* layout.h (Layout::get_executable_sections): Declare.
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     unique_segment_for_sections_specified_(false),
412     incremental_inputs_(NULL),
413     record_output_section_data_from_script_(false),
414     script_output_section_data_list_(),
415     segment_states_(NULL),
416     relaxation_debug_check_(NULL),
417     section_order_map_(),
418     section_segment_map_(),
419     input_section_position_(),
420     input_section_glob_(),
421     incremental_base_(NULL),
422     free_list_()
423 {
424   // Make space for more than enough segments for a typical file.
425   // This is just for efficiency--it's OK if we wind up needing more.
426   this->segment_list_.reserve(12);
427
428   // We expect two unattached Output_data objects: the file header and
429   // the segment headers.
430   this->special_output_list_.reserve(2);
431
432   // Initialize structure needed for an incremental build.
433   if (parameters->incremental())
434     this->incremental_inputs_ = new Incremental_inputs;
435
436   // The section name pool is worth optimizing in all cases, because
437   // it is small, but there are often overlaps due to .rel sections.
438   this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446   this->incremental_base_ = base;
447   this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455  return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465   "abbrev",
466   "addr",         // Fission extension
467   // "aranges",   // not used by gdb as of 7.4
468   "frame",
469   "info",
470   "types",
471   "line",
472   "loc",
473   "macinfo",
474   "macro",
475   // "pubnames",  // not used by gdb as of 7.4
476   // "pubtypes",  // not used by gdb as of 7.4
477   "ranges",
478   "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485   "abbrev",
486   // "addr",      // Fission extension
487   // "aranges",   // not used by gdb as of 7.4
488   // "frame",
489   "info",
490   // "types",
491   "line",
492   // "loc",
493   // "macinfo",
494   // "macro",
495   // "pubnames",  // not used by gdb as of 7.4
496   // "pubtypes",  // not used by gdb as of 7.4
497   // "ranges",
498   "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506   "aranges",
507   "pubnames",
508   "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518   // We can do this faster: binary search or a hashtable.  But why bother?
519   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520     if (strcmp(suffix, gdb_sections[i]) == 0)
521       return true;
522   return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530   // We can do this faster: binary search or a hashtable.  But why bother?
531   for (size_t i = 0;
532        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533        ++i)
534     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535       return true;
536   return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545   // We can do this faster: binary search or a hashtable.  But why bother?
546   for (size_t i = 0;
547        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548        ++i)
549     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550       return true;
551   return false;
552 }
553
554 // Sometimes we compress sections.  This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections.  This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566   return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files.  Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575   return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583                         const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585   if (!parameters->options().relocatable()
586       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
587     return false;
588
589   switch (shdr.get_sh_type())
590     {
591     case elfcpp::SHT_NULL:
592     case elfcpp::SHT_SYMTAB:
593     case elfcpp::SHT_DYNSYM:
594     case elfcpp::SHT_HASH:
595     case elfcpp::SHT_DYNAMIC:
596     case elfcpp::SHT_SYMTAB_SHNDX:
597       return false;
598
599     case elfcpp::SHT_STRTAB:
600       // Discard the sections which have special meanings in the ELF
601       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
602       // checking the sh_link fields of the appropriate sections.
603       return (strcmp(name, ".dynstr") != 0
604               && strcmp(name, ".strtab") != 0
605               && strcmp(name, ".shstrtab") != 0);
606
607     case elfcpp::SHT_RELA:
608     case elfcpp::SHT_REL:
609     case elfcpp::SHT_GROUP:
610       // If we are emitting relocations these should be handled
611       // elsewhere.
612       gold_assert(!parameters->options().relocatable());
613       return false;
614
615     case elfcpp::SHT_PROGBITS:
616       if (parameters->options().strip_debug()
617           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
618         {
619           if (is_debug_info_section(name))
620             return false;
621         }
622       if (parameters->options().strip_debug_non_line()
623           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
624         {
625           // Debugging sections can only be recognized by name.
626           if (is_prefix_of(".debug_", name)
627               && !is_lines_only_debug_section(name + 7))
628             return false;
629           if (is_prefix_of(".zdebug_", name)
630               && !is_lines_only_debug_section(name + 8))
631             return false;
632         }
633       if (parameters->options().strip_debug_gdb()
634           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
635         {
636           // Debugging sections can only be recognized by name.
637           if (is_prefix_of(".debug_", name)
638               && !is_gdb_debug_section(name + 7))
639             return false;
640           if (is_prefix_of(".zdebug_", name)
641               && !is_gdb_debug_section(name + 8))
642             return false;
643         }
644       if (parameters->options().gdb_index()
645           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
646         {
647           // When building .gdb_index, we can strip .debug_pubnames,
648           // .debug_pubtypes, and .debug_aranges sections.
649           if (is_prefix_of(".debug_", name)
650               && is_gdb_fast_lookup_section(name + 7))
651             return false;
652           if (is_prefix_of(".zdebug_", name)
653               && is_gdb_fast_lookup_section(name + 8))
654             return false;
655         }
656       if (parameters->options().strip_lto_sections()
657           && !parameters->options().relocatable()
658           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
659         {
660           // Ignore LTO sections containing intermediate code.
661           if (is_prefix_of(".gnu.lto_", name))
662             return false;
663         }
664       // The GNU linker strips .gnu_debuglink sections, so we do too.
665       // This is a feature used to keep debugging information in
666       // separate files.
667       if (strcmp(name, ".gnu_debuglink") == 0)
668         return false;
669       return true;
670
671     default:
672       return true;
673     }
674 }
675
676 // Return an output section named NAME, or NULL if there is none.
677
678 Output_section*
679 Layout::find_output_section(const char* name) const
680 {
681   for (Section_list::const_iterator p = this->section_list_.begin();
682        p != this->section_list_.end();
683        ++p)
684     if (strcmp((*p)->name(), name) == 0)
685       return *p;
686   return NULL;
687 }
688
689 // Return an output segment of type TYPE, with segment flags SET set
690 // and segment flags CLEAR clear.  Return NULL if there is none.
691
692 Output_segment*
693 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
694                             elfcpp::Elf_Word clear) const
695 {
696   for (Segment_list::const_iterator p = this->segment_list_.begin();
697        p != this->segment_list_.end();
698        ++p)
699     if (static_cast<elfcpp::PT>((*p)->type()) == type
700         && ((*p)->flags() & set) == set
701         && ((*p)->flags() & clear) == 0)
702       return *p;
703   return NULL;
704 }
705
706 // When we put a .ctors or .dtors section with more than one word into
707 // a .init_array or .fini_array section, we need to reverse the words
708 // in the .ctors/.dtors section.  This is because .init_array executes
709 // constructors front to back, where .ctors executes them back to
710 // front, and vice-versa for .fini_array/.dtors.  Although we do want
711 // to remap .ctors/.dtors into .init_array/.fini_array because it can
712 // be more efficient, we don't want to change the order in which
713 // constructors/destructors are run.  This set just keeps track of
714 // these sections which need to be reversed.  It is only changed by
715 // Layout::layout.  It should be a private member of Layout, but that
716 // would require layout.h to #include object.h to get the definition
717 // of Section_id.
718 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
719
720 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
721 // .init_array/.fini_array section.
722
723 bool
724 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
725 {
726   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
727           != ctors_sections_in_init_array.end());
728 }
729
730 // Return the output section to use for section NAME with type TYPE
731 // and section flags FLAGS.  NAME must be canonicalized in the string
732 // pool, and NAME_KEY is the key.  ORDER is where this should appear
733 // in the output sections.  IS_RELRO is true for a relro section.
734
735 Output_section*
736 Layout::get_output_section(const char* name, Stringpool::Key name_key,
737                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
738                            Output_section_order order, bool is_relro)
739 {
740   elfcpp::Elf_Word lookup_type = type;
741
742   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
743   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
744   // .init_array, .fini_array, and .preinit_array sections by name
745   // whatever their type in the input file.  We do this because the
746   // types are not always right in the input files.
747   if (lookup_type == elfcpp::SHT_INIT_ARRAY
748       || lookup_type == elfcpp::SHT_FINI_ARRAY
749       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
750     lookup_type = elfcpp::SHT_PROGBITS;
751
752   elfcpp::Elf_Xword lookup_flags = flags;
753
754   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
755   // read-write with read-only sections.  Some other ELF linkers do
756   // not do this.  FIXME: Perhaps there should be an option
757   // controlling this.
758   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
759
760   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
761   const std::pair<Key, Output_section*> v(key, NULL);
762   std::pair<Section_name_map::iterator, bool> ins(
763     this->section_name_map_.insert(v));
764
765   if (!ins.second)
766     return ins.first->second;
767   else
768     {
769       // This is the first time we've seen this name/type/flags
770       // combination.  For compatibility with the GNU linker, we
771       // combine sections with contents and zero flags with sections
772       // with non-zero flags.  This is a workaround for cases where
773       // assembler code forgets to set section flags.  FIXME: Perhaps
774       // there should be an option to control this.
775       Output_section* os = NULL;
776
777       if (lookup_type == elfcpp::SHT_PROGBITS)
778         {
779           if (flags == 0)
780             {
781               Output_section* same_name = this->find_output_section(name);
782               if (same_name != NULL
783                   && (same_name->type() == elfcpp::SHT_PROGBITS
784                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
785                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
786                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
787                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
788                 os = same_name;
789             }
790           else if ((flags & elfcpp::SHF_TLS) == 0)
791             {
792               elfcpp::Elf_Xword zero_flags = 0;
793               const Key zero_key(name_key, std::make_pair(lookup_type,
794                                                           zero_flags));
795               Section_name_map::iterator p =
796                   this->section_name_map_.find(zero_key);
797               if (p != this->section_name_map_.end())
798                 os = p->second;
799             }
800         }
801
802       if (os == NULL)
803         os = this->make_output_section(name, type, flags, order, is_relro);
804
805       ins.first->second = os;
806       return os;
807     }
808 }
809
810 // Returns TRUE iff NAME (an input section from RELOBJ) will
811 // be mapped to an output section that should be KEPT.
812
813 bool
814 Layout::keep_input_section(const Relobj* relobj, const char* name)
815 {
816   if (! this->script_options_->saw_sections_clause())
817     return false;
818
819   Script_sections* ss = this->script_options_->script_sections();
820   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
821   Output_section** output_section_slot;
822   Script_sections::Section_type script_section_type;
823   bool keep;
824
825   name = ss->output_section_name(file_name, name, &output_section_slot,
826                                  &script_section_type, &keep);
827   return name != NULL && keep;
828 }
829
830 // Clear the input section flags that should not be copied to the
831 // output section.
832
833 elfcpp::Elf_Xword
834 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
835 {
836   // Some flags in the input section should not be automatically
837   // copied to the output section.
838   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
839                             | elfcpp::SHF_GROUP
840                             | elfcpp::SHF_MERGE
841                             | elfcpp::SHF_STRINGS);
842
843   // We only clear the SHF_LINK_ORDER flag in for
844   // a non-relocatable link.
845   if (!parameters->options().relocatable())
846     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
847
848   return input_section_flags;
849 }
850
851 // Pick the output section to use for section NAME, in input file
852 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
853 // linker created section.  IS_INPUT_SECTION is true if we are
854 // choosing an output section for an input section found in a input
855 // file.  ORDER is where this section should appear in the output
856 // sections.  IS_RELRO is true for a relro section.  This will return
857 // NULL if the input section should be discarded.
858
859 Output_section*
860 Layout::choose_output_section(const Relobj* relobj, const char* name,
861                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
862                               bool is_input_section, Output_section_order order,
863                               bool is_relro)
864 {
865   // We should not see any input sections after we have attached
866   // sections to segments.
867   gold_assert(!is_input_section || !this->sections_are_attached_);
868
869   flags = this->get_output_section_flags(flags);
870
871   if (this->script_options_->saw_sections_clause())
872     {
873       // We are using a SECTIONS clause, so the output section is
874       // chosen based only on the name.
875
876       Script_sections* ss = this->script_options_->script_sections();
877       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
878       Output_section** output_section_slot;
879       Script_sections::Section_type script_section_type;
880       const char* orig_name = name;
881       bool keep;
882       name = ss->output_section_name(file_name, name, &output_section_slot,
883                                      &script_section_type, &keep);
884
885       if (name == NULL)
886         {
887           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
888                                      "because it is not allowed by the "
889                                      "SECTIONS clause of the linker script"),
890                      orig_name);
891           // The SECTIONS clause says to discard this input section.
892           return NULL;
893         }
894
895       // We can only handle script section types ST_NONE and ST_NOLOAD.
896       switch (script_section_type)
897         {
898         case Script_sections::ST_NONE:
899           break;
900         case Script_sections::ST_NOLOAD:
901           flags &= elfcpp::SHF_ALLOC;
902           break;
903         default:
904           gold_unreachable();
905         }
906
907       // If this is an orphan section--one not mentioned in the linker
908       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
909       // default processing below.
910
911       if (output_section_slot != NULL)
912         {
913           if (*output_section_slot != NULL)
914             {
915               (*output_section_slot)->update_flags_for_input_section(flags);
916               return *output_section_slot;
917             }
918
919           // We don't put sections found in the linker script into
920           // SECTION_NAME_MAP_.  That keeps us from getting confused
921           // if an orphan section is mapped to a section with the same
922           // name as one in the linker script.
923
924           name = this->namepool_.add(name, false, NULL);
925
926           Output_section* os = this->make_output_section(name, type, flags,
927                                                          order, is_relro);
928
929           os->set_found_in_sections_clause();
930
931           // Special handling for NOLOAD sections.
932           if (script_section_type == Script_sections::ST_NOLOAD)
933             {
934               os->set_is_noload();
935
936               // The constructor of Output_section sets addresses of non-ALLOC
937               // sections to 0 by default.  We don't want that for NOLOAD
938               // sections even if they have no SHF_ALLOC flag.
939               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
940                   && os->is_address_valid())
941                 {
942                   gold_assert(os->address() == 0
943                               && !os->is_offset_valid()
944                               && !os->is_data_size_valid());
945                   os->reset_address_and_file_offset();
946                 }
947             }
948
949           *output_section_slot = os;
950           return os;
951         }
952     }
953
954   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
955
956   size_t len = strlen(name);
957   char* uncompressed_name = NULL;
958
959   // Compressed debug sections should be mapped to the corresponding
960   // uncompressed section.
961   if (is_compressed_debug_section(name))
962     {
963       uncompressed_name = new char[len];
964       uncompressed_name[0] = '.';
965       gold_assert(name[0] == '.' && name[1] == 'z');
966       strncpy(&uncompressed_name[1], &name[2], len - 2);
967       uncompressed_name[len - 1] = '\0';
968       len -= 1;
969       name = uncompressed_name;
970     }
971
972   // Turn NAME from the name of the input section into the name of the
973   // output section.
974   if (is_input_section
975       && !this->script_options_->saw_sections_clause()
976       && !parameters->options().relocatable())
977     {
978       const char *orig_name = name;
979       name = parameters->target().output_section_name(relobj, name, &len);
980       if (name == NULL)
981         name = Layout::output_section_name(relobj, orig_name, &len);
982     }
983
984   Stringpool::Key name_key;
985   name = this->namepool_.add_with_length(name, len, true, &name_key);
986
987   if (uncompressed_name != NULL)
988     delete[] uncompressed_name;
989
990   // Find or make the output section.  The output section is selected
991   // based on the section name, type, and flags.
992   return this->get_output_section(name, name_key, type, flags, order, is_relro);
993 }
994
995 // For incremental links, record the initial fixed layout of a section
996 // from the base file, and return a pointer to the Output_section.
997
998 template<int size, bool big_endian>
999 Output_section*
1000 Layout::init_fixed_output_section(const char* name,
1001                                   elfcpp::Shdr<size, big_endian>& shdr)
1002 {
1003   unsigned int sh_type = shdr.get_sh_type();
1004
1005   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1006   // PRE_INIT_ARRAY, and NOTE sections.
1007   // All others will be created from scratch and reallocated.
1008   if (!can_incremental_update(sh_type))
1009     return NULL;
1010
1011   // If we're generating a .gdb_index section, we need to regenerate
1012   // it from scratch.
1013   if (parameters->options().gdb_index()
1014       && sh_type == elfcpp::SHT_PROGBITS
1015       && strcmp(name, ".gdb_index") == 0)
1016     return NULL;
1017
1018   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1019   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1020   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1021   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1022   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1023       shdr.get_sh_addralign();
1024
1025   // Make the output section.
1026   Stringpool::Key name_key;
1027   name = this->namepool_.add(name, true, &name_key);
1028   Output_section* os = this->get_output_section(name, name_key, sh_type,
1029                                                 sh_flags, ORDER_INVALID, false);
1030   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1031   if (sh_type != elfcpp::SHT_NOBITS)
1032     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1033   return os;
1034 }
1035
1036 // Return the output section to use for input section SHNDX, with name
1037 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1038 // index of a relocation section which applies to this section, or 0
1039 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1040 // relocation section if there is one.  Set *OFF to the offset of this
1041 // input section without the output section.  Return NULL if the
1042 // section should be discarded.  Set *OFF to -1 if the section
1043 // contents should not be written directly to the output file, but
1044 // will instead receive special handling.
1045
1046 template<int size, bool big_endian>
1047 Output_section*
1048 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1049                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1050                unsigned int reloc_shndx, unsigned int, off_t* off)
1051 {
1052   *off = 0;
1053
1054   if (!this->include_section(object, name, shdr))
1055     return NULL;
1056
1057   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1058
1059   // In a relocatable link a grouped section must not be combined with
1060   // any other sections.
1061   Output_section* os;
1062   if (parameters->options().relocatable()
1063       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1064     {
1065       name = this->namepool_.add(name, true, NULL);
1066       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1067                                      ORDER_INVALID, false);
1068     }
1069   else
1070     {
1071       // Plugins can choose to place one or more subsets of sections in
1072       // unique segments and this is done by mapping these section subsets
1073       // to unique output sections.  Check if this section needs to be
1074       // remapped to a unique output section.
1075       Section_segment_map::iterator it
1076           = this->section_segment_map_.find(Const_section_id(object, shndx));
1077       if (it == this->section_segment_map_.end())
1078         {
1079           os = this->choose_output_section(object, name, sh_type,
1080                                            shdr.get_sh_flags(), true,
1081                                            ORDER_INVALID, false);
1082         }
1083       else
1084         {
1085           // We know the name of the output section, directly call
1086           // get_output_section here by-passing choose_output_section.
1087           elfcpp::Elf_Xword flags
1088             = this->get_output_section_flags(shdr.get_sh_flags());
1089
1090           const char* os_name = it->second->name;
1091           Stringpool::Key name_key;
1092           os_name = this->namepool_.add(os_name, true, &name_key);
1093           os = this->get_output_section(os_name, name_key, sh_type, flags,
1094                                         ORDER_INVALID, false);
1095           if (!os->is_unique_segment())
1096             {
1097               os->set_is_unique_segment();
1098               os->set_extra_segment_flags(it->second->flags);
1099               os->set_segment_alignment(it->second->align);
1100             }
1101         }
1102       if (os == NULL)
1103         return NULL;
1104     }
1105
1106   // By default the GNU linker sorts input sections whose names match
1107   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1108   // sections are sorted by name.  This is used to implement
1109   // constructor priority ordering.  We are compatible.  When we put
1110   // .ctor sections in .init_array and .dtor sections in .fini_array,
1111   // we must also sort plain .ctor and .dtor sections.
1112   if (!this->script_options_->saw_sections_clause()
1113       && !parameters->options().relocatable()
1114       && (is_prefix_of(".ctors.", name)
1115           || is_prefix_of(".dtors.", name)
1116           || is_prefix_of(".init_array.", name)
1117           || is_prefix_of(".fini_array.", name)
1118           || (parameters->options().ctors_in_init_array()
1119               && (strcmp(name, ".ctors") == 0
1120                   || strcmp(name, ".dtors") == 0))))
1121     os->set_must_sort_attached_input_sections();
1122
1123   // If this is a .ctors or .ctors.* section being mapped to a
1124   // .init_array section, or a .dtors or .dtors.* section being mapped
1125   // to a .fini_array section, we will need to reverse the words if
1126   // there is more than one.  Record this section for later.  See
1127   // ctors_sections_in_init_array above.
1128   if (!this->script_options_->saw_sections_clause()
1129       && !parameters->options().relocatable()
1130       && shdr.get_sh_size() > size / 8
1131       && (((strcmp(name, ".ctors") == 0
1132             || is_prefix_of(".ctors.", name))
1133            && strcmp(os->name(), ".init_array") == 0)
1134           || ((strcmp(name, ".dtors") == 0
1135                || is_prefix_of(".dtors.", name))
1136               && strcmp(os->name(), ".fini_array") == 0)))
1137     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1138
1139   // FIXME: Handle SHF_LINK_ORDER somewhere.
1140
1141   elfcpp::Elf_Xword orig_flags = os->flags();
1142
1143   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1144                                this->script_options_->saw_sections_clause());
1145
1146   // If the flags changed, we may have to change the order.
1147   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1148     {
1149       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1150       elfcpp::Elf_Xword new_flags =
1151         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1152       if (orig_flags != new_flags)
1153         os->set_order(this->default_section_order(os, false));
1154     }
1155
1156   this->have_added_input_section_ = true;
1157
1158   return os;
1159 }
1160
1161 // Maps section SECN to SEGMENT s.
1162 void
1163 Layout::insert_section_segment_map(Const_section_id secn,
1164                                    Unique_segment_info *s)
1165 {
1166   gold_assert(this->unique_segment_for_sections_specified_); 
1167   this->section_segment_map_[secn] = s;
1168 }
1169
1170 // Handle a relocation section when doing a relocatable link.
1171
1172 template<int size, bool big_endian>
1173 Output_section*
1174 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1175                      unsigned int,
1176                      const elfcpp::Shdr<size, big_endian>& shdr,
1177                      Output_section* data_section,
1178                      Relocatable_relocs* rr)
1179 {
1180   gold_assert(parameters->options().relocatable()
1181               || parameters->options().emit_relocs());
1182
1183   int sh_type = shdr.get_sh_type();
1184
1185   std::string name;
1186   if (sh_type == elfcpp::SHT_REL)
1187     name = ".rel";
1188   else if (sh_type == elfcpp::SHT_RELA)
1189     name = ".rela";
1190   else
1191     gold_unreachable();
1192   name += data_section->name();
1193
1194   // In a relocatable link relocs for a grouped section must not be
1195   // combined with other reloc sections.
1196   Output_section* os;
1197   if (!parameters->options().relocatable()
1198       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1199     os = this->choose_output_section(object, name.c_str(), sh_type,
1200                                      shdr.get_sh_flags(), false,
1201                                      ORDER_INVALID, false);
1202   else
1203     {
1204       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1205       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1206                                      ORDER_INVALID, false);
1207     }
1208
1209   os->set_should_link_to_symtab();
1210   os->set_info_section(data_section);
1211
1212   Output_section_data* posd;
1213   if (sh_type == elfcpp::SHT_REL)
1214     {
1215       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1216       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1217                                            size,
1218                                            big_endian>(rr);
1219     }
1220   else if (sh_type == elfcpp::SHT_RELA)
1221     {
1222       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1223       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1224                                            size,
1225                                            big_endian>(rr);
1226     }
1227   else
1228     gold_unreachable();
1229
1230   os->add_output_section_data(posd);
1231   rr->set_output_data(posd);
1232
1233   return os;
1234 }
1235
1236 // Handle a group section when doing a relocatable link.
1237
1238 template<int size, bool big_endian>
1239 void
1240 Layout::layout_group(Symbol_table* symtab,
1241                      Sized_relobj_file<size, big_endian>* object,
1242                      unsigned int,
1243                      const char* group_section_name,
1244                      const char* signature,
1245                      const elfcpp::Shdr<size, big_endian>& shdr,
1246                      elfcpp::Elf_Word flags,
1247                      std::vector<unsigned int>* shndxes)
1248 {
1249   gold_assert(parameters->options().relocatable());
1250   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1251   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1252   Output_section* os = this->make_output_section(group_section_name,
1253                                                  elfcpp::SHT_GROUP,
1254                                                  shdr.get_sh_flags(),
1255                                                  ORDER_INVALID, false);
1256
1257   // We need to find a symbol with the signature in the symbol table.
1258   // If we don't find one now, we need to look again later.
1259   Symbol* sym = symtab->lookup(signature, NULL);
1260   if (sym != NULL)
1261     os->set_info_symndx(sym);
1262   else
1263     {
1264       // Reserve some space to minimize reallocations.
1265       if (this->group_signatures_.empty())
1266         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1267
1268       // We will wind up using a symbol whose name is the signature.
1269       // So just put the signature in the symbol name pool to save it.
1270       signature = symtab->canonicalize_name(signature);
1271       this->group_signatures_.push_back(Group_signature(os, signature));
1272     }
1273
1274   os->set_should_link_to_symtab();
1275   os->set_entsize(4);
1276
1277   section_size_type entry_count =
1278     convert_to_section_size_type(shdr.get_sh_size() / 4);
1279   Output_section_data* posd =
1280     new Output_data_group<size, big_endian>(object, entry_count, flags,
1281                                             shndxes);
1282   os->add_output_section_data(posd);
1283 }
1284
1285 // Special GNU handling of sections name .eh_frame.  They will
1286 // normally hold exception frame data as defined by the C++ ABI
1287 // (http://codesourcery.com/cxx-abi/).
1288
1289 template<int size, bool big_endian>
1290 Output_section*
1291 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1292                         const unsigned char* symbols,
1293                         off_t symbols_size,
1294                         const unsigned char* symbol_names,
1295                         off_t symbol_names_size,
1296                         unsigned int shndx,
1297                         const elfcpp::Shdr<size, big_endian>& shdr,
1298                         unsigned int reloc_shndx, unsigned int reloc_type,
1299                         off_t* off)
1300 {
1301   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1302               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1303   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1304
1305   Output_section* os = this->make_eh_frame_section(object);
1306   if (os == NULL)
1307     return NULL;
1308
1309   gold_assert(this->eh_frame_section_ == os);
1310
1311   elfcpp::Elf_Xword orig_flags = os->flags();
1312
1313   if (!parameters->incremental()
1314       && this->eh_frame_data_->add_ehframe_input_section(object,
1315                                                          symbols,
1316                                                          symbols_size,
1317                                                          symbol_names,
1318                                                          symbol_names_size,
1319                                                          shndx,
1320                                                          reloc_shndx,
1321                                                          reloc_type))
1322     {
1323       os->update_flags_for_input_section(shdr.get_sh_flags());
1324
1325       // A writable .eh_frame section is a RELRO section.
1326       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1327           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1328         {
1329           os->set_is_relro();
1330           os->set_order(ORDER_RELRO);
1331         }
1332
1333       // We found a .eh_frame section we are going to optimize, so now
1334       // we can add the set of optimized sections to the output
1335       // section.  We need to postpone adding this until we've found a
1336       // section we can optimize so that the .eh_frame section in
1337       // crtbegin.o winds up at the start of the output section.
1338       if (!this->added_eh_frame_data_)
1339         {
1340           os->add_output_section_data(this->eh_frame_data_);
1341           this->added_eh_frame_data_ = true;
1342         }
1343       *off = -1;
1344     }
1345   else
1346     {
1347       // We couldn't handle this .eh_frame section for some reason.
1348       // Add it as a normal section.
1349       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1350       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1351                                    reloc_shndx, saw_sections_clause);
1352       this->have_added_input_section_ = true;
1353
1354       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1355           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1356         os->set_order(this->default_section_order(os, false));
1357     }
1358
1359   return os;
1360 }
1361
1362 // Create and return the magic .eh_frame section.  Create
1363 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1364 // input .eh_frame section; it may be NULL.
1365
1366 Output_section*
1367 Layout::make_eh_frame_section(const Relobj* object)
1368 {
1369   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1370   // SHT_PROGBITS.
1371   Output_section* os = this->choose_output_section(object, ".eh_frame",
1372                                                    elfcpp::SHT_PROGBITS,
1373                                                    elfcpp::SHF_ALLOC, false,
1374                                                    ORDER_EHFRAME, false);
1375   if (os == NULL)
1376     return NULL;
1377
1378   if (this->eh_frame_section_ == NULL)
1379     {
1380       this->eh_frame_section_ = os;
1381       this->eh_frame_data_ = new Eh_frame();
1382
1383       // For incremental linking, we do not optimize .eh_frame sections
1384       // or create a .eh_frame_hdr section.
1385       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1386         {
1387           Output_section* hdr_os =
1388             this->choose_output_section(NULL, ".eh_frame_hdr",
1389                                         elfcpp::SHT_PROGBITS,
1390                                         elfcpp::SHF_ALLOC, false,
1391                                         ORDER_EHFRAME, false);
1392
1393           if (hdr_os != NULL)
1394             {
1395               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1396                                                         this->eh_frame_data_);
1397               hdr_os->add_output_section_data(hdr_posd);
1398
1399               hdr_os->set_after_input_sections();
1400
1401               if (!this->script_options_->saw_phdrs_clause())
1402                 {
1403                   Output_segment* hdr_oseg;
1404                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1405                                                        elfcpp::PF_R);
1406                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1407                                                           elfcpp::PF_R);
1408                 }
1409
1410               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1411             }
1412         }
1413     }
1414
1415   return os;
1416 }
1417
1418 // Add an exception frame for a PLT.  This is called from target code.
1419
1420 void
1421 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1422                              size_t cie_length, const unsigned char* fde_data,
1423                              size_t fde_length)
1424 {
1425   if (parameters->incremental())
1426     {
1427       // FIXME: Maybe this could work some day....
1428       return;
1429     }
1430   Output_section* os = this->make_eh_frame_section(NULL);
1431   if (os == NULL)
1432     return;
1433   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1434                                             fde_data, fde_length);
1435   if (!this->added_eh_frame_data_)
1436     {
1437       os->add_output_section_data(this->eh_frame_data_);
1438       this->added_eh_frame_data_ = true;
1439     }
1440 }
1441
1442 // Scan a .debug_info or .debug_types section, and add summary
1443 // information to the .gdb_index section.
1444
1445 template<int size, bool big_endian>
1446 void
1447 Layout::add_to_gdb_index(bool is_type_unit,
1448                          Sized_relobj<size, big_endian>* object,
1449                          const unsigned char* symbols,
1450                          off_t symbols_size,
1451                          unsigned int shndx,
1452                          unsigned int reloc_shndx,
1453                          unsigned int reloc_type)
1454 {
1455   if (this->gdb_index_data_ == NULL)
1456     {
1457       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1458                                                        elfcpp::SHT_PROGBITS, 0,
1459                                                        false, ORDER_INVALID,
1460                                                        false);
1461       if (os == NULL)
1462         return;
1463
1464       this->gdb_index_data_ = new Gdb_index(os);
1465       os->add_output_section_data(this->gdb_index_data_);
1466       os->set_after_input_sections();
1467     }
1468
1469   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1470                                          symbols_size, shndx, reloc_shndx,
1471                                          reloc_type);
1472 }
1473
1474 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1475 // the output section.
1476
1477 Output_section*
1478 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1479                                 elfcpp::Elf_Xword flags,
1480                                 Output_section_data* posd,
1481                                 Output_section_order order, bool is_relro)
1482 {
1483   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1484                                                    false, order, is_relro);
1485   if (os != NULL)
1486     os->add_output_section_data(posd);
1487   return os;
1488 }
1489
1490 // Map section flags to segment flags.
1491
1492 elfcpp::Elf_Word
1493 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1494 {
1495   elfcpp::Elf_Word ret = elfcpp::PF_R;
1496   if ((flags & elfcpp::SHF_WRITE) != 0)
1497     ret |= elfcpp::PF_W;
1498   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1499     ret |= elfcpp::PF_X;
1500   return ret;
1501 }
1502
1503 // Make a new Output_section, and attach it to segments as
1504 // appropriate.  ORDER is the order in which this section should
1505 // appear in the output segment.  IS_RELRO is true if this is a relro
1506 // (read-only after relocations) section.
1507
1508 Output_section*
1509 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1510                             elfcpp::Elf_Xword flags,
1511                             Output_section_order order, bool is_relro)
1512 {
1513   Output_section* os;
1514   if ((flags & elfcpp::SHF_ALLOC) == 0
1515       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1516       && is_compressible_debug_section(name))
1517     os = new Output_compressed_section(&parameters->options(), name, type,
1518                                        flags);
1519   else if ((flags & elfcpp::SHF_ALLOC) == 0
1520            && parameters->options().strip_debug_non_line()
1521            && strcmp(".debug_abbrev", name) == 0)
1522     {
1523       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1524           name, type, flags);
1525       if (this->debug_info_)
1526         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1527     }
1528   else if ((flags & elfcpp::SHF_ALLOC) == 0
1529            && parameters->options().strip_debug_non_line()
1530            && strcmp(".debug_info", name) == 0)
1531     {
1532       os = this->debug_info_ = new Output_reduced_debug_info_section(
1533           name, type, flags);
1534       if (this->debug_abbrev_)
1535         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1536     }
1537   else
1538     {
1539       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1540       // not have correct section types.  Force them here.
1541       if (type == elfcpp::SHT_PROGBITS)
1542         {
1543           if (is_prefix_of(".init_array", name))
1544             type = elfcpp::SHT_INIT_ARRAY;
1545           else if (is_prefix_of(".preinit_array", name))
1546             type = elfcpp::SHT_PREINIT_ARRAY;
1547           else if (is_prefix_of(".fini_array", name))
1548             type = elfcpp::SHT_FINI_ARRAY;
1549         }
1550
1551       // FIXME: const_cast is ugly.
1552       Target* target = const_cast<Target*>(&parameters->target());
1553       os = target->make_output_section(name, type, flags);
1554     }
1555
1556   // With -z relro, we have to recognize the special sections by name.
1557   // There is no other way.
1558   bool is_relro_local = false;
1559   if (!this->script_options_->saw_sections_clause()
1560       && parameters->options().relro()
1561       && (flags & elfcpp::SHF_ALLOC) != 0
1562       && (flags & elfcpp::SHF_WRITE) != 0)
1563     {
1564       if (type == elfcpp::SHT_PROGBITS)
1565         {
1566           if ((flags & elfcpp::SHF_TLS) != 0)
1567             is_relro = true;
1568           else if (strcmp(name, ".data.rel.ro") == 0)
1569             is_relro = true;
1570           else if (strcmp(name, ".data.rel.ro.local") == 0)
1571             {
1572               is_relro = true;
1573               is_relro_local = true;
1574             }
1575           else if (strcmp(name, ".ctors") == 0
1576                    || strcmp(name, ".dtors") == 0
1577                    || strcmp(name, ".jcr") == 0)
1578             is_relro = true;
1579         }
1580       else if (type == elfcpp::SHT_INIT_ARRAY
1581                || type == elfcpp::SHT_FINI_ARRAY
1582                || type == elfcpp::SHT_PREINIT_ARRAY)
1583         is_relro = true;
1584     }
1585
1586   if (is_relro)
1587     os->set_is_relro();
1588
1589   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1590     order = this->default_section_order(os, is_relro_local);
1591
1592   os->set_order(order);
1593
1594   parameters->target().new_output_section(os);
1595
1596   this->section_list_.push_back(os);
1597
1598   // The GNU linker by default sorts some sections by priority, so we
1599   // do the same.  We need to know that this might happen before we
1600   // attach any input sections.
1601   if (!this->script_options_->saw_sections_clause()
1602       && !parameters->options().relocatable()
1603       && (strcmp(name, ".init_array") == 0
1604           || strcmp(name, ".fini_array") == 0
1605           || (!parameters->options().ctors_in_init_array()
1606               && (strcmp(name, ".ctors") == 0
1607                   || strcmp(name, ".dtors") == 0))))
1608     os->set_may_sort_attached_input_sections();
1609
1610   // Check for .stab*str sections, as .stab* sections need to link to
1611   // them.
1612   if (type == elfcpp::SHT_STRTAB
1613       && !this->have_stabstr_section_
1614       && strncmp(name, ".stab", 5) == 0
1615       && strcmp(name + strlen(name) - 3, "str") == 0)
1616     this->have_stabstr_section_ = true;
1617
1618   // During a full incremental link, we add patch space to most
1619   // PROGBITS and NOBITS sections.  Flag those that may be
1620   // arbitrarily padded.
1621   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1622       && order != ORDER_INTERP
1623       && order != ORDER_INIT
1624       && order != ORDER_PLT
1625       && order != ORDER_FINI
1626       && order != ORDER_RELRO_LAST
1627       && order != ORDER_NON_RELRO_FIRST
1628       && strcmp(name, ".eh_frame") != 0
1629       && strcmp(name, ".ctors") != 0
1630       && strcmp(name, ".dtors") != 0
1631       && strcmp(name, ".jcr") != 0)
1632     {
1633       os->set_is_patch_space_allowed();
1634
1635       // Certain sections require "holes" to be filled with
1636       // specific fill patterns.  These fill patterns may have
1637       // a minimum size, so we must prevent allocations from the
1638       // free list that leave a hole smaller than the minimum.
1639       if (strcmp(name, ".debug_info") == 0)
1640         os->set_free_space_fill(new Output_fill_debug_info(false));
1641       else if (strcmp(name, ".debug_types") == 0)
1642         os->set_free_space_fill(new Output_fill_debug_info(true));
1643       else if (strcmp(name, ".debug_line") == 0)
1644         os->set_free_space_fill(new Output_fill_debug_line());
1645     }
1646
1647   // If we have already attached the sections to segments, then we
1648   // need to attach this one now.  This happens for sections created
1649   // directly by the linker.
1650   if (this->sections_are_attached_)
1651     this->attach_section_to_segment(&parameters->target(), os);
1652
1653   return os;
1654 }
1655
1656 // Return the default order in which a section should be placed in an
1657 // output segment.  This function captures a lot of the ideas in
1658 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1659 // linker created section is normally set when the section is created;
1660 // this function is used for input sections.
1661
1662 Output_section_order
1663 Layout::default_section_order(Output_section* os, bool is_relro_local)
1664 {
1665   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1666   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1667   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1668   bool is_bss = false;
1669
1670   switch (os->type())
1671     {
1672     default:
1673     case elfcpp::SHT_PROGBITS:
1674       break;
1675     case elfcpp::SHT_NOBITS:
1676       is_bss = true;
1677       break;
1678     case elfcpp::SHT_RELA:
1679     case elfcpp::SHT_REL:
1680       if (!is_write)
1681         return ORDER_DYNAMIC_RELOCS;
1682       break;
1683     case elfcpp::SHT_HASH:
1684     case elfcpp::SHT_DYNAMIC:
1685     case elfcpp::SHT_SHLIB:
1686     case elfcpp::SHT_DYNSYM:
1687     case elfcpp::SHT_GNU_HASH:
1688     case elfcpp::SHT_GNU_verdef:
1689     case elfcpp::SHT_GNU_verneed:
1690     case elfcpp::SHT_GNU_versym:
1691       if (!is_write)
1692         return ORDER_DYNAMIC_LINKER;
1693       break;
1694     case elfcpp::SHT_NOTE:
1695       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1696     }
1697
1698   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1699     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1700
1701   if (!is_bss && !is_write)
1702     {
1703       if (is_execinstr)
1704         {
1705           if (strcmp(os->name(), ".init") == 0)
1706             return ORDER_INIT;
1707           else if (strcmp(os->name(), ".fini") == 0)
1708             return ORDER_FINI;
1709         }
1710       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1711     }
1712
1713   if (os->is_relro())
1714     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1715
1716   if (os->is_small_section())
1717     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1718   if (os->is_large_section())
1719     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1720
1721   return is_bss ? ORDER_BSS : ORDER_DATA;
1722 }
1723
1724 // Attach output sections to segments.  This is called after we have
1725 // seen all the input sections.
1726
1727 void
1728 Layout::attach_sections_to_segments(const Target* target)
1729 {
1730   for (Section_list::iterator p = this->section_list_.begin();
1731        p != this->section_list_.end();
1732        ++p)
1733     this->attach_section_to_segment(target, *p);
1734
1735   this->sections_are_attached_ = true;
1736 }
1737
1738 // Attach an output section to a segment.
1739
1740 void
1741 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1742 {
1743   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1744     this->unattached_section_list_.push_back(os);
1745   else
1746     this->attach_allocated_section_to_segment(target, os);
1747 }
1748
1749 // Attach an allocated output section to a segment.
1750
1751 void
1752 Layout::attach_allocated_section_to_segment(const Target* target,
1753                                             Output_section* os)
1754 {
1755   elfcpp::Elf_Xword flags = os->flags();
1756   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1757
1758   if (parameters->options().relocatable())
1759     return;
1760
1761   // If we have a SECTIONS clause, we can't handle the attachment to
1762   // segments until after we've seen all the sections.
1763   if (this->script_options_->saw_sections_clause())
1764     return;
1765
1766   gold_assert(!this->script_options_->saw_phdrs_clause());
1767
1768   // This output section goes into a PT_LOAD segment.
1769
1770   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1771
1772   // If this output section's segment has extra flags that need to be set,
1773   // coming from a linker plugin, do that.
1774   seg_flags |= os->extra_segment_flags();
1775
1776   // Check for --section-start.
1777   uint64_t addr;
1778   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1779
1780   // In general the only thing we really care about for PT_LOAD
1781   // segments is whether or not they are writable or executable,
1782   // so that is how we search for them.
1783   // Large data sections also go into their own PT_LOAD segment.
1784   // People who need segments sorted on some other basis will
1785   // have to use a linker script.
1786
1787   Segment_list::const_iterator p;
1788   if (!os->is_unique_segment())
1789     {
1790       for (p = this->segment_list_.begin();
1791            p != this->segment_list_.end();
1792            ++p)
1793         {
1794           if ((*p)->type() != elfcpp::PT_LOAD)                        
1795             continue;                        
1796           if ((*p)->is_unique_segment())                        
1797             continue;                        
1798           if (!parameters->options().omagic()                        
1799               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))                        
1800             continue;                        
1801           if ((target->isolate_execinstr() || parameters->options().rosegment())                        
1802               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))                        
1803             continue;                        
1804           // If -Tbss was specified, we need to separate the data and BSS                        
1805           // segments.                        
1806           if (parameters->options().user_set_Tbss())                        
1807             {                        
1808               if ((os->type() == elfcpp::SHT_NOBITS)                        
1809                   == (*p)->has_any_data_sections())                        
1810                 continue;                        
1811             }                        
1812           if (os->is_large_data_section() && !(*p)->is_large_data_segment())                        
1813             continue;                        
1814                             
1815           if (is_address_set)                        
1816             {                        
1817               if ((*p)->are_addresses_set())                        
1818                 continue;                        
1819                             
1820               (*p)->add_initial_output_data(os);                        
1821               (*p)->update_flags_for_output_section(seg_flags);                        
1822               (*p)->set_addresses(addr, addr);                        
1823               break;                        
1824             }                        
1825                             
1826           (*p)->add_output_section_to_load(this, os, seg_flags);                        
1827           break;                        
1828         }                        
1829     }
1830
1831   if (p == this->segment_list_.end()
1832       || os->is_unique_segment())
1833     {
1834       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1835                                                        seg_flags);
1836       if (os->is_large_data_section())
1837         oseg->set_is_large_data_segment();
1838       oseg->add_output_section_to_load(this, os, seg_flags);
1839       if (is_address_set)
1840         oseg->set_addresses(addr, addr);
1841       // Check if segment should be marked unique.  For segments marked
1842       // unique by linker plugins, set the new alignment if specified.
1843       if (os->is_unique_segment())
1844         {
1845           oseg->set_is_unique_segment();
1846           if (os->segment_alignment() != 0)
1847             oseg->set_minimum_p_align(os->segment_alignment());
1848         }
1849     }
1850
1851   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1852   // segment.
1853   if (os->type() == elfcpp::SHT_NOTE)
1854     {
1855       // See if we already have an equivalent PT_NOTE segment.
1856       for (p = this->segment_list_.begin();
1857            p != segment_list_.end();
1858            ++p)
1859         {
1860           if ((*p)->type() == elfcpp::PT_NOTE
1861               && (((*p)->flags() & elfcpp::PF_W)
1862                   == (seg_flags & elfcpp::PF_W)))
1863             {
1864               (*p)->add_output_section_to_nonload(os, seg_flags);
1865               break;
1866             }
1867         }
1868
1869       if (p == this->segment_list_.end())
1870         {
1871           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1872                                                            seg_flags);
1873           oseg->add_output_section_to_nonload(os, seg_flags);
1874         }
1875     }
1876
1877   // If we see a loadable SHF_TLS section, we create a PT_TLS
1878   // segment.  There can only be one such segment.
1879   if ((flags & elfcpp::SHF_TLS) != 0)
1880     {
1881       if (this->tls_segment_ == NULL)
1882         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1883       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1884     }
1885
1886   // If -z relro is in effect, and we see a relro section, we create a
1887   // PT_GNU_RELRO segment.  There can only be one such segment.
1888   if (os->is_relro() && parameters->options().relro())
1889     {
1890       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1891       if (this->relro_segment_ == NULL)
1892         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1893       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1894     }
1895
1896   // If we see a section named .interp, put it into a PT_INTERP
1897   // segment.  This seems broken to me, but this is what GNU ld does,
1898   // and glibc expects it.
1899   if (strcmp(os->name(), ".interp") == 0
1900       && !this->script_options_->saw_phdrs_clause())
1901     {
1902       if (this->interp_segment_ == NULL)
1903         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1904       else
1905         gold_warning(_("multiple '.interp' sections in input files "
1906                        "may cause confusing PT_INTERP segment"));
1907       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1908     }
1909 }
1910
1911 // Make an output section for a script.
1912
1913 Output_section*
1914 Layout::make_output_section_for_script(
1915     const char* name,
1916     Script_sections::Section_type section_type)
1917 {
1918   name = this->namepool_.add(name, false, NULL);
1919   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1920   if (section_type == Script_sections::ST_NOLOAD)
1921     sh_flags = 0;
1922   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1923                                                  sh_flags, ORDER_INVALID,
1924                                                  false);
1925   os->set_found_in_sections_clause();
1926   if (section_type == Script_sections::ST_NOLOAD)
1927     os->set_is_noload();
1928   return os;
1929 }
1930
1931 // Return the number of segments we expect to see.
1932
1933 size_t
1934 Layout::expected_segment_count() const
1935 {
1936   size_t ret = this->segment_list_.size();
1937
1938   // If we didn't see a SECTIONS clause in a linker script, we should
1939   // already have the complete list of segments.  Otherwise we ask the
1940   // SECTIONS clause how many segments it expects, and add in the ones
1941   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1942
1943   if (!this->script_options_->saw_sections_clause())
1944     return ret;
1945   else
1946     {
1947       const Script_sections* ss = this->script_options_->script_sections();
1948       return ret + ss->expected_segment_count(this);
1949     }
1950 }
1951
1952 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1953 // is whether we saw a .note.GNU-stack section in the object file.
1954 // GNU_STACK_FLAGS is the section flags.  The flags give the
1955 // protection required for stack memory.  We record this in an
1956 // executable as a PT_GNU_STACK segment.  If an object file does not
1957 // have a .note.GNU-stack segment, we must assume that it is an old
1958 // object.  On some targets that will force an executable stack.
1959
1960 void
1961 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1962                          const Object* obj)
1963 {
1964   if (!seen_gnu_stack)
1965     {
1966       this->input_without_gnu_stack_note_ = true;
1967       if (parameters->options().warn_execstack()
1968           && parameters->target().is_default_stack_executable())
1969         gold_warning(_("%s: missing .note.GNU-stack section"
1970                        " implies executable stack"),
1971                      obj->name().c_str());
1972     }
1973   else
1974     {
1975       this->input_with_gnu_stack_note_ = true;
1976       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1977         {
1978           this->input_requires_executable_stack_ = true;
1979           if (parameters->options().warn_execstack()
1980               || parameters->options().is_stack_executable())
1981             gold_warning(_("%s: requires executable stack"),
1982                          obj->name().c_str());
1983         }
1984     }
1985 }
1986
1987 // Create automatic note sections.
1988
1989 void
1990 Layout::create_notes()
1991 {
1992   this->create_gold_note();
1993   this->create_executable_stack_info();
1994   this->create_build_id();
1995 }
1996
1997 // Create the dynamic sections which are needed before we read the
1998 // relocs.
1999
2000 void
2001 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2002 {
2003   if (parameters->doing_static_link())
2004     return;
2005
2006   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2007                                                        elfcpp::SHT_DYNAMIC,
2008                                                        (elfcpp::SHF_ALLOC
2009                                                         | elfcpp::SHF_WRITE),
2010                                                        false, ORDER_RELRO,
2011                                                        true);
2012
2013   // A linker script may discard .dynamic, so check for NULL.
2014   if (this->dynamic_section_ != NULL)
2015     {
2016       this->dynamic_symbol_ =
2017         symtab->define_in_output_data("_DYNAMIC", NULL,
2018                                       Symbol_table::PREDEFINED,
2019                                       this->dynamic_section_, 0, 0,
2020                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2021                                       elfcpp::STV_HIDDEN, 0, false, false);
2022
2023       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2024
2025       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2026     }
2027 }
2028
2029 // For each output section whose name can be represented as C symbol,
2030 // define __start and __stop symbols for the section.  This is a GNU
2031 // extension.
2032
2033 void
2034 Layout::define_section_symbols(Symbol_table* symtab)
2035 {
2036   for (Section_list::const_iterator p = this->section_list_.begin();
2037        p != this->section_list_.end();
2038        ++p)
2039     {
2040       const char* const name = (*p)->name();
2041       if (is_cident(name))
2042         {
2043           const std::string name_string(name);
2044           const std::string start_name(cident_section_start_prefix
2045                                        + name_string);
2046           const std::string stop_name(cident_section_stop_prefix
2047                                       + name_string);
2048
2049           symtab->define_in_output_data(start_name.c_str(),
2050                                         NULL, // version
2051                                         Symbol_table::PREDEFINED,
2052                                         *p,
2053                                         0, // value
2054                                         0, // symsize
2055                                         elfcpp::STT_NOTYPE,
2056                                         elfcpp::STB_GLOBAL,
2057                                         elfcpp::STV_DEFAULT,
2058                                         0, // nonvis
2059                                         false, // offset_is_from_end
2060                                         true); // only_if_ref
2061
2062           symtab->define_in_output_data(stop_name.c_str(),
2063                                         NULL, // version
2064                                         Symbol_table::PREDEFINED,
2065                                         *p,
2066                                         0, // value
2067                                         0, // symsize
2068                                         elfcpp::STT_NOTYPE,
2069                                         elfcpp::STB_GLOBAL,
2070                                         elfcpp::STV_DEFAULT,
2071                                         0, // nonvis
2072                                         true, // offset_is_from_end
2073                                         true); // only_if_ref
2074         }
2075     }
2076 }
2077
2078 // Define symbols for group signatures.
2079
2080 void
2081 Layout::define_group_signatures(Symbol_table* symtab)
2082 {
2083   for (Group_signatures::iterator p = this->group_signatures_.begin();
2084        p != this->group_signatures_.end();
2085        ++p)
2086     {
2087       Symbol* sym = symtab->lookup(p->signature, NULL);
2088       if (sym != NULL)
2089         p->section->set_info_symndx(sym);
2090       else
2091         {
2092           // Force the name of the group section to the group
2093           // signature, and use the group's section symbol as the
2094           // signature symbol.
2095           if (strcmp(p->section->name(), p->signature) != 0)
2096             {
2097               const char* name = this->namepool_.add(p->signature,
2098                                                      true, NULL);
2099               p->section->set_name(name);
2100             }
2101           p->section->set_needs_symtab_index();
2102           p->section->set_info_section_symndx(p->section);
2103         }
2104     }
2105
2106   this->group_signatures_.clear();
2107 }
2108
2109 // Find the first read-only PT_LOAD segment, creating one if
2110 // necessary.
2111
2112 Output_segment*
2113 Layout::find_first_load_seg(const Target* target)
2114 {
2115   Output_segment* best = NULL;
2116   for (Segment_list::const_iterator p = this->segment_list_.begin();
2117        p != this->segment_list_.end();
2118        ++p)
2119     {
2120       if ((*p)->type() == elfcpp::PT_LOAD
2121           && ((*p)->flags() & elfcpp::PF_R) != 0
2122           && (parameters->options().omagic()
2123               || ((*p)->flags() & elfcpp::PF_W) == 0)
2124           && (!target->isolate_execinstr()
2125               || ((*p)->flags() & elfcpp::PF_X) == 0))
2126         {
2127           if (best == NULL || this->segment_precedes(*p, best))
2128             best = *p;
2129         }
2130     }
2131   if (best != NULL)
2132     return best;
2133
2134   gold_assert(!this->script_options_->saw_phdrs_clause());
2135
2136   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2137                                                        elfcpp::PF_R);
2138   return load_seg;
2139 }
2140
2141 // Save states of all current output segments.  Store saved states
2142 // in SEGMENT_STATES.
2143
2144 void
2145 Layout::save_segments(Segment_states* segment_states)
2146 {
2147   for (Segment_list::const_iterator p = this->segment_list_.begin();
2148        p != this->segment_list_.end();
2149        ++p)
2150     {
2151       Output_segment* segment = *p;
2152       // Shallow copy.
2153       Output_segment* copy = new Output_segment(*segment);
2154       (*segment_states)[segment] = copy;
2155     }
2156 }
2157
2158 // Restore states of output segments and delete any segment not found in
2159 // SEGMENT_STATES.
2160
2161 void
2162 Layout::restore_segments(const Segment_states* segment_states)
2163 {
2164   // Go through the segment list and remove any segment added in the
2165   // relaxation loop.
2166   this->tls_segment_ = NULL;
2167   this->relro_segment_ = NULL;
2168   Segment_list::iterator list_iter = this->segment_list_.begin();
2169   while (list_iter != this->segment_list_.end())
2170     {
2171       Output_segment* segment = *list_iter;
2172       Segment_states::const_iterator states_iter =
2173           segment_states->find(segment);
2174       if (states_iter != segment_states->end())
2175         {
2176           const Output_segment* copy = states_iter->second;
2177           // Shallow copy to restore states.
2178           *segment = *copy;
2179
2180           // Also fix up TLS and RELRO segment pointers as appropriate.
2181           if (segment->type() == elfcpp::PT_TLS)
2182             this->tls_segment_ = segment;
2183           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2184             this->relro_segment_ = segment;
2185
2186           ++list_iter;
2187         }
2188       else
2189         {
2190           list_iter = this->segment_list_.erase(list_iter);
2191           // This is a segment created during section layout.  It should be
2192           // safe to remove it since we should have removed all pointers to it.
2193           delete segment;
2194         }
2195     }
2196 }
2197
2198 // Clean up after relaxation so that sections can be laid out again.
2199
2200 void
2201 Layout::clean_up_after_relaxation()
2202 {
2203   // Restore the segments to point state just prior to the relaxation loop.
2204   Script_sections* script_section = this->script_options_->script_sections();
2205   script_section->release_segments();
2206   this->restore_segments(this->segment_states_);
2207
2208   // Reset section addresses and file offsets
2209   for (Section_list::iterator p = this->section_list_.begin();
2210        p != this->section_list_.end();
2211        ++p)
2212     {
2213       (*p)->restore_states();
2214
2215       // If an input section changes size because of relaxation,
2216       // we need to adjust the section offsets of all input sections.
2217       // after such a section.
2218       if ((*p)->section_offsets_need_adjustment())
2219         (*p)->adjust_section_offsets();
2220
2221       (*p)->reset_address_and_file_offset();
2222     }
2223
2224   // Reset special output object address and file offsets.
2225   for (Data_list::iterator p = this->special_output_list_.begin();
2226        p != this->special_output_list_.end();
2227        ++p)
2228     (*p)->reset_address_and_file_offset();
2229
2230   // A linker script may have created some output section data objects.
2231   // They are useless now.
2232   for (Output_section_data_list::const_iterator p =
2233          this->script_output_section_data_list_.begin();
2234        p != this->script_output_section_data_list_.end();
2235        ++p)
2236     delete *p;
2237   this->script_output_section_data_list_.clear();
2238 }
2239
2240 // Prepare for relaxation.
2241
2242 void
2243 Layout::prepare_for_relaxation()
2244 {
2245   // Create an relaxation debug check if in debugging mode.
2246   if (is_debugging_enabled(DEBUG_RELAXATION))
2247     this->relaxation_debug_check_ = new Relaxation_debug_check();
2248
2249   // Save segment states.
2250   this->segment_states_ = new Segment_states();
2251   this->save_segments(this->segment_states_);
2252
2253   for(Section_list::const_iterator p = this->section_list_.begin();
2254       p != this->section_list_.end();
2255       ++p)
2256     (*p)->save_states();
2257
2258   if (is_debugging_enabled(DEBUG_RELAXATION))
2259     this->relaxation_debug_check_->check_output_data_for_reset_values(
2260         this->section_list_, this->special_output_list_);
2261
2262   // Also enable recording of output section data from scripts.
2263   this->record_output_section_data_from_script_ = true;
2264 }
2265
2266 // Relaxation loop body:  If target has no relaxation, this runs only once
2267 // Otherwise, the target relaxation hook is called at the end of
2268 // each iteration.  If the hook returns true, it means re-layout of
2269 // section is required.
2270 //
2271 // The number of segments created by a linking script without a PHDRS
2272 // clause may be affected by section sizes and alignments.  There is
2273 // a remote chance that relaxation causes different number of PT_LOAD
2274 // segments are created and sections are attached to different segments.
2275 // Therefore, we always throw away all segments created during section
2276 // layout.  In order to be able to restart the section layout, we keep
2277 // a copy of the segment list right before the relaxation loop and use
2278 // that to restore the segments.
2279 //
2280 // PASS is the current relaxation pass number.
2281 // SYMTAB is a symbol table.
2282 // PLOAD_SEG is the address of a pointer for the load segment.
2283 // PHDR_SEG is a pointer to the PHDR segment.
2284 // SEGMENT_HEADERS points to the output segment header.
2285 // FILE_HEADER points to the output file header.
2286 // PSHNDX is the address to store the output section index.
2287
2288 off_t inline
2289 Layout::relaxation_loop_body(
2290     int pass,
2291     Target* target,
2292     Symbol_table* symtab,
2293     Output_segment** pload_seg,
2294     Output_segment* phdr_seg,
2295     Output_segment_headers* segment_headers,
2296     Output_file_header* file_header,
2297     unsigned int* pshndx)
2298 {
2299   // If this is not the first iteration, we need to clean up after
2300   // relaxation so that we can lay out the sections again.
2301   if (pass != 0)
2302     this->clean_up_after_relaxation();
2303
2304   // If there is a SECTIONS clause, put all the input sections into
2305   // the required order.
2306   Output_segment* load_seg;
2307   if (this->script_options_->saw_sections_clause())
2308     load_seg = this->set_section_addresses_from_script(symtab);
2309   else if (parameters->options().relocatable())
2310     load_seg = NULL;
2311   else
2312     load_seg = this->find_first_load_seg(target);
2313
2314   if (parameters->options().oformat_enum()
2315       != General_options::OBJECT_FORMAT_ELF)
2316     load_seg = NULL;
2317
2318   // If the user set the address of the text segment, that may not be
2319   // compatible with putting the segment headers and file headers into
2320   // that segment.
2321   if (parameters->options().user_set_Ttext()
2322       && parameters->options().Ttext() % target->abi_pagesize() != 0)
2323     {
2324       load_seg = NULL;
2325       phdr_seg = NULL;
2326     }
2327
2328   gold_assert(phdr_seg == NULL
2329               || load_seg != NULL
2330               || this->script_options_->saw_sections_clause());
2331
2332   // If the address of the load segment we found has been set by
2333   // --section-start rather than by a script, then adjust the VMA and
2334   // LMA downward if possible to include the file and section headers.
2335   uint64_t header_gap = 0;
2336   if (load_seg != NULL
2337       && load_seg->are_addresses_set()
2338       && !this->script_options_->saw_sections_clause()
2339       && !parameters->options().relocatable())
2340     {
2341       file_header->finalize_data_size();
2342       segment_headers->finalize_data_size();
2343       size_t sizeof_headers = (file_header->data_size()
2344                                + segment_headers->data_size());
2345       const uint64_t abi_pagesize = target->abi_pagesize();
2346       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2347       hdr_paddr &= ~(abi_pagesize - 1);
2348       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2349       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2350         load_seg = NULL;
2351       else
2352         {
2353           load_seg->set_addresses(load_seg->vaddr() - subtract,
2354                                   load_seg->paddr() - subtract);
2355           header_gap = subtract - sizeof_headers;
2356         }
2357     }
2358
2359   // Lay out the segment headers.
2360   if (!parameters->options().relocatable())
2361     {
2362       gold_assert(segment_headers != NULL);
2363       if (header_gap != 0 && load_seg != NULL)
2364         {
2365           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2366           load_seg->add_initial_output_data(z);
2367         }
2368       if (load_seg != NULL)
2369         load_seg->add_initial_output_data(segment_headers);
2370       if (phdr_seg != NULL)
2371         phdr_seg->add_initial_output_data(segment_headers);
2372     }
2373
2374   // Lay out the file header.
2375   if (load_seg != NULL)
2376     load_seg->add_initial_output_data(file_header);
2377
2378   if (this->script_options_->saw_phdrs_clause()
2379       && !parameters->options().relocatable())
2380     {
2381       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2382       // clause in a linker script.
2383       Script_sections* ss = this->script_options_->script_sections();
2384       ss->put_headers_in_phdrs(file_header, segment_headers);
2385     }
2386
2387   // We set the output section indexes in set_segment_offsets and
2388   // set_section_indexes.
2389   *pshndx = 1;
2390
2391   // Set the file offsets of all the segments, and all the sections
2392   // they contain.
2393   off_t off;
2394   if (!parameters->options().relocatable())
2395     off = this->set_segment_offsets(target, load_seg, pshndx);
2396   else
2397     off = this->set_relocatable_section_offsets(file_header, pshndx);
2398
2399    // Verify that the dummy relaxation does not change anything.
2400   if (is_debugging_enabled(DEBUG_RELAXATION))
2401     {
2402       if (pass == 0)
2403         this->relaxation_debug_check_->read_sections(this->section_list_);
2404       else
2405         this->relaxation_debug_check_->verify_sections(this->section_list_);
2406     }
2407
2408   *pload_seg = load_seg;
2409   return off;
2410 }
2411
2412 // Search the list of patterns and find the postion of the given section
2413 // name in the output section.  If the section name matches a glob
2414 // pattern and a non-glob name, then the non-glob position takes
2415 // precedence.  Return 0 if no match is found.
2416
2417 unsigned int
2418 Layout::find_section_order_index(const std::string& section_name)
2419 {
2420   Unordered_map<std::string, unsigned int>::iterator map_it;
2421   map_it = this->input_section_position_.find(section_name);
2422   if (map_it != this->input_section_position_.end())
2423     return map_it->second;
2424
2425   // Absolute match failed.  Linear search the glob patterns.
2426   std::vector<std::string>::iterator it;
2427   for (it = this->input_section_glob_.begin();
2428        it != this->input_section_glob_.end();
2429        ++it)
2430     {
2431        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2432          {
2433            map_it = this->input_section_position_.find(*it);
2434            gold_assert(map_it != this->input_section_position_.end());
2435            return map_it->second;
2436          }
2437     }
2438   return 0;
2439 }
2440
2441 // Read the sequence of input sections from the file specified with
2442 // option --section-ordering-file.
2443
2444 void
2445 Layout::read_layout_from_file()
2446 {
2447   const char* filename = parameters->options().section_ordering_file();
2448   std::ifstream in;
2449   std::string line;
2450
2451   in.open(filename);
2452   if (!in)
2453     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2454                filename, strerror(errno));
2455
2456   std::getline(in, line);   // this chops off the trailing \n, if any
2457   unsigned int position = 1;
2458   this->set_section_ordering_specified();
2459
2460   while (in)
2461     {
2462       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2463         line.resize(line.length() - 1);
2464       // Ignore comments, beginning with '#'
2465       if (line[0] == '#')
2466         {
2467           std::getline(in, line);
2468           continue;
2469         }
2470       this->input_section_position_[line] = position;
2471       // Store all glob patterns in a vector.
2472       if (is_wildcard_string(line.c_str()))
2473         this->input_section_glob_.push_back(line);
2474       position++;
2475       std::getline(in, line);
2476     }
2477 }
2478
2479 // Finalize the layout.  When this is called, we have created all the
2480 // output sections and all the output segments which are based on
2481 // input sections.  We have several things to do, and we have to do
2482 // them in the right order, so that we get the right results correctly
2483 // and efficiently.
2484
2485 // 1) Finalize the list of output segments and create the segment
2486 // table header.
2487
2488 // 2) Finalize the dynamic symbol table and associated sections.
2489
2490 // 3) Determine the final file offset of all the output segments.
2491
2492 // 4) Determine the final file offset of all the SHF_ALLOC output
2493 // sections.
2494
2495 // 5) Create the symbol table sections and the section name table
2496 // section.
2497
2498 // 6) Finalize the symbol table: set symbol values to their final
2499 // value and make a final determination of which symbols are going
2500 // into the output symbol table.
2501
2502 // 7) Create the section table header.
2503
2504 // 8) Determine the final file offset of all the output sections which
2505 // are not SHF_ALLOC, including the section table header.
2506
2507 // 9) Finalize the ELF file header.
2508
2509 // This function returns the size of the output file.
2510
2511 off_t
2512 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2513                  Target* target, const Task* task)
2514 {
2515   target->finalize_sections(this, input_objects, symtab);
2516
2517   this->count_local_symbols(task, input_objects);
2518
2519   this->link_stabs_sections();
2520
2521   Output_segment* phdr_seg = NULL;
2522   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2523     {
2524       // There was a dynamic object in the link.  We need to create
2525       // some information for the dynamic linker.
2526
2527       // Create the PT_PHDR segment which will hold the program
2528       // headers.
2529       if (!this->script_options_->saw_phdrs_clause())
2530         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2531
2532       // Create the dynamic symbol table, including the hash table.
2533       Output_section* dynstr;
2534       std::vector<Symbol*> dynamic_symbols;
2535       unsigned int local_dynamic_count;
2536       Versions versions(*this->script_options()->version_script_info(),
2537                         &this->dynpool_);
2538       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2539                                   &local_dynamic_count, &dynamic_symbols,
2540                                   &versions);
2541
2542       // Create the .interp section to hold the name of the
2543       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2544       // if we saw a .interp section in an input file.
2545       if ((!parameters->options().shared()
2546            || parameters->options().dynamic_linker() != NULL)
2547           && this->interp_segment_ == NULL)
2548         this->create_interp(target);
2549
2550       // Finish the .dynamic section to hold the dynamic data, and put
2551       // it in a PT_DYNAMIC segment.
2552       this->finish_dynamic_section(input_objects, symtab);
2553
2554       // We should have added everything we need to the dynamic string
2555       // table.
2556       this->dynpool_.set_string_offsets();
2557
2558       // Create the version sections.  We can't do this until the
2559       // dynamic string table is complete.
2560       this->create_version_sections(&versions, symtab, local_dynamic_count,
2561                                     dynamic_symbols, dynstr);
2562
2563       // Set the size of the _DYNAMIC symbol.  We can't do this until
2564       // after we call create_version_sections.
2565       this->set_dynamic_symbol_size(symtab);
2566     }
2567
2568   // Create segment headers.
2569   Output_segment_headers* segment_headers =
2570     (parameters->options().relocatable()
2571      ? NULL
2572      : new Output_segment_headers(this->segment_list_));
2573
2574   // Lay out the file header.
2575   Output_file_header* file_header = new Output_file_header(target, symtab,
2576                                                            segment_headers);
2577
2578   this->special_output_list_.push_back(file_header);
2579   if (segment_headers != NULL)
2580     this->special_output_list_.push_back(segment_headers);
2581
2582   // Find approriate places for orphan output sections if we are using
2583   // a linker script.
2584   if (this->script_options_->saw_sections_clause())
2585     this->place_orphan_sections_in_script();
2586
2587   Output_segment* load_seg;
2588   off_t off;
2589   unsigned int shndx;
2590   int pass = 0;
2591
2592   // Take a snapshot of the section layout as needed.
2593   if (target->may_relax())
2594     this->prepare_for_relaxation();
2595
2596   // Run the relaxation loop to lay out sections.
2597   do
2598     {
2599       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2600                                        phdr_seg, segment_headers, file_header,
2601                                        &shndx);
2602       pass++;
2603     }
2604   while (target->may_relax()
2605          && target->relax(pass, input_objects, symtab, this, task));
2606
2607   // If there is a load segment that contains the file and program headers,
2608   // provide a symbol __ehdr_start pointing there.
2609   // A program can use this to examine itself robustly.
2610   if (load_seg != NULL)
2611     symtab->define_in_output_segment("__ehdr_start", NULL,
2612                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2613                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2614                                      elfcpp::STV_DEFAULT, 0,
2615                                      Symbol::SEGMENT_START, true);
2616
2617   // Set the file offsets of all the non-data sections we've seen so
2618   // far which don't have to wait for the input sections.  We need
2619   // this in order to finalize local symbols in non-allocated
2620   // sections.
2621   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2622
2623   // Set the section indexes of all unallocated sections seen so far,
2624   // in case any of them are somehow referenced by a symbol.
2625   shndx = this->set_section_indexes(shndx);
2626
2627   // Create the symbol table sections.
2628   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2629   if (!parameters->doing_static_link())
2630     this->assign_local_dynsym_offsets(input_objects);
2631
2632   // Process any symbol assignments from a linker script.  This must
2633   // be called after the symbol table has been finalized.
2634   this->script_options_->finalize_symbols(symtab, this);
2635
2636   // Create the incremental inputs sections.
2637   if (this->incremental_inputs_)
2638     {
2639       this->incremental_inputs_->finalize();
2640       this->create_incremental_info_sections(symtab);
2641     }
2642
2643   // Create the .shstrtab section.
2644   Output_section* shstrtab_section = this->create_shstrtab();
2645
2646   // Set the file offsets of the rest of the non-data sections which
2647   // don't have to wait for the input sections.
2648   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2649
2650   // Now that all sections have been created, set the section indexes
2651   // for any sections which haven't been done yet.
2652   shndx = this->set_section_indexes(shndx);
2653
2654   // Create the section table header.
2655   this->create_shdrs(shstrtab_section, &off);
2656
2657   // If there are no sections which require postprocessing, we can
2658   // handle the section names now, and avoid a resize later.
2659   if (!this->any_postprocessing_sections_)
2660     {
2661       off = this->set_section_offsets(off,
2662                                       POSTPROCESSING_SECTIONS_PASS);
2663       off =
2664           this->set_section_offsets(off,
2665                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2666     }
2667
2668   file_header->set_section_info(this->section_headers_, shstrtab_section);
2669
2670   // Now we know exactly where everything goes in the output file
2671   // (except for non-allocated sections which require postprocessing).
2672   Output_data::layout_complete();
2673
2674   this->output_file_size_ = off;
2675
2676   return off;
2677 }
2678
2679 // Create a note header following the format defined in the ELF ABI.
2680 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2681 // of the section to create, DESCSZ is the size of the descriptor.
2682 // ALLOCATE is true if the section should be allocated in memory.
2683 // This returns the new note section.  It sets *TRAILING_PADDING to
2684 // the number of trailing zero bytes required.
2685
2686 Output_section*
2687 Layout::create_note(const char* name, int note_type,
2688                     const char* section_name, size_t descsz,
2689                     bool allocate, size_t* trailing_padding)
2690 {
2691   // Authorities all agree that the values in a .note field should
2692   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2693   // they differ on what the alignment is for 64-bit binaries.
2694   // The GABI says unambiguously they take 8-byte alignment:
2695   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2696   // Other documentation says alignment should always be 4 bytes:
2697   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2698   // GNU ld and GNU readelf both support the latter (at least as of
2699   // version 2.16.91), and glibc always generates the latter for
2700   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2701   // here.
2702 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2703   const int size = parameters->target().get_size();
2704 #else
2705   const int size = 32;
2706 #endif
2707
2708   // The contents of the .note section.
2709   size_t namesz = strlen(name) + 1;
2710   size_t aligned_namesz = align_address(namesz, size / 8);
2711   size_t aligned_descsz = align_address(descsz, size / 8);
2712
2713   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2714
2715   unsigned char* buffer = new unsigned char[notehdrsz];
2716   memset(buffer, 0, notehdrsz);
2717
2718   bool is_big_endian = parameters->target().is_big_endian();
2719
2720   if (size == 32)
2721     {
2722       if (!is_big_endian)
2723         {
2724           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2725           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2726           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2727         }
2728       else
2729         {
2730           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2731           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2732           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2733         }
2734     }
2735   else if (size == 64)
2736     {
2737       if (!is_big_endian)
2738         {
2739           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2740           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2741           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2742         }
2743       else
2744         {
2745           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2746           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2747           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2748         }
2749     }
2750   else
2751     gold_unreachable();
2752
2753   memcpy(buffer + 3 * (size / 8), name, namesz);
2754
2755   elfcpp::Elf_Xword flags = 0;
2756   Output_section_order order = ORDER_INVALID;
2757   if (allocate)
2758     {
2759       flags = elfcpp::SHF_ALLOC;
2760       order = ORDER_RO_NOTE;
2761     }
2762   Output_section* os = this->choose_output_section(NULL, section_name,
2763                                                    elfcpp::SHT_NOTE,
2764                                                    flags, false, order, false);
2765   if (os == NULL)
2766     return NULL;
2767
2768   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2769                                                            size / 8,
2770                                                            "** note header");
2771   os->add_output_section_data(posd);
2772
2773   *trailing_padding = aligned_descsz - descsz;
2774
2775   return os;
2776 }
2777
2778 // For an executable or shared library, create a note to record the
2779 // version of gold used to create the binary.
2780
2781 void
2782 Layout::create_gold_note()
2783 {
2784   if (parameters->options().relocatable()
2785       || parameters->incremental_update())
2786     return;
2787
2788   std::string desc = std::string("gold ") + gold::get_version_string();
2789
2790   size_t trailing_padding;
2791   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2792                                          ".note.gnu.gold-version", desc.size(),
2793                                          false, &trailing_padding);
2794   if (os == NULL)
2795     return;
2796
2797   Output_section_data* posd = new Output_data_const(desc, 4);
2798   os->add_output_section_data(posd);
2799
2800   if (trailing_padding > 0)
2801     {
2802       posd = new Output_data_zero_fill(trailing_padding, 0);
2803       os->add_output_section_data(posd);
2804     }
2805 }
2806
2807 // Record whether the stack should be executable.  This can be set
2808 // from the command line using the -z execstack or -z noexecstack
2809 // options.  Otherwise, if any input file has a .note.GNU-stack
2810 // section with the SHF_EXECINSTR flag set, the stack should be
2811 // executable.  Otherwise, if at least one input file a
2812 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2813 // section, we use the target default for whether the stack should be
2814 // executable.  Otherwise, we don't generate a stack note.  When
2815 // generating a object file, we create a .note.GNU-stack section with
2816 // the appropriate marking.  When generating an executable or shared
2817 // library, we create a PT_GNU_STACK segment.
2818
2819 void
2820 Layout::create_executable_stack_info()
2821 {
2822   bool is_stack_executable;
2823   if (parameters->options().is_execstack_set())
2824     is_stack_executable = parameters->options().is_stack_executable();
2825   else if (!this->input_with_gnu_stack_note_)
2826     return;
2827   else
2828     {
2829       if (this->input_requires_executable_stack_)
2830         is_stack_executable = true;
2831       else if (this->input_without_gnu_stack_note_)
2832         is_stack_executable =
2833           parameters->target().is_default_stack_executable();
2834       else
2835         is_stack_executable = false;
2836     }
2837
2838   if (parameters->options().relocatable())
2839     {
2840       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2841       elfcpp::Elf_Xword flags = 0;
2842       if (is_stack_executable)
2843         flags |= elfcpp::SHF_EXECINSTR;
2844       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2845                                 ORDER_INVALID, false);
2846     }
2847   else
2848     {
2849       if (this->script_options_->saw_phdrs_clause())
2850         return;
2851       int flags = elfcpp::PF_R | elfcpp::PF_W;
2852       if (is_stack_executable)
2853         flags |= elfcpp::PF_X;
2854       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2855     }
2856 }
2857
2858 // If --build-id was used, set up the build ID note.
2859
2860 void
2861 Layout::create_build_id()
2862 {
2863   if (!parameters->options().user_set_build_id())
2864     return;
2865
2866   const char* style = parameters->options().build_id();
2867   if (strcmp(style, "none") == 0)
2868     return;
2869
2870   // Set DESCSZ to the size of the note descriptor.  When possible,
2871   // set DESC to the note descriptor contents.
2872   size_t descsz;
2873   std::string desc;
2874   if (strcmp(style, "md5") == 0)
2875     descsz = 128 / 8;
2876   else if (strcmp(style, "sha1") == 0)
2877     descsz = 160 / 8;
2878   else if (strcmp(style, "uuid") == 0)
2879     {
2880       const size_t uuidsz = 128 / 8;
2881
2882       char buffer[uuidsz];
2883       memset(buffer, 0, uuidsz);
2884
2885       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2886       if (descriptor < 0)
2887         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2888                    strerror(errno));
2889       else
2890         {
2891           ssize_t got = ::read(descriptor, buffer, uuidsz);
2892           release_descriptor(descriptor, true);
2893           if (got < 0)
2894             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2895           else if (static_cast<size_t>(got) != uuidsz)
2896             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2897                        uuidsz, got);
2898         }
2899
2900       desc.assign(buffer, uuidsz);
2901       descsz = uuidsz;
2902     }
2903   else if (strncmp(style, "0x", 2) == 0)
2904     {
2905       hex_init();
2906       const char* p = style + 2;
2907       while (*p != '\0')
2908         {
2909           if (hex_p(p[0]) && hex_p(p[1]))
2910             {
2911               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2912               desc += c;
2913               p += 2;
2914             }
2915           else if (*p == '-' || *p == ':')
2916             ++p;
2917           else
2918             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2919                        style);
2920         }
2921       descsz = desc.size();
2922     }
2923   else
2924     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2925
2926   // Create the note.
2927   size_t trailing_padding;
2928   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2929                                          ".note.gnu.build-id", descsz, true,
2930                                          &trailing_padding);
2931   if (os == NULL)
2932     return;
2933
2934   if (!desc.empty())
2935     {
2936       // We know the value already, so we fill it in now.
2937       gold_assert(desc.size() == descsz);
2938
2939       Output_section_data* posd = new Output_data_const(desc, 4);
2940       os->add_output_section_data(posd);
2941
2942       if (trailing_padding != 0)
2943         {
2944           posd = new Output_data_zero_fill(trailing_padding, 0);
2945           os->add_output_section_data(posd);
2946         }
2947     }
2948   else
2949     {
2950       // We need to compute a checksum after we have completed the
2951       // link.
2952       gold_assert(trailing_padding == 0);
2953       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2954       os->add_output_section_data(this->build_id_note_);
2955     }
2956 }
2957
2958 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2959 // field of the former should point to the latter.  I'm not sure who
2960 // started this, but the GNU linker does it, and some tools depend
2961 // upon it.
2962
2963 void
2964 Layout::link_stabs_sections()
2965 {
2966   if (!this->have_stabstr_section_)
2967     return;
2968
2969   for (Section_list::iterator p = this->section_list_.begin();
2970        p != this->section_list_.end();
2971        ++p)
2972     {
2973       if ((*p)->type() != elfcpp::SHT_STRTAB)
2974         continue;
2975
2976       const char* name = (*p)->name();
2977       if (strncmp(name, ".stab", 5) != 0)
2978         continue;
2979
2980       size_t len = strlen(name);
2981       if (strcmp(name + len - 3, "str") != 0)
2982         continue;
2983
2984       std::string stab_name(name, len - 3);
2985       Output_section* stab_sec;
2986       stab_sec = this->find_output_section(stab_name.c_str());
2987       if (stab_sec != NULL)
2988         stab_sec->set_link_section(*p);
2989     }
2990 }
2991
2992 // Create .gnu_incremental_inputs and related sections needed
2993 // for the next run of incremental linking to check what has changed.
2994
2995 void
2996 Layout::create_incremental_info_sections(Symbol_table* symtab)
2997 {
2998   Incremental_inputs* incr = this->incremental_inputs_;
2999
3000   gold_assert(incr != NULL);
3001
3002   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3003   incr->create_data_sections(symtab);
3004
3005   // Add the .gnu_incremental_inputs section.
3006   const char* incremental_inputs_name =
3007     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3008   Output_section* incremental_inputs_os =
3009     this->make_output_section(incremental_inputs_name,
3010                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3011                               ORDER_INVALID, false);
3012   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3013
3014   // Add the .gnu_incremental_symtab section.
3015   const char* incremental_symtab_name =
3016     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3017   Output_section* incremental_symtab_os =
3018     this->make_output_section(incremental_symtab_name,
3019                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3020                               ORDER_INVALID, false);
3021   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3022   incremental_symtab_os->set_entsize(4);
3023
3024   // Add the .gnu_incremental_relocs section.
3025   const char* incremental_relocs_name =
3026     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3027   Output_section* incremental_relocs_os =
3028     this->make_output_section(incremental_relocs_name,
3029                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3030                               ORDER_INVALID, false);
3031   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3032   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3033
3034   // Add the .gnu_incremental_got_plt section.
3035   const char* incremental_got_plt_name =
3036     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3037   Output_section* incremental_got_plt_os =
3038     this->make_output_section(incremental_got_plt_name,
3039                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3040                               ORDER_INVALID, false);
3041   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3042
3043   // Add the .gnu_incremental_strtab section.
3044   const char* incremental_strtab_name =
3045     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3046   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3047                                                         elfcpp::SHT_STRTAB, 0,
3048                                                         ORDER_INVALID, false);
3049   Output_data_strtab* strtab_data =
3050       new Output_data_strtab(incr->get_stringpool());
3051   incremental_strtab_os->add_output_section_data(strtab_data);
3052
3053   incremental_inputs_os->set_after_input_sections();
3054   incremental_symtab_os->set_after_input_sections();
3055   incremental_relocs_os->set_after_input_sections();
3056   incremental_got_plt_os->set_after_input_sections();
3057
3058   incremental_inputs_os->set_link_section(incremental_strtab_os);
3059   incremental_symtab_os->set_link_section(incremental_inputs_os);
3060   incremental_relocs_os->set_link_section(incremental_inputs_os);
3061   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3062 }
3063
3064 // Return whether SEG1 should be before SEG2 in the output file.  This
3065 // is based entirely on the segment type and flags.  When this is
3066 // called the segment addresses have normally not yet been set.
3067
3068 bool
3069 Layout::segment_precedes(const Output_segment* seg1,
3070                          const Output_segment* seg2)
3071 {
3072   elfcpp::Elf_Word type1 = seg1->type();
3073   elfcpp::Elf_Word type2 = seg2->type();
3074
3075   // The single PT_PHDR segment is required to precede any loadable
3076   // segment.  We simply make it always first.
3077   if (type1 == elfcpp::PT_PHDR)
3078     {
3079       gold_assert(type2 != elfcpp::PT_PHDR);
3080       return true;
3081     }
3082   if (type2 == elfcpp::PT_PHDR)
3083     return false;
3084
3085   // The single PT_INTERP segment is required to precede any loadable
3086   // segment.  We simply make it always second.
3087   if (type1 == elfcpp::PT_INTERP)
3088     {
3089       gold_assert(type2 != elfcpp::PT_INTERP);
3090       return true;
3091     }
3092   if (type2 == elfcpp::PT_INTERP)
3093     return false;
3094
3095   // We then put PT_LOAD segments before any other segments.
3096   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3097     return true;
3098   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3099     return false;
3100
3101   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3102   // segment, because that is where the dynamic linker expects to find
3103   // it (this is just for efficiency; other positions would also work
3104   // correctly).
3105   if (type1 == elfcpp::PT_TLS
3106       && type2 != elfcpp::PT_TLS
3107       && type2 != elfcpp::PT_GNU_RELRO)
3108     return false;
3109   if (type2 == elfcpp::PT_TLS
3110       && type1 != elfcpp::PT_TLS
3111       && type1 != elfcpp::PT_GNU_RELRO)
3112     return true;
3113
3114   // We put the PT_GNU_RELRO segment last, because that is where the
3115   // dynamic linker expects to find it (as with PT_TLS, this is just
3116   // for efficiency).
3117   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3118     return false;
3119   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3120     return true;
3121
3122   const elfcpp::Elf_Word flags1 = seg1->flags();
3123   const elfcpp::Elf_Word flags2 = seg2->flags();
3124
3125   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3126   // by the numeric segment type and flags values.  There should not
3127   // be more than one segment with the same type and flags.
3128   if (type1 != elfcpp::PT_LOAD)
3129     {
3130       if (type1 != type2)
3131         return type1 < type2;
3132       gold_assert(flags1 != flags2);
3133       return flags1 < flags2;
3134     }
3135
3136   // If the addresses are set already, sort by load address.
3137   if (seg1->are_addresses_set())
3138     {
3139       if (!seg2->are_addresses_set())
3140         return true;
3141
3142       unsigned int section_count1 = seg1->output_section_count();
3143       unsigned int section_count2 = seg2->output_section_count();
3144       if (section_count1 == 0 && section_count2 > 0)
3145         return true;
3146       if (section_count1 > 0 && section_count2 == 0)
3147         return false;
3148
3149       uint64_t paddr1 = (seg1->are_addresses_set()
3150                          ? seg1->paddr()
3151                          : seg1->first_section_load_address());
3152       uint64_t paddr2 = (seg2->are_addresses_set()
3153                          ? seg2->paddr()
3154                          : seg2->first_section_load_address());
3155
3156       if (paddr1 != paddr2)
3157         return paddr1 < paddr2;
3158     }
3159   else if (seg2->are_addresses_set())
3160     return false;
3161
3162   // A segment which holds large data comes after a segment which does
3163   // not hold large data.
3164   if (seg1->is_large_data_segment())
3165     {
3166       if (!seg2->is_large_data_segment())
3167         return false;
3168     }
3169   else if (seg2->is_large_data_segment())
3170     return true;
3171
3172   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3173   // segments come before writable segments.  Then writable segments
3174   // with data come before writable segments without data.  Then
3175   // executable segments come before non-executable segments.  Then
3176   // the unlikely case of a non-readable segment comes before the
3177   // normal case of a readable segment.  If there are multiple
3178   // segments with the same type and flags, we require that the
3179   // address be set, and we sort by virtual address and then physical
3180   // address.
3181   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3182     return (flags1 & elfcpp::PF_W) == 0;
3183   if ((flags1 & elfcpp::PF_W) != 0
3184       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3185     return seg1->has_any_data_sections();
3186   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3187     return (flags1 & elfcpp::PF_X) != 0;
3188   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3189     return (flags1 & elfcpp::PF_R) == 0;
3190
3191   // We shouldn't get here--we shouldn't create segments which we
3192   // can't distinguish.  Unless of course we are using a weird linker
3193   // script or overlapping --section-start options.  We could also get
3194   // here if plugins want unique segments for subsets of sections.
3195   gold_assert(this->script_options_->saw_phdrs_clause()
3196               || parameters->options().any_section_start()
3197               || this->is_unique_segment_for_sections_specified());
3198   return false;
3199 }
3200
3201 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3202
3203 static off_t
3204 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3205 {
3206   uint64_t unsigned_off = off;
3207   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3208                           | (addr & (abi_pagesize - 1)));
3209   if (aligned_off < unsigned_off)
3210     aligned_off += abi_pagesize;
3211   return aligned_off;
3212 }
3213
3214 // Set the file offsets of all the segments, and all the sections they
3215 // contain.  They have all been created.  LOAD_SEG must be be laid out
3216 // first.  Return the offset of the data to follow.
3217
3218 off_t
3219 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3220                             unsigned int* pshndx)
3221 {
3222   // Sort them into the final order.  We use a stable sort so that we
3223   // don't randomize the order of indistinguishable segments created
3224   // by linker scripts.
3225   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3226                    Layout::Compare_segments(this));
3227
3228   // Find the PT_LOAD segments, and set their addresses and offsets
3229   // and their section's addresses and offsets.
3230   uint64_t start_addr;
3231   if (parameters->options().user_set_Ttext())
3232     start_addr = parameters->options().Ttext();
3233   else if (parameters->options().output_is_position_independent())
3234     start_addr = 0;
3235   else
3236     start_addr = target->default_text_segment_address();
3237
3238   uint64_t addr = start_addr;
3239   off_t off = 0;
3240
3241   // If LOAD_SEG is NULL, then the file header and segment headers
3242   // will not be loadable.  But they still need to be at offset 0 in
3243   // the file.  Set their offsets now.
3244   if (load_seg == NULL)
3245     {
3246       for (Data_list::iterator p = this->special_output_list_.begin();
3247            p != this->special_output_list_.end();
3248            ++p)
3249         {
3250           off = align_address(off, (*p)->addralign());
3251           (*p)->set_address_and_file_offset(0, off);
3252           off += (*p)->data_size();
3253         }
3254     }
3255
3256   unsigned int increase_relro = this->increase_relro_;
3257   if (this->script_options_->saw_sections_clause())
3258     increase_relro = 0;
3259
3260   const bool check_sections = parameters->options().check_sections();
3261   Output_segment* last_load_segment = NULL;
3262
3263   unsigned int shndx_begin = *pshndx;
3264   unsigned int shndx_load_seg = *pshndx;
3265
3266   for (Segment_list::iterator p = this->segment_list_.begin();
3267        p != this->segment_list_.end();
3268        ++p)
3269     {
3270       if ((*p)->type() == elfcpp::PT_LOAD)
3271         {
3272           if (target->isolate_execinstr())
3273             {
3274               // When we hit the segment that should contain the
3275               // file headers, reset the file offset so we place
3276               // it and subsequent segments appropriately.
3277               // We'll fix up the preceding segments below.
3278               if (load_seg == *p)
3279                 {
3280                   if (off == 0)
3281                     load_seg = NULL;
3282                   else
3283                     {
3284                       off = 0;
3285                       shndx_load_seg = *pshndx;
3286                     }
3287                 }
3288             }
3289           else
3290             {
3291               // Verify that the file headers fall into the first segment.
3292               if (load_seg != NULL && load_seg != *p)
3293                 gold_unreachable();
3294               load_seg = NULL;
3295             }
3296
3297           bool are_addresses_set = (*p)->are_addresses_set();
3298           if (are_addresses_set)
3299             {
3300               // When it comes to setting file offsets, we care about
3301               // the physical address.
3302               addr = (*p)->paddr();
3303             }
3304           else if (parameters->options().user_set_Ttext()
3305                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3306             {
3307               are_addresses_set = true;
3308             }
3309           else if (parameters->options().user_set_Tdata()
3310                    && ((*p)->flags() & elfcpp::PF_W) != 0
3311                    && (!parameters->options().user_set_Tbss()
3312                        || (*p)->has_any_data_sections()))
3313             {
3314               addr = parameters->options().Tdata();
3315               are_addresses_set = true;
3316             }
3317           else if (parameters->options().user_set_Tbss()
3318                    && ((*p)->flags() & elfcpp::PF_W) != 0
3319                    && !(*p)->has_any_data_sections())
3320             {
3321               addr = parameters->options().Tbss();
3322               are_addresses_set = true;
3323             }
3324
3325           uint64_t orig_addr = addr;
3326           uint64_t orig_off = off;
3327
3328           uint64_t aligned_addr = 0;
3329           uint64_t abi_pagesize = target->abi_pagesize();
3330           uint64_t common_pagesize = target->common_pagesize();
3331
3332           if (!parameters->options().nmagic()
3333               && !parameters->options().omagic())
3334             (*p)->set_minimum_p_align(abi_pagesize);
3335
3336           if (!are_addresses_set)
3337             {
3338               // Skip the address forward one page, maintaining the same
3339               // position within the page.  This lets us store both segments
3340               // overlapping on a single page in the file, but the loader will
3341               // put them on different pages in memory. We will revisit this
3342               // decision once we know the size of the segment.
3343
3344               addr = align_address(addr, (*p)->maximum_alignment());
3345               aligned_addr = addr;
3346
3347               if (load_seg == *p)
3348                 {
3349                   // This is the segment that will contain the file
3350                   // headers, so its offset will have to be exactly zero.
3351                   gold_assert(orig_off == 0);
3352
3353                   // If the target wants a fixed minimum distance from the
3354                   // text segment to the read-only segment, move up now.
3355                   uint64_t min_addr = start_addr + target->rosegment_gap();
3356                   if (addr < min_addr)
3357                     addr = min_addr;
3358
3359                   // But this is not the first segment!  To make its
3360                   // address congruent with its offset, that address better
3361                   // be aligned to the ABI-mandated page size.
3362                   addr = align_address(addr, abi_pagesize);
3363                   aligned_addr = addr;
3364                 }
3365               else
3366                 {
3367                   if ((addr & (abi_pagesize - 1)) != 0)
3368                     addr = addr + abi_pagesize;
3369
3370                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3371                 }
3372             }
3373
3374           if (!parameters->options().nmagic()
3375               && !parameters->options().omagic())
3376             off = align_file_offset(off, addr, abi_pagesize);
3377           else
3378             {
3379               // This is -N or -n with a section script which prevents
3380               // us from using a load segment.  We need to ensure that
3381               // the file offset is aligned to the alignment of the
3382               // segment.  This is because the linker script
3383               // implicitly assumed a zero offset.  If we don't align
3384               // here, then the alignment of the sections in the
3385               // linker script may not match the alignment of the
3386               // sections in the set_section_addresses call below,
3387               // causing an error about dot moving backward.
3388               off = align_address(off, (*p)->maximum_alignment());
3389             }
3390
3391           unsigned int shndx_hold = *pshndx;
3392           bool has_relro = false;
3393           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3394                                                           &increase_relro,
3395                                                           &has_relro,
3396                                                           &off, pshndx);
3397
3398           // Now that we know the size of this segment, we may be able
3399           // to save a page in memory, at the cost of wasting some
3400           // file space, by instead aligning to the start of a new
3401           // page.  Here we use the real machine page size rather than
3402           // the ABI mandated page size.  If the segment has been
3403           // aligned so that the relro data ends at a page boundary,
3404           // we do not try to realign it.
3405
3406           if (!are_addresses_set
3407               && !has_relro
3408               && aligned_addr != addr
3409               && !parameters->incremental())
3410             {
3411               uint64_t first_off = (common_pagesize
3412                                     - (aligned_addr
3413                                        & (common_pagesize - 1)));
3414               uint64_t last_off = new_addr & (common_pagesize - 1);
3415               if (first_off > 0
3416                   && last_off > 0
3417                   && ((aligned_addr & ~ (common_pagesize - 1))
3418                       != (new_addr & ~ (common_pagesize - 1)))
3419                   && first_off + last_off <= common_pagesize)
3420                 {
3421                   *pshndx = shndx_hold;
3422                   addr = align_address(aligned_addr, common_pagesize);
3423                   addr = align_address(addr, (*p)->maximum_alignment());
3424                   if ((addr & (abi_pagesize - 1)) != 0)
3425                     addr = addr + abi_pagesize;
3426                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3427                   off = align_file_offset(off, addr, abi_pagesize);
3428
3429                   increase_relro = this->increase_relro_;
3430                   if (this->script_options_->saw_sections_clause())
3431                     increase_relro = 0;
3432                   has_relro = false;
3433
3434                   new_addr = (*p)->set_section_addresses(this, true, addr,
3435                                                          &increase_relro,
3436                                                          &has_relro,
3437                                                          &off, pshndx);
3438                 }
3439             }
3440
3441           addr = new_addr;
3442
3443           // Implement --check-sections.  We know that the segments
3444           // are sorted by LMA.
3445           if (check_sections && last_load_segment != NULL)
3446             {
3447               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3448               if (last_load_segment->paddr() + last_load_segment->memsz()
3449                   > (*p)->paddr())
3450                 {
3451                   unsigned long long lb1 = last_load_segment->paddr();
3452                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3453                   unsigned long long lb2 = (*p)->paddr();
3454                   unsigned long long le2 = lb2 + (*p)->memsz();
3455                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3456                                "[0x%llx -> 0x%llx]"),
3457                              lb1, le1, lb2, le2);
3458                 }
3459             }
3460           last_load_segment = *p;
3461         }
3462     }
3463
3464   if (load_seg != NULL && target->isolate_execinstr())
3465     {
3466       // Process the early segments again, setting their file offsets
3467       // so they land after the segments starting at LOAD_SEG.
3468       off = align_file_offset(off, 0, target->abi_pagesize());
3469
3470       for (Segment_list::iterator p = this->segment_list_.begin();
3471            *p != load_seg;
3472            ++p)
3473         {
3474           if ((*p)->type() == elfcpp::PT_LOAD)
3475             {
3476               // We repeat the whole job of assigning addresses and
3477               // offsets, but we really only want to change the offsets and
3478               // must ensure that the addresses all come out the same as
3479               // they did the first time through.
3480               bool has_relro = false;
3481               const uint64_t old_addr = (*p)->vaddr();
3482               const uint64_t old_end = old_addr + (*p)->memsz();
3483               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3484                                                               old_addr,
3485                                                               &increase_relro,
3486                                                               &has_relro,
3487                                                               &off,
3488                                                               &shndx_begin);
3489               gold_assert(new_addr == old_end);
3490             }
3491         }
3492
3493       gold_assert(shndx_begin == shndx_load_seg);
3494     }
3495
3496   // Handle the non-PT_LOAD segments, setting their offsets from their
3497   // section's offsets.
3498   for (Segment_list::iterator p = this->segment_list_.begin();
3499        p != this->segment_list_.end();
3500        ++p)
3501     {
3502       if ((*p)->type() != elfcpp::PT_LOAD)
3503         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3504                          ? increase_relro
3505                          : 0);
3506     }
3507
3508   // Set the TLS offsets for each section in the PT_TLS segment.
3509   if (this->tls_segment_ != NULL)
3510     this->tls_segment_->set_tls_offsets();
3511
3512   return off;
3513 }
3514
3515 // Set the offsets of all the allocated sections when doing a
3516 // relocatable link.  This does the same jobs as set_segment_offsets,
3517 // only for a relocatable link.
3518
3519 off_t
3520 Layout::set_relocatable_section_offsets(Output_data* file_header,
3521                                         unsigned int* pshndx)
3522 {
3523   off_t off = 0;
3524
3525   file_header->set_address_and_file_offset(0, 0);
3526   off += file_header->data_size();
3527
3528   for (Section_list::iterator p = this->section_list_.begin();
3529        p != this->section_list_.end();
3530        ++p)
3531     {
3532       // We skip unallocated sections here, except that group sections
3533       // have to come first.
3534       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3535           && (*p)->type() != elfcpp::SHT_GROUP)
3536         continue;
3537
3538       off = align_address(off, (*p)->addralign());
3539
3540       // The linker script might have set the address.
3541       if (!(*p)->is_address_valid())
3542         (*p)->set_address(0);
3543       (*p)->set_file_offset(off);
3544       (*p)->finalize_data_size();
3545       off += (*p)->data_size();
3546
3547       (*p)->set_out_shndx(*pshndx);
3548       ++*pshndx;
3549     }
3550
3551   return off;
3552 }
3553
3554 // Set the file offset of all the sections not associated with a
3555 // segment.
3556
3557 off_t
3558 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3559 {
3560   off_t startoff = off;
3561   off_t maxoff = off;
3562
3563   for (Section_list::iterator p = this->unattached_section_list_.begin();
3564        p != this->unattached_section_list_.end();
3565        ++p)
3566     {
3567       // The symtab section is handled in create_symtab_sections.
3568       if (*p == this->symtab_section_)
3569         continue;
3570
3571       // If we've already set the data size, don't set it again.
3572       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3573         continue;
3574
3575       if (pass == BEFORE_INPUT_SECTIONS_PASS
3576           && (*p)->requires_postprocessing())
3577         {
3578           (*p)->create_postprocessing_buffer();
3579           this->any_postprocessing_sections_ = true;
3580         }
3581
3582       if (pass == BEFORE_INPUT_SECTIONS_PASS
3583           && (*p)->after_input_sections())
3584         continue;
3585       else if (pass == POSTPROCESSING_SECTIONS_PASS
3586                && (!(*p)->after_input_sections()
3587                    || (*p)->type() == elfcpp::SHT_STRTAB))
3588         continue;
3589       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3590                && (!(*p)->after_input_sections()
3591                    || (*p)->type() != elfcpp::SHT_STRTAB))
3592         continue;
3593
3594       if (!parameters->incremental_update())
3595         {
3596           off = align_address(off, (*p)->addralign());
3597           (*p)->set_file_offset(off);
3598           (*p)->finalize_data_size();
3599         }
3600       else
3601         {
3602           // Incremental update: allocate file space from free list.
3603           (*p)->pre_finalize_data_size();
3604           off_t current_size = (*p)->current_data_size();
3605           off = this->allocate(current_size, (*p)->addralign(), startoff);
3606           if (off == -1)
3607             {
3608               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3609                 this->free_list_.dump();
3610               gold_assert((*p)->output_section() != NULL);
3611               gold_fallback(_("out of patch space for section %s; "
3612                               "relink with --incremental-full"),
3613                             (*p)->output_section()->name());
3614             }
3615           (*p)->set_file_offset(off);
3616           (*p)->finalize_data_size();
3617           if ((*p)->data_size() > current_size)
3618             {
3619               gold_assert((*p)->output_section() != NULL);
3620               gold_fallback(_("%s: section changed size; "
3621                               "relink with --incremental-full"),
3622                             (*p)->output_section()->name());
3623             }
3624           gold_debug(DEBUG_INCREMENTAL,
3625                      "set_section_offsets: %08lx %08lx %s",
3626                      static_cast<long>(off),
3627                      static_cast<long>((*p)->data_size()),
3628                      ((*p)->output_section() != NULL
3629                       ? (*p)->output_section()->name() : "(special)"));
3630         }
3631
3632       off += (*p)->data_size();
3633       if (off > maxoff)
3634         maxoff = off;
3635
3636       // At this point the name must be set.
3637       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3638         this->namepool_.add((*p)->name(), false, NULL);
3639     }
3640   return maxoff;
3641 }
3642
3643 // Set the section indexes of all the sections not associated with a
3644 // segment.
3645
3646 unsigned int
3647 Layout::set_section_indexes(unsigned int shndx)
3648 {
3649   for (Section_list::iterator p = this->unattached_section_list_.begin();
3650        p != this->unattached_section_list_.end();
3651        ++p)
3652     {
3653       if (!(*p)->has_out_shndx())
3654         {
3655           (*p)->set_out_shndx(shndx);
3656           ++shndx;
3657         }
3658     }
3659   return shndx;
3660 }
3661
3662 // Set the section addresses according to the linker script.  This is
3663 // only called when we see a SECTIONS clause.  This returns the
3664 // program segment which should hold the file header and segment
3665 // headers, if any.  It will return NULL if they should not be in a
3666 // segment.
3667
3668 Output_segment*
3669 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3670 {
3671   Script_sections* ss = this->script_options_->script_sections();
3672   gold_assert(ss->saw_sections_clause());
3673   return this->script_options_->set_section_addresses(symtab, this);
3674 }
3675
3676 // Place the orphan sections in the linker script.
3677
3678 void
3679 Layout::place_orphan_sections_in_script()
3680 {
3681   Script_sections* ss = this->script_options_->script_sections();
3682   gold_assert(ss->saw_sections_clause());
3683
3684   // Place each orphaned output section in the script.
3685   for (Section_list::iterator p = this->section_list_.begin();
3686        p != this->section_list_.end();
3687        ++p)
3688     {
3689       if (!(*p)->found_in_sections_clause())
3690         ss->place_orphan(*p);
3691     }
3692 }
3693
3694 // Count the local symbols in the regular symbol table and the dynamic
3695 // symbol table, and build the respective string pools.
3696
3697 void
3698 Layout::count_local_symbols(const Task* task,
3699                             const Input_objects* input_objects)
3700 {
3701   // First, figure out an upper bound on the number of symbols we'll
3702   // be inserting into each pool.  This helps us create the pools with
3703   // the right size, to avoid unnecessary hashtable resizing.
3704   unsigned int symbol_count = 0;
3705   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3706        p != input_objects->relobj_end();
3707        ++p)
3708     symbol_count += (*p)->local_symbol_count();
3709
3710   // Go from "upper bound" to "estimate."  We overcount for two
3711   // reasons: we double-count symbols that occur in more than one
3712   // object file, and we count symbols that are dropped from the
3713   // output.  Add it all together and assume we overcount by 100%.
3714   symbol_count /= 2;
3715
3716   // We assume all symbols will go into both the sympool and dynpool.
3717   this->sympool_.reserve(symbol_count);
3718   this->dynpool_.reserve(symbol_count);
3719
3720   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3721        p != input_objects->relobj_end();
3722        ++p)
3723     {
3724       Task_lock_obj<Object> tlo(task, *p);
3725       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3726     }
3727 }
3728
3729 // Create the symbol table sections.  Here we also set the final
3730 // values of the symbols.  At this point all the loadable sections are
3731 // fully laid out.  SHNUM is the number of sections so far.
3732
3733 void
3734 Layout::create_symtab_sections(const Input_objects* input_objects,
3735                                Symbol_table* symtab,
3736                                unsigned int shnum,
3737                                off_t* poff)
3738 {
3739   int symsize;
3740   unsigned int align;
3741   if (parameters->target().get_size() == 32)
3742     {
3743       symsize = elfcpp::Elf_sizes<32>::sym_size;
3744       align = 4;
3745     }
3746   else if (parameters->target().get_size() == 64)
3747     {
3748       symsize = elfcpp::Elf_sizes<64>::sym_size;
3749       align = 8;
3750     }
3751   else
3752     gold_unreachable();
3753
3754   // Compute file offsets relative to the start of the symtab section.
3755   off_t off = 0;
3756
3757   // Save space for the dummy symbol at the start of the section.  We
3758   // never bother to write this out--it will just be left as zero.
3759   off += symsize;
3760   unsigned int local_symbol_index = 1;
3761
3762   // Add STT_SECTION symbols for each Output section which needs one.
3763   for (Section_list::iterator p = this->section_list_.begin();
3764        p != this->section_list_.end();
3765        ++p)
3766     {
3767       if (!(*p)->needs_symtab_index())
3768         (*p)->set_symtab_index(-1U);
3769       else
3770         {
3771           (*p)->set_symtab_index(local_symbol_index);
3772           ++local_symbol_index;
3773           off += symsize;
3774         }
3775     }
3776
3777   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3778        p != input_objects->relobj_end();
3779        ++p)
3780     {
3781       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3782                                                         off, symtab);
3783       off += (index - local_symbol_index) * symsize;
3784       local_symbol_index = index;
3785     }
3786
3787   unsigned int local_symcount = local_symbol_index;
3788   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3789
3790   off_t dynoff;
3791   size_t dyn_global_index;
3792   size_t dyncount;
3793   if (this->dynsym_section_ == NULL)
3794     {
3795       dynoff = 0;
3796       dyn_global_index = 0;
3797       dyncount = 0;
3798     }
3799   else
3800     {
3801       dyn_global_index = this->dynsym_section_->info();
3802       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3803       dynoff = this->dynsym_section_->offset() + locsize;
3804       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3805       gold_assert(static_cast<off_t>(dyncount * symsize)
3806                   == this->dynsym_section_->data_size() - locsize);
3807     }
3808
3809   off_t global_off = off;
3810   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3811                          &this->sympool_, &local_symcount);
3812
3813   if (!parameters->options().strip_all())
3814     {
3815       this->sympool_.set_string_offsets();
3816
3817       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3818       Output_section* osymtab = this->make_output_section(symtab_name,
3819                                                           elfcpp::SHT_SYMTAB,
3820                                                           0, ORDER_INVALID,
3821                                                           false);
3822       this->symtab_section_ = osymtab;
3823
3824       Output_section_data* pos = new Output_data_fixed_space(off, align,
3825                                                              "** symtab");
3826       osymtab->add_output_section_data(pos);
3827
3828       // We generate a .symtab_shndx section if we have more than
3829       // SHN_LORESERVE sections.  Technically it is possible that we
3830       // don't need one, because it is possible that there are no
3831       // symbols in any of sections with indexes larger than
3832       // SHN_LORESERVE.  That is probably unusual, though, and it is
3833       // easier to always create one than to compute section indexes
3834       // twice (once here, once when writing out the symbols).
3835       if (shnum >= elfcpp::SHN_LORESERVE)
3836         {
3837           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3838                                                                false, NULL);
3839           Output_section* osymtab_xindex =
3840             this->make_output_section(symtab_xindex_name,
3841                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3842                                       ORDER_INVALID, false);
3843
3844           size_t symcount = off / symsize;
3845           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3846
3847           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3848
3849           osymtab_xindex->set_link_section(osymtab);
3850           osymtab_xindex->set_addralign(4);
3851           osymtab_xindex->set_entsize(4);
3852
3853           osymtab_xindex->set_after_input_sections();
3854
3855           // This tells the driver code to wait until the symbol table
3856           // has written out before writing out the postprocessing
3857           // sections, including the .symtab_shndx section.
3858           this->any_postprocessing_sections_ = true;
3859         }
3860
3861       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3862       Output_section* ostrtab = this->make_output_section(strtab_name,
3863                                                           elfcpp::SHT_STRTAB,
3864                                                           0, ORDER_INVALID,
3865                                                           false);
3866
3867       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3868       ostrtab->add_output_section_data(pstr);
3869
3870       off_t symtab_off;
3871       if (!parameters->incremental_update())
3872         symtab_off = align_address(*poff, align);
3873       else
3874         {
3875           symtab_off = this->allocate(off, align, *poff);
3876           if (off == -1)
3877             gold_fallback(_("out of patch space for symbol table; "
3878                             "relink with --incremental-full"));
3879           gold_debug(DEBUG_INCREMENTAL,
3880                      "create_symtab_sections: %08lx %08lx .symtab",
3881                      static_cast<long>(symtab_off),
3882                      static_cast<long>(off));
3883         }
3884
3885       symtab->set_file_offset(symtab_off + global_off);
3886       osymtab->set_file_offset(symtab_off);
3887       osymtab->finalize_data_size();
3888       osymtab->set_link_section(ostrtab);
3889       osymtab->set_info(local_symcount);
3890       osymtab->set_entsize(symsize);
3891
3892       if (symtab_off + off > *poff)
3893         *poff = symtab_off + off;
3894     }
3895 }
3896
3897 // Create the .shstrtab section, which holds the names of the
3898 // sections.  At the time this is called, we have created all the
3899 // output sections except .shstrtab itself.
3900
3901 Output_section*
3902 Layout::create_shstrtab()
3903 {
3904   // FIXME: We don't need to create a .shstrtab section if we are
3905   // stripping everything.
3906
3907   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3908
3909   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3910                                                  ORDER_INVALID, false);
3911
3912   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3913     {
3914       // We can't write out this section until we've set all the
3915       // section names, and we don't set the names of compressed
3916       // output sections until relocations are complete.  FIXME: With
3917       // the current names we use, this is unnecessary.
3918       os->set_after_input_sections();
3919     }
3920
3921   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3922   os->add_output_section_data(posd);
3923
3924   return os;
3925 }
3926
3927 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3928 // offset.
3929
3930 void
3931 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3932 {
3933   Output_section_headers* oshdrs;
3934   oshdrs = new Output_section_headers(this,
3935                                       &this->segment_list_,
3936                                       &this->section_list_,
3937                                       &this->unattached_section_list_,
3938                                       &this->namepool_,
3939                                       shstrtab_section);
3940   off_t off;
3941   if (!parameters->incremental_update())
3942     off = align_address(*poff, oshdrs->addralign());
3943   else
3944     {
3945       oshdrs->pre_finalize_data_size();
3946       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3947       if (off == -1)
3948           gold_fallback(_("out of patch space for section header table; "
3949                           "relink with --incremental-full"));
3950       gold_debug(DEBUG_INCREMENTAL,
3951                  "create_shdrs: %08lx %08lx (section header table)",
3952                  static_cast<long>(off),
3953                  static_cast<long>(off + oshdrs->data_size()));
3954     }
3955   oshdrs->set_address_and_file_offset(0, off);
3956   off += oshdrs->data_size();
3957   if (off > *poff)
3958     *poff = off;
3959   this->section_headers_ = oshdrs;
3960 }
3961
3962 // Count the allocated sections.
3963
3964 size_t
3965 Layout::allocated_output_section_count() const
3966 {
3967   size_t section_count = 0;
3968   for (Segment_list::const_iterator p = this->segment_list_.begin();
3969        p != this->segment_list_.end();
3970        ++p)
3971     section_count += (*p)->output_section_count();
3972   return section_count;
3973 }
3974
3975 // Create the dynamic symbol table.
3976
3977 void
3978 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3979                               Symbol_table* symtab,
3980                               Output_section** pdynstr,
3981                               unsigned int* plocal_dynamic_count,
3982                               std::vector<Symbol*>* pdynamic_symbols,
3983                               Versions* pversions)
3984 {
3985   // Count all the symbols in the dynamic symbol table, and set the
3986   // dynamic symbol indexes.
3987
3988   // Skip symbol 0, which is always all zeroes.
3989   unsigned int index = 1;
3990
3991   // Add STT_SECTION symbols for each Output section which needs one.
3992   for (Section_list::iterator p = this->section_list_.begin();
3993        p != this->section_list_.end();
3994        ++p)
3995     {
3996       if (!(*p)->needs_dynsym_index())
3997         (*p)->set_dynsym_index(-1U);
3998       else
3999         {
4000           (*p)->set_dynsym_index(index);
4001           ++index;
4002         }
4003     }
4004
4005   // Count the local symbols that need to go in the dynamic symbol table,
4006   // and set the dynamic symbol indexes.
4007   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4008        p != input_objects->relobj_end();
4009        ++p)
4010     {
4011       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4012       index = new_index;
4013     }
4014
4015   unsigned int local_symcount = index;
4016   *plocal_dynamic_count = local_symcount;
4017
4018   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4019                                      &this->dynpool_, pversions);
4020
4021   int symsize;
4022   unsigned int align;
4023   const int size = parameters->target().get_size();
4024   if (size == 32)
4025     {
4026       symsize = elfcpp::Elf_sizes<32>::sym_size;
4027       align = 4;
4028     }
4029   else if (size == 64)
4030     {
4031       symsize = elfcpp::Elf_sizes<64>::sym_size;
4032       align = 8;
4033     }
4034   else
4035     gold_unreachable();
4036
4037   // Create the dynamic symbol table section.
4038
4039   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4040                                                        elfcpp::SHT_DYNSYM,
4041                                                        elfcpp::SHF_ALLOC,
4042                                                        false,
4043                                                        ORDER_DYNAMIC_LINKER,
4044                                                        false);
4045
4046   // Check for NULL as a linker script may discard .dynsym.
4047   if (dynsym != NULL)
4048     {
4049       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4050                                                                align,
4051                                                                "** dynsym");
4052       dynsym->add_output_section_data(odata);
4053
4054       dynsym->set_info(local_symcount);
4055       dynsym->set_entsize(symsize);
4056       dynsym->set_addralign(align);
4057
4058       this->dynsym_section_ = dynsym;
4059     }
4060
4061   Output_data_dynamic* const odyn = this->dynamic_data_;
4062   if (odyn != NULL)
4063     {
4064       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4065       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4066     }
4067
4068   // If there are more than SHN_LORESERVE allocated sections, we
4069   // create a .dynsym_shndx section.  It is possible that we don't
4070   // need one, because it is possible that there are no dynamic
4071   // symbols in any of the sections with indexes larger than
4072   // SHN_LORESERVE.  This is probably unusual, though, and at this
4073   // time we don't know the actual section indexes so it is
4074   // inconvenient to check.
4075   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4076     {
4077       Output_section* dynsym_xindex =
4078         this->choose_output_section(NULL, ".dynsym_shndx",
4079                                     elfcpp::SHT_SYMTAB_SHNDX,
4080                                     elfcpp::SHF_ALLOC,
4081                                     false, ORDER_DYNAMIC_LINKER, false);
4082
4083       if (dynsym_xindex != NULL)
4084         {
4085           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4086
4087           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4088
4089           dynsym_xindex->set_link_section(dynsym);
4090           dynsym_xindex->set_addralign(4);
4091           dynsym_xindex->set_entsize(4);
4092
4093           dynsym_xindex->set_after_input_sections();
4094
4095           // This tells the driver code to wait until the symbol table
4096           // has written out before writing out the postprocessing
4097           // sections, including the .dynsym_shndx section.
4098           this->any_postprocessing_sections_ = true;
4099         }
4100     }
4101
4102   // Create the dynamic string table section.
4103
4104   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4105                                                        elfcpp::SHT_STRTAB,
4106                                                        elfcpp::SHF_ALLOC,
4107                                                        false,
4108                                                        ORDER_DYNAMIC_LINKER,
4109                                                        false);
4110
4111   if (dynstr != NULL)
4112     {
4113       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4114       dynstr->add_output_section_data(strdata);
4115
4116       if (dynsym != NULL)
4117         dynsym->set_link_section(dynstr);
4118       if (this->dynamic_section_ != NULL)
4119         this->dynamic_section_->set_link_section(dynstr);
4120
4121       if (odyn != NULL)
4122         {
4123           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4124           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4125         }
4126
4127       *pdynstr = dynstr;
4128     }
4129
4130   // Create the hash tables.
4131
4132   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4133       || strcmp(parameters->options().hash_style(), "both") == 0)
4134     {
4135       unsigned char* phash;
4136       unsigned int hashlen;
4137       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4138                                     &phash, &hashlen);
4139
4140       Output_section* hashsec =
4141         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4142                                     elfcpp::SHF_ALLOC, false,
4143                                     ORDER_DYNAMIC_LINKER, false);
4144
4145       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4146                                                                    hashlen,
4147                                                                    align,
4148                                                                    "** hash");
4149       if (hashsec != NULL && hashdata != NULL)
4150         hashsec->add_output_section_data(hashdata);
4151
4152       if (hashsec != NULL)
4153         {
4154           if (dynsym != NULL)
4155             hashsec->set_link_section(dynsym);
4156           hashsec->set_entsize(4);
4157         }
4158
4159       if (odyn != NULL)
4160         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4161     }
4162
4163   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4164       || strcmp(parameters->options().hash_style(), "both") == 0)
4165     {
4166       unsigned char* phash;
4167       unsigned int hashlen;
4168       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4169                                     &phash, &hashlen);
4170
4171       Output_section* hashsec =
4172         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4173                                     elfcpp::SHF_ALLOC, false,
4174                                     ORDER_DYNAMIC_LINKER, false);
4175
4176       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4177                                                                    hashlen,
4178                                                                    align,
4179                                                                    "** hash");
4180       if (hashsec != NULL && hashdata != NULL)
4181         hashsec->add_output_section_data(hashdata);
4182
4183       if (hashsec != NULL)
4184         {
4185           if (dynsym != NULL)
4186             hashsec->set_link_section(dynsym);
4187
4188           // For a 64-bit target, the entries in .gnu.hash do not have
4189           // a uniform size, so we only set the entry size for a
4190           // 32-bit target.
4191           if (parameters->target().get_size() == 32)
4192             hashsec->set_entsize(4);
4193
4194           if (odyn != NULL)
4195             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4196         }
4197     }
4198 }
4199
4200 // Assign offsets to each local portion of the dynamic symbol table.
4201
4202 void
4203 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4204 {
4205   Output_section* dynsym = this->dynsym_section_;
4206   if (dynsym == NULL)
4207     return;
4208
4209   off_t off = dynsym->offset();
4210
4211   // Skip the dummy symbol at the start of the section.
4212   off += dynsym->entsize();
4213
4214   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4215        p != input_objects->relobj_end();
4216        ++p)
4217     {
4218       unsigned int count = (*p)->set_local_dynsym_offset(off);
4219       off += count * dynsym->entsize();
4220     }
4221 }
4222
4223 // Create the version sections.
4224
4225 void
4226 Layout::create_version_sections(const Versions* versions,
4227                                 const Symbol_table* symtab,
4228                                 unsigned int local_symcount,
4229                                 const std::vector<Symbol*>& dynamic_symbols,
4230                                 const Output_section* dynstr)
4231 {
4232   if (!versions->any_defs() && !versions->any_needs())
4233     return;
4234
4235   switch (parameters->size_and_endianness())
4236     {
4237 #ifdef HAVE_TARGET_32_LITTLE
4238     case Parameters::TARGET_32_LITTLE:
4239       this->sized_create_version_sections<32, false>(versions, symtab,
4240                                                      local_symcount,
4241                                                      dynamic_symbols, dynstr);
4242       break;
4243 #endif
4244 #ifdef HAVE_TARGET_32_BIG
4245     case Parameters::TARGET_32_BIG:
4246       this->sized_create_version_sections<32, true>(versions, symtab,
4247                                                     local_symcount,
4248                                                     dynamic_symbols, dynstr);
4249       break;
4250 #endif
4251 #ifdef HAVE_TARGET_64_LITTLE
4252     case Parameters::TARGET_64_LITTLE:
4253       this->sized_create_version_sections<64, false>(versions, symtab,
4254                                                      local_symcount,
4255                                                      dynamic_symbols, dynstr);
4256       break;
4257 #endif
4258 #ifdef HAVE_TARGET_64_BIG
4259     case Parameters::TARGET_64_BIG:
4260       this->sized_create_version_sections<64, true>(versions, symtab,
4261                                                     local_symcount,
4262                                                     dynamic_symbols, dynstr);
4263       break;
4264 #endif
4265     default:
4266       gold_unreachable();
4267     }
4268 }
4269
4270 // Create the version sections, sized version.
4271
4272 template<int size, bool big_endian>
4273 void
4274 Layout::sized_create_version_sections(
4275     const Versions* versions,
4276     const Symbol_table* symtab,
4277     unsigned int local_symcount,
4278     const std::vector<Symbol*>& dynamic_symbols,
4279     const Output_section* dynstr)
4280 {
4281   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4282                                                      elfcpp::SHT_GNU_versym,
4283                                                      elfcpp::SHF_ALLOC,
4284                                                      false,
4285                                                      ORDER_DYNAMIC_LINKER,
4286                                                      false);
4287
4288   // Check for NULL since a linker script may discard this section.
4289   if (vsec != NULL)
4290     {
4291       unsigned char* vbuf;
4292       unsigned int vsize;
4293       versions->symbol_section_contents<size, big_endian>(symtab,
4294                                                           &this->dynpool_,
4295                                                           local_symcount,
4296                                                           dynamic_symbols,
4297                                                           &vbuf, &vsize);
4298
4299       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4300                                                                 "** versions");
4301
4302       vsec->add_output_section_data(vdata);
4303       vsec->set_entsize(2);
4304       vsec->set_link_section(this->dynsym_section_);
4305     }
4306
4307   Output_data_dynamic* const odyn = this->dynamic_data_;
4308   if (odyn != NULL && vsec != NULL)
4309     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4310
4311   if (versions->any_defs())
4312     {
4313       Output_section* vdsec;
4314       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4315                                           elfcpp::SHT_GNU_verdef,
4316                                           elfcpp::SHF_ALLOC,
4317                                           false, ORDER_DYNAMIC_LINKER, false);
4318
4319       if (vdsec != NULL)
4320         {
4321           unsigned char* vdbuf;
4322           unsigned int vdsize;
4323           unsigned int vdentries;
4324           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4325                                                            &vdbuf, &vdsize,
4326                                                            &vdentries);
4327
4328           Output_section_data* vddata =
4329             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4330
4331           vdsec->add_output_section_data(vddata);
4332           vdsec->set_link_section(dynstr);
4333           vdsec->set_info(vdentries);
4334
4335           if (odyn != NULL)
4336             {
4337               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4338               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4339             }
4340         }
4341     }
4342
4343   if (versions->any_needs())
4344     {
4345       Output_section* vnsec;
4346       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4347                                           elfcpp::SHT_GNU_verneed,
4348                                           elfcpp::SHF_ALLOC,
4349                                           false, ORDER_DYNAMIC_LINKER, false);
4350
4351       if (vnsec != NULL)
4352         {
4353           unsigned char* vnbuf;
4354           unsigned int vnsize;
4355           unsigned int vnentries;
4356           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4357                                                             &vnbuf, &vnsize,
4358                                                             &vnentries);
4359
4360           Output_section_data* vndata =
4361             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4362
4363           vnsec->add_output_section_data(vndata);
4364           vnsec->set_link_section(dynstr);
4365           vnsec->set_info(vnentries);
4366
4367           if (odyn != NULL)
4368             {
4369               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4370               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4371             }
4372         }
4373     }
4374 }
4375
4376 // Create the .interp section and PT_INTERP segment.
4377
4378 void
4379 Layout::create_interp(const Target* target)
4380 {
4381   gold_assert(this->interp_segment_ == NULL);
4382
4383   const char* interp = parameters->options().dynamic_linker();
4384   if (interp == NULL)
4385     {
4386       interp = target->dynamic_linker();
4387       gold_assert(interp != NULL);
4388     }
4389
4390   size_t len = strlen(interp) + 1;
4391
4392   Output_section_data* odata = new Output_data_const(interp, len, 1);
4393
4394   Output_section* osec = this->choose_output_section(NULL, ".interp",
4395                                                      elfcpp::SHT_PROGBITS,
4396                                                      elfcpp::SHF_ALLOC,
4397                                                      false, ORDER_INTERP,
4398                                                      false);
4399   if (osec != NULL)
4400     osec->add_output_section_data(odata);
4401 }
4402
4403 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4404 // called by the target-specific code.  This does nothing if not doing
4405 // a dynamic link.
4406
4407 // USE_REL is true for REL relocs rather than RELA relocs.
4408
4409 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4410
4411 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4412 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4413 // some targets have multiple reloc sections in PLT_REL.
4414
4415 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4416 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4417 // section.
4418
4419 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4420 // executable.
4421
4422 void
4423 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4424                                 const Output_data* plt_rel,
4425                                 const Output_data_reloc_generic* dyn_rel,
4426                                 bool add_debug, bool dynrel_includes_plt)
4427 {
4428   Output_data_dynamic* odyn = this->dynamic_data_;
4429   if (odyn == NULL)
4430     return;
4431
4432   if (plt_got != NULL && plt_got->output_section() != NULL)
4433     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4434
4435   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4436     {
4437       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4438       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4439       odyn->add_constant(elfcpp::DT_PLTREL,
4440                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4441     }
4442
4443   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4444       || (dynrel_includes_plt
4445           && plt_rel != NULL
4446           && plt_rel->output_section() != NULL))
4447     {
4448       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4449       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4450       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4451                                 (have_dyn_rel
4452                                  ? dyn_rel->output_section()
4453                                  : plt_rel->output_section()));
4454       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4455       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4456         odyn->add_section_size(size_tag,
4457                                dyn_rel->output_section(),
4458                                plt_rel->output_section());
4459       else if (have_dyn_rel)
4460         odyn->add_section_size(size_tag, dyn_rel->output_section());
4461       else
4462         odyn->add_section_size(size_tag, plt_rel->output_section());
4463       const int size = parameters->target().get_size();
4464       elfcpp::DT rel_tag;
4465       int rel_size;
4466       if (use_rel)
4467         {
4468           rel_tag = elfcpp::DT_RELENT;
4469           if (size == 32)
4470             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4471           else if (size == 64)
4472             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4473           else
4474             gold_unreachable();
4475         }
4476       else
4477         {
4478           rel_tag = elfcpp::DT_RELAENT;
4479           if (size == 32)
4480             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4481           else if (size == 64)
4482             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4483           else
4484             gold_unreachable();
4485         }
4486       odyn->add_constant(rel_tag, rel_size);
4487
4488       if (parameters->options().combreloc() && have_dyn_rel)
4489         {
4490           size_t c = dyn_rel->relative_reloc_count();
4491           if (c > 0)
4492             odyn->add_constant((use_rel
4493                                 ? elfcpp::DT_RELCOUNT
4494                                 : elfcpp::DT_RELACOUNT),
4495                                c);
4496         }
4497     }
4498
4499   if (add_debug && !parameters->options().shared())
4500     {
4501       // The value of the DT_DEBUG tag is filled in by the dynamic
4502       // linker at run time, and used by the debugger.
4503       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4504     }
4505 }
4506
4507 // Finish the .dynamic section and PT_DYNAMIC segment.
4508
4509 void
4510 Layout::finish_dynamic_section(const Input_objects* input_objects,
4511                                const Symbol_table* symtab)
4512 {
4513   if (!this->script_options_->saw_phdrs_clause()
4514       && this->dynamic_section_ != NULL)
4515     {
4516       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4517                                                        (elfcpp::PF_R
4518                                                         | elfcpp::PF_W));
4519       oseg->add_output_section_to_nonload(this->dynamic_section_,
4520                                           elfcpp::PF_R | elfcpp::PF_W);
4521     }
4522
4523   Output_data_dynamic* const odyn = this->dynamic_data_;
4524   if (odyn == NULL)
4525     return;
4526
4527   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4528        p != input_objects->dynobj_end();
4529        ++p)
4530     {
4531       if (!(*p)->is_needed() && (*p)->as_needed())
4532         {
4533           // This dynamic object was linked with --as-needed, but it
4534           // is not needed.
4535           continue;
4536         }
4537
4538       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4539     }
4540
4541   if (parameters->options().shared())
4542     {
4543       const char* soname = parameters->options().soname();
4544       if (soname != NULL)
4545         odyn->add_string(elfcpp::DT_SONAME, soname);
4546     }
4547
4548   Symbol* sym = symtab->lookup(parameters->options().init());
4549   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4550     odyn->add_symbol(elfcpp::DT_INIT, sym);
4551
4552   sym = symtab->lookup(parameters->options().fini());
4553   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4554     odyn->add_symbol(elfcpp::DT_FINI, sym);
4555
4556   // Look for .init_array, .preinit_array and .fini_array by checking
4557   // section types.
4558   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4559       p != this->section_list_.end();
4560       ++p)
4561     switch((*p)->type())
4562       {
4563       case elfcpp::SHT_FINI_ARRAY:
4564         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4565         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4566         break;
4567       case elfcpp::SHT_INIT_ARRAY:
4568         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4569         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4570         break;
4571       case elfcpp::SHT_PREINIT_ARRAY:
4572         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4573         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4574         break;
4575       default:
4576         break;
4577       }
4578
4579   // Add a DT_RPATH entry if needed.
4580   const General_options::Dir_list& rpath(parameters->options().rpath());
4581   if (!rpath.empty())
4582     {
4583       std::string rpath_val;
4584       for (General_options::Dir_list::const_iterator p = rpath.begin();
4585            p != rpath.end();
4586            ++p)
4587         {
4588           if (rpath_val.empty())
4589             rpath_val = p->name();
4590           else
4591             {
4592               // Eliminate duplicates.
4593               General_options::Dir_list::const_iterator q;
4594               for (q = rpath.begin(); q != p; ++q)
4595                 if (q->name() == p->name())
4596                   break;
4597               if (q == p)
4598                 {
4599                   rpath_val += ':';
4600                   rpath_val += p->name();
4601                 }
4602             }
4603         }
4604
4605       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4606       if (parameters->options().enable_new_dtags())
4607         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4608     }
4609
4610   // Look for text segments that have dynamic relocations.
4611   bool have_textrel = false;
4612   if (!this->script_options_->saw_sections_clause())
4613     {
4614       for (Segment_list::const_iterator p = this->segment_list_.begin();
4615            p != this->segment_list_.end();
4616            ++p)
4617         {
4618           if ((*p)->type() == elfcpp::PT_LOAD
4619               && ((*p)->flags() & elfcpp::PF_W) == 0
4620               && (*p)->has_dynamic_reloc())
4621             {
4622               have_textrel = true;
4623               break;
4624             }
4625         }
4626     }
4627   else
4628     {
4629       // We don't know the section -> segment mapping, so we are
4630       // conservative and just look for readonly sections with
4631       // relocations.  If those sections wind up in writable segments,
4632       // then we have created an unnecessary DT_TEXTREL entry.
4633       for (Section_list::const_iterator p = this->section_list_.begin();
4634            p != this->section_list_.end();
4635            ++p)
4636         {
4637           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4638               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4639               && (*p)->has_dynamic_reloc())
4640             {
4641               have_textrel = true;
4642               break;
4643             }
4644         }
4645     }
4646
4647   if (parameters->options().filter() != NULL)
4648     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4649   if (parameters->options().any_auxiliary())
4650     {
4651       for (options::String_set::const_iterator p =
4652              parameters->options().auxiliary_begin();
4653            p != parameters->options().auxiliary_end();
4654            ++p)
4655         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4656     }
4657
4658   // Add a DT_FLAGS entry if necessary.
4659   unsigned int flags = 0;
4660   if (have_textrel)
4661     {
4662       // Add a DT_TEXTREL for compatibility with older loaders.
4663       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4664       flags |= elfcpp::DF_TEXTREL;
4665
4666       if (parameters->options().text())
4667         gold_error(_("read-only segment has dynamic relocations"));
4668       else if (parameters->options().warn_shared_textrel()
4669                && parameters->options().shared())
4670         gold_warning(_("shared library text segment is not shareable"));
4671     }
4672   if (parameters->options().shared() && this->has_static_tls())
4673     flags |= elfcpp::DF_STATIC_TLS;
4674   if (parameters->options().origin())
4675     flags |= elfcpp::DF_ORIGIN;
4676   if (parameters->options().Bsymbolic())
4677     {
4678       flags |= elfcpp::DF_SYMBOLIC;
4679       // Add DT_SYMBOLIC for compatibility with older loaders.
4680       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4681     }
4682   if (parameters->options().now())
4683     flags |= elfcpp::DF_BIND_NOW;
4684   if (flags != 0)
4685     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4686
4687   flags = 0;
4688   if (parameters->options().initfirst())
4689     flags |= elfcpp::DF_1_INITFIRST;
4690   if (parameters->options().interpose())
4691     flags |= elfcpp::DF_1_INTERPOSE;
4692   if (parameters->options().loadfltr())
4693     flags |= elfcpp::DF_1_LOADFLTR;
4694   if (parameters->options().nodefaultlib())
4695     flags |= elfcpp::DF_1_NODEFLIB;
4696   if (parameters->options().nodelete())
4697     flags |= elfcpp::DF_1_NODELETE;
4698   if (parameters->options().nodlopen())
4699     flags |= elfcpp::DF_1_NOOPEN;
4700   if (parameters->options().nodump())
4701     flags |= elfcpp::DF_1_NODUMP;
4702   if (!parameters->options().shared())
4703     flags &= ~(elfcpp::DF_1_INITFIRST
4704                | elfcpp::DF_1_NODELETE
4705                | elfcpp::DF_1_NOOPEN);
4706   if (parameters->options().origin())
4707     flags |= elfcpp::DF_1_ORIGIN;
4708   if (parameters->options().now())
4709     flags |= elfcpp::DF_1_NOW;
4710   if (parameters->options().Bgroup())
4711     flags |= elfcpp::DF_1_GROUP;
4712   if (flags != 0)
4713     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4714 }
4715
4716 // Set the size of the _DYNAMIC symbol table to be the size of the
4717 // dynamic data.
4718
4719 void
4720 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4721 {
4722   Output_data_dynamic* const odyn = this->dynamic_data_;
4723   if (odyn == NULL)
4724     return;
4725   odyn->finalize_data_size();
4726   if (this->dynamic_symbol_ == NULL)
4727     return;
4728   off_t data_size = odyn->data_size();
4729   const int size = parameters->target().get_size();
4730   if (size == 32)
4731     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4732   else if (size == 64)
4733     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4734   else
4735     gold_unreachable();
4736 }
4737
4738 // The mapping of input section name prefixes to output section names.
4739 // In some cases one prefix is itself a prefix of another prefix; in
4740 // such a case the longer prefix must come first.  These prefixes are
4741 // based on the GNU linker default ELF linker script.
4742
4743 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4744 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4745 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4746 {
4747   MAPPING_INIT(".text.", ".text"),
4748   MAPPING_INIT(".rodata.", ".rodata"),
4749   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4750   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4751   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4752   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4753   MAPPING_INIT(".data.", ".data"),
4754   MAPPING_INIT(".bss.", ".bss"),
4755   MAPPING_INIT(".tdata.", ".tdata"),
4756   MAPPING_INIT(".tbss.", ".tbss"),
4757   MAPPING_INIT(".init_array.", ".init_array"),
4758   MAPPING_INIT(".fini_array.", ".fini_array"),
4759   MAPPING_INIT(".sdata.", ".sdata"),
4760   MAPPING_INIT(".sbss.", ".sbss"),
4761   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4762   // differently depending on whether it is creating a shared library.
4763   MAPPING_INIT(".sdata2.", ".sdata"),
4764   MAPPING_INIT(".sbss2.", ".sbss"),
4765   MAPPING_INIT(".lrodata.", ".lrodata"),
4766   MAPPING_INIT(".ldata.", ".ldata"),
4767   MAPPING_INIT(".lbss.", ".lbss"),
4768   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4769   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4770   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4771   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4772   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4773   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4774   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4775   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4776   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4777   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4778   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4779   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4780   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4781   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4782   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4783   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4784   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4785   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4786   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4787   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4788   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4789 };
4790 #undef MAPPING_INIT
4791 #undef MAPPING_INIT_EXACT
4792
4793 const int Layout::section_name_mapping_count =
4794   (sizeof(Layout::section_name_mapping)
4795    / sizeof(Layout::section_name_mapping[0]));
4796
4797 // Choose the output section name to use given an input section name.
4798 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4799 // length of NAME.
4800
4801 const char*
4802 Layout::output_section_name(const Relobj* relobj, const char* name,
4803                             size_t* plen)
4804 {
4805   // gcc 4.3 generates the following sorts of section names when it
4806   // needs a section name specific to a function:
4807   //   .text.FN
4808   //   .rodata.FN
4809   //   .sdata2.FN
4810   //   .data.FN
4811   //   .data.rel.FN
4812   //   .data.rel.local.FN
4813   //   .data.rel.ro.FN
4814   //   .data.rel.ro.local.FN
4815   //   .sdata.FN
4816   //   .bss.FN
4817   //   .sbss.FN
4818   //   .tdata.FN
4819   //   .tbss.FN
4820
4821   // The GNU linker maps all of those to the part before the .FN,
4822   // except that .data.rel.local.FN is mapped to .data, and
4823   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4824   // beginning with .data.rel.ro.local are grouped together.
4825
4826   // For an anonymous namespace, the string FN can contain a '.'.
4827
4828   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4829   // GNU linker maps to .rodata.
4830
4831   // The .data.rel.ro sections are used with -z relro.  The sections
4832   // are recognized by name.  We use the same names that the GNU
4833   // linker does for these sections.
4834
4835   // It is hard to handle this in a principled way, so we don't even
4836   // try.  We use a table of mappings.  If the input section name is
4837   // not found in the table, we simply use it as the output section
4838   // name.
4839
4840   const Section_name_mapping* psnm = section_name_mapping;
4841   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4842     {
4843       if (psnm->fromlen > 0)
4844         {
4845           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4846             {
4847               *plen = psnm->tolen;
4848               return psnm->to;
4849             }
4850         }
4851       else
4852         {
4853           if (strcmp(name, psnm->from) == 0)
4854             {
4855               *plen = psnm->tolen;
4856               return psnm->to;
4857             }
4858         }
4859     }
4860
4861   // As an additional complication, .ctors sections are output in
4862   // either .ctors or .init_array sections, and .dtors sections are
4863   // output in either .dtors or .fini_array sections.
4864   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4865     {
4866       if (parameters->options().ctors_in_init_array())
4867         {
4868           *plen = 11;
4869           return name[1] == 'c' ? ".init_array" : ".fini_array";
4870         }
4871       else
4872         {
4873           *plen = 6;
4874           return name[1] == 'c' ? ".ctors" : ".dtors";
4875         }
4876     }
4877   if (parameters->options().ctors_in_init_array()
4878       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4879     {
4880       // To make .init_array/.fini_array work with gcc we must exclude
4881       // .ctors and .dtors sections from the crtbegin and crtend
4882       // files.
4883       if (relobj == NULL
4884           || (!Layout::match_file_name(relobj, "crtbegin")
4885               && !Layout::match_file_name(relobj, "crtend")))
4886         {
4887           *plen = 11;
4888           return name[1] == 'c' ? ".init_array" : ".fini_array";
4889         }
4890     }
4891
4892   return name;
4893 }
4894
4895 // Return true if RELOBJ is an input file whose base name matches
4896 // FILE_NAME.  The base name must have an extension of ".o", and must
4897 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4898 // to match crtbegin.o as well as crtbeginS.o without getting confused
4899 // by other possibilities.  Overall matching the file name this way is
4900 // a dreadful hack, but the GNU linker does it in order to better
4901 // support gcc, and we need to be compatible.
4902
4903 bool
4904 Layout::match_file_name(const Relobj* relobj, const char* match)
4905 {
4906   const std::string& file_name(relobj->name());
4907   const char* base_name = lbasename(file_name.c_str());
4908   size_t match_len = strlen(match);
4909   if (strncmp(base_name, match, match_len) != 0)
4910     return false;
4911   size_t base_len = strlen(base_name);
4912   if (base_len != match_len + 2 && base_len != match_len + 3)
4913     return false;
4914   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4915 }
4916
4917 // Check if a comdat group or .gnu.linkonce section with the given
4918 // NAME is selected for the link.  If there is already a section,
4919 // *KEPT_SECTION is set to point to the existing section and the
4920 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4921 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4922 // *KEPT_SECTION is set to the internal copy and the function returns
4923 // true.
4924
4925 bool
4926 Layout::find_or_add_kept_section(const std::string& name,
4927                                  Relobj* object,
4928                                  unsigned int shndx,
4929                                  bool is_comdat,
4930                                  bool is_group_name,
4931                                  Kept_section** kept_section)
4932 {
4933   // It's normal to see a couple of entries here, for the x86 thunk
4934   // sections.  If we see more than a few, we're linking a C++
4935   // program, and we resize to get more space to minimize rehashing.
4936   if (this->signatures_.size() > 4
4937       && !this->resized_signatures_)
4938     {
4939       reserve_unordered_map(&this->signatures_,
4940                             this->number_of_input_files_ * 64);
4941       this->resized_signatures_ = true;
4942     }
4943
4944   Kept_section candidate;
4945   std::pair<Signatures::iterator, bool> ins =
4946     this->signatures_.insert(std::make_pair(name, candidate));
4947
4948   if (kept_section != NULL)
4949     *kept_section = &ins.first->second;
4950   if (ins.second)
4951     {
4952       // This is the first time we've seen this signature.
4953       ins.first->second.set_object(object);
4954       ins.first->second.set_shndx(shndx);
4955       if (is_comdat)
4956         ins.first->second.set_is_comdat();
4957       if (is_group_name)
4958         ins.first->second.set_is_group_name();
4959       return true;
4960     }
4961
4962   // We have already seen this signature.
4963
4964   if (ins.first->second.is_group_name())
4965     {
4966       // We've already seen a real section group with this signature.
4967       // If the kept group is from a plugin object, and we're in the
4968       // replacement phase, accept the new one as a replacement.
4969       if (ins.first->second.object() == NULL
4970           && parameters->options().plugins()->in_replacement_phase())
4971         {
4972           ins.first->second.set_object(object);
4973           ins.first->second.set_shndx(shndx);
4974           return true;
4975         }
4976       return false;
4977     }
4978   else if (is_group_name)
4979     {
4980       // This is a real section group, and we've already seen a
4981       // linkonce section with this signature.  Record that we've seen
4982       // a section group, and don't include this section group.
4983       ins.first->second.set_is_group_name();
4984       return false;
4985     }
4986   else
4987     {
4988       // We've already seen a linkonce section and this is a linkonce
4989       // section.  These don't block each other--this may be the same
4990       // symbol name with different section types.
4991       return true;
4992     }
4993 }
4994
4995 // Store the allocated sections into the section list.
4996
4997 void
4998 Layout::get_allocated_sections(Section_list* section_list) const
4999 {
5000   for (Section_list::const_iterator p = this->section_list_.begin();
5001        p != this->section_list_.end();
5002        ++p)
5003     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5004       section_list->push_back(*p);
5005 }
5006
5007 // Store the executable sections into the section list.
5008
5009 void
5010 Layout::get_executable_sections(Section_list* section_list) const
5011 {
5012   for (Section_list::const_iterator p = this->section_list_.begin();
5013        p != this->section_list_.end();
5014        ++p)
5015     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5016         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5017       section_list->push_back(*p);
5018 }
5019
5020 // Create an output segment.
5021
5022 Output_segment*
5023 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5024 {
5025   gold_assert(!parameters->options().relocatable());
5026   Output_segment* oseg = new Output_segment(type, flags);
5027   this->segment_list_.push_back(oseg);
5028
5029   if (type == elfcpp::PT_TLS)
5030     this->tls_segment_ = oseg;
5031   else if (type == elfcpp::PT_GNU_RELRO)
5032     this->relro_segment_ = oseg;
5033   else if (type == elfcpp::PT_INTERP)
5034     this->interp_segment_ = oseg;
5035
5036   return oseg;
5037 }
5038
5039 // Return the file offset of the normal symbol table.
5040
5041 off_t
5042 Layout::symtab_section_offset() const
5043 {
5044   if (this->symtab_section_ != NULL)
5045     return this->symtab_section_->offset();
5046   return 0;
5047 }
5048
5049 // Return the section index of the normal symbol table.  It may have
5050 // been stripped by the -s/--strip-all option.
5051
5052 unsigned int
5053 Layout::symtab_section_shndx() const
5054 {
5055   if (this->symtab_section_ != NULL)
5056     return this->symtab_section_->out_shndx();
5057   return 0;
5058 }
5059
5060 // Write out the Output_sections.  Most won't have anything to write,
5061 // since most of the data will come from input sections which are
5062 // handled elsewhere.  But some Output_sections do have Output_data.
5063
5064 void
5065 Layout::write_output_sections(Output_file* of) const
5066 {
5067   for (Section_list::const_iterator p = this->section_list_.begin();
5068        p != this->section_list_.end();
5069        ++p)
5070     {
5071       if (!(*p)->after_input_sections())
5072         (*p)->write(of);
5073     }
5074 }
5075
5076 // Write out data not associated with a section or the symbol table.
5077
5078 void
5079 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5080 {
5081   if (!parameters->options().strip_all())
5082     {
5083       const Output_section* symtab_section = this->symtab_section_;
5084       for (Section_list::const_iterator p = this->section_list_.begin();
5085            p != this->section_list_.end();
5086            ++p)
5087         {
5088           if ((*p)->needs_symtab_index())
5089             {
5090               gold_assert(symtab_section != NULL);
5091               unsigned int index = (*p)->symtab_index();
5092               gold_assert(index > 0 && index != -1U);
5093               off_t off = (symtab_section->offset()
5094                            + index * symtab_section->entsize());
5095               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5096             }
5097         }
5098     }
5099
5100   const Output_section* dynsym_section = this->dynsym_section_;
5101   for (Section_list::const_iterator p = this->section_list_.begin();
5102        p != this->section_list_.end();
5103        ++p)
5104     {
5105       if ((*p)->needs_dynsym_index())
5106         {
5107           gold_assert(dynsym_section != NULL);
5108           unsigned int index = (*p)->dynsym_index();
5109           gold_assert(index > 0 && index != -1U);
5110           off_t off = (dynsym_section->offset()
5111                        + index * dynsym_section->entsize());
5112           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5113         }
5114     }
5115
5116   // Write out the Output_data which are not in an Output_section.
5117   for (Data_list::const_iterator p = this->special_output_list_.begin();
5118        p != this->special_output_list_.end();
5119        ++p)
5120     (*p)->write(of);
5121 }
5122
5123 // Write out the Output_sections which can only be written after the
5124 // input sections are complete.
5125
5126 void
5127 Layout::write_sections_after_input_sections(Output_file* of)
5128 {
5129   // Determine the final section offsets, and thus the final output
5130   // file size.  Note we finalize the .shstrab last, to allow the
5131   // after_input_section sections to modify their section-names before
5132   // writing.
5133   if (this->any_postprocessing_sections_)
5134     {
5135       off_t off = this->output_file_size_;
5136       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5137
5138       // Now that we've finalized the names, we can finalize the shstrab.
5139       off =
5140         this->set_section_offsets(off,
5141                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5142
5143       if (off > this->output_file_size_)
5144         {
5145           of->resize(off);
5146           this->output_file_size_ = off;
5147         }
5148     }
5149
5150   for (Section_list::const_iterator p = this->section_list_.begin();
5151        p != this->section_list_.end();
5152        ++p)
5153     {
5154       if ((*p)->after_input_sections())
5155         (*p)->write(of);
5156     }
5157
5158   this->section_headers_->write(of);
5159 }
5160
5161 // If the build ID requires computing a checksum, do so here, and
5162 // write it out.  We compute a checksum over the entire file because
5163 // that is simplest.
5164
5165 void
5166 Layout::write_build_id(Output_file* of) const
5167 {
5168   if (this->build_id_note_ == NULL)
5169     return;
5170
5171   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5172
5173   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5174                                           this->build_id_note_->data_size());
5175
5176   const char* style = parameters->options().build_id();
5177   if (strcmp(style, "sha1") == 0)
5178     {
5179       sha1_ctx ctx;
5180       sha1_init_ctx(&ctx);
5181       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5182       sha1_finish_ctx(&ctx, ov);
5183     }
5184   else if (strcmp(style, "md5") == 0)
5185     {
5186       md5_ctx ctx;
5187       md5_init_ctx(&ctx);
5188       md5_process_bytes(iv, this->output_file_size_, &ctx);
5189       md5_finish_ctx(&ctx, ov);
5190     }
5191   else
5192     gold_unreachable();
5193
5194   of->write_output_view(this->build_id_note_->offset(),
5195                         this->build_id_note_->data_size(),
5196                         ov);
5197
5198   of->free_input_view(0, this->output_file_size_, iv);
5199 }
5200
5201 // Write out a binary file.  This is called after the link is
5202 // complete.  IN is the temporary output file we used to generate the
5203 // ELF code.  We simply walk through the segments, read them from
5204 // their file offset in IN, and write them to their load address in
5205 // the output file.  FIXME: with a bit more work, we could support
5206 // S-records and/or Intel hex format here.
5207
5208 void
5209 Layout::write_binary(Output_file* in) const
5210 {
5211   gold_assert(parameters->options().oformat_enum()
5212               == General_options::OBJECT_FORMAT_BINARY);
5213
5214   // Get the size of the binary file.
5215   uint64_t max_load_address = 0;
5216   for (Segment_list::const_iterator p = this->segment_list_.begin();
5217        p != this->segment_list_.end();
5218        ++p)
5219     {
5220       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5221         {
5222           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5223           if (max_paddr > max_load_address)
5224             max_load_address = max_paddr;
5225         }
5226     }
5227
5228   Output_file out(parameters->options().output_file_name());
5229   out.open(max_load_address);
5230
5231   for (Segment_list::const_iterator p = this->segment_list_.begin();
5232        p != this->segment_list_.end();
5233        ++p)
5234     {
5235       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5236         {
5237           const unsigned char* vin = in->get_input_view((*p)->offset(),
5238                                                         (*p)->filesz());
5239           unsigned char* vout = out.get_output_view((*p)->paddr(),
5240                                                     (*p)->filesz());
5241           memcpy(vout, vin, (*p)->filesz());
5242           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5243           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5244         }
5245     }
5246
5247   out.close();
5248 }
5249
5250 // Print the output sections to the map file.
5251
5252 void
5253 Layout::print_to_mapfile(Mapfile* mapfile) const
5254 {
5255   for (Segment_list::const_iterator p = this->segment_list_.begin();
5256        p != this->segment_list_.end();
5257        ++p)
5258     (*p)->print_sections_to_mapfile(mapfile);
5259 }
5260
5261 // Print statistical information to stderr.  This is used for --stats.
5262
5263 void
5264 Layout::print_stats() const
5265 {
5266   this->namepool_.print_stats("section name pool");
5267   this->sympool_.print_stats("output symbol name pool");
5268   this->dynpool_.print_stats("dynamic name pool");
5269
5270   for (Section_list::const_iterator p = this->section_list_.begin();
5271        p != this->section_list_.end();
5272        ++p)
5273     (*p)->print_merge_stats();
5274 }
5275
5276 // Write_sections_task methods.
5277
5278 // We can always run this task.
5279
5280 Task_token*
5281 Write_sections_task::is_runnable()
5282 {
5283   return NULL;
5284 }
5285
5286 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5287 // when finished.
5288
5289 void
5290 Write_sections_task::locks(Task_locker* tl)
5291 {
5292   tl->add(this, this->output_sections_blocker_);
5293   tl->add(this, this->final_blocker_);
5294 }
5295
5296 // Run the task--write out the data.
5297
5298 void
5299 Write_sections_task::run(Workqueue*)
5300 {
5301   this->layout_->write_output_sections(this->of_);
5302 }
5303
5304 // Write_data_task methods.
5305
5306 // We can always run this task.
5307
5308 Task_token*
5309 Write_data_task::is_runnable()
5310 {
5311   return NULL;
5312 }
5313
5314 // We need to unlock FINAL_BLOCKER when finished.
5315
5316 void
5317 Write_data_task::locks(Task_locker* tl)
5318 {
5319   tl->add(this, this->final_blocker_);
5320 }
5321
5322 // Run the task--write out the data.
5323
5324 void
5325 Write_data_task::run(Workqueue*)
5326 {
5327   this->layout_->write_data(this->symtab_, this->of_);
5328 }
5329
5330 // Write_symbols_task methods.
5331
5332 // We can always run this task.
5333
5334 Task_token*
5335 Write_symbols_task::is_runnable()
5336 {
5337   return NULL;
5338 }
5339
5340 // We need to unlock FINAL_BLOCKER when finished.
5341
5342 void
5343 Write_symbols_task::locks(Task_locker* tl)
5344 {
5345   tl->add(this, this->final_blocker_);
5346 }
5347
5348 // Run the task--write out the symbols.
5349
5350 void
5351 Write_symbols_task::run(Workqueue*)
5352 {
5353   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5354                                this->layout_->symtab_xindex(),
5355                                this->layout_->dynsym_xindex(), this->of_);
5356 }
5357
5358 // Write_after_input_sections_task methods.
5359
5360 // We can only run this task after the input sections have completed.
5361
5362 Task_token*
5363 Write_after_input_sections_task::is_runnable()
5364 {
5365   if (this->input_sections_blocker_->is_blocked())
5366     return this->input_sections_blocker_;
5367   return NULL;
5368 }
5369
5370 // We need to unlock FINAL_BLOCKER when finished.
5371
5372 void
5373 Write_after_input_sections_task::locks(Task_locker* tl)
5374 {
5375   tl->add(this, this->final_blocker_);
5376 }
5377
5378 // Run the task.
5379
5380 void
5381 Write_after_input_sections_task::run(Workqueue*)
5382 {
5383   this->layout_->write_sections_after_input_sections(this->of_);
5384 }
5385
5386 // Close_task_runner methods.
5387
5388 // Run the task--close the file.
5389
5390 void
5391 Close_task_runner::run(Workqueue*, const Task*)
5392 {
5393   // If we need to compute a checksum for the BUILD if, we do so here.
5394   this->layout_->write_build_id(this->of_);
5395
5396   // If we've been asked to create a binary file, we do so here.
5397   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5398     this->layout_->write_binary(this->of_);
5399
5400   this->of_->close();
5401 }
5402
5403 // Instantiate the templates we need.  We could use the configure
5404 // script to restrict this to only the ones for implemented targets.
5405
5406 #ifdef HAVE_TARGET_32_LITTLE
5407 template
5408 Output_section*
5409 Layout::init_fixed_output_section<32, false>(
5410     const char* name,
5411     elfcpp::Shdr<32, false>& shdr);
5412 #endif
5413
5414 #ifdef HAVE_TARGET_32_BIG
5415 template
5416 Output_section*
5417 Layout::init_fixed_output_section<32, true>(
5418     const char* name,
5419     elfcpp::Shdr<32, true>& shdr);
5420 #endif
5421
5422 #ifdef HAVE_TARGET_64_LITTLE
5423 template
5424 Output_section*
5425 Layout::init_fixed_output_section<64, false>(
5426     const char* name,
5427     elfcpp::Shdr<64, false>& shdr);
5428 #endif
5429
5430 #ifdef HAVE_TARGET_64_BIG
5431 template
5432 Output_section*
5433 Layout::init_fixed_output_section<64, true>(
5434     const char* name,
5435     elfcpp::Shdr<64, true>& shdr);
5436 #endif
5437
5438 #ifdef HAVE_TARGET_32_LITTLE
5439 template
5440 Output_section*
5441 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5442                           unsigned int shndx,
5443                           const char* name,
5444                           const elfcpp::Shdr<32, false>& shdr,
5445                           unsigned int, unsigned int, off_t*);
5446 #endif
5447
5448 #ifdef HAVE_TARGET_32_BIG
5449 template
5450 Output_section*
5451 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5452                          unsigned int shndx,
5453                          const char* name,
5454                          const elfcpp::Shdr<32, true>& shdr,
5455                          unsigned int, unsigned int, off_t*);
5456 #endif
5457
5458 #ifdef HAVE_TARGET_64_LITTLE
5459 template
5460 Output_section*
5461 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5462                           unsigned int shndx,
5463                           const char* name,
5464                           const elfcpp::Shdr<64, false>& shdr,
5465                           unsigned int, unsigned int, off_t*);
5466 #endif
5467
5468 #ifdef HAVE_TARGET_64_BIG
5469 template
5470 Output_section*
5471 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5472                          unsigned int shndx,
5473                          const char* name,
5474                          const elfcpp::Shdr<64, true>& shdr,
5475                          unsigned int, unsigned int, off_t*);
5476 #endif
5477
5478 #ifdef HAVE_TARGET_32_LITTLE
5479 template
5480 Output_section*
5481 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5482                                 unsigned int reloc_shndx,
5483                                 const elfcpp::Shdr<32, false>& shdr,
5484                                 Output_section* data_section,
5485                                 Relocatable_relocs* rr);
5486 #endif
5487
5488 #ifdef HAVE_TARGET_32_BIG
5489 template
5490 Output_section*
5491 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5492                                unsigned int reloc_shndx,
5493                                const elfcpp::Shdr<32, true>& shdr,
5494                                Output_section* data_section,
5495                                Relocatable_relocs* rr);
5496 #endif
5497
5498 #ifdef HAVE_TARGET_64_LITTLE
5499 template
5500 Output_section*
5501 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5502                                 unsigned int reloc_shndx,
5503                                 const elfcpp::Shdr<64, false>& shdr,
5504                                 Output_section* data_section,
5505                                 Relocatable_relocs* rr);
5506 #endif
5507
5508 #ifdef HAVE_TARGET_64_BIG
5509 template
5510 Output_section*
5511 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5512                                unsigned int reloc_shndx,
5513                                const elfcpp::Shdr<64, true>& shdr,
5514                                Output_section* data_section,
5515                                Relocatable_relocs* rr);
5516 #endif
5517
5518 #ifdef HAVE_TARGET_32_LITTLE
5519 template
5520 void
5521 Layout::layout_group<32, false>(Symbol_table* symtab,
5522                                 Sized_relobj_file<32, false>* object,
5523                                 unsigned int,
5524                                 const char* group_section_name,
5525                                 const char* signature,
5526                                 const elfcpp::Shdr<32, false>& shdr,
5527                                 elfcpp::Elf_Word flags,
5528                                 std::vector<unsigned int>* shndxes);
5529 #endif
5530
5531 #ifdef HAVE_TARGET_32_BIG
5532 template
5533 void
5534 Layout::layout_group<32, true>(Symbol_table* symtab,
5535                                Sized_relobj_file<32, true>* object,
5536                                unsigned int,
5537                                const char* group_section_name,
5538                                const char* signature,
5539                                const elfcpp::Shdr<32, true>& shdr,
5540                                elfcpp::Elf_Word flags,
5541                                std::vector<unsigned int>* shndxes);
5542 #endif
5543
5544 #ifdef HAVE_TARGET_64_LITTLE
5545 template
5546 void
5547 Layout::layout_group<64, false>(Symbol_table* symtab,
5548                                 Sized_relobj_file<64, false>* object,
5549                                 unsigned int,
5550                                 const char* group_section_name,
5551                                 const char* signature,
5552                                 const elfcpp::Shdr<64, false>& shdr,
5553                                 elfcpp::Elf_Word flags,
5554                                 std::vector<unsigned int>* shndxes);
5555 #endif
5556
5557 #ifdef HAVE_TARGET_64_BIG
5558 template
5559 void
5560 Layout::layout_group<64, true>(Symbol_table* symtab,
5561                                Sized_relobj_file<64, true>* object,
5562                                unsigned int,
5563                                const char* group_section_name,
5564                                const char* signature,
5565                                const elfcpp::Shdr<64, true>& shdr,
5566                                elfcpp::Elf_Word flags,
5567                                std::vector<unsigned int>* shndxes);
5568 #endif
5569
5570 #ifdef HAVE_TARGET_32_LITTLE
5571 template
5572 Output_section*
5573 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5574                                    const unsigned char* symbols,
5575                                    off_t symbols_size,
5576                                    const unsigned char* symbol_names,
5577                                    off_t symbol_names_size,
5578                                    unsigned int shndx,
5579                                    const elfcpp::Shdr<32, false>& shdr,
5580                                    unsigned int reloc_shndx,
5581                                    unsigned int reloc_type,
5582                                    off_t* off);
5583 #endif
5584
5585 #ifdef HAVE_TARGET_32_BIG
5586 template
5587 Output_section*
5588 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5589                                   const unsigned char* symbols,
5590                                   off_t symbols_size,
5591                                   const unsigned char* symbol_names,
5592                                   off_t symbol_names_size,
5593                                   unsigned int shndx,
5594                                   const elfcpp::Shdr<32, true>& shdr,
5595                                   unsigned int reloc_shndx,
5596                                   unsigned int reloc_type,
5597                                   off_t* off);
5598 #endif
5599
5600 #ifdef HAVE_TARGET_64_LITTLE
5601 template
5602 Output_section*
5603 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5604                                    const unsigned char* symbols,
5605                                    off_t symbols_size,
5606                                    const unsigned char* symbol_names,
5607                                    off_t symbol_names_size,
5608                                    unsigned int shndx,
5609                                    const elfcpp::Shdr<64, false>& shdr,
5610                                    unsigned int reloc_shndx,
5611                                    unsigned int reloc_type,
5612                                    off_t* off);
5613 #endif
5614
5615 #ifdef HAVE_TARGET_64_BIG
5616 template
5617 Output_section*
5618 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5619                                   const unsigned char* symbols,
5620                                   off_t symbols_size,
5621                                   const unsigned char* symbol_names,
5622                                   off_t symbol_names_size,
5623                                   unsigned int shndx,
5624                                   const elfcpp::Shdr<64, true>& shdr,
5625                                   unsigned int reloc_shndx,
5626                                   unsigned int reloc_type,
5627                                   off_t* off);
5628 #endif
5629
5630 #ifdef HAVE_TARGET_32_LITTLE
5631 template
5632 void
5633 Layout::add_to_gdb_index(bool is_type_unit,
5634                          Sized_relobj<32, false>* object,
5635                          const unsigned char* symbols,
5636                          off_t symbols_size,
5637                          unsigned int shndx,
5638                          unsigned int reloc_shndx,
5639                          unsigned int reloc_type);
5640 #endif
5641
5642 #ifdef HAVE_TARGET_32_BIG
5643 template
5644 void
5645 Layout::add_to_gdb_index(bool is_type_unit,
5646                          Sized_relobj<32, true>* object,
5647                          const unsigned char* symbols,
5648                          off_t symbols_size,
5649                          unsigned int shndx,
5650                          unsigned int reloc_shndx,
5651                          unsigned int reloc_type);
5652 #endif
5653
5654 #ifdef HAVE_TARGET_64_LITTLE
5655 template
5656 void
5657 Layout::add_to_gdb_index(bool is_type_unit,
5658                          Sized_relobj<64, false>* object,
5659                          const unsigned char* symbols,
5660                          off_t symbols_size,
5661                          unsigned int shndx,
5662                          unsigned int reloc_shndx,
5663                          unsigned int reloc_type);
5664 #endif
5665
5666 #ifdef HAVE_TARGET_64_BIG
5667 template
5668 void
5669 Layout::add_to_gdb_index(bool is_type_unit,
5670                          Sized_relobj<64, true>* object,
5671                          const unsigned char* symbols,
5672                          off_t symbols_size,
5673                          unsigned int shndx,
5674                          unsigned int reloc_shndx,
5675                          unsigned int reloc_type);
5676 #endif
5677
5678 } // End namespace gold.