Patch for gold internal error while fixing erratum 843419.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list.  Creates a single free list node that
76 // describes the entire region of length LEN.  If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83   this->list_.push_front(Free_list_node(0, len));
84   this->last_remove_ = this->list_.begin();
85   this->extend_ = extend;
86   this->length_ = len;
87   ++Free_list::num_lists;
88   ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list.  Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node.  We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103   if (start == end)
104     return;
105   gold_assert(start < end);
106
107   ++Free_list::num_removes;
108
109   Iterator p = this->last_remove_;
110   if (p->start_ > start)
111     p = this->list_.begin();
112
113   for (; p != this->list_.end(); ++p)
114     {
115       ++Free_list::num_remove_visits;
116       // Find a node that wholly contains the indicated region.
117       if (p->start_ <= start && p->end_ >= end)
118         {
119           // Case 1: the indicated region spans the whole node.
120           // Add some fuzz to avoid creating tiny free chunks.
121           if (p->start_ + 3 >= start && p->end_ <= end + 3)
122             p = this->list_.erase(p);
123           // Case 2: remove a chunk from the start of the node.
124           else if (p->start_ + 3 >= start)
125             p->start_ = end;
126           // Case 3: remove a chunk from the end of the node.
127           else if (p->end_ <= end + 3)
128             p->end_ = start;
129           // Case 4: remove a chunk from the middle, and split
130           // the node into two.
131           else
132             {
133               Free_list_node newnode(p->start_, start);
134               p->start_ = end;
135               this->list_.insert(p, newnode);
136               ++Free_list::num_nodes;
137             }
138           this->last_remove_ = p;
139           return;
140         }
141     }
142
143   // Did not find a node containing the given chunk.  This could happen
144   // because a small chunk was already removed due to the fuzz.
145   gold_debug(DEBUG_INCREMENTAL,
146              "Free_list::remove(%d,%d) not found",
147              static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157   gold_debug(DEBUG_INCREMENTAL,
158              "Free_list::allocate(%08lx, %d, %08lx)",
159              static_cast<long>(len), static_cast<int>(align),
160              static_cast<long>(minoff));
161   if (len == 0)
162     return align_address(minoff, align);
163
164   ++Free_list::num_allocates;
165
166   // We usually want to drop free chunks smaller than 4 bytes.
167   // If we need to guarantee a minimum hole size, though, we need
168   // to keep track of all free chunks.
169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172     {
173       ++Free_list::num_allocate_visits;
174       off_t start = p->start_ > minoff ? p->start_ : minoff;
175       start = align_address(start, align);
176       off_t end = start + len;
177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178         {
179           this->length_ = end;
180           p->end_ = end;
181         }
182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183         {
184           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185             this->list_.erase(p);
186           else if (p->start_ + fuzz >= start)
187             p->start_ = end;
188           else if (p->end_ <= end + fuzz)
189             p->end_ = start;
190           else
191             {
192               Free_list_node newnode(p->start_, start);
193               p->start_ = end;
194               this->list_.insert(p, newnode);
195               ++Free_list::num_nodes;
196             }
197           return start;
198         }
199     }
200   if (this->extend_)
201     {
202       off_t start = align_address(this->length_, align);
203       this->length_ = start + len;
204       return start;
205     }
206   return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213   gold_info("Free list:\n     start      end   length\n");
214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
216               static_cast<long>(p->end_),
217               static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224   fprintf(stderr, _("%s: total free lists: %u\n"),
225           program_name, Free_list::num_lists);
226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
227           program_name, Free_list::num_nodes);
228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229           program_name, Free_list::num_removes);
230   fprintf(stderr, _("%s: nodes visited: %u\n"),
231           program_name, Free_list::num_remove_visits);
232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233           program_name, Free_list::num_allocates);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239
240 class Hash_task : public Task
241 {
242  public:
243   Hash_task(Output_file* of,
244             size_t offset,
245             size_t size,
246             unsigned char* dst,
247             Task_token* final_blocker)
248     : of_(of), offset_(offset), size_(size), dst_(dst),
249       final_blocker_(final_blocker)
250   { }
251
252   void
253   run(Workqueue*)
254   {
255     const unsigned char* iv =
256         this->of_->get_input_view(this->offset_, this->size_);
257     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
258     this->of_->free_input_view(this->offset_, this->size_, iv);
259   }
260
261   Task_token*
262   is_runnable()
263   { return NULL; }
264
265   // Unblock FINAL_BLOCKER_ when done.
266   void
267   locks(Task_locker* tl)
268   { tl->add(this, this->final_blocker_); }
269
270   std::string
271   get_name() const
272   { return "Hash_task"; }
273
274  private:
275   Output_file* of_;
276   const size_t offset_;
277   const size_t size_;
278   unsigned char* const dst_;
279   Task_token* const final_blocker_;
280 };
281
282 // Layout::Relaxation_debug_check methods.
283
284 // Check that sections and special data are in reset states.
285 // We do not save states for Output_sections and special Output_data.
286 // So we check that they have not assigned any addresses or offsets.
287 // clean_up_after_relaxation simply resets their addresses and offsets.
288 void
289 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
290     const Layout::Section_list& sections,
291     const Layout::Data_list& special_outputs,
292     const Layout::Data_list& relax_outputs)
293 {
294   for(Layout::Section_list::const_iterator p = sections.begin();
295       p != sections.end();
296       ++p)
297     gold_assert((*p)->address_and_file_offset_have_reset_values());
298
299   for(Layout::Data_list::const_iterator p = special_outputs.begin();
300       p != special_outputs.end();
301       ++p)
302     gold_assert((*p)->address_and_file_offset_have_reset_values());
303
304   gold_assert(relax_outputs.empty());
305 }
306
307 // Save information of SECTIONS for checking later.
308
309 void
310 Layout::Relaxation_debug_check::read_sections(
311     const Layout::Section_list& sections)
312 {
313   for(Layout::Section_list::const_iterator p = sections.begin();
314       p != sections.end();
315       ++p)
316     {
317       Output_section* os = *p;
318       Section_info info;
319       info.output_section = os;
320       info.address = os->is_address_valid() ? os->address() : 0;
321       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
322       info.offset = os->is_offset_valid()? os->offset() : -1 ;
323       this->section_infos_.push_back(info);
324     }
325 }
326
327 // Verify SECTIONS using previously recorded information.
328
329 void
330 Layout::Relaxation_debug_check::verify_sections(
331     const Layout::Section_list& sections)
332 {
333   size_t i = 0;
334   for(Layout::Section_list::const_iterator p = sections.begin();
335       p != sections.end();
336       ++p, ++i)
337     {
338       Output_section* os = *p;
339       uint64_t address = os->is_address_valid() ? os->address() : 0;
340       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
341       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
342
343       if (i >= this->section_infos_.size())
344         {
345           gold_fatal("Section_info of %s missing.\n", os->name());
346         }
347       const Section_info& info = this->section_infos_[i];
348       if (os != info.output_section)
349         gold_fatal("Section order changed.  Expecting %s but see %s\n",
350                    info.output_section->name(), os->name());
351       if (address != info.address
352           || data_size != info.data_size
353           || offset != info.offset)
354         gold_fatal("Section %s changed.\n", os->name());
355     }
356 }
357
358 // Layout_task_runner methods.
359
360 // Lay out the sections.  This is called after all the input objects
361 // have been read.
362
363 void
364 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
365 {
366   // See if any of the input definitions violate the One Definition Rule.
367   // TODO: if this is too slow, do this as a task, rather than inline.
368   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
369
370   Layout* layout = this->layout_;
371   off_t file_size = layout->finalize(this->input_objects_,
372                                      this->symtab_,
373                                      this->target_,
374                                      task);
375
376   // Now we know the final size of the output file and we know where
377   // each piece of information goes.
378
379   if (this->mapfile_ != NULL)
380     {
381       this->mapfile_->print_discarded_sections(this->input_objects_);
382       layout->print_to_mapfile(this->mapfile_);
383     }
384
385   Output_file* of;
386   if (layout->incremental_base() == NULL)
387     {
388       of = new Output_file(parameters->options().output_file_name());
389       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
390         of->set_is_temporary();
391       of->open(file_size);
392     }
393   else
394     {
395       of = layout->incremental_base()->output_file();
396
397       // Apply the incremental relocations for symbols whose values
398       // have changed.  We do this before we resize the file and start
399       // writing anything else to it, so that we can read the old
400       // incremental information from the file before (possibly)
401       // overwriting it.
402       if (parameters->incremental_update())
403         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
404                                                              this->layout_,
405                                                              of);
406
407       of->resize(file_size);
408     }
409
410   // Queue up the final set of tasks.
411   gold::queue_final_tasks(this->options_, this->input_objects_,
412                           this->symtab_, layout, workqueue, of);
413 }
414
415 // Layout methods.
416
417 Layout::Layout(int number_of_input_files, Script_options* script_options)
418   : number_of_input_files_(number_of_input_files),
419     script_options_(script_options),
420     namepool_(),
421     sympool_(),
422     dynpool_(),
423     signatures_(),
424     section_name_map_(),
425     segment_list_(),
426     section_list_(),
427     unattached_section_list_(),
428     special_output_list_(),
429     relax_output_list_(),
430     section_headers_(NULL),
431     tls_segment_(NULL),
432     relro_segment_(NULL),
433     interp_segment_(NULL),
434     increase_relro_(0),
435     symtab_section_(NULL),
436     symtab_xindex_(NULL),
437     dynsym_section_(NULL),
438     dynsym_xindex_(NULL),
439     dynamic_section_(NULL),
440     dynamic_symbol_(NULL),
441     dynamic_data_(NULL),
442     eh_frame_section_(NULL),
443     eh_frame_data_(NULL),
444     added_eh_frame_data_(false),
445     eh_frame_hdr_section_(NULL),
446     gdb_index_data_(NULL),
447     build_id_note_(NULL),
448     debug_abbrev_(NULL),
449     debug_info_(NULL),
450     group_signatures_(),
451     output_file_size_(-1),
452     have_added_input_section_(false),
453     sections_are_attached_(false),
454     input_requires_executable_stack_(false),
455     input_with_gnu_stack_note_(false),
456     input_without_gnu_stack_note_(false),
457     has_static_tls_(false),
458     any_postprocessing_sections_(false),
459     resized_signatures_(false),
460     have_stabstr_section_(false),
461     section_ordering_specified_(false),
462     unique_segment_for_sections_specified_(false),
463     incremental_inputs_(NULL),
464     record_output_section_data_from_script_(false),
465     script_output_section_data_list_(),
466     segment_states_(NULL),
467     relaxation_debug_check_(NULL),
468     section_order_map_(),
469     section_segment_map_(),
470     input_section_position_(),
471     input_section_glob_(),
472     incremental_base_(NULL),
473     free_list_()
474 {
475   // Make space for more than enough segments for a typical file.
476   // This is just for efficiency--it's OK if we wind up needing more.
477   this->segment_list_.reserve(12);
478
479   // We expect two unattached Output_data objects: the file header and
480   // the segment headers.
481   this->special_output_list_.reserve(2);
482
483   // Initialize structure needed for an incremental build.
484   if (parameters->incremental())
485     this->incremental_inputs_ = new Incremental_inputs;
486
487   // The section name pool is worth optimizing in all cases, because
488   // it is small, but there are often overlaps due to .rel sections.
489   this->namepool_.set_optimize();
490 }
491
492 // For incremental links, record the base file to be modified.
493
494 void
495 Layout::set_incremental_base(Incremental_binary* base)
496 {
497   this->incremental_base_ = base;
498   this->free_list_.init(base->output_file()->filesize(), true);
499 }
500
501 // Hash a key we use to look up an output section mapping.
502
503 size_t
504 Layout::Hash_key::operator()(const Layout::Key& k) const
505 {
506  return k.first + k.second.first + k.second.second;
507 }
508
509 // These are the debug sections that are actually used by gdb.
510 // Currently, we've checked versions of gdb up to and including 7.4.
511 // We only check the part of the name that follows ".debug_" or
512 // ".zdebug_".
513
514 static const char* gdb_sections[] =
515 {
516   "abbrev",
517   "addr",         // Fission extension
518   // "aranges",   // not used by gdb as of 7.4
519   "frame",
520   "gdb_scripts",
521   "info",
522   "types",
523   "line",
524   "loc",
525   "macinfo",
526   "macro",
527   // "pubnames",  // not used by gdb as of 7.4
528   // "pubtypes",  // not used by gdb as of 7.4
529   // "gnu_pubnames",  // Fission extension
530   // "gnu_pubtypes",  // Fission extension
531   "ranges",
532   "str",
533   "str_offsets",
534 };
535
536 // This is the minimum set of sections needed for line numbers.
537
538 static const char* lines_only_debug_sections[] =
539 {
540   "abbrev",
541   // "addr",      // Fission extension
542   // "aranges",   // not used by gdb as of 7.4
543   // "frame",
544   // "gdb_scripts",
545   "info",
546   // "types",
547   "line",
548   // "loc",
549   // "macinfo",
550   // "macro",
551   // "pubnames",  // not used by gdb as of 7.4
552   // "pubtypes",  // not used by gdb as of 7.4
553   // "gnu_pubnames",  // Fission extension
554   // "gnu_pubtypes",  // Fission extension
555   // "ranges",
556   "str",
557   "str_offsets",  // Fission extension
558 };
559
560 // These sections are the DWARF fast-lookup tables, and are not needed
561 // when building a .gdb_index section.
562
563 static const char* gdb_fast_lookup_sections[] =
564 {
565   "aranges",
566   "pubnames",
567   "gnu_pubnames",
568   "pubtypes",
569   "gnu_pubtypes",
570 };
571
572 // Returns whether the given debug section is in the list of
573 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
574 // portion of the name following ".debug_" or ".zdebug_".
575
576 static inline bool
577 is_gdb_debug_section(const char* suffix)
578 {
579   // We can do this faster: binary search or a hashtable.  But why bother?
580   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
581     if (strcmp(suffix, gdb_sections[i]) == 0)
582       return true;
583   return false;
584 }
585
586 // Returns whether the given section is needed for lines-only debugging.
587
588 static inline bool
589 is_lines_only_debug_section(const char* suffix)
590 {
591   // We can do this faster: binary search or a hashtable.  But why bother?
592   for (size_t i = 0;
593        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
594        ++i)
595     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
596       return true;
597   return false;
598 }
599
600 // Returns whether the given section is a fast-lookup section that
601 // will not be needed when building a .gdb_index section.
602
603 static inline bool
604 is_gdb_fast_lookup_section(const char* suffix)
605 {
606   // We can do this faster: binary search or a hashtable.  But why bother?
607   for (size_t i = 0;
608        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
609        ++i)
610     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
611       return true;
612   return false;
613 }
614
615 // Sometimes we compress sections.  This is typically done for
616 // sections that are not part of normal program execution (such as
617 // .debug_* sections), and where the readers of these sections know
618 // how to deal with compressed sections.  This routine doesn't say for
619 // certain whether we'll compress -- it depends on commandline options
620 // as well -- just whether this section is a candidate for compression.
621 // (The Output_compressed_section class decides whether to compress
622 // a given section, and picks the name of the compressed section.)
623
624 static bool
625 is_compressible_debug_section(const char* secname)
626 {
627   return (is_prefix_of(".debug", secname));
628 }
629
630 // We may see compressed debug sections in input files.  Return TRUE
631 // if this is the name of a compressed debug section.
632
633 bool
634 is_compressed_debug_section(const char* secname)
635 {
636   return (is_prefix_of(".zdebug", secname));
637 }
638
639 std::string
640 corresponding_uncompressed_section_name(std::string secname)
641 {
642   gold_assert(secname[0] == '.' && secname[1] == 'z');
643   std::string ret(".");
644   ret.append(secname, 2, std::string::npos);
645   return ret;
646 }
647
648 // Whether to include this section in the link.
649
650 template<int size, bool big_endian>
651 bool
652 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
653                         const elfcpp::Shdr<size, big_endian>& shdr)
654 {
655   if (!parameters->options().relocatable()
656       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
657     return false;
658
659   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
660
661   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
662       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
663     return parameters->target().should_include_section(sh_type);
664
665   switch (sh_type)
666     {
667     case elfcpp::SHT_NULL:
668     case elfcpp::SHT_SYMTAB:
669     case elfcpp::SHT_DYNSYM:
670     case elfcpp::SHT_HASH:
671     case elfcpp::SHT_DYNAMIC:
672     case elfcpp::SHT_SYMTAB_SHNDX:
673       return false;
674
675     case elfcpp::SHT_STRTAB:
676       // Discard the sections which have special meanings in the ELF
677       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
678       // checking the sh_link fields of the appropriate sections.
679       return (strcmp(name, ".dynstr") != 0
680               && strcmp(name, ".strtab") != 0
681               && strcmp(name, ".shstrtab") != 0);
682
683     case elfcpp::SHT_RELA:
684     case elfcpp::SHT_REL:
685     case elfcpp::SHT_GROUP:
686       // If we are emitting relocations these should be handled
687       // elsewhere.
688       gold_assert(!parameters->options().relocatable());
689       return false;
690
691     case elfcpp::SHT_PROGBITS:
692       if (parameters->options().strip_debug()
693           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
694         {
695           if (is_debug_info_section(name))
696             return false;
697         }
698       if (parameters->options().strip_debug_non_line()
699           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700         {
701           // Debugging sections can only be recognized by name.
702           if (is_prefix_of(".debug_", name)
703               && !is_lines_only_debug_section(name + 7))
704             return false;
705           if (is_prefix_of(".zdebug_", name)
706               && !is_lines_only_debug_section(name + 8))
707             return false;
708         }
709       if (parameters->options().strip_debug_gdb()
710           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
711         {
712           // Debugging sections can only be recognized by name.
713           if (is_prefix_of(".debug_", name)
714               && !is_gdb_debug_section(name + 7))
715             return false;
716           if (is_prefix_of(".zdebug_", name)
717               && !is_gdb_debug_section(name + 8))
718             return false;
719         }
720       if (parameters->options().gdb_index()
721           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
722         {
723           // When building .gdb_index, we can strip .debug_pubnames,
724           // .debug_pubtypes, and .debug_aranges sections.
725           if (is_prefix_of(".debug_", name)
726               && is_gdb_fast_lookup_section(name + 7))
727             return false;
728           if (is_prefix_of(".zdebug_", name)
729               && is_gdb_fast_lookup_section(name + 8))
730             return false;
731         }
732       if (parameters->options().strip_lto_sections()
733           && !parameters->options().relocatable()
734           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735         {
736           // Ignore LTO sections containing intermediate code.
737           if (is_prefix_of(".gnu.lto_", name))
738             return false;
739         }
740       // The GNU linker strips .gnu_debuglink sections, so we do too.
741       // This is a feature used to keep debugging information in
742       // separate files.
743       if (strcmp(name, ".gnu_debuglink") == 0)
744         return false;
745       return true;
746
747     default:
748       return true;
749     }
750 }
751
752 // Return an output section named NAME, or NULL if there is none.
753
754 Output_section*
755 Layout::find_output_section(const char* name) const
756 {
757   for (Section_list::const_iterator p = this->section_list_.begin();
758        p != this->section_list_.end();
759        ++p)
760     if (strcmp((*p)->name(), name) == 0)
761       return *p;
762   return NULL;
763 }
764
765 // Return an output segment of type TYPE, with segment flags SET set
766 // and segment flags CLEAR clear.  Return NULL if there is none.
767
768 Output_segment*
769 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
770                             elfcpp::Elf_Word clear) const
771 {
772   for (Segment_list::const_iterator p = this->segment_list_.begin();
773        p != this->segment_list_.end();
774        ++p)
775     if (static_cast<elfcpp::PT>((*p)->type()) == type
776         && ((*p)->flags() & set) == set
777         && ((*p)->flags() & clear) == 0)
778       return *p;
779   return NULL;
780 }
781
782 // When we put a .ctors or .dtors section with more than one word into
783 // a .init_array or .fini_array section, we need to reverse the words
784 // in the .ctors/.dtors section.  This is because .init_array executes
785 // constructors front to back, where .ctors executes them back to
786 // front, and vice-versa for .fini_array/.dtors.  Although we do want
787 // to remap .ctors/.dtors into .init_array/.fini_array because it can
788 // be more efficient, we don't want to change the order in which
789 // constructors/destructors are run.  This set just keeps track of
790 // these sections which need to be reversed.  It is only changed by
791 // Layout::layout.  It should be a private member of Layout, but that
792 // would require layout.h to #include object.h to get the definition
793 // of Section_id.
794 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
795
796 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
797 // .init_array/.fini_array section.
798
799 bool
800 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
801 {
802   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
803           != ctors_sections_in_init_array.end());
804 }
805
806 // Return the output section to use for section NAME with type TYPE
807 // and section flags FLAGS.  NAME must be canonicalized in the string
808 // pool, and NAME_KEY is the key.  ORDER is where this should appear
809 // in the output sections.  IS_RELRO is true for a relro section.
810
811 Output_section*
812 Layout::get_output_section(const char* name, Stringpool::Key name_key,
813                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
814                            Output_section_order order, bool is_relro)
815 {
816   elfcpp::Elf_Word lookup_type = type;
817
818   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
819   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
820   // .init_array, .fini_array, and .preinit_array sections by name
821   // whatever their type in the input file.  We do this because the
822   // types are not always right in the input files.
823   if (lookup_type == elfcpp::SHT_INIT_ARRAY
824       || lookup_type == elfcpp::SHT_FINI_ARRAY
825       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
826     lookup_type = elfcpp::SHT_PROGBITS;
827
828   elfcpp::Elf_Xword lookup_flags = flags;
829
830   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
831   // read-write with read-only sections.  Some other ELF linkers do
832   // not do this.  FIXME: Perhaps there should be an option
833   // controlling this.
834   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
835
836   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
837   const std::pair<Key, Output_section*> v(key, NULL);
838   std::pair<Section_name_map::iterator, bool> ins(
839     this->section_name_map_.insert(v));
840
841   if (!ins.second)
842     return ins.first->second;
843   else
844     {
845       // This is the first time we've seen this name/type/flags
846       // combination.  For compatibility with the GNU linker, we
847       // combine sections with contents and zero flags with sections
848       // with non-zero flags.  This is a workaround for cases where
849       // assembler code forgets to set section flags.  FIXME: Perhaps
850       // there should be an option to control this.
851       Output_section* os = NULL;
852
853       if (lookup_type == elfcpp::SHT_PROGBITS)
854         {
855           if (flags == 0)
856             {
857               Output_section* same_name = this->find_output_section(name);
858               if (same_name != NULL
859                   && (same_name->type() == elfcpp::SHT_PROGBITS
860                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
861                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
862                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
863                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
864                 os = same_name;
865             }
866           else if ((flags & elfcpp::SHF_TLS) == 0)
867             {
868               elfcpp::Elf_Xword zero_flags = 0;
869               const Key zero_key(name_key, std::make_pair(lookup_type,
870                                                           zero_flags));
871               Section_name_map::iterator p =
872                   this->section_name_map_.find(zero_key);
873               if (p != this->section_name_map_.end())
874                 os = p->second;
875             }
876         }
877
878       if (os == NULL)
879         os = this->make_output_section(name, type, flags, order, is_relro);
880
881       ins.first->second = os;
882       return os;
883     }
884 }
885
886 // Returns TRUE iff NAME (an input section from RELOBJ) will
887 // be mapped to an output section that should be KEPT.
888
889 bool
890 Layout::keep_input_section(const Relobj* relobj, const char* name)
891 {
892   if (! this->script_options_->saw_sections_clause())
893     return false;
894
895   Script_sections* ss = this->script_options_->script_sections();
896   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
897   Output_section** output_section_slot;
898   Script_sections::Section_type script_section_type;
899   bool keep;
900
901   name = ss->output_section_name(file_name, name, &output_section_slot,
902                                  &script_section_type, &keep);
903   return name != NULL && keep;
904 }
905
906 // Clear the input section flags that should not be copied to the
907 // output section.
908
909 elfcpp::Elf_Xword
910 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
911 {
912   // Some flags in the input section should not be automatically
913   // copied to the output section.
914   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
915                             | elfcpp::SHF_GROUP
916                             | elfcpp::SHF_MERGE
917                             | elfcpp::SHF_STRINGS);
918
919   // We only clear the SHF_LINK_ORDER flag in for
920   // a non-relocatable link.
921   if (!parameters->options().relocatable())
922     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
923
924   return input_section_flags;
925 }
926
927 // Pick the output section to use for section NAME, in input file
928 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
929 // linker created section.  IS_INPUT_SECTION is true if we are
930 // choosing an output section for an input section found in a input
931 // file.  ORDER is where this section should appear in the output
932 // sections.  IS_RELRO is true for a relro section.  This will return
933 // NULL if the input section should be discarded.
934
935 Output_section*
936 Layout::choose_output_section(const Relobj* relobj, const char* name,
937                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
938                               bool is_input_section, Output_section_order order,
939                               bool is_relro)
940 {
941   // We should not see any input sections after we have attached
942   // sections to segments.
943   gold_assert(!is_input_section || !this->sections_are_attached_);
944
945   flags = this->get_output_section_flags(flags);
946
947   if (this->script_options_->saw_sections_clause())
948     {
949       // We are using a SECTIONS clause, so the output section is
950       // chosen based only on the name.
951
952       Script_sections* ss = this->script_options_->script_sections();
953       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
954       Output_section** output_section_slot;
955       Script_sections::Section_type script_section_type;
956       const char* orig_name = name;
957       bool keep;
958       name = ss->output_section_name(file_name, name, &output_section_slot,
959                                      &script_section_type, &keep);
960
961       if (name == NULL)
962         {
963           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
964                                      "because it is not allowed by the "
965                                      "SECTIONS clause of the linker script"),
966                      orig_name);
967           // The SECTIONS clause says to discard this input section.
968           return NULL;
969         }
970
971       // We can only handle script section types ST_NONE and ST_NOLOAD.
972       switch (script_section_type)
973         {
974         case Script_sections::ST_NONE:
975           break;
976         case Script_sections::ST_NOLOAD:
977           flags &= elfcpp::SHF_ALLOC;
978           break;
979         default:
980           gold_unreachable();
981         }
982
983       // If this is an orphan section--one not mentioned in the linker
984       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
985       // default processing below.
986
987       if (output_section_slot != NULL)
988         {
989           if (*output_section_slot != NULL)
990             {
991               (*output_section_slot)->update_flags_for_input_section(flags);
992               return *output_section_slot;
993             }
994
995           // We don't put sections found in the linker script into
996           // SECTION_NAME_MAP_.  That keeps us from getting confused
997           // if an orphan section is mapped to a section with the same
998           // name as one in the linker script.
999
1000           name = this->namepool_.add(name, false, NULL);
1001
1002           Output_section* os = this->make_output_section(name, type, flags,
1003                                                          order, is_relro);
1004
1005           os->set_found_in_sections_clause();
1006
1007           // Special handling for NOLOAD sections.
1008           if (script_section_type == Script_sections::ST_NOLOAD)
1009             {
1010               os->set_is_noload();
1011
1012               // The constructor of Output_section sets addresses of non-ALLOC
1013               // sections to 0 by default.  We don't want that for NOLOAD
1014               // sections even if they have no SHF_ALLOC flag.
1015               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1016                   && os->is_address_valid())
1017                 {
1018                   gold_assert(os->address() == 0
1019                               && !os->is_offset_valid()
1020                               && !os->is_data_size_valid());
1021                   os->reset_address_and_file_offset();
1022                 }
1023             }
1024
1025           *output_section_slot = os;
1026           return os;
1027         }
1028     }
1029
1030   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1031
1032   size_t len = strlen(name);
1033   std::string uncompressed_name;
1034
1035   // Compressed debug sections should be mapped to the corresponding
1036   // uncompressed section.
1037   if (is_compressed_debug_section(name))
1038     {
1039       uncompressed_name =
1040           corresponding_uncompressed_section_name(std::string(name, len));
1041       name = uncompressed_name.c_str();
1042       len = uncompressed_name.length();
1043     }
1044
1045   // Turn NAME from the name of the input section into the name of the
1046   // output section.
1047   if (is_input_section
1048       && !this->script_options_->saw_sections_clause()
1049       && !parameters->options().relocatable())
1050     {
1051       const char *orig_name = name;
1052       name = parameters->target().output_section_name(relobj, name, &len);
1053       if (name == NULL)
1054         name = Layout::output_section_name(relobj, orig_name, &len);
1055     }
1056
1057   Stringpool::Key name_key;
1058   name = this->namepool_.add_with_length(name, len, true, &name_key);
1059
1060   // Find or make the output section.  The output section is selected
1061   // based on the section name, type, and flags.
1062   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1063 }
1064
1065 // For incremental links, record the initial fixed layout of a section
1066 // from the base file, and return a pointer to the Output_section.
1067
1068 template<int size, bool big_endian>
1069 Output_section*
1070 Layout::init_fixed_output_section(const char* name,
1071                                   elfcpp::Shdr<size, big_endian>& shdr)
1072 {
1073   unsigned int sh_type = shdr.get_sh_type();
1074
1075   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1076   // PRE_INIT_ARRAY, and NOTE sections.
1077   // All others will be created from scratch and reallocated.
1078   if (!can_incremental_update(sh_type))
1079     return NULL;
1080
1081   // If we're generating a .gdb_index section, we need to regenerate
1082   // it from scratch.
1083   if (parameters->options().gdb_index()
1084       && sh_type == elfcpp::SHT_PROGBITS
1085       && strcmp(name, ".gdb_index") == 0)
1086     return NULL;
1087
1088   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1089   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1090   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1091   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1092   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1093       shdr.get_sh_addralign();
1094
1095   // Make the output section.
1096   Stringpool::Key name_key;
1097   name = this->namepool_.add(name, true, &name_key);
1098   Output_section* os = this->get_output_section(name, name_key, sh_type,
1099                                                 sh_flags, ORDER_INVALID, false);
1100   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1101   if (sh_type != elfcpp::SHT_NOBITS)
1102     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1103   return os;
1104 }
1105
1106 // Return the index by which an input section should be ordered.  This
1107 // is used to sort some .text sections, for compatibility with GNU ld.
1108
1109 int
1110 Layout::special_ordering_of_input_section(const char* name)
1111 {
1112   // The GNU linker has some special handling for some sections that
1113   // wind up in the .text section.  Sections that start with these
1114   // prefixes must appear first, and must appear in the order listed
1115   // here.
1116   static const char* const text_section_sort[] =
1117   {
1118     ".text.unlikely",
1119     ".text.exit",
1120     ".text.startup",
1121     ".text.hot"
1122   };
1123
1124   for (size_t i = 0;
1125        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1126        i++)
1127     if (is_prefix_of(text_section_sort[i], name))
1128       return i;
1129
1130   return -1;
1131 }
1132
1133 // Return the output section to use for input section SHNDX, with name
1134 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1135 // index of a relocation section which applies to this section, or 0
1136 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1137 // relocation section if there is one.  Set *OFF to the offset of this
1138 // input section without the output section.  Return NULL if the
1139 // section should be discarded.  Set *OFF to -1 if the section
1140 // contents should not be written directly to the output file, but
1141 // will instead receive special handling.
1142
1143 template<int size, bool big_endian>
1144 Output_section*
1145 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1146                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1147                unsigned int reloc_shndx, unsigned int, off_t* off)
1148 {
1149   *off = 0;
1150
1151   if (!this->include_section(object, name, shdr))
1152     return NULL;
1153
1154   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1155
1156   // In a relocatable link a grouped section must not be combined with
1157   // any other sections.
1158   Output_section* os;
1159   if (parameters->options().relocatable()
1160       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1161     {
1162       name = this->namepool_.add(name, true, NULL);
1163       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1164                                      ORDER_INVALID, false);
1165     }
1166   else
1167     {
1168       // Plugins can choose to place one or more subsets of sections in
1169       // unique segments and this is done by mapping these section subsets
1170       // to unique output sections.  Check if this section needs to be
1171       // remapped to a unique output section.
1172       Section_segment_map::iterator it
1173           = this->section_segment_map_.find(Const_section_id(object, shndx));
1174       if (it == this->section_segment_map_.end())
1175         {
1176           os = this->choose_output_section(object, name, sh_type,
1177                                            shdr.get_sh_flags(), true,
1178                                            ORDER_INVALID, false);
1179         }
1180       else
1181         {
1182           // We know the name of the output section, directly call
1183           // get_output_section here by-passing choose_output_section.
1184           elfcpp::Elf_Xword flags
1185             = this->get_output_section_flags(shdr.get_sh_flags());
1186
1187           const char* os_name = it->second->name;
1188           Stringpool::Key name_key;
1189           os_name = this->namepool_.add(os_name, true, &name_key);
1190           os = this->get_output_section(os_name, name_key, sh_type, flags,
1191                                         ORDER_INVALID, false);
1192           if (!os->is_unique_segment())
1193             {
1194               os->set_is_unique_segment();
1195               os->set_extra_segment_flags(it->second->flags);
1196               os->set_segment_alignment(it->second->align);
1197             }
1198         }
1199       if (os == NULL)
1200         return NULL;
1201     }
1202
1203   // By default the GNU linker sorts input sections whose names match
1204   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1205   // sections are sorted by name.  This is used to implement
1206   // constructor priority ordering.  We are compatible.  When we put
1207   // .ctor sections in .init_array and .dtor sections in .fini_array,
1208   // we must also sort plain .ctor and .dtor sections.
1209   if (!this->script_options_->saw_sections_clause()
1210       && !parameters->options().relocatable()
1211       && (is_prefix_of(".ctors.", name)
1212           || is_prefix_of(".dtors.", name)
1213           || is_prefix_of(".init_array.", name)
1214           || is_prefix_of(".fini_array.", name)
1215           || (parameters->options().ctors_in_init_array()
1216               && (strcmp(name, ".ctors") == 0
1217                   || strcmp(name, ".dtors") == 0))))
1218     os->set_must_sort_attached_input_sections();
1219
1220   // By default the GNU linker sorts some special text sections ahead
1221   // of others.  We are compatible.
1222   if (parameters->options().text_reorder()
1223       && !this->script_options_->saw_sections_clause()
1224       && !this->is_section_ordering_specified()
1225       && !parameters->options().relocatable()
1226       && Layout::special_ordering_of_input_section(name) >= 0)
1227     os->set_must_sort_attached_input_sections();
1228
1229   // If this is a .ctors or .ctors.* section being mapped to a
1230   // .init_array section, or a .dtors or .dtors.* section being mapped
1231   // to a .fini_array section, we will need to reverse the words if
1232   // there is more than one.  Record this section for later.  See
1233   // ctors_sections_in_init_array above.
1234   if (!this->script_options_->saw_sections_clause()
1235       && !parameters->options().relocatable()
1236       && shdr.get_sh_size() > size / 8
1237       && (((strcmp(name, ".ctors") == 0
1238             || is_prefix_of(".ctors.", name))
1239            && strcmp(os->name(), ".init_array") == 0)
1240           || ((strcmp(name, ".dtors") == 0
1241                || is_prefix_of(".dtors.", name))
1242               && strcmp(os->name(), ".fini_array") == 0)))
1243     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1244
1245   // FIXME: Handle SHF_LINK_ORDER somewhere.
1246
1247   elfcpp::Elf_Xword orig_flags = os->flags();
1248
1249   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1250                                this->script_options_->saw_sections_clause());
1251
1252   // If the flags changed, we may have to change the order.
1253   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1254     {
1255       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1256       elfcpp::Elf_Xword new_flags =
1257         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1258       if (orig_flags != new_flags)
1259         os->set_order(this->default_section_order(os, false));
1260     }
1261
1262   this->have_added_input_section_ = true;
1263
1264   return os;
1265 }
1266
1267 // Maps section SECN to SEGMENT s.
1268 void
1269 Layout::insert_section_segment_map(Const_section_id secn,
1270                                    Unique_segment_info *s)
1271 {
1272   gold_assert(this->unique_segment_for_sections_specified_);
1273   this->section_segment_map_[secn] = s;
1274 }
1275
1276 // Handle a relocation section when doing a relocatable link.
1277
1278 template<int size, bool big_endian>
1279 Output_section*
1280 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1281                      unsigned int,
1282                      const elfcpp::Shdr<size, big_endian>& shdr,
1283                      Output_section* data_section,
1284                      Relocatable_relocs* rr)
1285 {
1286   gold_assert(parameters->options().relocatable()
1287               || parameters->options().emit_relocs());
1288
1289   int sh_type = shdr.get_sh_type();
1290
1291   std::string name;
1292   if (sh_type == elfcpp::SHT_REL)
1293     name = ".rel";
1294   else if (sh_type == elfcpp::SHT_RELA)
1295     name = ".rela";
1296   else
1297     gold_unreachable();
1298   name += data_section->name();
1299
1300   // In a relocatable link relocs for a grouped section must not be
1301   // combined with other reloc sections.
1302   Output_section* os;
1303   if (!parameters->options().relocatable()
1304       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1305     os = this->choose_output_section(object, name.c_str(), sh_type,
1306                                      shdr.get_sh_flags(), false,
1307                                      ORDER_INVALID, false);
1308   else
1309     {
1310       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1311       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1312                                      ORDER_INVALID, false);
1313     }
1314
1315   os->set_should_link_to_symtab();
1316   os->set_info_section(data_section);
1317
1318   Output_section_data* posd;
1319   if (sh_type == elfcpp::SHT_REL)
1320     {
1321       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1322       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1323                                            size,
1324                                            big_endian>(rr);
1325     }
1326   else if (sh_type == elfcpp::SHT_RELA)
1327     {
1328       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1329       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1330                                            size,
1331                                            big_endian>(rr);
1332     }
1333   else
1334     gold_unreachable();
1335
1336   os->add_output_section_data(posd);
1337   rr->set_output_data(posd);
1338
1339   return os;
1340 }
1341
1342 // Handle a group section when doing a relocatable link.
1343
1344 template<int size, bool big_endian>
1345 void
1346 Layout::layout_group(Symbol_table* symtab,
1347                      Sized_relobj_file<size, big_endian>* object,
1348                      unsigned int,
1349                      const char* group_section_name,
1350                      const char* signature,
1351                      const elfcpp::Shdr<size, big_endian>& shdr,
1352                      elfcpp::Elf_Word flags,
1353                      std::vector<unsigned int>* shndxes)
1354 {
1355   gold_assert(parameters->options().relocatable());
1356   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1357   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1358   Output_section* os = this->make_output_section(group_section_name,
1359                                                  elfcpp::SHT_GROUP,
1360                                                  shdr.get_sh_flags(),
1361                                                  ORDER_INVALID, false);
1362
1363   // We need to find a symbol with the signature in the symbol table.
1364   // If we don't find one now, we need to look again later.
1365   Symbol* sym = symtab->lookup(signature, NULL);
1366   if (sym != NULL)
1367     os->set_info_symndx(sym);
1368   else
1369     {
1370       // Reserve some space to minimize reallocations.
1371       if (this->group_signatures_.empty())
1372         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1373
1374       // We will wind up using a symbol whose name is the signature.
1375       // So just put the signature in the symbol name pool to save it.
1376       signature = symtab->canonicalize_name(signature);
1377       this->group_signatures_.push_back(Group_signature(os, signature));
1378     }
1379
1380   os->set_should_link_to_symtab();
1381   os->set_entsize(4);
1382
1383   section_size_type entry_count =
1384     convert_to_section_size_type(shdr.get_sh_size() / 4);
1385   Output_section_data* posd =
1386     new Output_data_group<size, big_endian>(object, entry_count, flags,
1387                                             shndxes);
1388   os->add_output_section_data(posd);
1389 }
1390
1391 // Special GNU handling of sections name .eh_frame.  They will
1392 // normally hold exception frame data as defined by the C++ ABI
1393 // (http://codesourcery.com/cxx-abi/).
1394
1395 template<int size, bool big_endian>
1396 Output_section*
1397 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1398                         const unsigned char* symbols,
1399                         off_t symbols_size,
1400                         const unsigned char* symbol_names,
1401                         off_t symbol_names_size,
1402                         unsigned int shndx,
1403                         const elfcpp::Shdr<size, big_endian>& shdr,
1404                         unsigned int reloc_shndx, unsigned int reloc_type,
1405                         off_t* off)
1406 {
1407   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1408               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1409   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1410
1411   Output_section* os = this->make_eh_frame_section(object);
1412   if (os == NULL)
1413     return NULL;
1414
1415   gold_assert(this->eh_frame_section_ == os);
1416
1417   elfcpp::Elf_Xword orig_flags = os->flags();
1418
1419   Eh_frame::Eh_frame_section_disposition disp =
1420       Eh_frame::EH_UNRECOGNIZED_SECTION;
1421   if (!parameters->incremental())
1422     {
1423       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1424                                                              symbols,
1425                                                              symbols_size,
1426                                                              symbol_names,
1427                                                              symbol_names_size,
1428                                                              shndx,
1429                                                              reloc_shndx,
1430                                                              reloc_type);
1431     }
1432
1433   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1434     {
1435       os->update_flags_for_input_section(shdr.get_sh_flags());
1436
1437       // A writable .eh_frame section is a RELRO section.
1438       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1439           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1440         {
1441           os->set_is_relro();
1442           os->set_order(ORDER_RELRO);
1443         }
1444
1445       *off = -1;
1446       return os;
1447     }
1448
1449   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1450     {
1451       // We found the end marker section, so now we can add the set of
1452       // optimized sections to the output section.  We need to postpone
1453       // adding this until we've found a section we can optimize so that
1454       // the .eh_frame section in crtbeginT.o winds up at the start of
1455       // the output section.
1456       os->add_output_section_data(this->eh_frame_data_);
1457       this->added_eh_frame_data_ = true;
1458      }
1459
1460   // We couldn't handle this .eh_frame section for some reason.
1461   // Add it as a normal section.
1462   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1463   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1464                                reloc_shndx, saw_sections_clause);
1465   this->have_added_input_section_ = true;
1466
1467   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1468       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1469     os->set_order(this->default_section_order(os, false));
1470
1471   return os;
1472 }
1473
1474 void
1475 Layout::finalize_eh_frame_section()
1476 {
1477   // If we never found an end marker section, we need to add the
1478   // optimized eh sections to the output section now.
1479   if (!parameters->incremental()
1480       && this->eh_frame_section_ != NULL
1481       && !this->added_eh_frame_data_)
1482     {
1483       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1484       this->added_eh_frame_data_ = true;
1485     }
1486 }
1487
1488 // Create and return the magic .eh_frame section.  Create
1489 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1490 // input .eh_frame section; it may be NULL.
1491
1492 Output_section*
1493 Layout::make_eh_frame_section(const Relobj* object)
1494 {
1495   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1496   // SHT_PROGBITS.
1497   Output_section* os = this->choose_output_section(object, ".eh_frame",
1498                                                    elfcpp::SHT_PROGBITS,
1499                                                    elfcpp::SHF_ALLOC, false,
1500                                                    ORDER_EHFRAME, false);
1501   if (os == NULL)
1502     return NULL;
1503
1504   if (this->eh_frame_section_ == NULL)
1505     {
1506       this->eh_frame_section_ = os;
1507       this->eh_frame_data_ = new Eh_frame();
1508
1509       // For incremental linking, we do not optimize .eh_frame sections
1510       // or create a .eh_frame_hdr section.
1511       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1512         {
1513           Output_section* hdr_os =
1514             this->choose_output_section(NULL, ".eh_frame_hdr",
1515                                         elfcpp::SHT_PROGBITS,
1516                                         elfcpp::SHF_ALLOC, false,
1517                                         ORDER_EHFRAME, false);
1518
1519           if (hdr_os != NULL)
1520             {
1521               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1522                                                         this->eh_frame_data_);
1523               hdr_os->add_output_section_data(hdr_posd);
1524
1525               hdr_os->set_after_input_sections();
1526
1527               if (!this->script_options_->saw_phdrs_clause())
1528                 {
1529                   Output_segment* hdr_oseg;
1530                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1531                                                        elfcpp::PF_R);
1532                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1533                                                           elfcpp::PF_R);
1534                 }
1535
1536               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1537             }
1538         }
1539     }
1540
1541   return os;
1542 }
1543
1544 // Add an exception frame for a PLT.  This is called from target code.
1545
1546 void
1547 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1548                              size_t cie_length, const unsigned char* fde_data,
1549                              size_t fde_length)
1550 {
1551   if (parameters->incremental())
1552     {
1553       // FIXME: Maybe this could work some day....
1554       return;
1555     }
1556   Output_section* os = this->make_eh_frame_section(NULL);
1557   if (os == NULL)
1558     return;
1559   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1560                                             fde_data, fde_length);
1561   if (!this->added_eh_frame_data_)
1562     {
1563       os->add_output_section_data(this->eh_frame_data_);
1564       this->added_eh_frame_data_ = true;
1565     }
1566 }
1567
1568 // Scan a .debug_info or .debug_types section, and add summary
1569 // information to the .gdb_index section.
1570
1571 template<int size, bool big_endian>
1572 void
1573 Layout::add_to_gdb_index(bool is_type_unit,
1574                          Sized_relobj<size, big_endian>* object,
1575                          const unsigned char* symbols,
1576                          off_t symbols_size,
1577                          unsigned int shndx,
1578                          unsigned int reloc_shndx,
1579                          unsigned int reloc_type)
1580 {
1581   if (this->gdb_index_data_ == NULL)
1582     {
1583       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1584                                                        elfcpp::SHT_PROGBITS, 0,
1585                                                        false, ORDER_INVALID,
1586                                                        false);
1587       if (os == NULL)
1588         return;
1589
1590       this->gdb_index_data_ = new Gdb_index(os);
1591       os->add_output_section_data(this->gdb_index_data_);
1592       os->set_after_input_sections();
1593     }
1594
1595   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1596                                          symbols_size, shndx, reloc_shndx,
1597                                          reloc_type);
1598 }
1599
1600 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1601 // the output section.
1602
1603 Output_section*
1604 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1605                                 elfcpp::Elf_Xword flags,
1606                                 Output_section_data* posd,
1607                                 Output_section_order order, bool is_relro)
1608 {
1609   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1610                                                    false, order, is_relro);
1611   if (os != NULL)
1612     os->add_output_section_data(posd);
1613   return os;
1614 }
1615
1616 // Map section flags to segment flags.
1617
1618 elfcpp::Elf_Word
1619 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1620 {
1621   elfcpp::Elf_Word ret = elfcpp::PF_R;
1622   if ((flags & elfcpp::SHF_WRITE) != 0)
1623     ret |= elfcpp::PF_W;
1624   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1625     ret |= elfcpp::PF_X;
1626   return ret;
1627 }
1628
1629 // Make a new Output_section, and attach it to segments as
1630 // appropriate.  ORDER is the order in which this section should
1631 // appear in the output segment.  IS_RELRO is true if this is a relro
1632 // (read-only after relocations) section.
1633
1634 Output_section*
1635 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1636                             elfcpp::Elf_Xword flags,
1637                             Output_section_order order, bool is_relro)
1638 {
1639   Output_section* os;
1640   if ((flags & elfcpp::SHF_ALLOC) == 0
1641       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1642       && is_compressible_debug_section(name))
1643     os = new Output_compressed_section(&parameters->options(), name, type,
1644                                        flags);
1645   else if ((flags & elfcpp::SHF_ALLOC) == 0
1646            && parameters->options().strip_debug_non_line()
1647            && strcmp(".debug_abbrev", name) == 0)
1648     {
1649       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1650           name, type, flags);
1651       if (this->debug_info_)
1652         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1653     }
1654   else if ((flags & elfcpp::SHF_ALLOC) == 0
1655            && parameters->options().strip_debug_non_line()
1656            && strcmp(".debug_info", name) == 0)
1657     {
1658       os = this->debug_info_ = new Output_reduced_debug_info_section(
1659           name, type, flags);
1660       if (this->debug_abbrev_)
1661         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1662     }
1663   else
1664     {
1665       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1666       // not have correct section types.  Force them here.
1667       if (type == elfcpp::SHT_PROGBITS)
1668         {
1669           if (is_prefix_of(".init_array", name))
1670             type = elfcpp::SHT_INIT_ARRAY;
1671           else if (is_prefix_of(".preinit_array", name))
1672             type = elfcpp::SHT_PREINIT_ARRAY;
1673           else if (is_prefix_of(".fini_array", name))
1674             type = elfcpp::SHT_FINI_ARRAY;
1675         }
1676
1677       // FIXME: const_cast is ugly.
1678       Target* target = const_cast<Target*>(&parameters->target());
1679       os = target->make_output_section(name, type, flags);
1680     }
1681
1682   // With -z relro, we have to recognize the special sections by name.
1683   // There is no other way.
1684   bool is_relro_local = false;
1685   if (!this->script_options_->saw_sections_clause()
1686       && parameters->options().relro()
1687       && (flags & elfcpp::SHF_ALLOC) != 0
1688       && (flags & elfcpp::SHF_WRITE) != 0)
1689     {
1690       if (type == elfcpp::SHT_PROGBITS)
1691         {
1692           if ((flags & elfcpp::SHF_TLS) != 0)
1693             is_relro = true;
1694           else if (strcmp(name, ".data.rel.ro") == 0)
1695             is_relro = true;
1696           else if (strcmp(name, ".data.rel.ro.local") == 0)
1697             {
1698               is_relro = true;
1699               is_relro_local = true;
1700             }
1701           else if (strcmp(name, ".ctors") == 0
1702                    || strcmp(name, ".dtors") == 0
1703                    || strcmp(name, ".jcr") == 0)
1704             is_relro = true;
1705         }
1706       else if (type == elfcpp::SHT_INIT_ARRAY
1707                || type == elfcpp::SHT_FINI_ARRAY
1708                || type == elfcpp::SHT_PREINIT_ARRAY)
1709         is_relro = true;
1710     }
1711
1712   if (is_relro)
1713     os->set_is_relro();
1714
1715   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1716     order = this->default_section_order(os, is_relro_local);
1717
1718   os->set_order(order);
1719
1720   parameters->target().new_output_section(os);
1721
1722   this->section_list_.push_back(os);
1723
1724   // The GNU linker by default sorts some sections by priority, so we
1725   // do the same.  We need to know that this might happen before we
1726   // attach any input sections.
1727   if (!this->script_options_->saw_sections_clause()
1728       && !parameters->options().relocatable()
1729       && (strcmp(name, ".init_array") == 0
1730           || strcmp(name, ".fini_array") == 0
1731           || (!parameters->options().ctors_in_init_array()
1732               && (strcmp(name, ".ctors") == 0
1733                   || strcmp(name, ".dtors") == 0))))
1734     os->set_may_sort_attached_input_sections();
1735
1736   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1737   // sections before other .text sections.  We are compatible.  We
1738   // need to know that this might happen before we attach any input
1739   // sections.
1740   if (parameters->options().text_reorder()
1741       && !this->script_options_->saw_sections_clause()
1742       && !this->is_section_ordering_specified()
1743       && !parameters->options().relocatable()
1744       && strcmp(name, ".text") == 0)
1745     os->set_may_sort_attached_input_sections();
1746
1747   // GNU linker sorts section by name with --sort-section=name.
1748   if (strcmp(parameters->options().sort_section(), "name") == 0)
1749       os->set_must_sort_attached_input_sections();
1750
1751   // Check for .stab*str sections, as .stab* sections need to link to
1752   // them.
1753   if (type == elfcpp::SHT_STRTAB
1754       && !this->have_stabstr_section_
1755       && strncmp(name, ".stab", 5) == 0
1756       && strcmp(name + strlen(name) - 3, "str") == 0)
1757     this->have_stabstr_section_ = true;
1758
1759   // During a full incremental link, we add patch space to most
1760   // PROGBITS and NOBITS sections.  Flag those that may be
1761   // arbitrarily padded.
1762   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1763       && order != ORDER_INTERP
1764       && order != ORDER_INIT
1765       && order != ORDER_PLT
1766       && order != ORDER_FINI
1767       && order != ORDER_RELRO_LAST
1768       && order != ORDER_NON_RELRO_FIRST
1769       && strcmp(name, ".eh_frame") != 0
1770       && strcmp(name, ".ctors") != 0
1771       && strcmp(name, ".dtors") != 0
1772       && strcmp(name, ".jcr") != 0)
1773     {
1774       os->set_is_patch_space_allowed();
1775
1776       // Certain sections require "holes" to be filled with
1777       // specific fill patterns.  These fill patterns may have
1778       // a minimum size, so we must prevent allocations from the
1779       // free list that leave a hole smaller than the minimum.
1780       if (strcmp(name, ".debug_info") == 0)
1781         os->set_free_space_fill(new Output_fill_debug_info(false));
1782       else if (strcmp(name, ".debug_types") == 0)
1783         os->set_free_space_fill(new Output_fill_debug_info(true));
1784       else if (strcmp(name, ".debug_line") == 0)
1785         os->set_free_space_fill(new Output_fill_debug_line());
1786     }
1787
1788   // If we have already attached the sections to segments, then we
1789   // need to attach this one now.  This happens for sections created
1790   // directly by the linker.
1791   if (this->sections_are_attached_)
1792     this->attach_section_to_segment(&parameters->target(), os);
1793
1794   return os;
1795 }
1796
1797 // Return the default order in which a section should be placed in an
1798 // output segment.  This function captures a lot of the ideas in
1799 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1800 // linker created section is normally set when the section is created;
1801 // this function is used for input sections.
1802
1803 Output_section_order
1804 Layout::default_section_order(Output_section* os, bool is_relro_local)
1805 {
1806   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1807   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1808   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1809   bool is_bss = false;
1810
1811   switch (os->type())
1812     {
1813     default:
1814     case elfcpp::SHT_PROGBITS:
1815       break;
1816     case elfcpp::SHT_NOBITS:
1817       is_bss = true;
1818       break;
1819     case elfcpp::SHT_RELA:
1820     case elfcpp::SHT_REL:
1821       if (!is_write)
1822         return ORDER_DYNAMIC_RELOCS;
1823       break;
1824     case elfcpp::SHT_HASH:
1825     case elfcpp::SHT_DYNAMIC:
1826     case elfcpp::SHT_SHLIB:
1827     case elfcpp::SHT_DYNSYM:
1828     case elfcpp::SHT_GNU_HASH:
1829     case elfcpp::SHT_GNU_verdef:
1830     case elfcpp::SHT_GNU_verneed:
1831     case elfcpp::SHT_GNU_versym:
1832       if (!is_write)
1833         return ORDER_DYNAMIC_LINKER;
1834       break;
1835     case elfcpp::SHT_NOTE:
1836       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1837     }
1838
1839   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1840     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1841
1842   if (!is_bss && !is_write)
1843     {
1844       if (is_execinstr)
1845         {
1846           if (strcmp(os->name(), ".init") == 0)
1847             return ORDER_INIT;
1848           else if (strcmp(os->name(), ".fini") == 0)
1849             return ORDER_FINI;
1850         }
1851       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1852     }
1853
1854   if (os->is_relro())
1855     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1856
1857   if (os->is_small_section())
1858     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1859   if (os->is_large_section())
1860     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1861
1862   return is_bss ? ORDER_BSS : ORDER_DATA;
1863 }
1864
1865 // Attach output sections to segments.  This is called after we have
1866 // seen all the input sections.
1867
1868 void
1869 Layout::attach_sections_to_segments(const Target* target)
1870 {
1871   for (Section_list::iterator p = this->section_list_.begin();
1872        p != this->section_list_.end();
1873        ++p)
1874     this->attach_section_to_segment(target, *p);
1875
1876   this->sections_are_attached_ = true;
1877 }
1878
1879 // Attach an output section to a segment.
1880
1881 void
1882 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1883 {
1884   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1885     this->unattached_section_list_.push_back(os);
1886   else
1887     this->attach_allocated_section_to_segment(target, os);
1888 }
1889
1890 // Attach an allocated output section to a segment.
1891
1892 void
1893 Layout::attach_allocated_section_to_segment(const Target* target,
1894                                             Output_section* os)
1895 {
1896   elfcpp::Elf_Xword flags = os->flags();
1897   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1898
1899   if (parameters->options().relocatable())
1900     return;
1901
1902   // If we have a SECTIONS clause, we can't handle the attachment to
1903   // segments until after we've seen all the sections.
1904   if (this->script_options_->saw_sections_clause())
1905     return;
1906
1907   gold_assert(!this->script_options_->saw_phdrs_clause());
1908
1909   // This output section goes into a PT_LOAD segment.
1910
1911   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1912
1913   // If this output section's segment has extra flags that need to be set,
1914   // coming from a linker plugin, do that.
1915   seg_flags |= os->extra_segment_flags();
1916
1917   // Check for --section-start.
1918   uint64_t addr;
1919   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1920
1921   // In general the only thing we really care about for PT_LOAD
1922   // segments is whether or not they are writable or executable,
1923   // so that is how we search for them.
1924   // Large data sections also go into their own PT_LOAD segment.
1925   // People who need segments sorted on some other basis will
1926   // have to use a linker script.
1927
1928   Segment_list::const_iterator p;
1929   if (!os->is_unique_segment())
1930     {
1931       for (p = this->segment_list_.begin();
1932            p != this->segment_list_.end();
1933            ++p)
1934         {
1935           if ((*p)->type() != elfcpp::PT_LOAD)
1936             continue;
1937           if ((*p)->is_unique_segment())
1938             continue;
1939           if (!parameters->options().omagic()
1940               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1941             continue;
1942           if ((target->isolate_execinstr() || parameters->options().rosegment())
1943               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1944             continue;
1945           // If -Tbss was specified, we need to separate the data and BSS
1946           // segments.
1947           if (parameters->options().user_set_Tbss())
1948             {
1949               if ((os->type() == elfcpp::SHT_NOBITS)
1950                   == (*p)->has_any_data_sections())
1951                 continue;
1952             }
1953           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1954             continue;
1955
1956           if (is_address_set)
1957             {
1958               if ((*p)->are_addresses_set())
1959                 continue;
1960
1961               (*p)->add_initial_output_data(os);
1962               (*p)->update_flags_for_output_section(seg_flags);
1963               (*p)->set_addresses(addr, addr);
1964               break;
1965             }
1966
1967           (*p)->add_output_section_to_load(this, os, seg_flags);
1968           break;
1969         }
1970     }
1971
1972   if (p == this->segment_list_.end()
1973       || os->is_unique_segment())
1974     {
1975       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1976                                                        seg_flags);
1977       if (os->is_large_data_section())
1978         oseg->set_is_large_data_segment();
1979       oseg->add_output_section_to_load(this, os, seg_flags);
1980       if (is_address_set)
1981         oseg->set_addresses(addr, addr);
1982       // Check if segment should be marked unique.  For segments marked
1983       // unique by linker plugins, set the new alignment if specified.
1984       if (os->is_unique_segment())
1985         {
1986           oseg->set_is_unique_segment();
1987           if (os->segment_alignment() != 0)
1988             oseg->set_minimum_p_align(os->segment_alignment());
1989         }
1990     }
1991
1992   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1993   // segment.
1994   if (os->type() == elfcpp::SHT_NOTE)
1995     {
1996       // See if we already have an equivalent PT_NOTE segment.
1997       for (p = this->segment_list_.begin();
1998            p != segment_list_.end();
1999            ++p)
2000         {
2001           if ((*p)->type() == elfcpp::PT_NOTE
2002               && (((*p)->flags() & elfcpp::PF_W)
2003                   == (seg_flags & elfcpp::PF_W)))
2004             {
2005               (*p)->add_output_section_to_nonload(os, seg_flags);
2006               break;
2007             }
2008         }
2009
2010       if (p == this->segment_list_.end())
2011         {
2012           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2013                                                            seg_flags);
2014           oseg->add_output_section_to_nonload(os, seg_flags);
2015         }
2016     }
2017
2018   // If we see a loadable SHF_TLS section, we create a PT_TLS
2019   // segment.  There can only be one such segment.
2020   if ((flags & elfcpp::SHF_TLS) != 0)
2021     {
2022       if (this->tls_segment_ == NULL)
2023         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2024       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2025     }
2026
2027   // If -z relro is in effect, and we see a relro section, we create a
2028   // PT_GNU_RELRO segment.  There can only be one such segment.
2029   if (os->is_relro() && parameters->options().relro())
2030     {
2031       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2032       if (this->relro_segment_ == NULL)
2033         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2034       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2035     }
2036
2037   // If we see a section named .interp, put it into a PT_INTERP
2038   // segment.  This seems broken to me, but this is what GNU ld does,
2039   // and glibc expects it.
2040   if (strcmp(os->name(), ".interp") == 0
2041       && !this->script_options_->saw_phdrs_clause())
2042     {
2043       if (this->interp_segment_ == NULL)
2044         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2045       else
2046         gold_warning(_("multiple '.interp' sections in input files "
2047                        "may cause confusing PT_INTERP segment"));
2048       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2049     }
2050 }
2051
2052 // Make an output section for a script.
2053
2054 Output_section*
2055 Layout::make_output_section_for_script(
2056     const char* name,
2057     Script_sections::Section_type section_type)
2058 {
2059   name = this->namepool_.add(name, false, NULL);
2060   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2061   if (section_type == Script_sections::ST_NOLOAD)
2062     sh_flags = 0;
2063   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2064                                                  sh_flags, ORDER_INVALID,
2065                                                  false);
2066   os->set_found_in_sections_clause();
2067   if (section_type == Script_sections::ST_NOLOAD)
2068     os->set_is_noload();
2069   return os;
2070 }
2071
2072 // Return the number of segments we expect to see.
2073
2074 size_t
2075 Layout::expected_segment_count() const
2076 {
2077   size_t ret = this->segment_list_.size();
2078
2079   // If we didn't see a SECTIONS clause in a linker script, we should
2080   // already have the complete list of segments.  Otherwise we ask the
2081   // SECTIONS clause how many segments it expects, and add in the ones
2082   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2083
2084   if (!this->script_options_->saw_sections_clause())
2085     return ret;
2086   else
2087     {
2088       const Script_sections* ss = this->script_options_->script_sections();
2089       return ret + ss->expected_segment_count(this);
2090     }
2091 }
2092
2093 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2094 // is whether we saw a .note.GNU-stack section in the object file.
2095 // GNU_STACK_FLAGS is the section flags.  The flags give the
2096 // protection required for stack memory.  We record this in an
2097 // executable as a PT_GNU_STACK segment.  If an object file does not
2098 // have a .note.GNU-stack segment, we must assume that it is an old
2099 // object.  On some targets that will force an executable stack.
2100
2101 void
2102 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2103                          const Object* obj)
2104 {
2105   if (!seen_gnu_stack)
2106     {
2107       this->input_without_gnu_stack_note_ = true;
2108       if (parameters->options().warn_execstack()
2109           && parameters->target().is_default_stack_executable())
2110         gold_warning(_("%s: missing .note.GNU-stack section"
2111                        " implies executable stack"),
2112                      obj->name().c_str());
2113     }
2114   else
2115     {
2116       this->input_with_gnu_stack_note_ = true;
2117       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2118         {
2119           this->input_requires_executable_stack_ = true;
2120           if (parameters->options().warn_execstack())
2121             gold_warning(_("%s: requires executable stack"),
2122                          obj->name().c_str());
2123         }
2124     }
2125 }
2126
2127 // Create automatic note sections.
2128
2129 void
2130 Layout::create_notes()
2131 {
2132   this->create_gold_note();
2133   this->create_executable_stack_info();
2134   this->create_build_id();
2135 }
2136
2137 // Create the dynamic sections which are needed before we read the
2138 // relocs.
2139
2140 void
2141 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2142 {
2143   if (parameters->doing_static_link())
2144     return;
2145
2146   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2147                                                        elfcpp::SHT_DYNAMIC,
2148                                                        (elfcpp::SHF_ALLOC
2149                                                         | elfcpp::SHF_WRITE),
2150                                                        false, ORDER_RELRO,
2151                                                        true);
2152
2153   // A linker script may discard .dynamic, so check for NULL.
2154   if (this->dynamic_section_ != NULL)
2155     {
2156       this->dynamic_symbol_ =
2157         symtab->define_in_output_data("_DYNAMIC", NULL,
2158                                       Symbol_table::PREDEFINED,
2159                                       this->dynamic_section_, 0, 0,
2160                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2161                                       elfcpp::STV_HIDDEN, 0, false, false);
2162
2163       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2164
2165       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2166     }
2167 }
2168
2169 // For each output section whose name can be represented as C symbol,
2170 // define __start and __stop symbols for the section.  This is a GNU
2171 // extension.
2172
2173 void
2174 Layout::define_section_symbols(Symbol_table* symtab)
2175 {
2176   for (Section_list::const_iterator p = this->section_list_.begin();
2177        p != this->section_list_.end();
2178        ++p)
2179     {
2180       const char* const name = (*p)->name();
2181       if (is_cident(name))
2182         {
2183           const std::string name_string(name);
2184           const std::string start_name(cident_section_start_prefix
2185                                        + name_string);
2186           const std::string stop_name(cident_section_stop_prefix
2187                                       + name_string);
2188
2189           symtab->define_in_output_data(start_name.c_str(),
2190                                         NULL, // version
2191                                         Symbol_table::PREDEFINED,
2192                                         *p,
2193                                         0, // value
2194                                         0, // symsize
2195                                         elfcpp::STT_NOTYPE,
2196                                         elfcpp::STB_GLOBAL,
2197                                         elfcpp::STV_DEFAULT,
2198                                         0, // nonvis
2199                                         false, // offset_is_from_end
2200                                         true); // only_if_ref
2201
2202           symtab->define_in_output_data(stop_name.c_str(),
2203                                         NULL, // version
2204                                         Symbol_table::PREDEFINED,
2205                                         *p,
2206                                         0, // value
2207                                         0, // symsize
2208                                         elfcpp::STT_NOTYPE,
2209                                         elfcpp::STB_GLOBAL,
2210                                         elfcpp::STV_DEFAULT,
2211                                         0, // nonvis
2212                                         true, // offset_is_from_end
2213                                         true); // only_if_ref
2214         }
2215     }
2216 }
2217
2218 // Define symbols for group signatures.
2219
2220 void
2221 Layout::define_group_signatures(Symbol_table* symtab)
2222 {
2223   for (Group_signatures::iterator p = this->group_signatures_.begin();
2224        p != this->group_signatures_.end();
2225        ++p)
2226     {
2227       Symbol* sym = symtab->lookup(p->signature, NULL);
2228       if (sym != NULL)
2229         p->section->set_info_symndx(sym);
2230       else
2231         {
2232           // Force the name of the group section to the group
2233           // signature, and use the group's section symbol as the
2234           // signature symbol.
2235           if (strcmp(p->section->name(), p->signature) != 0)
2236             {
2237               const char* name = this->namepool_.add(p->signature,
2238                                                      true, NULL);
2239               p->section->set_name(name);
2240             }
2241           p->section->set_needs_symtab_index();
2242           p->section->set_info_section_symndx(p->section);
2243         }
2244     }
2245
2246   this->group_signatures_.clear();
2247 }
2248
2249 // Find the first read-only PT_LOAD segment, creating one if
2250 // necessary.
2251
2252 Output_segment*
2253 Layout::find_first_load_seg(const Target* target)
2254 {
2255   Output_segment* best = NULL;
2256   for (Segment_list::const_iterator p = this->segment_list_.begin();
2257        p != this->segment_list_.end();
2258        ++p)
2259     {
2260       if ((*p)->type() == elfcpp::PT_LOAD
2261           && ((*p)->flags() & elfcpp::PF_R) != 0
2262           && (parameters->options().omagic()
2263               || ((*p)->flags() & elfcpp::PF_W) == 0)
2264           && (!target->isolate_execinstr()
2265               || ((*p)->flags() & elfcpp::PF_X) == 0))
2266         {
2267           if (best == NULL || this->segment_precedes(*p, best))
2268             best = *p;
2269         }
2270     }
2271   if (best != NULL)
2272     return best;
2273
2274   gold_assert(!this->script_options_->saw_phdrs_clause());
2275
2276   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2277                                                        elfcpp::PF_R);
2278   return load_seg;
2279 }
2280
2281 // Save states of all current output segments.  Store saved states
2282 // in SEGMENT_STATES.
2283
2284 void
2285 Layout::save_segments(Segment_states* segment_states)
2286 {
2287   for (Segment_list::const_iterator p = this->segment_list_.begin();
2288        p != this->segment_list_.end();
2289        ++p)
2290     {
2291       Output_segment* segment = *p;
2292       // Shallow copy.
2293       Output_segment* copy = new Output_segment(*segment);
2294       (*segment_states)[segment] = copy;
2295     }
2296 }
2297
2298 // Restore states of output segments and delete any segment not found in
2299 // SEGMENT_STATES.
2300
2301 void
2302 Layout::restore_segments(const Segment_states* segment_states)
2303 {
2304   // Go through the segment list and remove any segment added in the
2305   // relaxation loop.
2306   this->tls_segment_ = NULL;
2307   this->relro_segment_ = NULL;
2308   Segment_list::iterator list_iter = this->segment_list_.begin();
2309   while (list_iter != this->segment_list_.end())
2310     {
2311       Output_segment* segment = *list_iter;
2312       Segment_states::const_iterator states_iter =
2313           segment_states->find(segment);
2314       if (states_iter != segment_states->end())
2315         {
2316           const Output_segment* copy = states_iter->second;
2317           // Shallow copy to restore states.
2318           *segment = *copy;
2319
2320           // Also fix up TLS and RELRO segment pointers as appropriate.
2321           if (segment->type() == elfcpp::PT_TLS)
2322             this->tls_segment_ = segment;
2323           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2324             this->relro_segment_ = segment;
2325
2326           ++list_iter;
2327         }
2328       else
2329         {
2330           list_iter = this->segment_list_.erase(list_iter);
2331           // This is a segment created during section layout.  It should be
2332           // safe to remove it since we should have removed all pointers to it.
2333           delete segment;
2334         }
2335     }
2336 }
2337
2338 // Clean up after relaxation so that sections can be laid out again.
2339
2340 void
2341 Layout::clean_up_after_relaxation()
2342 {
2343   // Restore the segments to point state just prior to the relaxation loop.
2344   Script_sections* script_section = this->script_options_->script_sections();
2345   script_section->release_segments();
2346   this->restore_segments(this->segment_states_);
2347
2348   // Reset section addresses and file offsets
2349   for (Section_list::iterator p = this->section_list_.begin();
2350        p != this->section_list_.end();
2351        ++p)
2352     {
2353       (*p)->restore_states();
2354
2355       // If an input section changes size because of relaxation,
2356       // we need to adjust the section offsets of all input sections.
2357       // after such a section.
2358       if ((*p)->section_offsets_need_adjustment())
2359         (*p)->adjust_section_offsets();
2360
2361       (*p)->reset_address_and_file_offset();
2362     }
2363
2364   // Reset special output object address and file offsets.
2365   for (Data_list::iterator p = this->special_output_list_.begin();
2366        p != this->special_output_list_.end();
2367        ++p)
2368     (*p)->reset_address_and_file_offset();
2369
2370   // A linker script may have created some output section data objects.
2371   // They are useless now.
2372   for (Output_section_data_list::const_iterator p =
2373          this->script_output_section_data_list_.begin();
2374        p != this->script_output_section_data_list_.end();
2375        ++p)
2376     delete *p;
2377   this->script_output_section_data_list_.clear();
2378
2379   // Special-case fill output objects are recreated each time through
2380   // the relaxation loop.
2381   this->reset_relax_output();
2382 }
2383
2384 void
2385 Layout::reset_relax_output()
2386 {
2387   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2388        p != this->relax_output_list_.end();
2389        ++p)
2390     delete *p;
2391   this->relax_output_list_.clear();
2392 }
2393
2394 // Prepare for relaxation.
2395
2396 void
2397 Layout::prepare_for_relaxation()
2398 {
2399   // Create an relaxation debug check if in debugging mode.
2400   if (is_debugging_enabled(DEBUG_RELAXATION))
2401     this->relaxation_debug_check_ = new Relaxation_debug_check();
2402
2403   // Save segment states.
2404   this->segment_states_ = new Segment_states();
2405   this->save_segments(this->segment_states_);
2406
2407   for(Section_list::const_iterator p = this->section_list_.begin();
2408       p != this->section_list_.end();
2409       ++p)
2410     (*p)->save_states();
2411
2412   if (is_debugging_enabled(DEBUG_RELAXATION))
2413     this->relaxation_debug_check_->check_output_data_for_reset_values(
2414         this->section_list_, this->special_output_list_,
2415         this->relax_output_list_);
2416
2417   // Also enable recording of output section data from scripts.
2418   this->record_output_section_data_from_script_ = true;
2419 }
2420
2421 // If the user set the address of the text segment, that may not be
2422 // compatible with putting the segment headers and file headers into
2423 // that segment.  For isolate_execinstr() targets, it's the rodata
2424 // segment rather than text where we might put the headers.
2425 static inline bool
2426 load_seg_unusable_for_headers(const Target* target)
2427 {
2428   const General_options& options = parameters->options();
2429   if (target->isolate_execinstr())
2430     return (options.user_set_Trodata_segment()
2431             && options.Trodata_segment() % target->abi_pagesize() != 0);
2432   else
2433     return (options.user_set_Ttext()
2434             && options.Ttext() % target->abi_pagesize() != 0);
2435 }
2436
2437 // Relaxation loop body:  If target has no relaxation, this runs only once
2438 // Otherwise, the target relaxation hook is called at the end of
2439 // each iteration.  If the hook returns true, it means re-layout of
2440 // section is required.
2441 //
2442 // The number of segments created by a linking script without a PHDRS
2443 // clause may be affected by section sizes and alignments.  There is
2444 // a remote chance that relaxation causes different number of PT_LOAD
2445 // segments are created and sections are attached to different segments.
2446 // Therefore, we always throw away all segments created during section
2447 // layout.  In order to be able to restart the section layout, we keep
2448 // a copy of the segment list right before the relaxation loop and use
2449 // that to restore the segments.
2450 //
2451 // PASS is the current relaxation pass number.
2452 // SYMTAB is a symbol table.
2453 // PLOAD_SEG is the address of a pointer for the load segment.
2454 // PHDR_SEG is a pointer to the PHDR segment.
2455 // SEGMENT_HEADERS points to the output segment header.
2456 // FILE_HEADER points to the output file header.
2457 // PSHNDX is the address to store the output section index.
2458
2459 off_t inline
2460 Layout::relaxation_loop_body(
2461     int pass,
2462     Target* target,
2463     Symbol_table* symtab,
2464     Output_segment** pload_seg,
2465     Output_segment* phdr_seg,
2466     Output_segment_headers* segment_headers,
2467     Output_file_header* file_header,
2468     unsigned int* pshndx)
2469 {
2470   // If this is not the first iteration, we need to clean up after
2471   // relaxation so that we can lay out the sections again.
2472   if (pass != 0)
2473     this->clean_up_after_relaxation();
2474
2475   // If there is a SECTIONS clause, put all the input sections into
2476   // the required order.
2477   Output_segment* load_seg;
2478   if (this->script_options_->saw_sections_clause())
2479     load_seg = this->set_section_addresses_from_script(symtab);
2480   else if (parameters->options().relocatable())
2481     load_seg = NULL;
2482   else
2483     load_seg = this->find_first_load_seg(target);
2484
2485   if (parameters->options().oformat_enum()
2486       != General_options::OBJECT_FORMAT_ELF)
2487     load_seg = NULL;
2488
2489   if (load_seg_unusable_for_headers(target))
2490     {
2491       load_seg = NULL;
2492       phdr_seg = NULL;
2493     }
2494
2495   gold_assert(phdr_seg == NULL
2496               || load_seg != NULL
2497               || this->script_options_->saw_sections_clause());
2498
2499   // If the address of the load segment we found has been set by
2500   // --section-start rather than by a script, then adjust the VMA and
2501   // LMA downward if possible to include the file and section headers.
2502   uint64_t header_gap = 0;
2503   if (load_seg != NULL
2504       && load_seg->are_addresses_set()
2505       && !this->script_options_->saw_sections_clause()
2506       && !parameters->options().relocatable())
2507     {
2508       file_header->finalize_data_size();
2509       segment_headers->finalize_data_size();
2510       size_t sizeof_headers = (file_header->data_size()
2511                                + segment_headers->data_size());
2512       const uint64_t abi_pagesize = target->abi_pagesize();
2513       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2514       hdr_paddr &= ~(abi_pagesize - 1);
2515       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2516       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2517         load_seg = NULL;
2518       else
2519         {
2520           load_seg->set_addresses(load_seg->vaddr() - subtract,
2521                                   load_seg->paddr() - subtract);
2522           header_gap = subtract - sizeof_headers;
2523         }
2524     }
2525
2526   // Lay out the segment headers.
2527   if (!parameters->options().relocatable())
2528     {
2529       gold_assert(segment_headers != NULL);
2530       if (header_gap != 0 && load_seg != NULL)
2531         {
2532           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2533           load_seg->add_initial_output_data(z);
2534         }
2535       if (load_seg != NULL)
2536         load_seg->add_initial_output_data(segment_headers);
2537       if (phdr_seg != NULL)
2538         phdr_seg->add_initial_output_data(segment_headers);
2539     }
2540
2541   // Lay out the file header.
2542   if (load_seg != NULL)
2543     load_seg->add_initial_output_data(file_header);
2544
2545   if (this->script_options_->saw_phdrs_clause()
2546       && !parameters->options().relocatable())
2547     {
2548       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2549       // clause in a linker script.
2550       Script_sections* ss = this->script_options_->script_sections();
2551       ss->put_headers_in_phdrs(file_header, segment_headers);
2552     }
2553
2554   // We set the output section indexes in set_segment_offsets and
2555   // set_section_indexes.
2556   *pshndx = 1;
2557
2558   // Set the file offsets of all the segments, and all the sections
2559   // they contain.
2560   off_t off;
2561   if (!parameters->options().relocatable())
2562     off = this->set_segment_offsets(target, load_seg, pshndx);
2563   else
2564     off = this->set_relocatable_section_offsets(file_header, pshndx);
2565
2566    // Verify that the dummy relaxation does not change anything.
2567   if (is_debugging_enabled(DEBUG_RELAXATION))
2568     {
2569       if (pass == 0)
2570         this->relaxation_debug_check_->read_sections(this->section_list_);
2571       else
2572         this->relaxation_debug_check_->verify_sections(this->section_list_);
2573     }
2574
2575   *pload_seg = load_seg;
2576   return off;
2577 }
2578
2579 // Search the list of patterns and find the postion of the given section
2580 // name in the output section.  If the section name matches a glob
2581 // pattern and a non-glob name, then the non-glob position takes
2582 // precedence.  Return 0 if no match is found.
2583
2584 unsigned int
2585 Layout::find_section_order_index(const std::string& section_name)
2586 {
2587   Unordered_map<std::string, unsigned int>::iterator map_it;
2588   map_it = this->input_section_position_.find(section_name);
2589   if (map_it != this->input_section_position_.end())
2590     return map_it->second;
2591
2592   // Absolute match failed.  Linear search the glob patterns.
2593   std::vector<std::string>::iterator it;
2594   for (it = this->input_section_glob_.begin();
2595        it != this->input_section_glob_.end();
2596        ++it)
2597     {
2598        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2599          {
2600            map_it = this->input_section_position_.find(*it);
2601            gold_assert(map_it != this->input_section_position_.end());
2602            return map_it->second;
2603          }
2604     }
2605   return 0;
2606 }
2607
2608 // Read the sequence of input sections from the file specified with
2609 // option --section-ordering-file.
2610
2611 void
2612 Layout::read_layout_from_file()
2613 {
2614   const char* filename = parameters->options().section_ordering_file();
2615   std::ifstream in;
2616   std::string line;
2617
2618   in.open(filename);
2619   if (!in)
2620     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2621                filename, strerror(errno));
2622
2623   std::getline(in, line);   // this chops off the trailing \n, if any
2624   unsigned int position = 1;
2625   this->set_section_ordering_specified();
2626
2627   while (in)
2628     {
2629       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2630         line.resize(line.length() - 1);
2631       // Ignore comments, beginning with '#'
2632       if (line[0] == '#')
2633         {
2634           std::getline(in, line);
2635           continue;
2636         }
2637       this->input_section_position_[line] = position;
2638       // Store all glob patterns in a vector.
2639       if (is_wildcard_string(line.c_str()))
2640         this->input_section_glob_.push_back(line);
2641       position++;
2642       std::getline(in, line);
2643     }
2644 }
2645
2646 // Finalize the layout.  When this is called, we have created all the
2647 // output sections and all the output segments which are based on
2648 // input sections.  We have several things to do, and we have to do
2649 // them in the right order, so that we get the right results correctly
2650 // and efficiently.
2651
2652 // 1) Finalize the list of output segments and create the segment
2653 // table header.
2654
2655 // 2) Finalize the dynamic symbol table and associated sections.
2656
2657 // 3) Determine the final file offset of all the output segments.
2658
2659 // 4) Determine the final file offset of all the SHF_ALLOC output
2660 // sections.
2661
2662 // 5) Create the symbol table sections and the section name table
2663 // section.
2664
2665 // 6) Finalize the symbol table: set symbol values to their final
2666 // value and make a final determination of which symbols are going
2667 // into the output symbol table.
2668
2669 // 7) Create the section table header.
2670
2671 // 8) Determine the final file offset of all the output sections which
2672 // are not SHF_ALLOC, including the section table header.
2673
2674 // 9) Finalize the ELF file header.
2675
2676 // This function returns the size of the output file.
2677
2678 off_t
2679 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2680                  Target* target, const Task* task)
2681 {
2682   target->finalize_sections(this, input_objects, symtab);
2683
2684   this->count_local_symbols(task, input_objects);
2685
2686   this->link_stabs_sections();
2687
2688   Output_segment* phdr_seg = NULL;
2689   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2690     {
2691       // There was a dynamic object in the link.  We need to create
2692       // some information for the dynamic linker.
2693
2694       // Create the PT_PHDR segment which will hold the program
2695       // headers.
2696       if (!this->script_options_->saw_phdrs_clause())
2697         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2698
2699       // Create the dynamic symbol table, including the hash table.
2700       Output_section* dynstr;
2701       std::vector<Symbol*> dynamic_symbols;
2702       unsigned int local_dynamic_count;
2703       Versions versions(*this->script_options()->version_script_info(),
2704                         &this->dynpool_);
2705       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2706                                   &local_dynamic_count, &dynamic_symbols,
2707                                   &versions);
2708
2709       // Create the .interp section to hold the name of the
2710       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2711       // if we saw a .interp section in an input file.
2712       if ((!parameters->options().shared()
2713            || parameters->options().dynamic_linker() != NULL)
2714           && this->interp_segment_ == NULL)
2715         this->create_interp(target);
2716
2717       // Finish the .dynamic section to hold the dynamic data, and put
2718       // it in a PT_DYNAMIC segment.
2719       this->finish_dynamic_section(input_objects, symtab);
2720
2721       // We should have added everything we need to the dynamic string
2722       // table.
2723       this->dynpool_.set_string_offsets();
2724
2725       // Create the version sections.  We can't do this until the
2726       // dynamic string table is complete.
2727       this->create_version_sections(&versions, symtab, local_dynamic_count,
2728                                     dynamic_symbols, dynstr);
2729
2730       // Set the size of the _DYNAMIC symbol.  We can't do this until
2731       // after we call create_version_sections.
2732       this->set_dynamic_symbol_size(symtab);
2733     }
2734
2735   // Create segment headers.
2736   Output_segment_headers* segment_headers =
2737     (parameters->options().relocatable()
2738      ? NULL
2739      : new Output_segment_headers(this->segment_list_));
2740
2741   // Lay out the file header.
2742   Output_file_header* file_header = new Output_file_header(target, symtab,
2743                                                            segment_headers);
2744
2745   this->special_output_list_.push_back(file_header);
2746   if (segment_headers != NULL)
2747     this->special_output_list_.push_back(segment_headers);
2748
2749   // Find approriate places for orphan output sections if we are using
2750   // a linker script.
2751   if (this->script_options_->saw_sections_clause())
2752     this->place_orphan_sections_in_script();
2753
2754   Output_segment* load_seg;
2755   off_t off;
2756   unsigned int shndx;
2757   int pass = 0;
2758
2759   // Take a snapshot of the section layout as needed.
2760   if (target->may_relax())
2761     this->prepare_for_relaxation();
2762
2763   // Run the relaxation loop to lay out sections.
2764   do
2765     {
2766       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2767                                        phdr_seg, segment_headers, file_header,
2768                                        &shndx);
2769       pass++;
2770     }
2771   while (target->may_relax()
2772          && target->relax(pass, input_objects, symtab, this, task));
2773
2774   // If there is a load segment that contains the file and program headers,
2775   // provide a symbol __ehdr_start pointing there.
2776   // A program can use this to examine itself robustly.
2777   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2778   if (ehdr_start != NULL && ehdr_start->is_predefined())
2779     {
2780       if (load_seg != NULL)
2781         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2782       else
2783         ehdr_start->set_undefined();
2784     }
2785
2786   // Set the file offsets of all the non-data sections we've seen so
2787   // far which don't have to wait for the input sections.  We need
2788   // this in order to finalize local symbols in non-allocated
2789   // sections.
2790   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2791
2792   // Set the section indexes of all unallocated sections seen so far,
2793   // in case any of them are somehow referenced by a symbol.
2794   shndx = this->set_section_indexes(shndx);
2795
2796   // Create the symbol table sections.
2797   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2798   if (!parameters->doing_static_link())
2799     this->assign_local_dynsym_offsets(input_objects);
2800
2801   // Process any symbol assignments from a linker script.  This must
2802   // be called after the symbol table has been finalized.
2803   this->script_options_->finalize_symbols(symtab, this);
2804
2805   // Create the incremental inputs sections.
2806   if (this->incremental_inputs_)
2807     {
2808       this->incremental_inputs_->finalize();
2809       this->create_incremental_info_sections(symtab);
2810     }
2811
2812   // Create the .shstrtab section.
2813   Output_section* shstrtab_section = this->create_shstrtab();
2814
2815   // Set the file offsets of the rest of the non-data sections which
2816   // don't have to wait for the input sections.
2817   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2818
2819   // Now that all sections have been created, set the section indexes
2820   // for any sections which haven't been done yet.
2821   shndx = this->set_section_indexes(shndx);
2822
2823   // Create the section table header.
2824   this->create_shdrs(shstrtab_section, &off);
2825
2826   // If there are no sections which require postprocessing, we can
2827   // handle the section names now, and avoid a resize later.
2828   if (!this->any_postprocessing_sections_)
2829     {
2830       off = this->set_section_offsets(off,
2831                                       POSTPROCESSING_SECTIONS_PASS);
2832       off =
2833           this->set_section_offsets(off,
2834                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2835     }
2836
2837   file_header->set_section_info(this->section_headers_, shstrtab_section);
2838
2839   // Now we know exactly where everything goes in the output file
2840   // (except for non-allocated sections which require postprocessing).
2841   Output_data::layout_complete();
2842
2843   this->output_file_size_ = off;
2844
2845   return off;
2846 }
2847
2848 // Create a note header following the format defined in the ELF ABI.
2849 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2850 // of the section to create, DESCSZ is the size of the descriptor.
2851 // ALLOCATE is true if the section should be allocated in memory.
2852 // This returns the new note section.  It sets *TRAILING_PADDING to
2853 // the number of trailing zero bytes required.
2854
2855 Output_section*
2856 Layout::create_note(const char* name, int note_type,
2857                     const char* section_name, size_t descsz,
2858                     bool allocate, size_t* trailing_padding)
2859 {
2860   // Authorities all agree that the values in a .note field should
2861   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2862   // they differ on what the alignment is for 64-bit binaries.
2863   // The GABI says unambiguously they take 8-byte alignment:
2864   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2865   // Other documentation says alignment should always be 4 bytes:
2866   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2867   // GNU ld and GNU readelf both support the latter (at least as of
2868   // version 2.16.91), and glibc always generates the latter for
2869   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2870   // here.
2871 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2872   const int size = parameters->target().get_size();
2873 #else
2874   const int size = 32;
2875 #endif
2876
2877   // The contents of the .note section.
2878   size_t namesz = strlen(name) + 1;
2879   size_t aligned_namesz = align_address(namesz, size / 8);
2880   size_t aligned_descsz = align_address(descsz, size / 8);
2881
2882   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2883
2884   unsigned char* buffer = new unsigned char[notehdrsz];
2885   memset(buffer, 0, notehdrsz);
2886
2887   bool is_big_endian = parameters->target().is_big_endian();
2888
2889   if (size == 32)
2890     {
2891       if (!is_big_endian)
2892         {
2893           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2894           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2895           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2896         }
2897       else
2898         {
2899           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2900           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2901           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2902         }
2903     }
2904   else if (size == 64)
2905     {
2906       if (!is_big_endian)
2907         {
2908           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2909           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2910           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2911         }
2912       else
2913         {
2914           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2915           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2916           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2917         }
2918     }
2919   else
2920     gold_unreachable();
2921
2922   memcpy(buffer + 3 * (size / 8), name, namesz);
2923
2924   elfcpp::Elf_Xword flags = 0;
2925   Output_section_order order = ORDER_INVALID;
2926   if (allocate)
2927     {
2928       flags = elfcpp::SHF_ALLOC;
2929       order = ORDER_RO_NOTE;
2930     }
2931   Output_section* os = this->choose_output_section(NULL, section_name,
2932                                                    elfcpp::SHT_NOTE,
2933                                                    flags, false, order, false);
2934   if (os == NULL)
2935     return NULL;
2936
2937   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2938                                                            size / 8,
2939                                                            "** note header");
2940   os->add_output_section_data(posd);
2941
2942   *trailing_padding = aligned_descsz - descsz;
2943
2944   return os;
2945 }
2946
2947 // For an executable or shared library, create a note to record the
2948 // version of gold used to create the binary.
2949
2950 void
2951 Layout::create_gold_note()
2952 {
2953   if (parameters->options().relocatable()
2954       || parameters->incremental_update())
2955     return;
2956
2957   std::string desc = std::string("gold ") + gold::get_version_string();
2958
2959   size_t trailing_padding;
2960   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2961                                          ".note.gnu.gold-version", desc.size(),
2962                                          false, &trailing_padding);
2963   if (os == NULL)
2964     return;
2965
2966   Output_section_data* posd = new Output_data_const(desc, 4);
2967   os->add_output_section_data(posd);
2968
2969   if (trailing_padding > 0)
2970     {
2971       posd = new Output_data_zero_fill(trailing_padding, 0);
2972       os->add_output_section_data(posd);
2973     }
2974 }
2975
2976 // Record whether the stack should be executable.  This can be set
2977 // from the command line using the -z execstack or -z noexecstack
2978 // options.  Otherwise, if any input file has a .note.GNU-stack
2979 // section with the SHF_EXECINSTR flag set, the stack should be
2980 // executable.  Otherwise, if at least one input file a
2981 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2982 // section, we use the target default for whether the stack should be
2983 // executable.  Otherwise, we don't generate a stack note.  When
2984 // generating a object file, we create a .note.GNU-stack section with
2985 // the appropriate marking.  When generating an executable or shared
2986 // library, we create a PT_GNU_STACK segment.
2987
2988 void
2989 Layout::create_executable_stack_info()
2990 {
2991   bool is_stack_executable;
2992   if (parameters->options().is_execstack_set())
2993     {
2994       is_stack_executable = parameters->options().is_stack_executable();
2995       if (!is_stack_executable
2996           && this->input_requires_executable_stack_
2997           && parameters->options().warn_execstack())
2998         gold_warning(_("one or more inputs require executable stack, "
2999                        "but -z noexecstack was given"));
3000     }
3001   else if (!this->input_with_gnu_stack_note_)
3002     return;
3003   else
3004     {
3005       if (this->input_requires_executable_stack_)
3006         is_stack_executable = true;
3007       else if (this->input_without_gnu_stack_note_)
3008         is_stack_executable =
3009           parameters->target().is_default_stack_executable();
3010       else
3011         is_stack_executable = false;
3012     }
3013
3014   if (parameters->options().relocatable())
3015     {
3016       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3017       elfcpp::Elf_Xword flags = 0;
3018       if (is_stack_executable)
3019         flags |= elfcpp::SHF_EXECINSTR;
3020       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3021                                 ORDER_INVALID, false);
3022     }
3023   else
3024     {
3025       if (this->script_options_->saw_phdrs_clause())
3026         return;
3027       int flags = elfcpp::PF_R | elfcpp::PF_W;
3028       if (is_stack_executable)
3029         flags |= elfcpp::PF_X;
3030       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3031     }
3032 }
3033
3034 // If --build-id was used, set up the build ID note.
3035
3036 void
3037 Layout::create_build_id()
3038 {
3039   if (!parameters->options().user_set_build_id())
3040     return;
3041
3042   const char* style = parameters->options().build_id();
3043   if (strcmp(style, "none") == 0)
3044     return;
3045
3046   // Set DESCSZ to the size of the note descriptor.  When possible,
3047   // set DESC to the note descriptor contents.
3048   size_t descsz;
3049   std::string desc;
3050   if (strcmp(style, "md5") == 0)
3051     descsz = 128 / 8;
3052   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3053     descsz = 160 / 8;
3054   else if (strcmp(style, "uuid") == 0)
3055     {
3056       const size_t uuidsz = 128 / 8;
3057
3058       char buffer[uuidsz];
3059       memset(buffer, 0, uuidsz);
3060
3061       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3062       if (descriptor < 0)
3063         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3064                    strerror(errno));
3065       else
3066         {
3067           ssize_t got = ::read(descriptor, buffer, uuidsz);
3068           release_descriptor(descriptor, true);
3069           if (got < 0)
3070             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3071           else if (static_cast<size_t>(got) != uuidsz)
3072             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3073                        uuidsz, got);
3074         }
3075
3076       desc.assign(buffer, uuidsz);
3077       descsz = uuidsz;
3078     }
3079   else if (strncmp(style, "0x", 2) == 0)
3080     {
3081       hex_init();
3082       const char* p = style + 2;
3083       while (*p != '\0')
3084         {
3085           if (hex_p(p[0]) && hex_p(p[1]))
3086             {
3087               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3088               desc += c;
3089               p += 2;
3090             }
3091           else if (*p == '-' || *p == ':')
3092             ++p;
3093           else
3094             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3095                        style);
3096         }
3097       descsz = desc.size();
3098     }
3099   else
3100     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3101
3102   // Create the note.
3103   size_t trailing_padding;
3104   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3105                                          ".note.gnu.build-id", descsz, true,
3106                                          &trailing_padding);
3107   if (os == NULL)
3108     return;
3109
3110   if (!desc.empty())
3111     {
3112       // We know the value already, so we fill it in now.
3113       gold_assert(desc.size() == descsz);
3114
3115       Output_section_data* posd = new Output_data_const(desc, 4);
3116       os->add_output_section_data(posd);
3117
3118       if (trailing_padding != 0)
3119         {
3120           posd = new Output_data_zero_fill(trailing_padding, 0);
3121           os->add_output_section_data(posd);
3122         }
3123     }
3124   else
3125     {
3126       // We need to compute a checksum after we have completed the
3127       // link.
3128       gold_assert(trailing_padding == 0);
3129       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3130       os->add_output_section_data(this->build_id_note_);
3131     }
3132 }
3133
3134 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3135 // field of the former should point to the latter.  I'm not sure who
3136 // started this, but the GNU linker does it, and some tools depend
3137 // upon it.
3138
3139 void
3140 Layout::link_stabs_sections()
3141 {
3142   if (!this->have_stabstr_section_)
3143     return;
3144
3145   for (Section_list::iterator p = this->section_list_.begin();
3146        p != this->section_list_.end();
3147        ++p)
3148     {
3149       if ((*p)->type() != elfcpp::SHT_STRTAB)
3150         continue;
3151
3152       const char* name = (*p)->name();
3153       if (strncmp(name, ".stab", 5) != 0)
3154         continue;
3155
3156       size_t len = strlen(name);
3157       if (strcmp(name + len - 3, "str") != 0)
3158         continue;
3159
3160       std::string stab_name(name, len - 3);
3161       Output_section* stab_sec;
3162       stab_sec = this->find_output_section(stab_name.c_str());
3163       if (stab_sec != NULL)
3164         stab_sec->set_link_section(*p);
3165     }
3166 }
3167
3168 // Create .gnu_incremental_inputs and related sections needed
3169 // for the next run of incremental linking to check what has changed.
3170
3171 void
3172 Layout::create_incremental_info_sections(Symbol_table* symtab)
3173 {
3174   Incremental_inputs* incr = this->incremental_inputs_;
3175
3176   gold_assert(incr != NULL);
3177
3178   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3179   incr->create_data_sections(symtab);
3180
3181   // Add the .gnu_incremental_inputs section.
3182   const char* incremental_inputs_name =
3183     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3184   Output_section* incremental_inputs_os =
3185     this->make_output_section(incremental_inputs_name,
3186                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3187                               ORDER_INVALID, false);
3188   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3189
3190   // Add the .gnu_incremental_symtab section.
3191   const char* incremental_symtab_name =
3192     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3193   Output_section* incremental_symtab_os =
3194     this->make_output_section(incremental_symtab_name,
3195                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3196                               ORDER_INVALID, false);
3197   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3198   incremental_symtab_os->set_entsize(4);
3199
3200   // Add the .gnu_incremental_relocs section.
3201   const char* incremental_relocs_name =
3202     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3203   Output_section* incremental_relocs_os =
3204     this->make_output_section(incremental_relocs_name,
3205                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3206                               ORDER_INVALID, false);
3207   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3208   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3209
3210   // Add the .gnu_incremental_got_plt section.
3211   const char* incremental_got_plt_name =
3212     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3213   Output_section* incremental_got_plt_os =
3214     this->make_output_section(incremental_got_plt_name,
3215                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3216                               ORDER_INVALID, false);
3217   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3218
3219   // Add the .gnu_incremental_strtab section.
3220   const char* incremental_strtab_name =
3221     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3222   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3223                                                         elfcpp::SHT_STRTAB, 0,
3224                                                         ORDER_INVALID, false);
3225   Output_data_strtab* strtab_data =
3226       new Output_data_strtab(incr->get_stringpool());
3227   incremental_strtab_os->add_output_section_data(strtab_data);
3228
3229   incremental_inputs_os->set_after_input_sections();
3230   incremental_symtab_os->set_after_input_sections();
3231   incremental_relocs_os->set_after_input_sections();
3232   incremental_got_plt_os->set_after_input_sections();
3233
3234   incremental_inputs_os->set_link_section(incremental_strtab_os);
3235   incremental_symtab_os->set_link_section(incremental_inputs_os);
3236   incremental_relocs_os->set_link_section(incremental_inputs_os);
3237   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3238 }
3239
3240 // Return whether SEG1 should be before SEG2 in the output file.  This
3241 // is based entirely on the segment type and flags.  When this is
3242 // called the segment addresses have normally not yet been set.
3243
3244 bool
3245 Layout::segment_precedes(const Output_segment* seg1,
3246                          const Output_segment* seg2)
3247 {
3248   elfcpp::Elf_Word type1 = seg1->type();
3249   elfcpp::Elf_Word type2 = seg2->type();
3250
3251   // The single PT_PHDR segment is required to precede any loadable
3252   // segment.  We simply make it always first.
3253   if (type1 == elfcpp::PT_PHDR)
3254     {
3255       gold_assert(type2 != elfcpp::PT_PHDR);
3256       return true;
3257     }
3258   if (type2 == elfcpp::PT_PHDR)
3259     return false;
3260
3261   // The single PT_INTERP segment is required to precede any loadable
3262   // segment.  We simply make it always second.
3263   if (type1 == elfcpp::PT_INTERP)
3264     {
3265       gold_assert(type2 != elfcpp::PT_INTERP);
3266       return true;
3267     }
3268   if (type2 == elfcpp::PT_INTERP)
3269     return false;
3270
3271   // We then put PT_LOAD segments before any other segments.
3272   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3273     return true;
3274   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3275     return false;
3276
3277   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3278   // segment, because that is where the dynamic linker expects to find
3279   // it (this is just for efficiency; other positions would also work
3280   // correctly).
3281   if (type1 == elfcpp::PT_TLS
3282       && type2 != elfcpp::PT_TLS
3283       && type2 != elfcpp::PT_GNU_RELRO)
3284     return false;
3285   if (type2 == elfcpp::PT_TLS
3286       && type1 != elfcpp::PT_TLS
3287       && type1 != elfcpp::PT_GNU_RELRO)
3288     return true;
3289
3290   // We put the PT_GNU_RELRO segment last, because that is where the
3291   // dynamic linker expects to find it (as with PT_TLS, this is just
3292   // for efficiency).
3293   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3294     return false;
3295   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3296     return true;
3297
3298   const elfcpp::Elf_Word flags1 = seg1->flags();
3299   const elfcpp::Elf_Word flags2 = seg2->flags();
3300
3301   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3302   // by the numeric segment type and flags values.  There should not
3303   // be more than one segment with the same type and flags, except
3304   // when a linker script specifies such.
3305   if (type1 != elfcpp::PT_LOAD)
3306     {
3307       if (type1 != type2)
3308         return type1 < type2;
3309       gold_assert(flags1 != flags2
3310                   || this->script_options_->saw_phdrs_clause());
3311       return flags1 < flags2;
3312     }
3313
3314   // If the addresses are set already, sort by load address.
3315   if (seg1->are_addresses_set())
3316     {
3317       if (!seg2->are_addresses_set())
3318         return true;
3319
3320       unsigned int section_count1 = seg1->output_section_count();
3321       unsigned int section_count2 = seg2->output_section_count();
3322       if (section_count1 == 0 && section_count2 > 0)
3323         return true;
3324       if (section_count1 > 0 && section_count2 == 0)
3325         return false;
3326
3327       uint64_t paddr1 = (seg1->are_addresses_set()
3328                          ? seg1->paddr()
3329                          : seg1->first_section_load_address());
3330       uint64_t paddr2 = (seg2->are_addresses_set()
3331                          ? seg2->paddr()
3332                          : seg2->first_section_load_address());
3333
3334       if (paddr1 != paddr2)
3335         return paddr1 < paddr2;
3336     }
3337   else if (seg2->are_addresses_set())
3338     return false;
3339
3340   // A segment which holds large data comes after a segment which does
3341   // not hold large data.
3342   if (seg1->is_large_data_segment())
3343     {
3344       if (!seg2->is_large_data_segment())
3345         return false;
3346     }
3347   else if (seg2->is_large_data_segment())
3348     return true;
3349
3350   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3351   // segments come before writable segments.  Then writable segments
3352   // with data come before writable segments without data.  Then
3353   // executable segments come before non-executable segments.  Then
3354   // the unlikely case of a non-readable segment comes before the
3355   // normal case of a readable segment.  If there are multiple
3356   // segments with the same type and flags, we require that the
3357   // address be set, and we sort by virtual address and then physical
3358   // address.
3359   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3360     return (flags1 & elfcpp::PF_W) == 0;
3361   if ((flags1 & elfcpp::PF_W) != 0
3362       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3363     return seg1->has_any_data_sections();
3364   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3365     return (flags1 & elfcpp::PF_X) != 0;
3366   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3367     return (flags1 & elfcpp::PF_R) == 0;
3368
3369   // We shouldn't get here--we shouldn't create segments which we
3370   // can't distinguish.  Unless of course we are using a weird linker
3371   // script or overlapping --section-start options.  We could also get
3372   // here if plugins want unique segments for subsets of sections.
3373   gold_assert(this->script_options_->saw_phdrs_clause()
3374               || parameters->options().any_section_start()
3375               || this->is_unique_segment_for_sections_specified());
3376   return false;
3377 }
3378
3379 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3380
3381 static off_t
3382 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3383 {
3384   uint64_t unsigned_off = off;
3385   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3386                           | (addr & (abi_pagesize - 1)));
3387   if (aligned_off < unsigned_off)
3388     aligned_off += abi_pagesize;
3389   return aligned_off;
3390 }
3391
3392 // On targets where the text segment contains only executable code,
3393 // a non-executable segment is never the text segment.
3394
3395 static inline bool
3396 is_text_segment(const Target* target, const Output_segment* seg)
3397 {
3398   elfcpp::Elf_Xword flags = seg->flags();
3399   if ((flags & elfcpp::PF_W) != 0)
3400     return false;
3401   if ((flags & elfcpp::PF_X) == 0)
3402     return !target->isolate_execinstr();
3403   return true;
3404 }
3405
3406 // Set the file offsets of all the segments, and all the sections they
3407 // contain.  They have all been created.  LOAD_SEG must be be laid out
3408 // first.  Return the offset of the data to follow.
3409
3410 off_t
3411 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3412                             unsigned int* pshndx)
3413 {
3414   // Sort them into the final order.  We use a stable sort so that we
3415   // don't randomize the order of indistinguishable segments created
3416   // by linker scripts.
3417   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3418                    Layout::Compare_segments(this));
3419
3420   // Find the PT_LOAD segments, and set their addresses and offsets
3421   // and their section's addresses and offsets.
3422   uint64_t start_addr;
3423   if (parameters->options().user_set_Ttext())
3424     start_addr = parameters->options().Ttext();
3425   else if (parameters->options().output_is_position_independent())
3426     start_addr = 0;
3427   else
3428     start_addr = target->default_text_segment_address();
3429
3430   uint64_t addr = start_addr;
3431   off_t off = 0;
3432
3433   // If LOAD_SEG is NULL, then the file header and segment headers
3434   // will not be loadable.  But they still need to be at offset 0 in
3435   // the file.  Set their offsets now.
3436   if (load_seg == NULL)
3437     {
3438       for (Data_list::iterator p = this->special_output_list_.begin();
3439            p != this->special_output_list_.end();
3440            ++p)
3441         {
3442           off = align_address(off, (*p)->addralign());
3443           (*p)->set_address_and_file_offset(0, off);
3444           off += (*p)->data_size();
3445         }
3446     }
3447
3448   unsigned int increase_relro = this->increase_relro_;
3449   if (this->script_options_->saw_sections_clause())
3450     increase_relro = 0;
3451
3452   const bool check_sections = parameters->options().check_sections();
3453   Output_segment* last_load_segment = NULL;
3454
3455   unsigned int shndx_begin = *pshndx;
3456   unsigned int shndx_load_seg = *pshndx;
3457
3458   for (Segment_list::iterator p = this->segment_list_.begin();
3459        p != this->segment_list_.end();
3460        ++p)
3461     {
3462       if ((*p)->type() == elfcpp::PT_LOAD)
3463         {
3464           if (target->isolate_execinstr())
3465             {
3466               // When we hit the segment that should contain the
3467               // file headers, reset the file offset so we place
3468               // it and subsequent segments appropriately.
3469               // We'll fix up the preceding segments below.
3470               if (load_seg == *p)
3471                 {
3472                   if (off == 0)
3473                     load_seg = NULL;
3474                   else
3475                     {
3476                       off = 0;
3477                       shndx_load_seg = *pshndx;
3478                     }
3479                 }
3480             }
3481           else
3482             {
3483               // Verify that the file headers fall into the first segment.
3484               if (load_seg != NULL && load_seg != *p)
3485                 gold_unreachable();
3486               load_seg = NULL;
3487             }
3488
3489           bool are_addresses_set = (*p)->are_addresses_set();
3490           if (are_addresses_set)
3491             {
3492               // When it comes to setting file offsets, we care about
3493               // the physical address.
3494               addr = (*p)->paddr();
3495             }
3496           else if (parameters->options().user_set_Ttext()
3497                    && (parameters->options().omagic()
3498                        || is_text_segment(target, *p)))
3499             {
3500               are_addresses_set = true;
3501             }
3502           else if (parameters->options().user_set_Trodata_segment()
3503                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3504             {
3505               addr = parameters->options().Trodata_segment();
3506               are_addresses_set = true;
3507             }
3508           else if (parameters->options().user_set_Tdata()
3509                    && ((*p)->flags() & elfcpp::PF_W) != 0
3510                    && (!parameters->options().user_set_Tbss()
3511                        || (*p)->has_any_data_sections()))
3512             {
3513               addr = parameters->options().Tdata();
3514               are_addresses_set = true;
3515             }
3516           else if (parameters->options().user_set_Tbss()
3517                    && ((*p)->flags() & elfcpp::PF_W) != 0
3518                    && !(*p)->has_any_data_sections())
3519             {
3520               addr = parameters->options().Tbss();
3521               are_addresses_set = true;
3522             }
3523
3524           uint64_t orig_addr = addr;
3525           uint64_t orig_off = off;
3526
3527           uint64_t aligned_addr = 0;
3528           uint64_t abi_pagesize = target->abi_pagesize();
3529           uint64_t common_pagesize = target->common_pagesize();
3530
3531           if (!parameters->options().nmagic()
3532               && !parameters->options().omagic())
3533             (*p)->set_minimum_p_align(abi_pagesize);
3534
3535           if (!are_addresses_set)
3536             {
3537               // Skip the address forward one page, maintaining the same
3538               // position within the page.  This lets us store both segments
3539               // overlapping on a single page in the file, but the loader will
3540               // put them on different pages in memory. We will revisit this
3541               // decision once we know the size of the segment.
3542
3543               uint64_t max_align = (*p)->maximum_alignment();
3544               if (max_align > abi_pagesize)
3545                 addr = align_address(addr, max_align);
3546               aligned_addr = addr;
3547
3548               if (load_seg == *p)
3549                 {
3550                   // This is the segment that will contain the file
3551                   // headers, so its offset will have to be exactly zero.
3552                   gold_assert(orig_off == 0);
3553
3554                   // If the target wants a fixed minimum distance from the
3555                   // text segment to the read-only segment, move up now.
3556                   uint64_t min_addr =
3557                     start_addr + (parameters->options().user_set_rosegment_gap()
3558                                   ? parameters->options().rosegment_gap()
3559                                   : target->rosegment_gap());
3560                   if (addr < min_addr)
3561                     addr = min_addr;
3562
3563                   // But this is not the first segment!  To make its
3564                   // address congruent with its offset, that address better
3565                   // be aligned to the ABI-mandated page size.
3566                   addr = align_address(addr, abi_pagesize);
3567                   aligned_addr = addr;
3568                 }
3569               else
3570                 {
3571                   if ((addr & (abi_pagesize - 1)) != 0)
3572                     addr = addr + abi_pagesize;
3573
3574                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3575                 }
3576             }
3577
3578           if (!parameters->options().nmagic()
3579               && !parameters->options().omagic())
3580             {
3581               // Here we are also taking care of the case when
3582               // the maximum segment alignment is larger than the page size.
3583               off = align_file_offset(off, addr,
3584                                       std::max(abi_pagesize,
3585                                                (*p)->maximum_alignment()));
3586             }
3587           else
3588             {
3589               // This is -N or -n with a section script which prevents
3590               // us from using a load segment.  We need to ensure that
3591               // the file offset is aligned to the alignment of the
3592               // segment.  This is because the linker script
3593               // implicitly assumed a zero offset.  If we don't align
3594               // here, then the alignment of the sections in the
3595               // linker script may not match the alignment of the
3596               // sections in the set_section_addresses call below,
3597               // causing an error about dot moving backward.
3598               off = align_address(off, (*p)->maximum_alignment());
3599             }
3600
3601           unsigned int shndx_hold = *pshndx;
3602           bool has_relro = false;
3603           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3604                                                           false, addr,
3605                                                           &increase_relro,
3606                                                           &has_relro,
3607                                                           &off, pshndx);
3608
3609           // Now that we know the size of this segment, we may be able
3610           // to save a page in memory, at the cost of wasting some
3611           // file space, by instead aligning to the start of a new
3612           // page.  Here we use the real machine page size rather than
3613           // the ABI mandated page size.  If the segment has been
3614           // aligned so that the relro data ends at a page boundary,
3615           // we do not try to realign it.
3616
3617           if (!are_addresses_set
3618               && !has_relro
3619               && aligned_addr != addr
3620               && !parameters->incremental())
3621             {
3622               uint64_t first_off = (common_pagesize
3623                                     - (aligned_addr
3624                                        & (common_pagesize - 1)));
3625               uint64_t last_off = new_addr & (common_pagesize - 1);
3626               if (first_off > 0
3627                   && last_off > 0
3628                   && ((aligned_addr & ~ (common_pagesize - 1))
3629                       != (new_addr & ~ (common_pagesize - 1)))
3630                   && first_off + last_off <= common_pagesize)
3631                 {
3632                   *pshndx = shndx_hold;
3633                   addr = align_address(aligned_addr, common_pagesize);
3634                   addr = align_address(addr, (*p)->maximum_alignment());
3635                   if ((addr & (abi_pagesize - 1)) != 0)
3636                     addr = addr + abi_pagesize;
3637                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3638                   off = align_file_offset(off, addr, abi_pagesize);
3639
3640                   increase_relro = this->increase_relro_;
3641                   if (this->script_options_->saw_sections_clause())
3642                     increase_relro = 0;
3643                   has_relro = false;
3644
3645                   new_addr = (*p)->set_section_addresses(target, this,
3646                                                          true, addr,
3647                                                          &increase_relro,
3648                                                          &has_relro,
3649                                                          &off, pshndx);
3650                 }
3651             }
3652
3653           addr = new_addr;
3654
3655           // Implement --check-sections.  We know that the segments
3656           // are sorted by LMA.
3657           if (check_sections && last_load_segment != NULL)
3658             {
3659               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3660               if (last_load_segment->paddr() + last_load_segment->memsz()
3661                   > (*p)->paddr())
3662                 {
3663                   unsigned long long lb1 = last_load_segment->paddr();
3664                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3665                   unsigned long long lb2 = (*p)->paddr();
3666                   unsigned long long le2 = lb2 + (*p)->memsz();
3667                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3668                                "[0x%llx -> 0x%llx]"),
3669                              lb1, le1, lb2, le2);
3670                 }
3671             }
3672           last_load_segment = *p;
3673         }
3674     }
3675
3676   if (load_seg != NULL && target->isolate_execinstr())
3677     {
3678       // Process the early segments again, setting their file offsets
3679       // so they land after the segments starting at LOAD_SEG.
3680       off = align_file_offset(off, 0, target->abi_pagesize());
3681
3682       this->reset_relax_output();
3683
3684       for (Segment_list::iterator p = this->segment_list_.begin();
3685            *p != load_seg;
3686            ++p)
3687         {
3688           if ((*p)->type() == elfcpp::PT_LOAD)
3689             {
3690               // We repeat the whole job of assigning addresses and
3691               // offsets, but we really only want to change the offsets and
3692               // must ensure that the addresses all come out the same as
3693               // they did the first time through.
3694               bool has_relro = false;
3695               const uint64_t old_addr = (*p)->vaddr();
3696               const uint64_t old_end = old_addr + (*p)->memsz();
3697               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3698                                                               true, old_addr,
3699                                                               &increase_relro,
3700                                                               &has_relro,
3701                                                               &off,
3702                                                               &shndx_begin);
3703               gold_assert(new_addr == old_end);
3704             }
3705         }
3706
3707       gold_assert(shndx_begin == shndx_load_seg);
3708     }
3709
3710   // Handle the non-PT_LOAD segments, setting their offsets from their
3711   // section's offsets.
3712   for (Segment_list::iterator p = this->segment_list_.begin();
3713        p != this->segment_list_.end();
3714        ++p)
3715     {
3716       if ((*p)->type() != elfcpp::PT_LOAD)
3717         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3718                          ? increase_relro
3719                          : 0);
3720     }
3721
3722   // Set the TLS offsets for each section in the PT_TLS segment.
3723   if (this->tls_segment_ != NULL)
3724     this->tls_segment_->set_tls_offsets();
3725
3726   return off;
3727 }
3728
3729 // Set the offsets of all the allocated sections when doing a
3730 // relocatable link.  This does the same jobs as set_segment_offsets,
3731 // only for a relocatable link.
3732
3733 off_t
3734 Layout::set_relocatable_section_offsets(Output_data* file_header,
3735                                         unsigned int* pshndx)
3736 {
3737   off_t off = 0;
3738
3739   file_header->set_address_and_file_offset(0, 0);
3740   off += file_header->data_size();
3741
3742   for (Section_list::iterator p = this->section_list_.begin();
3743        p != this->section_list_.end();
3744        ++p)
3745     {
3746       // We skip unallocated sections here, except that group sections
3747       // have to come first.
3748       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3749           && (*p)->type() != elfcpp::SHT_GROUP)
3750         continue;
3751
3752       off = align_address(off, (*p)->addralign());
3753
3754       // The linker script might have set the address.
3755       if (!(*p)->is_address_valid())
3756         (*p)->set_address(0);
3757       (*p)->set_file_offset(off);
3758       (*p)->finalize_data_size();
3759       if ((*p)->type() != elfcpp::SHT_NOBITS)
3760         off += (*p)->data_size();
3761
3762       (*p)->set_out_shndx(*pshndx);
3763       ++*pshndx;
3764     }
3765
3766   return off;
3767 }
3768
3769 // Set the file offset of all the sections not associated with a
3770 // segment.
3771
3772 off_t
3773 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3774 {
3775   off_t startoff = off;
3776   off_t maxoff = off;
3777
3778   for (Section_list::iterator p = this->unattached_section_list_.begin();
3779        p != this->unattached_section_list_.end();
3780        ++p)
3781     {
3782       // The symtab section is handled in create_symtab_sections.
3783       if (*p == this->symtab_section_)
3784         continue;
3785
3786       // If we've already set the data size, don't set it again.
3787       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3788         continue;
3789
3790       if (pass == BEFORE_INPUT_SECTIONS_PASS
3791           && (*p)->requires_postprocessing())
3792         {
3793           (*p)->create_postprocessing_buffer();
3794           this->any_postprocessing_sections_ = true;
3795         }
3796
3797       if (pass == BEFORE_INPUT_SECTIONS_PASS
3798           && (*p)->after_input_sections())
3799         continue;
3800       else if (pass == POSTPROCESSING_SECTIONS_PASS
3801                && (!(*p)->after_input_sections()
3802                    || (*p)->type() == elfcpp::SHT_STRTAB))
3803         continue;
3804       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3805                && (!(*p)->after_input_sections()
3806                    || (*p)->type() != elfcpp::SHT_STRTAB))
3807         continue;
3808
3809       if (!parameters->incremental_update())
3810         {
3811           off = align_address(off, (*p)->addralign());
3812           (*p)->set_file_offset(off);
3813           (*p)->finalize_data_size();
3814         }
3815       else
3816         {
3817           // Incremental update: allocate file space from free list.
3818           (*p)->pre_finalize_data_size();
3819           off_t current_size = (*p)->current_data_size();
3820           off = this->allocate(current_size, (*p)->addralign(), startoff);
3821           if (off == -1)
3822             {
3823               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3824                 this->free_list_.dump();
3825               gold_assert((*p)->output_section() != NULL);
3826               gold_fallback(_("out of patch space for section %s; "
3827                               "relink with --incremental-full"),
3828                             (*p)->output_section()->name());
3829             }
3830           (*p)->set_file_offset(off);
3831           (*p)->finalize_data_size();
3832           if ((*p)->data_size() > current_size)
3833             {
3834               gold_assert((*p)->output_section() != NULL);
3835               gold_fallback(_("%s: section changed size; "
3836                               "relink with --incremental-full"),
3837                             (*p)->output_section()->name());
3838             }
3839           gold_debug(DEBUG_INCREMENTAL,
3840                      "set_section_offsets: %08lx %08lx %s",
3841                      static_cast<long>(off),
3842                      static_cast<long>((*p)->data_size()),
3843                      ((*p)->output_section() != NULL
3844                       ? (*p)->output_section()->name() : "(special)"));
3845         }
3846
3847       off += (*p)->data_size();
3848       if (off > maxoff)
3849         maxoff = off;
3850
3851       // At this point the name must be set.
3852       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3853         this->namepool_.add((*p)->name(), false, NULL);
3854     }
3855   return maxoff;
3856 }
3857
3858 // Set the section indexes of all the sections not associated with a
3859 // segment.
3860
3861 unsigned int
3862 Layout::set_section_indexes(unsigned int shndx)
3863 {
3864   for (Section_list::iterator p = this->unattached_section_list_.begin();
3865        p != this->unattached_section_list_.end();
3866        ++p)
3867     {
3868       if (!(*p)->has_out_shndx())
3869         {
3870           (*p)->set_out_shndx(shndx);
3871           ++shndx;
3872         }
3873     }
3874   return shndx;
3875 }
3876
3877 // Set the section addresses according to the linker script.  This is
3878 // only called when we see a SECTIONS clause.  This returns the
3879 // program segment which should hold the file header and segment
3880 // headers, if any.  It will return NULL if they should not be in a
3881 // segment.
3882
3883 Output_segment*
3884 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3885 {
3886   Script_sections* ss = this->script_options_->script_sections();
3887   gold_assert(ss->saw_sections_clause());
3888   return this->script_options_->set_section_addresses(symtab, this);
3889 }
3890
3891 // Place the orphan sections in the linker script.
3892
3893 void
3894 Layout::place_orphan_sections_in_script()
3895 {
3896   Script_sections* ss = this->script_options_->script_sections();
3897   gold_assert(ss->saw_sections_clause());
3898
3899   // Place each orphaned output section in the script.
3900   for (Section_list::iterator p = this->section_list_.begin();
3901        p != this->section_list_.end();
3902        ++p)
3903     {
3904       if (!(*p)->found_in_sections_clause())
3905         ss->place_orphan(*p);
3906     }
3907 }
3908
3909 // Count the local symbols in the regular symbol table and the dynamic
3910 // symbol table, and build the respective string pools.
3911
3912 void
3913 Layout::count_local_symbols(const Task* task,
3914                             const Input_objects* input_objects)
3915 {
3916   // First, figure out an upper bound on the number of symbols we'll
3917   // be inserting into each pool.  This helps us create the pools with
3918   // the right size, to avoid unnecessary hashtable resizing.
3919   unsigned int symbol_count = 0;
3920   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3921        p != input_objects->relobj_end();
3922        ++p)
3923     symbol_count += (*p)->local_symbol_count();
3924
3925   // Go from "upper bound" to "estimate."  We overcount for two
3926   // reasons: we double-count symbols that occur in more than one
3927   // object file, and we count symbols that are dropped from the
3928   // output.  Add it all together and assume we overcount by 100%.
3929   symbol_count /= 2;
3930
3931   // We assume all symbols will go into both the sympool and dynpool.
3932   this->sympool_.reserve(symbol_count);
3933   this->dynpool_.reserve(symbol_count);
3934
3935   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3936        p != input_objects->relobj_end();
3937        ++p)
3938     {
3939       Task_lock_obj<Object> tlo(task, *p);
3940       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3941     }
3942 }
3943
3944 // Create the symbol table sections.  Here we also set the final
3945 // values of the symbols.  At this point all the loadable sections are
3946 // fully laid out.  SHNUM is the number of sections so far.
3947
3948 void
3949 Layout::create_symtab_sections(const Input_objects* input_objects,
3950                                Symbol_table* symtab,
3951                                unsigned int shnum,
3952                                off_t* poff)
3953 {
3954   int symsize;
3955   unsigned int align;
3956   if (parameters->target().get_size() == 32)
3957     {
3958       symsize = elfcpp::Elf_sizes<32>::sym_size;
3959       align = 4;
3960     }
3961   else if (parameters->target().get_size() == 64)
3962     {
3963       symsize = elfcpp::Elf_sizes<64>::sym_size;
3964       align = 8;
3965     }
3966   else
3967     gold_unreachable();
3968
3969   // Compute file offsets relative to the start of the symtab section.
3970   off_t off = 0;
3971
3972   // Save space for the dummy symbol at the start of the section.  We
3973   // never bother to write this out--it will just be left as zero.
3974   off += symsize;
3975   unsigned int local_symbol_index = 1;
3976
3977   // Add STT_SECTION symbols for each Output section which needs one.
3978   for (Section_list::iterator p = this->section_list_.begin();
3979        p != this->section_list_.end();
3980        ++p)
3981     {
3982       if (!(*p)->needs_symtab_index())
3983         (*p)->set_symtab_index(-1U);
3984       else
3985         {
3986           (*p)->set_symtab_index(local_symbol_index);
3987           ++local_symbol_index;
3988           off += symsize;
3989         }
3990     }
3991
3992   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3993        p != input_objects->relobj_end();
3994        ++p)
3995     {
3996       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3997                                                         off, symtab);
3998       off += (index - local_symbol_index) * symsize;
3999       local_symbol_index = index;
4000     }
4001
4002   unsigned int local_symcount = local_symbol_index;
4003   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4004
4005   off_t dynoff;
4006   size_t dyn_global_index;
4007   size_t dyncount;
4008   if (this->dynsym_section_ == NULL)
4009     {
4010       dynoff = 0;
4011       dyn_global_index = 0;
4012       dyncount = 0;
4013     }
4014   else
4015     {
4016       dyn_global_index = this->dynsym_section_->info();
4017       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4018       dynoff = this->dynsym_section_->offset() + locsize;
4019       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4020       gold_assert(static_cast<off_t>(dyncount * symsize)
4021                   == this->dynsym_section_->data_size() - locsize);
4022     }
4023
4024   off_t global_off = off;
4025   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4026                          &this->sympool_, &local_symcount);
4027
4028   if (!parameters->options().strip_all())
4029     {
4030       this->sympool_.set_string_offsets();
4031
4032       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4033       Output_section* osymtab = this->make_output_section(symtab_name,
4034                                                           elfcpp::SHT_SYMTAB,
4035                                                           0, ORDER_INVALID,
4036                                                           false);
4037       this->symtab_section_ = osymtab;
4038
4039       Output_section_data* pos = new Output_data_fixed_space(off, align,
4040                                                              "** symtab");
4041       osymtab->add_output_section_data(pos);
4042
4043       // We generate a .symtab_shndx section if we have more than
4044       // SHN_LORESERVE sections.  Technically it is possible that we
4045       // don't need one, because it is possible that there are no
4046       // symbols in any of sections with indexes larger than
4047       // SHN_LORESERVE.  That is probably unusual, though, and it is
4048       // easier to always create one than to compute section indexes
4049       // twice (once here, once when writing out the symbols).
4050       if (shnum >= elfcpp::SHN_LORESERVE)
4051         {
4052           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4053                                                                false, NULL);
4054           Output_section* osymtab_xindex =
4055             this->make_output_section(symtab_xindex_name,
4056                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4057                                       ORDER_INVALID, false);
4058
4059           size_t symcount = off / symsize;
4060           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4061
4062           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4063
4064           osymtab_xindex->set_link_section(osymtab);
4065           osymtab_xindex->set_addralign(4);
4066           osymtab_xindex->set_entsize(4);
4067
4068           osymtab_xindex->set_after_input_sections();
4069
4070           // This tells the driver code to wait until the symbol table
4071           // has written out before writing out the postprocessing
4072           // sections, including the .symtab_shndx section.
4073           this->any_postprocessing_sections_ = true;
4074         }
4075
4076       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4077       Output_section* ostrtab = this->make_output_section(strtab_name,
4078                                                           elfcpp::SHT_STRTAB,
4079                                                           0, ORDER_INVALID,
4080                                                           false);
4081
4082       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4083       ostrtab->add_output_section_data(pstr);
4084
4085       off_t symtab_off;
4086       if (!parameters->incremental_update())
4087         symtab_off = align_address(*poff, align);
4088       else
4089         {
4090           symtab_off = this->allocate(off, align, *poff);
4091           if (off == -1)
4092             gold_fallback(_("out of patch space for symbol table; "
4093                             "relink with --incremental-full"));
4094           gold_debug(DEBUG_INCREMENTAL,
4095                      "create_symtab_sections: %08lx %08lx .symtab",
4096                      static_cast<long>(symtab_off),
4097                      static_cast<long>(off));
4098         }
4099
4100       symtab->set_file_offset(symtab_off + global_off);
4101       osymtab->set_file_offset(symtab_off);
4102       osymtab->finalize_data_size();
4103       osymtab->set_link_section(ostrtab);
4104       osymtab->set_info(local_symcount);
4105       osymtab->set_entsize(symsize);
4106
4107       if (symtab_off + off > *poff)
4108         *poff = symtab_off + off;
4109     }
4110 }
4111
4112 // Create the .shstrtab section, which holds the names of the
4113 // sections.  At the time this is called, we have created all the
4114 // output sections except .shstrtab itself.
4115
4116 Output_section*
4117 Layout::create_shstrtab()
4118 {
4119   // FIXME: We don't need to create a .shstrtab section if we are
4120   // stripping everything.
4121
4122   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4123
4124   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4125                                                  ORDER_INVALID, false);
4126
4127   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4128     {
4129       // We can't write out this section until we've set all the
4130       // section names, and we don't set the names of compressed
4131       // output sections until relocations are complete.  FIXME: With
4132       // the current names we use, this is unnecessary.
4133       os->set_after_input_sections();
4134     }
4135
4136   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4137   os->add_output_section_data(posd);
4138
4139   return os;
4140 }
4141
4142 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4143 // offset.
4144
4145 void
4146 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4147 {
4148   Output_section_headers* oshdrs;
4149   oshdrs = new Output_section_headers(this,
4150                                       &this->segment_list_,
4151                                       &this->section_list_,
4152                                       &this->unattached_section_list_,
4153                                       &this->namepool_,
4154                                       shstrtab_section);
4155   off_t off;
4156   if (!parameters->incremental_update())
4157     off = align_address(*poff, oshdrs->addralign());
4158   else
4159     {
4160       oshdrs->pre_finalize_data_size();
4161       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4162       if (off == -1)
4163           gold_fallback(_("out of patch space for section header table; "
4164                           "relink with --incremental-full"));
4165       gold_debug(DEBUG_INCREMENTAL,
4166                  "create_shdrs: %08lx %08lx (section header table)",
4167                  static_cast<long>(off),
4168                  static_cast<long>(off + oshdrs->data_size()));
4169     }
4170   oshdrs->set_address_and_file_offset(0, off);
4171   off += oshdrs->data_size();
4172   if (off > *poff)
4173     *poff = off;
4174   this->section_headers_ = oshdrs;
4175 }
4176
4177 // Count the allocated sections.
4178
4179 size_t
4180 Layout::allocated_output_section_count() const
4181 {
4182   size_t section_count = 0;
4183   for (Segment_list::const_iterator p = this->segment_list_.begin();
4184        p != this->segment_list_.end();
4185        ++p)
4186     section_count += (*p)->output_section_count();
4187   return section_count;
4188 }
4189
4190 // Create the dynamic symbol table.
4191
4192 void
4193 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4194                               Symbol_table* symtab,
4195                               Output_section** pdynstr,
4196                               unsigned int* plocal_dynamic_count,
4197                               std::vector<Symbol*>* pdynamic_symbols,
4198                               Versions* pversions)
4199 {
4200   // Count all the symbols in the dynamic symbol table, and set the
4201   // dynamic symbol indexes.
4202
4203   // Skip symbol 0, which is always all zeroes.
4204   unsigned int index = 1;
4205
4206   // Add STT_SECTION symbols for each Output section which needs one.
4207   for (Section_list::iterator p = this->section_list_.begin();
4208        p != this->section_list_.end();
4209        ++p)
4210     {
4211       if (!(*p)->needs_dynsym_index())
4212         (*p)->set_dynsym_index(-1U);
4213       else
4214         {
4215           (*p)->set_dynsym_index(index);
4216           ++index;
4217         }
4218     }
4219
4220   // Count the local symbols that need to go in the dynamic symbol table,
4221   // and set the dynamic symbol indexes.
4222   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4223        p != input_objects->relobj_end();
4224        ++p)
4225     {
4226       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4227       index = new_index;
4228     }
4229
4230   unsigned int local_symcount = index;
4231   *plocal_dynamic_count = local_symcount;
4232
4233   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4234                                      &this->dynpool_, pversions);
4235
4236   int symsize;
4237   unsigned int align;
4238   const int size = parameters->target().get_size();
4239   if (size == 32)
4240     {
4241       symsize = elfcpp::Elf_sizes<32>::sym_size;
4242       align = 4;
4243     }
4244   else if (size == 64)
4245     {
4246       symsize = elfcpp::Elf_sizes<64>::sym_size;
4247       align = 8;
4248     }
4249   else
4250     gold_unreachable();
4251
4252   // Create the dynamic symbol table section.
4253
4254   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4255                                                        elfcpp::SHT_DYNSYM,
4256                                                        elfcpp::SHF_ALLOC,
4257                                                        false,
4258                                                        ORDER_DYNAMIC_LINKER,
4259                                                        false);
4260
4261   // Check for NULL as a linker script may discard .dynsym.
4262   if (dynsym != NULL)
4263     {
4264       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4265                                                                align,
4266                                                                "** dynsym");
4267       dynsym->add_output_section_data(odata);
4268
4269       dynsym->set_info(local_symcount);
4270       dynsym->set_entsize(symsize);
4271       dynsym->set_addralign(align);
4272
4273       this->dynsym_section_ = dynsym;
4274     }
4275
4276   Output_data_dynamic* const odyn = this->dynamic_data_;
4277   if (odyn != NULL)
4278     {
4279       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4280       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4281     }
4282
4283   // If there are more than SHN_LORESERVE allocated sections, we
4284   // create a .dynsym_shndx section.  It is possible that we don't
4285   // need one, because it is possible that there are no dynamic
4286   // symbols in any of the sections with indexes larger than
4287   // SHN_LORESERVE.  This is probably unusual, though, and at this
4288   // time we don't know the actual section indexes so it is
4289   // inconvenient to check.
4290   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4291     {
4292       Output_section* dynsym_xindex =
4293         this->choose_output_section(NULL, ".dynsym_shndx",
4294                                     elfcpp::SHT_SYMTAB_SHNDX,
4295                                     elfcpp::SHF_ALLOC,
4296                                     false, ORDER_DYNAMIC_LINKER, false);
4297
4298       if (dynsym_xindex != NULL)
4299         {
4300           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4301
4302           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4303
4304           dynsym_xindex->set_link_section(dynsym);
4305           dynsym_xindex->set_addralign(4);
4306           dynsym_xindex->set_entsize(4);
4307
4308           dynsym_xindex->set_after_input_sections();
4309
4310           // This tells the driver code to wait until the symbol table
4311           // has written out before writing out the postprocessing
4312           // sections, including the .dynsym_shndx section.
4313           this->any_postprocessing_sections_ = true;
4314         }
4315     }
4316
4317   // Create the dynamic string table section.
4318
4319   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4320                                                        elfcpp::SHT_STRTAB,
4321                                                        elfcpp::SHF_ALLOC,
4322                                                        false,
4323                                                        ORDER_DYNAMIC_LINKER,
4324                                                        false);
4325   *pdynstr = dynstr;
4326   if (dynstr != NULL)
4327     {
4328       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4329       dynstr->add_output_section_data(strdata);
4330
4331       if (dynsym != NULL)
4332         dynsym->set_link_section(dynstr);
4333       if (this->dynamic_section_ != NULL)
4334         this->dynamic_section_->set_link_section(dynstr);
4335
4336       if (odyn != NULL)
4337         {
4338           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4339           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4340         }
4341     }
4342
4343   // Create the hash tables.  The Gnu-style hash table must be
4344   // built first, because it changes the order of the symbols
4345   // in the dynamic symbol table.
4346
4347   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4348       || strcmp(parameters->options().hash_style(), "both") == 0)
4349     {
4350       unsigned char* phash;
4351       unsigned int hashlen;
4352       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4353                                     &phash, &hashlen);
4354
4355       Output_section* hashsec =
4356         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4357                                     elfcpp::SHF_ALLOC, false,
4358                                     ORDER_DYNAMIC_LINKER, false);
4359
4360       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4361                                                                    hashlen,
4362                                                                    align,
4363                                                                    "** hash");
4364       if (hashsec != NULL && hashdata != NULL)
4365         hashsec->add_output_section_data(hashdata);
4366
4367       if (hashsec != NULL)
4368         {
4369           if (dynsym != NULL)
4370             hashsec->set_link_section(dynsym);
4371
4372           // For a 64-bit target, the entries in .gnu.hash do not have
4373           // a uniform size, so we only set the entry size for a
4374           // 32-bit target.
4375           if (parameters->target().get_size() == 32)
4376             hashsec->set_entsize(4);
4377
4378           if (odyn != NULL)
4379             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4380         }
4381     }
4382
4383   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4384       || strcmp(parameters->options().hash_style(), "both") == 0)
4385     {
4386       unsigned char* phash;
4387       unsigned int hashlen;
4388       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4389                                     &phash, &hashlen);
4390
4391       Output_section* hashsec =
4392         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4393                                     elfcpp::SHF_ALLOC, false,
4394                                     ORDER_DYNAMIC_LINKER, false);
4395
4396       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4397                                                                    hashlen,
4398                                                                    align,
4399                                                                    "** hash");
4400       if (hashsec != NULL && hashdata != NULL)
4401         hashsec->add_output_section_data(hashdata);
4402
4403       if (hashsec != NULL)
4404         {
4405           if (dynsym != NULL)
4406             hashsec->set_link_section(dynsym);
4407           hashsec->set_entsize(4);
4408         }
4409
4410       if (odyn != NULL)
4411         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4412     }
4413 }
4414
4415 // Assign offsets to each local portion of the dynamic symbol table.
4416
4417 void
4418 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4419 {
4420   Output_section* dynsym = this->dynsym_section_;
4421   if (dynsym == NULL)
4422     return;
4423
4424   off_t off = dynsym->offset();
4425
4426   // Skip the dummy symbol at the start of the section.
4427   off += dynsym->entsize();
4428
4429   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4430        p != input_objects->relobj_end();
4431        ++p)
4432     {
4433       unsigned int count = (*p)->set_local_dynsym_offset(off);
4434       off += count * dynsym->entsize();
4435     }
4436 }
4437
4438 // Create the version sections.
4439
4440 void
4441 Layout::create_version_sections(const Versions* versions,
4442                                 const Symbol_table* symtab,
4443                                 unsigned int local_symcount,
4444                                 const std::vector<Symbol*>& dynamic_symbols,
4445                                 const Output_section* dynstr)
4446 {
4447   if (!versions->any_defs() && !versions->any_needs())
4448     return;
4449
4450   switch (parameters->size_and_endianness())
4451     {
4452 #ifdef HAVE_TARGET_32_LITTLE
4453     case Parameters::TARGET_32_LITTLE:
4454       this->sized_create_version_sections<32, false>(versions, symtab,
4455                                                      local_symcount,
4456                                                      dynamic_symbols, dynstr);
4457       break;
4458 #endif
4459 #ifdef HAVE_TARGET_32_BIG
4460     case Parameters::TARGET_32_BIG:
4461       this->sized_create_version_sections<32, true>(versions, symtab,
4462                                                     local_symcount,
4463                                                     dynamic_symbols, dynstr);
4464       break;
4465 #endif
4466 #ifdef HAVE_TARGET_64_LITTLE
4467     case Parameters::TARGET_64_LITTLE:
4468       this->sized_create_version_sections<64, false>(versions, symtab,
4469                                                      local_symcount,
4470                                                      dynamic_symbols, dynstr);
4471       break;
4472 #endif
4473 #ifdef HAVE_TARGET_64_BIG
4474     case Parameters::TARGET_64_BIG:
4475       this->sized_create_version_sections<64, true>(versions, symtab,
4476                                                     local_symcount,
4477                                                     dynamic_symbols, dynstr);
4478       break;
4479 #endif
4480     default:
4481       gold_unreachable();
4482     }
4483 }
4484
4485 // Create the version sections, sized version.
4486
4487 template<int size, bool big_endian>
4488 void
4489 Layout::sized_create_version_sections(
4490     const Versions* versions,
4491     const Symbol_table* symtab,
4492     unsigned int local_symcount,
4493     const std::vector<Symbol*>& dynamic_symbols,
4494     const Output_section* dynstr)
4495 {
4496   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4497                                                      elfcpp::SHT_GNU_versym,
4498                                                      elfcpp::SHF_ALLOC,
4499                                                      false,
4500                                                      ORDER_DYNAMIC_LINKER,
4501                                                      false);
4502
4503   // Check for NULL since a linker script may discard this section.
4504   if (vsec != NULL)
4505     {
4506       unsigned char* vbuf;
4507       unsigned int vsize;
4508       versions->symbol_section_contents<size, big_endian>(symtab,
4509                                                           &this->dynpool_,
4510                                                           local_symcount,
4511                                                           dynamic_symbols,
4512                                                           &vbuf, &vsize);
4513
4514       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4515                                                                 "** versions");
4516
4517       vsec->add_output_section_data(vdata);
4518       vsec->set_entsize(2);
4519       vsec->set_link_section(this->dynsym_section_);
4520     }
4521
4522   Output_data_dynamic* const odyn = this->dynamic_data_;
4523   if (odyn != NULL && vsec != NULL)
4524     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4525
4526   if (versions->any_defs())
4527     {
4528       Output_section* vdsec;
4529       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4530                                           elfcpp::SHT_GNU_verdef,
4531                                           elfcpp::SHF_ALLOC,
4532                                           false, ORDER_DYNAMIC_LINKER, false);
4533
4534       if (vdsec != NULL)
4535         {
4536           unsigned char* vdbuf;
4537           unsigned int vdsize;
4538           unsigned int vdentries;
4539           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4540                                                            &vdbuf, &vdsize,
4541                                                            &vdentries);
4542
4543           Output_section_data* vddata =
4544             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4545
4546           vdsec->add_output_section_data(vddata);
4547           vdsec->set_link_section(dynstr);
4548           vdsec->set_info(vdentries);
4549
4550           if (odyn != NULL)
4551             {
4552               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4553               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4554             }
4555         }
4556     }
4557
4558   if (versions->any_needs())
4559     {
4560       Output_section* vnsec;
4561       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4562                                           elfcpp::SHT_GNU_verneed,
4563                                           elfcpp::SHF_ALLOC,
4564                                           false, ORDER_DYNAMIC_LINKER, false);
4565
4566       if (vnsec != NULL)
4567         {
4568           unsigned char* vnbuf;
4569           unsigned int vnsize;
4570           unsigned int vnentries;
4571           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4572                                                             &vnbuf, &vnsize,
4573                                                             &vnentries);
4574
4575           Output_section_data* vndata =
4576             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4577
4578           vnsec->add_output_section_data(vndata);
4579           vnsec->set_link_section(dynstr);
4580           vnsec->set_info(vnentries);
4581
4582           if (odyn != NULL)
4583             {
4584               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4585               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4586             }
4587         }
4588     }
4589 }
4590
4591 // Create the .interp section and PT_INTERP segment.
4592
4593 void
4594 Layout::create_interp(const Target* target)
4595 {
4596   gold_assert(this->interp_segment_ == NULL);
4597
4598   const char* interp = parameters->options().dynamic_linker();
4599   if (interp == NULL)
4600     {
4601       interp = target->dynamic_linker();
4602       gold_assert(interp != NULL);
4603     }
4604
4605   size_t len = strlen(interp) + 1;
4606
4607   Output_section_data* odata = new Output_data_const(interp, len, 1);
4608
4609   Output_section* osec = this->choose_output_section(NULL, ".interp",
4610                                                      elfcpp::SHT_PROGBITS,
4611                                                      elfcpp::SHF_ALLOC,
4612                                                      false, ORDER_INTERP,
4613                                                      false);
4614   if (osec != NULL)
4615     osec->add_output_section_data(odata);
4616 }
4617
4618 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4619 // called by the target-specific code.  This does nothing if not doing
4620 // a dynamic link.
4621
4622 // USE_REL is true for REL relocs rather than RELA relocs.
4623
4624 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4625
4626 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4627 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4628 // some targets have multiple reloc sections in PLT_REL.
4629
4630 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4631 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4632 // section.
4633
4634 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4635 // executable.
4636
4637 void
4638 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4639                                 const Output_data* plt_rel,
4640                                 const Output_data_reloc_generic* dyn_rel,
4641                                 bool add_debug, bool dynrel_includes_plt)
4642 {
4643   Output_data_dynamic* odyn = this->dynamic_data_;
4644   if (odyn == NULL)
4645     return;
4646
4647   if (plt_got != NULL && plt_got->output_section() != NULL)
4648     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4649
4650   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4651     {
4652       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4653       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4654       odyn->add_constant(elfcpp::DT_PLTREL,
4655                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4656     }
4657
4658   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4659       || (dynrel_includes_plt
4660           && plt_rel != NULL
4661           && plt_rel->output_section() != NULL))
4662     {
4663       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4664       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4665       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4666                                 (have_dyn_rel
4667                                  ? dyn_rel->output_section()
4668                                  : plt_rel->output_section()));
4669       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4670       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4671         odyn->add_section_size(size_tag,
4672                                dyn_rel->output_section(),
4673                                plt_rel->output_section());
4674       else if (have_dyn_rel)
4675         odyn->add_section_size(size_tag, dyn_rel->output_section());
4676       else
4677         odyn->add_section_size(size_tag, plt_rel->output_section());
4678       const int size = parameters->target().get_size();
4679       elfcpp::DT rel_tag;
4680       int rel_size;
4681       if (use_rel)
4682         {
4683           rel_tag = elfcpp::DT_RELENT;
4684           if (size == 32)
4685             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4686           else if (size == 64)
4687             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4688           else
4689             gold_unreachable();
4690         }
4691       else
4692         {
4693           rel_tag = elfcpp::DT_RELAENT;
4694           if (size == 32)
4695             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4696           else if (size == 64)
4697             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4698           else
4699             gold_unreachable();
4700         }
4701       odyn->add_constant(rel_tag, rel_size);
4702
4703       if (parameters->options().combreloc() && have_dyn_rel)
4704         {
4705           size_t c = dyn_rel->relative_reloc_count();
4706           if (c > 0)
4707             odyn->add_constant((use_rel
4708                                 ? elfcpp::DT_RELCOUNT
4709                                 : elfcpp::DT_RELACOUNT),
4710                                c);
4711         }
4712     }
4713
4714   if (add_debug && !parameters->options().shared())
4715     {
4716       // The value of the DT_DEBUG tag is filled in by the dynamic
4717       // linker at run time, and used by the debugger.
4718       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4719     }
4720 }
4721
4722 // Finish the .dynamic section and PT_DYNAMIC segment.
4723
4724 void
4725 Layout::finish_dynamic_section(const Input_objects* input_objects,
4726                                const Symbol_table* symtab)
4727 {
4728   if (!this->script_options_->saw_phdrs_clause()
4729       && this->dynamic_section_ != NULL)
4730     {
4731       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4732                                                        (elfcpp::PF_R
4733                                                         | elfcpp::PF_W));
4734       oseg->add_output_section_to_nonload(this->dynamic_section_,
4735                                           elfcpp::PF_R | elfcpp::PF_W);
4736     }
4737
4738   Output_data_dynamic* const odyn = this->dynamic_data_;
4739   if (odyn == NULL)
4740     return;
4741
4742   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4743        p != input_objects->dynobj_end();
4744        ++p)
4745     {
4746       if (!(*p)->is_needed() && (*p)->as_needed())
4747         {
4748           // This dynamic object was linked with --as-needed, but it
4749           // is not needed.
4750           continue;
4751         }
4752
4753       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4754     }
4755
4756   if (parameters->options().shared())
4757     {
4758       const char* soname = parameters->options().soname();
4759       if (soname != NULL)
4760         odyn->add_string(elfcpp::DT_SONAME, soname);
4761     }
4762
4763   Symbol* sym = symtab->lookup(parameters->options().init());
4764   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4765     odyn->add_symbol(elfcpp::DT_INIT, sym);
4766
4767   sym = symtab->lookup(parameters->options().fini());
4768   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4769     odyn->add_symbol(elfcpp::DT_FINI, sym);
4770
4771   // Look for .init_array, .preinit_array and .fini_array by checking
4772   // section types.
4773   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4774       p != this->section_list_.end();
4775       ++p)
4776     switch((*p)->type())
4777       {
4778       case elfcpp::SHT_FINI_ARRAY:
4779         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4780         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4781         break;
4782       case elfcpp::SHT_INIT_ARRAY:
4783         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4784         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4785         break;
4786       case elfcpp::SHT_PREINIT_ARRAY:
4787         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4788         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4789         break;
4790       default:
4791         break;
4792       }
4793
4794   // Add a DT_RPATH entry if needed.
4795   const General_options::Dir_list& rpath(parameters->options().rpath());
4796   if (!rpath.empty())
4797     {
4798       std::string rpath_val;
4799       for (General_options::Dir_list::const_iterator p = rpath.begin();
4800            p != rpath.end();
4801            ++p)
4802         {
4803           if (rpath_val.empty())
4804             rpath_val = p->name();
4805           else
4806             {
4807               // Eliminate duplicates.
4808               General_options::Dir_list::const_iterator q;
4809               for (q = rpath.begin(); q != p; ++q)
4810                 if (q->name() == p->name())
4811                   break;
4812               if (q == p)
4813                 {
4814                   rpath_val += ':';
4815                   rpath_val += p->name();
4816                 }
4817             }
4818         }
4819
4820       if (!parameters->options().enable_new_dtags())
4821         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4822       else
4823         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4824     }
4825
4826   // Look for text segments that have dynamic relocations.
4827   bool have_textrel = false;
4828   if (!this->script_options_->saw_sections_clause())
4829     {
4830       for (Segment_list::const_iterator p = this->segment_list_.begin();
4831            p != this->segment_list_.end();
4832            ++p)
4833         {
4834           if ((*p)->type() == elfcpp::PT_LOAD
4835               && ((*p)->flags() & elfcpp::PF_W) == 0
4836               && (*p)->has_dynamic_reloc())
4837             {
4838               have_textrel = true;
4839               break;
4840             }
4841         }
4842     }
4843   else
4844     {
4845       // We don't know the section -> segment mapping, so we are
4846       // conservative and just look for readonly sections with
4847       // relocations.  If those sections wind up in writable segments,
4848       // then we have created an unnecessary DT_TEXTREL entry.
4849       for (Section_list::const_iterator p = this->section_list_.begin();
4850            p != this->section_list_.end();
4851            ++p)
4852         {
4853           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4854               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4855               && (*p)->has_dynamic_reloc())
4856             {
4857               have_textrel = true;
4858               break;
4859             }
4860         }
4861     }
4862
4863   if (parameters->options().filter() != NULL)
4864     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4865   if (parameters->options().any_auxiliary())
4866     {
4867       for (options::String_set::const_iterator p =
4868              parameters->options().auxiliary_begin();
4869            p != parameters->options().auxiliary_end();
4870            ++p)
4871         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4872     }
4873
4874   // Add a DT_FLAGS entry if necessary.
4875   unsigned int flags = 0;
4876   if (have_textrel)
4877     {
4878       // Add a DT_TEXTREL for compatibility with older loaders.
4879       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4880       flags |= elfcpp::DF_TEXTREL;
4881
4882       if (parameters->options().text())
4883         gold_error(_("read-only segment has dynamic relocations"));
4884       else if (parameters->options().warn_shared_textrel()
4885                && parameters->options().shared())
4886         gold_warning(_("shared library text segment is not shareable"));
4887     }
4888   if (parameters->options().shared() && this->has_static_tls())
4889     flags |= elfcpp::DF_STATIC_TLS;
4890   if (parameters->options().origin())
4891     flags |= elfcpp::DF_ORIGIN;
4892   if (parameters->options().Bsymbolic()
4893       && !parameters->options().have_dynamic_list())
4894     {
4895       flags |= elfcpp::DF_SYMBOLIC;
4896       // Add DT_SYMBOLIC for compatibility with older loaders.
4897       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4898     }
4899   if (parameters->options().now())
4900     flags |= elfcpp::DF_BIND_NOW;
4901   if (flags != 0)
4902     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4903
4904   flags = 0;
4905   if (parameters->options().global())
4906     flags |= elfcpp::DF_1_GLOBAL;
4907   if (parameters->options().initfirst())
4908     flags |= elfcpp::DF_1_INITFIRST;
4909   if (parameters->options().interpose())
4910     flags |= elfcpp::DF_1_INTERPOSE;
4911   if (parameters->options().loadfltr())
4912     flags |= elfcpp::DF_1_LOADFLTR;
4913   if (parameters->options().nodefaultlib())
4914     flags |= elfcpp::DF_1_NODEFLIB;
4915   if (parameters->options().nodelete())
4916     flags |= elfcpp::DF_1_NODELETE;
4917   if (parameters->options().nodlopen())
4918     flags |= elfcpp::DF_1_NOOPEN;
4919   if (parameters->options().nodump())
4920     flags |= elfcpp::DF_1_NODUMP;
4921   if (!parameters->options().shared())
4922     flags &= ~(elfcpp::DF_1_INITFIRST
4923                | elfcpp::DF_1_NODELETE
4924                | elfcpp::DF_1_NOOPEN);
4925   if (parameters->options().origin())
4926     flags |= elfcpp::DF_1_ORIGIN;
4927   if (parameters->options().now())
4928     flags |= elfcpp::DF_1_NOW;
4929   if (parameters->options().Bgroup())
4930     flags |= elfcpp::DF_1_GROUP;
4931   if (flags != 0)
4932     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4933 }
4934
4935 // Set the size of the _DYNAMIC symbol table to be the size of the
4936 // dynamic data.
4937
4938 void
4939 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4940 {
4941   Output_data_dynamic* const odyn = this->dynamic_data_;
4942   if (odyn == NULL)
4943     return;
4944   odyn->finalize_data_size();
4945   if (this->dynamic_symbol_ == NULL)
4946     return;
4947   off_t data_size = odyn->data_size();
4948   const int size = parameters->target().get_size();
4949   if (size == 32)
4950     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4951   else if (size == 64)
4952     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4953   else
4954     gold_unreachable();
4955 }
4956
4957 // The mapping of input section name prefixes to output section names.
4958 // In some cases one prefix is itself a prefix of another prefix; in
4959 // such a case the longer prefix must come first.  These prefixes are
4960 // based on the GNU linker default ELF linker script.
4961
4962 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4963 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4964 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4965 {
4966   MAPPING_INIT(".text.", ".text"),
4967   MAPPING_INIT(".rodata.", ".rodata"),
4968   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4969   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4970   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4971   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4972   MAPPING_INIT(".data.", ".data"),
4973   MAPPING_INIT(".bss.", ".bss"),
4974   MAPPING_INIT(".tdata.", ".tdata"),
4975   MAPPING_INIT(".tbss.", ".tbss"),
4976   MAPPING_INIT(".init_array.", ".init_array"),
4977   MAPPING_INIT(".fini_array.", ".fini_array"),
4978   MAPPING_INIT(".sdata.", ".sdata"),
4979   MAPPING_INIT(".sbss.", ".sbss"),
4980   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4981   // differently depending on whether it is creating a shared library.
4982   MAPPING_INIT(".sdata2.", ".sdata"),
4983   MAPPING_INIT(".sbss2.", ".sbss"),
4984   MAPPING_INIT(".lrodata.", ".lrodata"),
4985   MAPPING_INIT(".ldata.", ".ldata"),
4986   MAPPING_INIT(".lbss.", ".lbss"),
4987   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4988   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4989   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4990   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4991   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4992   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4993   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4994   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4995   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4996   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4997   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4998   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4999   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5000   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5001   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5002   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5003   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5004   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5005   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5006   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5007   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5008 };
5009 #undef MAPPING_INIT
5010 #undef MAPPING_INIT_EXACT
5011
5012 const int Layout::section_name_mapping_count =
5013   (sizeof(Layout::section_name_mapping)
5014    / sizeof(Layout::section_name_mapping[0]));
5015
5016 // Choose the output section name to use given an input section name.
5017 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5018 // length of NAME.
5019
5020 const char*
5021 Layout::output_section_name(const Relobj* relobj, const char* name,
5022                             size_t* plen)
5023 {
5024   // gcc 4.3 generates the following sorts of section names when it
5025   // needs a section name specific to a function:
5026   //   .text.FN
5027   //   .rodata.FN
5028   //   .sdata2.FN
5029   //   .data.FN
5030   //   .data.rel.FN
5031   //   .data.rel.local.FN
5032   //   .data.rel.ro.FN
5033   //   .data.rel.ro.local.FN
5034   //   .sdata.FN
5035   //   .bss.FN
5036   //   .sbss.FN
5037   //   .tdata.FN
5038   //   .tbss.FN
5039
5040   // The GNU linker maps all of those to the part before the .FN,
5041   // except that .data.rel.local.FN is mapped to .data, and
5042   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5043   // beginning with .data.rel.ro.local are grouped together.
5044
5045   // For an anonymous namespace, the string FN can contain a '.'.
5046
5047   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5048   // GNU linker maps to .rodata.
5049
5050   // The .data.rel.ro sections are used with -z relro.  The sections
5051   // are recognized by name.  We use the same names that the GNU
5052   // linker does for these sections.
5053
5054   // It is hard to handle this in a principled way, so we don't even
5055   // try.  We use a table of mappings.  If the input section name is
5056   // not found in the table, we simply use it as the output section
5057   // name.
5058
5059   const Section_name_mapping* psnm = section_name_mapping;
5060   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5061     {
5062       if (psnm->fromlen > 0)
5063         {
5064           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5065             {
5066               *plen = psnm->tolen;
5067               return psnm->to;
5068             }
5069         }
5070       else
5071         {
5072           if (strcmp(name, psnm->from) == 0)
5073             {
5074               *plen = psnm->tolen;
5075               return psnm->to;
5076             }
5077         }
5078     }
5079
5080   // As an additional complication, .ctors sections are output in
5081   // either .ctors or .init_array sections, and .dtors sections are
5082   // output in either .dtors or .fini_array sections.
5083   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5084     {
5085       if (parameters->options().ctors_in_init_array())
5086         {
5087           *plen = 11;
5088           return name[1] == 'c' ? ".init_array" : ".fini_array";
5089         }
5090       else
5091         {
5092           *plen = 6;
5093           return name[1] == 'c' ? ".ctors" : ".dtors";
5094         }
5095     }
5096   if (parameters->options().ctors_in_init_array()
5097       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5098     {
5099       // To make .init_array/.fini_array work with gcc we must exclude
5100       // .ctors and .dtors sections from the crtbegin and crtend
5101       // files.
5102       if (relobj == NULL
5103           || (!Layout::match_file_name(relobj, "crtbegin")
5104               && !Layout::match_file_name(relobj, "crtend")))
5105         {
5106           *plen = 11;
5107           return name[1] == 'c' ? ".init_array" : ".fini_array";
5108         }
5109     }
5110
5111   return name;
5112 }
5113
5114 // Return true if RELOBJ is an input file whose base name matches
5115 // FILE_NAME.  The base name must have an extension of ".o", and must
5116 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5117 // to match crtbegin.o as well as crtbeginS.o without getting confused
5118 // by other possibilities.  Overall matching the file name this way is
5119 // a dreadful hack, but the GNU linker does it in order to better
5120 // support gcc, and we need to be compatible.
5121
5122 bool
5123 Layout::match_file_name(const Relobj* relobj, const char* match)
5124 {
5125   const std::string& file_name(relobj->name());
5126   const char* base_name = lbasename(file_name.c_str());
5127   size_t match_len = strlen(match);
5128   if (strncmp(base_name, match, match_len) != 0)
5129     return false;
5130   size_t base_len = strlen(base_name);
5131   if (base_len != match_len + 2 && base_len != match_len + 3)
5132     return false;
5133   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5134 }
5135
5136 // Check if a comdat group or .gnu.linkonce section with the given
5137 // NAME is selected for the link.  If there is already a section,
5138 // *KEPT_SECTION is set to point to the existing section and the
5139 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5140 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5141 // *KEPT_SECTION is set to the internal copy and the function returns
5142 // true.
5143
5144 bool
5145 Layout::find_or_add_kept_section(const std::string& name,
5146                                  Relobj* object,
5147                                  unsigned int shndx,
5148                                  bool is_comdat,
5149                                  bool is_group_name,
5150                                  Kept_section** kept_section)
5151 {
5152   // It's normal to see a couple of entries here, for the x86 thunk
5153   // sections.  If we see more than a few, we're linking a C++
5154   // program, and we resize to get more space to minimize rehashing.
5155   if (this->signatures_.size() > 4
5156       && !this->resized_signatures_)
5157     {
5158       reserve_unordered_map(&this->signatures_,
5159                             this->number_of_input_files_ * 64);
5160       this->resized_signatures_ = true;
5161     }
5162
5163   Kept_section candidate;
5164   std::pair<Signatures::iterator, bool> ins =
5165     this->signatures_.insert(std::make_pair(name, candidate));
5166
5167   if (kept_section != NULL)
5168     *kept_section = &ins.first->second;
5169   if (ins.second)
5170     {
5171       // This is the first time we've seen this signature.
5172       ins.first->second.set_object(object);
5173       ins.first->second.set_shndx(shndx);
5174       if (is_comdat)
5175         ins.first->second.set_is_comdat();
5176       if (is_group_name)
5177         ins.first->second.set_is_group_name();
5178       return true;
5179     }
5180
5181   // We have already seen this signature.
5182
5183   if (ins.first->second.is_group_name())
5184     {
5185       // We've already seen a real section group with this signature.
5186       // If the kept group is from a plugin object, and we're in the
5187       // replacement phase, accept the new one as a replacement.
5188       if (ins.first->second.object() == NULL
5189           && parameters->options().plugins()->in_replacement_phase())
5190         {
5191           ins.first->second.set_object(object);
5192           ins.first->second.set_shndx(shndx);
5193           return true;
5194         }
5195       return false;
5196     }
5197   else if (is_group_name)
5198     {
5199       // This is a real section group, and we've already seen a
5200       // linkonce section with this signature.  Record that we've seen
5201       // a section group, and don't include this section group.
5202       ins.first->second.set_is_group_name();
5203       return false;
5204     }
5205   else
5206     {
5207       // We've already seen a linkonce section and this is a linkonce
5208       // section.  These don't block each other--this may be the same
5209       // symbol name with different section types.
5210       return true;
5211     }
5212 }
5213
5214 // Store the allocated sections into the section list.
5215
5216 void
5217 Layout::get_allocated_sections(Section_list* section_list) const
5218 {
5219   for (Section_list::const_iterator p = this->section_list_.begin();
5220        p != this->section_list_.end();
5221        ++p)
5222     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5223       section_list->push_back(*p);
5224 }
5225
5226 // Store the executable sections into the section list.
5227
5228 void
5229 Layout::get_executable_sections(Section_list* section_list) const
5230 {
5231   for (Section_list::const_iterator p = this->section_list_.begin();
5232        p != this->section_list_.end();
5233        ++p)
5234     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5235         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5236       section_list->push_back(*p);
5237 }
5238
5239 // Create an output segment.
5240
5241 Output_segment*
5242 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5243 {
5244   gold_assert(!parameters->options().relocatable());
5245   Output_segment* oseg = new Output_segment(type, flags);
5246   this->segment_list_.push_back(oseg);
5247
5248   if (type == elfcpp::PT_TLS)
5249     this->tls_segment_ = oseg;
5250   else if (type == elfcpp::PT_GNU_RELRO)
5251     this->relro_segment_ = oseg;
5252   else if (type == elfcpp::PT_INTERP)
5253     this->interp_segment_ = oseg;
5254
5255   return oseg;
5256 }
5257
5258 // Return the file offset of the normal symbol table.
5259
5260 off_t
5261 Layout::symtab_section_offset() const
5262 {
5263   if (this->symtab_section_ != NULL)
5264     return this->symtab_section_->offset();
5265   return 0;
5266 }
5267
5268 // Return the section index of the normal symbol table.  It may have
5269 // been stripped by the -s/--strip-all option.
5270
5271 unsigned int
5272 Layout::symtab_section_shndx() const
5273 {
5274   if (this->symtab_section_ != NULL)
5275     return this->symtab_section_->out_shndx();
5276   return 0;
5277 }
5278
5279 // Write out the Output_sections.  Most won't have anything to write,
5280 // since most of the data will come from input sections which are
5281 // handled elsewhere.  But some Output_sections do have Output_data.
5282
5283 void
5284 Layout::write_output_sections(Output_file* of) const
5285 {
5286   for (Section_list::const_iterator p = this->section_list_.begin();
5287        p != this->section_list_.end();
5288        ++p)
5289     {
5290       if (!(*p)->after_input_sections())
5291         (*p)->write(of);
5292     }
5293 }
5294
5295 // Write out data not associated with a section or the symbol table.
5296
5297 void
5298 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5299 {
5300   if (!parameters->options().strip_all())
5301     {
5302       const Output_section* symtab_section = this->symtab_section_;
5303       for (Section_list::const_iterator p = this->section_list_.begin();
5304            p != this->section_list_.end();
5305            ++p)
5306         {
5307           if ((*p)->needs_symtab_index())
5308             {
5309               gold_assert(symtab_section != NULL);
5310               unsigned int index = (*p)->symtab_index();
5311               gold_assert(index > 0 && index != -1U);
5312               off_t off = (symtab_section->offset()
5313                            + index * symtab_section->entsize());
5314               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5315             }
5316         }
5317     }
5318
5319   const Output_section* dynsym_section = this->dynsym_section_;
5320   for (Section_list::const_iterator p = this->section_list_.begin();
5321        p != this->section_list_.end();
5322        ++p)
5323     {
5324       if ((*p)->needs_dynsym_index())
5325         {
5326           gold_assert(dynsym_section != NULL);
5327           unsigned int index = (*p)->dynsym_index();
5328           gold_assert(index > 0 && index != -1U);
5329           off_t off = (dynsym_section->offset()
5330                        + index * dynsym_section->entsize());
5331           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5332         }
5333     }
5334
5335   // Write out the Output_data which are not in an Output_section.
5336   for (Data_list::const_iterator p = this->special_output_list_.begin();
5337        p != this->special_output_list_.end();
5338        ++p)
5339     (*p)->write(of);
5340
5341   // Write out the Output_data which are not in an Output_section
5342   // and are regenerated in each iteration of relaxation.
5343   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5344        p != this->relax_output_list_.end();
5345        ++p)
5346     (*p)->write(of);
5347 }
5348
5349 // Write out the Output_sections which can only be written after the
5350 // input sections are complete.
5351
5352 void
5353 Layout::write_sections_after_input_sections(Output_file* of)
5354 {
5355   // Determine the final section offsets, and thus the final output
5356   // file size.  Note we finalize the .shstrab last, to allow the
5357   // after_input_section sections to modify their section-names before
5358   // writing.
5359   if (this->any_postprocessing_sections_)
5360     {
5361       off_t off = this->output_file_size_;
5362       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5363
5364       // Now that we've finalized the names, we can finalize the shstrab.
5365       off =
5366         this->set_section_offsets(off,
5367                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5368
5369       if (off > this->output_file_size_)
5370         {
5371           of->resize(off);
5372           this->output_file_size_ = off;
5373         }
5374     }
5375
5376   for (Section_list::const_iterator p = this->section_list_.begin();
5377        p != this->section_list_.end();
5378        ++p)
5379     {
5380       if ((*p)->after_input_sections())
5381         (*p)->write(of);
5382     }
5383
5384   this->section_headers_->write(of);
5385 }
5386
5387 // If a tree-style build ID was requested, the parallel part of that computation
5388 // is already done, and the final hash-of-hashes is computed here.  For other
5389 // types of build IDs, all the work is done here.
5390
5391 void
5392 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5393                        size_t size_of_hashes) const
5394 {
5395   if (this->build_id_note_ == NULL)
5396     return;
5397
5398   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5399                                           this->build_id_note_->data_size());
5400
5401   if (array_of_hashes == NULL)
5402     {
5403       const size_t output_file_size = this->output_file_size();
5404       const unsigned char* iv = of->get_input_view(0, output_file_size);
5405       const char* style = parameters->options().build_id();
5406
5407       // If we get here with style == "tree" then the output must be
5408       // too small for chunking, and we use SHA-1 in that case.
5409       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5410         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5411       else if (strcmp(style, "md5") == 0)
5412         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5413       else
5414         gold_unreachable();
5415
5416       of->free_input_view(0, output_file_size, iv);
5417     }
5418   else
5419     {
5420       // Non-overlapping substrings of the output file have been hashed.
5421       // Compute SHA-1 hash of the hashes.
5422       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5423                   size_of_hashes, ov);
5424       delete[] array_of_hashes;
5425     }
5426
5427   of->write_output_view(this->build_id_note_->offset(),
5428                         this->build_id_note_->data_size(),
5429                         ov);
5430 }
5431
5432 // Write out a binary file.  This is called after the link is
5433 // complete.  IN is the temporary output file we used to generate the
5434 // ELF code.  We simply walk through the segments, read them from
5435 // their file offset in IN, and write them to their load address in
5436 // the output file.  FIXME: with a bit more work, we could support
5437 // S-records and/or Intel hex format here.
5438
5439 void
5440 Layout::write_binary(Output_file* in) const
5441 {
5442   gold_assert(parameters->options().oformat_enum()
5443               == General_options::OBJECT_FORMAT_BINARY);
5444
5445   // Get the size of the binary file.
5446   uint64_t max_load_address = 0;
5447   for (Segment_list::const_iterator p = this->segment_list_.begin();
5448        p != this->segment_list_.end();
5449        ++p)
5450     {
5451       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5452         {
5453           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5454           if (max_paddr > max_load_address)
5455             max_load_address = max_paddr;
5456         }
5457     }
5458
5459   Output_file out(parameters->options().output_file_name());
5460   out.open(max_load_address);
5461
5462   for (Segment_list::const_iterator p = this->segment_list_.begin();
5463        p != this->segment_list_.end();
5464        ++p)
5465     {
5466       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5467         {
5468           const unsigned char* vin = in->get_input_view((*p)->offset(),
5469                                                         (*p)->filesz());
5470           unsigned char* vout = out.get_output_view((*p)->paddr(),
5471                                                     (*p)->filesz());
5472           memcpy(vout, vin, (*p)->filesz());
5473           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5474           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5475         }
5476     }
5477
5478   out.close();
5479 }
5480
5481 // Print the output sections to the map file.
5482
5483 void
5484 Layout::print_to_mapfile(Mapfile* mapfile) const
5485 {
5486   for (Segment_list::const_iterator p = this->segment_list_.begin();
5487        p != this->segment_list_.end();
5488        ++p)
5489     (*p)->print_sections_to_mapfile(mapfile);
5490   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5491        p != this->unattached_section_list_.end();
5492        ++p)
5493     (*p)->print_to_mapfile(mapfile);
5494 }
5495
5496 // Print statistical information to stderr.  This is used for --stats.
5497
5498 void
5499 Layout::print_stats() const
5500 {
5501   this->namepool_.print_stats("section name pool");
5502   this->sympool_.print_stats("output symbol name pool");
5503   this->dynpool_.print_stats("dynamic name pool");
5504
5505   for (Section_list::const_iterator p = this->section_list_.begin();
5506        p != this->section_list_.end();
5507        ++p)
5508     (*p)->print_merge_stats();
5509 }
5510
5511 // Write_sections_task methods.
5512
5513 // We can always run this task.
5514
5515 Task_token*
5516 Write_sections_task::is_runnable()
5517 {
5518   return NULL;
5519 }
5520
5521 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5522 // when finished.
5523
5524 void
5525 Write_sections_task::locks(Task_locker* tl)
5526 {
5527   tl->add(this, this->output_sections_blocker_);
5528   if (this->input_sections_blocker_ != NULL)
5529     tl->add(this, this->input_sections_blocker_);
5530   tl->add(this, this->final_blocker_);
5531 }
5532
5533 // Run the task--write out the data.
5534
5535 void
5536 Write_sections_task::run(Workqueue*)
5537 {
5538   this->layout_->write_output_sections(this->of_);
5539 }
5540
5541 // Write_data_task methods.
5542
5543 // We can always run this task.
5544
5545 Task_token*
5546 Write_data_task::is_runnable()
5547 {
5548   return NULL;
5549 }
5550
5551 // We need to unlock FINAL_BLOCKER when finished.
5552
5553 void
5554 Write_data_task::locks(Task_locker* tl)
5555 {
5556   tl->add(this, this->final_blocker_);
5557 }
5558
5559 // Run the task--write out the data.
5560
5561 void
5562 Write_data_task::run(Workqueue*)
5563 {
5564   this->layout_->write_data(this->symtab_, this->of_);
5565 }
5566
5567 // Write_symbols_task methods.
5568
5569 // We can always run this task.
5570
5571 Task_token*
5572 Write_symbols_task::is_runnable()
5573 {
5574   return NULL;
5575 }
5576
5577 // We need to unlock FINAL_BLOCKER when finished.
5578
5579 void
5580 Write_symbols_task::locks(Task_locker* tl)
5581 {
5582   tl->add(this, this->final_blocker_);
5583 }
5584
5585 // Run the task--write out the symbols.
5586
5587 void
5588 Write_symbols_task::run(Workqueue*)
5589 {
5590   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5591                                this->layout_->symtab_xindex(),
5592                                this->layout_->dynsym_xindex(), this->of_);
5593 }
5594
5595 // Write_after_input_sections_task methods.
5596
5597 // We can only run this task after the input sections have completed.
5598
5599 Task_token*
5600 Write_after_input_sections_task::is_runnable()
5601 {
5602   if (this->input_sections_blocker_->is_blocked())
5603     return this->input_sections_blocker_;
5604   return NULL;
5605 }
5606
5607 // We need to unlock FINAL_BLOCKER when finished.
5608
5609 void
5610 Write_after_input_sections_task::locks(Task_locker* tl)
5611 {
5612   tl->add(this, this->final_blocker_);
5613 }
5614
5615 // Run the task.
5616
5617 void
5618 Write_after_input_sections_task::run(Workqueue*)
5619 {
5620   this->layout_->write_sections_after_input_sections(this->of_);
5621 }
5622
5623 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5624 // or as a "tree" where each chunk of the string is hashed and then those
5625 // hashes are put into a (much smaller) string which is hashed with sha1.
5626 // We compute a checksum over the entire file because that is simplest.
5627
5628 void
5629 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5630 {
5631   Task_token* post_hash_tasks_blocker = new Task_token(true);
5632   const Layout* layout = this->layout_;
5633   Output_file* of = this->of_;
5634   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5635                            : static_cast<size_t>(layout->output_file_size()));
5636   unsigned char* array_of_hashes = NULL;
5637   size_t size_of_hashes = 0;
5638
5639   if (strcmp(this->options_->build_id(), "tree") == 0
5640       && this->options_->build_id_chunk_size_for_treehash() > 0
5641       && filesize > 0
5642       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5643     {
5644       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5645       const size_t chunk_size =
5646           this->options_->build_id_chunk_size_for_treehash();
5647       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5648       post_hash_tasks_blocker->add_blockers(num_hashes);
5649       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5650       array_of_hashes = new unsigned char[size_of_hashes];
5651       unsigned char *dst = array_of_hashes;
5652       for (size_t i = 0, src_offset = 0; i < num_hashes;
5653            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5654         {
5655           size_t size = std::min(chunk_size, filesize - src_offset);
5656           workqueue->queue(new Hash_task(of,
5657                                          src_offset,
5658                                          size,
5659                                          dst,
5660                                          post_hash_tasks_blocker));
5661         }
5662     }
5663
5664   // Queue the final task to write the build id and close the output file.
5665   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5666                                                            layout,
5667                                                            of,
5668                                                            array_of_hashes,
5669                                                            size_of_hashes),
5670                                      post_hash_tasks_blocker,
5671                                      "Task_function Close_task_runner"));
5672 }
5673
5674 // Close_task_runner methods.
5675
5676 // Finish up the build ID computation, if necessary, and write a binary file,
5677 // if necessary.  Then close the output file.
5678
5679 void
5680 Close_task_runner::run(Workqueue*, const Task*)
5681 {
5682   // At this point the multi-threaded part of the build ID computation,
5683   // if any, is done.  See Build_id_task_runner.
5684   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5685                                 this->size_of_hashes_);
5686
5687   // If we've been asked to create a binary file, we do so here.
5688   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5689     this->layout_->write_binary(this->of_);
5690
5691   this->of_->close();
5692 }
5693
5694 // Instantiate the templates we need.  We could use the configure
5695 // script to restrict this to only the ones for implemented targets.
5696
5697 #ifdef HAVE_TARGET_32_LITTLE
5698 template
5699 Output_section*
5700 Layout::init_fixed_output_section<32, false>(
5701     const char* name,
5702     elfcpp::Shdr<32, false>& shdr);
5703 #endif
5704
5705 #ifdef HAVE_TARGET_32_BIG
5706 template
5707 Output_section*
5708 Layout::init_fixed_output_section<32, true>(
5709     const char* name,
5710     elfcpp::Shdr<32, true>& shdr);
5711 #endif
5712
5713 #ifdef HAVE_TARGET_64_LITTLE
5714 template
5715 Output_section*
5716 Layout::init_fixed_output_section<64, false>(
5717     const char* name,
5718     elfcpp::Shdr<64, false>& shdr);
5719 #endif
5720
5721 #ifdef HAVE_TARGET_64_BIG
5722 template
5723 Output_section*
5724 Layout::init_fixed_output_section<64, true>(
5725     const char* name,
5726     elfcpp::Shdr<64, true>& shdr);
5727 #endif
5728
5729 #ifdef HAVE_TARGET_32_LITTLE
5730 template
5731 Output_section*
5732 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5733                           unsigned int shndx,
5734                           const char* name,
5735                           const elfcpp::Shdr<32, false>& shdr,
5736                           unsigned int, unsigned int, off_t*);
5737 #endif
5738
5739 #ifdef HAVE_TARGET_32_BIG
5740 template
5741 Output_section*
5742 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5743                          unsigned int shndx,
5744                          const char* name,
5745                          const elfcpp::Shdr<32, true>& shdr,
5746                          unsigned int, unsigned int, off_t*);
5747 #endif
5748
5749 #ifdef HAVE_TARGET_64_LITTLE
5750 template
5751 Output_section*
5752 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5753                           unsigned int shndx,
5754                           const char* name,
5755                           const elfcpp::Shdr<64, false>& shdr,
5756                           unsigned int, unsigned int, off_t*);
5757 #endif
5758
5759 #ifdef HAVE_TARGET_64_BIG
5760 template
5761 Output_section*
5762 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5763                          unsigned int shndx,
5764                          const char* name,
5765                          const elfcpp::Shdr<64, true>& shdr,
5766                          unsigned int, unsigned int, off_t*);
5767 #endif
5768
5769 #ifdef HAVE_TARGET_32_LITTLE
5770 template
5771 Output_section*
5772 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5773                                 unsigned int reloc_shndx,
5774                                 const elfcpp::Shdr<32, false>& shdr,
5775                                 Output_section* data_section,
5776                                 Relocatable_relocs* rr);
5777 #endif
5778
5779 #ifdef HAVE_TARGET_32_BIG
5780 template
5781 Output_section*
5782 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5783                                unsigned int reloc_shndx,
5784                                const elfcpp::Shdr<32, true>& shdr,
5785                                Output_section* data_section,
5786                                Relocatable_relocs* rr);
5787 #endif
5788
5789 #ifdef HAVE_TARGET_64_LITTLE
5790 template
5791 Output_section*
5792 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5793                                 unsigned int reloc_shndx,
5794                                 const elfcpp::Shdr<64, false>& shdr,
5795                                 Output_section* data_section,
5796                                 Relocatable_relocs* rr);
5797 #endif
5798
5799 #ifdef HAVE_TARGET_64_BIG
5800 template
5801 Output_section*
5802 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5803                                unsigned int reloc_shndx,
5804                                const elfcpp::Shdr<64, true>& shdr,
5805                                Output_section* data_section,
5806                                Relocatable_relocs* rr);
5807 #endif
5808
5809 #ifdef HAVE_TARGET_32_LITTLE
5810 template
5811 void
5812 Layout::layout_group<32, false>(Symbol_table* symtab,
5813                                 Sized_relobj_file<32, false>* object,
5814                                 unsigned int,
5815                                 const char* group_section_name,
5816                                 const char* signature,
5817                                 const elfcpp::Shdr<32, false>& shdr,
5818                                 elfcpp::Elf_Word flags,
5819                                 std::vector<unsigned int>* shndxes);
5820 #endif
5821
5822 #ifdef HAVE_TARGET_32_BIG
5823 template
5824 void
5825 Layout::layout_group<32, true>(Symbol_table* symtab,
5826                                Sized_relobj_file<32, true>* object,
5827                                unsigned int,
5828                                const char* group_section_name,
5829                                const char* signature,
5830                                const elfcpp::Shdr<32, true>& shdr,
5831                                elfcpp::Elf_Word flags,
5832                                std::vector<unsigned int>* shndxes);
5833 #endif
5834
5835 #ifdef HAVE_TARGET_64_LITTLE
5836 template
5837 void
5838 Layout::layout_group<64, false>(Symbol_table* symtab,
5839                                 Sized_relobj_file<64, false>* object,
5840                                 unsigned int,
5841                                 const char* group_section_name,
5842                                 const char* signature,
5843                                 const elfcpp::Shdr<64, false>& shdr,
5844                                 elfcpp::Elf_Word flags,
5845                                 std::vector<unsigned int>* shndxes);
5846 #endif
5847
5848 #ifdef HAVE_TARGET_64_BIG
5849 template
5850 void
5851 Layout::layout_group<64, true>(Symbol_table* symtab,
5852                                Sized_relobj_file<64, true>* object,
5853                                unsigned int,
5854                                const char* group_section_name,
5855                                const char* signature,
5856                                const elfcpp::Shdr<64, true>& shdr,
5857                                elfcpp::Elf_Word flags,
5858                                std::vector<unsigned int>* shndxes);
5859 #endif
5860
5861 #ifdef HAVE_TARGET_32_LITTLE
5862 template
5863 Output_section*
5864 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5865                                    const unsigned char* symbols,
5866                                    off_t symbols_size,
5867                                    const unsigned char* symbol_names,
5868                                    off_t symbol_names_size,
5869                                    unsigned int shndx,
5870                                    const elfcpp::Shdr<32, false>& shdr,
5871                                    unsigned int reloc_shndx,
5872                                    unsigned int reloc_type,
5873                                    off_t* off);
5874 #endif
5875
5876 #ifdef HAVE_TARGET_32_BIG
5877 template
5878 Output_section*
5879 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5880                                   const unsigned char* symbols,
5881                                   off_t symbols_size,
5882                                   const unsigned char* symbol_names,
5883                                   off_t symbol_names_size,
5884                                   unsigned int shndx,
5885                                   const elfcpp::Shdr<32, true>& shdr,
5886                                   unsigned int reloc_shndx,
5887                                   unsigned int reloc_type,
5888                                   off_t* off);
5889 #endif
5890
5891 #ifdef HAVE_TARGET_64_LITTLE
5892 template
5893 Output_section*
5894 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5895                                    const unsigned char* symbols,
5896                                    off_t symbols_size,
5897                                    const unsigned char* symbol_names,
5898                                    off_t symbol_names_size,
5899                                    unsigned int shndx,
5900                                    const elfcpp::Shdr<64, false>& shdr,
5901                                    unsigned int reloc_shndx,
5902                                    unsigned int reloc_type,
5903                                    off_t* off);
5904 #endif
5905
5906 #ifdef HAVE_TARGET_64_BIG
5907 template
5908 Output_section*
5909 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5910                                   const unsigned char* symbols,
5911                                   off_t symbols_size,
5912                                   const unsigned char* symbol_names,
5913                                   off_t symbol_names_size,
5914                                   unsigned int shndx,
5915                                   const elfcpp::Shdr<64, true>& shdr,
5916                                   unsigned int reloc_shndx,
5917                                   unsigned int reloc_type,
5918                                   off_t* off);
5919 #endif
5920
5921 #ifdef HAVE_TARGET_32_LITTLE
5922 template
5923 void
5924 Layout::add_to_gdb_index(bool is_type_unit,
5925                          Sized_relobj<32, false>* object,
5926                          const unsigned char* symbols,
5927                          off_t symbols_size,
5928                          unsigned int shndx,
5929                          unsigned int reloc_shndx,
5930                          unsigned int reloc_type);
5931 #endif
5932
5933 #ifdef HAVE_TARGET_32_BIG
5934 template
5935 void
5936 Layout::add_to_gdb_index(bool is_type_unit,
5937                          Sized_relobj<32, true>* object,
5938                          const unsigned char* symbols,
5939                          off_t symbols_size,
5940                          unsigned int shndx,
5941                          unsigned int reloc_shndx,
5942                          unsigned int reloc_type);
5943 #endif
5944
5945 #ifdef HAVE_TARGET_64_LITTLE
5946 template
5947 void
5948 Layout::add_to_gdb_index(bool is_type_unit,
5949                          Sized_relobj<64, false>* object,
5950                          const unsigned char* symbols,
5951                          off_t symbols_size,
5952                          unsigned int shndx,
5953                          unsigned int reloc_shndx,
5954                          unsigned int reloc_type);
5955 #endif
5956
5957 #ifdef HAVE_TARGET_64_BIG
5958 template
5959 void
5960 Layout::add_to_gdb_index(bool is_type_unit,
5961                          Sized_relobj<64, true>* object,
5962                          const unsigned char* symbols,
5963                          off_t symbols_size,
5964                          unsigned int shndx,
5965                          unsigned int reloc_shndx,
5966                          unsigned int reloc_type);
5967 #endif
5968
5969 } // End namespace gold.