2011-07-13 Sriraman Tallam <tmsriram@google.com>
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list.  Creates a single free list node that
75 // describes the entire region of length LEN.  If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82   this->list_.push_front(Free_list_node(0, len));
83   this->last_remove_ = this->list_.begin();
84   this->extend_ = extend;
85   this->length_ = len;
86   ++Free_list::num_lists;
87   ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list.  Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node.  We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102   if (start == end)
103     return;
104   gold_assert(start < end);
105
106   ++Free_list::num_removes;
107
108   Iterator p = this->last_remove_;
109   if (p->start_ > start)
110     p = this->list_.begin();
111
112   for (; p != this->list_.end(); ++p)
113     {
114       ++Free_list::num_remove_visits;
115       // Find a node that wholly contains the indicated region.
116       if (p->start_ <= start && p->end_ >= end)
117         {
118           // Case 1: the indicated region spans the whole node.
119           // Add some fuzz to avoid creating tiny free chunks.
120           if (p->start_ + 3 >= start && p->end_ <= end + 3)
121             p = this->list_.erase(p);
122           // Case 2: remove a chunk from the start of the node.
123           else if (p->start_ + 3 >= start)
124             p->start_ = end;
125           // Case 3: remove a chunk from the end of the node.
126           else if (p->end_ <= end + 3)
127             p->end_ = start;
128           // Case 4: remove a chunk from the middle, and split
129           // the node into two.
130           else
131             {
132               Free_list_node newnode(p->start_, start);
133               p->start_ = end;
134               this->list_.insert(p, newnode);
135               ++Free_list::num_nodes;
136             }
137           this->last_remove_ = p;
138           return;
139         }
140     }
141
142   // Did not find a node containing the given chunk.  This could happen
143   // because a small chunk was already removed due to the fuzz.
144   gold_debug(DEBUG_INCREMENTAL,
145              "Free_list::remove(%d,%d) not found",
146              static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156   gold_debug(DEBUG_INCREMENTAL,
157              "Free_list::allocate(%08lx, %d, %08lx)",
158              static_cast<long>(len), static_cast<int>(align),
159              static_cast<long>(minoff));
160   if (len == 0)
161     return align_address(minoff, align);
162
163   ++Free_list::num_allocates;
164
165   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166     {
167       ++Free_list::num_allocate_visits;
168       off_t start = p->start_ > minoff ? p->start_ : minoff;
169       start = align_address(start, align);
170       off_t end = start + len;
171       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
172         {
173           this->length_ = end;
174           p->end_ = end;
175         }
176       if (end <= p->end_)
177         {
178           if (p->start_ + 3 >= start && p->end_ <= end + 3)
179             this->list_.erase(p);
180           else if (p->start_ + 3 >= start)
181             p->start_ = end;
182           else if (p->end_ <= end + 3)
183             p->end_ = start;
184           else
185             {
186               Free_list_node newnode(p->start_, start);
187               p->start_ = end;
188               this->list_.insert(p, newnode);
189               ++Free_list::num_nodes;
190             }
191           return start;
192         }
193     }
194   if (this->extend_)
195     {
196       off_t start = align_address(this->length_, align);
197       this->length_ = start + len;
198       return start;
199     }
200   return -1;
201 }
202
203 // Dump the free list (for debugging).
204 void
205 Free_list::dump()
206 {
207   gold_info("Free list:\n     start      end   length\n");
208   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
209     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
210               static_cast<long>(p->end_),
211               static_cast<long>(p->end_ - p->start_));
212 }
213
214 // Print the statistics for the free lists.
215 void
216 Free_list::print_stats()
217 {
218   fprintf(stderr, _("%s: total free lists: %u\n"),
219           program_name, Free_list::num_lists);
220   fprintf(stderr, _("%s: total free list nodes: %u\n"),
221           program_name, Free_list::num_nodes);
222   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
223           program_name, Free_list::num_removes);
224   fprintf(stderr, _("%s: nodes visited: %u\n"),
225           program_name, Free_list::num_remove_visits);
226   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
227           program_name, Free_list::num_allocates);
228   fprintf(stderr, _("%s: nodes visited: %u\n"),
229           program_name, Free_list::num_allocate_visits);
230 }
231
232 // Layout::Relaxation_debug_check methods.
233
234 // Check that sections and special data are in reset states.
235 // We do not save states for Output_sections and special Output_data.
236 // So we check that they have not assigned any addresses or offsets.
237 // clean_up_after_relaxation simply resets their addresses and offsets.
238 void
239 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
240     const Layout::Section_list& sections,
241     const Layout::Data_list& special_outputs)
242 {
243   for(Layout::Section_list::const_iterator p = sections.begin();
244       p != sections.end();
245       ++p)
246     gold_assert((*p)->address_and_file_offset_have_reset_values());
247
248   for(Layout::Data_list::const_iterator p = special_outputs.begin();
249       p != special_outputs.end();
250       ++p)
251     gold_assert((*p)->address_and_file_offset_have_reset_values());
252 }
253   
254 // Save information of SECTIONS for checking later.
255
256 void
257 Layout::Relaxation_debug_check::read_sections(
258     const Layout::Section_list& sections)
259 {
260   for(Layout::Section_list::const_iterator p = sections.begin();
261       p != sections.end();
262       ++p)
263     {
264       Output_section* os = *p;
265       Section_info info;
266       info.output_section = os;
267       info.address = os->is_address_valid() ? os->address() : 0;
268       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
269       info.offset = os->is_offset_valid()? os->offset() : -1 ;
270       this->section_infos_.push_back(info);
271     }
272 }
273
274 // Verify SECTIONS using previously recorded information.
275
276 void
277 Layout::Relaxation_debug_check::verify_sections(
278     const Layout::Section_list& sections)
279 {
280   size_t i = 0;
281   for(Layout::Section_list::const_iterator p = sections.begin();
282       p != sections.end();
283       ++p, ++i)
284     {
285       Output_section* os = *p;
286       uint64_t address = os->is_address_valid() ? os->address() : 0;
287       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
288       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
289
290       if (i >= this->section_infos_.size())
291         {
292           gold_fatal("Section_info of %s missing.\n", os->name());
293         }
294       const Section_info& info = this->section_infos_[i];
295       if (os != info.output_section)
296         gold_fatal("Section order changed.  Expecting %s but see %s\n",
297                    info.output_section->name(), os->name());
298       if (address != info.address
299           || data_size != info.data_size
300           || offset != info.offset)
301         gold_fatal("Section %s changed.\n", os->name());
302     }
303 }
304
305 // Layout_task_runner methods.
306
307 // Lay out the sections.  This is called after all the input objects
308 // have been read.
309
310 void
311 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
312 {
313   Layout* layout = this->layout_;
314   off_t file_size = layout->finalize(this->input_objects_,
315                                      this->symtab_,
316                                      this->target_,
317                                      task);
318
319   // Now we know the final size of the output file and we know where
320   // each piece of information goes.
321
322   if (this->mapfile_ != NULL)
323     {
324       this->mapfile_->print_discarded_sections(this->input_objects_);
325       layout->print_to_mapfile(this->mapfile_);
326     }
327
328   Output_file* of;
329   if (layout->incremental_base() == NULL)
330     {
331       of = new Output_file(parameters->options().output_file_name());
332       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
333         of->set_is_temporary();
334       of->open(file_size);
335     }
336   else
337     {
338       of = layout->incremental_base()->output_file();
339
340       // Apply the incremental relocations for symbols whose values
341       // have changed.  We do this before we resize the file and start
342       // writing anything else to it, so that we can read the old
343       // incremental information from the file before (possibly)
344       // overwriting it.
345       if (parameters->incremental_update())
346         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
347                                                              this->layout_,
348                                                              of);
349
350       of->resize(file_size);
351     }
352
353   // Queue up the final set of tasks.
354   gold::queue_final_tasks(this->options_, this->input_objects_,
355                           this->symtab_, layout, workqueue, of);
356 }
357
358 // Layout methods.
359
360 Layout::Layout(int number_of_input_files, Script_options* script_options)
361   : number_of_input_files_(number_of_input_files),
362     script_options_(script_options),
363     namepool_(),
364     sympool_(),
365     dynpool_(),
366     signatures_(),
367     section_name_map_(),
368     segment_list_(),
369     section_list_(),
370     unattached_section_list_(),
371     special_output_list_(),
372     section_headers_(NULL),
373     tls_segment_(NULL),
374     relro_segment_(NULL),
375     interp_segment_(NULL),
376     increase_relro_(0),
377     symtab_section_(NULL),
378     symtab_xindex_(NULL),
379     dynsym_section_(NULL),
380     dynsym_xindex_(NULL),
381     dynamic_section_(NULL),
382     dynamic_symbol_(NULL),
383     dynamic_data_(NULL),
384     eh_frame_section_(NULL),
385     eh_frame_data_(NULL),
386     added_eh_frame_data_(false),
387     eh_frame_hdr_section_(NULL),
388     build_id_note_(NULL),
389     debug_abbrev_(NULL),
390     debug_info_(NULL),
391     group_signatures_(),
392     output_file_size_(-1),
393     have_added_input_section_(false),
394     sections_are_attached_(false),
395     input_requires_executable_stack_(false),
396     input_with_gnu_stack_note_(false),
397     input_without_gnu_stack_note_(false),
398     has_static_tls_(false),
399     any_postprocessing_sections_(false),
400     resized_signatures_(false),
401     have_stabstr_section_(false),
402     section_ordering_specified_(false),
403     incremental_inputs_(NULL),
404     record_output_section_data_from_script_(false),
405     script_output_section_data_list_(),
406     segment_states_(NULL),
407     relaxation_debug_check_(NULL),
408     input_section_position_(),
409     input_section_glob_(),
410     incremental_base_(NULL),
411     free_list_()
412 {
413   // Make space for more than enough segments for a typical file.
414   // This is just for efficiency--it's OK if we wind up needing more.
415   this->segment_list_.reserve(12);
416
417   // We expect two unattached Output_data objects: the file header and
418   // the segment headers.
419   this->special_output_list_.reserve(2);
420
421   // Initialize structure needed for an incremental build.
422   if (parameters->incremental())
423     this->incremental_inputs_ = new Incremental_inputs;
424
425   // The section name pool is worth optimizing in all cases, because
426   // it is small, but there are often overlaps due to .rel sections.
427   this->namepool_.set_optimize();
428 }
429
430 // For incremental links, record the base file to be modified.
431
432 void
433 Layout::set_incremental_base(Incremental_binary* base)
434 {
435   this->incremental_base_ = base;
436   this->free_list_.init(base->output_file()->filesize(), true);
437 }
438
439 // Hash a key we use to look up an output section mapping.
440
441 size_t
442 Layout::Hash_key::operator()(const Layout::Key& k) const
443 {
444  return k.first + k.second.first + k.second.second;
445 }
446
447 // Returns whether the given section is in the list of
448 // debug-sections-used-by-some-version-of-gdb.  Currently,
449 // we've checked versions of gdb up to and including 6.7.1.
450
451 static const char* gdb_sections[] =
452 { ".debug_abbrev",
453   // ".debug_aranges",   // not used by gdb as of 6.7.1
454   ".debug_frame",
455   ".debug_info",
456   ".debug_types",
457   ".debug_line",
458   ".debug_loc",
459   ".debug_macinfo",
460   // ".debug_pubnames",  // not used by gdb as of 6.7.1
461   ".debug_ranges",
462   ".debug_str",
463 };
464
465 static const char* lines_only_debug_sections[] =
466 { ".debug_abbrev",
467   // ".debug_aranges",   // not used by gdb as of 6.7.1
468   // ".debug_frame",
469   ".debug_info",
470   // ".debug_types",
471   ".debug_line",
472   // ".debug_loc",
473   // ".debug_macinfo",
474   // ".debug_pubnames",  // not used by gdb as of 6.7.1
475   // ".debug_ranges",
476   ".debug_str",
477 };
478
479 static inline bool
480 is_gdb_debug_section(const char* str)
481 {
482   // We can do this faster: binary search or a hashtable.  But why bother?
483   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
484     if (strcmp(str, gdb_sections[i]) == 0)
485       return true;
486   return false;
487 }
488
489 static inline bool
490 is_lines_only_debug_section(const char* str)
491 {
492   // We can do this faster: binary search or a hashtable.  But why bother?
493   for (size_t i = 0;
494        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
495        ++i)
496     if (strcmp(str, lines_only_debug_sections[i]) == 0)
497       return true;
498   return false;
499 }
500
501 // Sometimes we compress sections.  This is typically done for
502 // sections that are not part of normal program execution (such as
503 // .debug_* sections), and where the readers of these sections know
504 // how to deal with compressed sections.  This routine doesn't say for
505 // certain whether we'll compress -- it depends on commandline options
506 // as well -- just whether this section is a candidate for compression.
507 // (The Output_compressed_section class decides whether to compress
508 // a given section, and picks the name of the compressed section.)
509
510 static bool
511 is_compressible_debug_section(const char* secname)
512 {
513   return (is_prefix_of(".debug", secname));
514 }
515
516 // We may see compressed debug sections in input files.  Return TRUE
517 // if this is the name of a compressed debug section.
518
519 bool
520 is_compressed_debug_section(const char* secname)
521 {
522   return (is_prefix_of(".zdebug", secname));
523 }
524
525 // Whether to include this section in the link.
526
527 template<int size, bool big_endian>
528 bool
529 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
530                         const elfcpp::Shdr<size, big_endian>& shdr)
531 {
532   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
533     return false;
534
535   switch (shdr.get_sh_type())
536     {
537     case elfcpp::SHT_NULL:
538     case elfcpp::SHT_SYMTAB:
539     case elfcpp::SHT_DYNSYM:
540     case elfcpp::SHT_HASH:
541     case elfcpp::SHT_DYNAMIC:
542     case elfcpp::SHT_SYMTAB_SHNDX:
543       return false;
544
545     case elfcpp::SHT_STRTAB:
546       // Discard the sections which have special meanings in the ELF
547       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
548       // checking the sh_link fields of the appropriate sections.
549       return (strcmp(name, ".dynstr") != 0
550               && strcmp(name, ".strtab") != 0
551               && strcmp(name, ".shstrtab") != 0);
552
553     case elfcpp::SHT_RELA:
554     case elfcpp::SHT_REL:
555     case elfcpp::SHT_GROUP:
556       // If we are emitting relocations these should be handled
557       // elsewhere.
558       gold_assert(!parameters->options().relocatable()
559                   && !parameters->options().emit_relocs());
560       return false;
561
562     case elfcpp::SHT_PROGBITS:
563       if (parameters->options().strip_debug()
564           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
565         {
566           if (is_debug_info_section(name))
567             return false;
568         }
569       if (parameters->options().strip_debug_non_line()
570           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
571         {
572           // Debugging sections can only be recognized by name.
573           if (is_prefix_of(".debug", name)
574               && !is_lines_only_debug_section(name))
575             return false;
576         }
577       if (parameters->options().strip_debug_gdb()
578           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
579         {
580           // Debugging sections can only be recognized by name.
581           if (is_prefix_of(".debug", name)
582               && !is_gdb_debug_section(name))
583             return false;
584         }
585       if (parameters->options().strip_lto_sections()
586           && !parameters->options().relocatable()
587           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
588         {
589           // Ignore LTO sections containing intermediate code.
590           if (is_prefix_of(".gnu.lto_", name))
591             return false;
592         }
593       // The GNU linker strips .gnu_debuglink sections, so we do too.
594       // This is a feature used to keep debugging information in
595       // separate files.
596       if (strcmp(name, ".gnu_debuglink") == 0)
597         return false;
598       return true;
599
600     default:
601       return true;
602     }
603 }
604
605 // Return an output section named NAME, or NULL if there is none.
606
607 Output_section*
608 Layout::find_output_section(const char* name) const
609 {
610   for (Section_list::const_iterator p = this->section_list_.begin();
611        p != this->section_list_.end();
612        ++p)
613     if (strcmp((*p)->name(), name) == 0)
614       return *p;
615   return NULL;
616 }
617
618 // Return an output segment of type TYPE, with segment flags SET set
619 // and segment flags CLEAR clear.  Return NULL if there is none.
620
621 Output_segment*
622 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
623                             elfcpp::Elf_Word clear) const
624 {
625   for (Segment_list::const_iterator p = this->segment_list_.begin();
626        p != this->segment_list_.end();
627        ++p)
628     if (static_cast<elfcpp::PT>((*p)->type()) == type
629         && ((*p)->flags() & set) == set
630         && ((*p)->flags() & clear) == 0)
631       return *p;
632   return NULL;
633 }
634
635 // When we put a .ctors or .dtors section with more than one word into
636 // a .init_array or .fini_array section, we need to reverse the words
637 // in the .ctors/.dtors section.  This is because .init_array executes
638 // constructors front to back, where .ctors executes them back to
639 // front, and vice-versa for .fini_array/.dtors.  Although we do want
640 // to remap .ctors/.dtors into .init_array/.fini_array because it can
641 // be more efficient, we don't want to change the order in which
642 // constructors/destructors are run.  This set just keeps track of
643 // these sections which need to be reversed.  It is only changed by
644 // Layout::layout.  It should be a private member of Layout, but that
645 // would require layout.h to #include object.h to get the definition
646 // of Section_id.
647 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
648
649 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
650 // .init_array/.fini_array section.
651
652 bool
653 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
654 {
655   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
656           != ctors_sections_in_init_array.end());
657 }
658
659 // Return the output section to use for section NAME with type TYPE
660 // and section flags FLAGS.  NAME must be canonicalized in the string
661 // pool, and NAME_KEY is the key.  ORDER is where this should appear
662 // in the output sections.  IS_RELRO is true for a relro section.
663
664 Output_section*
665 Layout::get_output_section(const char* name, Stringpool::Key name_key,
666                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
667                            Output_section_order order, bool is_relro)
668 {
669   elfcpp::Elf_Word lookup_type = type;
670
671   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
672   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
673   // .init_array, .fini_array, and .preinit_array sections by name
674   // whatever their type in the input file.  We do this because the
675   // types are not always right in the input files.
676   if (lookup_type == elfcpp::SHT_INIT_ARRAY
677       || lookup_type == elfcpp::SHT_FINI_ARRAY
678       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
679     lookup_type = elfcpp::SHT_PROGBITS;
680
681   elfcpp::Elf_Xword lookup_flags = flags;
682
683   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
684   // read-write with read-only sections.  Some other ELF linkers do
685   // not do this.  FIXME: Perhaps there should be an option
686   // controlling this.
687   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
688
689   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
690   const std::pair<Key, Output_section*> v(key, NULL);
691   std::pair<Section_name_map::iterator, bool> ins(
692     this->section_name_map_.insert(v));
693
694   if (!ins.second)
695     return ins.first->second;
696   else
697     {
698       // This is the first time we've seen this name/type/flags
699       // combination.  For compatibility with the GNU linker, we
700       // combine sections with contents and zero flags with sections
701       // with non-zero flags.  This is a workaround for cases where
702       // assembler code forgets to set section flags.  FIXME: Perhaps
703       // there should be an option to control this.
704       Output_section* os = NULL;
705
706       if (lookup_type == elfcpp::SHT_PROGBITS)
707         {
708           if (flags == 0)
709             {
710               Output_section* same_name = this->find_output_section(name);
711               if (same_name != NULL
712                   && (same_name->type() == elfcpp::SHT_PROGBITS
713                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
714                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
715                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
716                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
717                 os = same_name;
718             }
719           else if ((flags & elfcpp::SHF_TLS) == 0)
720             {
721               elfcpp::Elf_Xword zero_flags = 0;
722               const Key zero_key(name_key, std::make_pair(lookup_type,
723                                                           zero_flags));
724               Section_name_map::iterator p =
725                   this->section_name_map_.find(zero_key);
726               if (p != this->section_name_map_.end())
727                 os = p->second;
728             }
729         }
730
731       if (os == NULL)
732         os = this->make_output_section(name, type, flags, order, is_relro);
733
734       ins.first->second = os;
735       return os;
736     }
737 }
738
739 // Pick the output section to use for section NAME, in input file
740 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
741 // linker created section.  IS_INPUT_SECTION is true if we are
742 // choosing an output section for an input section found in a input
743 // file.  ORDER is where this section should appear in the output
744 // sections.  IS_RELRO is true for a relro section.  This will return
745 // NULL if the input section should be discarded.
746
747 Output_section*
748 Layout::choose_output_section(const Relobj* relobj, const char* name,
749                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
750                               bool is_input_section, Output_section_order order,
751                               bool is_relro)
752 {
753   // We should not see any input sections after we have attached
754   // sections to segments.
755   gold_assert(!is_input_section || !this->sections_are_attached_);
756
757   // Some flags in the input section should not be automatically
758   // copied to the output section.
759   flags &= ~ (elfcpp::SHF_INFO_LINK
760               | elfcpp::SHF_GROUP
761               | elfcpp::SHF_MERGE
762               | elfcpp::SHF_STRINGS);
763
764   // We only clear the SHF_LINK_ORDER flag in for
765   // a non-relocatable link.
766   if (!parameters->options().relocatable())
767     flags &= ~elfcpp::SHF_LINK_ORDER;
768
769   if (this->script_options_->saw_sections_clause())
770     {
771       // We are using a SECTIONS clause, so the output section is
772       // chosen based only on the name.
773
774       Script_sections* ss = this->script_options_->script_sections();
775       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
776       Output_section** output_section_slot;
777       Script_sections::Section_type script_section_type;
778       const char* orig_name = name;
779       name = ss->output_section_name(file_name, name, &output_section_slot,
780                                      &script_section_type);
781       if (name == NULL)
782         {
783           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
784                                      "because it is not allowed by the "
785                                      "SECTIONS clause of the linker script"),
786                      orig_name);
787           // The SECTIONS clause says to discard this input section.
788           return NULL;
789         }
790
791       // We can only handle script section types ST_NONE and ST_NOLOAD.
792       switch (script_section_type)
793         {
794         case Script_sections::ST_NONE:
795           break;
796         case Script_sections::ST_NOLOAD:
797           flags &= elfcpp::SHF_ALLOC;
798           break;
799         default:
800           gold_unreachable();
801         }
802
803       // If this is an orphan section--one not mentioned in the linker
804       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
805       // default processing below.
806
807       if (output_section_slot != NULL)
808         {
809           if (*output_section_slot != NULL)
810             {
811               (*output_section_slot)->update_flags_for_input_section(flags);
812               return *output_section_slot;
813             }
814
815           // We don't put sections found in the linker script into
816           // SECTION_NAME_MAP_.  That keeps us from getting confused
817           // if an orphan section is mapped to a section with the same
818           // name as one in the linker script.
819
820           name = this->namepool_.add(name, false, NULL);
821
822           Output_section* os = this->make_output_section(name, type, flags,
823                                                          order, is_relro);
824
825           os->set_found_in_sections_clause();
826
827           // Special handling for NOLOAD sections.
828           if (script_section_type == Script_sections::ST_NOLOAD)
829             {
830               os->set_is_noload();
831
832               // The constructor of Output_section sets addresses of non-ALLOC
833               // sections to 0 by default.  We don't want that for NOLOAD
834               // sections even if they have no SHF_ALLOC flag.
835               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
836                   && os->is_address_valid())
837                 {
838                   gold_assert(os->address() == 0
839                               && !os->is_offset_valid()
840                               && !os->is_data_size_valid());
841                   os->reset_address_and_file_offset();
842                 }
843             }
844
845           *output_section_slot = os;
846           return os;
847         }
848     }
849
850   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
851
852   size_t len = strlen(name);
853   char* uncompressed_name = NULL;
854
855   // Compressed debug sections should be mapped to the corresponding
856   // uncompressed section.
857   if (is_compressed_debug_section(name))
858     {
859       uncompressed_name = new char[len];
860       uncompressed_name[0] = '.';
861       gold_assert(name[0] == '.' && name[1] == 'z');
862       strncpy(&uncompressed_name[1], &name[2], len - 2);
863       uncompressed_name[len - 1] = '\0';
864       len -= 1;
865       name = uncompressed_name;
866     }
867
868   // Turn NAME from the name of the input section into the name of the
869   // output section.
870   if (is_input_section
871       && !this->script_options_->saw_sections_clause()
872       && !parameters->options().relocatable())
873     name = Layout::output_section_name(relobj, name, &len);
874
875   Stringpool::Key name_key;
876   name = this->namepool_.add_with_length(name, len, true, &name_key);
877
878   if (uncompressed_name != NULL)
879     delete[] uncompressed_name;
880
881   // Find or make the output section.  The output section is selected
882   // based on the section name, type, and flags.
883   return this->get_output_section(name, name_key, type, flags, order, is_relro);
884 }
885
886 // For incremental links, record the initial fixed layout of a section
887 // from the base file, and return a pointer to the Output_section.
888
889 template<int size, bool big_endian>
890 Output_section*
891 Layout::init_fixed_output_section(const char* name,
892                                   elfcpp::Shdr<size, big_endian>& shdr)
893 {
894   unsigned int sh_type = shdr.get_sh_type();
895
896   // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
897   // All others will be created from scratch and reallocated.
898   if (sh_type != elfcpp::SHT_PROGBITS
899       && sh_type != elfcpp::SHT_NOBITS
900       && sh_type != elfcpp::SHT_NOTE)
901     return NULL;
902
903   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
904   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
905   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
906   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
907   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
908       shdr.get_sh_addralign();
909
910   // Make the output section.
911   Stringpool::Key name_key;
912   name = this->namepool_.add(name, true, &name_key);
913   Output_section* os = this->get_output_section(name, name_key, sh_type,
914                                                 sh_flags, ORDER_INVALID, false);
915   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
916   if (sh_type != elfcpp::SHT_NOBITS)
917     this->free_list_.remove(sh_offset, sh_offset + sh_size);
918   return os;
919 }
920
921 // Return the output section to use for input section SHNDX, with name
922 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
923 // index of a relocation section which applies to this section, or 0
924 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
925 // relocation section if there is one.  Set *OFF to the offset of this
926 // input section without the output section.  Return NULL if the
927 // section should be discarded.  Set *OFF to -1 if the section
928 // contents should not be written directly to the output file, but
929 // will instead receive special handling.
930
931 template<int size, bool big_endian>
932 Output_section*
933 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
934                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
935                unsigned int reloc_shndx, unsigned int, off_t* off)
936 {
937   *off = 0;
938
939   if (!this->include_section(object, name, shdr))
940     return NULL;
941
942   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
943
944   // In a relocatable link a grouped section must not be combined with
945   // any other sections.
946   Output_section* os;
947   if (parameters->options().relocatable()
948       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
949     {
950       name = this->namepool_.add(name, true, NULL);
951       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
952                                      ORDER_INVALID, false);
953     }
954   else
955     {
956       os = this->choose_output_section(object, name, sh_type,
957                                        shdr.get_sh_flags(), true,
958                                        ORDER_INVALID, false);
959       if (os == NULL)
960         return NULL;
961     }
962
963   // By default the GNU linker sorts input sections whose names match
964   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
965   // sections are sorted by name.  This is used to implement
966   // constructor priority ordering.  We are compatible.  When we put
967   // .ctor sections in .init_array and .dtor sections in .fini_array,
968   // we must also sort plain .ctor and .dtor sections.
969   if (!this->script_options_->saw_sections_clause()
970       && !parameters->options().relocatable()
971       && (is_prefix_of(".ctors.", name)
972           || is_prefix_of(".dtors.", name)
973           || is_prefix_of(".init_array.", name)
974           || is_prefix_of(".fini_array.", name)
975           || (parameters->options().ctors_in_init_array()
976               && (strcmp(name, ".ctors") == 0
977                   || strcmp(name, ".dtors") == 0))))
978     os->set_must_sort_attached_input_sections();
979
980   // If this is a .ctors or .ctors.* section being mapped to a
981   // .init_array section, or a .dtors or .dtors.* section being mapped
982   // to a .fini_array section, we will need to reverse the words if
983   // there is more than one.  Record this section for later.  See
984   // ctors_sections_in_init_array above.
985   if (!this->script_options_->saw_sections_clause()
986       && !parameters->options().relocatable()
987       && shdr.get_sh_size() > size / 8
988       && (((strcmp(name, ".ctors") == 0
989             || is_prefix_of(".ctors.", name))
990            && strcmp(os->name(), ".init_array") == 0)
991           || ((strcmp(name, ".dtors") == 0
992                || is_prefix_of(".dtors.", name))
993               && strcmp(os->name(), ".fini_array") == 0)))
994     ctors_sections_in_init_array.insert(Section_id(object, shndx));
995
996   // FIXME: Handle SHF_LINK_ORDER somewhere.
997
998   elfcpp::Elf_Xword orig_flags = os->flags();
999
1000   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1001                                this->script_options_->saw_sections_clause());
1002
1003   // If the flags changed, we may have to change the order.
1004   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1005     {
1006       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1007       elfcpp::Elf_Xword new_flags =
1008         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1009       if (orig_flags != new_flags)
1010         os->set_order(this->default_section_order(os, false));
1011     }
1012
1013   this->have_added_input_section_ = true;
1014
1015   return os;
1016 }
1017
1018 // Handle a relocation section when doing a relocatable link.
1019
1020 template<int size, bool big_endian>
1021 Output_section*
1022 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1023                      unsigned int,
1024                      const elfcpp::Shdr<size, big_endian>& shdr,
1025                      Output_section* data_section,
1026                      Relocatable_relocs* rr)
1027 {
1028   gold_assert(parameters->options().relocatable()
1029               || parameters->options().emit_relocs());
1030
1031   int sh_type = shdr.get_sh_type();
1032
1033   std::string name;
1034   if (sh_type == elfcpp::SHT_REL)
1035     name = ".rel";
1036   else if (sh_type == elfcpp::SHT_RELA)
1037     name = ".rela";
1038   else
1039     gold_unreachable();
1040   name += data_section->name();
1041
1042   // In a relocatable link relocs for a grouped section must not be
1043   // combined with other reloc sections.
1044   Output_section* os;
1045   if (!parameters->options().relocatable()
1046       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1047     os = this->choose_output_section(object, name.c_str(), sh_type,
1048                                      shdr.get_sh_flags(), false,
1049                                      ORDER_INVALID, false);
1050   else
1051     {
1052       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1053       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1054                                      ORDER_INVALID, false);
1055     }
1056
1057   os->set_should_link_to_symtab();
1058   os->set_info_section(data_section);
1059
1060   Output_section_data* posd;
1061   if (sh_type == elfcpp::SHT_REL)
1062     {
1063       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1064       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1065                                            size,
1066                                            big_endian>(rr);
1067     }
1068   else if (sh_type == elfcpp::SHT_RELA)
1069     {
1070       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1071       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1072                                            size,
1073                                            big_endian>(rr);
1074     }
1075   else
1076     gold_unreachable();
1077
1078   os->add_output_section_data(posd);
1079   rr->set_output_data(posd);
1080
1081   return os;
1082 }
1083
1084 // Handle a group section when doing a relocatable link.
1085
1086 template<int size, bool big_endian>
1087 void
1088 Layout::layout_group(Symbol_table* symtab,
1089                      Sized_relobj_file<size, big_endian>* object,
1090                      unsigned int,
1091                      const char* group_section_name,
1092                      const char* signature,
1093                      const elfcpp::Shdr<size, big_endian>& shdr,
1094                      elfcpp::Elf_Word flags,
1095                      std::vector<unsigned int>* shndxes)
1096 {
1097   gold_assert(parameters->options().relocatable());
1098   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1099   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1100   Output_section* os = this->make_output_section(group_section_name,
1101                                                  elfcpp::SHT_GROUP,
1102                                                  shdr.get_sh_flags(),
1103                                                  ORDER_INVALID, false);
1104
1105   // We need to find a symbol with the signature in the symbol table.
1106   // If we don't find one now, we need to look again later.
1107   Symbol* sym = symtab->lookup(signature, NULL);
1108   if (sym != NULL)
1109     os->set_info_symndx(sym);
1110   else
1111     {
1112       // Reserve some space to minimize reallocations.
1113       if (this->group_signatures_.empty())
1114         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1115
1116       // We will wind up using a symbol whose name is the signature.
1117       // So just put the signature in the symbol name pool to save it.
1118       signature = symtab->canonicalize_name(signature);
1119       this->group_signatures_.push_back(Group_signature(os, signature));
1120     }
1121
1122   os->set_should_link_to_symtab();
1123   os->set_entsize(4);
1124
1125   section_size_type entry_count =
1126     convert_to_section_size_type(shdr.get_sh_size() / 4);
1127   Output_section_data* posd =
1128     new Output_data_group<size, big_endian>(object, entry_count, flags,
1129                                             shndxes);
1130   os->add_output_section_data(posd);
1131 }
1132
1133 // Special GNU handling of sections name .eh_frame.  They will
1134 // normally hold exception frame data as defined by the C++ ABI
1135 // (http://codesourcery.com/cxx-abi/).
1136
1137 template<int size, bool big_endian>
1138 Output_section*
1139 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1140                         const unsigned char* symbols,
1141                         off_t symbols_size,
1142                         const unsigned char* symbol_names,
1143                         off_t symbol_names_size,
1144                         unsigned int shndx,
1145                         const elfcpp::Shdr<size, big_endian>& shdr,
1146                         unsigned int reloc_shndx, unsigned int reloc_type,
1147                         off_t* off)
1148 {
1149   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1150               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1151   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1152
1153   Output_section* os = this->make_eh_frame_section(object);
1154   if (os == NULL)
1155     return NULL;
1156
1157   gold_assert(this->eh_frame_section_ == os);
1158
1159   elfcpp::Elf_Xword orig_flags = os->flags();
1160
1161   if (!parameters->incremental()
1162       && this->eh_frame_data_->add_ehframe_input_section(object,
1163                                                          symbols,
1164                                                          symbols_size,
1165                                                          symbol_names,
1166                                                          symbol_names_size,
1167                                                          shndx,
1168                                                          reloc_shndx,
1169                                                          reloc_type))
1170     {
1171       os->update_flags_for_input_section(shdr.get_sh_flags());
1172
1173       // A writable .eh_frame section is a RELRO section.
1174       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1175           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1176         {
1177           os->set_is_relro();
1178           os->set_order(ORDER_RELRO);
1179         }
1180
1181       // We found a .eh_frame section we are going to optimize, so now
1182       // we can add the set of optimized sections to the output
1183       // section.  We need to postpone adding this until we've found a
1184       // section we can optimize so that the .eh_frame section in
1185       // crtbegin.o winds up at the start of the output section.
1186       if (!this->added_eh_frame_data_)
1187         {
1188           os->add_output_section_data(this->eh_frame_data_);
1189           this->added_eh_frame_data_ = true;
1190         }
1191       *off = -1;
1192     }
1193   else
1194     {
1195       // We couldn't handle this .eh_frame section for some reason.
1196       // Add it as a normal section.
1197       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1198       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1199                                    reloc_shndx, saw_sections_clause);
1200       this->have_added_input_section_ = true;
1201
1202       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1203           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1204         os->set_order(this->default_section_order(os, false));
1205     }
1206
1207   return os;
1208 }
1209
1210 // Create and return the magic .eh_frame section.  Create
1211 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1212 // input .eh_frame section; it may be NULL.
1213
1214 Output_section*
1215 Layout::make_eh_frame_section(const Relobj* object)
1216 {
1217   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1218   // SHT_PROGBITS.
1219   Output_section* os = this->choose_output_section(object, ".eh_frame",
1220                                                    elfcpp::SHT_PROGBITS,
1221                                                    elfcpp::SHF_ALLOC, false,
1222                                                    ORDER_EHFRAME, false);
1223   if (os == NULL)
1224     return NULL;
1225
1226   if (this->eh_frame_section_ == NULL)
1227     {
1228       this->eh_frame_section_ = os;
1229       this->eh_frame_data_ = new Eh_frame();
1230
1231       // For incremental linking, we do not optimize .eh_frame sections
1232       // or create a .eh_frame_hdr section.
1233       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1234         {
1235           Output_section* hdr_os =
1236             this->choose_output_section(NULL, ".eh_frame_hdr",
1237                                         elfcpp::SHT_PROGBITS,
1238                                         elfcpp::SHF_ALLOC, false,
1239                                         ORDER_EHFRAME, false);
1240
1241           if (hdr_os != NULL)
1242             {
1243               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1244                                                         this->eh_frame_data_);
1245               hdr_os->add_output_section_data(hdr_posd);
1246
1247               hdr_os->set_after_input_sections();
1248
1249               if (!this->script_options_->saw_phdrs_clause())
1250                 {
1251                   Output_segment* hdr_oseg;
1252                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1253                                                        elfcpp::PF_R);
1254                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1255                                                           elfcpp::PF_R);
1256                 }
1257
1258               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1259             }
1260         }
1261     }
1262
1263   return os;
1264 }
1265
1266 // Add an exception frame for a PLT.  This is called from target code.
1267
1268 void
1269 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1270                              size_t cie_length, const unsigned char* fde_data,
1271                              size_t fde_length)
1272 {
1273   if (parameters->incremental())
1274     {
1275       // FIXME: Maybe this could work some day....
1276       return;
1277     }
1278   Output_section* os = this->make_eh_frame_section(NULL);
1279   if (os == NULL)
1280     return;
1281   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1282                                             fde_data, fde_length);
1283   if (!this->added_eh_frame_data_)
1284     {
1285       os->add_output_section_data(this->eh_frame_data_);
1286       this->added_eh_frame_data_ = true;
1287     }
1288 }
1289
1290 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1291 // the output section.
1292
1293 Output_section*
1294 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1295                                 elfcpp::Elf_Xword flags,
1296                                 Output_section_data* posd,
1297                                 Output_section_order order, bool is_relro)
1298 {
1299   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1300                                                    false, order, is_relro);
1301   if (os != NULL)
1302     os->add_output_section_data(posd);
1303   return os;
1304 }
1305
1306 // Map section flags to segment flags.
1307
1308 elfcpp::Elf_Word
1309 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1310 {
1311   elfcpp::Elf_Word ret = elfcpp::PF_R;
1312   if ((flags & elfcpp::SHF_WRITE) != 0)
1313     ret |= elfcpp::PF_W;
1314   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1315     ret |= elfcpp::PF_X;
1316   return ret;
1317 }
1318
1319 // Make a new Output_section, and attach it to segments as
1320 // appropriate.  ORDER is the order in which this section should
1321 // appear in the output segment.  IS_RELRO is true if this is a relro
1322 // (read-only after relocations) section.
1323
1324 Output_section*
1325 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1326                             elfcpp::Elf_Xword flags,
1327                             Output_section_order order, bool is_relro)
1328 {
1329   Output_section* os;
1330   if ((flags & elfcpp::SHF_ALLOC) == 0
1331       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1332       && is_compressible_debug_section(name))
1333     os = new Output_compressed_section(&parameters->options(), name, type,
1334                                        flags);
1335   else if ((flags & elfcpp::SHF_ALLOC) == 0
1336            && parameters->options().strip_debug_non_line()
1337            && strcmp(".debug_abbrev", name) == 0)
1338     {
1339       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1340           name, type, flags);
1341       if (this->debug_info_)
1342         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1343     }
1344   else if ((flags & elfcpp::SHF_ALLOC) == 0
1345            && parameters->options().strip_debug_non_line()
1346            && strcmp(".debug_info", name) == 0)
1347     {
1348       os = this->debug_info_ = new Output_reduced_debug_info_section(
1349           name, type, flags);
1350       if (this->debug_abbrev_)
1351         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1352     }
1353   else
1354     {
1355       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1356       // not have correct section types.  Force them here.
1357       if (type == elfcpp::SHT_PROGBITS)
1358         {
1359           if (is_prefix_of(".init_array", name))
1360             type = elfcpp::SHT_INIT_ARRAY;
1361           else if (is_prefix_of(".preinit_array", name))
1362             type = elfcpp::SHT_PREINIT_ARRAY;
1363           else if (is_prefix_of(".fini_array", name))
1364             type = elfcpp::SHT_FINI_ARRAY;
1365         }
1366
1367       // FIXME: const_cast is ugly.
1368       Target* target = const_cast<Target*>(&parameters->target());
1369       os = target->make_output_section(name, type, flags);
1370     }
1371
1372   // With -z relro, we have to recognize the special sections by name.
1373   // There is no other way.
1374   bool is_relro_local = false;
1375   if (!this->script_options_->saw_sections_clause()
1376       && parameters->options().relro()
1377       && type == elfcpp::SHT_PROGBITS
1378       && (flags & elfcpp::SHF_ALLOC) != 0
1379       && (flags & elfcpp::SHF_WRITE) != 0)
1380     {
1381       if (strcmp(name, ".data.rel.ro") == 0)
1382         is_relro = true;
1383       else if (strcmp(name, ".data.rel.ro.local") == 0)
1384         {
1385           is_relro = true;
1386           is_relro_local = true;
1387         }
1388       else if (type == elfcpp::SHT_INIT_ARRAY
1389                || type == elfcpp::SHT_FINI_ARRAY
1390                || type == elfcpp::SHT_PREINIT_ARRAY)
1391         is_relro = true;
1392       else if (strcmp(name, ".ctors") == 0
1393                || strcmp(name, ".dtors") == 0
1394                || strcmp(name, ".jcr") == 0)
1395         is_relro = true;
1396     }
1397
1398   if (is_relro)
1399     os->set_is_relro();
1400
1401   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1402     order = this->default_section_order(os, is_relro_local);
1403
1404   os->set_order(order);
1405
1406   parameters->target().new_output_section(os);
1407
1408   this->section_list_.push_back(os);
1409
1410   // The GNU linker by default sorts some sections by priority, so we
1411   // do the same.  We need to know that this might happen before we
1412   // attach any input sections.
1413   if (!this->script_options_->saw_sections_clause()
1414       && !parameters->options().relocatable()
1415       && (strcmp(name, ".init_array") == 0
1416           || strcmp(name, ".fini_array") == 0
1417           || (!parameters->options().ctors_in_init_array()
1418               && (strcmp(name, ".ctors") == 0
1419                   || strcmp(name, ".dtors") == 0))))
1420     os->set_may_sort_attached_input_sections();
1421
1422   // Check for .stab*str sections, as .stab* sections need to link to
1423   // them.
1424   if (type == elfcpp::SHT_STRTAB
1425       && !this->have_stabstr_section_
1426       && strncmp(name, ".stab", 5) == 0
1427       && strcmp(name + strlen(name) - 3, "str") == 0)
1428     this->have_stabstr_section_ = true;
1429
1430   // During a full incremental link, we add patch space to most
1431   // PROGBITS and NOBITS sections.  Flag those that may be
1432   // arbitrarily padded.
1433   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1434       && order != ORDER_INTERP
1435       && order != ORDER_INIT
1436       && order != ORDER_PLT
1437       && order != ORDER_FINI
1438       && order != ORDER_RELRO_LAST
1439       && order != ORDER_NON_RELRO_FIRST
1440       && strcmp(name, ".ctors") != 0
1441       && strcmp(name, ".dtors") != 0
1442       && strcmp(name, ".jcr") != 0)
1443     os->set_is_patch_space_allowed();
1444
1445   // If we have already attached the sections to segments, then we
1446   // need to attach this one now.  This happens for sections created
1447   // directly by the linker.
1448   if (this->sections_are_attached_)
1449     this->attach_section_to_segment(os);
1450
1451   return os;
1452 }
1453
1454 // Return the default order in which a section should be placed in an
1455 // output segment.  This function captures a lot of the ideas in
1456 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1457 // linker created section is normally set when the section is created;
1458 // this function is used for input sections.
1459
1460 Output_section_order
1461 Layout::default_section_order(Output_section* os, bool is_relro_local)
1462 {
1463   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1464   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1465   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1466   bool is_bss = false;
1467
1468   switch (os->type())
1469     {
1470     default:
1471     case elfcpp::SHT_PROGBITS:
1472       break;
1473     case elfcpp::SHT_NOBITS:
1474       is_bss = true;
1475       break;
1476     case elfcpp::SHT_RELA:
1477     case elfcpp::SHT_REL:
1478       if (!is_write)
1479         return ORDER_DYNAMIC_RELOCS;
1480       break;
1481     case elfcpp::SHT_HASH:
1482     case elfcpp::SHT_DYNAMIC:
1483     case elfcpp::SHT_SHLIB:
1484     case elfcpp::SHT_DYNSYM:
1485     case elfcpp::SHT_GNU_HASH:
1486     case elfcpp::SHT_GNU_verdef:
1487     case elfcpp::SHT_GNU_verneed:
1488     case elfcpp::SHT_GNU_versym:
1489       if (!is_write)
1490         return ORDER_DYNAMIC_LINKER;
1491       break;
1492     case elfcpp::SHT_NOTE:
1493       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1494     }
1495
1496   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1497     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1498
1499   if (!is_bss && !is_write)
1500     {
1501       if (is_execinstr)
1502         {
1503           if (strcmp(os->name(), ".init") == 0)
1504             return ORDER_INIT;
1505           else if (strcmp(os->name(), ".fini") == 0)
1506             return ORDER_FINI;
1507         }
1508       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1509     }
1510
1511   if (os->is_relro())
1512     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1513
1514   if (os->is_small_section())
1515     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1516   if (os->is_large_section())
1517     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1518
1519   return is_bss ? ORDER_BSS : ORDER_DATA;
1520 }
1521
1522 // Attach output sections to segments.  This is called after we have
1523 // seen all the input sections.
1524
1525 void
1526 Layout::attach_sections_to_segments()
1527 {
1528   for (Section_list::iterator p = this->section_list_.begin();
1529        p != this->section_list_.end();
1530        ++p)
1531     this->attach_section_to_segment(*p);
1532
1533   this->sections_are_attached_ = true;
1534 }
1535
1536 // Attach an output section to a segment.
1537
1538 void
1539 Layout::attach_section_to_segment(Output_section* os)
1540 {
1541   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1542     this->unattached_section_list_.push_back(os);
1543   else
1544     this->attach_allocated_section_to_segment(os);
1545 }
1546
1547 // Attach an allocated output section to a segment.
1548
1549 void
1550 Layout::attach_allocated_section_to_segment(Output_section* os)
1551 {
1552   elfcpp::Elf_Xword flags = os->flags();
1553   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1554
1555   if (parameters->options().relocatable())
1556     return;
1557
1558   // If we have a SECTIONS clause, we can't handle the attachment to
1559   // segments until after we've seen all the sections.
1560   if (this->script_options_->saw_sections_clause())
1561     return;
1562
1563   gold_assert(!this->script_options_->saw_phdrs_clause());
1564
1565   // This output section goes into a PT_LOAD segment.
1566
1567   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1568
1569   // Check for --section-start.
1570   uint64_t addr;
1571   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1572
1573   // In general the only thing we really care about for PT_LOAD
1574   // segments is whether or not they are writable or executable,
1575   // so that is how we search for them.
1576   // Large data sections also go into their own PT_LOAD segment.
1577   // People who need segments sorted on some other basis will
1578   // have to use a linker script.
1579
1580   Segment_list::const_iterator p;
1581   for (p = this->segment_list_.begin();
1582        p != this->segment_list_.end();
1583        ++p)
1584     {
1585       if ((*p)->type() != elfcpp::PT_LOAD)
1586         continue;
1587       if (!parameters->options().omagic()
1588           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1589         continue;
1590       if (parameters->options().rosegment()
1591           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1592         continue;
1593       // If -Tbss was specified, we need to separate the data and BSS
1594       // segments.
1595       if (parameters->options().user_set_Tbss())
1596         {
1597           if ((os->type() == elfcpp::SHT_NOBITS)
1598               == (*p)->has_any_data_sections())
1599             continue;
1600         }
1601       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1602         continue;
1603
1604       if (is_address_set)
1605         {
1606           if ((*p)->are_addresses_set())
1607             continue;
1608
1609           (*p)->add_initial_output_data(os);
1610           (*p)->update_flags_for_output_section(seg_flags);
1611           (*p)->set_addresses(addr, addr);
1612           break;
1613         }
1614
1615       (*p)->add_output_section_to_load(this, os, seg_flags);
1616       break;
1617     }
1618
1619   if (p == this->segment_list_.end())
1620     {
1621       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1622                                                        seg_flags);
1623       if (os->is_large_data_section())
1624         oseg->set_is_large_data_segment();
1625       oseg->add_output_section_to_load(this, os, seg_flags);
1626       if (is_address_set)
1627         oseg->set_addresses(addr, addr);
1628     }
1629
1630   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1631   // segment.
1632   if (os->type() == elfcpp::SHT_NOTE)
1633     {
1634       // See if we already have an equivalent PT_NOTE segment.
1635       for (p = this->segment_list_.begin();
1636            p != segment_list_.end();
1637            ++p)
1638         {
1639           if ((*p)->type() == elfcpp::PT_NOTE
1640               && (((*p)->flags() & elfcpp::PF_W)
1641                   == (seg_flags & elfcpp::PF_W)))
1642             {
1643               (*p)->add_output_section_to_nonload(os, seg_flags);
1644               break;
1645             }
1646         }
1647
1648       if (p == this->segment_list_.end())
1649         {
1650           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1651                                                            seg_flags);
1652           oseg->add_output_section_to_nonload(os, seg_flags);
1653         }
1654     }
1655
1656   // If we see a loadable SHF_TLS section, we create a PT_TLS
1657   // segment.  There can only be one such segment.
1658   if ((flags & elfcpp::SHF_TLS) != 0)
1659     {
1660       if (this->tls_segment_ == NULL)
1661         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1662       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1663     }
1664
1665   // If -z relro is in effect, and we see a relro section, we create a
1666   // PT_GNU_RELRO segment.  There can only be one such segment.
1667   if (os->is_relro() && parameters->options().relro())
1668     {
1669       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1670       if (this->relro_segment_ == NULL)
1671         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1672       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1673     }
1674
1675   // If we see a section named .interp, put it into a PT_INTERP
1676   // segment.  This seems broken to me, but this is what GNU ld does,
1677   // and glibc expects it.
1678   if (strcmp(os->name(), ".interp") == 0
1679       && !this->script_options_->saw_phdrs_clause())
1680     {
1681       if (this->interp_segment_ == NULL)
1682         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1683       else
1684         gold_warning(_("multiple '.interp' sections in input files "
1685                        "may cause confusing PT_INTERP segment"));
1686       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1687     }
1688 }
1689
1690 // Make an output section for a script.
1691
1692 Output_section*
1693 Layout::make_output_section_for_script(
1694     const char* name,
1695     Script_sections::Section_type section_type)
1696 {
1697   name = this->namepool_.add(name, false, NULL);
1698   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1699   if (section_type == Script_sections::ST_NOLOAD)
1700     sh_flags = 0;
1701   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1702                                                  sh_flags, ORDER_INVALID,
1703                                                  false);
1704   os->set_found_in_sections_clause();
1705   if (section_type == Script_sections::ST_NOLOAD)
1706     os->set_is_noload();
1707   return os;
1708 }
1709
1710 // Return the number of segments we expect to see.
1711
1712 size_t
1713 Layout::expected_segment_count() const
1714 {
1715   size_t ret = this->segment_list_.size();
1716
1717   // If we didn't see a SECTIONS clause in a linker script, we should
1718   // already have the complete list of segments.  Otherwise we ask the
1719   // SECTIONS clause how many segments it expects, and add in the ones
1720   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1721
1722   if (!this->script_options_->saw_sections_clause())
1723     return ret;
1724   else
1725     {
1726       const Script_sections* ss = this->script_options_->script_sections();
1727       return ret + ss->expected_segment_count(this);
1728     }
1729 }
1730
1731 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1732 // is whether we saw a .note.GNU-stack section in the object file.
1733 // GNU_STACK_FLAGS is the section flags.  The flags give the
1734 // protection required for stack memory.  We record this in an
1735 // executable as a PT_GNU_STACK segment.  If an object file does not
1736 // have a .note.GNU-stack segment, we must assume that it is an old
1737 // object.  On some targets that will force an executable stack.
1738
1739 void
1740 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1741                          const Object* obj)
1742 {
1743   if (!seen_gnu_stack)
1744     {
1745       this->input_without_gnu_stack_note_ = true;
1746       if (parameters->options().warn_execstack()
1747           && parameters->target().is_default_stack_executable())
1748         gold_warning(_("%s: missing .note.GNU-stack section"
1749                        " implies executable stack"),
1750                      obj->name().c_str());
1751     }
1752   else
1753     {
1754       this->input_with_gnu_stack_note_ = true;
1755       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1756         {
1757           this->input_requires_executable_stack_ = true;
1758           if (parameters->options().warn_execstack()
1759               || parameters->options().is_stack_executable())
1760             gold_warning(_("%s: requires executable stack"),
1761                          obj->name().c_str());
1762         }
1763     }
1764 }
1765
1766 // Create automatic note sections.
1767
1768 void
1769 Layout::create_notes()
1770 {
1771   this->create_gold_note();
1772   this->create_executable_stack_info();
1773   this->create_build_id();
1774 }
1775
1776 // Create the dynamic sections which are needed before we read the
1777 // relocs.
1778
1779 void
1780 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1781 {
1782   if (parameters->doing_static_link())
1783     return;
1784
1785   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1786                                                        elfcpp::SHT_DYNAMIC,
1787                                                        (elfcpp::SHF_ALLOC
1788                                                         | elfcpp::SHF_WRITE),
1789                                                        false, ORDER_RELRO,
1790                                                        true);
1791
1792   // A linker script may discard .dynamic, so check for NULL.
1793   if (this->dynamic_section_ != NULL)
1794     {
1795       this->dynamic_symbol_ =
1796         symtab->define_in_output_data("_DYNAMIC", NULL,
1797                                       Symbol_table::PREDEFINED,
1798                                       this->dynamic_section_, 0, 0,
1799                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1800                                       elfcpp::STV_HIDDEN, 0, false, false);
1801
1802       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1803
1804       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1805     }
1806 }
1807
1808 // For each output section whose name can be represented as C symbol,
1809 // define __start and __stop symbols for the section.  This is a GNU
1810 // extension.
1811
1812 void
1813 Layout::define_section_symbols(Symbol_table* symtab)
1814 {
1815   for (Section_list::const_iterator p = this->section_list_.begin();
1816        p != this->section_list_.end();
1817        ++p)
1818     {
1819       const char* const name = (*p)->name();
1820       if (is_cident(name))
1821         {
1822           const std::string name_string(name);
1823           const std::string start_name(cident_section_start_prefix
1824                                        + name_string);
1825           const std::string stop_name(cident_section_stop_prefix
1826                                       + name_string);
1827
1828           symtab->define_in_output_data(start_name.c_str(),
1829                                         NULL, // version
1830                                         Symbol_table::PREDEFINED,
1831                                         *p,
1832                                         0, // value
1833                                         0, // symsize
1834                                         elfcpp::STT_NOTYPE,
1835                                         elfcpp::STB_GLOBAL,
1836                                         elfcpp::STV_DEFAULT,
1837                                         0, // nonvis
1838                                         false, // offset_is_from_end
1839                                         true); // only_if_ref
1840
1841           symtab->define_in_output_data(stop_name.c_str(),
1842                                         NULL, // version
1843                                         Symbol_table::PREDEFINED,
1844                                         *p,
1845                                         0, // value
1846                                         0, // symsize
1847                                         elfcpp::STT_NOTYPE,
1848                                         elfcpp::STB_GLOBAL,
1849                                         elfcpp::STV_DEFAULT,
1850                                         0, // nonvis
1851                                         true, // offset_is_from_end
1852                                         true); // only_if_ref
1853         }
1854     }
1855 }
1856
1857 // Define symbols for group signatures.
1858
1859 void
1860 Layout::define_group_signatures(Symbol_table* symtab)
1861 {
1862   for (Group_signatures::iterator p = this->group_signatures_.begin();
1863        p != this->group_signatures_.end();
1864        ++p)
1865     {
1866       Symbol* sym = symtab->lookup(p->signature, NULL);
1867       if (sym != NULL)
1868         p->section->set_info_symndx(sym);
1869       else
1870         {
1871           // Force the name of the group section to the group
1872           // signature, and use the group's section symbol as the
1873           // signature symbol.
1874           if (strcmp(p->section->name(), p->signature) != 0)
1875             {
1876               const char* name = this->namepool_.add(p->signature,
1877                                                      true, NULL);
1878               p->section->set_name(name);
1879             }
1880           p->section->set_needs_symtab_index();
1881           p->section->set_info_section_symndx(p->section);
1882         }
1883     }
1884
1885   this->group_signatures_.clear();
1886 }
1887
1888 // Find the first read-only PT_LOAD segment, creating one if
1889 // necessary.
1890
1891 Output_segment*
1892 Layout::find_first_load_seg()
1893 {
1894   Output_segment* best = NULL;
1895   for (Segment_list::const_iterator p = this->segment_list_.begin();
1896        p != this->segment_list_.end();
1897        ++p)
1898     {
1899       if ((*p)->type() == elfcpp::PT_LOAD
1900           && ((*p)->flags() & elfcpp::PF_R) != 0
1901           && (parameters->options().omagic()
1902               || ((*p)->flags() & elfcpp::PF_W) == 0))
1903         {
1904           if (best == NULL || this->segment_precedes(*p, best))
1905             best = *p;
1906         }
1907     }
1908   if (best != NULL)
1909     return best;
1910
1911   gold_assert(!this->script_options_->saw_phdrs_clause());
1912
1913   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1914                                                        elfcpp::PF_R);
1915   return load_seg;
1916 }
1917
1918 // Save states of all current output segments.  Store saved states
1919 // in SEGMENT_STATES.
1920
1921 void
1922 Layout::save_segments(Segment_states* segment_states)
1923 {
1924   for (Segment_list::const_iterator p = this->segment_list_.begin();
1925        p != this->segment_list_.end();
1926        ++p)
1927     {
1928       Output_segment* segment = *p;
1929       // Shallow copy.
1930       Output_segment* copy = new Output_segment(*segment);
1931       (*segment_states)[segment] = copy;
1932     }
1933 }
1934
1935 // Restore states of output segments and delete any segment not found in
1936 // SEGMENT_STATES.
1937
1938 void
1939 Layout::restore_segments(const Segment_states* segment_states)
1940 {
1941   // Go through the segment list and remove any segment added in the
1942   // relaxation loop.
1943   this->tls_segment_ = NULL;
1944   this->relro_segment_ = NULL;
1945   Segment_list::iterator list_iter = this->segment_list_.begin();
1946   while (list_iter != this->segment_list_.end())
1947     {
1948       Output_segment* segment = *list_iter;
1949       Segment_states::const_iterator states_iter =
1950           segment_states->find(segment);
1951       if (states_iter != segment_states->end())
1952         {
1953           const Output_segment* copy = states_iter->second;
1954           // Shallow copy to restore states.
1955           *segment = *copy;
1956
1957           // Also fix up TLS and RELRO segment pointers as appropriate.
1958           if (segment->type() == elfcpp::PT_TLS)
1959             this->tls_segment_ = segment;
1960           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1961             this->relro_segment_ = segment;
1962
1963           ++list_iter;
1964         } 
1965       else
1966         {
1967           list_iter = this->segment_list_.erase(list_iter); 
1968           // This is a segment created during section layout.  It should be
1969           // safe to remove it since we should have removed all pointers to it.
1970           delete segment;
1971         }
1972     }
1973 }
1974
1975 // Clean up after relaxation so that sections can be laid out again.
1976
1977 void
1978 Layout::clean_up_after_relaxation()
1979 {
1980   // Restore the segments to point state just prior to the relaxation loop.
1981   Script_sections* script_section = this->script_options_->script_sections();
1982   script_section->release_segments();
1983   this->restore_segments(this->segment_states_);
1984
1985   // Reset section addresses and file offsets
1986   for (Section_list::iterator p = this->section_list_.begin();
1987        p != this->section_list_.end();
1988        ++p)
1989     {
1990       (*p)->restore_states();
1991
1992       // If an input section changes size because of relaxation,
1993       // we need to adjust the section offsets of all input sections.
1994       // after such a section.
1995       if ((*p)->section_offsets_need_adjustment())
1996         (*p)->adjust_section_offsets();
1997
1998       (*p)->reset_address_and_file_offset();
1999     }
2000   
2001   // Reset special output object address and file offsets.
2002   for (Data_list::iterator p = this->special_output_list_.begin();
2003        p != this->special_output_list_.end();
2004        ++p)
2005     (*p)->reset_address_and_file_offset();
2006
2007   // A linker script may have created some output section data objects.
2008   // They are useless now.
2009   for (Output_section_data_list::const_iterator p =
2010          this->script_output_section_data_list_.begin();
2011        p != this->script_output_section_data_list_.end();
2012        ++p)
2013     delete *p;
2014   this->script_output_section_data_list_.clear(); 
2015 }
2016
2017 // Prepare for relaxation.
2018
2019 void
2020 Layout::prepare_for_relaxation()
2021 {
2022   // Create an relaxation debug check if in debugging mode.
2023   if (is_debugging_enabled(DEBUG_RELAXATION))
2024     this->relaxation_debug_check_ = new Relaxation_debug_check();
2025
2026   // Save segment states.
2027   this->segment_states_ = new Segment_states();
2028   this->save_segments(this->segment_states_);
2029
2030   for(Section_list::const_iterator p = this->section_list_.begin();
2031       p != this->section_list_.end();
2032       ++p)
2033     (*p)->save_states();
2034
2035   if (is_debugging_enabled(DEBUG_RELAXATION))
2036     this->relaxation_debug_check_->check_output_data_for_reset_values(
2037         this->section_list_, this->special_output_list_);
2038
2039   // Also enable recording of output section data from scripts.
2040   this->record_output_section_data_from_script_ = true;
2041 }
2042
2043 // Relaxation loop body:  If target has no relaxation, this runs only once
2044 // Otherwise, the target relaxation hook is called at the end of
2045 // each iteration.  If the hook returns true, it means re-layout of
2046 // section is required.  
2047 //
2048 // The number of segments created by a linking script without a PHDRS
2049 // clause may be affected by section sizes and alignments.  There is
2050 // a remote chance that relaxation causes different number of PT_LOAD
2051 // segments are created and sections are attached to different segments.
2052 // Therefore, we always throw away all segments created during section
2053 // layout.  In order to be able to restart the section layout, we keep
2054 // a copy of the segment list right before the relaxation loop and use
2055 // that to restore the segments.
2056 // 
2057 // PASS is the current relaxation pass number. 
2058 // SYMTAB is a symbol table.
2059 // PLOAD_SEG is the address of a pointer for the load segment.
2060 // PHDR_SEG is a pointer to the PHDR segment.
2061 // SEGMENT_HEADERS points to the output segment header.
2062 // FILE_HEADER points to the output file header.
2063 // PSHNDX is the address to store the output section index.
2064
2065 off_t inline
2066 Layout::relaxation_loop_body(
2067     int pass,
2068     Target* target,
2069     Symbol_table* symtab,
2070     Output_segment** pload_seg,
2071     Output_segment* phdr_seg,
2072     Output_segment_headers* segment_headers,
2073     Output_file_header* file_header,
2074     unsigned int* pshndx)
2075 {
2076   // If this is not the first iteration, we need to clean up after
2077   // relaxation so that we can lay out the sections again.
2078   if (pass != 0)
2079     this->clean_up_after_relaxation();
2080
2081   // If there is a SECTIONS clause, put all the input sections into
2082   // the required order.
2083   Output_segment* load_seg;
2084   if (this->script_options_->saw_sections_clause())
2085     load_seg = this->set_section_addresses_from_script(symtab);
2086   else if (parameters->options().relocatable())
2087     load_seg = NULL;
2088   else
2089     load_seg = this->find_first_load_seg();
2090
2091   if (parameters->options().oformat_enum()
2092       != General_options::OBJECT_FORMAT_ELF)
2093     load_seg = NULL;
2094
2095   // If the user set the address of the text segment, that may not be
2096   // compatible with putting the segment headers and file headers into
2097   // that segment.
2098   if (parameters->options().user_set_Ttext())
2099     load_seg = NULL;
2100
2101   gold_assert(phdr_seg == NULL
2102               || load_seg != NULL
2103               || this->script_options_->saw_sections_clause());
2104
2105   // If the address of the load segment we found has been set by
2106   // --section-start rather than by a script, then adjust the VMA and
2107   // LMA downward if possible to include the file and section headers.
2108   uint64_t header_gap = 0;
2109   if (load_seg != NULL
2110       && load_seg->are_addresses_set()
2111       && !this->script_options_->saw_sections_clause()
2112       && !parameters->options().relocatable())
2113     {
2114       file_header->finalize_data_size();
2115       segment_headers->finalize_data_size();
2116       size_t sizeof_headers = (file_header->data_size()
2117                                + segment_headers->data_size());
2118       const uint64_t abi_pagesize = target->abi_pagesize();
2119       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2120       hdr_paddr &= ~(abi_pagesize - 1);
2121       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2122       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2123         load_seg = NULL;
2124       else
2125         {
2126           load_seg->set_addresses(load_seg->vaddr() - subtract,
2127                                   load_seg->paddr() - subtract);
2128           header_gap = subtract - sizeof_headers;
2129         }
2130     }
2131
2132   // Lay out the segment headers.
2133   if (!parameters->options().relocatable())
2134     {
2135       gold_assert(segment_headers != NULL);
2136       if (header_gap != 0 && load_seg != NULL)
2137         {
2138           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2139           load_seg->add_initial_output_data(z);
2140         }
2141       if (load_seg != NULL)
2142         load_seg->add_initial_output_data(segment_headers);
2143       if (phdr_seg != NULL)
2144         phdr_seg->add_initial_output_data(segment_headers);
2145     }
2146
2147   // Lay out the file header.
2148   if (load_seg != NULL)
2149     load_seg->add_initial_output_data(file_header);
2150
2151   if (this->script_options_->saw_phdrs_clause()
2152       && !parameters->options().relocatable())
2153     {
2154       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2155       // clause in a linker script.
2156       Script_sections* ss = this->script_options_->script_sections();
2157       ss->put_headers_in_phdrs(file_header, segment_headers);
2158     }
2159
2160   // We set the output section indexes in set_segment_offsets and
2161   // set_section_indexes.
2162   *pshndx = 1;
2163
2164   // Set the file offsets of all the segments, and all the sections
2165   // they contain.
2166   off_t off;
2167   if (!parameters->options().relocatable())
2168     off = this->set_segment_offsets(target, load_seg, pshndx);
2169   else
2170     off = this->set_relocatable_section_offsets(file_header, pshndx);
2171
2172    // Verify that the dummy relaxation does not change anything.
2173   if (is_debugging_enabled(DEBUG_RELAXATION))
2174     {
2175       if (pass == 0)
2176         this->relaxation_debug_check_->read_sections(this->section_list_);
2177       else
2178         this->relaxation_debug_check_->verify_sections(this->section_list_);
2179     }
2180
2181   *pload_seg = load_seg;
2182   return off;
2183 }
2184
2185 // Search the list of patterns and find the postion of the given section
2186 // name in the output section.  If the section name matches a glob
2187 // pattern and a non-glob name, then the non-glob position takes
2188 // precedence.  Return 0 if no match is found.
2189
2190 unsigned int
2191 Layout::find_section_order_index(const std::string& section_name)
2192 {
2193   Unordered_map<std::string, unsigned int>::iterator map_it;
2194   map_it = this->input_section_position_.find(section_name);
2195   if (map_it != this->input_section_position_.end())
2196     return map_it->second;
2197
2198   // Absolute match failed.  Linear search the glob patterns.
2199   std::vector<std::string>::iterator it;
2200   for (it = this->input_section_glob_.begin();
2201        it != this->input_section_glob_.end();
2202        ++it)
2203     {
2204        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2205          {
2206            map_it = this->input_section_position_.find(*it);
2207            gold_assert(map_it != this->input_section_position_.end());
2208            return map_it->second;
2209          }
2210     }
2211   return 0;
2212 }
2213
2214 // Read the sequence of input sections from the file specified with
2215 // option --section-ordering-file.
2216
2217 void
2218 Layout::read_layout_from_file()
2219 {
2220   const char* filename = parameters->options().section_ordering_file();
2221   std::ifstream in;
2222   std::string line;
2223
2224   in.open(filename);
2225   if (!in)
2226     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2227                filename, strerror(errno));
2228
2229   std::getline(in, line);   // this chops off the trailing \n, if any
2230   unsigned int position = 1;
2231   this->set_section_ordering_specified();
2232
2233   while (in)
2234     {
2235       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2236         line.resize(line.length() - 1);
2237       // Ignore comments, beginning with '#'
2238       if (line[0] == '#')
2239         {
2240           std::getline(in, line);
2241           continue;
2242         }
2243       this->input_section_position_[line] = position;
2244       // Store all glob patterns in a vector.
2245       if (is_wildcard_string(line.c_str()))
2246         this->input_section_glob_.push_back(line);
2247       position++;
2248       std::getline(in, line);
2249     }
2250 }
2251
2252 // Finalize the layout.  When this is called, we have created all the
2253 // output sections and all the output segments which are based on
2254 // input sections.  We have several things to do, and we have to do
2255 // them in the right order, so that we get the right results correctly
2256 // and efficiently.
2257
2258 // 1) Finalize the list of output segments and create the segment
2259 // table header.
2260
2261 // 2) Finalize the dynamic symbol table and associated sections.
2262
2263 // 3) Determine the final file offset of all the output segments.
2264
2265 // 4) Determine the final file offset of all the SHF_ALLOC output
2266 // sections.
2267
2268 // 5) Create the symbol table sections and the section name table
2269 // section.
2270
2271 // 6) Finalize the symbol table: set symbol values to their final
2272 // value and make a final determination of which symbols are going
2273 // into the output symbol table.
2274
2275 // 7) Create the section table header.
2276
2277 // 8) Determine the final file offset of all the output sections which
2278 // are not SHF_ALLOC, including the section table header.
2279
2280 // 9) Finalize the ELF file header.
2281
2282 // This function returns the size of the output file.
2283
2284 off_t
2285 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2286                  Target* target, const Task* task)
2287 {
2288   target->finalize_sections(this, input_objects, symtab);
2289
2290   this->count_local_symbols(task, input_objects);
2291
2292   this->link_stabs_sections();
2293
2294   Output_segment* phdr_seg = NULL;
2295   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2296     {
2297       // There was a dynamic object in the link.  We need to create
2298       // some information for the dynamic linker.
2299
2300       // Create the PT_PHDR segment which will hold the program
2301       // headers.
2302       if (!this->script_options_->saw_phdrs_clause())
2303         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2304
2305       // Create the dynamic symbol table, including the hash table.
2306       Output_section* dynstr;
2307       std::vector<Symbol*> dynamic_symbols;
2308       unsigned int local_dynamic_count;
2309       Versions versions(*this->script_options()->version_script_info(),
2310                         &this->dynpool_);
2311       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2312                                   &local_dynamic_count, &dynamic_symbols,
2313                                   &versions);
2314
2315       // Create the .interp section to hold the name of the
2316       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2317       // if we saw a .interp section in an input file.
2318       if ((!parameters->options().shared()
2319            || parameters->options().dynamic_linker() != NULL)
2320           && this->interp_segment_ == NULL)
2321         this->create_interp(target);
2322
2323       // Finish the .dynamic section to hold the dynamic data, and put
2324       // it in a PT_DYNAMIC segment.
2325       this->finish_dynamic_section(input_objects, symtab);
2326
2327       // We should have added everything we need to the dynamic string
2328       // table.
2329       this->dynpool_.set_string_offsets();
2330
2331       // Create the version sections.  We can't do this until the
2332       // dynamic string table is complete.
2333       this->create_version_sections(&versions, symtab, local_dynamic_count,
2334                                     dynamic_symbols, dynstr);
2335
2336       // Set the size of the _DYNAMIC symbol.  We can't do this until
2337       // after we call create_version_sections.
2338       this->set_dynamic_symbol_size(symtab);
2339     }
2340   
2341   // Create segment headers.
2342   Output_segment_headers* segment_headers =
2343     (parameters->options().relocatable()
2344      ? NULL
2345      : new Output_segment_headers(this->segment_list_));
2346
2347   // Lay out the file header.
2348   Output_file_header* file_header = new Output_file_header(target, symtab,
2349                                                            segment_headers);
2350
2351   this->special_output_list_.push_back(file_header);
2352   if (segment_headers != NULL)
2353     this->special_output_list_.push_back(segment_headers);
2354
2355   // Find approriate places for orphan output sections if we are using
2356   // a linker script.
2357   if (this->script_options_->saw_sections_clause())
2358     this->place_orphan_sections_in_script();
2359   
2360   Output_segment* load_seg;
2361   off_t off;
2362   unsigned int shndx;
2363   int pass = 0;
2364
2365   // Take a snapshot of the section layout as needed.
2366   if (target->may_relax())
2367     this->prepare_for_relaxation();
2368   
2369   // Run the relaxation loop to lay out sections.
2370   do
2371     {
2372       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2373                                        phdr_seg, segment_headers, file_header,
2374                                        &shndx);
2375       pass++;
2376     }
2377   while (target->may_relax()
2378          && target->relax(pass, input_objects, symtab, this, task));
2379
2380   // Set the file offsets of all the non-data sections we've seen so
2381   // far which don't have to wait for the input sections.  We need
2382   // this in order to finalize local symbols in non-allocated
2383   // sections.
2384   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2385
2386   // Set the section indexes of all unallocated sections seen so far,
2387   // in case any of them are somehow referenced by a symbol.
2388   shndx = this->set_section_indexes(shndx);
2389
2390   // Create the symbol table sections.
2391   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2392   if (!parameters->doing_static_link())
2393     this->assign_local_dynsym_offsets(input_objects);
2394
2395   // Process any symbol assignments from a linker script.  This must
2396   // be called after the symbol table has been finalized.
2397   this->script_options_->finalize_symbols(symtab, this);
2398
2399   // Create the incremental inputs sections.
2400   if (this->incremental_inputs_)
2401     {
2402       this->incremental_inputs_->finalize();
2403       this->create_incremental_info_sections(symtab);
2404     }
2405
2406   // Create the .shstrtab section.
2407   Output_section* shstrtab_section = this->create_shstrtab();
2408
2409   // Set the file offsets of the rest of the non-data sections which
2410   // don't have to wait for the input sections.
2411   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2412
2413   // Now that all sections have been created, set the section indexes
2414   // for any sections which haven't been done yet.
2415   shndx = this->set_section_indexes(shndx);
2416
2417   // Create the section table header.
2418   this->create_shdrs(shstrtab_section, &off);
2419
2420   // If there are no sections which require postprocessing, we can
2421   // handle the section names now, and avoid a resize later.
2422   if (!this->any_postprocessing_sections_)
2423     {
2424       off = this->set_section_offsets(off,
2425                                       POSTPROCESSING_SECTIONS_PASS);
2426       off =
2427           this->set_section_offsets(off,
2428                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2429     }
2430
2431   file_header->set_section_info(this->section_headers_, shstrtab_section);
2432
2433   // Now we know exactly where everything goes in the output file
2434   // (except for non-allocated sections which require postprocessing).
2435   Output_data::layout_complete();
2436
2437   this->output_file_size_ = off;
2438
2439   return off;
2440 }
2441
2442 // Create a note header following the format defined in the ELF ABI.
2443 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2444 // of the section to create, DESCSZ is the size of the descriptor.
2445 // ALLOCATE is true if the section should be allocated in memory.
2446 // This returns the new note section.  It sets *TRAILING_PADDING to
2447 // the number of trailing zero bytes required.
2448
2449 Output_section*
2450 Layout::create_note(const char* name, int note_type,
2451                     const char* section_name, size_t descsz,
2452                     bool allocate, size_t* trailing_padding)
2453 {
2454   // Authorities all agree that the values in a .note field should
2455   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2456   // they differ on what the alignment is for 64-bit binaries.
2457   // The GABI says unambiguously they take 8-byte alignment:
2458   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2459   // Other documentation says alignment should always be 4 bytes:
2460   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2461   // GNU ld and GNU readelf both support the latter (at least as of
2462   // version 2.16.91), and glibc always generates the latter for
2463   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2464   // here.
2465 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2466   const int size = parameters->target().get_size();
2467 #else
2468   const int size = 32;
2469 #endif
2470
2471   // The contents of the .note section.
2472   size_t namesz = strlen(name) + 1;
2473   size_t aligned_namesz = align_address(namesz, size / 8);
2474   size_t aligned_descsz = align_address(descsz, size / 8);
2475
2476   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2477
2478   unsigned char* buffer = new unsigned char[notehdrsz];
2479   memset(buffer, 0, notehdrsz);
2480
2481   bool is_big_endian = parameters->target().is_big_endian();
2482
2483   if (size == 32)
2484     {
2485       if (!is_big_endian)
2486         {
2487           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2488           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2489           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2490         }
2491       else
2492         {
2493           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2494           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2495           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2496         }
2497     }
2498   else if (size == 64)
2499     {
2500       if (!is_big_endian)
2501         {
2502           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2503           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2504           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2505         }
2506       else
2507         {
2508           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2509           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2510           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2511         }
2512     }
2513   else
2514     gold_unreachable();
2515
2516   memcpy(buffer + 3 * (size / 8), name, namesz);
2517
2518   elfcpp::Elf_Xword flags = 0;
2519   Output_section_order order = ORDER_INVALID;
2520   if (allocate)
2521     {
2522       flags = elfcpp::SHF_ALLOC;
2523       order = ORDER_RO_NOTE;
2524     }
2525   Output_section* os = this->choose_output_section(NULL, section_name,
2526                                                    elfcpp::SHT_NOTE,
2527                                                    flags, false, order, false);
2528   if (os == NULL)
2529     return NULL;
2530
2531   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2532                                                            size / 8,
2533                                                            "** note header");
2534   os->add_output_section_data(posd);
2535
2536   *trailing_padding = aligned_descsz - descsz;
2537
2538   return os;
2539 }
2540
2541 // For an executable or shared library, create a note to record the
2542 // version of gold used to create the binary.
2543
2544 void
2545 Layout::create_gold_note()
2546 {
2547   if (parameters->options().relocatable()
2548       || parameters->incremental_update())
2549     return;
2550
2551   std::string desc = std::string("gold ") + gold::get_version_string();
2552
2553   size_t trailing_padding;
2554   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2555                                          ".note.gnu.gold-version", desc.size(),
2556                                          false, &trailing_padding);
2557   if (os == NULL)
2558     return;
2559
2560   Output_section_data* posd = new Output_data_const(desc, 4);
2561   os->add_output_section_data(posd);
2562
2563   if (trailing_padding > 0)
2564     {
2565       posd = new Output_data_zero_fill(trailing_padding, 0);
2566       os->add_output_section_data(posd);
2567     }
2568 }
2569
2570 // Record whether the stack should be executable.  This can be set
2571 // from the command line using the -z execstack or -z noexecstack
2572 // options.  Otherwise, if any input file has a .note.GNU-stack
2573 // section with the SHF_EXECINSTR flag set, the stack should be
2574 // executable.  Otherwise, if at least one input file a
2575 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2576 // section, we use the target default for whether the stack should be
2577 // executable.  Otherwise, we don't generate a stack note.  When
2578 // generating a object file, we create a .note.GNU-stack section with
2579 // the appropriate marking.  When generating an executable or shared
2580 // library, we create a PT_GNU_STACK segment.
2581
2582 void
2583 Layout::create_executable_stack_info()
2584 {
2585   bool is_stack_executable;
2586   if (parameters->options().is_execstack_set())
2587     is_stack_executable = parameters->options().is_stack_executable();
2588   else if (!this->input_with_gnu_stack_note_)
2589     return;
2590   else
2591     {
2592       if (this->input_requires_executable_stack_)
2593         is_stack_executable = true;
2594       else if (this->input_without_gnu_stack_note_)
2595         is_stack_executable =
2596           parameters->target().is_default_stack_executable();
2597       else
2598         is_stack_executable = false;
2599     }
2600
2601   if (parameters->options().relocatable())
2602     {
2603       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2604       elfcpp::Elf_Xword flags = 0;
2605       if (is_stack_executable)
2606         flags |= elfcpp::SHF_EXECINSTR;
2607       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2608                                 ORDER_INVALID, false);
2609     }
2610   else
2611     {
2612       if (this->script_options_->saw_phdrs_clause())
2613         return;
2614       int flags = elfcpp::PF_R | elfcpp::PF_W;
2615       if (is_stack_executable)
2616         flags |= elfcpp::PF_X;
2617       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2618     }
2619 }
2620
2621 // If --build-id was used, set up the build ID note.
2622
2623 void
2624 Layout::create_build_id()
2625 {
2626   if (!parameters->options().user_set_build_id())
2627     return;
2628
2629   const char* style = parameters->options().build_id();
2630   if (strcmp(style, "none") == 0)
2631     return;
2632
2633   // Set DESCSZ to the size of the note descriptor.  When possible,
2634   // set DESC to the note descriptor contents.
2635   size_t descsz;
2636   std::string desc;
2637   if (strcmp(style, "md5") == 0)
2638     descsz = 128 / 8;
2639   else if (strcmp(style, "sha1") == 0)
2640     descsz = 160 / 8;
2641   else if (strcmp(style, "uuid") == 0)
2642     {
2643       const size_t uuidsz = 128 / 8;
2644
2645       char buffer[uuidsz];
2646       memset(buffer, 0, uuidsz);
2647
2648       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2649       if (descriptor < 0)
2650         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2651                    strerror(errno));
2652       else
2653         {
2654           ssize_t got = ::read(descriptor, buffer, uuidsz);
2655           release_descriptor(descriptor, true);
2656           if (got < 0)
2657             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2658           else if (static_cast<size_t>(got) != uuidsz)
2659             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2660                        uuidsz, got);
2661         }
2662
2663       desc.assign(buffer, uuidsz);
2664       descsz = uuidsz;
2665     }
2666   else if (strncmp(style, "0x", 2) == 0)
2667     {
2668       hex_init();
2669       const char* p = style + 2;
2670       while (*p != '\0')
2671         {
2672           if (hex_p(p[0]) && hex_p(p[1]))
2673             {
2674               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2675               desc += c;
2676               p += 2;
2677             }
2678           else if (*p == '-' || *p == ':')
2679             ++p;
2680           else
2681             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2682                        style);
2683         }
2684       descsz = desc.size();
2685     }
2686   else
2687     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2688
2689   // Create the note.
2690   size_t trailing_padding;
2691   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2692                                          ".note.gnu.build-id", descsz, true,
2693                                          &trailing_padding);
2694   if (os == NULL)
2695     return;
2696
2697   if (!desc.empty())
2698     {
2699       // We know the value already, so we fill it in now.
2700       gold_assert(desc.size() == descsz);
2701
2702       Output_section_data* posd = new Output_data_const(desc, 4);
2703       os->add_output_section_data(posd);
2704
2705       if (trailing_padding != 0)
2706         {
2707           posd = new Output_data_zero_fill(trailing_padding, 0);
2708           os->add_output_section_data(posd);
2709         }
2710     }
2711   else
2712     {
2713       // We need to compute a checksum after we have completed the
2714       // link.
2715       gold_assert(trailing_padding == 0);
2716       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2717       os->add_output_section_data(this->build_id_note_);
2718     }
2719 }
2720
2721 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2722 // field of the former should point to the latter.  I'm not sure who
2723 // started this, but the GNU linker does it, and some tools depend
2724 // upon it.
2725
2726 void
2727 Layout::link_stabs_sections()
2728 {
2729   if (!this->have_stabstr_section_)
2730     return;
2731
2732   for (Section_list::iterator p = this->section_list_.begin();
2733        p != this->section_list_.end();
2734        ++p)
2735     {
2736       if ((*p)->type() != elfcpp::SHT_STRTAB)
2737         continue;
2738
2739       const char* name = (*p)->name();
2740       if (strncmp(name, ".stab", 5) != 0)
2741         continue;
2742
2743       size_t len = strlen(name);
2744       if (strcmp(name + len - 3, "str") != 0)
2745         continue;
2746
2747       std::string stab_name(name, len - 3);
2748       Output_section* stab_sec;
2749       stab_sec = this->find_output_section(stab_name.c_str());
2750       if (stab_sec != NULL)
2751         stab_sec->set_link_section(*p);
2752     }
2753 }
2754
2755 // Create .gnu_incremental_inputs and related sections needed
2756 // for the next run of incremental linking to check what has changed.
2757
2758 void
2759 Layout::create_incremental_info_sections(Symbol_table* symtab)
2760 {
2761   Incremental_inputs* incr = this->incremental_inputs_;
2762
2763   gold_assert(incr != NULL);
2764
2765   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2766   incr->create_data_sections(symtab);
2767
2768   // Add the .gnu_incremental_inputs section.
2769   const char* incremental_inputs_name =
2770     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2771   Output_section* incremental_inputs_os =
2772     this->make_output_section(incremental_inputs_name,
2773                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2774                               ORDER_INVALID, false);
2775   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2776
2777   // Add the .gnu_incremental_symtab section.
2778   const char* incremental_symtab_name =
2779     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2780   Output_section* incremental_symtab_os =
2781     this->make_output_section(incremental_symtab_name,
2782                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2783                               ORDER_INVALID, false);
2784   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2785   incremental_symtab_os->set_entsize(4);
2786
2787   // Add the .gnu_incremental_relocs section.
2788   const char* incremental_relocs_name =
2789     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2790   Output_section* incremental_relocs_os =
2791     this->make_output_section(incremental_relocs_name,
2792                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2793                               ORDER_INVALID, false);
2794   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2795   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2796
2797   // Add the .gnu_incremental_got_plt section.
2798   const char* incremental_got_plt_name =
2799     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2800   Output_section* incremental_got_plt_os =
2801     this->make_output_section(incremental_got_plt_name,
2802                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2803                               ORDER_INVALID, false);
2804   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2805
2806   // Add the .gnu_incremental_strtab section.
2807   const char* incremental_strtab_name =
2808     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2809   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2810                                                         elfcpp::SHT_STRTAB, 0,
2811                                                         ORDER_INVALID, false);
2812   Output_data_strtab* strtab_data =
2813       new Output_data_strtab(incr->get_stringpool());
2814   incremental_strtab_os->add_output_section_data(strtab_data);
2815
2816   incremental_inputs_os->set_after_input_sections();
2817   incremental_symtab_os->set_after_input_sections();
2818   incremental_relocs_os->set_after_input_sections();
2819   incremental_got_plt_os->set_after_input_sections();
2820
2821   incremental_inputs_os->set_link_section(incremental_strtab_os);
2822   incremental_symtab_os->set_link_section(incremental_inputs_os);
2823   incremental_relocs_os->set_link_section(incremental_inputs_os);
2824   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2825 }
2826
2827 // Return whether SEG1 should be before SEG2 in the output file.  This
2828 // is based entirely on the segment type and flags.  When this is
2829 // called the segment addresses have normally not yet been set.
2830
2831 bool
2832 Layout::segment_precedes(const Output_segment* seg1,
2833                          const Output_segment* seg2)
2834 {
2835   elfcpp::Elf_Word type1 = seg1->type();
2836   elfcpp::Elf_Word type2 = seg2->type();
2837
2838   // The single PT_PHDR segment is required to precede any loadable
2839   // segment.  We simply make it always first.
2840   if (type1 == elfcpp::PT_PHDR)
2841     {
2842       gold_assert(type2 != elfcpp::PT_PHDR);
2843       return true;
2844     }
2845   if (type2 == elfcpp::PT_PHDR)
2846     return false;
2847
2848   // The single PT_INTERP segment is required to precede any loadable
2849   // segment.  We simply make it always second.
2850   if (type1 == elfcpp::PT_INTERP)
2851     {
2852       gold_assert(type2 != elfcpp::PT_INTERP);
2853       return true;
2854     }
2855   if (type2 == elfcpp::PT_INTERP)
2856     return false;
2857
2858   // We then put PT_LOAD segments before any other segments.
2859   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2860     return true;
2861   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2862     return false;
2863
2864   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2865   // segment, because that is where the dynamic linker expects to find
2866   // it (this is just for efficiency; other positions would also work
2867   // correctly).
2868   if (type1 == elfcpp::PT_TLS
2869       && type2 != elfcpp::PT_TLS
2870       && type2 != elfcpp::PT_GNU_RELRO)
2871     return false;
2872   if (type2 == elfcpp::PT_TLS
2873       && type1 != elfcpp::PT_TLS
2874       && type1 != elfcpp::PT_GNU_RELRO)
2875     return true;
2876
2877   // We put the PT_GNU_RELRO segment last, because that is where the
2878   // dynamic linker expects to find it (as with PT_TLS, this is just
2879   // for efficiency).
2880   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2881     return false;
2882   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2883     return true;
2884
2885   const elfcpp::Elf_Word flags1 = seg1->flags();
2886   const elfcpp::Elf_Word flags2 = seg2->flags();
2887
2888   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2889   // by the numeric segment type and flags values.  There should not
2890   // be more than one segment with the same type and flags.
2891   if (type1 != elfcpp::PT_LOAD)
2892     {
2893       if (type1 != type2)
2894         return type1 < type2;
2895       gold_assert(flags1 != flags2);
2896       return flags1 < flags2;
2897     }
2898
2899   // If the addresses are set already, sort by load address.
2900   if (seg1->are_addresses_set())
2901     {
2902       if (!seg2->are_addresses_set())
2903         return true;
2904
2905       unsigned int section_count1 = seg1->output_section_count();
2906       unsigned int section_count2 = seg2->output_section_count();
2907       if (section_count1 == 0 && section_count2 > 0)
2908         return true;
2909       if (section_count1 > 0 && section_count2 == 0)
2910         return false;
2911
2912       uint64_t paddr1 = (seg1->are_addresses_set()
2913                          ? seg1->paddr()
2914                          : seg1->first_section_load_address());
2915       uint64_t paddr2 = (seg2->are_addresses_set()
2916                          ? seg2->paddr()
2917                          : seg2->first_section_load_address());
2918
2919       if (paddr1 != paddr2)
2920         return paddr1 < paddr2;
2921     }
2922   else if (seg2->are_addresses_set())
2923     return false;
2924
2925   // A segment which holds large data comes after a segment which does
2926   // not hold large data.
2927   if (seg1->is_large_data_segment())
2928     {
2929       if (!seg2->is_large_data_segment())
2930         return false;
2931     }
2932   else if (seg2->is_large_data_segment())
2933     return true;
2934
2935   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2936   // segments come before writable segments.  Then writable segments
2937   // with data come before writable segments without data.  Then
2938   // executable segments come before non-executable segments.  Then
2939   // the unlikely case of a non-readable segment comes before the
2940   // normal case of a readable segment.  If there are multiple
2941   // segments with the same type and flags, we require that the
2942   // address be set, and we sort by virtual address and then physical
2943   // address.
2944   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2945     return (flags1 & elfcpp::PF_W) == 0;
2946   if ((flags1 & elfcpp::PF_W) != 0
2947       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2948     return seg1->has_any_data_sections();
2949   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2950     return (flags1 & elfcpp::PF_X) != 0;
2951   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2952     return (flags1 & elfcpp::PF_R) == 0;
2953
2954   // We shouldn't get here--we shouldn't create segments which we
2955   // can't distinguish.  Unless of course we are using a weird linker
2956   // script.
2957   gold_assert(this->script_options_->saw_phdrs_clause());
2958   return false;
2959 }
2960
2961 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2962
2963 static off_t
2964 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2965 {
2966   uint64_t unsigned_off = off;
2967   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2968                           | (addr & (abi_pagesize - 1)));
2969   if (aligned_off < unsigned_off)
2970     aligned_off += abi_pagesize;
2971   return aligned_off;
2972 }
2973
2974 // Set the file offsets of all the segments, and all the sections they
2975 // contain.  They have all been created.  LOAD_SEG must be be laid out
2976 // first.  Return the offset of the data to follow.
2977
2978 off_t
2979 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2980                             unsigned int* pshndx)
2981 {
2982   // Sort them into the final order.  We use a stable sort so that we
2983   // don't randomize the order of indistinguishable segments created
2984   // by linker scripts.
2985   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
2986                    Layout::Compare_segments(this));
2987
2988   // Find the PT_LOAD segments, and set their addresses and offsets
2989   // and their section's addresses and offsets.
2990   uint64_t addr;
2991   if (parameters->options().user_set_Ttext())
2992     addr = parameters->options().Ttext();
2993   else if (parameters->options().output_is_position_independent())
2994     addr = 0;
2995   else
2996     addr = target->default_text_segment_address();
2997   off_t off = 0;
2998
2999   // If LOAD_SEG is NULL, then the file header and segment headers
3000   // will not be loadable.  But they still need to be at offset 0 in
3001   // the file.  Set their offsets now.
3002   if (load_seg == NULL)
3003     {
3004       for (Data_list::iterator p = this->special_output_list_.begin();
3005            p != this->special_output_list_.end();
3006            ++p)
3007         {
3008           off = align_address(off, (*p)->addralign());
3009           (*p)->set_address_and_file_offset(0, off);
3010           off += (*p)->data_size();
3011         }
3012     }
3013
3014   unsigned int increase_relro = this->increase_relro_;
3015   if (this->script_options_->saw_sections_clause())
3016     increase_relro = 0;
3017
3018   const bool check_sections = parameters->options().check_sections();
3019   Output_segment* last_load_segment = NULL;
3020
3021   for (Segment_list::iterator p = this->segment_list_.begin();
3022        p != this->segment_list_.end();
3023        ++p)
3024     {
3025       if ((*p)->type() == elfcpp::PT_LOAD)
3026         {
3027           if (load_seg != NULL && load_seg != *p)
3028             gold_unreachable();
3029           load_seg = NULL;
3030
3031           bool are_addresses_set = (*p)->are_addresses_set();
3032           if (are_addresses_set)
3033             {
3034               // When it comes to setting file offsets, we care about
3035               // the physical address.
3036               addr = (*p)->paddr();
3037             }
3038           else if (parameters->options().user_set_Tdata()
3039                    && ((*p)->flags() & elfcpp::PF_W) != 0
3040                    && (!parameters->options().user_set_Tbss()
3041                        || (*p)->has_any_data_sections()))
3042             {
3043               addr = parameters->options().Tdata();
3044               are_addresses_set = true;
3045             }
3046           else if (parameters->options().user_set_Tbss()
3047                    && ((*p)->flags() & elfcpp::PF_W) != 0
3048                    && !(*p)->has_any_data_sections())
3049             {
3050               addr = parameters->options().Tbss();
3051               are_addresses_set = true;
3052             }
3053
3054           uint64_t orig_addr = addr;
3055           uint64_t orig_off = off;
3056
3057           uint64_t aligned_addr = 0;
3058           uint64_t abi_pagesize = target->abi_pagesize();
3059           uint64_t common_pagesize = target->common_pagesize();
3060
3061           if (!parameters->options().nmagic()
3062               && !parameters->options().omagic())
3063             (*p)->set_minimum_p_align(common_pagesize);
3064
3065           if (!are_addresses_set)
3066             {
3067               // Skip the address forward one page, maintaining the same
3068               // position within the page.  This lets us store both segments
3069               // overlapping on a single page in the file, but the loader will
3070               // put them on different pages in memory. We will revisit this
3071               // decision once we know the size of the segment.
3072
3073               addr = align_address(addr, (*p)->maximum_alignment());
3074               aligned_addr = addr;
3075
3076               if ((addr & (abi_pagesize - 1)) != 0)
3077                 addr = addr + abi_pagesize;
3078
3079               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3080             }
3081
3082           if (!parameters->options().nmagic()
3083               && !parameters->options().omagic())
3084             off = align_file_offset(off, addr, abi_pagesize);
3085           else if (load_seg == NULL)
3086             {
3087               // This is -N or -n with a section script which prevents
3088               // us from using a load segment.  We need to ensure that
3089               // the file offset is aligned to the alignment of the
3090               // segment.  This is because the linker script
3091               // implicitly assumed a zero offset.  If we don't align
3092               // here, then the alignment of the sections in the
3093               // linker script may not match the alignment of the
3094               // sections in the set_section_addresses call below,
3095               // causing an error about dot moving backward.
3096               off = align_address(off, (*p)->maximum_alignment());
3097             }
3098
3099           unsigned int shndx_hold = *pshndx;
3100           bool has_relro = false;
3101           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3102                                                           &increase_relro,
3103                                                           &has_relro,
3104                                                           &off, pshndx);
3105
3106           // Now that we know the size of this segment, we may be able
3107           // to save a page in memory, at the cost of wasting some
3108           // file space, by instead aligning to the start of a new
3109           // page.  Here we use the real machine page size rather than
3110           // the ABI mandated page size.  If the segment has been
3111           // aligned so that the relro data ends at a page boundary,
3112           // we do not try to realign it.
3113
3114           if (!are_addresses_set
3115               && !has_relro
3116               && aligned_addr != addr
3117               && !parameters->incremental())
3118             {
3119               uint64_t first_off = (common_pagesize
3120                                     - (aligned_addr
3121                                        & (common_pagesize - 1)));
3122               uint64_t last_off = new_addr & (common_pagesize - 1);
3123               if (first_off > 0
3124                   && last_off > 0
3125                   && ((aligned_addr & ~ (common_pagesize - 1))
3126                       != (new_addr & ~ (common_pagesize - 1)))
3127                   && first_off + last_off <= common_pagesize)
3128                 {
3129                   *pshndx = shndx_hold;
3130                   addr = align_address(aligned_addr, common_pagesize);
3131                   addr = align_address(addr, (*p)->maximum_alignment());
3132                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3133                   off = align_file_offset(off, addr, abi_pagesize);
3134
3135                   increase_relro = this->increase_relro_;
3136                   if (this->script_options_->saw_sections_clause())
3137                     increase_relro = 0;
3138                   has_relro = false;
3139
3140                   new_addr = (*p)->set_section_addresses(this, true, addr,
3141                                                          &increase_relro,
3142                                                          &has_relro,
3143                                                          &off, pshndx);
3144                 }
3145             }
3146
3147           addr = new_addr;
3148
3149           // Implement --check-sections.  We know that the segments
3150           // are sorted by LMA.
3151           if (check_sections && last_load_segment != NULL)
3152             {
3153               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3154               if (last_load_segment->paddr() + last_load_segment->memsz()
3155                   > (*p)->paddr())
3156                 {
3157                   unsigned long long lb1 = last_load_segment->paddr();
3158                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3159                   unsigned long long lb2 = (*p)->paddr();
3160                   unsigned long long le2 = lb2 + (*p)->memsz();
3161                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3162                                "[0x%llx -> 0x%llx]"),
3163                              lb1, le1, lb2, le2);
3164                 }
3165             }
3166           last_load_segment = *p;
3167         }
3168     }
3169
3170   // Handle the non-PT_LOAD segments, setting their offsets from their
3171   // section's offsets.
3172   for (Segment_list::iterator p = this->segment_list_.begin();
3173        p != this->segment_list_.end();
3174        ++p)
3175     {
3176       if ((*p)->type() != elfcpp::PT_LOAD)
3177         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3178                          ? increase_relro
3179                          : 0);
3180     }
3181
3182   // Set the TLS offsets for each section in the PT_TLS segment.
3183   if (this->tls_segment_ != NULL)
3184     this->tls_segment_->set_tls_offsets();
3185
3186   return off;
3187 }
3188
3189 // Set the offsets of all the allocated sections when doing a
3190 // relocatable link.  This does the same jobs as set_segment_offsets,
3191 // only for a relocatable link.
3192
3193 off_t
3194 Layout::set_relocatable_section_offsets(Output_data* file_header,
3195                                         unsigned int* pshndx)
3196 {
3197   off_t off = 0;
3198
3199   file_header->set_address_and_file_offset(0, 0);
3200   off += file_header->data_size();
3201
3202   for (Section_list::iterator p = this->section_list_.begin();
3203        p != this->section_list_.end();
3204        ++p)
3205     {
3206       // We skip unallocated sections here, except that group sections
3207       // have to come first.
3208       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3209           && (*p)->type() != elfcpp::SHT_GROUP)
3210         continue;
3211
3212       off = align_address(off, (*p)->addralign());
3213
3214       // The linker script might have set the address.
3215       if (!(*p)->is_address_valid())
3216         (*p)->set_address(0);
3217       (*p)->set_file_offset(off);
3218       (*p)->finalize_data_size();
3219       off += (*p)->data_size();
3220
3221       (*p)->set_out_shndx(*pshndx);
3222       ++*pshndx;
3223     }
3224
3225   return off;
3226 }
3227
3228 // Set the file offset of all the sections not associated with a
3229 // segment.
3230
3231 off_t
3232 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3233 {
3234   off_t startoff = off;
3235   off_t maxoff = off;
3236
3237   for (Section_list::iterator p = this->unattached_section_list_.begin();
3238        p != this->unattached_section_list_.end();
3239        ++p)
3240     {
3241       // The symtab section is handled in create_symtab_sections.
3242       if (*p == this->symtab_section_)
3243         continue;
3244
3245       // If we've already set the data size, don't set it again.
3246       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3247         continue;
3248
3249       if (pass == BEFORE_INPUT_SECTIONS_PASS
3250           && (*p)->requires_postprocessing())
3251         {
3252           (*p)->create_postprocessing_buffer();
3253           this->any_postprocessing_sections_ = true;
3254         }
3255
3256       if (pass == BEFORE_INPUT_SECTIONS_PASS
3257           && (*p)->after_input_sections())
3258         continue;
3259       else if (pass == POSTPROCESSING_SECTIONS_PASS
3260                && (!(*p)->after_input_sections()
3261                    || (*p)->type() == elfcpp::SHT_STRTAB))
3262         continue;
3263       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3264                && (!(*p)->after_input_sections()
3265                    || (*p)->type() != elfcpp::SHT_STRTAB))
3266         continue;
3267
3268       if (!parameters->incremental_update())
3269         {
3270           off = align_address(off, (*p)->addralign());
3271           (*p)->set_file_offset(off);
3272           (*p)->finalize_data_size();
3273         }
3274       else
3275         {
3276           // Incremental update: allocate file space from free list.
3277           (*p)->pre_finalize_data_size();
3278           off_t current_size = (*p)->current_data_size();
3279           off = this->allocate(current_size, (*p)->addralign(), startoff);
3280           if (off == -1)
3281             {
3282               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3283                 this->free_list_.dump();
3284               gold_assert((*p)->output_section() != NULL);
3285               gold_fallback(_("out of patch space for section %s; "
3286                               "relink with --incremental-full"),
3287                             (*p)->output_section()->name());
3288             }
3289           (*p)->set_file_offset(off);
3290           (*p)->finalize_data_size();
3291           if ((*p)->data_size() > current_size)
3292             {
3293               gold_assert((*p)->output_section() != NULL);
3294               gold_fallback(_("%s: section changed size; "
3295                               "relink with --incremental-full"),
3296                             (*p)->output_section()->name());
3297             }
3298           gold_debug(DEBUG_INCREMENTAL,
3299                      "set_section_offsets: %08lx %08lx %s",
3300                      static_cast<long>(off),
3301                      static_cast<long>((*p)->data_size()),
3302                      ((*p)->output_section() != NULL
3303                       ? (*p)->output_section()->name() : "(special)"));
3304         }
3305
3306       off += (*p)->data_size();
3307       if (off > maxoff)
3308         maxoff = off;
3309
3310       // At this point the name must be set.
3311       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3312         this->namepool_.add((*p)->name(), false, NULL);
3313     }
3314   return maxoff;
3315 }
3316
3317 // Set the section indexes of all the sections not associated with a
3318 // segment.
3319
3320 unsigned int
3321 Layout::set_section_indexes(unsigned int shndx)
3322 {
3323   for (Section_list::iterator p = this->unattached_section_list_.begin();
3324        p != this->unattached_section_list_.end();
3325        ++p)
3326     {
3327       if (!(*p)->has_out_shndx())
3328         {
3329           (*p)->set_out_shndx(shndx);
3330           ++shndx;
3331         }
3332     }
3333   return shndx;
3334 }
3335
3336 // Set the section addresses according to the linker script.  This is
3337 // only called when we see a SECTIONS clause.  This returns the
3338 // program segment which should hold the file header and segment
3339 // headers, if any.  It will return NULL if they should not be in a
3340 // segment.
3341
3342 Output_segment*
3343 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3344 {
3345   Script_sections* ss = this->script_options_->script_sections();
3346   gold_assert(ss->saw_sections_clause());
3347   return this->script_options_->set_section_addresses(symtab, this);
3348 }
3349
3350 // Place the orphan sections in the linker script.
3351
3352 void
3353 Layout::place_orphan_sections_in_script()
3354 {
3355   Script_sections* ss = this->script_options_->script_sections();
3356   gold_assert(ss->saw_sections_clause());
3357
3358   // Place each orphaned output section in the script.
3359   for (Section_list::iterator p = this->section_list_.begin();
3360        p != this->section_list_.end();
3361        ++p)
3362     {
3363       if (!(*p)->found_in_sections_clause())
3364         ss->place_orphan(*p);
3365     }
3366 }
3367
3368 // Count the local symbols in the regular symbol table and the dynamic
3369 // symbol table, and build the respective string pools.
3370
3371 void
3372 Layout::count_local_symbols(const Task* task,
3373                             const Input_objects* input_objects)
3374 {
3375   // First, figure out an upper bound on the number of symbols we'll
3376   // be inserting into each pool.  This helps us create the pools with
3377   // the right size, to avoid unnecessary hashtable resizing.
3378   unsigned int symbol_count = 0;
3379   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3380        p != input_objects->relobj_end();
3381        ++p)
3382     symbol_count += (*p)->local_symbol_count();
3383
3384   // Go from "upper bound" to "estimate."  We overcount for two
3385   // reasons: we double-count symbols that occur in more than one
3386   // object file, and we count symbols that are dropped from the
3387   // output.  Add it all together and assume we overcount by 100%.
3388   symbol_count /= 2;
3389
3390   // We assume all symbols will go into both the sympool and dynpool.
3391   this->sympool_.reserve(symbol_count);
3392   this->dynpool_.reserve(symbol_count);
3393
3394   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3395        p != input_objects->relobj_end();
3396        ++p)
3397     {
3398       Task_lock_obj<Object> tlo(task, *p);
3399       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3400     }
3401 }
3402
3403 // Create the symbol table sections.  Here we also set the final
3404 // values of the symbols.  At this point all the loadable sections are
3405 // fully laid out.  SHNUM is the number of sections so far.
3406
3407 void
3408 Layout::create_symtab_sections(const Input_objects* input_objects,
3409                                Symbol_table* symtab,
3410                                unsigned int shnum,
3411                                off_t* poff)
3412 {
3413   int symsize;
3414   unsigned int align;
3415   if (parameters->target().get_size() == 32)
3416     {
3417       symsize = elfcpp::Elf_sizes<32>::sym_size;
3418       align = 4;
3419     }
3420   else if (parameters->target().get_size() == 64)
3421     {
3422       symsize = elfcpp::Elf_sizes<64>::sym_size;
3423       align = 8;
3424     }
3425   else
3426     gold_unreachable();
3427
3428   // Compute file offsets relative to the start of the symtab section.
3429   off_t off = 0;
3430
3431   // Save space for the dummy symbol at the start of the section.  We
3432   // never bother to write this out--it will just be left as zero.
3433   off += symsize;
3434   unsigned int local_symbol_index = 1;
3435
3436   // Add STT_SECTION symbols for each Output section which needs one.
3437   for (Section_list::iterator p = this->section_list_.begin();
3438        p != this->section_list_.end();
3439        ++p)
3440     {
3441       if (!(*p)->needs_symtab_index())
3442         (*p)->set_symtab_index(-1U);
3443       else
3444         {
3445           (*p)->set_symtab_index(local_symbol_index);
3446           ++local_symbol_index;
3447           off += symsize;
3448         }
3449     }
3450
3451   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3452        p != input_objects->relobj_end();
3453        ++p)
3454     {
3455       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3456                                                         off, symtab);
3457       off += (index - local_symbol_index) * symsize;
3458       local_symbol_index = index;
3459     }
3460
3461   unsigned int local_symcount = local_symbol_index;
3462   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3463
3464   off_t dynoff;
3465   size_t dyn_global_index;
3466   size_t dyncount;
3467   if (this->dynsym_section_ == NULL)
3468     {
3469       dynoff = 0;
3470       dyn_global_index = 0;
3471       dyncount = 0;
3472     }
3473   else
3474     {
3475       dyn_global_index = this->dynsym_section_->info();
3476       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3477       dynoff = this->dynsym_section_->offset() + locsize;
3478       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3479       gold_assert(static_cast<off_t>(dyncount * symsize)
3480                   == this->dynsym_section_->data_size() - locsize);
3481     }
3482
3483   off_t global_off = off;
3484   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3485                          &this->sympool_, &local_symcount);
3486
3487   if (!parameters->options().strip_all())
3488     {
3489       this->sympool_.set_string_offsets();
3490
3491       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3492       Output_section* osymtab = this->make_output_section(symtab_name,
3493                                                           elfcpp::SHT_SYMTAB,
3494                                                           0, ORDER_INVALID,
3495                                                           false);
3496       this->symtab_section_ = osymtab;
3497
3498       Output_section_data* pos = new Output_data_fixed_space(off, align,
3499                                                              "** symtab");
3500       osymtab->add_output_section_data(pos);
3501
3502       // We generate a .symtab_shndx section if we have more than
3503       // SHN_LORESERVE sections.  Technically it is possible that we
3504       // don't need one, because it is possible that there are no
3505       // symbols in any of sections with indexes larger than
3506       // SHN_LORESERVE.  That is probably unusual, though, and it is
3507       // easier to always create one than to compute section indexes
3508       // twice (once here, once when writing out the symbols).
3509       if (shnum >= elfcpp::SHN_LORESERVE)
3510         {
3511           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3512                                                                false, NULL);
3513           Output_section* osymtab_xindex =
3514             this->make_output_section(symtab_xindex_name,
3515                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3516                                       ORDER_INVALID, false);
3517
3518           size_t symcount = off / symsize;
3519           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3520
3521           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3522
3523           osymtab_xindex->set_link_section(osymtab);
3524           osymtab_xindex->set_addralign(4);
3525           osymtab_xindex->set_entsize(4);
3526
3527           osymtab_xindex->set_after_input_sections();
3528
3529           // This tells the driver code to wait until the symbol table
3530           // has written out before writing out the postprocessing
3531           // sections, including the .symtab_shndx section.
3532           this->any_postprocessing_sections_ = true;
3533         }
3534
3535       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3536       Output_section* ostrtab = this->make_output_section(strtab_name,
3537                                                           elfcpp::SHT_STRTAB,
3538                                                           0, ORDER_INVALID,
3539                                                           false);
3540
3541       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3542       ostrtab->add_output_section_data(pstr);
3543
3544       off_t symtab_off;
3545       if (!parameters->incremental_update())
3546         symtab_off = align_address(*poff, align);
3547       else
3548         {
3549           symtab_off = this->allocate(off, align, *poff);
3550           if (off == -1)
3551             gold_fallback(_("out of patch space for symbol table; "
3552                             "relink with --incremental-full"));
3553           gold_debug(DEBUG_INCREMENTAL,
3554                      "create_symtab_sections: %08lx %08lx .symtab",
3555                      static_cast<long>(symtab_off),
3556                      static_cast<long>(off));
3557         }
3558
3559       symtab->set_file_offset(symtab_off + global_off);
3560       osymtab->set_file_offset(symtab_off);
3561       osymtab->finalize_data_size();
3562       osymtab->set_link_section(ostrtab);
3563       osymtab->set_info(local_symcount);
3564       osymtab->set_entsize(symsize);
3565
3566       if (symtab_off + off > *poff)
3567         *poff = symtab_off + off;
3568     }
3569 }
3570
3571 // Create the .shstrtab section, which holds the names of the
3572 // sections.  At the time this is called, we have created all the
3573 // output sections except .shstrtab itself.
3574
3575 Output_section*
3576 Layout::create_shstrtab()
3577 {
3578   // FIXME: We don't need to create a .shstrtab section if we are
3579   // stripping everything.
3580
3581   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3582
3583   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3584                                                  ORDER_INVALID, false);
3585
3586   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3587     {
3588       // We can't write out this section until we've set all the
3589       // section names, and we don't set the names of compressed
3590       // output sections until relocations are complete.  FIXME: With
3591       // the current names we use, this is unnecessary.
3592       os->set_after_input_sections();
3593     }
3594
3595   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3596   os->add_output_section_data(posd);
3597
3598   return os;
3599 }
3600
3601 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3602 // offset.
3603
3604 void
3605 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3606 {
3607   Output_section_headers* oshdrs;
3608   oshdrs = new Output_section_headers(this,
3609                                       &this->segment_list_,
3610                                       &this->section_list_,
3611                                       &this->unattached_section_list_,
3612                                       &this->namepool_,
3613                                       shstrtab_section);
3614   off_t off;
3615   if (!parameters->incremental_update())
3616     off = align_address(*poff, oshdrs->addralign());
3617   else
3618     {
3619       oshdrs->pre_finalize_data_size();
3620       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3621       if (off == -1)
3622           gold_fallback(_("out of patch space for section header table; "
3623                           "relink with --incremental-full"));
3624       gold_debug(DEBUG_INCREMENTAL,
3625                  "create_shdrs: %08lx %08lx (section header table)",
3626                  static_cast<long>(off),
3627                  static_cast<long>(off + oshdrs->data_size()));
3628     }
3629   oshdrs->set_address_and_file_offset(0, off);
3630   off += oshdrs->data_size();
3631   if (off > *poff)
3632     *poff = off;
3633   this->section_headers_ = oshdrs;
3634 }
3635
3636 // Count the allocated sections.
3637
3638 size_t
3639 Layout::allocated_output_section_count() const
3640 {
3641   size_t section_count = 0;
3642   for (Segment_list::const_iterator p = this->segment_list_.begin();
3643        p != this->segment_list_.end();
3644        ++p)
3645     section_count += (*p)->output_section_count();
3646   return section_count;
3647 }
3648
3649 // Create the dynamic symbol table.
3650
3651 void
3652 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3653                               Symbol_table* symtab,
3654                               Output_section** pdynstr,
3655                               unsigned int* plocal_dynamic_count,
3656                               std::vector<Symbol*>* pdynamic_symbols,
3657                               Versions* pversions)
3658 {
3659   // Count all the symbols in the dynamic symbol table, and set the
3660   // dynamic symbol indexes.
3661
3662   // Skip symbol 0, which is always all zeroes.
3663   unsigned int index = 1;
3664
3665   // Add STT_SECTION symbols for each Output section which needs one.
3666   for (Section_list::iterator p = this->section_list_.begin();
3667        p != this->section_list_.end();
3668        ++p)
3669     {
3670       if (!(*p)->needs_dynsym_index())
3671         (*p)->set_dynsym_index(-1U);
3672       else
3673         {
3674           (*p)->set_dynsym_index(index);
3675           ++index;
3676         }
3677     }
3678
3679   // Count the local symbols that need to go in the dynamic symbol table,
3680   // and set the dynamic symbol indexes.
3681   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3682        p != input_objects->relobj_end();
3683        ++p)
3684     {
3685       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3686       index = new_index;
3687     }
3688
3689   unsigned int local_symcount = index;
3690   *plocal_dynamic_count = local_symcount;
3691
3692   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3693                                      &this->dynpool_, pversions);
3694
3695   int symsize;
3696   unsigned int align;
3697   const int size = parameters->target().get_size();
3698   if (size == 32)
3699     {
3700       symsize = elfcpp::Elf_sizes<32>::sym_size;
3701       align = 4;
3702     }
3703   else if (size == 64)
3704     {
3705       symsize = elfcpp::Elf_sizes<64>::sym_size;
3706       align = 8;
3707     }
3708   else
3709     gold_unreachable();
3710
3711   // Create the dynamic symbol table section.
3712
3713   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3714                                                        elfcpp::SHT_DYNSYM,
3715                                                        elfcpp::SHF_ALLOC,
3716                                                        false,
3717                                                        ORDER_DYNAMIC_LINKER,
3718                                                        false);
3719
3720   // Check for NULL as a linker script may discard .dynsym.
3721   if (dynsym != NULL)
3722     {
3723       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3724                                                                align,
3725                                                                "** dynsym");
3726       dynsym->add_output_section_data(odata);
3727
3728       dynsym->set_info(local_symcount);
3729       dynsym->set_entsize(symsize);
3730       dynsym->set_addralign(align);
3731
3732       this->dynsym_section_ = dynsym;
3733     }
3734
3735   Output_data_dynamic* const odyn = this->dynamic_data_;
3736   if (odyn != NULL)
3737     {
3738       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3739       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3740     }
3741
3742   // If there are more than SHN_LORESERVE allocated sections, we
3743   // create a .dynsym_shndx section.  It is possible that we don't
3744   // need one, because it is possible that there are no dynamic
3745   // symbols in any of the sections with indexes larger than
3746   // SHN_LORESERVE.  This is probably unusual, though, and at this
3747   // time we don't know the actual section indexes so it is
3748   // inconvenient to check.
3749   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3750     {
3751       Output_section* dynsym_xindex =
3752         this->choose_output_section(NULL, ".dynsym_shndx",
3753                                     elfcpp::SHT_SYMTAB_SHNDX,
3754                                     elfcpp::SHF_ALLOC,
3755                                     false, ORDER_DYNAMIC_LINKER, false);
3756
3757       if (dynsym_xindex != NULL)
3758         {
3759           this->dynsym_xindex_ = new Output_symtab_xindex(index);
3760
3761           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3762
3763           dynsym_xindex->set_link_section(dynsym);
3764           dynsym_xindex->set_addralign(4);
3765           dynsym_xindex->set_entsize(4);
3766
3767           dynsym_xindex->set_after_input_sections();
3768
3769           // This tells the driver code to wait until the symbol table
3770           // has written out before writing out the postprocessing
3771           // sections, including the .dynsym_shndx section.
3772           this->any_postprocessing_sections_ = true;
3773         }
3774     }
3775
3776   // Create the dynamic string table section.
3777
3778   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3779                                                        elfcpp::SHT_STRTAB,
3780                                                        elfcpp::SHF_ALLOC,
3781                                                        false,
3782                                                        ORDER_DYNAMIC_LINKER,
3783                                                        false);
3784
3785   if (dynstr != NULL)
3786     {
3787       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3788       dynstr->add_output_section_data(strdata);
3789
3790       if (dynsym != NULL)
3791         dynsym->set_link_section(dynstr);
3792       if (this->dynamic_section_ != NULL)
3793         this->dynamic_section_->set_link_section(dynstr);
3794
3795       if (odyn != NULL)
3796         {
3797           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3798           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3799         }
3800
3801       *pdynstr = dynstr;
3802     }
3803
3804   // Create the hash tables.
3805
3806   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3807       || strcmp(parameters->options().hash_style(), "both") == 0)
3808     {
3809       unsigned char* phash;
3810       unsigned int hashlen;
3811       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3812                                     &phash, &hashlen);
3813
3814       Output_section* hashsec =
3815         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3816                                     elfcpp::SHF_ALLOC, false,
3817                                     ORDER_DYNAMIC_LINKER, false);
3818
3819       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3820                                                                    hashlen,
3821                                                                    align,
3822                                                                    "** hash");
3823       if (hashsec != NULL && hashdata != NULL)
3824         hashsec->add_output_section_data(hashdata);
3825
3826       if (hashsec != NULL)
3827         {
3828           if (dynsym != NULL)
3829             hashsec->set_link_section(dynsym);
3830           hashsec->set_entsize(4);
3831         }
3832
3833       if (odyn != NULL)
3834         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3835     }
3836
3837   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3838       || strcmp(parameters->options().hash_style(), "both") == 0)
3839     {
3840       unsigned char* phash;
3841       unsigned int hashlen;
3842       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3843                                     &phash, &hashlen);
3844
3845       Output_section* hashsec =
3846         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3847                                     elfcpp::SHF_ALLOC, false,
3848                                     ORDER_DYNAMIC_LINKER, false);
3849
3850       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3851                                                                    hashlen,
3852                                                                    align,
3853                                                                    "** hash");
3854       if (hashsec != NULL && hashdata != NULL)
3855         hashsec->add_output_section_data(hashdata);
3856
3857       if (hashsec != NULL)
3858         {
3859           if (dynsym != NULL)
3860             hashsec->set_link_section(dynsym);
3861
3862           // For a 64-bit target, the entries in .gnu.hash do not have
3863           // a uniform size, so we only set the entry size for a
3864           // 32-bit target.
3865           if (parameters->target().get_size() == 32)
3866             hashsec->set_entsize(4);
3867
3868           if (odyn != NULL)
3869             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3870         }
3871     }
3872 }
3873
3874 // Assign offsets to each local portion of the dynamic symbol table.
3875
3876 void
3877 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3878 {
3879   Output_section* dynsym = this->dynsym_section_;
3880   if (dynsym == NULL)
3881     return;
3882
3883   off_t off = dynsym->offset();
3884
3885   // Skip the dummy symbol at the start of the section.
3886   off += dynsym->entsize();
3887
3888   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3889        p != input_objects->relobj_end();
3890        ++p)
3891     {
3892       unsigned int count = (*p)->set_local_dynsym_offset(off);
3893       off += count * dynsym->entsize();
3894     }
3895 }
3896
3897 // Create the version sections.
3898
3899 void
3900 Layout::create_version_sections(const Versions* versions,
3901                                 const Symbol_table* symtab,
3902                                 unsigned int local_symcount,
3903                                 const std::vector<Symbol*>& dynamic_symbols,
3904                                 const Output_section* dynstr)
3905 {
3906   if (!versions->any_defs() && !versions->any_needs())
3907     return;
3908
3909   switch (parameters->size_and_endianness())
3910     {
3911 #ifdef HAVE_TARGET_32_LITTLE
3912     case Parameters::TARGET_32_LITTLE:
3913       this->sized_create_version_sections<32, false>(versions, symtab,
3914                                                      local_symcount,
3915                                                      dynamic_symbols, dynstr);
3916       break;
3917 #endif
3918 #ifdef HAVE_TARGET_32_BIG
3919     case Parameters::TARGET_32_BIG:
3920       this->sized_create_version_sections<32, true>(versions, symtab,
3921                                                     local_symcount,
3922                                                     dynamic_symbols, dynstr);
3923       break;
3924 #endif
3925 #ifdef HAVE_TARGET_64_LITTLE
3926     case Parameters::TARGET_64_LITTLE:
3927       this->sized_create_version_sections<64, false>(versions, symtab,
3928                                                      local_symcount,
3929                                                      dynamic_symbols, dynstr);
3930       break;
3931 #endif
3932 #ifdef HAVE_TARGET_64_BIG
3933     case Parameters::TARGET_64_BIG:
3934       this->sized_create_version_sections<64, true>(versions, symtab,
3935                                                     local_symcount,
3936                                                     dynamic_symbols, dynstr);
3937       break;
3938 #endif
3939     default:
3940       gold_unreachable();
3941     }
3942 }
3943
3944 // Create the version sections, sized version.
3945
3946 template<int size, bool big_endian>
3947 void
3948 Layout::sized_create_version_sections(
3949     const Versions* versions,
3950     const Symbol_table* symtab,
3951     unsigned int local_symcount,
3952     const std::vector<Symbol*>& dynamic_symbols,
3953     const Output_section* dynstr)
3954 {
3955   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3956                                                      elfcpp::SHT_GNU_versym,
3957                                                      elfcpp::SHF_ALLOC,
3958                                                      false,
3959                                                      ORDER_DYNAMIC_LINKER,
3960                                                      false);
3961
3962   // Check for NULL since a linker script may discard this section.
3963   if (vsec != NULL)
3964     {
3965       unsigned char* vbuf;
3966       unsigned int vsize;
3967       versions->symbol_section_contents<size, big_endian>(symtab,
3968                                                           &this->dynpool_,
3969                                                           local_symcount,
3970                                                           dynamic_symbols,
3971                                                           &vbuf, &vsize);
3972
3973       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3974                                                                 "** versions");
3975
3976       vsec->add_output_section_data(vdata);
3977       vsec->set_entsize(2);
3978       vsec->set_link_section(this->dynsym_section_);
3979     }
3980
3981   Output_data_dynamic* const odyn = this->dynamic_data_;
3982   if (odyn != NULL && vsec != NULL)
3983     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3984
3985   if (versions->any_defs())
3986     {
3987       Output_section* vdsec;
3988       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
3989                                           elfcpp::SHT_GNU_verdef,
3990                                           elfcpp::SHF_ALLOC,
3991                                           false, ORDER_DYNAMIC_LINKER, false);
3992
3993       if (vdsec != NULL)
3994         {
3995           unsigned char* vdbuf;
3996           unsigned int vdsize;
3997           unsigned int vdentries;
3998           versions->def_section_contents<size, big_endian>(&this->dynpool_,
3999                                                            &vdbuf, &vdsize,
4000                                                            &vdentries);
4001
4002           Output_section_data* vddata =
4003             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4004
4005           vdsec->add_output_section_data(vddata);
4006           vdsec->set_link_section(dynstr);
4007           vdsec->set_info(vdentries);
4008
4009           if (odyn != NULL)
4010             {
4011               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4012               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4013             }
4014         }
4015     }
4016
4017   if (versions->any_needs())
4018     {
4019       Output_section* vnsec;
4020       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4021                                           elfcpp::SHT_GNU_verneed,
4022                                           elfcpp::SHF_ALLOC,
4023                                           false, ORDER_DYNAMIC_LINKER, false);
4024
4025       if (vnsec != NULL)
4026         {
4027           unsigned char* vnbuf;
4028           unsigned int vnsize;
4029           unsigned int vnentries;
4030           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4031                                                             &vnbuf, &vnsize,
4032                                                             &vnentries);
4033
4034           Output_section_data* vndata =
4035             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4036
4037           vnsec->add_output_section_data(vndata);
4038           vnsec->set_link_section(dynstr);
4039           vnsec->set_info(vnentries);
4040
4041           if (odyn != NULL)
4042             {
4043               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4044               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4045             }
4046         }
4047     }
4048 }
4049
4050 // Create the .interp section and PT_INTERP segment.
4051
4052 void
4053 Layout::create_interp(const Target* target)
4054 {
4055   gold_assert(this->interp_segment_ == NULL);
4056
4057   const char* interp = parameters->options().dynamic_linker();
4058   if (interp == NULL)
4059     {
4060       interp = target->dynamic_linker();
4061       gold_assert(interp != NULL);
4062     }
4063
4064   size_t len = strlen(interp) + 1;
4065
4066   Output_section_data* odata = new Output_data_const(interp, len, 1);
4067
4068   Output_section* osec = this->choose_output_section(NULL, ".interp",
4069                                                      elfcpp::SHT_PROGBITS,
4070                                                      elfcpp::SHF_ALLOC,
4071                                                      false, ORDER_INTERP,
4072                                                      false);
4073   if (osec != NULL)
4074     osec->add_output_section_data(odata);
4075 }
4076
4077 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4078 // called by the target-specific code.  This does nothing if not doing
4079 // a dynamic link.
4080
4081 // USE_REL is true for REL relocs rather than RELA relocs.
4082
4083 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4084
4085 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4086 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4087 // some targets have multiple reloc sections in PLT_REL.
4088
4089 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4090 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4091 // section.
4092
4093 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4094 // executable.
4095
4096 void
4097 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4098                                 const Output_data* plt_rel,
4099                                 const Output_data_reloc_generic* dyn_rel,
4100                                 bool add_debug, bool dynrel_includes_plt)
4101 {
4102   Output_data_dynamic* odyn = this->dynamic_data_;
4103   if (odyn == NULL)
4104     return;
4105
4106   if (plt_got != NULL && plt_got->output_section() != NULL)
4107     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4108
4109   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4110     {
4111       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4112       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4113       odyn->add_constant(elfcpp::DT_PLTREL,
4114                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4115     }
4116
4117   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4118     {
4119       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4120                                 dyn_rel->output_section());
4121       if (plt_rel != NULL
4122           && plt_rel->output_section() != NULL
4123           && dynrel_includes_plt)
4124         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4125                                dyn_rel->output_section(),
4126                                plt_rel->output_section());
4127       else
4128         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4129                                dyn_rel->output_section());
4130       const int size = parameters->target().get_size();
4131       elfcpp::DT rel_tag;
4132       int rel_size;
4133       if (use_rel)
4134         {
4135           rel_tag = elfcpp::DT_RELENT;
4136           if (size == 32)
4137             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4138           else if (size == 64)
4139             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4140           else
4141             gold_unreachable();
4142         }
4143       else
4144         {
4145           rel_tag = elfcpp::DT_RELAENT;
4146           if (size == 32)
4147             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4148           else if (size == 64)
4149             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4150           else
4151             gold_unreachable();
4152         }
4153       odyn->add_constant(rel_tag, rel_size);
4154
4155       if (parameters->options().combreloc())
4156         {
4157           size_t c = dyn_rel->relative_reloc_count();
4158           if (c > 0)
4159             odyn->add_constant((use_rel
4160                                 ? elfcpp::DT_RELCOUNT
4161                                 : elfcpp::DT_RELACOUNT),
4162                                c);
4163         }
4164     }
4165
4166   if (add_debug && !parameters->options().shared())
4167     {
4168       // The value of the DT_DEBUG tag is filled in by the dynamic
4169       // linker at run time, and used by the debugger.
4170       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4171     }
4172 }
4173
4174 // Finish the .dynamic section and PT_DYNAMIC segment.
4175
4176 void
4177 Layout::finish_dynamic_section(const Input_objects* input_objects,
4178                                const Symbol_table* symtab)
4179 {
4180   if (!this->script_options_->saw_phdrs_clause()
4181       && this->dynamic_section_ != NULL)
4182     {
4183       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4184                                                        (elfcpp::PF_R
4185                                                         | elfcpp::PF_W));
4186       oseg->add_output_section_to_nonload(this->dynamic_section_,
4187                                           elfcpp::PF_R | elfcpp::PF_W);
4188     }
4189
4190   Output_data_dynamic* const odyn = this->dynamic_data_;
4191   if (odyn == NULL)
4192     return;
4193
4194   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4195        p != input_objects->dynobj_end();
4196        ++p)
4197     {
4198       if (!(*p)->is_needed() && (*p)->as_needed())
4199         {
4200           // This dynamic object was linked with --as-needed, but it
4201           // is not needed.
4202           continue;
4203         }
4204
4205       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4206     }
4207
4208   if (parameters->options().shared())
4209     {
4210       const char* soname = parameters->options().soname();
4211       if (soname != NULL)
4212         odyn->add_string(elfcpp::DT_SONAME, soname);
4213     }
4214
4215   Symbol* sym = symtab->lookup(parameters->options().init());
4216   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4217     odyn->add_symbol(elfcpp::DT_INIT, sym);
4218
4219   sym = symtab->lookup(parameters->options().fini());
4220   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4221     odyn->add_symbol(elfcpp::DT_FINI, sym);
4222
4223   // Look for .init_array, .preinit_array and .fini_array by checking
4224   // section types.
4225   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4226       p != this->section_list_.end();
4227       ++p)
4228     switch((*p)->type())
4229       {
4230       case elfcpp::SHT_FINI_ARRAY:
4231         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4232         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4233         break;
4234       case elfcpp::SHT_INIT_ARRAY:
4235         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4236         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4237         break;
4238       case elfcpp::SHT_PREINIT_ARRAY:
4239         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4240         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4241         break;
4242       default:
4243         break;
4244       }
4245   
4246   // Add a DT_RPATH entry if needed.
4247   const General_options::Dir_list& rpath(parameters->options().rpath());
4248   if (!rpath.empty())
4249     {
4250       std::string rpath_val;
4251       for (General_options::Dir_list::const_iterator p = rpath.begin();
4252            p != rpath.end();
4253            ++p)
4254         {
4255           if (rpath_val.empty())
4256             rpath_val = p->name();
4257           else
4258             {
4259               // Eliminate duplicates.
4260               General_options::Dir_list::const_iterator q;
4261               for (q = rpath.begin(); q != p; ++q)
4262                 if (q->name() == p->name())
4263                   break;
4264               if (q == p)
4265                 {
4266                   rpath_val += ':';
4267                   rpath_val += p->name();
4268                 }
4269             }
4270         }
4271
4272       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4273       if (parameters->options().enable_new_dtags())
4274         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4275     }
4276
4277   // Look for text segments that have dynamic relocations.
4278   bool have_textrel = false;
4279   if (!this->script_options_->saw_sections_clause())
4280     {
4281       for (Segment_list::const_iterator p = this->segment_list_.begin();
4282            p != this->segment_list_.end();
4283            ++p)
4284         {
4285           if ((*p)->type() == elfcpp::PT_LOAD
4286               && ((*p)->flags() & elfcpp::PF_W) == 0
4287               && (*p)->has_dynamic_reloc())
4288             {
4289               have_textrel = true;
4290               break;
4291             }
4292         }
4293     }
4294   else
4295     {
4296       // We don't know the section -> segment mapping, so we are
4297       // conservative and just look for readonly sections with
4298       // relocations.  If those sections wind up in writable segments,
4299       // then we have created an unnecessary DT_TEXTREL entry.
4300       for (Section_list::const_iterator p = this->section_list_.begin();
4301            p != this->section_list_.end();
4302            ++p)
4303         {
4304           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4305               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4306               && (*p)->has_dynamic_reloc())
4307             {
4308               have_textrel = true;
4309               break;
4310             }
4311         }
4312     }
4313
4314   if (parameters->options().filter() != NULL)
4315     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4316   if (parameters->options().any_auxiliary())
4317     {
4318       for (options::String_set::const_iterator p =
4319              parameters->options().auxiliary_begin();
4320            p != parameters->options().auxiliary_end();
4321            ++p)
4322         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4323     }
4324
4325   // Add a DT_FLAGS entry if necessary.
4326   unsigned int flags = 0;
4327   if (have_textrel)
4328     {
4329       // Add a DT_TEXTREL for compatibility with older loaders.
4330       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4331       flags |= elfcpp::DF_TEXTREL;
4332
4333       if (parameters->options().text())
4334         gold_error(_("read-only segment has dynamic relocations"));
4335       else if (parameters->options().warn_shared_textrel()
4336                && parameters->options().shared())
4337         gold_warning(_("shared library text segment is not shareable"));
4338     }
4339   if (parameters->options().shared() && this->has_static_tls())
4340     flags |= elfcpp::DF_STATIC_TLS;
4341   if (parameters->options().origin())
4342     flags |= elfcpp::DF_ORIGIN;
4343   if (parameters->options().Bsymbolic())
4344     {
4345       flags |= elfcpp::DF_SYMBOLIC;
4346       // Add DT_SYMBOLIC for compatibility with older loaders.
4347       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4348     }
4349   if (parameters->options().now())
4350     flags |= elfcpp::DF_BIND_NOW;
4351   if (flags != 0)
4352     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4353
4354   flags = 0;
4355   if (parameters->options().initfirst())
4356     flags |= elfcpp::DF_1_INITFIRST;
4357   if (parameters->options().interpose())
4358     flags |= elfcpp::DF_1_INTERPOSE;
4359   if (parameters->options().loadfltr())
4360     flags |= elfcpp::DF_1_LOADFLTR;
4361   if (parameters->options().nodefaultlib())
4362     flags |= elfcpp::DF_1_NODEFLIB;
4363   if (parameters->options().nodelete())
4364     flags |= elfcpp::DF_1_NODELETE;
4365   if (parameters->options().nodlopen())
4366     flags |= elfcpp::DF_1_NOOPEN;
4367   if (parameters->options().nodump())
4368     flags |= elfcpp::DF_1_NODUMP;
4369   if (!parameters->options().shared())
4370     flags &= ~(elfcpp::DF_1_INITFIRST
4371                | elfcpp::DF_1_NODELETE
4372                | elfcpp::DF_1_NOOPEN);
4373   if (parameters->options().origin())
4374     flags |= elfcpp::DF_1_ORIGIN;
4375   if (parameters->options().now())
4376     flags |= elfcpp::DF_1_NOW;
4377   if (parameters->options().Bgroup())
4378     flags |= elfcpp::DF_1_GROUP;
4379   if (flags != 0)
4380     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4381 }
4382
4383 // Set the size of the _DYNAMIC symbol table to be the size of the
4384 // dynamic data.
4385
4386 void
4387 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4388 {
4389   Output_data_dynamic* const odyn = this->dynamic_data_;
4390   if (odyn == NULL)
4391     return;
4392   odyn->finalize_data_size();
4393   if (this->dynamic_symbol_ == NULL)
4394     return;
4395   off_t data_size = odyn->data_size();
4396   const int size = parameters->target().get_size();
4397   if (size == 32)
4398     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4399   else if (size == 64)
4400     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4401   else
4402     gold_unreachable();
4403 }
4404
4405 // The mapping of input section name prefixes to output section names.
4406 // In some cases one prefix is itself a prefix of another prefix; in
4407 // such a case the longer prefix must come first.  These prefixes are
4408 // based on the GNU linker default ELF linker script.
4409
4410 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4411 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4412 {
4413   MAPPING_INIT(".text.", ".text"),
4414   MAPPING_INIT(".rodata.", ".rodata"),
4415   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4416   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4417   MAPPING_INIT(".data.", ".data"),
4418   MAPPING_INIT(".bss.", ".bss"),
4419   MAPPING_INIT(".tdata.", ".tdata"),
4420   MAPPING_INIT(".tbss.", ".tbss"),
4421   MAPPING_INIT(".init_array.", ".init_array"),
4422   MAPPING_INIT(".fini_array.", ".fini_array"),
4423   MAPPING_INIT(".sdata.", ".sdata"),
4424   MAPPING_INIT(".sbss.", ".sbss"),
4425   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4426   // differently depending on whether it is creating a shared library.
4427   MAPPING_INIT(".sdata2.", ".sdata"),
4428   MAPPING_INIT(".sbss2.", ".sbss"),
4429   MAPPING_INIT(".lrodata.", ".lrodata"),
4430   MAPPING_INIT(".ldata.", ".ldata"),
4431   MAPPING_INIT(".lbss.", ".lbss"),
4432   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4433   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4434   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4435   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4436   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4437   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4438   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4439   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4440   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4441   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4442   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4443   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4444   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4445   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4446   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4447   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4448   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4449   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4450   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4451   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4452   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4453 };
4454 #undef MAPPING_INIT
4455
4456 const int Layout::section_name_mapping_count =
4457   (sizeof(Layout::section_name_mapping)
4458    / sizeof(Layout::section_name_mapping[0]));
4459
4460 // Choose the output section name to use given an input section name.
4461 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4462 // length of NAME.
4463
4464 const char*
4465 Layout::output_section_name(const Relobj* relobj, const char* name,
4466                             size_t* plen)
4467 {
4468   // gcc 4.3 generates the following sorts of section names when it
4469   // needs a section name specific to a function:
4470   //   .text.FN
4471   //   .rodata.FN
4472   //   .sdata2.FN
4473   //   .data.FN
4474   //   .data.rel.FN
4475   //   .data.rel.local.FN
4476   //   .data.rel.ro.FN
4477   //   .data.rel.ro.local.FN
4478   //   .sdata.FN
4479   //   .bss.FN
4480   //   .sbss.FN
4481   //   .tdata.FN
4482   //   .tbss.FN
4483
4484   // The GNU linker maps all of those to the part before the .FN,
4485   // except that .data.rel.local.FN is mapped to .data, and
4486   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4487   // beginning with .data.rel.ro.local are grouped together.
4488
4489   // For an anonymous namespace, the string FN can contain a '.'.
4490
4491   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4492   // GNU linker maps to .rodata.
4493
4494   // The .data.rel.ro sections are used with -z relro.  The sections
4495   // are recognized by name.  We use the same names that the GNU
4496   // linker does for these sections.
4497
4498   // It is hard to handle this in a principled way, so we don't even
4499   // try.  We use a table of mappings.  If the input section name is
4500   // not found in the table, we simply use it as the output section
4501   // name.
4502
4503   const Section_name_mapping* psnm = section_name_mapping;
4504   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4505     {
4506       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4507         {
4508           *plen = psnm->tolen;
4509           return psnm->to;
4510         }
4511     }
4512
4513   // As an additional complication, .ctors sections are output in
4514   // either .ctors or .init_array sections, and .dtors sections are
4515   // output in either .dtors or .fini_array sections.
4516   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4517     {
4518       if (parameters->options().ctors_in_init_array())
4519         {
4520           *plen = 11;
4521           return name[1] == 'c' ? ".init_array" : ".fini_array";
4522         }
4523       else
4524         {
4525           *plen = 6;
4526           return name[1] == 'c' ? ".ctors" : ".dtors";
4527         }
4528     }
4529   if (parameters->options().ctors_in_init_array()
4530       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4531     {
4532       // To make .init_array/.fini_array work with gcc we must exclude
4533       // .ctors and .dtors sections from the crtbegin and crtend
4534       // files.
4535       if (relobj == NULL
4536           || (!Layout::match_file_name(relobj, "crtbegin")
4537               && !Layout::match_file_name(relobj, "crtend")))
4538         {
4539           *plen = 11;
4540           return name[1] == 'c' ? ".init_array" : ".fini_array";
4541         }
4542     }
4543
4544   return name;
4545 }
4546
4547 // Return true if RELOBJ is an input file whose base name matches
4548 // FILE_NAME.  The base name must have an extension of ".o", and must
4549 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4550 // to match crtbegin.o as well as crtbeginS.o without getting confused
4551 // by other possibilities.  Overall matching the file name this way is
4552 // a dreadful hack, but the GNU linker does it in order to better
4553 // support gcc, and we need to be compatible.
4554
4555 bool
4556 Layout::match_file_name(const Relobj* relobj, const char* match)
4557 {
4558   const std::string& file_name(relobj->name());
4559   const char* base_name = lbasename(file_name.c_str());
4560   size_t match_len = strlen(match);
4561   if (strncmp(base_name, match, match_len) != 0)
4562     return false;
4563   size_t base_len = strlen(base_name);
4564   if (base_len != match_len + 2 && base_len != match_len + 3)
4565     return false;
4566   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4567 }
4568
4569 // Check if a comdat group or .gnu.linkonce section with the given
4570 // NAME is selected for the link.  If there is already a section,
4571 // *KEPT_SECTION is set to point to the existing section and the
4572 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4573 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4574 // *KEPT_SECTION is set to the internal copy and the function returns
4575 // true.
4576
4577 bool
4578 Layout::find_or_add_kept_section(const std::string& name,
4579                                  Relobj* object,
4580                                  unsigned int shndx,
4581                                  bool is_comdat,
4582                                  bool is_group_name,
4583                                  Kept_section** kept_section)
4584 {
4585   // It's normal to see a couple of entries here, for the x86 thunk
4586   // sections.  If we see more than a few, we're linking a C++
4587   // program, and we resize to get more space to minimize rehashing.
4588   if (this->signatures_.size() > 4
4589       && !this->resized_signatures_)
4590     {
4591       reserve_unordered_map(&this->signatures_,
4592                             this->number_of_input_files_ * 64);
4593       this->resized_signatures_ = true;
4594     }
4595
4596   Kept_section candidate;
4597   std::pair<Signatures::iterator, bool> ins =
4598     this->signatures_.insert(std::make_pair(name, candidate));
4599
4600   if (kept_section != NULL)
4601     *kept_section = &ins.first->second;
4602   if (ins.second)
4603     {
4604       // This is the first time we've seen this signature.
4605       ins.first->second.set_object(object);
4606       ins.first->second.set_shndx(shndx);
4607       if (is_comdat)
4608         ins.first->second.set_is_comdat();
4609       if (is_group_name)
4610         ins.first->second.set_is_group_name();
4611       return true;
4612     }
4613
4614   // We have already seen this signature.
4615
4616   if (ins.first->second.is_group_name())
4617     {
4618       // We've already seen a real section group with this signature.
4619       // If the kept group is from a plugin object, and we're in the
4620       // replacement phase, accept the new one as a replacement.
4621       if (ins.first->second.object() == NULL
4622           && parameters->options().plugins()->in_replacement_phase())
4623         {
4624           ins.first->second.set_object(object);
4625           ins.first->second.set_shndx(shndx);
4626           return true;
4627         }
4628       return false;
4629     }
4630   else if (is_group_name)
4631     {
4632       // This is a real section group, and we've already seen a
4633       // linkonce section with this signature.  Record that we've seen
4634       // a section group, and don't include this section group.
4635       ins.first->second.set_is_group_name();
4636       return false;
4637     }
4638   else
4639     {
4640       // We've already seen a linkonce section and this is a linkonce
4641       // section.  These don't block each other--this may be the same
4642       // symbol name with different section types.
4643       return true;
4644     }
4645 }
4646
4647 // Store the allocated sections into the section list.
4648
4649 void
4650 Layout::get_allocated_sections(Section_list* section_list) const
4651 {
4652   for (Section_list::const_iterator p = this->section_list_.begin();
4653        p != this->section_list_.end();
4654        ++p)
4655     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4656       section_list->push_back(*p);
4657 }
4658
4659 // Create an output segment.
4660
4661 Output_segment*
4662 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4663 {
4664   gold_assert(!parameters->options().relocatable());
4665   Output_segment* oseg = new Output_segment(type, flags);
4666   this->segment_list_.push_back(oseg);
4667
4668   if (type == elfcpp::PT_TLS)
4669     this->tls_segment_ = oseg;
4670   else if (type == elfcpp::PT_GNU_RELRO)
4671     this->relro_segment_ = oseg;
4672   else if (type == elfcpp::PT_INTERP)
4673     this->interp_segment_ = oseg;
4674
4675   return oseg;
4676 }
4677
4678 // Return the file offset of the normal symbol table.
4679
4680 off_t
4681 Layout::symtab_section_offset() const
4682 {
4683   if (this->symtab_section_ != NULL)
4684     return this->symtab_section_->offset();
4685   return 0;
4686 }
4687
4688 // Return the section index of the normal symbol table.  It may have
4689 // been stripped by the -s/--strip-all option.
4690
4691 unsigned int
4692 Layout::symtab_section_shndx() const
4693 {
4694   if (this->symtab_section_ != NULL)
4695     return this->symtab_section_->out_shndx();
4696   return 0;
4697 }
4698
4699 // Write out the Output_sections.  Most won't have anything to write,
4700 // since most of the data will come from input sections which are
4701 // handled elsewhere.  But some Output_sections do have Output_data.
4702
4703 void
4704 Layout::write_output_sections(Output_file* of) const
4705 {
4706   for (Section_list::const_iterator p = this->section_list_.begin();
4707        p != this->section_list_.end();
4708        ++p)
4709     {
4710       if (!(*p)->after_input_sections())
4711         (*p)->write(of);
4712     }
4713 }
4714
4715 // Write out data not associated with a section or the symbol table.
4716
4717 void
4718 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4719 {
4720   if (!parameters->options().strip_all())
4721     {
4722       const Output_section* symtab_section = this->symtab_section_;
4723       for (Section_list::const_iterator p = this->section_list_.begin();
4724            p != this->section_list_.end();
4725            ++p)
4726         {
4727           if ((*p)->needs_symtab_index())
4728             {
4729               gold_assert(symtab_section != NULL);
4730               unsigned int index = (*p)->symtab_index();
4731               gold_assert(index > 0 && index != -1U);
4732               off_t off = (symtab_section->offset()
4733                            + index * symtab_section->entsize());
4734               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4735             }
4736         }
4737     }
4738
4739   const Output_section* dynsym_section = this->dynsym_section_;
4740   for (Section_list::const_iterator p = this->section_list_.begin();
4741        p != this->section_list_.end();
4742        ++p)
4743     {
4744       if ((*p)->needs_dynsym_index())
4745         {
4746           gold_assert(dynsym_section != NULL);
4747           unsigned int index = (*p)->dynsym_index();
4748           gold_assert(index > 0 && index != -1U);
4749           off_t off = (dynsym_section->offset()
4750                        + index * dynsym_section->entsize());
4751           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4752         }
4753     }
4754
4755   // Write out the Output_data which are not in an Output_section.
4756   for (Data_list::const_iterator p = this->special_output_list_.begin();
4757        p != this->special_output_list_.end();
4758        ++p)
4759     (*p)->write(of);
4760 }
4761
4762 // Write out the Output_sections which can only be written after the
4763 // input sections are complete.
4764
4765 void
4766 Layout::write_sections_after_input_sections(Output_file* of)
4767 {
4768   // Determine the final section offsets, and thus the final output
4769   // file size.  Note we finalize the .shstrab last, to allow the
4770   // after_input_section sections to modify their section-names before
4771   // writing.
4772   if (this->any_postprocessing_sections_)
4773     {
4774       off_t off = this->output_file_size_;
4775       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4776
4777       // Now that we've finalized the names, we can finalize the shstrab.
4778       off =
4779         this->set_section_offsets(off,
4780                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4781
4782       if (off > this->output_file_size_)
4783         {
4784           of->resize(off);
4785           this->output_file_size_ = off;
4786         }
4787     }
4788
4789   for (Section_list::const_iterator p = this->section_list_.begin();
4790        p != this->section_list_.end();
4791        ++p)
4792     {
4793       if ((*p)->after_input_sections())
4794         (*p)->write(of);
4795     }
4796
4797   this->section_headers_->write(of);
4798 }
4799
4800 // If the build ID requires computing a checksum, do so here, and
4801 // write it out.  We compute a checksum over the entire file because
4802 // that is simplest.
4803
4804 void
4805 Layout::write_build_id(Output_file* of) const
4806 {
4807   if (this->build_id_note_ == NULL)
4808     return;
4809
4810   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4811
4812   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4813                                           this->build_id_note_->data_size());
4814
4815   const char* style = parameters->options().build_id();
4816   if (strcmp(style, "sha1") == 0)
4817     {
4818       sha1_ctx ctx;
4819       sha1_init_ctx(&ctx);
4820       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4821       sha1_finish_ctx(&ctx, ov);
4822     }
4823   else if (strcmp(style, "md5") == 0)
4824     {
4825       md5_ctx ctx;
4826       md5_init_ctx(&ctx);
4827       md5_process_bytes(iv, this->output_file_size_, &ctx);
4828       md5_finish_ctx(&ctx, ov);
4829     }
4830   else
4831     gold_unreachable();
4832
4833   of->write_output_view(this->build_id_note_->offset(),
4834                         this->build_id_note_->data_size(),
4835                         ov);
4836
4837   of->free_input_view(0, this->output_file_size_, iv);
4838 }
4839
4840 // Write out a binary file.  This is called after the link is
4841 // complete.  IN is the temporary output file we used to generate the
4842 // ELF code.  We simply walk through the segments, read them from
4843 // their file offset in IN, and write them to their load address in
4844 // the output file.  FIXME: with a bit more work, we could support
4845 // S-records and/or Intel hex format here.
4846
4847 void
4848 Layout::write_binary(Output_file* in) const
4849 {
4850   gold_assert(parameters->options().oformat_enum()
4851               == General_options::OBJECT_FORMAT_BINARY);
4852
4853   // Get the size of the binary file.
4854   uint64_t max_load_address = 0;
4855   for (Segment_list::const_iterator p = this->segment_list_.begin();
4856        p != this->segment_list_.end();
4857        ++p)
4858     {
4859       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4860         {
4861           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4862           if (max_paddr > max_load_address)
4863             max_load_address = max_paddr;
4864         }
4865     }
4866
4867   Output_file out(parameters->options().output_file_name());
4868   out.open(max_load_address);
4869
4870   for (Segment_list::const_iterator p = this->segment_list_.begin();
4871        p != this->segment_list_.end();
4872        ++p)
4873     {
4874       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4875         {
4876           const unsigned char* vin = in->get_input_view((*p)->offset(),
4877                                                         (*p)->filesz());
4878           unsigned char* vout = out.get_output_view((*p)->paddr(),
4879                                                     (*p)->filesz());
4880           memcpy(vout, vin, (*p)->filesz());
4881           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4882           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4883         }
4884     }
4885
4886   out.close();
4887 }
4888
4889 // Print the output sections to the map file.
4890
4891 void
4892 Layout::print_to_mapfile(Mapfile* mapfile) const
4893 {
4894   for (Segment_list::const_iterator p = this->segment_list_.begin();
4895        p != this->segment_list_.end();
4896        ++p)
4897     (*p)->print_sections_to_mapfile(mapfile);
4898 }
4899
4900 // Print statistical information to stderr.  This is used for --stats.
4901
4902 void
4903 Layout::print_stats() const
4904 {
4905   this->namepool_.print_stats("section name pool");
4906   this->sympool_.print_stats("output symbol name pool");
4907   this->dynpool_.print_stats("dynamic name pool");
4908
4909   for (Section_list::const_iterator p = this->section_list_.begin();
4910        p != this->section_list_.end();
4911        ++p)
4912     (*p)->print_merge_stats();
4913 }
4914
4915 // Write_sections_task methods.
4916
4917 // We can always run this task.
4918
4919 Task_token*
4920 Write_sections_task::is_runnable()
4921 {
4922   return NULL;
4923 }
4924
4925 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4926 // when finished.
4927
4928 void
4929 Write_sections_task::locks(Task_locker* tl)
4930 {
4931   tl->add(this, this->output_sections_blocker_);
4932   tl->add(this, this->final_blocker_);
4933 }
4934
4935 // Run the task--write out the data.
4936
4937 void
4938 Write_sections_task::run(Workqueue*)
4939 {
4940   this->layout_->write_output_sections(this->of_);
4941 }
4942
4943 // Write_data_task methods.
4944
4945 // We can always run this task.
4946
4947 Task_token*
4948 Write_data_task::is_runnable()
4949 {
4950   return NULL;
4951 }
4952
4953 // We need to unlock FINAL_BLOCKER when finished.
4954
4955 void
4956 Write_data_task::locks(Task_locker* tl)
4957 {
4958   tl->add(this, this->final_blocker_);
4959 }
4960
4961 // Run the task--write out the data.
4962
4963 void
4964 Write_data_task::run(Workqueue*)
4965 {
4966   this->layout_->write_data(this->symtab_, this->of_);
4967 }
4968
4969 // Write_symbols_task methods.
4970
4971 // We can always run this task.
4972
4973 Task_token*
4974 Write_symbols_task::is_runnable()
4975 {
4976   return NULL;
4977 }
4978
4979 // We need to unlock FINAL_BLOCKER when finished.
4980
4981 void
4982 Write_symbols_task::locks(Task_locker* tl)
4983 {
4984   tl->add(this, this->final_blocker_);
4985 }
4986
4987 // Run the task--write out the symbols.
4988
4989 void
4990 Write_symbols_task::run(Workqueue*)
4991 {
4992   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4993                                this->layout_->symtab_xindex(),
4994                                this->layout_->dynsym_xindex(), this->of_);
4995 }
4996
4997 // Write_after_input_sections_task methods.
4998
4999 // We can only run this task after the input sections have completed.
5000
5001 Task_token*
5002 Write_after_input_sections_task::is_runnable()
5003 {
5004   if (this->input_sections_blocker_->is_blocked())
5005     return this->input_sections_blocker_;
5006   return NULL;
5007 }
5008
5009 // We need to unlock FINAL_BLOCKER when finished.
5010
5011 void
5012 Write_after_input_sections_task::locks(Task_locker* tl)
5013 {
5014   tl->add(this, this->final_blocker_);
5015 }
5016
5017 // Run the task.
5018
5019 void
5020 Write_after_input_sections_task::run(Workqueue*)
5021 {
5022   this->layout_->write_sections_after_input_sections(this->of_);
5023 }
5024
5025 // Close_task_runner methods.
5026
5027 // Run the task--close the file.
5028
5029 void
5030 Close_task_runner::run(Workqueue*, const Task*)
5031 {
5032   // If we need to compute a checksum for the BUILD if, we do so here.
5033   this->layout_->write_build_id(this->of_);
5034
5035   // If we've been asked to create a binary file, we do so here.
5036   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5037     this->layout_->write_binary(this->of_);
5038
5039   this->of_->close();
5040 }
5041
5042 // Instantiate the templates we need.  We could use the configure
5043 // script to restrict this to only the ones for implemented targets.
5044
5045 #ifdef HAVE_TARGET_32_LITTLE
5046 template
5047 Output_section*
5048 Layout::init_fixed_output_section<32, false>(
5049     const char* name,
5050     elfcpp::Shdr<32, false>& shdr);
5051 #endif
5052
5053 #ifdef HAVE_TARGET_32_BIG
5054 template
5055 Output_section*
5056 Layout::init_fixed_output_section<32, true>(
5057     const char* name,
5058     elfcpp::Shdr<32, true>& shdr);
5059 #endif
5060
5061 #ifdef HAVE_TARGET_64_LITTLE
5062 template
5063 Output_section*
5064 Layout::init_fixed_output_section<64, false>(
5065     const char* name,
5066     elfcpp::Shdr<64, false>& shdr);
5067 #endif
5068
5069 #ifdef HAVE_TARGET_64_BIG
5070 template
5071 Output_section*
5072 Layout::init_fixed_output_section<64, true>(
5073     const char* name,
5074     elfcpp::Shdr<64, true>& shdr);
5075 #endif
5076
5077 #ifdef HAVE_TARGET_32_LITTLE
5078 template
5079 Output_section*
5080 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5081                           unsigned int shndx,
5082                           const char* name,
5083                           const elfcpp::Shdr<32, false>& shdr,
5084                           unsigned int, unsigned int, off_t*);
5085 #endif
5086
5087 #ifdef HAVE_TARGET_32_BIG
5088 template
5089 Output_section*
5090 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5091                          unsigned int shndx,
5092                          const char* name,
5093                          const elfcpp::Shdr<32, true>& shdr,
5094                          unsigned int, unsigned int, off_t*);
5095 #endif
5096
5097 #ifdef HAVE_TARGET_64_LITTLE
5098 template
5099 Output_section*
5100 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5101                           unsigned int shndx,
5102                           const char* name,
5103                           const elfcpp::Shdr<64, false>& shdr,
5104                           unsigned int, unsigned int, off_t*);
5105 #endif
5106
5107 #ifdef HAVE_TARGET_64_BIG
5108 template
5109 Output_section*
5110 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5111                          unsigned int shndx,
5112                          const char* name,
5113                          const elfcpp::Shdr<64, true>& shdr,
5114                          unsigned int, unsigned int, off_t*);
5115 #endif
5116
5117 #ifdef HAVE_TARGET_32_LITTLE
5118 template
5119 Output_section*
5120 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5121                                 unsigned int reloc_shndx,
5122                                 const elfcpp::Shdr<32, false>& shdr,
5123                                 Output_section* data_section,
5124                                 Relocatable_relocs* rr);
5125 #endif
5126
5127 #ifdef HAVE_TARGET_32_BIG
5128 template
5129 Output_section*
5130 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5131                                unsigned int reloc_shndx,
5132                                const elfcpp::Shdr<32, true>& shdr,
5133                                Output_section* data_section,
5134                                Relocatable_relocs* rr);
5135 #endif
5136
5137 #ifdef HAVE_TARGET_64_LITTLE
5138 template
5139 Output_section*
5140 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5141                                 unsigned int reloc_shndx,
5142                                 const elfcpp::Shdr<64, false>& shdr,
5143                                 Output_section* data_section,
5144                                 Relocatable_relocs* rr);
5145 #endif
5146
5147 #ifdef HAVE_TARGET_64_BIG
5148 template
5149 Output_section*
5150 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5151                                unsigned int reloc_shndx,
5152                                const elfcpp::Shdr<64, true>& shdr,
5153                                Output_section* data_section,
5154                                Relocatable_relocs* rr);
5155 #endif
5156
5157 #ifdef HAVE_TARGET_32_LITTLE
5158 template
5159 void
5160 Layout::layout_group<32, false>(Symbol_table* symtab,
5161                                 Sized_relobj_file<32, false>* object,
5162                                 unsigned int,
5163                                 const char* group_section_name,
5164                                 const char* signature,
5165                                 const elfcpp::Shdr<32, false>& shdr,
5166                                 elfcpp::Elf_Word flags,
5167                                 std::vector<unsigned int>* shndxes);
5168 #endif
5169
5170 #ifdef HAVE_TARGET_32_BIG
5171 template
5172 void
5173 Layout::layout_group<32, true>(Symbol_table* symtab,
5174                                Sized_relobj_file<32, true>* object,
5175                                unsigned int,
5176                                const char* group_section_name,
5177                                const char* signature,
5178                                const elfcpp::Shdr<32, true>& shdr,
5179                                elfcpp::Elf_Word flags,
5180                                std::vector<unsigned int>* shndxes);
5181 #endif
5182
5183 #ifdef HAVE_TARGET_64_LITTLE
5184 template
5185 void
5186 Layout::layout_group<64, false>(Symbol_table* symtab,
5187                                 Sized_relobj_file<64, false>* object,
5188                                 unsigned int,
5189                                 const char* group_section_name,
5190                                 const char* signature,
5191                                 const elfcpp::Shdr<64, false>& shdr,
5192                                 elfcpp::Elf_Word flags,
5193                                 std::vector<unsigned int>* shndxes);
5194 #endif
5195
5196 #ifdef HAVE_TARGET_64_BIG
5197 template
5198 void
5199 Layout::layout_group<64, true>(Symbol_table* symtab,
5200                                Sized_relobj_file<64, true>* object,
5201                                unsigned int,
5202                                const char* group_section_name,
5203                                const char* signature,
5204                                const elfcpp::Shdr<64, true>& shdr,
5205                                elfcpp::Elf_Word flags,
5206                                std::vector<unsigned int>* shndxes);
5207 #endif
5208
5209 #ifdef HAVE_TARGET_32_LITTLE
5210 template
5211 Output_section*
5212 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5213                                    const unsigned char* symbols,
5214                                    off_t symbols_size,
5215                                    const unsigned char* symbol_names,
5216                                    off_t symbol_names_size,
5217                                    unsigned int shndx,
5218                                    const elfcpp::Shdr<32, false>& shdr,
5219                                    unsigned int reloc_shndx,
5220                                    unsigned int reloc_type,
5221                                    off_t* off);
5222 #endif
5223
5224 #ifdef HAVE_TARGET_32_BIG
5225 template
5226 Output_section*
5227 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5228                                   const unsigned char* symbols,
5229                                   off_t symbols_size,
5230                                   const unsigned char* symbol_names,
5231                                   off_t symbol_names_size,
5232                                   unsigned int shndx,
5233                                   const elfcpp::Shdr<32, true>& shdr,
5234                                   unsigned int reloc_shndx,
5235                                   unsigned int reloc_type,
5236                                   off_t* off);
5237 #endif
5238
5239 #ifdef HAVE_TARGET_64_LITTLE
5240 template
5241 Output_section*
5242 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5243                                    const unsigned char* symbols,
5244                                    off_t symbols_size,
5245                                    const unsigned char* symbol_names,
5246                                    off_t symbol_names_size,
5247                                    unsigned int shndx,
5248                                    const elfcpp::Shdr<64, false>& shdr,
5249                                    unsigned int reloc_shndx,
5250                                    unsigned int reloc_type,
5251                                    off_t* off);
5252 #endif
5253
5254 #ifdef HAVE_TARGET_64_BIG
5255 template
5256 Output_section*
5257 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5258                                   const unsigned char* symbols,
5259                                   off_t symbols_size,
5260                                   const unsigned char* symbol_names,
5261                                   off_t symbol_names_size,
5262                                   unsigned int shndx,
5263                                   const elfcpp::Shdr<64, true>& shdr,
5264                                   unsigned int reloc_shndx,
5265                                   unsigned int reloc_type,
5266                                   off_t* off);
5267 #endif
5268
5269 } // End namespace gold.