1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
30 #include "parameters.h"
40 // Layout_task_runner methods.
42 // Lay out the sections. This is called after all the input objects
46 Layout_task_runner::run(Workqueue* workqueue)
48 off_t file_size = this->layout_->finalize(this->input_objects_,
51 // Now we know the final size of the output file and we know where
52 // each piece of information goes.
53 Output_file* of = new Output_file(this->options_,
54 this->input_objects_->target());
57 // Queue up the final set of tasks.
58 gold::queue_final_tasks(this->options_, this->input_objects_,
59 this->symtab_, this->layout_, workqueue, of);
64 Layout::Layout(const General_options& options)
65 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66 section_name_map_(), segment_list_(), section_list_(),
67 unattached_section_list_(), special_output_list_(),
68 tls_segment_(NULL), symtab_section_(NULL),
69 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70 eh_frame_section_(NULL), output_file_size_(-1),
71 input_requires_executable_stack_(false),
72 input_with_gnu_stack_note_(false),
73 input_without_gnu_stack_note_(false)
75 // Make space for more than enough segments for a typical file.
76 // This is just for efficiency--it's OK if we wind up needing more.
77 this->segment_list_.reserve(12);
79 // We expect three unattached Output_data objects: the file header,
80 // the segment headers, and the section headers.
81 this->special_output_list_.reserve(3);
84 // Hash a key we use to look up an output section mapping.
87 Layout::Hash_key::operator()(const Layout::Key& k) const
89 return k.first + k.second.first + k.second.second;
92 // Return whether PREFIX is a prefix of STR.
95 is_prefix_of(const char* prefix, const char* str)
97 return strncmp(prefix, str, strlen(prefix)) == 0;
100 // Whether to include this section in the link.
102 template<int size, bool big_endian>
104 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
105 const elfcpp::Shdr<size, big_endian>& shdr)
107 // Some section types are never linked. Some are only linked when
108 // doing a relocateable link.
109 switch (shdr.get_sh_type())
111 case elfcpp::SHT_NULL:
112 case elfcpp::SHT_SYMTAB:
113 case elfcpp::SHT_DYNSYM:
114 case elfcpp::SHT_STRTAB:
115 case elfcpp::SHT_HASH:
116 case elfcpp::SHT_DYNAMIC:
117 case elfcpp::SHT_SYMTAB_SHNDX:
120 case elfcpp::SHT_RELA:
121 case elfcpp::SHT_REL:
122 case elfcpp::SHT_GROUP:
123 return parameters->output_is_object();
125 case elfcpp::SHT_PROGBITS:
126 if (parameters->strip_debug()
127 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
129 // Debugging sections can only be recognized by name.
130 if (is_prefix_of(".debug", name)
131 || is_prefix_of(".gnu.linkonce.wi.", name)
132 || is_prefix_of(".line", name)
133 || is_prefix_of(".stab", name))
143 // Return an output section named NAME, or NULL if there is none.
146 Layout::find_output_section(const char* name) const
148 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
149 p != this->section_name_map_.end();
151 if (strcmp(p->second->name(), name) == 0)
156 // Return an output segment of type TYPE, with segment flags SET set
157 // and segment flags CLEAR clear. Return NULL if there is none.
160 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
161 elfcpp::Elf_Word clear) const
163 for (Segment_list::const_iterator p = this->segment_list_.begin();
164 p != this->segment_list_.end();
166 if (static_cast<elfcpp::PT>((*p)->type()) == type
167 && ((*p)->flags() & set) == set
168 && ((*p)->flags() & clear) == 0)
173 // Return the output section to use for section NAME with type TYPE
174 // and section flags FLAGS.
177 Layout::get_output_section(const char* name, Stringpool::Key name_key,
178 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
180 // We should ignore some flags.
181 flags &= ~ (elfcpp::SHF_INFO_LINK
182 | elfcpp::SHF_LINK_ORDER
185 | elfcpp::SHF_STRINGS);
187 const Key key(name_key, std::make_pair(type, flags));
188 const std::pair<Key, Output_section*> v(key, NULL);
189 std::pair<Section_name_map::iterator, bool> ins(
190 this->section_name_map_.insert(v));
193 return ins.first->second;
196 // This is the first time we've seen this name/type/flags
198 Output_section* os = this->make_output_section(name, type, flags);
199 ins.first->second = os;
204 // Return the output section to use for input section SHNDX, with name
205 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
206 // index of a relocation section which applies to this section, or 0
207 // if none, or -1U if more than one. RELOC_TYPE is the type of the
208 // relocation section if there is one. Set *OFF to the offset of this
209 // input section without the output section. Return NULL if the
210 // section should be discarded. Set *OFF to -1 if the section
211 // contents should not be written directly to the output file, but
212 // will instead receive special handling.
214 template<int size, bool big_endian>
216 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
217 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
218 unsigned int reloc_shndx, unsigned int, off_t* off)
220 if (!this->include_section(object, name, shdr))
223 // If we are not doing a relocateable link, choose the name to use
224 // for the output section.
225 size_t len = strlen(name);
226 if (!parameters->output_is_object())
227 name = Layout::output_section_name(name, &len);
229 // FIXME: Handle SHF_OS_NONCONFORMING here.
231 // Canonicalize the section name.
232 Stringpool::Key name_key;
233 name = this->namepool_.add_prefix(name, len, &name_key);
235 // Find the output section. The output section is selected based on
236 // the section name, type, and flags.
237 Output_section* os = this->get_output_section(name, name_key,
239 shdr.get_sh_flags());
241 // FIXME: Handle SHF_LINK_ORDER somewhere.
243 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
248 // Special GNU handling of sections name .eh_frame. They will
249 // normally hold exception frame data as defined by the C++ ABI
250 // (http://codesourcery.com/cxx-abi/).
252 template<int size, bool big_endian>
254 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
255 const unsigned char* symbols,
257 const unsigned char* symbol_names,
258 off_t symbol_names_size,
260 const elfcpp::Shdr<size, big_endian>& shdr,
261 unsigned int reloc_shndx, unsigned int reloc_type,
264 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
265 gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
267 Stringpool::Key name_key;
268 const char* name = this->namepool_.add(".eh_frame", false, &name_key);
270 Output_section* os = this->get_output_section(name, name_key,
271 elfcpp::SHT_PROGBITS,
274 if (this->eh_frame_section_ == NULL)
276 this->eh_frame_section_ = os;
277 this->eh_frame_data_ = new Eh_frame();
278 os->add_output_section_data(this->eh_frame_data_);
280 if (this->options_.create_eh_frame_hdr())
282 Stringpool::Key hdr_name_key;
283 const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
286 Output_section* hdr_os =
287 this->get_output_section(hdr_name, hdr_name_key,
288 elfcpp::SHT_PROGBITS,
291 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
292 hdr_os->add_output_section_data(hdr_posd);
294 hdr_os->set_after_input_sections();
296 Output_segment* hdr_oseg =
297 new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
298 this->segment_list_.push_back(hdr_oseg);
299 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
301 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
305 gold_assert(this->eh_frame_section_ == os);
307 if (this->eh_frame_data_->add_ehframe_input_section(object,
318 // We couldn't handle this .eh_frame section for some reason.
319 // Add it as a normal section.
320 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
326 // Add POSD to an output section using NAME, TYPE, and FLAGS.
329 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
330 elfcpp::Elf_Xword flags,
331 Output_section_data* posd)
333 // Canonicalize the name.
334 Stringpool::Key name_key;
335 name = this->namepool_.add(name, true, &name_key);
337 Output_section* os = this->get_output_section(name, name_key, type, flags);
338 os->add_output_section_data(posd);
341 // Map section flags to segment flags.
344 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
346 elfcpp::Elf_Word ret = elfcpp::PF_R;
347 if ((flags & elfcpp::SHF_WRITE) != 0)
349 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
354 // Make a new Output_section, and attach it to segments as
358 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
359 elfcpp::Elf_Xword flags)
361 Output_section* os = new Output_section(name, type, flags);
362 this->section_list_.push_back(os);
364 if ((flags & elfcpp::SHF_ALLOC) == 0)
365 this->unattached_section_list_.push_back(os);
368 // This output section goes into a PT_LOAD segment.
370 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
372 // The only thing we really care about for PT_LOAD segments is
373 // whether or not they are writable, so that is how we search
374 // for them. People who need segments sorted on some other
375 // basis will have to wait until we implement a mechanism for
376 // them to describe the segments they want.
378 Segment_list::const_iterator p;
379 for (p = this->segment_list_.begin();
380 p != this->segment_list_.end();
383 if ((*p)->type() == elfcpp::PT_LOAD
384 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
386 (*p)->add_output_section(os, seg_flags);
391 if (p == this->segment_list_.end())
393 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
395 this->segment_list_.push_back(oseg);
396 oseg->add_output_section(os, seg_flags);
399 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
401 if (type == elfcpp::SHT_NOTE)
403 // See if we already have an equivalent PT_NOTE segment.
404 for (p = this->segment_list_.begin();
405 p != segment_list_.end();
408 if ((*p)->type() == elfcpp::PT_NOTE
409 && (((*p)->flags() & elfcpp::PF_W)
410 == (seg_flags & elfcpp::PF_W)))
412 (*p)->add_output_section(os, seg_flags);
417 if (p == this->segment_list_.end())
419 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
421 this->segment_list_.push_back(oseg);
422 oseg->add_output_section(os, seg_flags);
426 // If we see a loadable SHF_TLS section, we create a PT_TLS
427 // segment. There can only be one such segment.
428 if ((flags & elfcpp::SHF_TLS) != 0)
430 if (this->tls_segment_ == NULL)
432 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
434 this->segment_list_.push_back(this->tls_segment_);
436 this->tls_segment_->add_output_section(os, seg_flags);
443 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
444 // is whether we saw a .note.GNU-stack section in the object file.
445 // GNU_STACK_FLAGS is the section flags. The flags give the
446 // protection required for stack memory. We record this in an
447 // executable as a PT_GNU_STACK segment. If an object file does not
448 // have a .note.GNU-stack segment, we must assume that it is an old
449 // object. On some targets that will force an executable stack.
452 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
455 this->input_without_gnu_stack_note_ = true;
458 this->input_with_gnu_stack_note_ = true;
459 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
460 this->input_requires_executable_stack_ = true;
464 // Create the dynamic sections which are needed before we read the
468 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
469 Symbol_table* symtab)
471 if (parameters->doing_static_link())
474 const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
475 this->dynamic_section_ = this->make_output_section(dynamic_name,
478 | elfcpp::SHF_WRITE));
480 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
481 this->dynamic_section_, 0, 0,
482 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
483 elfcpp::STV_HIDDEN, 0, false, false);
485 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
487 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
490 // For each output section whose name can be represented as C symbol,
491 // define __start and __stop symbols for the section. This is a GNU
495 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
497 for (Section_list::const_iterator p = this->section_list_.begin();
498 p != this->section_list_.end();
501 const char* const name = (*p)->name();
502 if (name[strspn(name,
504 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
505 "abcdefghijklmnopqrstuvwxyz"
509 const std::string name_string(name);
510 const std::string start_name("__start_" + name_string);
511 const std::string stop_name("__stop_" + name_string);
513 symtab->define_in_output_data(target,
523 false, // offset_is_from_end
524 false); // only_if_ref
526 symtab->define_in_output_data(target,
536 true, // offset_is_from_end
537 false); // only_if_ref
542 // Find the first read-only PT_LOAD segment, creating one if
546 Layout::find_first_load_seg()
548 for (Segment_list::const_iterator p = this->segment_list_.begin();
549 p != this->segment_list_.end();
552 if ((*p)->type() == elfcpp::PT_LOAD
553 && ((*p)->flags() & elfcpp::PF_R) != 0
554 && ((*p)->flags() & elfcpp::PF_W) == 0)
558 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
559 this->segment_list_.push_back(load_seg);
563 // Finalize the layout. When this is called, we have created all the
564 // output sections and all the output segments which are based on
565 // input sections. We have several things to do, and we have to do
566 // them in the right order, so that we get the right results correctly
569 // 1) Finalize the list of output segments and create the segment
572 // 2) Finalize the dynamic symbol table and associated sections.
574 // 3) Determine the final file offset of all the output segments.
576 // 4) Determine the final file offset of all the SHF_ALLOC output
579 // 5) Create the symbol table sections and the section name table
582 // 6) Finalize the symbol table: set symbol values to their final
583 // value and make a final determination of which symbols are going
584 // into the output symbol table.
586 // 7) Create the section table header.
588 // 8) Determine the final file offset of all the output sections which
589 // are not SHF_ALLOC, including the section table header.
591 // 9) Finalize the ELF file header.
593 // This function returns the size of the output file.
596 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
598 Target* const target = input_objects->target();
600 target->finalize_sections(this);
602 this->create_gold_note();
603 this->create_executable_stack_info(target);
605 Output_segment* phdr_seg = NULL;
606 if (!parameters->doing_static_link())
608 // There was a dynamic object in the link. We need to create
609 // some information for the dynamic linker.
611 // Create the PT_PHDR segment which will hold the program
613 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
614 this->segment_list_.push_back(phdr_seg);
616 // Create the dynamic symbol table, including the hash table.
617 Output_section* dynstr;
618 std::vector<Symbol*> dynamic_symbols;
619 unsigned int local_dynamic_count;
621 this->create_dynamic_symtab(target, symtab, &dynstr,
622 &local_dynamic_count, &dynamic_symbols,
625 // Create the .interp section to hold the name of the
626 // interpreter, and put it in a PT_INTERP segment.
627 if (!parameters->output_is_shared())
628 this->create_interp(target);
630 // Finish the .dynamic section to hold the dynamic data, and put
631 // it in a PT_DYNAMIC segment.
632 this->finish_dynamic_section(input_objects, symtab);
634 // We should have added everything we need to the dynamic string
636 this->dynpool_.set_string_offsets();
638 // Create the version sections. We can't do this until the
639 // dynamic string table is complete.
640 this->create_version_sections(&versions, symtab, local_dynamic_count,
641 dynamic_symbols, dynstr);
644 // FIXME: Handle PT_GNU_STACK.
646 Output_segment* load_seg = this->find_first_load_seg();
648 // Lay out the segment headers.
649 Output_segment_headers* segment_headers;
650 segment_headers = new Output_segment_headers(this->segment_list_);
651 load_seg->add_initial_output_data(segment_headers);
652 this->special_output_list_.push_back(segment_headers);
653 if (phdr_seg != NULL)
654 phdr_seg->add_initial_output_data(segment_headers);
656 // Lay out the file header.
657 Output_file_header* file_header;
658 file_header = new Output_file_header(target, symtab, segment_headers);
659 load_seg->add_initial_output_data(file_header);
660 this->special_output_list_.push_back(file_header);
662 // We set the output section indexes in set_segment_offsets and
663 // set_section_offsets.
664 unsigned int shndx = 1;
666 // Set the file offsets of all the segments, and all the sections
668 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
670 // Set the file offsets of all the data sections not associated with
671 // segments. This makes sure that debug sections have their offsets
672 // before symbols are finalized.
673 off = this->set_section_offsets(off, true);
675 // Create the symbol table sections.
676 this->create_symtab_sections(input_objects, symtab, &off);
678 // Create the .shstrtab section.
679 Output_section* shstrtab_section = this->create_shstrtab();
681 // Set the file offsets of all the non-data sections not associated with
683 off = this->set_section_offsets(off, false);
685 // Now that all sections have been created, set the section indexes.
686 shndx = this->set_section_indexes(shndx);
688 // Create the section table header.
689 Output_section_headers* oshdrs = this->create_shdrs(&off);
691 file_header->set_section_info(oshdrs, shstrtab_section);
693 // Now we know exactly where everything goes in the output file.
694 Output_data::layout_complete();
696 this->output_file_size_ = off;
701 // Create a .note section for an executable or shared library. This
702 // records the version of gold used to create the binary.
705 Layout::create_gold_note()
707 if (parameters->output_is_object())
710 // Authorities all agree that the values in a .note field should
711 // be aligned on 4-byte boundaries for 32-bit binaries. However,
712 // they differ on what the alignment is for 64-bit binaries.
713 // The GABI says unambiguously they take 8-byte alignment:
714 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
715 // Other documentation says alignment should always be 4 bytes:
716 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
717 // GNU ld and GNU readelf both support the latter (at least as of
718 // version 2.16.91), and glibc always generates the latter for
719 // .note.ABI-tag (as of version 1.6), so that's the one we go with
721 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
722 const int size = parameters->get_size();
727 // The contents of the .note section.
728 const char* name = "GNU";
729 std::string desc(std::string("gold ") + gold::get_version_string());
730 size_t namesz = strlen(name) + 1;
731 size_t aligned_namesz = align_address(namesz, size / 8);
732 size_t descsz = desc.length() + 1;
733 size_t aligned_descsz = align_address(descsz, size / 8);
734 const int note_type = 4;
736 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
738 unsigned char buffer[128];
739 gold_assert(sizeof buffer >= notesz);
740 memset(buffer, 0, notesz);
742 bool is_big_endian = parameters->is_big_endian();
748 elfcpp::Swap<32, false>::writeval(buffer, namesz);
749 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
750 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
754 elfcpp::Swap<32, true>::writeval(buffer, namesz);
755 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
756 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
763 elfcpp::Swap<64, false>::writeval(buffer, namesz);
764 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
765 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
769 elfcpp::Swap<64, true>::writeval(buffer, namesz);
770 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
771 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
777 memcpy(buffer + 3 * (size / 8), name, namesz);
778 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
780 const char* note_name = this->namepool_.add(".note", false, NULL);
781 Output_section* os = this->make_output_section(note_name,
784 Output_section_data* posd = new Output_data_const(buffer, notesz,
786 os->add_output_section_data(posd);
789 // Record whether the stack should be executable. This can be set
790 // from the command line using the -z execstack or -z noexecstack
791 // options. Otherwise, if any input file has a .note.GNU-stack
792 // section with the SHF_EXECINSTR flag set, the stack should be
793 // executable. Otherwise, if at least one input file a
794 // .note.GNU-stack section, and some input file has no .note.GNU-stack
795 // section, we use the target default for whether the stack should be
796 // executable. Otherwise, we don't generate a stack note. When
797 // generating a object file, we create a .note.GNU-stack section with
798 // the appropriate marking. When generating an executable or shared
799 // library, we create a PT_GNU_STACK segment.
802 Layout::create_executable_stack_info(const Target* target)
804 bool is_stack_executable;
805 if (this->options_.is_execstack_set())
806 is_stack_executable = this->options_.is_stack_executable();
807 else if (!this->input_with_gnu_stack_note_)
811 if (this->input_requires_executable_stack_)
812 is_stack_executable = true;
813 else if (this->input_without_gnu_stack_note_)
814 is_stack_executable = target->is_default_stack_executable();
816 is_stack_executable = false;
819 if (parameters->output_is_object())
821 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
822 elfcpp::Elf_Xword flags = 0;
823 if (is_stack_executable)
824 flags |= elfcpp::SHF_EXECINSTR;
825 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
829 int flags = elfcpp::PF_R | elfcpp::PF_W;
830 if (is_stack_executable)
831 flags |= elfcpp::PF_X;
832 Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
833 this->segment_list_.push_back(oseg);
837 // Return whether SEG1 should be before SEG2 in the output file. This
838 // is based entirely on the segment type and flags. When this is
839 // called the segment addresses has normally not yet been set.
842 Layout::segment_precedes(const Output_segment* seg1,
843 const Output_segment* seg2)
845 elfcpp::Elf_Word type1 = seg1->type();
846 elfcpp::Elf_Word type2 = seg2->type();
848 // The single PT_PHDR segment is required to precede any loadable
849 // segment. We simply make it always first.
850 if (type1 == elfcpp::PT_PHDR)
852 gold_assert(type2 != elfcpp::PT_PHDR);
855 if (type2 == elfcpp::PT_PHDR)
858 // The single PT_INTERP segment is required to precede any loadable
859 // segment. We simply make it always second.
860 if (type1 == elfcpp::PT_INTERP)
862 gold_assert(type2 != elfcpp::PT_INTERP);
865 if (type2 == elfcpp::PT_INTERP)
868 // We then put PT_LOAD segments before any other segments.
869 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
871 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
874 // We put the PT_TLS segment last, because that is where the dynamic
875 // linker expects to find it (this is just for efficiency; other
876 // positions would also work correctly).
877 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
879 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
882 const elfcpp::Elf_Word flags1 = seg1->flags();
883 const elfcpp::Elf_Word flags2 = seg2->flags();
885 // The order of non-PT_LOAD segments is unimportant. We simply sort
886 // by the numeric segment type and flags values. There should not
887 // be more than one segment with the same type and flags.
888 if (type1 != elfcpp::PT_LOAD)
891 return type1 < type2;
892 gold_assert(flags1 != flags2);
893 return flags1 < flags2;
896 // We sort PT_LOAD segments based on the flags. Readonly segments
897 // come before writable segments. Then executable segments come
898 // before non-executable segments. Then the unlikely case of a
899 // non-readable segment comes before the normal case of a readable
900 // segment. If there are multiple segments with the same type and
901 // flags, we require that the address be set, and we sort by
902 // virtual address and then physical address.
903 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
904 return (flags1 & elfcpp::PF_W) == 0;
905 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
906 return (flags1 & elfcpp::PF_X) != 0;
907 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
908 return (flags1 & elfcpp::PF_R) == 0;
910 uint64_t vaddr1 = seg1->vaddr();
911 uint64_t vaddr2 = seg2->vaddr();
912 if (vaddr1 != vaddr2)
913 return vaddr1 < vaddr2;
915 uint64_t paddr1 = seg1->paddr();
916 uint64_t paddr2 = seg2->paddr();
917 gold_assert(paddr1 != paddr2);
918 return paddr1 < paddr2;
921 // Set the file offsets of all the segments, and all the sections they
922 // contain. They have all been created. LOAD_SEG must be be laid out
923 // first. Return the offset of the data to follow.
926 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
927 unsigned int *pshndx)
929 // Sort them into the final order.
930 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
931 Layout::Compare_segments());
933 // Find the PT_LOAD segments, and set their addresses and offsets
934 // and their section's addresses and offsets.
936 if (options_.user_set_text_segment_address())
937 addr = options_.text_segment_address();
939 addr = target->default_text_segment_address();
941 bool was_readonly = false;
942 for (Segment_list::iterator p = this->segment_list_.begin();
943 p != this->segment_list_.end();
946 if ((*p)->type() == elfcpp::PT_LOAD)
948 if (load_seg != NULL && load_seg != *p)
952 // If the last segment was readonly, and this one is not,
953 // then skip the address forward one page, maintaining the
954 // same position within the page. This lets us store both
955 // segments overlapping on a single page in the file, but
956 // the loader will put them on different pages in memory.
958 uint64_t orig_addr = addr;
959 uint64_t orig_off = off;
961 uint64_t aligned_addr = addr;
962 uint64_t abi_pagesize = target->abi_pagesize();
964 // FIXME: This should depend on the -n and -N options.
965 (*p)->set_minimum_addralign(target->common_pagesize());
967 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
969 uint64_t align = (*p)->addralign();
971 addr = align_address(addr, align);
973 if ((addr & (abi_pagesize - 1)) != 0)
974 addr = addr + abi_pagesize;
977 unsigned int shndx_hold = *pshndx;
978 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
979 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
981 // Now that we know the size of this segment, we may be able
982 // to save a page in memory, at the cost of wasting some
983 // file space, by instead aligning to the start of a new
984 // page. Here we use the real machine page size rather than
985 // the ABI mandated page size.
987 if (aligned_addr != addr)
989 uint64_t common_pagesize = target->common_pagesize();
990 uint64_t first_off = (common_pagesize
992 & (common_pagesize - 1)));
993 uint64_t last_off = new_addr & (common_pagesize - 1);
996 && ((aligned_addr & ~ (common_pagesize - 1))
997 != (new_addr & ~ (common_pagesize - 1)))
998 && first_off + last_off <= common_pagesize)
1000 *pshndx = shndx_hold;
1001 addr = align_address(aligned_addr, common_pagesize);
1002 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1003 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1009 if (((*p)->flags() & elfcpp::PF_W) == 0)
1010 was_readonly = true;
1014 // Handle the non-PT_LOAD segments, setting their offsets from their
1015 // section's offsets.
1016 for (Segment_list::iterator p = this->segment_list_.begin();
1017 p != this->segment_list_.end();
1020 if ((*p)->type() != elfcpp::PT_LOAD)
1027 // Set the file offset of all the sections not associated with a
1031 Layout::set_section_offsets(off_t off,
1032 bool do_bits_sections)
1034 for (Section_list::iterator p = this->unattached_section_list_.begin();
1035 p != this->unattached_section_list_.end();
1038 bool is_bits_section = ((*p)->type() == elfcpp::SHT_PROGBITS
1039 || (*p)->type() == elfcpp::SHT_NOBITS);
1040 if (is_bits_section != do_bits_sections)
1042 if ((*p)->offset() != -1)
1044 off = align_address(off, (*p)->addralign());
1045 (*p)->set_address(0, off);
1046 off += (*p)->data_size();
1051 // Set the section indexes of all the sections not associated with a
1055 Layout::set_section_indexes(unsigned int shndx)
1057 for (Section_list::iterator p = this->unattached_section_list_.begin();
1058 p != this->unattached_section_list_.end();
1061 (*p)->set_out_shndx(shndx);
1067 // Create the symbol table sections. Here we also set the final
1068 // values of the symbols. At this point all the loadable sections are
1072 Layout::create_symtab_sections(const Input_objects* input_objects,
1073 Symbol_table* symtab,
1078 if (parameters->get_size() == 32)
1080 symsize = elfcpp::Elf_sizes<32>::sym_size;
1083 else if (parameters->get_size() == 64)
1085 symsize = elfcpp::Elf_sizes<64>::sym_size;
1092 off = align_address(off, align);
1093 off_t startoff = off;
1095 // Save space for the dummy symbol at the start of the section. We
1096 // never bother to write this out--it will just be left as zero.
1098 unsigned int local_symbol_index = 1;
1100 // Add STT_SECTION symbols for each Output section which needs one.
1101 for (Section_list::iterator p = this->section_list_.begin();
1102 p != this->section_list_.end();
1105 if (!(*p)->needs_symtab_index())
1106 (*p)->set_symtab_index(-1U);
1109 (*p)->set_symtab_index(local_symbol_index);
1110 ++local_symbol_index;
1115 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1116 p != input_objects->relobj_end();
1119 Task_lock_obj<Object> tlo(**p);
1120 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1123 off += (index - local_symbol_index) * symsize;
1124 local_symbol_index = index;
1127 unsigned int local_symcount = local_symbol_index;
1128 gold_assert(local_symcount * symsize == off - startoff);
1131 size_t dyn_global_index;
1133 if (this->dynsym_section_ == NULL)
1136 dyn_global_index = 0;
1141 dyn_global_index = this->dynsym_section_->info();
1142 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1143 dynoff = this->dynsym_section_->offset() + locsize;
1144 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1145 gold_assert(static_cast<off_t>(dyncount * symsize)
1146 == this->dynsym_section_->data_size() - locsize);
1149 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1150 dyncount, &this->sympool_);
1152 if (!parameters->strip_all())
1154 this->sympool_.set_string_offsets();
1156 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1157 Output_section* osymtab = this->make_output_section(symtab_name,
1160 this->symtab_section_ = osymtab;
1162 Output_section_data* pos = new Output_data_space(off - startoff,
1164 osymtab->add_output_section_data(pos);
1166 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1167 Output_section* ostrtab = this->make_output_section(strtab_name,
1171 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1172 ostrtab->add_output_section_data(pstr);
1174 osymtab->set_address(0, startoff);
1175 osymtab->set_link_section(ostrtab);
1176 osymtab->set_info(local_symcount);
1177 osymtab->set_entsize(symsize);
1183 // Create the .shstrtab section, which holds the names of the
1184 // sections. At the time this is called, we have created all the
1185 // output sections except .shstrtab itself.
1188 Layout::create_shstrtab()
1190 // FIXME: We don't need to create a .shstrtab section if we are
1191 // stripping everything.
1193 const char* name = this->namepool_.add(".shstrtab", false, NULL);
1195 this->namepool_.set_string_offsets();
1197 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1199 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1200 os->add_output_section_data(posd);
1205 // Create the section headers. SIZE is 32 or 64. OFF is the file
1208 Output_section_headers*
1209 Layout::create_shdrs(off_t* poff)
1211 Output_section_headers* oshdrs;
1212 oshdrs = new Output_section_headers(this,
1213 &this->segment_list_,
1214 &this->unattached_section_list_,
1216 off_t off = align_address(*poff, oshdrs->addralign());
1217 oshdrs->set_address(0, off);
1218 off += oshdrs->data_size();
1220 this->special_output_list_.push_back(oshdrs);
1224 // Create the dynamic symbol table.
1227 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1228 Output_section **pdynstr,
1229 unsigned int* plocal_dynamic_count,
1230 std::vector<Symbol*>* pdynamic_symbols,
1231 Versions* pversions)
1233 // Count all the symbols in the dynamic symbol table, and set the
1234 // dynamic symbol indexes.
1236 // Skip symbol 0, which is always all zeroes.
1237 unsigned int index = 1;
1239 // Add STT_SECTION symbols for each Output section which needs one.
1240 for (Section_list::iterator p = this->section_list_.begin();
1241 p != this->section_list_.end();
1244 if (!(*p)->needs_dynsym_index())
1245 (*p)->set_dynsym_index(-1U);
1248 (*p)->set_dynsym_index(index);
1253 // FIXME: Some targets apparently require local symbols in the
1254 // dynamic symbol table. Here is where we will have to count them,
1255 // and set the dynamic symbol indexes, and add the names to
1258 unsigned int local_symcount = index;
1259 *plocal_dynamic_count = local_symcount;
1261 // FIXME: We have to tell set_dynsym_indexes whether the
1262 // -E/--export-dynamic option was used.
1263 index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1264 &this->dynpool_, pversions);
1268 const int size = parameters->get_size();
1271 symsize = elfcpp::Elf_sizes<32>::sym_size;
1274 else if (size == 64)
1276 symsize = elfcpp::Elf_sizes<64>::sym_size;
1282 // Create the dynamic symbol table section.
1284 const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1285 Output_section* dynsym = this->make_output_section(dynsym_name,
1289 Output_section_data* odata = new Output_data_space(index * symsize,
1291 dynsym->add_output_section_data(odata);
1293 dynsym->set_info(local_symcount);
1294 dynsym->set_entsize(symsize);
1295 dynsym->set_addralign(align);
1297 this->dynsym_section_ = dynsym;
1299 Output_data_dynamic* const odyn = this->dynamic_data_;
1300 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1301 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1303 // Create the dynamic string table section.
1305 const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1306 Output_section* dynstr = this->make_output_section(dynstr_name,
1310 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1311 dynstr->add_output_section_data(strdata);
1313 dynsym->set_link_section(dynstr);
1314 this->dynamic_section_->set_link_section(dynstr);
1316 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1317 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1321 // Create the hash tables.
1323 // FIXME: We need an option to create a GNU hash table.
1325 unsigned char* phash;
1326 unsigned int hashlen;
1327 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1330 const char* hash_name = this->namepool_.add(".hash", false, NULL);
1331 Output_section* hashsec = this->make_output_section(hash_name,
1335 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1338 hashsec->add_output_section_data(hashdata);
1340 hashsec->set_link_section(dynsym);
1341 hashsec->set_entsize(4);
1343 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1346 // Create the version sections.
1349 Layout::create_version_sections(const Versions* versions,
1350 const Symbol_table* symtab,
1351 unsigned int local_symcount,
1352 const std::vector<Symbol*>& dynamic_symbols,
1353 const Output_section* dynstr)
1355 if (!versions->any_defs() && !versions->any_needs())
1358 if (parameters->get_size() == 32)
1360 if (parameters->is_big_endian())
1362 #ifdef HAVE_TARGET_32_BIG
1363 this->sized_create_version_sections
1364 SELECT_SIZE_ENDIAN_NAME(32, true)(
1365 versions, symtab, local_symcount, dynamic_symbols, dynstr
1366 SELECT_SIZE_ENDIAN(32, true));
1373 #ifdef HAVE_TARGET_32_LITTLE
1374 this->sized_create_version_sections
1375 SELECT_SIZE_ENDIAN_NAME(32, false)(
1376 versions, symtab, local_symcount, dynamic_symbols, dynstr
1377 SELECT_SIZE_ENDIAN(32, false));
1383 else if (parameters->get_size() == 64)
1385 if (parameters->is_big_endian())
1387 #ifdef HAVE_TARGET_64_BIG
1388 this->sized_create_version_sections
1389 SELECT_SIZE_ENDIAN_NAME(64, true)(
1390 versions, symtab, local_symcount, dynamic_symbols, dynstr
1391 SELECT_SIZE_ENDIAN(64, true));
1398 #ifdef HAVE_TARGET_64_LITTLE
1399 this->sized_create_version_sections
1400 SELECT_SIZE_ENDIAN_NAME(64, false)(
1401 versions, symtab, local_symcount, dynamic_symbols, dynstr
1402 SELECT_SIZE_ENDIAN(64, false));
1412 // Create the version sections, sized version.
1414 template<int size, bool big_endian>
1416 Layout::sized_create_version_sections(
1417 const Versions* versions,
1418 const Symbol_table* symtab,
1419 unsigned int local_symcount,
1420 const std::vector<Symbol*>& dynamic_symbols,
1421 const Output_section* dynstr
1424 const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1425 Output_section* vsec = this->make_output_section(vname,
1426 elfcpp::SHT_GNU_versym,
1429 unsigned char* vbuf;
1431 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1432 symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1433 SELECT_SIZE_ENDIAN(size, big_endian));
1435 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1437 vsec->add_output_section_data(vdata);
1438 vsec->set_entsize(2);
1439 vsec->set_link_section(this->dynsym_section_);
1441 Output_data_dynamic* const odyn = this->dynamic_data_;
1442 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1444 if (versions->any_defs())
1446 const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1447 Output_section *vdsec;
1448 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1451 unsigned char* vdbuf;
1452 unsigned int vdsize;
1453 unsigned int vdentries;
1454 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1455 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1456 SELECT_SIZE_ENDIAN(size, big_endian));
1458 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1462 vdsec->add_output_section_data(vddata);
1463 vdsec->set_link_section(dynstr);
1464 vdsec->set_info(vdentries);
1466 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1467 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1470 if (versions->any_needs())
1472 const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1473 Output_section* vnsec;
1474 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1477 unsigned char* vnbuf;
1478 unsigned int vnsize;
1479 unsigned int vnentries;
1480 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1481 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1482 SELECT_SIZE_ENDIAN(size, big_endian));
1484 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1488 vnsec->add_output_section_data(vndata);
1489 vnsec->set_link_section(dynstr);
1490 vnsec->set_info(vnentries);
1492 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1493 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1497 // Create the .interp section and PT_INTERP segment.
1500 Layout::create_interp(const Target* target)
1502 const char* interp = this->options_.dynamic_linker();
1505 interp = target->dynamic_linker();
1506 gold_assert(interp != NULL);
1509 size_t len = strlen(interp) + 1;
1511 Output_section_data* odata = new Output_data_const(interp, len, 1);
1513 const char* interp_name = this->namepool_.add(".interp", false, NULL);
1514 Output_section* osec = this->make_output_section(interp_name,
1515 elfcpp::SHT_PROGBITS,
1517 osec->add_output_section_data(odata);
1519 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1520 this->segment_list_.push_back(oseg);
1521 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1524 // Finish the .dynamic section and PT_DYNAMIC segment.
1527 Layout::finish_dynamic_section(const Input_objects* input_objects,
1528 const Symbol_table* symtab)
1530 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1531 elfcpp::PF_R | elfcpp::PF_W);
1532 this->segment_list_.push_back(oseg);
1533 oseg->add_initial_output_section(this->dynamic_section_,
1534 elfcpp::PF_R | elfcpp::PF_W);
1536 Output_data_dynamic* const odyn = this->dynamic_data_;
1538 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1539 p != input_objects->dynobj_end();
1542 // FIXME: Handle --as-needed.
1543 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1546 // FIXME: Support --init and --fini.
1547 Symbol* sym = symtab->lookup("_init");
1548 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1549 odyn->add_symbol(elfcpp::DT_INIT, sym);
1551 sym = symtab->lookup("_fini");
1552 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1553 odyn->add_symbol(elfcpp::DT_FINI, sym);
1555 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1557 // Add a DT_RPATH entry if needed.
1558 const General_options::Dir_list& rpath(this->options_.rpath());
1561 std::string rpath_val;
1562 for (General_options::Dir_list::const_iterator p = rpath.begin();
1566 if (rpath_val.empty())
1567 rpath_val = p->name();
1570 // Eliminate duplicates.
1571 General_options::Dir_list::const_iterator q;
1572 for (q = rpath.begin(); q != p; ++q)
1573 if (q->name() == p->name())
1578 rpath_val += p->name();
1583 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1587 // The mapping of .gnu.linkonce section names to real section names.
1589 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1590 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1592 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1593 MAPPING_INIT("t", ".text"),
1594 MAPPING_INIT("r", ".rodata"),
1595 MAPPING_INIT("d", ".data"),
1596 MAPPING_INIT("b", ".bss"),
1597 MAPPING_INIT("s", ".sdata"),
1598 MAPPING_INIT("sb", ".sbss"),
1599 MAPPING_INIT("s2", ".sdata2"),
1600 MAPPING_INIT("sb2", ".sbss2"),
1601 MAPPING_INIT("wi", ".debug_info"),
1602 MAPPING_INIT("td", ".tdata"),
1603 MAPPING_INIT("tb", ".tbss"),
1604 MAPPING_INIT("lr", ".lrodata"),
1605 MAPPING_INIT("l", ".ldata"),
1606 MAPPING_INIT("lb", ".lbss"),
1610 const int Layout::linkonce_mapping_count =
1611 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1613 // Return the name of the output section to use for a .gnu.linkonce
1614 // section. This is based on the default ELF linker script of the old
1615 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1616 // to ".text". Set *PLEN to the length of the name. *PLEN is
1617 // initialized to the length of NAME.
1620 Layout::linkonce_output_name(const char* name, size_t *plen)
1622 const char* s = name + sizeof(".gnu.linkonce") - 1;
1626 const Linkonce_mapping* plm = linkonce_mapping;
1627 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1629 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1638 // Choose the output section name to use given an input section name.
1639 // Set *PLEN to the length of the name. *PLEN is initialized to the
1643 Layout::output_section_name(const char* name, size_t* plen)
1645 if (Layout::is_linkonce(name))
1647 // .gnu.linkonce sections are laid out as though they were named
1648 // for the sections are placed into.
1649 return Layout::linkonce_output_name(name, plen);
1652 // gcc 4.3 generates the following sorts of section names when it
1653 // needs a section name specific to a function:
1659 // .data.rel.local.FN
1661 // .data.rel.ro.local.FN
1668 // The GNU linker maps all of those to the part before the .FN,
1669 // except that .data.rel.local.FN is mapped to .data, and
1670 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
1671 // beginning with .data.rel.ro.local are grouped together.
1673 // For an anonymous namespace, the string FN can contain a '.'.
1675 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1676 // GNU linker maps to .rodata.
1678 // The .data.rel.ro sections enable a security feature triggered by
1679 // the -z relro option. Section which need to be relocated at
1680 // program startup time but which may be readonly after startup are
1681 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
1682 // segment. The dynamic linker will make that segment writable,
1683 // perform relocations, and then make it read-only. FIXME: We do
1684 // not yet implement this optimization.
1686 // It is hard to handle this in a principled way.
1688 // These are the rules we follow:
1690 // If the section name has no initial '.', or no dot other than an
1691 // initial '.', we use the name unchanged (i.e., "mysection" and
1692 // ".text" are unchanged).
1694 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1696 // Otherwise, we drop the second '.' and everything that comes after
1697 // it (i.e., ".text.XXX" becomes ".text").
1699 const char* s = name;
1703 const char* sdot = strchr(s, '.');
1707 const char* const data_rel_ro = ".data.rel.ro";
1708 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1710 *plen = strlen(data_rel_ro);
1714 *plen = sdot - name;
1718 // Record the signature of a comdat section, and return whether to
1719 // include it in the link. If GROUP is true, this is a regular
1720 // section group. If GROUP is false, this is a group signature
1721 // derived from the name of a linkonce section. We want linkonce
1722 // signatures and group signatures to block each other, but we don't
1723 // want a linkonce signature to block another linkonce signature.
1726 Layout::add_comdat(const char* signature, bool group)
1728 std::string sig(signature);
1729 std::pair<Signatures::iterator, bool> ins(
1730 this->signatures_.insert(std::make_pair(sig, group)));
1734 // This is the first time we've seen this signature.
1738 if (ins.first->second)
1740 // We've already seen a real section group with this signature.
1745 // This is a real section group, and we've already seen a
1746 // linkonce section with this signature. Record that we've seen
1747 // a section group, and don't include this section group.
1748 ins.first->second = true;
1753 // We've already seen a linkonce section and this is a linkonce
1754 // section. These don't block each other--this may be the same
1755 // symbol name with different section types.
1760 // Write out the Output_sections. Most won't have anything to write,
1761 // since most of the data will come from input sections which are
1762 // handled elsewhere. But some Output_sections do have Output_data.
1765 Layout::write_output_sections(Output_file* of) const
1767 for (Section_list::const_iterator p = this->section_list_.begin();
1768 p != this->section_list_.end();
1771 if (!(*p)->after_input_sections())
1776 // Write out data not associated with a section or the symbol table.
1779 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1781 if (!parameters->strip_all())
1783 const Output_section* symtab_section = this->symtab_section_;
1784 for (Section_list::const_iterator p = this->section_list_.begin();
1785 p != this->section_list_.end();
1788 if ((*p)->needs_symtab_index())
1790 gold_assert(symtab_section != NULL);
1791 unsigned int index = (*p)->symtab_index();
1792 gold_assert(index > 0 && index != -1U);
1793 off_t off = (symtab_section->offset()
1794 + index * symtab_section->entsize());
1795 symtab->write_section_symbol(*p, of, off);
1800 const Output_section* dynsym_section = this->dynsym_section_;
1801 for (Section_list::const_iterator p = this->section_list_.begin();
1802 p != this->section_list_.end();
1805 if ((*p)->needs_dynsym_index())
1807 gold_assert(dynsym_section != NULL);
1808 unsigned int index = (*p)->dynsym_index();
1809 gold_assert(index > 0 && index != -1U);
1810 off_t off = (dynsym_section->offset()
1811 + index * dynsym_section->entsize());
1812 symtab->write_section_symbol(*p, of, off);
1816 // Write out the Output_data which are not in an Output_section.
1817 for (Data_list::const_iterator p = this->special_output_list_.begin();
1818 p != this->special_output_list_.end();
1823 // Write out the Output_sections which can only be written after the
1824 // input sections are complete.
1827 Layout::write_sections_after_input_sections(Output_file* of) const
1829 for (Section_list::const_iterator p = this->section_list_.begin();
1830 p != this->section_list_.end();
1833 if ((*p)->after_input_sections())
1838 // Write_sections_task methods.
1840 // We can always run this task.
1842 Task::Is_runnable_type
1843 Write_sections_task::is_runnable(Workqueue*)
1848 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
1851 class Write_sections_task::Write_sections_locker : public Task_locker
1854 Write_sections_locker(Task_token& output_sections_blocker,
1855 Task_token& final_blocker,
1856 Workqueue* workqueue)
1857 : output_sections_block_(output_sections_blocker, workqueue),
1858 final_block_(final_blocker, workqueue)
1862 Task_block_token output_sections_block_;
1863 Task_block_token final_block_;
1867 Write_sections_task::locks(Workqueue* workqueue)
1869 return new Write_sections_locker(*this->output_sections_blocker_,
1870 *this->final_blocker_,
1874 // Run the task--write out the data.
1877 Write_sections_task::run(Workqueue*)
1879 this->layout_->write_output_sections(this->of_);
1882 // Write_data_task methods.
1884 // We can always run this task.
1886 Task::Is_runnable_type
1887 Write_data_task::is_runnable(Workqueue*)
1892 // We need to unlock FINAL_BLOCKER when finished.
1895 Write_data_task::locks(Workqueue* workqueue)
1897 return new Task_locker_block(*this->final_blocker_, workqueue);
1900 // Run the task--write out the data.
1903 Write_data_task::run(Workqueue*)
1905 this->layout_->write_data(this->symtab_, this->of_);
1908 // Write_symbols_task methods.
1910 // We can always run this task.
1912 Task::Is_runnable_type
1913 Write_symbols_task::is_runnable(Workqueue*)
1918 // We need to unlock FINAL_BLOCKER when finished.
1921 Write_symbols_task::locks(Workqueue* workqueue)
1923 return new Task_locker_block(*this->final_blocker_, workqueue);
1926 // Run the task--write out the symbols.
1929 Write_symbols_task::run(Workqueue*)
1931 this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1935 // Write_after_input_sections_task methods.
1937 // We can only run this task after the input sections have completed.
1939 Task::Is_runnable_type
1940 Write_after_input_sections_task::is_runnable(Workqueue*)
1942 if (this->input_sections_blocker_->is_blocked())
1947 // We need to unlock FINAL_BLOCKER when finished.
1950 Write_after_input_sections_task::locks(Workqueue* workqueue)
1952 return new Task_locker_block(*this->final_blocker_, workqueue);
1958 Write_after_input_sections_task::run(Workqueue*)
1960 this->layout_->write_sections_after_input_sections(this->of_);
1963 // Close_task_runner methods.
1965 // Run the task--close the file.
1968 Close_task_runner::run(Workqueue*)
1973 // Instantiate the templates we need. We could use the configure
1974 // script to restrict this to only the ones for implemented targets.
1976 #ifdef HAVE_TARGET_32_LITTLE
1979 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
1981 const elfcpp::Shdr<32, false>& shdr,
1982 unsigned int, unsigned int, off_t*);
1985 #ifdef HAVE_TARGET_32_BIG
1988 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
1990 const elfcpp::Shdr<32, true>& shdr,
1991 unsigned int, unsigned int, off_t*);
1994 #ifdef HAVE_TARGET_64_LITTLE
1997 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
1999 const elfcpp::Shdr<64, false>& shdr,
2000 unsigned int, unsigned int, off_t*);
2003 #ifdef HAVE_TARGET_64_BIG
2006 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2008 const elfcpp::Shdr<64, true>& shdr,
2009 unsigned int, unsigned int, off_t*);
2012 #ifdef HAVE_TARGET_32_LITTLE
2015 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2016 const unsigned char* symbols,
2018 const unsigned char* symbol_names,
2019 off_t symbol_names_size,
2021 const elfcpp::Shdr<32, false>& shdr,
2022 unsigned int reloc_shndx,
2023 unsigned int reloc_type,
2027 #ifdef HAVE_TARGET_32_BIG
2030 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2031 const unsigned char* symbols,
2033 const unsigned char* symbol_names,
2034 off_t symbol_names_size,
2036 const elfcpp::Shdr<32, true>& shdr,
2037 unsigned int reloc_shndx,
2038 unsigned int reloc_type,
2042 #ifdef HAVE_TARGET_64_LITTLE
2045 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2046 const unsigned char* symbols,
2048 const unsigned char* symbol_names,
2049 off_t symbol_names_size,
2051 const elfcpp::Shdr<64, false>& shdr,
2052 unsigned int reloc_shndx,
2053 unsigned int reloc_type,
2057 #ifdef HAVE_TARGET_64_BIG
2060 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2061 const unsigned char* symbols,
2063 const unsigned char* symbol_names,
2064 off_t symbol_names_size,
2066 const elfcpp::Shdr<64, true>& shdr,
2067 unsigned int reloc_shndx,
2068 unsigned int reloc_type,
2072 } // End namespace gold.