // Also enable recording of output section data from scripts.
2395 this->record_output_section_data_from_script_ = true;
2398 // If the user set the address of the text segment, that may not be
2399 // compatible with putting the segment headers and file headers into
2400 // that segment. For isolate_execinstr() targets, it's the rodata
2401 // segment rather than text where we might put the headers.
2403 load_seg_unusable_for_headers(const Target* target)
2405 const General_options& options = parameters->options();
2406 if (target->isolate_execinstr())
2407 return (options.user_set_Trodata_segment()
2408 && options.Trodata_segment() % target->abi_pagesize() != 0);
2410 return (options.user_set_Ttext()
2411 && options.Ttext() % target->abi_pagesize() != 0);
2414 // Relaxation loop body: If target has no relaxation, this runs only once
2415 // Otherwise, the target relaxation hook is called at the end of
2416 // each iteration. If the hook returns true, it means re-layout of
2417 // section is required.
2419 // The number of segments created by a linking script without a PHDRS
2420 // clause may be affected by section sizes and alignments. There is
2421 // a remote chance that relaxation causes different number of PT_LOAD
2422 // segments are created and sections are attached to different segments.
2423 // Therefore, we always throw away all segments created during section
2424 // layout. In order to be able to restart the section layout, we keep
2425 // a copy of the segment list right before the relaxation loop and use
2426 // that to restore the segments.
2428 // PASS is the current relaxation pass number.
2429 // SYMTAB is a symbol table.
2430 // PLOAD_SEG is the address of a pointer for the load segment.
2431 // PHDR_SEG is a pointer to the PHDR segment.
2432 // SEGMENT_HEADERS points to the output segment header.
2433 // FILE_HEADER points to the output file header.
2434 // PSHNDX is the address to store the output section index.
2437 Layout::relaxation_loop_body(
2440 Symbol_table* symtab,
2441 Output_segment** pload_seg,
2442 Output_segment* phdr_seg,
2443 Output_segment_headers* segment_headers,
2444 Output_file_header* file_header,
2445 unsigned int* pshndx)
2447 // If this is not the first iteration, we need to clean up after
2448 // relaxation so that we can lay out the sections again.
2450 this->clean_up_after_relaxation();
2452 // If there is a SECTIONS clause, put all the input sections into
2453 // the required order.
2454 Output_segment* load_seg;
2455 if (this->script_options_->saw_sections_clause())
2456 load_seg = this->set_section_addresses_from_script(symtab);
2457 else if (parameters->options().relocatable())
2460 load_seg = this->find_first_load_seg(target);
2462 if (parameters->options().oformat_enum()
2463 != General_options::OBJECT_FORMAT_ELF)
2466 if (load_seg_unusable_for_headers(target))
2472 gold_assert(phdr_seg == NULL
2474 || this->script_options_->saw_sections_clause());
2476 // If the address of the load segment we found has been set by
2477 // --section-start rather than by a script, then adjust the VMA and
2478 // LMA downward if possible to include the file and section headers.
2479 uint64_t header_gap = 0;
2480 if (load_seg != NULL
2481 && load_seg->are_addresses_set()
2482 && !this->script_options_->saw_sections_clause()
2483 && !parameters->options().relocatable())
2485 file_header->finalize_data_size();
2486 segment_headers->finalize_data_size();
2487 size_t sizeof_headers = (file_header->data_size()
2488 + segment_headers->data_size());
2489 const uint64_t abi_pagesize = target->abi_pagesize();
2490 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2491 hdr_paddr &= ~(abi_pagesize - 1);
2492 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2493 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2497 load_seg->set_addresses(load_seg->vaddr() - subtract,
2498 load_seg->paddr() - subtract);
2499 header_gap = subtract - sizeof_headers;
2503 // Lay out the segment headers.
2504 if (!parameters->options().relocatable())
2506 gold_assert(segment_headers != NULL);
2507 if (header_gap != 0 && load_seg != NULL)
2509 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2510 load_seg->add_initial_output_data(z);
2512 if (load_seg != NULL)
2513 load_seg->add_initial_output_data(segment_headers);
2514 if (phdr_seg != NULL)
2515 phdr_seg->add_initial_output_data(segment_headers);
2518 // Lay out the file header.
2519 if (load_seg != NULL)
2520 load_seg->add_initial_output_data(file_header);
2522 if (this->script_options_->saw_phdrs_clause()
2523 && !parameters->options().relocatable())
2525 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2526 // clause in a linker script.
2527 Script_sections* ss = this->script_options_->script_sections();
2528 ss->put_headers_in_phdrs(file_header, segment_headers);
2531 // We set the output section indexes in set_segment_offsets and
2532 // set_section_indexes.
2535 // Set the file offsets of all the segments, and all the sections
2538 if (!parameters->options().relocatable())
2539 off = this->set_segment_offsets(target, load_seg, pshndx);
2541 off = this->set_relocatable_section_offsets(file_header, pshndx);
2543 // Verify that the dummy relaxation does not change anything.
2544 if (is_debugging_enabled(DEBUG_RELAXATION))
2547 this->relaxation_debug_check_->read_sections(this->section_list_);
2549 this->relaxation_debug_check_->verify_sections(this->section_list_);
2552 *pload_seg = load_seg;
2556 // Search the list of patterns and find the postion of the given section
2557 // name in the output section. If the section name matches a glob
2558 // pattern and a non-glob name, then the non-glob position takes
2559 // precedence. Return 0 if no match is found.
2562 Layout::find_section_order_index(const std::string& section_name)
2564 Unordered_map<std::string, unsigned int>::iterator map_it;
2565 map_it = this->input_section_position_.find(section_name);
2566 if (map_it != this->input_section_position_.end())
2567 return map_it->second;
2569 // Absolute match failed. Linear search the glob patterns.
2570 std::vector<std::string>::iterator it;
2571 for (it = this->input_section_glob_.begin();
2572 it != this->input_section_glob_.end();
2575 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2577 map_it = this->input_section_position_.find(*it);
2578 gold_assert(map_it != this->input_section_position_.end());
2579 return map_it->second;
2585 // Read the sequence of input sections from the file specified with
2586 // option --section-ordering-file.
2589 Layout::read_layout_from_file()
2591 const char* filename = parameters->options().section_ordering_file();
2597 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2598 filename, strerror(errno));
2600 std::getline(in, line); // this chops off the trailing \n, if any
2601 unsigned int position = 1;
2602 this->set_section_ordering_specified();
2606 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2607 line.resize(line.length() - 1);
2608 // Ignore comments, beginning with '#'
2611 std::getline(in, line);
2614 this->input_section_position_[line] = position;
2615 // Store all glob patterns in a vector.
2616 if (is_wildcard_string(line.c_str()))
2617 this->input_section_glob_.push_back(line);
2619 std::getline(in, line);
2623 // Finalize the layout. When this is called, we have created all the
2624 // output sections and all the output segments which are based on
2625 // input sections. We have several things to do, and we have to do
2626 // them in the right order, so that we get the right results correctly
2629 // 1) Finalize the list of output segments and create the segment
2632 // 2) Finalize the dynamic symbol table and associated sections.
2634 // 3) Determine the final file offset of all the output segments.
2636 // 4) Determine the final file offset of all the SHF_ALLOC output
2639 // 5) Create the symbol table sections and the section name table
2642 // 6) Finalize the symbol table: set symbol values to their final
2643 // value and make a final determination of which symbols are going
2644 // into the output symbol table.
2646 // 7) Create the section table header.
2648 // 8) Determine the final file offset of all the output sections which
2649 // are not SHF_ALLOC, including the section table header.
2651 // 9) Finalize the ELF file header.
2653 // This function returns the size of the output file.
2656 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2657 Target* target, const Task* task)
2659 target->finalize_sections(this, input_objects, symtab);
2661 this->count_local_symbols(task, input_objects);
2663 this->link_stabs_sections();
2665 Output_segment* phdr_seg = NULL;
2666 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2668 // There was a dynamic object in the link. We need to create
2669 // some information for the dynamic linker.
2671 // Create the PT_PHDR segment which will hold the program
2673 if (!this->script_options_->saw_phdrs_clause())
2674 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2676 // Create the dynamic symbol table, including the hash table.
2677 Output_section* dynstr;
2678 std::vector<Symbol*> dynamic_symbols;
2679 unsigned int local_dynamic_count;
2680 Versions versions(*this->script_options()->version_script_info(),
2682 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2683 &local_dynamic_count, &dynamic_symbols,
2686 // Create the .interp section to hold the name of the
2687 // interpreter, and put it in a PT_INTERP segment. Don't do it
2688 // if we saw a .interp section in an input file.
2689 if ((!parameters->options().shared()
2690 || parameters->options().dynamic_linker() != NULL)
2691 && this->interp_segment_ == NULL)
2692 this->create_interp(target);
2694 // Finish the .dynamic section to hold the dynamic data, and put
2695 // it in a PT_DYNAMIC segment.
2696 this->finish_dynamic_section(input_objects, symtab);
2698 // We should have added everything we need to the dynamic string
2700 this->dynpool_.set_string_offsets();
2702 // Create the version sections. We can't do this until the
2703 // dynamic string table is complete.
2704 this->create_version_sections(&versions, symtab, local_dynamic_count,
2705 dynamic_symbols, dynstr);
2707 // Set the size of the _DYNAMIC symbol. We can't do this until
2708 // after we call create_version_sections.
2709 this->set_dynamic_symbol_size(symtab);
2712 // Create segment headers.
2713 Output_segment_headers* segment_headers =
2714 (parameters->options().relocatable()
2716 : new Output_segment_headers(this->segment_list_));
2718 // Lay out the file header.
2719 Output_file_header* file_header = new Output_file_header(target, symtab,
2722 this->special_output_list_.push_back(file_header);
2723 if (segment_headers != NULL)
2724 this->special_output_list_.push_back(segment_headers);
2726 // Find approriate places for orphan output sections if we are using
2728 if (this->script_options_->saw_sections_clause())
2729 this->place_orphan_sections_in_script();
2731 Output_segment* load_seg;
2736 // Take a snapshot of the section layout as needed.
2737 if (target->may_relax())
2738 this->prepare_for_relaxation();
2740 // Run the relaxation loop to lay out sections.
2743 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2744 phdr_seg, segment_headers, file_header,
2748 while (target->may_relax()
2749 && target->relax(pass, input_objects, symtab, this, task));
2751 // If there is a load segment that contains the file and program headers,
2752 // provide a symbol __ehdr_start pointing there.
2753 // A program can use this to examine itself robustly.
2754 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2755 if (ehdr_start != NULL && ehdr_start->is_predefined())
2757 if (load_seg != NULL)
2758 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2760 ehdr_start->set_undefined();
2763 // Set the file offsets of all the non-data sections we've seen so
2764 // far which don't have to wait for the input sections. We need
2765 // this in order to finalize local symbols in non-allocated
2767 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2769 // Set the section indexes of all unallocated sections seen so far,
2770 // in case any of them are somehow referenced by a symbol.
2771 shndx = this->set_section_indexes(shndx);
2773 // Create the symbol table sections.
2774 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2775 if (!parameters->doing_static_link())
2776 this->assign_local_dynsym_offsets(input_objects);
2778 // Process any symbol assignments from a linker script. This must
2779 // be called after the symbol table has been finalized.
2780 this->script_options_->finalize_symbols(symtab, this);
2782 // Create the incremental inputs sections.
2783 if (this->incremental_inputs_)
2785 this->incremental_inputs_->finalize();
2786 this->create_incremental_info_sections(symtab);
2789 // Create the .shstrtab section.
2790 Output_section* shstrtab_section = this->create_shstrtab();
2792 // Set the file offsets of the rest of the non-data sections which
2793 // don't have to wait for the input sections.
2794 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2796 // Now that all sections have been created, set the section indexes
2797 // for any sections which haven't been done yet.
2798 shndx = this->set_section_indexes(shndx);
2800 // Create the section table header.
2801 this->create_shdrs(shstrtab_section, &off);
2803 // If there are no sections which require postprocessing, we can
2804 // handle the section names now, and avoid a resize later.
2805 if (!this->any_postprocessing_sections_)
2807 off = this->set_section_offsets(off,
2808 POSTPROCESSING_SECTIONS_PASS);
2810 this->set_section_offsets(off,
2811 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2814 file_header->set_section_info(this->section_headers_, shstrtab_section);
2816 // Now we know exactly where everything goes in the output file
2817 // (except for non-allocated sections which require postprocessing).
2818 Output_data::layout_complete();
2820 this->output_file_size_ = off;
2825 // Create a note header following the format defined in the ELF ABI.
2826 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2827 // of the section to create, DESCSZ is the size of the descriptor.
2828 // ALLOCATE is true if the section should be allocated in memory.
2829 // This returns the new note section. It sets *TRAILING_PADDING to
2830 // the number of trailing zero bytes required.
2833 Layout::create_note(const char* name, int note_type,
2834 const char* section_name, size_t descsz,
2835 bool allocate, size_t* trailing_padding)
2837 // Authorities all agree that the values in a .note field should
2838 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2839 // they differ on what the alignment is for 64-bit binaries.
2840 // The GABI says unambiguously they take 8-byte alignment:
2841 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2842 // Other documentation says alignment should always be 4 bytes:
2843 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2844 // GNU ld and GNU readelf both support the latter (at least as of
2845 // version 2.16.91), and glibc always generates the latter for
2846 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2848 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2849 const int size = parameters->target().get_size();
2851 const int size = 32;
2854 // The contents of the .note section.
2855 size_t namesz = strlen(name) + 1;
2856 size_t aligned_namesz = align_address(namesz, size / 8);
2857 size_t aligned_descsz = align_address(descsz, size / 8);
2859 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2861 unsigned char* buffer = new unsigned char[notehdrsz];
2862 memset(buffer, 0, notehdrsz);
2864 bool is_big_endian = parameters->target().is_big_endian();
2870 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2871 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2872 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2876 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2877 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2878 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2881 else if (size == 64)
2885 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2886 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2887 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2891 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2892 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2893 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2899 memcpy(buffer + 3 * (size / 8), name, namesz);
2901 elfcpp::Elf_Xword flags = 0;
2902 Output_section_order order = ORDER_INVALID;
2905 flags = elfcpp::SHF_ALLOC;
2906 order = ORDER_RO_NOTE;
2908 Output_section* os = this->choose_output_section(NULL, section_name,
2910 flags, false, order, false);
2914 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2917 os->add_output_section_data(posd);
2919 *trailing_padding = aligned_descsz - descsz;
2924 // For an executable or shared library, create a note to record the
2925 // version of gold used to create the binary.
2928 Layout::create_gold_note()
2930 if (parameters->options().relocatable()
2931 || parameters->incremental_update())
2934 std::string desc = std::string("gold ") + gold::get_version_string();
2936 size_t trailing_padding;
2937 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2938 ".note.gnu.gold-version", desc.size(),
2939 false, &trailing_padding);
2943 Output_section_data* posd = new Output_data_const(desc, 4);
2944 os->add_output_section_data(posd);
2946 if (trailing_padding > 0)
2948 posd = new Output_data_zero_fill(trailing_padding, 0);
2949 os->add_output_section_data(posd);
2953 // Record whether the stack should be executable. This can be set
2954 // from the command line using the -z execstack or -z noexecstack
2955 // options. Otherwise, if any input file has a .note.GNU-stack
2956 // section with the SHF_EXECINSTR flag set, the stack should be
2957 // executable. Otherwise, if at least one input file a
2958 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2959 // section, we use the target default for whether the stack should be
2960 // executable. Otherwise, we don't generate a stack note. When
2961 // generating a object file, we create a .note.GNU-stack section with
2962 // the appropriate marking. When generating an executable or shared
2963 // library, we create a PT_GNU_STACK segment.
2966 Layout::create_executable_stack_info()
2968 bool is_stack_executable;
2969 if (parameters->options().is_execstack_set())
2970 is_stack_executable = parameters->options().is_stack_executable();
2971 else if (!this->input_with_gnu_stack_note_)
2975 if (this->input_requires_executable_stack_)
2976 is_stack_executable = true;
2977 else if (this->input_without_gnu_stack_note_)
2978 is_stack_executable =
2979 parameters->target().is_default_stack_executable();
2981 is_stack_executable = false;
2984 if (parameters->options().relocatable())
2986 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2987 elfcpp::Elf_Xword flags = 0;
2988 if (is_stack_executable)
2989 flags |= elfcpp::SHF_EXECINSTR;
2990 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2991 ORDER_INVALID, false);
2995 if (this->script_options_->saw_phdrs_clause())
2997 int flags = elfcpp::PF_R | elfcpp::PF_W;
2998 if (is_stack_executable)
2999 flags |= elfcpp::PF_X;
3000 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3004 // If --build-id was used, set up the build ID note.
3007 Layout::create_build_id()
3009 if (!parameters->options().user_set_build_id())
3012 const char* style = parameters->options().build_id();
3013 if (strcmp(style, "none") == 0)
3016 // Set DESCSZ to the size of the note descriptor. When possible,
3017 // set DESC to the note descriptor contents.
3020 if (strcmp(style, "md5") == 0)
3022 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3024 else if (strcmp(style, "uuid") == 0)
3026 const size_t uuidsz = 128 / 8;
3028 char buffer[uuidsz];
3029 memset(buffer, 0, uuidsz);
3031 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3033 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3037 ssize_t got = ::read(descriptor, buffer, uuidsz);
3038 release_descriptor(descriptor, true);
3040 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3041 else if (static_cast<size_t>(got) != uuidsz)
3042 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3046 desc.assign(buffer, uuidsz);
3049 else if (strncmp(style, "0x", 2) == 0)
3052 const char* p = style + 2;
3055 if (hex_p(p[0]) && hex_p(p[1]))
3057 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3061 else if (*p == '-' || *p == ':')
3064 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3067 descsz = desc.size();
3070 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3073 size_t trailing_padding;
3074 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3075 ".note.gnu.build-id", descsz, true,
3082 // We know the value already, so we fill it in now.
3083 gold_assert(desc.size() == descsz);
3085 Output_section_data* posd = new Output_data_const(desc, 4);
3086 os->add_output_section_data(posd);
3088 if (trailing_padding != 0)
3090 posd = new Output_data_zero_fill(trailing_padding, 0);
3091 os->add_output_section_data(posd);
3096 // We need to compute a checksum after we have completed the
3098 gold_assert(trailing_padding == 0);
3099 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3100 os->add_output_section_data(this->build_id_note_);
3104 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3105 // field of the former should point to the latter. I'm not sure who
3106 // started this, but the GNU linker does it, and some tools depend
3110 Layout::link_stabs_sections()
3112 if (!this->have_stabstr_section_)
3115 for (Section_list::iterator p = this->section_list_.begin();
3116 p != this->section_list_.end();
3119 if ((*p)->type() != elfcpp::SHT_STRTAB)
3122 const char* name = (*p)->name();
3123 if (strncmp(name, ".stab", 5) != 0)
3126 size_t len = strlen(name);
3127 if (strcmp(name + len - 3, "str") != 0)
3130 std::string stab_name(name, len - 3);
3131 Output_section* stab_sec;
3132 stab_sec = this->find_output_section(stab_name.c_str());
3133 if (stab_sec != NULL)
3134 stab_sec->set_link_section(*p);
3138 // Create .gnu_incremental_inputs and related sections needed
3139 // for the next run of incremental linking to check what has changed.
3142 Layout::create_incremental_info_sections(Symbol_table* symtab)
3144 Incremental_inputs* incr = this->incremental_inputs_;
3146 gold_assert(incr != NULL);
3148 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3149 incr->create_data_sections(symtab);
3151 // Add the .gnu_incremental_inputs section.
3152 const char* incremental_inputs_name =
3153 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3154 Output_section* incremental_inputs_os =
3155 this->make_output_section(incremental_inputs_name,
3156 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3157 ORDER_INVALID, false);
3158 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3160 // Add the .gnu_incremental_symtab section.
3161 const char* incremental_symtab_name =
3162 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3163 Output_section* incremental_symtab_os =
3164 this->make_output_section(incremental_symtab_name,
3165 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3166 ORDER_INVALID, false);
3167 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3168 incremental_symtab_os->set_entsize(4);
3170 // Add the .gnu_incremental_relocs section.
3171 const char* incremental_relocs_name =
3172 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3173 Output_section* incremental_relocs_os =
3174 this->make_output_section(incremental_relocs_name,
3175 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3176 ORDER_INVALID, false);
3177 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3178 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3180 // Add the .gnu_incremental_got_plt section.
3181 const char* incremental_got_plt_name =
3182 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3183 Output_section* incremental_got_plt_os =
3184 this->make_output_section(incremental_got_plt_name,
3185 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3186 ORDER_INVALID, false);
3187 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3189 // Add the .gnu_incremental_strtab section.
3190 const char* incremental_strtab_name =
3191 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3192 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3193 elfcpp::SHT_STRTAB, 0,
3194 ORDER_INVALID, false);
3195 Output_data_strtab* strtab_data =
3196 new Output_data_strtab(incr->get_stringpool());
3197 incremental_strtab_os->add_output_section_data(strtab_data);
3199 incremental_inputs_os->set_after_input_sections();
3200 incremental_symtab_os->set_after_input_sections();
3201 incremental_relocs_os->set_after_input_sections();
3202 incremental_got_plt_os->set_after_input_sections();
3204 incremental_inputs_os->set_link_section(incremental_strtab_os);
3205 incremental_symtab_os->set_link_section(incremental_inputs_os);
3206 incremental_relocs_os->set_link_section(incremental_inputs_os);
3207 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3210 // Return whether SEG1 should be before SEG2 in the output file. This
3211 // is based entirely on the segment type and flags. When this is
3212 // called the segment addresses have normally not yet been set.
3215 Layout::segment_precedes(const Output_segment* seg1,
3216 const Output_segment* seg2)
3218 elfcpp::Elf_Word type1 = seg1->type();
3219 elfcpp::Elf_Word type2 = seg2->type();
3221 // The single PT_PHDR segment is required to precede any loadable
3222 // segment. We simply make it always first.
3223 if (type1 == elfcpp::PT_PHDR)
3225 gold_assert(type2 != elfcpp::PT_PHDR);
3228 if (type2 == elfcpp::PT_PHDR)
3231 // The single PT_INTERP segment is required to precede any loadable
3232 // segment. We simply make it always second.
3233 if (type1 == elfcpp::PT_INTERP)
3235 gold_assert(type2 != elfcpp::PT_INTERP);
3238 if (type2 == elfcpp::PT_INTERP)
3241 // We then put PT_LOAD segments before any other segments.
3242 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3244 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3247 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3248 // segment, because that is where the dynamic linker expects to find
3249 // it (this is just for efficiency; other positions would also work
3251 if (type1 == elfcpp::PT_TLS
3252 && type2 != elfcpp::PT_TLS
3253 && type2 != elfcpp::PT_GNU_RELRO)
3255 if (type2 == elfcpp::PT_TLS
3256 && type1 != elfcpp::PT_TLS
3257 && type1 != elfcpp::PT_GNU_RELRO)
3260 // We put the PT_GNU_RELRO segment last, because that is where the
3261 // dynamic linker expects to find it (as with PT_TLS, this is just
3263 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3265 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3268 const elfcpp::Elf_Word flags1 = seg1->flags();
3269 const elfcpp::Elf_Word flags2 = seg2->flags();
3271 // The order of non-PT_LOAD segments is unimportant. We simply sort
3272 // by the numeric segment type and flags values. There should not
3273 // be more than one segment with the same type and flags, except
3274 // when a linker script specifies such.
3275 if (type1 != elfcpp::PT_LOAD)
3278 return type1 < type2;
3279 gold_assert(flags1 != flags2
3280 || this->script_options_->saw_phdrs_clause());
3281 return flags1 < flags2;
3284 // If the addresses are set already, sort by load address.
3285 if (seg1->are_addresses_set())
3287 if (!seg2->are_addresses_set())
3290 unsigned int section_count1 = seg1->output_section_count();
3291 unsigned int section_count2 = seg2->output_section_count();
3292 if (section_count1 == 0 && section_count2 > 0)
3294 if (section_count1 > 0 && section_count2 == 0)
3297 uint64_t paddr1 = (seg1->are_addresses_set()
3299 : seg1->first_section_load_address());
3300 uint64_t paddr2 = (seg2->are_addresses_set()
3302 : seg2->first_section_load_address());
3304 if (paddr1 != paddr2)
3305 return paddr1 < paddr2;
3307 else if (seg2->are_addresses_set())
3310 // A segment which holds large data comes after a segment which does
3311 // not hold large data.
3312 if (seg1->is_large_data_segment())
3314 if (!seg2->is_large_data_segment())
3317 else if (seg2->is_large_data_segment())
3320 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3321 // segments come before writable segments. Then writable segments
3322 // with data come before writable segments without data. Then
3323 // executable segments come before non-executable segments. Then
3324 // the unlikely case of a non-readable segment comes before the
3325 // normal case of a readable segment. If there are multiple
3326 // segments with the same type and flags, we require that the
3327 // address be set, and we sort by virtual address and then physical
3329 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3330 return (flags1 & elfcpp::PF_W) == 0;
3331 if ((flags1 & elfcpp::PF_W) != 0
3332 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3333 return seg1->has_any_data_sections();
3334 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3335 return (flags1 & elfcpp::PF_X) != 0;
3336 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3337 return (flags1 & elfcpp::PF_R) == 0;
3339 // We shouldn't get here--we shouldn't create segments which we
3340 // can't distinguish. Unless of course we are using a weird linker
3341 // script or overlapping --section-start options. We could also get
3342 // here if plugins want unique segments for subsets of sections.
3343 gold_assert(this->script_options_->saw_phdrs_clause()
3344 || parameters->options().any_section_start()
3345 || this->is_unique_segment_for_sections_specified());
3349 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3352 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3354 uint64_t unsigned_off = off;
3355 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3356 | (addr & (abi_pagesize - 1)));
3357 if (aligned_off < unsigned_off)
3358 aligned_off += abi_pagesize;
3362 // On targets where the text segment contains only executable code,
3363 // a non-executable segment is never the text segment.
3366 is_text_segment(const Target* target, const Output_segment* seg)
3368 elfcpp::Elf_Xword flags = seg->flags();
3369 if ((flags & elfcpp::PF_W) != 0)
3371 if ((flags & elfcpp::PF_X) == 0)
3372 return !target->isolate_execinstr();
3376 // Set the file offsets of all the segments, and all the sections they
3377 // contain. They have all been created. LOAD_SEG must be be laid out
3378 // first. Return the offset of the data to follow.
3381 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3382 unsigned int* pshndx)
3384 // Sort them into the final order. We use a stable sort so that we
3385 // don't randomize the order of indistinguishable segments created
3386 // by linker scripts.
3387 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3388 Layout::Compare_segments(this));
3390 // Find the PT_LOAD segments, and set their addresses and offsets
3391 // and their section's addresses and offsets.
3392 uint64_t start_addr;
3393 if (parameters->options().user_set_Ttext())
3394 start_addr = parameters->options().Ttext();
3395 else if (parameters->options().output_is_position_independent())
3398 start_addr = target->default_text_segment_address();
3400 uint64_t addr = start_addr;
3403 // If LOAD_SEG is NULL, then the file header and segment headers
3404 // will not be loadable. But they still need to be at offset 0 in
3405 // the file. Set their offsets now.
3406 if (load_seg == NULL)
3408 for (Data_list::iterator p = this->special_output_list_.begin();
3409 p != this->special_output_list_.end();
3412 off = align_address(off, (*p)->addralign());
3413 (*p)->set_address_and_file_offset(0, off);
3414 off += (*p)->data_size();
3418 unsigned int increase_relro = this->increase_relro_;
3419 if (this->script_options_->saw_sections_clause())
3422 const bool check_sections = parameters->options().check_sections();
3423 Output_segment* last_load_segment = NULL;
3425 unsigned int shndx_begin = *pshndx;
3426 unsigned int shndx_load_seg = *pshndx;
3428 for (Segment_list::iterator p = this->segment_list_.begin();
3429 p != this->segment_list_.end();
3432 if ((*p)->type() == elfcpp::PT_LOAD)
3434 if (target->isolate_execinstr())
3436 // When we hit the segment that should contain the
3437 // file headers, reset the file offset so we place
3438 // it and subsequent segments appropriately.
3439 // We'll fix up the preceding segments below.
3447 shndx_load_seg = *pshndx;
3453 // Verify that the file headers fall into the first segment.
3454 if (load_seg != NULL && load_seg != *p)
3459 bool are_addresses_set = (*p)->are_addresses_set();
3460 if (are_addresses_set)
3462 // When it comes to setting file offsets, we care about
3463 // the physical address.
3464 addr = (*p)->paddr();
3466 else if (parameters->options().user_set_Ttext()
3467 && (parameters->options().omagic()
3468 || is_text_segment(target, *p)))
3470 are_addresses_set = true;
3472 else if (parameters->options().user_set_Trodata_segment()
3473 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3475 addr = parameters->options().Trodata_segment();
3476 are_addresses_set = true;
3478 else if (parameters->options().user_set_Tdata()
3479 && ((*p)->flags() & elfcpp::PF_W) != 0
3480 && (!parameters->options().user_set_Tbss()
3481 || (*p)->has_any_data_sections()))
3483 addr = parameters->options().Tdata();
3484 are_addresses_set = true;
3486 else if (parameters->options().user_set_Tbss()
3487 && ((*p)->flags() & elfcpp::PF_W) != 0
3488 && !(*p)->has_any_data_sections())
3490 addr = parameters->options().Tbss();
3491 are_addresses_set = true;
3494 uint64_t orig_addr = addr;
3495 uint64_t orig_off = off;
3497 uint64_t aligned_addr = 0;
3498 uint64_t abi_pagesize = target->abi_pagesize();
3499 uint64_t common_pagesize = target->common_pagesize();
3501 if (!parameters->options().nmagic()
3502 && !parameters->options().omagic())
3503 (*p)->set_minimum_p_align(abi_pagesize);
3505 if (!are_addresses_set)
3507 // Skip the address forward one page, maintaining the same
3508 // position within the page. This lets us store both segments
3509 // overlapping on a single page in the file, but the loader will
3510 // put them on different pages in memory. We will revisit this
3511 // decision once we know the size of the segment.
3513 addr = align_address(addr, (*p)->maximum_alignment());
3514 aligned_addr = addr;
3518 // This is the segment that will contain the file
3519 // headers, so its offset will have to be exactly zero.
3520 gold_assert(orig_off == 0);
3522 // If the target wants a fixed minimum distance from the
3523 // text segment to the read-only segment, move up now.
3525 start_addr + (parameters->options().user_set_rosegment_gap()
3526 ? parameters->options().rosegment_gap()
3527 : target->rosegment_gap());
3528 if (addr < min_addr)
3531 // But this is not the first segment! To make its
3532 // address congruent with its offset, that address better
3533 // be aligned to the ABI-mandated page size.
3534 addr = align_address(addr, abi_pagesize);
3535 aligned_addr = addr;
3539 if ((addr & (abi_pagesize - 1)) != 0)
3540 addr = addr + abi_pagesize;
3542 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3546 if (!parameters->options().nmagic()
3547 && !parameters->options().omagic())
3549 // Here we are also taking care of the case when
3550 // the maximum segment alignment is larger than the page size.
3551 off = align_file_offset(off, addr,
3552 std::max(abi_pagesize,
3553 (*p)->maximum_alignment()));
3557 // This is -N or -n with a section script which prevents
3558 // us from using a load segment. We need to ensure that
3559 // the file offset is aligned to the alignment of the
3560 // segment. This is because the linker script
3561 // implicitly assumed a zero offset. If we don't align
3562 // here, then the alignment of the sections in the
3563 // linker script may not match the alignment of the
3564 // sections in the set_section_addresses call below,
3565 // causing an error about dot moving backward.
3566 off = align_address(off, (*p)->maximum_alignment());
3569 unsigned int shndx_hold = *pshndx;
3570 bool has_relro = false;
3571 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3577 // Now that we know the size of this segment, we may be able
3578 // to save a page in memory, at the cost of wasting some
3579 // file space, by instead aligning to the start of a new
3580 // page. Here we use the real machine page size rather than
3581 // the ABI mandated page size. If the segment has been
3582 // aligned so that the relro data ends at a page boundary,
3583 // we do not try to realign it.
3585 if (!are_addresses_set
3587 && aligned_addr != addr
3588 && !parameters->incremental())
3590 uint64_t first_off = (common_pagesize
3592 & (common_pagesize - 1)));
3593 uint64_t last_off = new_addr & (common_pagesize - 1);
3596 && ((aligned_addr & ~ (common_pagesize - 1))
3597 != (new_addr & ~ (common_pagesize - 1)))
3598 && first_off + last_off <= common_pagesize)
3600 *pshndx = shndx_hold;
3601 addr = align_address(aligned_addr, common_pagesize);
3602 addr = align_address(addr, (*p)->maximum_alignment());
3603 if ((addr & (abi_pagesize - 1)) != 0)
3604 addr = addr + abi_pagesize;
3605 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3606 off = align_file_offset(off, addr, abi_pagesize);
3608 increase_relro = this->increase_relro_;
3609 if (this->script_options_->saw_sections_clause())
3613 new_addr = (*p)->set_section_addresses(target, this,
3623 // Implement --check-sections. We know that the segments
3624 // are sorted by LMA.
3625 if (check_sections && last_load_segment != NULL)
3627 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3628 if (last_load_segment->paddr() + last_load_segment->memsz()
3631 unsigned long long lb1 = last_load_segment->paddr();
3632 unsigned long long le1 = lb1 + last_load_segment->memsz();
3633 unsigned long long lb2 = (*p)->paddr();
3634 unsigned long long le2 = lb2 + (*p)->memsz();
3635 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3636 "[0x%llx -> 0x%llx]"),
3637 lb1, le1, lb2, le2);
3640 last_load_segment = *p;
3644 if (load_seg != NULL && target->isolate_execinstr())
3646 // Process the early segments again, setting their file offsets
3647 // so they land after the segments starting at LOAD_SEG.
3648 off = align_file_offset(off, 0, target->abi_pagesize());
3650 this->reset_relax_output();
3652 for (Segment_list::iterator p = this->segment_list_.begin();
3656 if ((*p)->type() == elfcpp::PT_LOAD)
3658 // We repeat the whole job of assigning addresses and
3659 // offsets, but we really only want to change the offsets and
3660 // must ensure that the addresses all come out the same as
3661 // they did the first time through.
3662 bool has_relro = false;
3663 const uint64_t old_addr = (*p)->vaddr();
3664 const uint64_t old_end = old_addr + (*p)->memsz();
3665 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3671 gold_assert(new_addr == old_end);
3675 gold_assert(shndx_begin == shndx_load_seg);
3678 // Handle the non-PT_LOAD segments, setting their offsets from their
3679 // section's offsets.
3680 for (Segment_list::iterator p = this->segment_list_.begin();
3681 p != this->segment_list_.end();
3684 if ((*p)->type() != elfcpp::PT_LOAD)
3685 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3690 // Set the TLS offsets for each section in the PT_TLS segment.
3691 if (this->tls_segment_ != NULL)
3692 this->tls_segment_->set_tls_offsets();
3697 // Set the offsets of all the allocated sections when doing a
3698 // relocatable link. This does the same jobs as set_segment_offsets,
3699 // only for a relocatable link.
3702 Layout::set_relocatable_section_offsets(Output_data* file_header,
3703 unsigned int* pshndx)
3707 file_header->set_address_and_file_offset(0, 0);
3708 off += file_header->data_size();
3710 for (Section_list::iterator p = this->section_list_.begin();
3711 p != this->section_list_.end();
3714 // We skip unallocated sections here, except that group sections
3715 // have to come first.
3716 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3717 && (*p)->type() != elfcpp::SHT_GROUP)
3720 off = align_address(off, (*p)->addralign());
3722 // The linker script might have set the address.
3723 if (!(*p)->is_address_valid())
3724 (*p)->set_address(0);
3725 (*p)->set_file_offset(off);
3726 (*p)->finalize_data_size();
3727 if ((*p)->type() != elfcpp::SHT_NOBITS)
3728 off += (*p)->data_size();
3730 (*p)->set_out_shndx(*pshndx);
3737 // Set the file offset of all the sections not associated with a
3741 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3743 off_t startoff = off;
3746 for (Section_list::iterator p = this->unattached_section_list_.begin();
3747 p != this->unattached_section_list_.end();
3750 // The symtab section is handled in create_symtab_sections.
3751 if (*p == this->symtab_section_)
3754 // If we've already set the data size, don't set it again.
3755 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3758 if (pass == BEFORE_INPUT_SECTIONS_PASS
3759 && (*p)->requires_postprocessing())
3761 (*p)->create_postprocessing_buffer();
3762 this->any_postprocessing_sections_ = true;
3765 if (pass == BEFORE_INPUT_SECTIONS_PASS
3766 && (*p)->after_input_sections())
3768 else if (pass == POSTPROCESSING_SECTIONS_PASS
3769 && (!(*p)->after_input_sections()
3770 || (*p)->type() == elfcpp::SHT_STRTAB))
3772 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3773 && (!(*p)->after_input_sections()
3774 || (*p)->type() != elfcpp::SHT_STRTAB))
3777 if (!parameters->incremental_update())
3779 off = align_address(off, (*p)->addralign());
3780 (*p)->set_file_offset(off);
3781 (*p)->finalize_data_size();
3785 // Incremental update: allocate file space from free list.
3786 (*p)->pre_finalize_data_size();
3787 off_t current_size = (*p)->current_data_size();
3788 off = this->allocate(current_size, (*p)->addralign(), startoff);
3791 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3792 this->free_list_.dump();
3793 gold_assert((*p)->output_section() != NULL);
3794 gold_fallback(_("out of patch space for section %s; "
3795 "relink with --incremental-full"),
3796 (*p)->output_section()->name());
3798 (*p)->set_file_offset(off);
3799 (*p)->finalize_data_size();
3800 if ((*p)->data_size() > current_size)
3802 gold_assert((*p)->output_section() != NULL);
3803 gold_fallback(_("%s: section changed size; "
3804 "relink with --incremental-full"),
3805 (*p)->output_section()->name());
3807 gold_debug(DEBUG_INCREMENTAL,
3808 "set_section_offsets: %08lx %08lx %s",
3809 static_cast<long>(off),
3810 static_cast<long>((*p)->data_size()),
3811 ((*p)->output_section() != NULL
3812 ? (*p)->output_section()->name() : "(special)"));
3815 off += (*p)->data_size();
3819 // At this point the name must be set.
3820 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3821 this->namepool_.add((*p)->name(), false, NULL);
3826 // Set the section indexes of all the sections not associated with a
3830 Layout::set_section_indexes(unsigned int shndx)
3832 for (Section_list::iterator p = this->unattached_section_list_.begin();
3833 p != this->unattached_section_list_.end();
3836 if (!(*p)->has_out_shndx())
3838 (*p)->set_out_shndx(shndx);
3845 // Set the section addresses according to the linker script. This is
3846 // only called when we see a SECTIONS clause. This returns the
3847 // program segment which should hold the file header and segment
3848 // headers, if any. It will return NULL if they should not be in a
3852 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3854 Script_sections* ss = this->script_options_->script_sections();
3855 gold_assert(ss->saw_sections_clause());
3856 return this->script_options_->set_section_addresses(symtab, this);
3859 // Place the orphan sections in the linker script.
3862 Layout::place_orphan_sections_in_script()
3864 Script_sections* ss = this->script_options_->script_sections();
3865 gold_assert(ss->saw_sections_clause());
3867 // Place each orphaned output section in the script.
3868 for (Section_list::iterator p = this->section_list_.begin();
3869 p != this->section_list_.end();
3872 if (!(*p)->found_in_sections_clause())
3873 ss->place_orphan(*p);
3877 // Count the local symbols in the regular symbol table and the dynamic
3878 // symbol table, and build the respective string pools.
3881 Layout::count_local_symbols(const Task* task,
3882 const Input_objects* input_objects)
3884 // First, figure out an upper bound on the number of symbols we'll
3885 // be inserting into each pool. This helps us create the pools with
3886 // the right size, to avoid unnecessary hashtable resizing.
3887 unsigned int symbol_count = 0;
3888 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3889 p != input_objects->relobj_end();
3891 symbol_count += (*p)->local_symbol_count();
3893 // Go from "upper bound" to "estimate." We overcount for two
3894 // reasons: we double-count symbols that occur in more than one
3895 // object file, and we count symbols that are dropped from the
3896 // output. Add it all together and assume we overcount by 100%.
3899 // We assume all symbols will go into both the sympool and dynpool.
3900 this->sympool_.reserve(symbol_count);
3901 this->dynpool_.reserve(symbol_count);
3903 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3904 p != input_objects->relobj_end();
3907 Task_lock_obj<Object> tlo(task, *p);
3908 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3912 // Create the symbol table sections. Here we also set the final
3913 // values of the symbols. At this point all the loadable sections are
3914 // fully laid out. SHNUM is the number of sections so far.
3917 Layout::create_symtab_sections(const Input_objects* input_objects,
3918 Symbol_table* symtab,
3924 if (parameters->target().get_size() == 32)
3926 symsize = elfcpp::Elf_sizes<32>::sym_size;
3929 else if (parameters->target().get_size() == 64)
3931 symsize = elfcpp::Elf_sizes<64>::sym_size;
3937 // Compute file offsets relative to the start of the symtab section.
3940 // Save space for the dummy symbol at the start of the section. We
3941 // never bother to write this out--it will just be left as zero.
3943 unsigned int local_symbol_index = 1;
3945 // Add STT_SECTION symbols for each Output section which needs one.
3946 for (Section_list::iterator p = this->section_list_.begin();
3947 p != this->section_list_.end();
3950 if (!(*p)->needs_symtab_index())
3951 (*p)->set_symtab_index(-1U);
3954 (*p)->set_symtab_index(local_symbol_index);
3955 ++local_symbol_index;
3960 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3961 p != input_objects->relobj_end();
3964 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3966 off += (index - local_symbol_index) * symsize;
3967 local_symbol_index = index;
3970 unsigned int local_symcount = local_symbol_index;
3971 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3974 size_t dyn_global_index;
3976 if (this->dynsym_section_ == NULL)
3979 dyn_global_index = 0;
3984 dyn_global_index = this->dynsym_section_->info();
3985 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3986 dynoff = this->dynsym_section_->offset() + locsize;
3987 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3988 gold_assert(static_cast<off_t>(dyncount * symsize)
3989 == this->dynsym_section_->data_size() - locsize);
3992 off_t global_off = off;
3993 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3994 &this->sympool_, &local_symcount);
3996 if (!parameters->options().strip_all())
3998 this->sympool_.set_string_offsets();
4000 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4001 Output_section* osymtab = this->make_output_section(symtab_name,
4005 this->symtab_section_ = osymtab;
4007 Output_section_data* pos = new Output_data_fixed_space(off, align,
4009 osymtab->add_output_section_data(pos);
4011 // We generate a .symtab_shndx section if we have more than
4012 // SHN_LORESERVE sections. Technically it is possible that we
4013 // don't need one, because it is possible that there are no
4014 // symbols in any of sections with indexes larger than
4015 // SHN_LORESERVE. That is probably unusual, though, and it is
4016 // easier to always create one than to compute section indexes
4017 // twice (once here, once when writing out the symbols).
4018 if (shnum >= elfcpp::SHN_LORESERVE)
4020 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4022 Output_section* osymtab_xindex =
4023 this->make_output_section(symtab_xindex_name,
4024 elfcpp::SHT_SYMTAB_SHNDX, 0,
4025 ORDER_INVALID, false);
4027 size_t symcount = off / symsize;
4028 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4030 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4032 osymtab_xindex->set_link_section(osymtab);
4033 osymtab_xindex->set_addralign(4);
4034 osymtab_xindex->set_entsize(4);
4036 osymtab_xindex->set_after_input_sections();
4038 // This tells the driver code to wait until the symbol table
4039 // has written out before writing out the postprocessing
4040 // sections, including the .symtab_shndx section.
4041 this->any_postprocessing_sections_ = true;
4044 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4045 Output_section* ostrtab = this->make_output_section(strtab_name,
4050 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4051 ostrtab->add_output_section_data(pstr);
4054 if (!parameters->incremental_update())
4055 symtab_off = align_address(*poff, align);
4058 symtab_off = this->allocate(off, align, *poff);
4060 gold_fallback(_("out of patch space for symbol table; "
4061 "relink with --incremental-full"));
4062 gold_debug(DEBUG_INCREMENTAL,
4063 "create_symtab_sections: %08lx %08lx .symtab",
4064 static_cast<long>(symtab_off),
4065 static_cast<long>(off));
4068 symtab->set_file_offset(symtab_off + global_off);
4069 osymtab->set_file_offset(symtab_off);
4070 osymtab->finalize_data_size();
4071 osymtab->set_link_section(ostrtab);
4072 osymtab->set_info(local_symcount);
4073 osymtab->set_entsize(symsize);
4075 if (symtab_off + off > *poff)
4076 *poff = symtab_off + off;
4080 // Create the .shstrtab section, which holds the names of the
4081 // sections. At the time this is called, we have created all the
4082 // output sections except .shstrtab itself.
4085 Layout::create_shstrtab()
4087 // FIXME: We don't need to create a .shstrtab section if we are
4088 // stripping everything.
4090 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4092 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4093 ORDER_INVALID, false);
4095 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4097 // We can't write out this section until we've set all the
4098 // section names, and we don't set the names of compressed
4099 // output sections until relocations are complete. FIXME: With
4100 // the current names we use, this is unnecessary.
4101 os->set_after_input_sections();
4104 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4105 os->add_output_section_data(posd);
4110 // Create the section headers. SIZE is 32 or 64. OFF is the file
4114 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4116 Output_section_headers* oshdrs;
4117 oshdrs = new Output_section_headers(this,
4118 &this->segment_list_,
4119 &this->section_list_,
4120 &this->unattached_section_list_,
4124 if (!parameters->incremental_update())
4125 off = align_address(*poff, oshdrs->addralign());
4128 oshdrs->pre_finalize_data_size();
4129 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4131 gold_fallback(_("out of patch space for section header table; "
4132 "relink with --incremental-full"));
4133 gold_debug(DEBUG_INCREMENTAL,
4134 "create_shdrs: %08lx %08lx (section header table)",
4135 static_cast<long>(off),
4136 static_cast<long>(off + oshdrs->data_size()));
4138 oshdrs->set_address_and_file_offset(0, off);
4139 off += oshdrs->data_size();
4142 this->section_headers_ = oshdrs;
4145 // Count the allocated sections.
4148 Layout::allocated_output_section_count() const
4150 size_t section_count = 0;
4151 for (Segment_list::const_iterator p = this->segment_list_.begin();
4152 p != this->segment_list_.end();
4154 section_count += (*p)->output_section_count();
4155 return section_count;
4158 // Create the dynamic symbol table.
4161 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4162 Symbol_table* symtab,
4163 Output_section** pdynstr,
4164 unsigned int* plocal_dynamic_count,
4165 std::vector<Symbol*>* pdynamic_symbols,
4166 Versions* pversions)
4168 // Count all the symbols in the dynamic symbol table, and set the
4169 // dynamic symbol indexes.
4171 // Skip symbol 0, which is always all zeroes.
4172 unsigned int index = 1;
4174 // Add STT_SECTION symbols for each Output section which needs one.
4175 for (Section_list::iterator p = this->section_list_.begin();
4176 p != this->section_list_.end();
4179 if (!(*p)->needs_dynsym_index())
4180 (*p)->set_dynsym_index(-1U);
4183 (*p)->set_dynsym_index(index);
4188 // Count the local symbols that need to go in the dynamic symbol table,
4189 // and set the dynamic symbol indexes.
4190 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4191 p != input_objects->relobj_end();
4194 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4198 unsigned int local_symcount = index;
4199 *plocal_dynamic_count = local_symcount;
4201 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4202 &this->dynpool_, pversions);
4206 const int size = parameters->target().get_size();
4209 symsize = elfcpp::Elf_sizes<32>::sym_size;
4212 else if (size == 64)
4214 symsize = elfcpp::Elf_sizes<64>::sym_size;
4220 // Create the dynamic symbol table section.
4222 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4226 ORDER_DYNAMIC_LINKER,
4229 // Check for NULL as a linker script may discard .dynsym.
4232 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4235 dynsym->add_output_section_data(odata);
4237 dynsym->set_info(local_symcount);
4238 dynsym->set_entsize(symsize);
4239 dynsym->set_addralign(align);
4241 this->dynsym_section_ = dynsym;
4244 Output_data_dynamic* const odyn = this->dynamic_data_;
4247 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4248 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4251 // If there are more than SHN_LORESERVE allocated sections, we
4252 // create a .dynsym_shndx section. It is possible that we don't
4253 // need one, because it is possible that there are no dynamic
4254 // symbols in any of the sections with indexes larger than
4255 // SHN_LORESERVE. This is probably unusual, though, and at this
4256 // time we don't know the actual section indexes so it is
4257 // inconvenient to check.
4258 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4260 Output_section* dynsym_xindex =
4261 this->choose_output_section(NULL, ".dynsym_shndx",
4262 elfcpp::SHT_SYMTAB_SHNDX,
4264 false, ORDER_DYNAMIC_LINKER, false);
4266 if (dynsym_xindex != NULL)
4268 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4270 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4272 dynsym_xindex->set_link_section(dynsym);
4273 dynsym_xindex->set_addralign(4);
4274 dynsym_xindex->set_entsize(4);
4276 dynsym_xindex->set_after_input_sections();
4278 // This tells the driver code to wait until the symbol table
4279 // has written out before writing out the postprocessing
4280 // sections, including the .dynsym_shndx section.
4281 this->any_postprocessing_sections_ = true;
4285 // Create the dynamic string table section.
4287 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4291 ORDER_DYNAMIC_LINKER,
4296 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4297 dynstr->add_output_section_data(strdata);
4300 dynsym->set_link_section(dynstr);
4301 if (this->dynamic_section_ != NULL)
4302 this->dynamic_section_->set_link_section(dynstr);
4306 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4307 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4311 // Create the hash tables.
4313 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4314 || strcmp(parameters->options().hash_style(), "both") == 0)
4316 unsigned char* phash;
4317 unsigned int hashlen;
4318 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4321 Output_section* hashsec =
4322 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4323 elfcpp::SHF_ALLOC, false,
4324 ORDER_DYNAMIC_LINKER, false);
4326 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4330 if (hashsec != NULL && hashdata != NULL)
4331 hashsec->add_output_section_data(hashdata);
4333 if (hashsec != NULL)
4336 hashsec->set_link_section(dynsym);
4337 hashsec->set_entsize(4);
4341 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4344 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4345 || strcmp(parameters->options().hash_style(), "both") == 0)
4347 unsigned char* phash;
4348 unsigned int hashlen;
4349 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4352 Output_section* hashsec =
4353 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4354 elfcpp::SHF_ALLOC, false,
4355 ORDER_DYNAMIC_LINKER, false);
4357 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4361 if (hashsec != NULL && hashdata != NULL)
4362 hashsec->add_output_section_data(hashdata);
4364 if (hashsec != NULL)
4367 hashsec->set_link_section(dynsym);
4369 // For a 64-bit target, the entries in .gnu.hash do not have
4370 // a uniform size, so we only set the entry size for a
4372 if (parameters->target().get_size() == 32)
4373 hashsec->set_entsize(4);
4376 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4381 // Assign offsets to each local portion of the dynamic symbol table.
4384 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4386 Output_section* dynsym = this->dynsym_section_;
4390 off_t off = dynsym->offset();
4392 // Skip the dummy symbol at the start of the section.
4393 off += dynsym->entsize();
4395 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4396 p != input_objects->relobj_end();
4399 unsigned int count = (*p)->set_local_dynsym_offset(off);
4400 off += count * dynsym->entsize();
4404 // Create the version sections.
4407 Layout::create_version_sections(const Versions* versions,
4408 const Symbol_table* symtab,
4409 unsigned int local_symcount,
4410 const std::vector<Symbol*>& dynamic_symbols,
4411 const Output_section* dynstr)
4413 if (!versions->any_defs() && !versions->any_needs())
4416 switch (parameters->size_and_endianness())
4418 #ifdef HAVE_TARGET_32_LITTLE
4419 case Parameters::TARGET_32_LITTLE:
4420 this->sized_create_version_sections<32, false>(versions, symtab,
4422 dynamic_symbols, dynstr);
4425 #ifdef HAVE_TARGET_32_BIG
4426 case Parameters::TARGET_32_BIG:
4427 this->sized_create_version_sections<32, true>(versions, symtab,
4429 dynamic_symbols, dynstr);
4432 #ifdef HAVE_TARGET_64_LITTLE
4433 case Parameters::TARGET_64_LITTLE:
4434 this->sized_create_version_sections<64, false>(versions, symtab,
4436 dynamic_symbols, dynstr);
4439 #ifdef HAVE_TARGET_64_BIG
4440 case Parameters::TARGET_64_BIG:
4441 this->sized_create_version_sections<64, true>(versions, symtab,
4443 dynamic_symbols, dynstr);
4451 // Create the version sections, sized version.
4453 template<int size, bool big_endian>
4455 Layout::sized_create_version_sections(
4456 const Versions* versions,
4457 const Symbol_table* symtab,
4458 unsigned int local_symcount,
4459 const std::vector<Symbol*>& dynamic_symbols,
4460 const Output_section* dynstr)
4462 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4463 elfcpp::SHT_GNU_versym,
4466 ORDER_DYNAMIC_LINKER,
4469 // Check for NULL since a linker script may discard this section.
4472 unsigned char* vbuf;
4474 versions->symbol_section_contents<size, big_endian>(symtab,
4480 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4483 vsec->add_output_section_data(vdata);
4484 vsec->set_entsize(2);
4485 vsec->set_link_section(this->dynsym_section_);
4488 Output_data_dynamic* const odyn = this->dynamic_data_;
4489 if (odyn != NULL && vsec != NULL)
4490 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4492 if (versions->any_defs())
4494 Output_section* vdsec;
4495 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4496 elfcpp::SHT_GNU_verdef,
4498 false, ORDER_DYNAMIC_LINKER, false);
4502 unsigned char* vdbuf;
4503 unsigned int vdsize;
4504 unsigned int vdentries;
4505 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4509 Output_section_data* vddata =
4510 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4512 vdsec->add_output_section_data(vddata);
4513 vdsec->set_link_section(dynstr);
4514 vdsec->set_info(vdentries);
4518 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4519 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4524 if (versions->any_needs())
4526 Output_section* vnsec;
4527 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4528 elfcpp::SHT_GNU_verneed,
4530 false, ORDER_DYNAMIC_LINKER, false);
4534 unsigned char* vnbuf;
4535 unsigned int vnsize;
4536 unsigned int vnentries;
4537 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4541 Output_section_data* vndata =
4542 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4544 vnsec->add_output_section_data(vndata);
4545 vnsec->set_link_section(dynstr);
4546 vnsec->set_info(vnentries);
4550 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4551 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4557 // Create the .interp section and PT_INTERP segment.
4560 Layout::create_interp(const Target* target)
4562 gold_assert(this->interp_segment_ == NULL);
4564 const char* interp = parameters->options().dynamic_linker();
4567 interp = target->dynamic_linker();
4568 gold_assert(interp != NULL);
4571 size_t len = strlen(interp) + 1;
4573 Output_section_data* odata = new Output_data_const(interp, len, 1);
4575 Output_section* osec = this->choose_output_section(NULL, ".interp",
4576 elfcpp::SHT_PROGBITS,
4578 false, ORDER_INTERP,
4581 osec->add_output_section_data(odata);
4584 // Add dynamic tags for the PLT and the dynamic relocs. This is
4585 // called by the target-specific code. This does nothing if not doing
4588 // USE_REL is true for REL relocs rather than RELA relocs.
4590 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4592 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4593 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4594 // some targets have multiple reloc sections in PLT_REL.
4596 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4597 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4600 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4604 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4605 const Output_data* plt_rel,
4606 const Output_data_reloc_generic* dyn_rel,
4607 bool add_debug, bool dynrel_includes_plt)
4609 Output_data_dynamic* odyn = this->dynamic_data_;
4613 if (plt_got != NULL && plt_got->output_section() != NULL)
4614 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4616 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4618 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4619 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4620 odyn->add_constant(elfcpp::DT_PLTREL,
4621 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4624 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4625 || (dynrel_includes_plt
4627 && plt_rel->output_section() != NULL))
4629 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4630 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4631 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4633 ? dyn_rel->output_section()
4634 : plt_rel->output_section()));
4635 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4636 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4637 odyn->add_section_size(size_tag,
4638 dyn_rel->output_section(),
4639 plt_rel->output_section());
4640 else if (have_dyn_rel)
4641 odyn->add_section_size(size_tag, dyn_rel->output_section());
4643 odyn->add_section_size(size_tag, plt_rel->output_section());
4644 const int size = parameters->target().get_size();
4649 rel_tag = elfcpp::DT_RELENT;
4651 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4652 else if (size == 64)
4653 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4659 rel_tag = elfcpp::DT_RELAENT;
4661 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4662 else if (size == 64)
4663 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4667 odyn->add_constant(rel_tag, rel_size);
4669 if (parameters->options().combreloc() && have_dyn_rel)
4671 size_t c = dyn_rel->relative_reloc_count();
4673 odyn->add_constant((use_rel
4674 ? elfcpp::DT_RELCOUNT
4675 : elfcpp::DT_RELACOUNT),
4680 if (add_debug && !parameters->options().shared())
4682 // The value of the DT_DEBUG tag is filled in by the dynamic
4683 // linker at run time, and used by the debugger.
4684 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4688 // Finish the .dynamic section and PT_DYNAMIC segment.
4691 Layout::finish_dynamic_section(const Input_objects* input_objects,
4692 const Symbol_table* symtab)
4694 if (!this->script_options_->saw_phdrs_clause()
4695 && this->dynamic_section_ != NULL)
4697 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4700 oseg->add_output_section_to_nonload(this->dynamic_section_,
4701 elfcpp::PF_R | elfcpp::PF_W);
4704 Output_data_dynamic* const odyn = this->dynamic_data_;
4708 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4709 p != input_objects->dynobj_end();
4712 if (!(*p)->is_needed() && (*p)->as_needed())
4714 // This dynamic object was linked with --as-needed, but it
4719 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4722 if (parameters->options().shared())
4724 const char* soname = parameters->options().soname();
4726 odyn->add_string(elfcpp::DT_SONAME, soname);
4729 Symbol* sym = symtab->lookup(parameters->options().init());
4730 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4731 odyn->add_symbol(elfcpp::DT_INIT, sym);
4733 sym = symtab->lookup(parameters->options().fini());
4734 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4735 odyn->add_symbol(elfcpp::DT_FINI, sym);
4737 // Look for .init_array, .preinit_array and .fini_array by checking
4739 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4740 p != this->section_list_.end();
4742 switch((*p)->type())
4744 case elfcpp::SHT_FINI_ARRAY:
4745 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4746 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4748 case elfcpp::SHT_INIT_ARRAY:
4749 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4750 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4752 case elfcpp::SHT_PREINIT_ARRAY:
4753 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4754 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4760 // Add a DT_RPATH entry if needed.
4761 const General_options::Dir_list& rpath(parameters->options().rpath());
4764 std::string rpath_val;
4765 for (General_options::Dir_list::const_iterator p = rpath.begin();
4769 if (rpath_val.empty())
4770 rpath_val = p->name();
4773 // Eliminate duplicates.
4774 General_options::Dir_list::const_iterator q;
4775 for (q = rpath.begin(); q != p; ++q)
4776 if (q->name() == p->name())
4781 rpath_val += p->name();
4786 if (!parameters->options().enable_new_dtags())
4787 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4789 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4792 // Look for text segments that have dynamic relocations.
4793 bool have_textrel = false;
4794 if (!this->script_options_->saw_sections_clause())
4796 for (Segment_list::const_iterator p = this->segment_list_.begin();
4797 p != this->segment_list_.end();
4800 if ((*p)->type() == elfcpp::PT_LOAD
4801 && ((*p)->flags() & elfcpp::PF_W) == 0
4802 && (*p)->has_dynamic_reloc())
4804 have_textrel = true;
4811 // We don't know the section -> segment mapping, so we are
4812 // conservative and just look for readonly sections with
4813 // relocations. If those sections wind up in writable segments,
4814 // then we have created an unnecessary DT_TEXTREL entry.
4815 for (Section_list::const_iterator p = this->section_list_.begin();
4816 p != this->section_list_.end();
4819 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4820 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4821 && (*p)->has_dynamic_reloc())
4823 have_textrel = true;
4829 if (parameters->options().filter() != NULL)
4830 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4831 if (parameters->options().any_auxiliary())
4833 for (options::String_set::const_iterator p =
4834 parameters->options().auxiliary_begin();
4835 p != parameters->options().auxiliary_end();
4837 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4840 // Add a DT_FLAGS entry if necessary.
4841 unsigned int flags = 0;
4844 // Add a DT_TEXTREL for compatibility with older loaders.
4845 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4846 flags |= elfcpp::DF_TEXTREL;
4848 if (parameters->options().text())
4849 gold_error(_("read-only segment has dynamic relocations"));
4850 else if (parameters->options().warn_shared_textrel()
4851 && parameters->options().shared())
4852 gold_warning(_("shared library text segment is not shareable"));
4854 if (parameters->options().shared() && this->has_static_tls())
4855 flags |= elfcpp::DF_STATIC_TLS;
4856 if (parameters->options().origin())
4857 flags |= elfcpp::DF_ORIGIN;
4858 if (parameters->options().Bsymbolic())
4860 flags |= elfcpp::DF_SYMBOLIC;
4861 // Add DT_SYMBOLIC for compatibility with older loaders.
4862 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4864 if (parameters->options().now())
4865 flags |= elfcpp::DF_BIND_NOW;
4867 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4870 if (parameters->options().initfirst())
4871 flags |= elfcpp::DF_1_INITFIRST;
4872 if (parameters->options().interpose())
4873 flags |= elfcpp::DF_1_INTERPOSE;
4874 if (parameters->options().loadfltr())
4875 flags |= elfcpp::DF_1_LOADFLTR;
4876 if (parameters->options().nodefaultlib())
4877 flags |= elfcpp::DF_1_NODEFLIB;
4878 if (parameters->options().nodelete())
4879 flags |= elfcpp::DF_1_NODELETE;
4880 if (parameters->options().nodlopen())
4881 flags |= elfcpp::DF_1_NOOPEN;
4882 if (parameters->options().nodump())
4883 flags |= elfcpp::DF_1_NODUMP;
4884 if (!parameters->options().shared())
4885 flags &= ~(elfcpp::DF_1_INITFIRST
4886 | elfcpp::DF_1_NODELETE
4887 | elfcpp::DF_1_NOOPEN);
4888 if (parameters->options().origin())
4889 flags |= elfcpp::DF_1_ORIGIN;
4890 if (parameters->options().now())
4891 flags |= elfcpp::DF_1_NOW;
4892 if (parameters->options().Bgroup())
4893 flags |= elfcpp::DF_1_GROUP;
4895 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4898 // Set the size of the _DYNAMIC symbol table to be the size of the
4902 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4904 Output_data_dynamic* const odyn = this->dynamic_data_;
4907 odyn->finalize_data_size();
4908 if (this->dynamic_symbol_ == NULL)
4910 off_t data_size = odyn->data_size();
4911 const int size = parameters->target().get_size();
4913 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4914 else if (size == 64)
4915 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4920 // The mapping of input section name prefixes to output section names.
4921 // In some cases one prefix is itself a prefix of another prefix; in
4922 // such a case the longer prefix must come first. These prefixes are
4923 // based on the GNU linker default ELF linker script.
4925 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4926 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4927 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4929 MAPPING_INIT(".text.", ".text"),
4930 MAPPING_INIT(".rodata.", ".rodata"),
4931 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4932 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4933 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4934 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4935 MAPPING_INIT(".data.", ".data"),
4936 MAPPING_INIT(".bss.", ".bss"),
4937 MAPPING_INIT(".tdata.", ".tdata"),
4938 MAPPING_INIT(".tbss.", ".tbss"),
4939 MAPPING_INIT(".init_array.", ".init_array"),
4940 MAPPING_INIT(".fini_array.", ".fini_array"),
4941 MAPPING_INIT(".sdata.", ".sdata"),
4942 MAPPING_INIT(".sbss.", ".sbss"),
4943 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4944 // differently depending on whether it is creating a shared library.
4945 MAPPING_INIT(".sdata2.", ".sdata"),
4946 MAPPING_INIT(".sbss2.", ".sbss"),
4947 MAPPING_INIT(".lrodata.", ".lrodata"),
4948 MAPPING_INIT(".ldata.", ".ldata"),
4949 MAPPING_INIT(".lbss.", ".lbss"),
4950 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4951 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4952 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4953 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4954 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4955 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4956 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4957 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4958 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4959 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4960 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4961 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4962 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4963 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4964 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4965 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4966 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4967 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4968 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4969 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4970 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4973 #undef MAPPING_INIT_EXACT
4975 const int Layout::section_name_mapping_count =
4976 (sizeof(Layout::section_name_mapping)
4977 / sizeof(Layout::section_name_mapping[0]));
4979 // Choose the output section name to use given an input section name.
4980 // Set *PLEN to the length of the name. *PLEN is initialized to the
4984 Layout::output_section_name(const Relobj* relobj, const char* name,
4987 // gcc 4.3 generates the following sorts of section names when it
4988 // needs a section name specific to a function:
4994 // .data.rel.local.FN
4996 // .data.rel.ro.local.FN
5003 // The GNU linker maps all of those to the part before the .FN,
5004 // except that .data.rel.local.FN is mapped to .data, and
5005 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5006 // beginning with .data.rel.ro.local are grouped together.
5008 // For an anonymous namespace, the string FN can contain a '.'.
5010 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5011 // GNU linker maps to .rodata.
5013 // The .data.rel.ro sections are used with -z relro. The sections
5014 // are recognized by name. We use the same names that the GNU
5015 // linker does for these sections.
5017 // It is hard to handle this in a principled way, so we don't even
5018 // try. We use a table of mappings. If the input section name is
5019 // not found in the table, we simply use it as the output section
5022 const Section_name_mapping* psnm = section_name_mapping;
5023 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5025 if (psnm->fromlen > 0)
5027 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5029 *plen = psnm->tolen;
5035 if (strcmp(name, psnm->from) == 0)
5037 *plen = psnm->tolen;
5043 // As an additional complication, .ctors sections are output in
5044 // either .ctors or .init_array sections, and .dtors sections are
5045 // output in either .dtors or .fini_array sections.
5046 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5048 if (parameters->options().ctors_in_init_array())
5051 return name[1] == 'c' ? ".init_array" : ".fini_array";
5056 return name[1] == 'c' ? ".ctors" : ".dtors";
5059 if (parameters->options().ctors_in_init_array()
5060 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5062 // To make .init_array/.fini_array work with gcc we must exclude
5063 // .ctors and .dtors sections from the crtbegin and crtend
5066 || (!Layout::match_file_name(relobj, "crtbegin")
5067 && !Layout::match_file_name(relobj, "crtend")))
5070 return name[1] == 'c' ? ".init_array" : ".fini_array";
5077 // Return true if RELOBJ is an input file whose base name matches
5078 // FILE_NAME. The base name must have an extension of ".o", and must
5079 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5080 // to match crtbegin.o as well as crtbeginS.o without getting confused
5081 // by other possibilities. Overall matching the file name this way is
5082 // a dreadful hack, but the GNU linker does it in order to better
5083 // support gcc, and we need to be compatible.
5086 Layout::match_file_name(const Relobj* relobj, const char* match)
5088 const std::string& file_name(relobj->name());
5089 const char* base_name = lbasename(file_name.c_str());
5090 size_t match_len = strlen(match);
5091 if (strncmp(base_name, match, match_len) != 0)
5093 size_t base_len = strlen(base_name);
5094 if (base_len != match_len + 2 && base_len != match_len + 3)
5096 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5099 // Check if a comdat group or .gnu.linkonce section with the given
5100 // NAME is selected for the link. If there is already a section,
5101 // *KEPT_SECTION is set to point to the existing section and the
5102 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5103 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5104 // *KEPT_SECTION is set to the internal copy and the function returns
5108 Layout::find_or_add_kept_section(const std::string& name,
5113 Kept_section** kept_section)
5115 // It's normal to see a couple of entries here, for the x86 thunk
5116 // sections. If we see more than a few, we're linking a C++
5117 // program, and we resize to get more space to minimize rehashing.
5118 if (this->signatures_.size() > 4
5119 && !this->resized_signatures_)
5121 reserve_unordered_map(&this->signatures_,
5122 this->number_of_input_files_ * 64);
5123 this->resized_signatures_ = true;
5126 Kept_section candidate;
5127 std::pair<Signatures::iterator, bool> ins =
5128 this->signatures_.insert(std::make_pair(name, candidate));
5130 if (kept_section != NULL)
5131 *kept_section = &ins.first->second;
5134 // This is the first time we've seen this signature.
5135 ins.first->second.set_object(object);
5136 ins.first->second.set_shndx(shndx);
5138 ins.first->second.set_is_comdat();
5140 ins.first->second.set_is_group_name();
5144 // We have already seen this signature.
5146 if (ins.first->second.is_group_name())
5148 // We've already seen a real section group with this signature.
5149 // If the kept group is from a plugin object, and we're in the
5150 // replacement phase, accept the new one as a replacement.
5151 if (ins.first->second.object() == NULL
5152 && parameters->options().plugins()->in_replacement_phase())
5154 ins.first->second.set_object(object);
5155 ins.first->second.set_shndx(shndx);
5160 else if (is_group_name)
5162 // This is a real section group, and we've already seen a
5163 // linkonce section with this signature. Record that we've seen
5164 // a section group, and don't include this section group.
5165 ins.first->second.set_is_group_name();
5170 // We've already seen a linkonce section and this is a linkonce
5171 // section. These don't block each other--this may be the same
5172 // symbol name with different section types.
5177 // Store the allocated sections into the section list.
5180 Layout::get_allocated_sections(Section_list* section_list) const
5182 for (Section_list::const_iterator p = this->section_list_.begin();
5183 p != this->section_list_.end();
5185 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5186 section_list->push_back(*p);
5189 // Store the executable sections into the section list.
5192 Layout::get_executable_sections(Section_list* section_list) const
5194 for (Section_list::const_iterator p = this->section_list_.begin();
5195 p != this->section_list_.end();
5197 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5198 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5199 section_list->push_back(*p);
5202 // Create an output segment.
5205 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5207 gold_assert(!parameters->options().relocatable());
5208 Output_segment* oseg = new Output_segment(type, flags);
5209 this->segment_list_.push_back(oseg);
5211 if (type == elfcpp::PT_TLS)
5212 this->tls_segment_ = oseg;
5213 else if (type == elfcpp::PT_GNU_RELRO)
5214 this->relro_segment_ = oseg;
5215 else if (type == elfcpp::PT_INTERP)
5216 this->interp_segment_ = oseg;
5221 // Return the file offset of the normal symbol table.
5224 Layout::symtab_section_offset() const
5226 if (this->symtab_section_ != NULL)
5227 return this->symtab_section_->offset();
5231 // Return the section index of the normal symbol table. It may have
5232 // been stripped by the -s/--strip-all option.
5235 Layout::symtab_section_shndx() const
5237 if (this->symtab_section_ != NULL)
5238 return this->symtab_section_->out_shndx();
5242 // Write out the Output_sections. Most won't have anything to write,
5243 // since most of the data will come from input sections which are
5244 // handled elsewhere. But some Output_sections do have Output_data.
5247 Layout::write_output_sections(Output_file* of) const
5249 for (Section_list::const_iterator p = this->section_list_.begin();
5250 p != this->section_list_.end();
5253 if (!(*p)->after_input_sections())
5258 // Write out data not associated with a section or the symbol table.
5261 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5263 if (!parameters->options().strip_all())
5265 const Output_section* symtab_section = this->symtab_section_;
5266 for (Section_list::const_iterator p = this->section_list_.begin();
5267 p != this->section_list_.end();
5270 if ((*p)->needs_symtab_index())
5272 gold_assert(symtab_section != NULL);
5273 unsigned int index = (*p)->symtab_index();
5274 gold_assert(index > 0 && index != -1U);
5275 off_t off = (symtab_section->offset()
5276 + index * symtab_section->entsize());
5277 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5282 const Output_section* dynsym_section = this->dynsym_section_;
5283 for (Section_list::const_iterator p = this->section_list_.begin();
5284 p != this->section_list_.end();
5287 if ((*p)->needs_dynsym_index())
5289 gold_assert(dynsym_section != NULL);
5290 unsigned int index = (*p)->dynsym_index();
5291 gold_assert(index > 0 && index != -1U);
5292 off_t off = (dynsym_section->offset()
5293 + index * dynsym_section->entsize());
5294 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5298 // Write out the Output_data which are not in an Output_section.
5299 for (Data_list::const_iterator p = this->special_output_list_.begin();
5300 p != this->special_output_list_.end();
5304 // Write out the Output_data which are not in an Output_section
5305 // and are regenerated in each iteration of relaxation.
5306 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5307 p != this->relax_output_list_.end();
5312 // Write out the Output_sections which can only be written after the
5313 // input sections are complete.
5316 Layout::write_sections_after_input_sections(Output_file* of)
5318 // Determine the final section offsets, and thus the final output
5319 // file size. Note we finalize the .shstrab last, to allow the
5320 // after_input_section sections to modify their section-names before
5322 if (this->any_postprocessing_sections_)
5324 off_t off = this->output_file_size_;
5325 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5327 // Now that we've finalized the names, we can finalize the shstrab.
5329 this->set_section_offsets(off,
5330 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5332 if (off > this->output_file_size_)
5335 this->output_file_size_ = off;
5339 for (Section_list::const_iterator p = this->section_list_.begin();
5340 p != this->section_list_.end();
5343 if ((*p)->after_input_sections())
5347 this->section_headers_->write(of);
5350 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5351 // or as a "tree" where each chunk of the string is hashed and then those
5352 // hashes are put into a (much smaller) string which is hashed with sha1.
5353 // We compute a checksum over the entire file because that is simplest.
5356 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5359 const size_t filesize = (this->output_file_size() <= 0 ? 0
5360 : static_cast<size_t>(this->output_file_size()));
5361 if (this->build_id_note_ != NULL
5362 && strcmp(parameters->options().build_id(), "tree") == 0
5363 && parameters->options().build_id_chunk_size_for_treehash() > 0
5366 parameters->options().build_id_min_file_size_for_treehash()))
5368 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5369 const size_t chunk_size =
5370 parameters->options().build_id_chunk_size_for_treehash();
5371 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5372 Task_token* post_hash_tasks_blocker = new Task_token(true);
5373 post_hash_tasks_blocker->add_blockers(num_hashes);
5374 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5375 const unsigned char* src = of->get_input_view(0, filesize);
5376 this->input_view_ = src;
5377 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5378 this->array_of_hashes_ = dst;
5379 for (size_t i = 0, src_offset = 0; i < num_hashes;
5380 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5382 size_t size = std::min(chunk_size, filesize - src_offset);
5383 workqueue->queue(new Hash_task(src + src_offset,
5387 post_hash_tasks_blocker));
5389 return post_hash_tasks_blocker;
5391 return build_id_blocker;
5394 // If a tree-style build ID was requested, the parallel part of that computation
5395 // is already done, and the final hash-of-hashes is computed here. For other
5396 // types of build IDs, all the work is done here.
5399 Layout::write_build_id(Output_file* of) const
5401 if (this->build_id_note_ == NULL)
5404 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5405 this->build_id_note_->data_size());
5407 if (this->array_of_hashes_ == NULL)
5409 const size_t output_file_size = this->output_file_size();
5410 const unsigned char* iv = of->get_input_view(0, output_file_size);
5411 const char* style = parameters->options().build_id();
5413 // If we get here with style == "tree" then the output must be
5414 // too small for chunking, and we use SHA-1 in that case.
5415 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5416 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5417 else if (strcmp(style, "md5") == 0)
5418 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5422 of->free_input_view(0, output_file_size, iv);
5426 // Non-overlapping substrings of the output file have been hashed.
5427 // Compute SHA-1 hash of the hashes.
5428 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5429 this->size_of_array_of_hashes_, ov);
5430 delete[] this->array_of_hashes_;
5431 of->free_input_view(0, this->output_file_size(), this->input_view_);
5434 of->write_output_view(this->build_id_note_->offset(),
5435 this->build_id_note_->data_size(),
5439 // Write out a binary file. This is called after the link is
5440 // complete. IN is the temporary output file we used to generate the
5441 // ELF code. We simply walk through the segments, read them from
5442 // their file offset in IN, and write them to their load address in
5443 // the output file. FIXME: with a bit more work, we could support
5444 // S-records and/or Intel hex format here.
5447 Layout::write_binary(Output_file* in) const
5449 gold_assert(parameters->options().oformat_enum()
5450 == General_options::OBJECT_FORMAT_BINARY);
5452 // Get the size of the binary file.
5453 uint64_t max_load_address = 0;
5454 for (Segment_list::const_iterator p = this->segment_list_.begin();
5455 p != this->segment_list_.end();
5458 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5460 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5461 if (max_paddr > max_load_address)
5462 max_load_address = max_paddr;
5466 Output_file out(parameters->options().output_file_name());
5467 out.open(max_load_address);
5469 for (Segment_list::const_iterator p = this->segment_list_.begin();
5470 p != this->segment_list_.end();
5473 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5475 const unsigned char* vin = in->get_input_view((*p)->offset(),
5477 unsigned char* vout = out.get_output_view((*p)->paddr(),
5479 memcpy(vout, vin, (*p)->filesz());
5480 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5481 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5488 // Print the output sections to the map file.
5491 Layout::print_to_mapfile(Mapfile* mapfile) const
5493 for (Segment_list::const_iterator p = this->segment_list_.begin();
5494 p != this->segment_list_.end();
5496 (*p)->print_sections_to_mapfile(mapfile);
5497 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5498 p != this->unattached_section_list_.end();
5500 (*p)->print_to_mapfile(mapfile);
5503 // Print statistical information to stderr. This is used for --stats.
5506 Layout::print_stats() const
5508 this->namepool_.print_stats("section name pool");
5509 this->sympool_.print_stats("output symbol name pool");
5510 this->dynpool_.print_stats("dynamic name pool");
5512 for (Section_list::const_iterator p = this->section_list_.begin();
5513 p != this->section_list_.end();
5515 (*p)->print_merge_stats();
5518 // Write_sections_task methods.
5520 // We can always run this task.
5523 Write_sections_task::is_runnable()
5528 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5532 Write_sections_task::locks(Task_locker* tl)
5534 tl->add(this, this->output_sections_blocker_);
5535 tl->add(this, this->final_blocker_);
5538 // Run the task--write out the data.
5541 Write_sections_task::run(Workqueue*)
5543 this->layout_->write_output_sections(this->of_);
5546 // Write_data_task methods.
5548 // We can always run this task.
5551 Write_data_task::is_runnable()
5556 // We need to unlock FINAL_BLOCKER when finished.
5559 Write_data_task::locks(Task_locker* tl)
5561 tl->add(this, this->final_blocker_);
5564 // Run the task--write out the data.
5567 Write_data_task::run(Workqueue*)
5569 this->layout_->write_data(this->symtab_, this->of_);
5572 // Write_symbols_task methods.
5574 // We can always run this task.
5577 Write_symbols_task::is_runnable()
5582 // We need to unlock FINAL_BLOCKER when finished.
5585 Write_symbols_task::locks(Task_locker* tl)
5587 tl->add(this, this->final_blocker_);
5590 // Run the task--write out the symbols.
5593 Write_symbols_task::run(Workqueue*)
5595 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5596 this->layout_->symtab_xindex(),
5597 this->layout_->dynsym_xindex(), this->of_);
5600 // Write_after_input_sections_task methods.
5602 // We can only run this task after the input sections have completed.
5605 Write_after_input_sections_task::is_runnable()
5607 if (this->input_sections_blocker_->is_blocked())
5608 return this->input_sections_blocker_;
5612 // We need to unlock FINAL_BLOCKER when finished.
5615 Write_after_input_sections_task::locks(Task_locker* tl)
5617 tl->add(this, this->final_blocker_);
5623 Write_after_input_sections_task::run(Workqueue*)
5625 this->layout_->write_sections_after_input_sections(this->of_);
5628 // Close_task_runner methods.
5630 // Finish up the build ID computation, if necessary, and write a binary file,
5631 // if necessary. Then close the output file.
5634 Close_task_runner::run(Workqueue*, const Task*)
5636 // At this point the multi-threaded part of the build ID computation,
5637 // if any, is done. See queue_build_id_tasks().
5638 this->layout_->write_build_id(this->of_);
5640 // If we've been asked to create a binary file, we do so here.
5641 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5642 this->layout_->write_binary(this->of_);
5647 // Instantiate the templates we need. We could use the configure
5648 // script to restrict this to only the ones for implemented targets.
5650 #ifdef HAVE_TARGET_32_LITTLE
5653 Layout::init_fixed_output_section<32, false>(
5655 elfcpp::Shdr<32, false>& shdr);
5658 #ifdef HAVE_TARGET_32_BIG
5661 Layout::init_fixed_output_section<32, true>(
5663 elfcpp::Shdr<32, true>& shdr);
5666 #ifdef HAVE_TARGET_64_LITTLE
5669 Layout::init_fixed_output_section<64, false>(
5671 elfcpp::Shdr<64, false>& shdr);
5674 #ifdef HAVE_TARGET_64_BIG
5677 Layout::init_fixed_output_section<64, true>(
5679 elfcpp::Shdr<64, true>& shdr);
5682 #ifdef HAVE_TARGET_32_LITTLE
5685 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5688 const elfcpp::Shdr<32, false>& shdr,
5689 unsigned int, unsigned int, off_t*);
5692 #ifdef HAVE_TARGET_32_BIG
5695 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5698 const elfcpp::Shdr<32, true>& shdr,
5699 unsigned int, unsigned int, off_t*);
5702 #ifdef HAVE_TARGET_64_LITTLE
5705 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5708 const elfcpp::Shdr<64, false>& shdr,
5709 unsigned int, unsigned int, off_t*);
5712 #ifdef HAVE_TARGET_64_BIG
5715 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5718 const elfcpp::Shdr<64, true>& shdr,
5719 unsigned int, unsigned int, off_t*);
5722 #ifdef HAVE_TARGET_32_LITTLE
5725 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5726 unsigned int reloc_shndx,
5727 const elfcpp::Shdr<32, false>& shdr,
5728 Output_section* data_section,
5729 Relocatable_relocs* rr);
5732 #ifdef HAVE_TARGET_32_BIG
5735 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5736 unsigned int reloc_shndx,
5737 const elfcpp::Shdr<32, true>& shdr,
5738 Output_section* data_section,
5739 Relocatable_relocs* rr);
5742 #ifdef HAVE_TARGET_64_LITTLE
5745 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5746 unsigned int reloc_shndx,
5747 const elfcpp::Shdr<64, false>& shdr,
5748 Output_section* data_section,
5749 Relocatable_relocs* rr);
5752 #ifdef HAVE_TARGET_64_BIG
5755 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5756 unsigned int reloc_shndx,
5757 const elfcpp::Shdr<64, true>& shdr,
5758 Output_section* data_section,
5759 Relocatable_relocs* rr);
5762 #ifdef HAVE_TARGET_32_LITTLE
5765 Layout::layout_group<32, false>(Symbol_table* symtab,
5766 Sized_relobj_file<32, false>* object,
5768 const char* group_section_name,
5769 const char* signature,
5770 const elfcpp::Shdr<32, false>& shdr,
5771 elfcpp::Elf_Word flags,
5772 std::vector<unsigned int>* shndxes);
5775 #ifdef HAVE_TARGET_32_BIG
5778 Layout::layout_group<32, true>(Symbol_table* symtab,
5779 Sized_relobj_file<32, true>* object,
5781 const char* group_section_name,
5782 const char* signature,
5783 const elfcpp::Shdr<32, true>& shdr,
5784 elfcpp::Elf_Word flags,
5785 std::vector<unsigned int>* shndxes);
5788 #ifdef HAVE_TARGET_64_LITTLE
5791 Layout::layout_group<64, false>(Symbol_table* symtab,
5792 Sized_relobj_file<64, false>* object,
5794 const char* group_section_name,
5795 const char* signature,
5796 const elfcpp::Shdr<64, false>& shdr,
5797 elfcpp::Elf_Word flags,
5798 std::vector<unsigned int>* shndxes);
5801 #ifdef HAVE_TARGET_64_BIG
5804 Layout::layout_group<64, true>(Symbol_table* symtab,
5805 Sized_relobj_file<64, true>* object,
5807 const char* group_section_name,
5808 const char* signature,
5809 const elfcpp::Shdr<64, true>& shdr,
5810 elfcpp::Elf_Word flags,
5811 std::vector<unsigned int>* shndxes);
5814 #ifdef HAVE_TARGET_32_LITTLE
5817 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5818 const unsigned char* symbols,
5820 const unsigned char* symbol_names,
5821 off_t symbol_names_size,
5823 const elfcpp::Shdr<32, false>& shdr,
5824 unsigned int reloc_shndx,
5825 unsigned int reloc_type,
5829 #ifdef HAVE_TARGET_32_BIG
5832 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5833 const unsigned char* symbols,
5835 const unsigned char* symbol_names,
5836 off_t symbol_names_size,
5838 const elfcpp::Shdr<32, true>& shdr,
5839 unsigned int reloc_shndx,
5840 unsigned int reloc_type,
5844 #ifdef HAVE_TARGET_64_LITTLE
5847 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5848 const unsigned char* symbols,
5850 const unsigned char* symbol_names,
5851 off_t symbol_names_size,
5853 const elfcpp::Shdr<64, false>& shdr,
5854 unsigned int reloc_shndx,
5855 unsigned int reloc_type,
5859 #ifdef HAVE_TARGET_64_BIG
5862 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5863 const unsigned char* symbols,
5865 const unsigned char* symbol_names,
5866 off_t symbol_names_size,
5868 const elfcpp::Shdr<64, true>& shdr,
5869 unsigned int reloc_shndx,
5870 unsigned int reloc_type,
5874 #ifdef HAVE_TARGET_32_LITTLE
5877 Layout::add_to_gdb_index(bool is_type_unit,
5878 Sized_relobj<32, false>* object,
5879 const unsigned char* symbols,
5882 unsigned int reloc_shndx,
5883 unsigned int reloc_type);
5886 #ifdef HAVE_TARGET_32_BIG
5889 Layout::add_to_gdb_index(bool is_type_unit,
5890 Sized_relobj<32, true>* object,
5891 const unsigned char* symbols,
5894 unsigned int reloc_shndx,
5895 unsigned int reloc_type);
5898 #ifdef HAVE_TARGET_64_LITTLE
5901 Layout::add_to_gdb_index(bool is_type_unit,
5902 Sized_relobj<64, false>* object,
5903 const unsigned char* symbols,
5906 unsigned int reloc_shndx,
5907 unsigned int reloc_type);
5910 #ifdef HAVE_TARGET_64_BIG
5913 Layout::add_to_gdb_index(bool is_type_unit,
5914 Sized_relobj<64, true>* object,
5915 const unsigned char* symbols,
5918 unsigned int reloc_shndx,
5919 unsigned int reloc_type);
5922 } // End namespace gold.