Allow multiple .eh_frame sections per object file.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "gdb_scripts",
525   "info",
526   "types",
527   "line",
528   "loc",
529   "macinfo",
530   "macro",
531   // "pubnames",  // not used by gdb as of 7.4
532   // "pubtypes",  // not used by gdb as of 7.4
533   // "gnu_pubnames",  // Fission extension
534   // "gnu_pubtypes",  // Fission extension
535   "ranges",
536   "str",
537   "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544   "abbrev",
545   // "addr",      // Fission extension
546   // "aranges",   // not used by gdb as of 7.4
547   // "frame",
548   // "gdb_scripts",
549   "info",
550   // "types",
551   "line",
552   // "loc",
553   // "macinfo",
554   // "macro",
555   // "pubnames",  // not used by gdb as of 7.4
556   // "pubtypes",  // not used by gdb as of 7.4
557   // "gnu_pubnames",  // Fission extension
558   // "gnu_pubtypes",  // Fission extension
559   // "ranges",
560   "str",
561   "str_offsets",  // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569   "aranges",
570   "pubnames",
571   "gnu_pubnames",
572   "pubtypes",
573   "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583   // We can do this faster: binary search or a hashtable.  But why bother?
584   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585     if (strcmp(suffix, gdb_sections[i]) == 0)
586       return true;
587   return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595   // We can do this faster: binary search or a hashtable.  But why bother?
596   for (size_t i = 0;
597        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598        ++i)
599     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600       return true;
601   return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610   // We can do this faster: binary search or a hashtable.  But why bother?
611   for (size_t i = 0;
612        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613        ++i)
614     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615       return true;
616   return false;
617 }
618
619 // Sometimes we compress sections.  This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections.  This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631   return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files.  Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640   return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646   gold_assert(secname[0] == '.' && secname[1] == 'z');
647   std::string ret(".");
648   ret.append(secname, 2, std::string::npos);
649   return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657                         const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659   if (!parameters->options().relocatable()
660       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661     return false;
662
663   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667     return parameters->target().should_include_section(sh_type);
668
669   switch (sh_type)
670     {
671     case elfcpp::SHT_NULL:
672     case elfcpp::SHT_SYMTAB:
673     case elfcpp::SHT_DYNSYM:
674     case elfcpp::SHT_HASH:
675     case elfcpp::SHT_DYNAMIC:
676     case elfcpp::SHT_SYMTAB_SHNDX:
677       return false;
678
679     case elfcpp::SHT_STRTAB:
680       // Discard the sections which have special meanings in the ELF
681       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
682       // checking the sh_link fields of the appropriate sections.
683       return (strcmp(name, ".dynstr") != 0
684               && strcmp(name, ".strtab") != 0
685               && strcmp(name, ".shstrtab") != 0);
686
687     case elfcpp::SHT_RELA:
688     case elfcpp::SHT_REL:
689     case elfcpp::SHT_GROUP:
690       // If we are emitting relocations these should be handled
691       // elsewhere.
692       gold_assert(!parameters->options().relocatable());
693       return false;
694
695     case elfcpp::SHT_PROGBITS:
696       if (parameters->options().strip_debug()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           if (is_debug_info_section(name))
700             return false;
701         }
702       if (parameters->options().strip_debug_non_line()
703           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704         {
705           // Debugging sections can only be recognized by name.
706           if (is_prefix_of(".debug_", name)
707               && !is_lines_only_debug_section(name + 7))
708             return false;
709           if (is_prefix_of(".zdebug_", name)
710               && !is_lines_only_debug_section(name + 8))
711             return false;
712         }
713       if (parameters->options().strip_debug_gdb()
714           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715         {
716           // Debugging sections can only be recognized by name.
717           if (is_prefix_of(".debug_", name)
718               && !is_gdb_debug_section(name + 7))
719             return false;
720           if (is_prefix_of(".zdebug_", name)
721               && !is_gdb_debug_section(name + 8))
722             return false;
723         }
724       if (parameters->options().gdb_index()
725           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726         {
727           // When building .gdb_index, we can strip .debug_pubnames,
728           // .debug_pubtypes, and .debug_aranges sections.
729           if (is_prefix_of(".debug_", name)
730               && is_gdb_fast_lookup_section(name + 7))
731             return false;
732           if (is_prefix_of(".zdebug_", name)
733               && is_gdb_fast_lookup_section(name + 8))
734             return false;
735         }
736       if (parameters->options().strip_lto_sections()
737           && !parameters->options().relocatable()
738           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739         {
740           // Ignore LTO sections containing intermediate code.
741           if (is_prefix_of(".gnu.lto_", name))
742             return false;
743         }
744       // The GNU linker strips .gnu_debuglink sections, so we do too.
745       // This is a feature used to keep debugging information in
746       // separate files.
747       if (strcmp(name, ".gnu_debuglink") == 0)
748         return false;
749       return true;
750
751     default:
752       return true;
753     }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761   for (Section_list::const_iterator p = this->section_list_.begin();
762        p != this->section_list_.end();
763        ++p)
764     if (strcmp((*p)->name(), name) == 0)
765       return *p;
766   return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear.  Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774                             elfcpp::Elf_Word clear) const
775 {
776   for (Segment_list::const_iterator p = this->segment_list_.begin();
777        p != this->segment_list_.end();
778        ++p)
779     if (static_cast<elfcpp::PT>((*p)->type()) == type
780         && ((*p)->flags() & set) == set
781         && ((*p)->flags() & clear) == 0)
782       return *p;
783   return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section.  This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors.  Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run.  This set just keeps track of
794 // these sections which need to be reversed.  It is only changed by
795 // Layout::layout.  It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807           != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS.  NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key.  ORDER is where this should appear
813 // in the output sections.  IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818                            Output_section_order order, bool is_relro)
819 {
820   elfcpp::Elf_Word lookup_type = type;
821
822   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
824   // .init_array, .fini_array, and .preinit_array sections by name
825   // whatever their type in the input file.  We do this because the
826   // types are not always right in the input files.
827   if (lookup_type == elfcpp::SHT_INIT_ARRAY
828       || lookup_type == elfcpp::SHT_FINI_ARRAY
829       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830     lookup_type = elfcpp::SHT_PROGBITS;
831
832   elfcpp::Elf_Xword lookup_flags = flags;
833
834   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835   // read-write with read-only sections.  Some other ELF linkers do
836   // not do this.  FIXME: Perhaps there should be an option
837   // controlling this.
838   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841   const std::pair<Key, Output_section*> v(key, NULL);
842   std::pair<Section_name_map::iterator, bool> ins(
843     this->section_name_map_.insert(v));
844
845   if (!ins.second)
846     return ins.first->second;
847   else
848     {
849       // This is the first time we've seen this name/type/flags
850       // combination.  For compatibility with the GNU linker, we
851       // combine sections with contents and zero flags with sections
852       // with non-zero flags.  This is a workaround for cases where
853       // assembler code forgets to set section flags.  FIXME: Perhaps
854       // there should be an option to control this.
855       Output_section* os = NULL;
856
857       if (lookup_type == elfcpp::SHT_PROGBITS)
858         {
859           if (flags == 0)
860             {
861               Output_section* same_name = this->find_output_section(name);
862               if (same_name != NULL
863                   && (same_name->type() == elfcpp::SHT_PROGBITS
864                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
865                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
866                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868                 os = same_name;
869             }
870           else if ((flags & elfcpp::SHF_TLS) == 0)
871             {
872               elfcpp::Elf_Xword zero_flags = 0;
873               const Key zero_key(name_key, std::make_pair(lookup_type,
874                                                           zero_flags));
875               Section_name_map::iterator p =
876                   this->section_name_map_.find(zero_key);
877               if (p != this->section_name_map_.end())
878                 os = p->second;
879             }
880         }
881
882       if (os == NULL)
883         os = this->make_output_section(name, type, flags, order, is_relro);
884
885       ins.first->second = os;
886       return os;
887     }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896   if (! this->script_options_->saw_sections_clause())
897     return false;
898
899   Script_sections* ss = this->script_options_->script_sections();
900   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901   Output_section** output_section_slot;
902   Script_sections::Section_type script_section_type;
903   bool keep;
904
905   name = ss->output_section_name(file_name, name, &output_section_slot,
906                                  &script_section_type, &keep, true);
907   return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916   // Some flags in the input section should not be automatically
917   // copied to the output section.
918   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919                             | elfcpp::SHF_GROUP
920                             | elfcpp::SHF_COMPRESSED
921                             | elfcpp::SHF_MERGE
922                             | elfcpp::SHF_STRINGS);
923
924   // We only clear the SHF_LINK_ORDER flag in for
925   // a non-relocatable link.
926   if (!parameters->options().relocatable())
927     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929   return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
934 // linker created section.  IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file.  ORDER is where this section should appear in the output
937 // sections.  IS_RELRO is true for a relro section.  This will return
938 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
939 // is true if the section name should be matched against input specs
940 // in a linker script.
941
942 Output_section*
943 Layout::choose_output_section(const Relobj* relobj, const char* name,
944                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
945                               bool is_input_section, Output_section_order order,
946                               bool is_relro, bool is_reloc,
947                               bool match_input_spec)
948 {
949   // We should not see any input sections after we have attached
950   // sections to segments.
951   gold_assert(!is_input_section || !this->sections_are_attached_);
952
953   flags = this->get_output_section_flags(flags);
954
955   if (this->script_options_->saw_sections_clause() && !is_reloc)
956     {
957       // We are using a SECTIONS clause, so the output section is
958       // chosen based only on the name.
959
960       Script_sections* ss = this->script_options_->script_sections();
961       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
962       Output_section** output_section_slot;
963       Script_sections::Section_type script_section_type;
964       const char* orig_name = name;
965       bool keep;
966       name = ss->output_section_name(file_name, name, &output_section_slot,
967                                      &script_section_type, &keep,
968                                      match_input_spec);
969
970       if (name == NULL)
971         {
972           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
973                                      "because it is not allowed by the "
974                                      "SECTIONS clause of the linker script"),
975                      orig_name);
976           // The SECTIONS clause says to discard this input section.
977           return NULL;
978         }
979
980       // We can only handle script section types ST_NONE and ST_NOLOAD.
981       switch (script_section_type)
982         {
983         case Script_sections::ST_NONE:
984           break;
985         case Script_sections::ST_NOLOAD:
986           flags &= elfcpp::SHF_ALLOC;
987           break;
988         default:
989           gold_unreachable();
990         }
991
992       // If this is an orphan section--one not mentioned in the linker
993       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
994       // default processing below.
995
996       if (output_section_slot != NULL)
997         {
998           if (*output_section_slot != NULL)
999             {
1000               (*output_section_slot)->update_flags_for_input_section(flags);
1001               return *output_section_slot;
1002             }
1003
1004           // We don't put sections found in the linker script into
1005           // SECTION_NAME_MAP_.  That keeps us from getting confused
1006           // if an orphan section is mapped to a section with the same
1007           // name as one in the linker script.
1008
1009           name = this->namepool_.add(name, false, NULL);
1010
1011           Output_section* os = this->make_output_section(name, type, flags,
1012                                                          order, is_relro);
1013
1014           os->set_found_in_sections_clause();
1015
1016           // Special handling for NOLOAD sections.
1017           if (script_section_type == Script_sections::ST_NOLOAD)
1018             {
1019               os->set_is_noload();
1020
1021               // The constructor of Output_section sets addresses of non-ALLOC
1022               // sections to 0 by default.  We don't want that for NOLOAD
1023               // sections even if they have no SHF_ALLOC flag.
1024               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1025                   && os->is_address_valid())
1026                 {
1027                   gold_assert(os->address() == 0
1028                               && !os->is_offset_valid()
1029                               && !os->is_data_size_valid());
1030                   os->reset_address_and_file_offset();
1031                 }
1032             }
1033
1034           *output_section_slot = os;
1035           return os;
1036         }
1037     }
1038
1039   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1040
1041   size_t len = strlen(name);
1042   std::string uncompressed_name;
1043
1044   // Compressed debug sections should be mapped to the corresponding
1045   // uncompressed section.
1046   if (is_compressed_debug_section(name))
1047     {
1048       uncompressed_name =
1049           corresponding_uncompressed_section_name(std::string(name, len));
1050       name = uncompressed_name.c_str();
1051       len = uncompressed_name.length();
1052     }
1053
1054   // Turn NAME from the name of the input section into the name of the
1055   // output section.
1056   if (is_input_section
1057       && !this->script_options_->saw_sections_clause()
1058       && !parameters->options().relocatable())
1059     {
1060       const char *orig_name = name;
1061       name = parameters->target().output_section_name(relobj, name, &len);
1062       if (name == NULL)
1063         name = Layout::output_section_name(relobj, orig_name, &len);
1064     }
1065
1066   Stringpool::Key name_key;
1067   name = this->namepool_.add_with_length(name, len, true, &name_key);
1068
1069   // Find or make the output section.  The output section is selected
1070   // based on the section name, type, and flags.
1071   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1072 }
1073
1074 // For incremental links, record the initial fixed layout of a section
1075 // from the base file, and return a pointer to the Output_section.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::init_fixed_output_section(const char* name,
1080                                   elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082   unsigned int sh_type = shdr.get_sh_type();
1083
1084   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1085   // PRE_INIT_ARRAY, and NOTE sections.
1086   // All others will be created from scratch and reallocated.
1087   if (!can_incremental_update(sh_type))
1088     return NULL;
1089
1090   // If we're generating a .gdb_index section, we need to regenerate
1091   // it from scratch.
1092   if (parameters->options().gdb_index()
1093       && sh_type == elfcpp::SHT_PROGBITS
1094       && strcmp(name, ".gdb_index") == 0)
1095     return NULL;
1096
1097   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1098   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1099   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1100   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1102       shdr.get_sh_addralign();
1103
1104   // Make the output section.
1105   Stringpool::Key name_key;
1106   name = this->namepool_.add(name, true, &name_key);
1107   Output_section* os = this->get_output_section(name, name_key, sh_type,
1108                                                 sh_flags, ORDER_INVALID, false);
1109   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1110   if (sh_type != elfcpp::SHT_NOBITS)
1111     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1112   return os;
1113 }
1114
1115 // Return the index by which an input section should be ordered.  This
1116 // is used to sort some .text sections, for compatibility with GNU ld.
1117
1118 int
1119 Layout::special_ordering_of_input_section(const char* name)
1120 {
1121   // The GNU linker has some special handling for some sections that
1122   // wind up in the .text section.  Sections that start with these
1123   // prefixes must appear first, and must appear in the order listed
1124   // here.
1125   static const char* const text_section_sort[] =
1126   {
1127     ".text.unlikely",
1128     ".text.exit",
1129     ".text.startup",
1130     ".text.hot"
1131   };
1132
1133   for (size_t i = 0;
1134        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1135        i++)
1136     if (is_prefix_of(text_section_sort[i], name))
1137       return i;
1138
1139   return -1;
1140 }
1141
1142 // Return the output section to use for input section SHNDX, with name
1143 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1144 // index of a relocation section which applies to this section, or 0
1145 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1146 // relocation section if there is one.  Set *OFF to the offset of this
1147 // input section without the output section.  Return NULL if the
1148 // section should be discarded.  Set *OFF to -1 if the section
1149 // contents should not be written directly to the output file, but
1150 // will instead receive special handling.
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1155                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1156                unsigned int reloc_shndx, unsigned int, off_t* off)
1157 {
1158   *off = 0;
1159
1160   if (!this->include_section(object, name, shdr))
1161     return NULL;
1162
1163   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1164
1165   // In a relocatable link a grouped section must not be combined with
1166   // any other sections.
1167   Output_section* os;
1168   if (parameters->options().relocatable()
1169       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170     {
1171       // Some flags in the input section should not be automatically
1172       // copied to the output section.
1173       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174                                  & ~ elfcpp::SHF_COMPRESSED);
1175       name = this->namepool_.add(name, true, NULL);
1176       os = this->make_output_section(name, sh_type, flags,
1177                                      ORDER_INVALID, false);
1178     }
1179   else
1180     {
1181       // All ".text.unlikely.*" sections can be moved to a unique
1182       // segment with --text-unlikely-segment option.
1183       bool text_unlikely_segment
1184           = (parameters->options().text_unlikely_segment()
1185              && is_prefix_of(".text.unlikely",
1186                              object->section_name(shndx).c_str()));
1187       if (text_unlikely_segment)
1188         {
1189           elfcpp::Elf_Xword flags
1190             = this->get_output_section_flags(shdr.get_sh_flags());
1191
1192           Stringpool::Key name_key;
1193           const char* os_name = this->namepool_.add(".text.unlikely", true,
1194                                                     &name_key);
1195           os = this->get_output_section(os_name, name_key, sh_type, flags,
1196                                         ORDER_INVALID, false);
1197           // Map this output section to a unique segment.  This is done to
1198           // separate "text" that is not likely to be executed from "text"
1199           // that is likely executed.
1200           os->set_is_unique_segment();
1201         }
1202       else
1203         {
1204           // Plugins can choose to place one or more subsets of sections in
1205           // unique segments and this is done by mapping these section subsets
1206           // to unique output sections.  Check if this section needs to be
1207           // remapped to a unique output section.
1208           Section_segment_map::iterator it
1209             = this->section_segment_map_.find(Const_section_id(object, shndx));
1210           if (it == this->section_segment_map_.end())
1211             {
1212               os = this->choose_output_section(object, name, sh_type,
1213                                                shdr.get_sh_flags(), true,
1214                                                ORDER_INVALID, false, false,
1215                                                true);
1216             }
1217           else
1218             {
1219               // We know the name of the output section, directly call
1220               // get_output_section here by-passing choose_output_section.
1221               elfcpp::Elf_Xword flags
1222                 = this->get_output_section_flags(shdr.get_sh_flags());
1223
1224               const char* os_name = it->second->name;
1225               Stringpool::Key name_key;
1226               os_name = this->namepool_.add(os_name, true, &name_key);
1227               os = this->get_output_section(os_name, name_key, sh_type, flags,
1228                                         ORDER_INVALID, false);
1229               if (!os->is_unique_segment())
1230                 {
1231                   os->set_is_unique_segment();
1232                   os->set_extra_segment_flags(it->second->flags);
1233                   os->set_segment_alignment(it->second->align);
1234                 }
1235             }
1236           }
1237       if (os == NULL)
1238         return NULL;
1239     }
1240
1241   // By default the GNU linker sorts input sections whose names match
1242   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1243   // sections are sorted by name.  This is used to implement
1244   // constructor priority ordering.  We are compatible.  When we put
1245   // .ctor sections in .init_array and .dtor sections in .fini_array,
1246   // we must also sort plain .ctor and .dtor sections.
1247   if (!this->script_options_->saw_sections_clause()
1248       && !parameters->options().relocatable()
1249       && (is_prefix_of(".ctors.", name)
1250           || is_prefix_of(".dtors.", name)
1251           || is_prefix_of(".init_array.", name)
1252           || is_prefix_of(".fini_array.", name)
1253           || (parameters->options().ctors_in_init_array()
1254               && (strcmp(name, ".ctors") == 0
1255                   || strcmp(name, ".dtors") == 0))))
1256     os->set_must_sort_attached_input_sections();
1257
1258   // By default the GNU linker sorts some special text sections ahead
1259   // of others.  We are compatible.
1260   if (parameters->options().text_reorder()
1261       && !this->script_options_->saw_sections_clause()
1262       && !this->is_section_ordering_specified()
1263       && !parameters->options().relocatable()
1264       && Layout::special_ordering_of_input_section(name) >= 0)
1265     os->set_must_sort_attached_input_sections();
1266
1267   // If this is a .ctors or .ctors.* section being mapped to a
1268   // .init_array section, or a .dtors or .dtors.* section being mapped
1269   // to a .fini_array section, we will need to reverse the words if
1270   // there is more than one.  Record this section for later.  See
1271   // ctors_sections_in_init_array above.
1272   if (!this->script_options_->saw_sections_clause()
1273       && !parameters->options().relocatable()
1274       && shdr.get_sh_size() > size / 8
1275       && (((strcmp(name, ".ctors") == 0
1276             || is_prefix_of(".ctors.", name))
1277            && strcmp(os->name(), ".init_array") == 0)
1278           || ((strcmp(name, ".dtors") == 0
1279                || is_prefix_of(".dtors.", name))
1280               && strcmp(os->name(), ".fini_array") == 0)))
1281     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1282
1283   // FIXME: Handle SHF_LINK_ORDER somewhere.
1284
1285   elfcpp::Elf_Xword orig_flags = os->flags();
1286
1287   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1288                                this->script_options_->saw_sections_clause());
1289
1290   // If the flags changed, we may have to change the order.
1291   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1292     {
1293       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1294       elfcpp::Elf_Xword new_flags =
1295         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296       if (orig_flags != new_flags)
1297         os->set_order(this->default_section_order(os, false));
1298     }
1299
1300   this->have_added_input_section_ = true;
1301
1302   return os;
1303 }
1304
1305 // Maps section SECN to SEGMENT s.
1306 void
1307 Layout::insert_section_segment_map(Const_section_id secn,
1308                                    Unique_segment_info *s)
1309 {
1310   gold_assert(this->unique_segment_for_sections_specified_);
1311   this->section_segment_map_[secn] = s;
1312 }
1313
1314 // Handle a relocation section when doing a relocatable link.
1315
1316 template<int size, bool big_endian>
1317 Output_section*
1318 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1319                      unsigned int,
1320                      const elfcpp::Shdr<size, big_endian>& shdr,
1321                      Output_section* data_section,
1322                      Relocatable_relocs* rr)
1323 {
1324   gold_assert(parameters->options().relocatable()
1325               || parameters->options().emit_relocs());
1326
1327   int sh_type = shdr.get_sh_type();
1328
1329   std::string name;
1330   if (sh_type == elfcpp::SHT_REL)
1331     name = ".rel";
1332   else if (sh_type == elfcpp::SHT_RELA)
1333     name = ".rela";
1334   else
1335     gold_unreachable();
1336   name += data_section->name();
1337
1338   // In a relocatable link relocs for a grouped section must not be
1339   // combined with other reloc sections.
1340   Output_section* os;
1341   if (!parameters->options().relocatable()
1342       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1343     os = this->choose_output_section(object, name.c_str(), sh_type,
1344                                      shdr.get_sh_flags(), false,
1345                                      ORDER_INVALID, false, true, false);
1346   else
1347     {
1348       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1349       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1350                                      ORDER_INVALID, false);
1351     }
1352
1353   os->set_should_link_to_symtab();
1354   os->set_info_section(data_section);
1355
1356   Output_section_data* posd;
1357   if (sh_type == elfcpp::SHT_REL)
1358     {
1359       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1360       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1361                                            size,
1362                                            big_endian>(rr);
1363     }
1364   else if (sh_type == elfcpp::SHT_RELA)
1365     {
1366       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1367       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1368                                            size,
1369                                            big_endian>(rr);
1370     }
1371   else
1372     gold_unreachable();
1373
1374   os->add_output_section_data(posd);
1375   rr->set_output_data(posd);
1376
1377   return os;
1378 }
1379
1380 // Handle a group section when doing a relocatable link.
1381
1382 template<int size, bool big_endian>
1383 void
1384 Layout::layout_group(Symbol_table* symtab,
1385                      Sized_relobj_file<size, big_endian>* object,
1386                      unsigned int,
1387                      const char* group_section_name,
1388                      const char* signature,
1389                      const elfcpp::Shdr<size, big_endian>& shdr,
1390                      elfcpp::Elf_Word flags,
1391                      std::vector<unsigned int>* shndxes)
1392 {
1393   gold_assert(parameters->options().relocatable());
1394   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1395   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1396   Output_section* os = this->make_output_section(group_section_name,
1397                                                  elfcpp::SHT_GROUP,
1398                                                  shdr.get_sh_flags(),
1399                                                  ORDER_INVALID, false);
1400
1401   // We need to find a symbol with the signature in the symbol table.
1402   // If we don't find one now, we need to look again later.
1403   Symbol* sym = symtab->lookup(signature, NULL);
1404   if (sym != NULL)
1405     os->set_info_symndx(sym);
1406   else
1407     {
1408       // Reserve some space to minimize reallocations.
1409       if (this->group_signatures_.empty())
1410         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1411
1412       // We will wind up using a symbol whose name is the signature.
1413       // So just put the signature in the symbol name pool to save it.
1414       signature = symtab->canonicalize_name(signature);
1415       this->group_signatures_.push_back(Group_signature(os, signature));
1416     }
1417
1418   os->set_should_link_to_symtab();
1419   os->set_entsize(4);
1420
1421   section_size_type entry_count =
1422     convert_to_section_size_type(shdr.get_sh_size() / 4);
1423   Output_section_data* posd =
1424     new Output_data_group<size, big_endian>(object, entry_count, flags,
1425                                             shndxes);
1426   os->add_output_section_data(posd);
1427 }
1428
1429 // Special GNU handling of sections name .eh_frame.  They will
1430 // normally hold exception frame data as defined by the C++ ABI
1431 // (http://codesourcery.com/cxx-abi/).
1432
1433 template<int size, bool big_endian>
1434 Output_section*
1435 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1436                         const unsigned char* symbols,
1437                         off_t symbols_size,
1438                         const unsigned char* symbol_names,
1439                         off_t symbol_names_size,
1440                         unsigned int shndx,
1441                         const elfcpp::Shdr<size, big_endian>& shdr,
1442                         unsigned int reloc_shndx, unsigned int reloc_type,
1443                         off_t* off)
1444 {
1445   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1446               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1447   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1448
1449   Output_section* os = this->make_eh_frame_section(object);
1450   if (os == NULL)
1451     return NULL;
1452
1453   gold_assert(this->eh_frame_section_ == os);
1454
1455   elfcpp::Elf_Xword orig_flags = os->flags();
1456
1457   Eh_frame::Eh_frame_section_disposition disp =
1458       Eh_frame::EH_UNRECOGNIZED_SECTION;
1459   if (!parameters->incremental())
1460     {
1461       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1462                                                              symbols,
1463                                                              symbols_size,
1464                                                              symbol_names,
1465                                                              symbol_names_size,
1466                                                              shndx,
1467                                                              reloc_shndx,
1468                                                              reloc_type);
1469     }
1470
1471   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1472     {
1473       os->update_flags_for_input_section(shdr.get_sh_flags());
1474
1475       // A writable .eh_frame section is a RELRO section.
1476       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478         {
1479           os->set_is_relro();
1480           os->set_order(ORDER_RELRO);
1481         }
1482
1483       *off = -1;
1484       return os;
1485     }
1486
1487   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1488     {
1489       // We found the end marker section, so now we can add the set of
1490       // optimized sections to the output section.  We need to postpone
1491       // adding this until we've found a section we can optimize so that
1492       // the .eh_frame section in crtbeginT.o winds up at the start of
1493       // the output section.
1494       os->add_output_section_data(this->eh_frame_data_);
1495       this->added_eh_frame_data_ = true;
1496      }
1497
1498   // We couldn't handle this .eh_frame section for some reason.
1499   // Add it as a normal section.
1500   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1501   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1502                                reloc_shndx, saw_sections_clause);
1503   this->have_added_input_section_ = true;
1504
1505   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1506       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1507     os->set_order(this->default_section_order(os, false));
1508
1509   return os;
1510 }
1511
1512 void
1513 Layout::finalize_eh_frame_section()
1514 {
1515   // If we never found an end marker section, we need to add the
1516   // optimized eh sections to the output section now.
1517   if (!parameters->incremental()
1518       && this->eh_frame_section_ != NULL
1519       && !this->added_eh_frame_data_)
1520     {
1521       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1522       this->added_eh_frame_data_ = true;
1523     }
1524 }
1525
1526 // Create and return the magic .eh_frame section.  Create
1527 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1528 // input .eh_frame section; it may be NULL.
1529
1530 Output_section*
1531 Layout::make_eh_frame_section(const Relobj* object)
1532 {
1533   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1534   // SHT_PROGBITS.
1535   Output_section* os = this->choose_output_section(object, ".eh_frame",
1536                                                    elfcpp::SHT_PROGBITS,
1537                                                    elfcpp::SHF_ALLOC, false,
1538                                                    ORDER_EHFRAME, false, false,
1539                                                    false);
1540   if (os == NULL)
1541     return NULL;
1542
1543   if (this->eh_frame_section_ == NULL)
1544     {
1545       this->eh_frame_section_ = os;
1546       this->eh_frame_data_ = new Eh_frame();
1547
1548       // For incremental linking, we do not optimize .eh_frame sections
1549       // or create a .eh_frame_hdr section.
1550       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1551         {
1552           Output_section* hdr_os =
1553             this->choose_output_section(NULL, ".eh_frame_hdr",
1554                                         elfcpp::SHT_PROGBITS,
1555                                         elfcpp::SHF_ALLOC, false,
1556                                         ORDER_EHFRAME, false, false,
1557                                         false);
1558
1559           if (hdr_os != NULL)
1560             {
1561               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1562                                                         this->eh_frame_data_);
1563               hdr_os->add_output_section_data(hdr_posd);
1564
1565               hdr_os->set_after_input_sections();
1566
1567               if (!this->script_options_->saw_phdrs_clause())
1568                 {
1569                   Output_segment* hdr_oseg;
1570                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1571                                                        elfcpp::PF_R);
1572                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1573                                                           elfcpp::PF_R);
1574                 }
1575
1576               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1577             }
1578         }
1579     }
1580
1581   return os;
1582 }
1583
1584 // Add an exception frame for a PLT.  This is called from target code.
1585
1586 void
1587 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1588                              size_t cie_length, const unsigned char* fde_data,
1589                              size_t fde_length)
1590 {
1591   if (parameters->incremental())
1592     {
1593       // FIXME: Maybe this could work some day....
1594       return;
1595     }
1596   Output_section* os = this->make_eh_frame_section(NULL);
1597   if (os == NULL)
1598     return;
1599   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1600                                             fde_data, fde_length);
1601   if (!this->added_eh_frame_data_)
1602     {
1603       os->add_output_section_data(this->eh_frame_data_);
1604       this->added_eh_frame_data_ = true;
1605     }
1606 }
1607
1608 // Remove .eh_frame information for a PLT.  FDEs using the CIE must
1609 // be removed in reverse order to the order they were added.
1610
1611 void
1612 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1613                                 size_t cie_length, const unsigned char* fde_data,
1614                                 size_t fde_length)
1615 {
1616   if (parameters->incremental())
1617     {
1618       // FIXME: Maybe this could work some day....
1619       return;
1620     }
1621   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1622                                                fde_data, fde_length);
1623 }
1624
1625 // Scan a .debug_info or .debug_types section, and add summary
1626 // information to the .gdb_index section.
1627
1628 template<int size, bool big_endian>
1629 void
1630 Layout::add_to_gdb_index(bool is_type_unit,
1631                          Sized_relobj<size, big_endian>* object,
1632                          const unsigned char* symbols,
1633                          off_t symbols_size,
1634                          unsigned int shndx,
1635                          unsigned int reloc_shndx,
1636                          unsigned int reloc_type)
1637 {
1638   if (this->gdb_index_data_ == NULL)
1639     {
1640       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1641                                                        elfcpp::SHT_PROGBITS, 0,
1642                                                        false, ORDER_INVALID,
1643                                                        false, false, false);
1644       if (os == NULL)
1645         return;
1646
1647       this->gdb_index_data_ = new Gdb_index(os);
1648       os->add_output_section_data(this->gdb_index_data_);
1649       os->set_after_input_sections();
1650     }
1651
1652   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1653                                          symbols_size, shndx, reloc_shndx,
1654                                          reloc_type);
1655 }
1656
1657 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1658 // the output section.
1659
1660 Output_section*
1661 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1662                                 elfcpp::Elf_Xword flags,
1663                                 Output_section_data* posd,
1664                                 Output_section_order order, bool is_relro)
1665 {
1666   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1667                                                    false, order, is_relro,
1668                                                    false, false);
1669   if (os != NULL)
1670     os->add_output_section_data(posd);
1671   return os;
1672 }
1673
1674 // Map section flags to segment flags.
1675
1676 elfcpp::Elf_Word
1677 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1678 {
1679   elfcpp::Elf_Word ret = elfcpp::PF_R;
1680   if ((flags & elfcpp::SHF_WRITE) != 0)
1681     ret |= elfcpp::PF_W;
1682   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1683     ret |= elfcpp::PF_X;
1684   return ret;
1685 }
1686
1687 // Make a new Output_section, and attach it to segments as
1688 // appropriate.  ORDER is the order in which this section should
1689 // appear in the output segment.  IS_RELRO is true if this is a relro
1690 // (read-only after relocations) section.
1691
1692 Output_section*
1693 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1694                             elfcpp::Elf_Xword flags,
1695                             Output_section_order order, bool is_relro)
1696 {
1697   Output_section* os;
1698   if ((flags & elfcpp::SHF_ALLOC) == 0
1699       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1700       && is_compressible_debug_section(name))
1701     os = new Output_compressed_section(&parameters->options(), name, type,
1702                                        flags);
1703   else if ((flags & elfcpp::SHF_ALLOC) == 0
1704            && parameters->options().strip_debug_non_line()
1705            && strcmp(".debug_abbrev", name) == 0)
1706     {
1707       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1708           name, type, flags);
1709       if (this->debug_info_)
1710         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1711     }
1712   else if ((flags & elfcpp::SHF_ALLOC) == 0
1713            && parameters->options().strip_debug_non_line()
1714            && strcmp(".debug_info", name) == 0)
1715     {
1716       os = this->debug_info_ = new Output_reduced_debug_info_section(
1717           name, type, flags);
1718       if (this->debug_abbrev_)
1719         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1720     }
1721   else
1722     {
1723       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1724       // not have correct section types.  Force them here.
1725       if (type == elfcpp::SHT_PROGBITS)
1726         {
1727           if (is_prefix_of(".init_array", name))
1728             type = elfcpp::SHT_INIT_ARRAY;
1729           else if (is_prefix_of(".preinit_array", name))
1730             type = elfcpp::SHT_PREINIT_ARRAY;
1731           else if (is_prefix_of(".fini_array", name))
1732             type = elfcpp::SHT_FINI_ARRAY;
1733         }
1734
1735       // FIXME: const_cast is ugly.
1736       Target* target = const_cast<Target*>(&parameters->target());
1737       os = target->make_output_section(name, type, flags);
1738     }
1739
1740   // With -z relro, we have to recognize the special sections by name.
1741   // There is no other way.
1742   bool is_relro_local = false;
1743   if (!this->script_options_->saw_sections_clause()
1744       && parameters->options().relro()
1745       && (flags & elfcpp::SHF_ALLOC) != 0
1746       && (flags & elfcpp::SHF_WRITE) != 0)
1747     {
1748       if (type == elfcpp::SHT_PROGBITS)
1749         {
1750           if ((flags & elfcpp::SHF_TLS) != 0)
1751             is_relro = true;
1752           else if (strcmp(name, ".data.rel.ro") == 0)
1753             is_relro = true;
1754           else if (strcmp(name, ".data.rel.ro.local") == 0)
1755             {
1756               is_relro = true;
1757               is_relro_local = true;
1758             }
1759           else if (strcmp(name, ".ctors") == 0
1760                    || strcmp(name, ".dtors") == 0
1761                    || strcmp(name, ".jcr") == 0)
1762             is_relro = true;
1763         }
1764       else if (type == elfcpp::SHT_INIT_ARRAY
1765                || type == elfcpp::SHT_FINI_ARRAY
1766                || type == elfcpp::SHT_PREINIT_ARRAY)
1767         is_relro = true;
1768     }
1769
1770   if (is_relro)
1771     os->set_is_relro();
1772
1773   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1774     order = this->default_section_order(os, is_relro_local);
1775
1776   os->set_order(order);
1777
1778   parameters->target().new_output_section(os);
1779
1780   this->section_list_.push_back(os);
1781
1782   // The GNU linker by default sorts some sections by priority, so we
1783   // do the same.  We need to know that this might happen before we
1784   // attach any input sections.
1785   if (!this->script_options_->saw_sections_clause()
1786       && !parameters->options().relocatable()
1787       && (strcmp(name, ".init_array") == 0
1788           || strcmp(name, ".fini_array") == 0
1789           || (!parameters->options().ctors_in_init_array()
1790               && (strcmp(name, ".ctors") == 0
1791                   || strcmp(name, ".dtors") == 0))))
1792     os->set_may_sort_attached_input_sections();
1793
1794   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1795   // sections before other .text sections.  We are compatible.  We
1796   // need to know that this might happen before we attach any input
1797   // sections.
1798   if (parameters->options().text_reorder()
1799       && !this->script_options_->saw_sections_clause()
1800       && !this->is_section_ordering_specified()
1801       && !parameters->options().relocatable()
1802       && strcmp(name, ".text") == 0)
1803     os->set_may_sort_attached_input_sections();
1804
1805   // GNU linker sorts section by name with --sort-section=name.
1806   if (strcmp(parameters->options().sort_section(), "name") == 0)
1807       os->set_must_sort_attached_input_sections();
1808
1809   // Check for .stab*str sections, as .stab* sections need to link to
1810   // them.
1811   if (type == elfcpp::SHT_STRTAB
1812       && !this->have_stabstr_section_
1813       && strncmp(name, ".stab", 5) == 0
1814       && strcmp(name + strlen(name) - 3, "str") == 0)
1815     this->have_stabstr_section_ = true;
1816
1817   // During a full incremental link, we add patch space to most
1818   // PROGBITS and NOBITS sections.  Flag those that may be
1819   // arbitrarily padded.
1820   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1821       && order != ORDER_INTERP
1822       && order != ORDER_INIT
1823       && order != ORDER_PLT
1824       && order != ORDER_FINI
1825       && order != ORDER_RELRO_LAST
1826       && order != ORDER_NON_RELRO_FIRST
1827       && strcmp(name, ".eh_frame") != 0
1828       && strcmp(name, ".ctors") != 0
1829       && strcmp(name, ".dtors") != 0
1830       && strcmp(name, ".jcr") != 0)
1831     {
1832       os->set_is_patch_space_allowed();
1833
1834       // Certain sections require "holes" to be filled with
1835       // specific fill patterns.  These fill patterns may have
1836       // a minimum size, so we must prevent allocations from the
1837       // free list that leave a hole smaller than the minimum.
1838       if (strcmp(name, ".debug_info") == 0)
1839         os->set_free_space_fill(new Output_fill_debug_info(false));
1840       else if (strcmp(name, ".debug_types") == 0)
1841         os->set_free_space_fill(new Output_fill_debug_info(true));
1842       else if (strcmp(name, ".debug_line") == 0)
1843         os->set_free_space_fill(new Output_fill_debug_line());
1844     }
1845
1846   // If we have already attached the sections to segments, then we
1847   // need to attach this one now.  This happens for sections created
1848   // directly by the linker.
1849   if (this->sections_are_attached_)
1850     this->attach_section_to_segment(&parameters->target(), os);
1851
1852   return os;
1853 }
1854
1855 // Return the default order in which a section should be placed in an
1856 // output segment.  This function captures a lot of the ideas in
1857 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1858 // linker created section is normally set when the section is created;
1859 // this function is used for input sections.
1860
1861 Output_section_order
1862 Layout::default_section_order(Output_section* os, bool is_relro_local)
1863 {
1864   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1865   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1866   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1867   bool is_bss = false;
1868
1869   switch (os->type())
1870     {
1871     default:
1872     case elfcpp::SHT_PROGBITS:
1873       break;
1874     case elfcpp::SHT_NOBITS:
1875       is_bss = true;
1876       break;
1877     case elfcpp::SHT_RELA:
1878     case elfcpp::SHT_REL:
1879       if (!is_write)
1880         return ORDER_DYNAMIC_RELOCS;
1881       break;
1882     case elfcpp::SHT_HASH:
1883     case elfcpp::SHT_DYNAMIC:
1884     case elfcpp::SHT_SHLIB:
1885     case elfcpp::SHT_DYNSYM:
1886     case elfcpp::SHT_GNU_HASH:
1887     case elfcpp::SHT_GNU_verdef:
1888     case elfcpp::SHT_GNU_verneed:
1889     case elfcpp::SHT_GNU_versym:
1890       if (!is_write)
1891         return ORDER_DYNAMIC_LINKER;
1892       break;
1893     case elfcpp::SHT_NOTE:
1894       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1895     }
1896
1897   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1898     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1899
1900   if (!is_bss && !is_write)
1901     {
1902       if (is_execinstr)
1903         {
1904           if (strcmp(os->name(), ".init") == 0)
1905             return ORDER_INIT;
1906           else if (strcmp(os->name(), ".fini") == 0)
1907             return ORDER_FINI;
1908         }
1909       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1910     }
1911
1912   if (os->is_relro())
1913     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1914
1915   if (os->is_small_section())
1916     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1917   if (os->is_large_section())
1918     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1919
1920   return is_bss ? ORDER_BSS : ORDER_DATA;
1921 }
1922
1923 // Attach output sections to segments.  This is called after we have
1924 // seen all the input sections.
1925
1926 void
1927 Layout::attach_sections_to_segments(const Target* target)
1928 {
1929   for (Section_list::iterator p = this->section_list_.begin();
1930        p != this->section_list_.end();
1931        ++p)
1932     this->attach_section_to_segment(target, *p);
1933
1934   this->sections_are_attached_ = true;
1935 }
1936
1937 // Attach an output section to a segment.
1938
1939 void
1940 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1941 {
1942   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1943     this->unattached_section_list_.push_back(os);
1944   else
1945     this->attach_allocated_section_to_segment(target, os);
1946 }
1947
1948 // Attach an allocated output section to a segment.
1949
1950 void
1951 Layout::attach_allocated_section_to_segment(const Target* target,
1952                                             Output_section* os)
1953 {
1954   elfcpp::Elf_Xword flags = os->flags();
1955   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1956
1957   if (parameters->options().relocatable())
1958     return;
1959
1960   // If we have a SECTIONS clause, we can't handle the attachment to
1961   // segments until after we've seen all the sections.
1962   if (this->script_options_->saw_sections_clause())
1963     return;
1964
1965   gold_assert(!this->script_options_->saw_phdrs_clause());
1966
1967   // This output section goes into a PT_LOAD segment.
1968
1969   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1970
1971   // If this output section's segment has extra flags that need to be set,
1972   // coming from a linker plugin, do that.
1973   seg_flags |= os->extra_segment_flags();
1974
1975   // Check for --section-start.
1976   uint64_t addr;
1977   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1978
1979   // In general the only thing we really care about for PT_LOAD
1980   // segments is whether or not they are writable or executable,
1981   // so that is how we search for them.
1982   // Large data sections also go into their own PT_LOAD segment.
1983   // People who need segments sorted on some other basis will
1984   // have to use a linker script.
1985
1986   Segment_list::const_iterator p;
1987   if (!os->is_unique_segment())
1988     {
1989       for (p = this->segment_list_.begin();
1990            p != this->segment_list_.end();
1991            ++p)
1992         {
1993           if ((*p)->type() != elfcpp::PT_LOAD)
1994             continue;
1995           if ((*p)->is_unique_segment())
1996             continue;
1997           if (!parameters->options().omagic()
1998               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1999             continue;
2000           if ((target->isolate_execinstr() || parameters->options().rosegment())
2001               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2002             continue;
2003           // If -Tbss was specified, we need to separate the data and BSS
2004           // segments.
2005           if (parameters->options().user_set_Tbss())
2006             {
2007               if ((os->type() == elfcpp::SHT_NOBITS)
2008                   == (*p)->has_any_data_sections())
2009                 continue;
2010             }
2011           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2012             continue;
2013
2014           if (is_address_set)
2015             {
2016               if ((*p)->are_addresses_set())
2017                 continue;
2018
2019               (*p)->add_initial_output_data(os);
2020               (*p)->update_flags_for_output_section(seg_flags);
2021               (*p)->set_addresses(addr, addr);
2022               break;
2023             }
2024
2025           (*p)->add_output_section_to_load(this, os, seg_flags);
2026           break;
2027         }
2028     }
2029
2030   if (p == this->segment_list_.end()
2031       || os->is_unique_segment())
2032     {
2033       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2034                                                        seg_flags);
2035       if (os->is_large_data_section())
2036         oseg->set_is_large_data_segment();
2037       oseg->add_output_section_to_load(this, os, seg_flags);
2038       if (is_address_set)
2039         oseg->set_addresses(addr, addr);
2040       // Check if segment should be marked unique.  For segments marked
2041       // unique by linker plugins, set the new alignment if specified.
2042       if (os->is_unique_segment())
2043         {
2044           oseg->set_is_unique_segment();
2045           if (os->segment_alignment() != 0)
2046             oseg->set_minimum_p_align(os->segment_alignment());
2047         }
2048     }
2049
2050   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2051   // segment.
2052   if (os->type() == elfcpp::SHT_NOTE)
2053     {
2054       // See if we already have an equivalent PT_NOTE segment.
2055       for (p = this->segment_list_.begin();
2056            p != segment_list_.end();
2057            ++p)
2058         {
2059           if ((*p)->type() == elfcpp::PT_NOTE
2060               && (((*p)->flags() & elfcpp::PF_W)
2061                   == (seg_flags & elfcpp::PF_W)))
2062             {
2063               (*p)->add_output_section_to_nonload(os, seg_flags);
2064               break;
2065             }
2066         }
2067
2068       if (p == this->segment_list_.end())
2069         {
2070           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2071                                                            seg_flags);
2072           oseg->add_output_section_to_nonload(os, seg_flags);
2073         }
2074     }
2075
2076   // If we see a loadable SHF_TLS section, we create a PT_TLS
2077   // segment.  There can only be one such segment.
2078   if ((flags & elfcpp::SHF_TLS) != 0)
2079     {
2080       if (this->tls_segment_ == NULL)
2081         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2082       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2083     }
2084
2085   // If -z relro is in effect, and we see a relro section, we create a
2086   // PT_GNU_RELRO segment.  There can only be one such segment.
2087   if (os->is_relro() && parameters->options().relro())
2088     {
2089       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2090       if (this->relro_segment_ == NULL)
2091         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2092       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2093     }
2094
2095   // If we see a section named .interp, put it into a PT_INTERP
2096   // segment.  This seems broken to me, but this is what GNU ld does,
2097   // and glibc expects it.
2098   if (strcmp(os->name(), ".interp") == 0
2099       && !this->script_options_->saw_phdrs_clause())
2100     {
2101       if (this->interp_segment_ == NULL)
2102         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2103       else
2104         gold_warning(_("multiple '.interp' sections in input files "
2105                        "may cause confusing PT_INTERP segment"));
2106       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2107     }
2108 }
2109
2110 // Make an output section for a script.
2111
2112 Output_section*
2113 Layout::make_output_section_for_script(
2114     const char* name,
2115     Script_sections::Section_type section_type)
2116 {
2117   name = this->namepool_.add(name, false, NULL);
2118   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2119   if (section_type == Script_sections::ST_NOLOAD)
2120     sh_flags = 0;
2121   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2122                                                  sh_flags, ORDER_INVALID,
2123                                                  false);
2124   os->set_found_in_sections_clause();
2125   if (section_type == Script_sections::ST_NOLOAD)
2126     os->set_is_noload();
2127   return os;
2128 }
2129
2130 // Return the number of segments we expect to see.
2131
2132 size_t
2133 Layout::expected_segment_count() const
2134 {
2135   size_t ret = this->segment_list_.size();
2136
2137   // If we didn't see a SECTIONS clause in a linker script, we should
2138   // already have the complete list of segments.  Otherwise we ask the
2139   // SECTIONS clause how many segments it expects, and add in the ones
2140   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2141
2142   if (!this->script_options_->saw_sections_clause())
2143     return ret;
2144   else
2145     {
2146       const Script_sections* ss = this->script_options_->script_sections();
2147       return ret + ss->expected_segment_count(this);
2148     }
2149 }
2150
2151 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2152 // is whether we saw a .note.GNU-stack section in the object file.
2153 // GNU_STACK_FLAGS is the section flags.  The flags give the
2154 // protection required for stack memory.  We record this in an
2155 // executable as a PT_GNU_STACK segment.  If an object file does not
2156 // have a .note.GNU-stack segment, we must assume that it is an old
2157 // object.  On some targets that will force an executable stack.
2158
2159 void
2160 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2161                          const Object* obj)
2162 {
2163   if (!seen_gnu_stack)
2164     {
2165       this->input_without_gnu_stack_note_ = true;
2166       if (parameters->options().warn_execstack()
2167           && parameters->target().is_default_stack_executable())
2168         gold_warning(_("%s: missing .note.GNU-stack section"
2169                        " implies executable stack"),
2170                      obj->name().c_str());
2171     }
2172   else
2173     {
2174       this->input_with_gnu_stack_note_ = true;
2175       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2176         {
2177           this->input_requires_executable_stack_ = true;
2178           if (parameters->options().warn_execstack())
2179             gold_warning(_("%s: requires executable stack"),
2180                          obj->name().c_str());
2181         }
2182     }
2183 }
2184
2185 // Create automatic note sections.
2186
2187 void
2188 Layout::create_notes()
2189 {
2190   this->create_gold_note();
2191   this->create_stack_segment();
2192   this->create_build_id();
2193 }
2194
2195 // Create the dynamic sections which are needed before we read the
2196 // relocs.
2197
2198 void
2199 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2200 {
2201   if (parameters->doing_static_link())
2202     return;
2203
2204   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2205                                                        elfcpp::SHT_DYNAMIC,
2206                                                        (elfcpp::SHF_ALLOC
2207                                                         | elfcpp::SHF_WRITE),
2208                                                        false, ORDER_RELRO,
2209                                                        true, false, false);
2210
2211   // A linker script may discard .dynamic, so check for NULL.
2212   if (this->dynamic_section_ != NULL)
2213     {
2214       this->dynamic_symbol_ =
2215         symtab->define_in_output_data("_DYNAMIC", NULL,
2216                                       Symbol_table::PREDEFINED,
2217                                       this->dynamic_section_, 0, 0,
2218                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2219                                       elfcpp::STV_HIDDEN, 0, false, false);
2220
2221       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2222
2223       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2224     }
2225 }
2226
2227 // For each output section whose name can be represented as C symbol,
2228 // define __start and __stop symbols for the section.  This is a GNU
2229 // extension.
2230
2231 void
2232 Layout::define_section_symbols(Symbol_table* symtab)
2233 {
2234   for (Section_list::const_iterator p = this->section_list_.begin();
2235        p != this->section_list_.end();
2236        ++p)
2237     {
2238       const char* const name = (*p)->name();
2239       if (is_cident(name))
2240         {
2241           const std::string name_string(name);
2242           const std::string start_name(cident_section_start_prefix
2243                                        + name_string);
2244           const std::string stop_name(cident_section_stop_prefix
2245                                       + name_string);
2246
2247           symtab->define_in_output_data(start_name.c_str(),
2248                                         NULL, // version
2249                                         Symbol_table::PREDEFINED,
2250                                         *p,
2251                                         0, // value
2252                                         0, // symsize
2253                                         elfcpp::STT_NOTYPE,
2254                                         elfcpp::STB_GLOBAL,
2255                                         elfcpp::STV_PROTECTED,
2256                                         0, // nonvis
2257                                         false, // offset_is_from_end
2258                                         true); // only_if_ref
2259
2260           symtab->define_in_output_data(stop_name.c_str(),
2261                                         NULL, // version
2262                                         Symbol_table::PREDEFINED,
2263                                         *p,
2264                                         0, // value
2265                                         0, // symsize
2266                                         elfcpp::STT_NOTYPE,
2267                                         elfcpp::STB_GLOBAL,
2268                                         elfcpp::STV_PROTECTED,
2269                                         0, // nonvis
2270                                         true, // offset_is_from_end
2271                                         true); // only_if_ref
2272         }
2273     }
2274 }
2275
2276 // Define symbols for group signatures.
2277
2278 void
2279 Layout::define_group_signatures(Symbol_table* symtab)
2280 {
2281   for (Group_signatures::iterator p = this->group_signatures_.begin();
2282        p != this->group_signatures_.end();
2283        ++p)
2284     {
2285       Symbol* sym = symtab->lookup(p->signature, NULL);
2286       if (sym != NULL)
2287         p->section->set_info_symndx(sym);
2288       else
2289         {
2290           // Force the name of the group section to the group
2291           // signature, and use the group's section symbol as the
2292           // signature symbol.
2293           if (strcmp(p->section->name(), p->signature) != 0)
2294             {
2295               const char* name = this->namepool_.add(p->signature,
2296                                                      true, NULL);
2297               p->section->set_name(name);
2298             }
2299           p->section->set_needs_symtab_index();
2300           p->section->set_info_section_symndx(p->section);
2301         }
2302     }
2303
2304   this->group_signatures_.clear();
2305 }
2306
2307 // Find the first read-only PT_LOAD segment, creating one if
2308 // necessary.
2309
2310 Output_segment*
2311 Layout::find_first_load_seg(const Target* target)
2312 {
2313   Output_segment* best = NULL;
2314   for (Segment_list::const_iterator p = this->segment_list_.begin();
2315        p != this->segment_list_.end();
2316        ++p)
2317     {
2318       if ((*p)->type() == elfcpp::PT_LOAD
2319           && ((*p)->flags() & elfcpp::PF_R) != 0
2320           && (parameters->options().omagic()
2321               || ((*p)->flags() & elfcpp::PF_W) == 0)
2322           && (!target->isolate_execinstr()
2323               || ((*p)->flags() & elfcpp::PF_X) == 0))
2324         {
2325           if (best == NULL || this->segment_precedes(*p, best))
2326             best = *p;
2327         }
2328     }
2329   if (best != NULL)
2330     return best;
2331
2332   gold_assert(!this->script_options_->saw_phdrs_clause());
2333
2334   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2335                                                        elfcpp::PF_R);
2336   return load_seg;
2337 }
2338
2339 // Save states of all current output segments.  Store saved states
2340 // in SEGMENT_STATES.
2341
2342 void
2343 Layout::save_segments(Segment_states* segment_states)
2344 {
2345   for (Segment_list::const_iterator p = this->segment_list_.begin();
2346        p != this->segment_list_.end();
2347        ++p)
2348     {
2349       Output_segment* segment = *p;
2350       // Shallow copy.
2351       Output_segment* copy = new Output_segment(*segment);
2352       (*segment_states)[segment] = copy;
2353     }
2354 }
2355
2356 // Restore states of output segments and delete any segment not found in
2357 // SEGMENT_STATES.
2358
2359 void
2360 Layout::restore_segments(const Segment_states* segment_states)
2361 {
2362   // Go through the segment list and remove any segment added in the
2363   // relaxation loop.
2364   this->tls_segment_ = NULL;
2365   this->relro_segment_ = NULL;
2366   Segment_list::iterator list_iter = this->segment_list_.begin();
2367   while (list_iter != this->segment_list_.end())
2368     {
2369       Output_segment* segment = *list_iter;
2370       Segment_states::const_iterator states_iter =
2371           segment_states->find(segment);
2372       if (states_iter != segment_states->end())
2373         {
2374           const Output_segment* copy = states_iter->second;
2375           // Shallow copy to restore states.
2376           *segment = *copy;
2377
2378           // Also fix up TLS and RELRO segment pointers as appropriate.
2379           if (segment->type() == elfcpp::PT_TLS)
2380             this->tls_segment_ = segment;
2381           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2382             this->relro_segment_ = segment;
2383
2384           ++list_iter;
2385         }
2386       else
2387         {
2388           list_iter = this->segment_list_.erase(list_iter);
2389           // This is a segment created during section layout.  It should be
2390           // safe to remove it since we should have removed all pointers to it.
2391           delete segment;
2392         }
2393     }
2394 }
2395
2396 // Clean up after relaxation so that sections can be laid out again.
2397
2398 void
2399 Layout::clean_up_after_relaxation()
2400 {
2401   // Restore the segments to point state just prior to the relaxation loop.
2402   Script_sections* script_section = this->script_options_->script_sections();
2403   script_section->release_segments();
2404   this->restore_segments(this->segment_states_);
2405
2406   // Reset section addresses and file offsets
2407   for (Section_list::iterator p = this->section_list_.begin();
2408        p != this->section_list_.end();
2409        ++p)
2410     {
2411       (*p)->restore_states();
2412
2413       // If an input section changes size because of relaxation,
2414       // we need to adjust the section offsets of all input sections.
2415       // after such a section.
2416       if ((*p)->section_offsets_need_adjustment())
2417         (*p)->adjust_section_offsets();
2418
2419       (*p)->reset_address_and_file_offset();
2420     }
2421
2422   // Reset special output object address and file offsets.
2423   for (Data_list::iterator p = this->special_output_list_.begin();
2424        p != this->special_output_list_.end();
2425        ++p)
2426     (*p)->reset_address_and_file_offset();
2427
2428   // A linker script may have created some output section data objects.
2429   // They are useless now.
2430   for (Output_section_data_list::const_iterator p =
2431          this->script_output_section_data_list_.begin();
2432        p != this->script_output_section_data_list_.end();
2433        ++p)
2434     delete *p;
2435   this->script_output_section_data_list_.clear();
2436
2437   // Special-case fill output objects are recreated each time through
2438   // the relaxation loop.
2439   this->reset_relax_output();
2440 }
2441
2442 void
2443 Layout::reset_relax_output()
2444 {
2445   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2446        p != this->relax_output_list_.end();
2447        ++p)
2448     delete *p;
2449   this->relax_output_list_.clear();
2450 }
2451
2452 // Prepare for relaxation.
2453
2454 void
2455 Layout::prepare_for_relaxation()
2456 {
2457   // Create an relaxation debug check if in debugging mode.
2458   if (is_debugging_enabled(DEBUG_RELAXATION))
2459     this->relaxation_debug_check_ = new Relaxation_debug_check();
2460
2461   // Save segment states.
2462   this->segment_states_ = new Segment_states();
2463   this->save_segments(this->segment_states_);
2464
2465   for(Section_list::const_iterator p = this->section_list_.begin();
2466       p != this->section_list_.end();
2467       ++p)
2468     (*p)->save_states();
2469
2470   if (is_debugging_enabled(DEBUG_RELAXATION))
2471     this->relaxation_debug_check_->check_output_data_for_reset_values(
2472         this->section_list_, this->special_output_list_,
2473         this->relax_output_list_);
2474
2475   // Also enable recording of output section data from scripts.
2476   this->record_output_section_data_from_script_ = true;
2477 }
2478
2479 // If the user set the address of the text segment, that may not be
2480 // compatible with putting the segment headers and file headers into
2481 // that segment.  For isolate_execinstr() targets, it's the rodata
2482 // segment rather than text where we might put the headers.
2483 static inline bool
2484 load_seg_unusable_for_headers(const Target* target)
2485 {
2486   const General_options& options = parameters->options();
2487   if (target->isolate_execinstr())
2488     return (options.user_set_Trodata_segment()
2489             && options.Trodata_segment() % target->abi_pagesize() != 0);
2490   else
2491     return (options.user_set_Ttext()
2492             && options.Ttext() % target->abi_pagesize() != 0);
2493 }
2494
2495 // Relaxation loop body:  If target has no relaxation, this runs only once
2496 // Otherwise, the target relaxation hook is called at the end of
2497 // each iteration.  If the hook returns true, it means re-layout of
2498 // section is required.
2499 //
2500 // The number of segments created by a linking script without a PHDRS
2501 // clause may be affected by section sizes and alignments.  There is
2502 // a remote chance that relaxation causes different number of PT_LOAD
2503 // segments are created and sections are attached to different segments.
2504 // Therefore, we always throw away all segments created during section
2505 // layout.  In order to be able to restart the section layout, we keep
2506 // a copy of the segment list right before the relaxation loop and use
2507 // that to restore the segments.
2508 //
2509 // PASS is the current relaxation pass number.
2510 // SYMTAB is a symbol table.
2511 // PLOAD_SEG is the address of a pointer for the load segment.
2512 // PHDR_SEG is a pointer to the PHDR segment.
2513 // SEGMENT_HEADERS points to the output segment header.
2514 // FILE_HEADER points to the output file header.
2515 // PSHNDX is the address to store the output section index.
2516
2517 off_t inline
2518 Layout::relaxation_loop_body(
2519     int pass,
2520     Target* target,
2521     Symbol_table* symtab,
2522     Output_segment** pload_seg,
2523     Output_segment* phdr_seg,
2524     Output_segment_headers* segment_headers,
2525     Output_file_header* file_header,
2526     unsigned int* pshndx)
2527 {
2528   // If this is not the first iteration, we need to clean up after
2529   // relaxation so that we can lay out the sections again.
2530   if (pass != 0)
2531     this->clean_up_after_relaxation();
2532
2533   // If there is a SECTIONS clause, put all the input sections into
2534   // the required order.
2535   Output_segment* load_seg;
2536   if (this->script_options_->saw_sections_clause())
2537     load_seg = this->set_section_addresses_from_script(symtab);
2538   else if (parameters->options().relocatable())
2539     load_seg = NULL;
2540   else
2541     load_seg = this->find_first_load_seg(target);
2542
2543   if (parameters->options().oformat_enum()
2544       != General_options::OBJECT_FORMAT_ELF)
2545     load_seg = NULL;
2546
2547   if (load_seg_unusable_for_headers(target))
2548     {
2549       load_seg = NULL;
2550       phdr_seg = NULL;
2551     }
2552
2553   gold_assert(phdr_seg == NULL
2554               || load_seg != NULL
2555               || this->script_options_->saw_sections_clause());
2556
2557   // If the address of the load segment we found has been set by
2558   // --section-start rather than by a script, then adjust the VMA and
2559   // LMA downward if possible to include the file and section headers.
2560   uint64_t header_gap = 0;
2561   if (load_seg != NULL
2562       && load_seg->are_addresses_set()
2563       && !this->script_options_->saw_sections_clause()
2564       && !parameters->options().relocatable())
2565     {
2566       file_header->finalize_data_size();
2567       segment_headers->finalize_data_size();
2568       size_t sizeof_headers = (file_header->data_size()
2569                                + segment_headers->data_size());
2570       const uint64_t abi_pagesize = target->abi_pagesize();
2571       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2572       hdr_paddr &= ~(abi_pagesize - 1);
2573       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2574       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2575         load_seg = NULL;
2576       else
2577         {
2578           load_seg->set_addresses(load_seg->vaddr() - subtract,
2579                                   load_seg->paddr() - subtract);
2580           header_gap = subtract - sizeof_headers;
2581         }
2582     }
2583
2584   // Lay out the segment headers.
2585   if (!parameters->options().relocatable())
2586     {
2587       gold_assert(segment_headers != NULL);
2588       if (header_gap != 0 && load_seg != NULL)
2589         {
2590           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2591           load_seg->add_initial_output_data(z);
2592         }
2593       if (load_seg != NULL)
2594         load_seg->add_initial_output_data(segment_headers);
2595       if (phdr_seg != NULL)
2596         phdr_seg->add_initial_output_data(segment_headers);
2597     }
2598
2599   // Lay out the file header.
2600   if (load_seg != NULL)
2601     load_seg->add_initial_output_data(file_header);
2602
2603   if (this->script_options_->saw_phdrs_clause()
2604       && !parameters->options().relocatable())
2605     {
2606       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2607       // clause in a linker script.
2608       Script_sections* ss = this->script_options_->script_sections();
2609       ss->put_headers_in_phdrs(file_header, segment_headers);
2610     }
2611
2612   // We set the output section indexes in set_segment_offsets and
2613   // set_section_indexes.
2614   *pshndx = 1;
2615
2616   // Set the file offsets of all the segments, and all the sections
2617   // they contain.
2618   off_t off;
2619   if (!parameters->options().relocatable())
2620     off = this->set_segment_offsets(target, load_seg, pshndx);
2621   else
2622     off = this->set_relocatable_section_offsets(file_header, pshndx);
2623
2624    // Verify that the dummy relaxation does not change anything.
2625   if (is_debugging_enabled(DEBUG_RELAXATION))
2626     {
2627       if (pass == 0)
2628         this->relaxation_debug_check_->read_sections(this->section_list_);
2629       else
2630         this->relaxation_debug_check_->verify_sections(this->section_list_);
2631     }
2632
2633   *pload_seg = load_seg;
2634   return off;
2635 }
2636
2637 // Search the list of patterns and find the position of the given section
2638 // name in the output section.  If the section name matches a glob
2639 // pattern and a non-glob name, then the non-glob position takes
2640 // precedence.  Return 0 if no match is found.
2641
2642 unsigned int
2643 Layout::find_section_order_index(const std::string& section_name)
2644 {
2645   Unordered_map<std::string, unsigned int>::iterator map_it;
2646   map_it = this->input_section_position_.find(section_name);
2647   if (map_it != this->input_section_position_.end())
2648     return map_it->second;
2649
2650   // Absolute match failed.  Linear search the glob patterns.
2651   std::vector<std::string>::iterator it;
2652   for (it = this->input_section_glob_.begin();
2653        it != this->input_section_glob_.end();
2654        ++it)
2655     {
2656        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2657          {
2658            map_it = this->input_section_position_.find(*it);
2659            gold_assert(map_it != this->input_section_position_.end());
2660            return map_it->second;
2661          }
2662     }
2663   return 0;
2664 }
2665
2666 // Read the sequence of input sections from the file specified with
2667 // option --section-ordering-file.
2668
2669 void
2670 Layout::read_layout_from_file()
2671 {
2672   const char* filename = parameters->options().section_ordering_file();
2673   std::ifstream in;
2674   std::string line;
2675
2676   in.open(filename);
2677   if (!in)
2678     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2679                filename, strerror(errno));
2680
2681   std::getline(in, line);   // this chops off the trailing \n, if any
2682   unsigned int position = 1;
2683   this->set_section_ordering_specified();
2684
2685   while (in)
2686     {
2687       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2688         line.resize(line.length() - 1);
2689       // Ignore comments, beginning with '#'
2690       if (line[0] == '#')
2691         {
2692           std::getline(in, line);
2693           continue;
2694         }
2695       this->input_section_position_[line] = position;
2696       // Store all glob patterns in a vector.
2697       if (is_wildcard_string(line.c_str()))
2698         this->input_section_glob_.push_back(line);
2699       position++;
2700       std::getline(in, line);
2701     }
2702 }
2703
2704 // Finalize the layout.  When this is called, we have created all the
2705 // output sections and all the output segments which are based on
2706 // input sections.  We have several things to do, and we have to do
2707 // them in the right order, so that we get the right results correctly
2708 // and efficiently.
2709
2710 // 1) Finalize the list of output segments and create the segment
2711 // table header.
2712
2713 // 2) Finalize the dynamic symbol table and associated sections.
2714
2715 // 3) Determine the final file offset of all the output segments.
2716
2717 // 4) Determine the final file offset of all the SHF_ALLOC output
2718 // sections.
2719
2720 // 5) Create the symbol table sections and the section name table
2721 // section.
2722
2723 // 6) Finalize the symbol table: set symbol values to their final
2724 // value and make a final determination of which symbols are going
2725 // into the output symbol table.
2726
2727 // 7) Create the section table header.
2728
2729 // 8) Determine the final file offset of all the output sections which
2730 // are not SHF_ALLOC, including the section table header.
2731
2732 // 9) Finalize the ELF file header.
2733
2734 // This function returns the size of the output file.
2735
2736 off_t
2737 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2738                  Target* target, const Task* task)
2739 {
2740   unsigned int local_dynamic_count = 0;
2741   unsigned int forced_local_dynamic_count = 0;
2742
2743   target->finalize_sections(this, input_objects, symtab);
2744
2745   this->count_local_symbols(task, input_objects);
2746
2747   this->link_stabs_sections();
2748
2749   Output_segment* phdr_seg = NULL;
2750   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2751     {
2752       // There was a dynamic object in the link.  We need to create
2753       // some information for the dynamic linker.
2754
2755       // Create the PT_PHDR segment which will hold the program
2756       // headers.
2757       if (!this->script_options_->saw_phdrs_clause())
2758         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2759
2760       // Create the dynamic symbol table, including the hash table.
2761       Output_section* dynstr;
2762       std::vector<Symbol*> dynamic_symbols;
2763       Versions versions(*this->script_options()->version_script_info(),
2764                         &this->dynpool_);
2765       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2766                                   &local_dynamic_count,
2767                                   &forced_local_dynamic_count,
2768                                   &dynamic_symbols,
2769                                   &versions);
2770
2771       // Create the .interp section to hold the name of the
2772       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2773       // if we saw a .interp section in an input file.
2774       if ((!parameters->options().shared()
2775            || parameters->options().dynamic_linker() != NULL)
2776           && this->interp_segment_ == NULL)
2777         this->create_interp(target);
2778
2779       // Finish the .dynamic section to hold the dynamic data, and put
2780       // it in a PT_DYNAMIC segment.
2781       this->finish_dynamic_section(input_objects, symtab);
2782
2783       // We should have added everything we need to the dynamic string
2784       // table.
2785       this->dynpool_.set_string_offsets();
2786
2787       // Create the version sections.  We can't do this until the
2788       // dynamic string table is complete.
2789       this->create_version_sections(&versions, symtab,
2790                                     (local_dynamic_count
2791                                      + forced_local_dynamic_count),
2792                                     dynamic_symbols, dynstr);
2793
2794       // Set the size of the _DYNAMIC symbol.  We can't do this until
2795       // after we call create_version_sections.
2796       this->set_dynamic_symbol_size(symtab);
2797     }
2798
2799   // Create segment headers.
2800   Output_segment_headers* segment_headers =
2801     (parameters->options().relocatable()
2802      ? NULL
2803      : new Output_segment_headers(this->segment_list_));
2804
2805   // Lay out the file header.
2806   Output_file_header* file_header = new Output_file_header(target, symtab,
2807                                                            segment_headers);
2808
2809   this->special_output_list_.push_back(file_header);
2810   if (segment_headers != NULL)
2811     this->special_output_list_.push_back(segment_headers);
2812
2813   // Find approriate places for orphan output sections if we are using
2814   // a linker script.
2815   if (this->script_options_->saw_sections_clause())
2816     this->place_orphan_sections_in_script();
2817
2818   Output_segment* load_seg;
2819   off_t off;
2820   unsigned int shndx;
2821   int pass = 0;
2822
2823   // Take a snapshot of the section layout as needed.
2824   if (target->may_relax())
2825     this->prepare_for_relaxation();
2826
2827   // Run the relaxation loop to lay out sections.
2828   do
2829     {
2830       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2831                                        phdr_seg, segment_headers, file_header,
2832                                        &shndx);
2833       pass++;
2834     }
2835   while (target->may_relax()
2836          && target->relax(pass, input_objects, symtab, this, task));
2837
2838   // If there is a load segment that contains the file and program headers,
2839   // provide a symbol __ehdr_start pointing there.
2840   // A program can use this to examine itself robustly.
2841   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2842   if (ehdr_start != NULL && ehdr_start->is_predefined())
2843     {
2844       if (load_seg != NULL)
2845         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2846       else
2847         ehdr_start->set_undefined();
2848     }
2849
2850   // Set the file offsets of all the non-data sections we've seen so
2851   // far which don't have to wait for the input sections.  We need
2852   // this in order to finalize local symbols in non-allocated
2853   // sections.
2854   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2855
2856   // Set the section indexes of all unallocated sections seen so far,
2857   // in case any of them are somehow referenced by a symbol.
2858   shndx = this->set_section_indexes(shndx);
2859
2860   // Create the symbol table sections.
2861   this->create_symtab_sections(input_objects, symtab, shndx, &off,
2862                                local_dynamic_count);
2863   if (!parameters->doing_static_link())
2864     this->assign_local_dynsym_offsets(input_objects);
2865
2866   // Process any symbol assignments from a linker script.  This must
2867   // be called after the symbol table has been finalized.
2868   this->script_options_->finalize_symbols(symtab, this);
2869
2870   // Create the incremental inputs sections.
2871   if (this->incremental_inputs_)
2872     {
2873       this->incremental_inputs_->finalize();
2874       this->create_incremental_info_sections(symtab);
2875     }
2876
2877   // Create the .shstrtab section.
2878   Output_section* shstrtab_section = this->create_shstrtab();
2879
2880   // Set the file offsets of the rest of the non-data sections which
2881   // don't have to wait for the input sections.
2882   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2883
2884   // Now that all sections have been created, set the section indexes
2885   // for any sections which haven't been done yet.
2886   shndx = this->set_section_indexes(shndx);
2887
2888   // Create the section table header.
2889   this->create_shdrs(shstrtab_section, &off);
2890
2891   // If there are no sections which require postprocessing, we can
2892   // handle the section names now, and avoid a resize later.
2893   if (!this->any_postprocessing_sections_)
2894     {
2895       off = this->set_section_offsets(off,
2896                                       POSTPROCESSING_SECTIONS_PASS);
2897       off =
2898           this->set_section_offsets(off,
2899                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2900     }
2901
2902   file_header->set_section_info(this->section_headers_, shstrtab_section);
2903
2904   // Now we know exactly where everything goes in the output file
2905   // (except for non-allocated sections which require postprocessing).
2906   Output_data::layout_complete();
2907
2908   this->output_file_size_ = off;
2909
2910   return off;
2911 }
2912
2913 // Create a note header following the format defined in the ELF ABI.
2914 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2915 // of the section to create, DESCSZ is the size of the descriptor.
2916 // ALLOCATE is true if the section should be allocated in memory.
2917 // This returns the new note section.  It sets *TRAILING_PADDING to
2918 // the number of trailing zero bytes required.
2919
2920 Output_section*
2921 Layout::create_note(const char* name, int note_type,
2922                     const char* section_name, size_t descsz,
2923                     bool allocate, size_t* trailing_padding)
2924 {
2925   // Authorities all agree that the values in a .note field should
2926   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2927   // they differ on what the alignment is for 64-bit binaries.
2928   // The GABI says unambiguously they take 8-byte alignment:
2929   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2930   // Other documentation says alignment should always be 4 bytes:
2931   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2932   // GNU ld and GNU readelf both support the latter (at least as of
2933   // version 2.16.91), and glibc always generates the latter for
2934   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2935   // here.
2936 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2937   const int size = parameters->target().get_size();
2938 #else
2939   const int size = 32;
2940 #endif
2941
2942   // The contents of the .note section.
2943   size_t namesz = strlen(name) + 1;
2944   size_t aligned_namesz = align_address(namesz, size / 8);
2945   size_t aligned_descsz = align_address(descsz, size / 8);
2946
2947   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2948
2949   unsigned char* buffer = new unsigned char[notehdrsz];
2950   memset(buffer, 0, notehdrsz);
2951
2952   bool is_big_endian = parameters->target().is_big_endian();
2953
2954   if (size == 32)
2955     {
2956       if (!is_big_endian)
2957         {
2958           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2959           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2960           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2961         }
2962       else
2963         {
2964           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2965           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2966           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2967         }
2968     }
2969   else if (size == 64)
2970     {
2971       if (!is_big_endian)
2972         {
2973           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2974           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2975           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2976         }
2977       else
2978         {
2979           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2980           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2981           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2982         }
2983     }
2984   else
2985     gold_unreachable();
2986
2987   memcpy(buffer + 3 * (size / 8), name, namesz);
2988
2989   elfcpp::Elf_Xword flags = 0;
2990   Output_section_order order = ORDER_INVALID;
2991   if (allocate)
2992     {
2993       flags = elfcpp::SHF_ALLOC;
2994       order = ORDER_RO_NOTE;
2995     }
2996   Output_section* os = this->choose_output_section(NULL, section_name,
2997                                                    elfcpp::SHT_NOTE,
2998                                                    flags, false, order, false,
2999                                                    false, true);
3000   if (os == NULL)
3001     return NULL;
3002
3003   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3004                                                            size / 8,
3005                                                            "** note header");
3006   os->add_output_section_data(posd);
3007
3008   *trailing_padding = aligned_descsz - descsz;
3009
3010   return os;
3011 }
3012
3013 // For an executable or shared library, create a note to record the
3014 // version of gold used to create the binary.
3015
3016 void
3017 Layout::create_gold_note()
3018 {
3019   if (parameters->options().relocatable()
3020       || parameters->incremental_update())
3021     return;
3022
3023   std::string desc = std::string("gold ") + gold::get_version_string();
3024
3025   size_t trailing_padding;
3026   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3027                                          ".note.gnu.gold-version", desc.size(),
3028                                          false, &trailing_padding);
3029   if (os == NULL)
3030     return;
3031
3032   Output_section_data* posd = new Output_data_const(desc, 4);
3033   os->add_output_section_data(posd);
3034
3035   if (trailing_padding > 0)
3036     {
3037       posd = new Output_data_zero_fill(trailing_padding, 0);
3038       os->add_output_section_data(posd);
3039     }
3040 }
3041
3042 // Record whether the stack should be executable.  This can be set
3043 // from the command line using the -z execstack or -z noexecstack
3044 // options.  Otherwise, if any input file has a .note.GNU-stack
3045 // section with the SHF_EXECINSTR flag set, the stack should be
3046 // executable.  Otherwise, if at least one input file a
3047 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3048 // section, we use the target default for whether the stack should be
3049 // executable.  If -z stack-size was used to set a p_memsz value for
3050 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3051 // don't generate a stack note.  When generating a object file, we
3052 // create a .note.GNU-stack section with the appropriate marking.
3053 // When generating an executable or shared library, we create a
3054 // PT_GNU_STACK segment.
3055
3056 void
3057 Layout::create_stack_segment()
3058 {
3059   bool is_stack_executable;
3060   if (parameters->options().is_execstack_set())
3061     {
3062       is_stack_executable = parameters->options().is_stack_executable();
3063       if (!is_stack_executable
3064           && this->input_requires_executable_stack_
3065           && parameters->options().warn_execstack())
3066         gold_warning(_("one or more inputs require executable stack, "
3067                        "but -z noexecstack was given"));
3068     }
3069   else if (!this->input_with_gnu_stack_note_
3070            && (!parameters->options().user_set_stack_size()
3071                || parameters->options().relocatable()))
3072     return;
3073   else
3074     {
3075       if (this->input_requires_executable_stack_)
3076         is_stack_executable = true;
3077       else if (this->input_without_gnu_stack_note_)
3078         is_stack_executable =
3079           parameters->target().is_default_stack_executable();
3080       else
3081         is_stack_executable = false;
3082     }
3083
3084   if (parameters->options().relocatable())
3085     {
3086       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3087       elfcpp::Elf_Xword flags = 0;
3088       if (is_stack_executable)
3089         flags |= elfcpp::SHF_EXECINSTR;
3090       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3091                                 ORDER_INVALID, false);
3092     }
3093   else
3094     {
3095       if (this->script_options_->saw_phdrs_clause())
3096         return;
3097       int flags = elfcpp::PF_R | elfcpp::PF_W;
3098       if (is_stack_executable)
3099         flags |= elfcpp::PF_X;
3100       Output_segment* seg =
3101         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3102       seg->set_size(parameters->options().stack_size());
3103       // BFD lets targets override this default alignment, but the only
3104       // targets that do so are ones that Gold does not support so far.
3105       seg->set_minimum_p_align(16);
3106     }
3107 }
3108
3109 // If --build-id was used, set up the build ID note.
3110
3111 void
3112 Layout::create_build_id()
3113 {
3114   if (!parameters->options().user_set_build_id())
3115     return;
3116
3117   const char* style = parameters->options().build_id();
3118   if (strcmp(style, "none") == 0)
3119     return;
3120
3121   // Set DESCSZ to the size of the note descriptor.  When possible,
3122   // set DESC to the note descriptor contents.
3123   size_t descsz;
3124   std::string desc;
3125   if (strcmp(style, "md5") == 0)
3126     descsz = 128 / 8;
3127   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3128     descsz = 160 / 8;
3129   else if (strcmp(style, "uuid") == 0)
3130     {
3131 #ifndef __MINGW32__
3132       const size_t uuidsz = 128 / 8;
3133
3134       char buffer[uuidsz];
3135       memset(buffer, 0, uuidsz);
3136
3137       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3138       if (descriptor < 0)
3139         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3140                    strerror(errno));
3141       else
3142         {
3143           ssize_t got = ::read(descriptor, buffer, uuidsz);
3144           release_descriptor(descriptor, true);
3145           if (got < 0)
3146             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3147           else if (static_cast<size_t>(got) != uuidsz)
3148             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3149                        uuidsz, got);
3150         }
3151
3152       desc.assign(buffer, uuidsz);
3153       descsz = uuidsz;
3154 #else // __MINGW32__
3155       UUID uuid;
3156       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3157
3158       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3159       if (!rpc_library)
3160         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3161       else
3162         {
3163           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3164               GetProcAddress(rpc_library, "UuidCreate"));
3165           if (!uuid_create)
3166             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3167           else if (uuid_create(&uuid) != RPC_S_OK)
3168             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3169           FreeLibrary(rpc_library);
3170         }
3171       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3172       descsz = sizeof(UUID);
3173 #endif // __MINGW32__
3174     }
3175   else if (strncmp(style, "0x", 2) == 0)
3176     {
3177       hex_init();
3178       const char* p = style + 2;
3179       while (*p != '\0')
3180         {
3181           if (hex_p(p[0]) && hex_p(p[1]))
3182             {
3183               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3184               desc += c;
3185               p += 2;
3186             }
3187           else if (*p == '-' || *p == ':')
3188             ++p;
3189           else
3190             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3191                        style);
3192         }
3193       descsz = desc.size();
3194     }
3195   else
3196     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3197
3198   // Create the note.
3199   size_t trailing_padding;
3200   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3201                                          ".note.gnu.build-id", descsz, true,
3202                                          &trailing_padding);
3203   if (os == NULL)
3204     return;
3205
3206   if (!desc.empty())
3207     {
3208       // We know the value already, so we fill it in now.
3209       gold_assert(desc.size() == descsz);
3210
3211       Output_section_data* posd = new Output_data_const(desc, 4);
3212       os->add_output_section_data(posd);
3213
3214       if (trailing_padding != 0)
3215         {
3216           posd = new Output_data_zero_fill(trailing_padding, 0);
3217           os->add_output_section_data(posd);
3218         }
3219     }
3220   else
3221     {
3222       // We need to compute a checksum after we have completed the
3223       // link.
3224       gold_assert(trailing_padding == 0);
3225       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3226       os->add_output_section_data(this->build_id_note_);
3227     }
3228 }
3229
3230 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3231 // field of the former should point to the latter.  I'm not sure who
3232 // started this, but the GNU linker does it, and some tools depend
3233 // upon it.
3234
3235 void
3236 Layout::link_stabs_sections()
3237 {
3238   if (!this->have_stabstr_section_)
3239     return;
3240
3241   for (Section_list::iterator p = this->section_list_.begin();
3242        p != this->section_list_.end();
3243        ++p)
3244     {
3245       if ((*p)->type() != elfcpp::SHT_STRTAB)
3246         continue;
3247
3248       const char* name = (*p)->name();
3249       if (strncmp(name, ".stab", 5) != 0)
3250         continue;
3251
3252       size_t len = strlen(name);
3253       if (strcmp(name + len - 3, "str") != 0)
3254         continue;
3255
3256       std::string stab_name(name, len - 3);
3257       Output_section* stab_sec;
3258       stab_sec = this->find_output_section(stab_name.c_str());
3259       if (stab_sec != NULL)
3260         stab_sec->set_link_section(*p);
3261     }
3262 }
3263
3264 // Create .gnu_incremental_inputs and related sections needed
3265 // for the next run of incremental linking to check what has changed.
3266
3267 void
3268 Layout::create_incremental_info_sections(Symbol_table* symtab)
3269 {
3270   Incremental_inputs* incr = this->incremental_inputs_;
3271
3272   gold_assert(incr != NULL);
3273
3274   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3275   incr->create_data_sections(symtab);
3276
3277   // Add the .gnu_incremental_inputs section.
3278   const char* incremental_inputs_name =
3279     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3280   Output_section* incremental_inputs_os =
3281     this->make_output_section(incremental_inputs_name,
3282                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3283                               ORDER_INVALID, false);
3284   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3285
3286   // Add the .gnu_incremental_symtab section.
3287   const char* incremental_symtab_name =
3288     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3289   Output_section* incremental_symtab_os =
3290     this->make_output_section(incremental_symtab_name,
3291                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3292                               ORDER_INVALID, false);
3293   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3294   incremental_symtab_os->set_entsize(4);
3295
3296   // Add the .gnu_incremental_relocs section.
3297   const char* incremental_relocs_name =
3298     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3299   Output_section* incremental_relocs_os =
3300     this->make_output_section(incremental_relocs_name,
3301                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3302                               ORDER_INVALID, false);
3303   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3304   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3305
3306   // Add the .gnu_incremental_got_plt section.
3307   const char* incremental_got_plt_name =
3308     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3309   Output_section* incremental_got_plt_os =
3310     this->make_output_section(incremental_got_plt_name,
3311                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3312                               ORDER_INVALID, false);
3313   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3314
3315   // Add the .gnu_incremental_strtab section.
3316   const char* incremental_strtab_name =
3317     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3318   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3319                                                         elfcpp::SHT_STRTAB, 0,
3320                                                         ORDER_INVALID, false);
3321   Output_data_strtab* strtab_data =
3322       new Output_data_strtab(incr->get_stringpool());
3323   incremental_strtab_os->add_output_section_data(strtab_data);
3324
3325   incremental_inputs_os->set_after_input_sections();
3326   incremental_symtab_os->set_after_input_sections();
3327   incremental_relocs_os->set_after_input_sections();
3328   incremental_got_plt_os->set_after_input_sections();
3329
3330   incremental_inputs_os->set_link_section(incremental_strtab_os);
3331   incremental_symtab_os->set_link_section(incremental_inputs_os);
3332   incremental_relocs_os->set_link_section(incremental_inputs_os);
3333   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3334 }
3335
3336 // Return whether SEG1 should be before SEG2 in the output file.  This
3337 // is based entirely on the segment type and flags.  When this is
3338 // called the segment addresses have normally not yet been set.
3339
3340 bool
3341 Layout::segment_precedes(const Output_segment* seg1,
3342                          const Output_segment* seg2)
3343 {
3344   // In order to produce a stable ordering if we're called with the same pointer
3345   // return false.
3346   if (seg1 == seg2)
3347     return false;
3348
3349   elfcpp::Elf_Word type1 = seg1->type();
3350   elfcpp::Elf_Word type2 = seg2->type();
3351
3352   // The single PT_PHDR segment is required to precede any loadable
3353   // segment.  We simply make it always first.
3354   if (type1 == elfcpp::PT_PHDR)
3355     {
3356       gold_assert(type2 != elfcpp::PT_PHDR);
3357       return true;
3358     }
3359   if (type2 == elfcpp::PT_PHDR)
3360     return false;
3361
3362   // The single PT_INTERP segment is required to precede any loadable
3363   // segment.  We simply make it always second.
3364   if (type1 == elfcpp::PT_INTERP)
3365     {
3366       gold_assert(type2 != elfcpp::PT_INTERP);
3367       return true;
3368     }
3369   if (type2 == elfcpp::PT_INTERP)
3370     return false;
3371
3372   // We then put PT_LOAD segments before any other segments.
3373   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3374     return true;
3375   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3376     return false;
3377
3378   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3379   // segment, because that is where the dynamic linker expects to find
3380   // it (this is just for efficiency; other positions would also work
3381   // correctly).
3382   if (type1 == elfcpp::PT_TLS
3383       && type2 != elfcpp::PT_TLS
3384       && type2 != elfcpp::PT_GNU_RELRO)
3385     return false;
3386   if (type2 == elfcpp::PT_TLS
3387       && type1 != elfcpp::PT_TLS
3388       && type1 != elfcpp::PT_GNU_RELRO)
3389     return true;
3390
3391   // We put the PT_GNU_RELRO segment last, because that is where the
3392   // dynamic linker expects to find it (as with PT_TLS, this is just
3393   // for efficiency).
3394   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3395     return false;
3396   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3397     return true;
3398
3399   const elfcpp::Elf_Word flags1 = seg1->flags();
3400   const elfcpp::Elf_Word flags2 = seg2->flags();
3401
3402   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3403   // by the numeric segment type and flags values.  There should not
3404   // be more than one segment with the same type and flags, except
3405   // when a linker script specifies such.
3406   if (type1 != elfcpp::PT_LOAD)
3407     {
3408       if (type1 != type2)
3409         return type1 < type2;
3410       gold_assert(flags1 != flags2
3411                   || this->script_options_->saw_phdrs_clause());
3412       return flags1 < flags2;
3413     }
3414
3415   // If the addresses are set already, sort by load address.
3416   if (seg1->are_addresses_set())
3417     {
3418       if (!seg2->are_addresses_set())
3419         return true;
3420
3421       unsigned int section_count1 = seg1->output_section_count();
3422       unsigned int section_count2 = seg2->output_section_count();
3423       if (section_count1 == 0 && section_count2 > 0)
3424         return true;
3425       if (section_count1 > 0 && section_count2 == 0)
3426         return false;
3427
3428       uint64_t paddr1 = (seg1->are_addresses_set()
3429                          ? seg1->paddr()
3430                          : seg1->first_section_load_address());
3431       uint64_t paddr2 = (seg2->are_addresses_set()
3432                          ? seg2->paddr()
3433                          : seg2->first_section_load_address());
3434
3435       if (paddr1 != paddr2)
3436         return paddr1 < paddr2;
3437     }
3438   else if (seg2->are_addresses_set())
3439     return false;
3440
3441   // A segment which holds large data comes after a segment which does
3442   // not hold large data.
3443   if (seg1->is_large_data_segment())
3444     {
3445       if (!seg2->is_large_data_segment())
3446         return false;
3447     }
3448   else if (seg2->is_large_data_segment())
3449     return true;
3450
3451   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3452   // segments come before writable segments.  Then writable segments
3453   // with data come before writable segments without data.  Then
3454   // executable segments come before non-executable segments.  Then
3455   // the unlikely case of a non-readable segment comes before the
3456   // normal case of a readable segment.  If there are multiple
3457   // segments with the same type and flags, we require that the
3458   // address be set, and we sort by virtual address and then physical
3459   // address.
3460   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3461     return (flags1 & elfcpp::PF_W) == 0;
3462   if ((flags1 & elfcpp::PF_W) != 0
3463       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3464     return seg1->has_any_data_sections();
3465   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3466     return (flags1 & elfcpp::PF_X) != 0;
3467   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3468     return (flags1 & elfcpp::PF_R) == 0;
3469
3470   // We shouldn't get here--we shouldn't create segments which we
3471   // can't distinguish.  Unless of course we are using a weird linker
3472   // script or overlapping --section-start options.  We could also get
3473   // here if plugins want unique segments for subsets of sections.
3474   gold_assert(this->script_options_->saw_phdrs_clause()
3475               || parameters->options().any_section_start()
3476               || this->is_unique_segment_for_sections_specified()
3477               || parameters->options().text_unlikely_segment());
3478   return false;
3479 }
3480
3481 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3482
3483 static off_t
3484 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3485 {
3486   uint64_t unsigned_off = off;
3487   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3488                           | (addr & (abi_pagesize - 1)));
3489   if (aligned_off < unsigned_off)
3490     aligned_off += abi_pagesize;
3491   return aligned_off;
3492 }
3493
3494 // On targets where the text segment contains only executable code,
3495 // a non-executable segment is never the text segment.
3496
3497 static inline bool
3498 is_text_segment(const Target* target, const Output_segment* seg)
3499 {
3500   elfcpp::Elf_Xword flags = seg->flags();
3501   if ((flags & elfcpp::PF_W) != 0)
3502     return false;
3503   if ((flags & elfcpp::PF_X) == 0)
3504     return !target->isolate_execinstr();
3505   return true;
3506 }
3507
3508 // Set the file offsets of all the segments, and all the sections they
3509 // contain.  They have all been created.  LOAD_SEG must be laid out
3510 // first.  Return the offset of the data to follow.
3511
3512 off_t
3513 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3514                             unsigned int* pshndx)
3515 {
3516   // Sort them into the final order.  We use a stable sort so that we
3517   // don't randomize the order of indistinguishable segments created
3518   // by linker scripts.
3519   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3520                    Layout::Compare_segments(this));
3521
3522   // Find the PT_LOAD segments, and set their addresses and offsets
3523   // and their section's addresses and offsets.
3524   uint64_t start_addr;
3525   if (parameters->options().user_set_Ttext())
3526     start_addr = parameters->options().Ttext();
3527   else if (parameters->options().output_is_position_independent())
3528     start_addr = 0;
3529   else
3530     start_addr = target->default_text_segment_address();
3531
3532   uint64_t addr = start_addr;
3533   off_t off = 0;
3534
3535   // If LOAD_SEG is NULL, then the file header and segment headers
3536   // will not be loadable.  But they still need to be at offset 0 in
3537   // the file.  Set their offsets now.
3538   if (load_seg == NULL)
3539     {
3540       for (Data_list::iterator p = this->special_output_list_.begin();
3541            p != this->special_output_list_.end();
3542            ++p)
3543         {
3544           off = align_address(off, (*p)->addralign());
3545           (*p)->set_address_and_file_offset(0, off);
3546           off += (*p)->data_size();
3547         }
3548     }
3549
3550   unsigned int increase_relro = this->increase_relro_;
3551   if (this->script_options_->saw_sections_clause())
3552     increase_relro = 0;
3553
3554   const bool check_sections = parameters->options().check_sections();
3555   Output_segment* last_load_segment = NULL;
3556
3557   unsigned int shndx_begin = *pshndx;
3558   unsigned int shndx_load_seg = *pshndx;
3559
3560   for (Segment_list::iterator p = this->segment_list_.begin();
3561        p != this->segment_list_.end();
3562        ++p)
3563     {
3564       if ((*p)->type() == elfcpp::PT_LOAD)
3565         {
3566           if (target->isolate_execinstr())
3567             {
3568               // When we hit the segment that should contain the
3569               // file headers, reset the file offset so we place
3570               // it and subsequent segments appropriately.
3571               // We'll fix up the preceding segments below.
3572               if (load_seg == *p)
3573                 {
3574                   if (off == 0)
3575                     load_seg = NULL;
3576                   else
3577                     {
3578                       off = 0;
3579                       shndx_load_seg = *pshndx;
3580                     }
3581                 }
3582             }
3583           else
3584             {
3585               // Verify that the file headers fall into the first segment.
3586               if (load_seg != NULL && load_seg != *p)
3587                 gold_unreachable();
3588               load_seg = NULL;
3589             }
3590
3591           bool are_addresses_set = (*p)->are_addresses_set();
3592           if (are_addresses_set)
3593             {
3594               // When it comes to setting file offsets, we care about
3595               // the physical address.
3596               addr = (*p)->paddr();
3597             }
3598           else if (parameters->options().user_set_Ttext()
3599                    && (parameters->options().omagic()
3600                        || is_text_segment(target, *p)))
3601             {
3602               are_addresses_set = true;
3603             }
3604           else if (parameters->options().user_set_Trodata_segment()
3605                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3606             {
3607               addr = parameters->options().Trodata_segment();
3608               are_addresses_set = true;
3609             }
3610           else if (parameters->options().user_set_Tdata()
3611                    && ((*p)->flags() & elfcpp::PF_W) != 0
3612                    && (!parameters->options().user_set_Tbss()
3613                        || (*p)->has_any_data_sections()))
3614             {
3615               addr = parameters->options().Tdata();
3616               are_addresses_set = true;
3617             }
3618           else if (parameters->options().user_set_Tbss()
3619                    && ((*p)->flags() & elfcpp::PF_W) != 0
3620                    && !(*p)->has_any_data_sections())
3621             {
3622               addr = parameters->options().Tbss();
3623               are_addresses_set = true;
3624             }
3625
3626           uint64_t orig_addr = addr;
3627           uint64_t orig_off = off;
3628
3629           uint64_t aligned_addr = 0;
3630           uint64_t abi_pagesize = target->abi_pagesize();
3631           uint64_t common_pagesize = target->common_pagesize();
3632
3633           if (!parameters->options().nmagic()
3634               && !parameters->options().omagic())
3635             (*p)->set_minimum_p_align(abi_pagesize);
3636
3637           if (!are_addresses_set)
3638             {
3639               // Skip the address forward one page, maintaining the same
3640               // position within the page.  This lets us store both segments
3641               // overlapping on a single page in the file, but the loader will
3642               // put them on different pages in memory. We will revisit this
3643               // decision once we know the size of the segment.
3644
3645               uint64_t max_align = (*p)->maximum_alignment();
3646               if (max_align > abi_pagesize)
3647                 addr = align_address(addr, max_align);
3648               aligned_addr = addr;
3649
3650               if (load_seg == *p)
3651                 {
3652                   // This is the segment that will contain the file
3653                   // headers, so its offset will have to be exactly zero.
3654                   gold_assert(orig_off == 0);
3655
3656                   // If the target wants a fixed minimum distance from the
3657                   // text segment to the read-only segment, move up now.
3658                   uint64_t min_addr =
3659                     start_addr + (parameters->options().user_set_rosegment_gap()
3660                                   ? parameters->options().rosegment_gap()
3661                                   : target->rosegment_gap());
3662                   if (addr < min_addr)
3663                     addr = min_addr;
3664
3665                   // But this is not the first segment!  To make its
3666                   // address congruent with its offset, that address better
3667                   // be aligned to the ABI-mandated page size.
3668                   addr = align_address(addr, abi_pagesize);
3669                   aligned_addr = addr;
3670                 }
3671               else
3672                 {
3673                   if ((addr & (abi_pagesize - 1)) != 0)
3674                     addr = addr + abi_pagesize;
3675
3676                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3677                 }
3678             }
3679
3680           if (!parameters->options().nmagic()
3681               && !parameters->options().omagic())
3682             {
3683               // Here we are also taking care of the case when
3684               // the maximum segment alignment is larger than the page size.
3685               off = align_file_offset(off, addr,
3686                                       std::max(abi_pagesize,
3687                                                (*p)->maximum_alignment()));
3688             }
3689           else
3690             {
3691               // This is -N or -n with a section script which prevents
3692               // us from using a load segment.  We need to ensure that
3693               // the file offset is aligned to the alignment of the
3694               // segment.  This is because the linker script
3695               // implicitly assumed a zero offset.  If we don't align
3696               // here, then the alignment of the sections in the
3697               // linker script may not match the alignment of the
3698               // sections in the set_section_addresses call below,
3699               // causing an error about dot moving backward.
3700               off = align_address(off, (*p)->maximum_alignment());
3701             }
3702
3703           unsigned int shndx_hold = *pshndx;
3704           bool has_relro = false;
3705           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3706                                                           false, addr,
3707                                                           &increase_relro,
3708                                                           &has_relro,
3709                                                           &off, pshndx);
3710
3711           // Now that we know the size of this segment, we may be able
3712           // to save a page in memory, at the cost of wasting some
3713           // file space, by instead aligning to the start of a new
3714           // page.  Here we use the real machine page size rather than
3715           // the ABI mandated page size.  If the segment has been
3716           // aligned so that the relro data ends at a page boundary,
3717           // we do not try to realign it.
3718
3719           if (!are_addresses_set
3720               && !has_relro
3721               && aligned_addr != addr
3722               && !parameters->incremental())
3723             {
3724               uint64_t first_off = (common_pagesize
3725                                     - (aligned_addr
3726                                        & (common_pagesize - 1)));
3727               uint64_t last_off = new_addr & (common_pagesize - 1);
3728               if (first_off > 0
3729                   && last_off > 0
3730                   && ((aligned_addr & ~ (common_pagesize - 1))
3731                       != (new_addr & ~ (common_pagesize - 1)))
3732                   && first_off + last_off <= common_pagesize)
3733                 {
3734                   *pshndx = shndx_hold;
3735                   addr = align_address(aligned_addr, common_pagesize);
3736                   addr = align_address(addr, (*p)->maximum_alignment());
3737                   if ((addr & (abi_pagesize - 1)) != 0)
3738                     addr = addr + abi_pagesize;
3739                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3740                   off = align_file_offset(off, addr, abi_pagesize);
3741
3742                   increase_relro = this->increase_relro_;
3743                   if (this->script_options_->saw_sections_clause())
3744                     increase_relro = 0;
3745                   has_relro = false;
3746
3747                   new_addr = (*p)->set_section_addresses(target, this,
3748                                                          true, addr,
3749                                                          &increase_relro,
3750                                                          &has_relro,
3751                                                          &off, pshndx);
3752                 }
3753             }
3754
3755           addr = new_addr;
3756
3757           // Implement --check-sections.  We know that the segments
3758           // are sorted by LMA.
3759           if (check_sections && last_load_segment != NULL)
3760             {
3761               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3762               if (last_load_segment->paddr() + last_load_segment->memsz()
3763                   > (*p)->paddr())
3764                 {
3765                   unsigned long long lb1 = last_load_segment->paddr();
3766                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3767                   unsigned long long lb2 = (*p)->paddr();
3768                   unsigned long long le2 = lb2 + (*p)->memsz();
3769                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3770                                "[0x%llx -> 0x%llx]"),
3771                              lb1, le1, lb2, le2);
3772                 }
3773             }
3774           last_load_segment = *p;
3775         }
3776     }
3777
3778   if (load_seg != NULL && target->isolate_execinstr())
3779     {
3780       // Process the early segments again, setting their file offsets
3781       // so they land after the segments starting at LOAD_SEG.
3782       off = align_file_offset(off, 0, target->abi_pagesize());
3783
3784       this->reset_relax_output();
3785
3786       for (Segment_list::iterator p = this->segment_list_.begin();
3787            *p != load_seg;
3788            ++p)
3789         {
3790           if ((*p)->type() == elfcpp::PT_LOAD)
3791             {
3792               // We repeat the whole job of assigning addresses and
3793               // offsets, but we really only want to change the offsets and
3794               // must ensure that the addresses all come out the same as
3795               // they did the first time through.
3796               bool has_relro = false;
3797               const uint64_t old_addr = (*p)->vaddr();
3798               const uint64_t old_end = old_addr + (*p)->memsz();
3799               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3800                                                               true, old_addr,
3801                                                               &increase_relro,
3802                                                               &has_relro,
3803                                                               &off,
3804                                                               &shndx_begin);
3805               gold_assert(new_addr == old_end);
3806             }
3807         }
3808
3809       gold_assert(shndx_begin == shndx_load_seg);
3810     }
3811
3812   // Handle the non-PT_LOAD segments, setting their offsets from their
3813   // section's offsets.
3814   for (Segment_list::iterator p = this->segment_list_.begin();
3815        p != this->segment_list_.end();
3816        ++p)
3817     {
3818       // PT_GNU_STACK was set up correctly when it was created.
3819       if ((*p)->type() != elfcpp::PT_LOAD
3820           && (*p)->type() != elfcpp::PT_GNU_STACK)
3821         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3822                          ? increase_relro
3823                          : 0);
3824     }
3825
3826   // Set the TLS offsets for each section in the PT_TLS segment.
3827   if (this->tls_segment_ != NULL)
3828     this->tls_segment_->set_tls_offsets();
3829
3830   return off;
3831 }
3832
3833 // Set the offsets of all the allocated sections when doing a
3834 // relocatable link.  This does the same jobs as set_segment_offsets,
3835 // only for a relocatable link.
3836
3837 off_t
3838 Layout::set_relocatable_section_offsets(Output_data* file_header,
3839                                         unsigned int* pshndx)
3840 {
3841   off_t off = 0;
3842
3843   file_header->set_address_and_file_offset(0, 0);
3844   off += file_header->data_size();
3845
3846   for (Section_list::iterator p = this->section_list_.begin();
3847        p != this->section_list_.end();
3848        ++p)
3849     {
3850       // We skip unallocated sections here, except that group sections
3851       // have to come first.
3852       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3853           && (*p)->type() != elfcpp::SHT_GROUP)
3854         continue;
3855
3856       off = align_address(off, (*p)->addralign());
3857
3858       // The linker script might have set the address.
3859       if (!(*p)->is_address_valid())
3860         (*p)->set_address(0);
3861       (*p)->set_file_offset(off);
3862       (*p)->finalize_data_size();
3863       if ((*p)->type() != elfcpp::SHT_NOBITS)
3864         off += (*p)->data_size();
3865
3866       (*p)->set_out_shndx(*pshndx);
3867       ++*pshndx;
3868     }
3869
3870   return off;
3871 }
3872
3873 // Set the file offset of all the sections not associated with a
3874 // segment.
3875
3876 off_t
3877 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3878 {
3879   off_t startoff = off;
3880   off_t maxoff = off;
3881
3882   for (Section_list::iterator p = this->unattached_section_list_.begin();
3883        p != this->unattached_section_list_.end();
3884        ++p)
3885     {
3886       // The symtab section is handled in create_symtab_sections.
3887       if (*p == this->symtab_section_)
3888         continue;
3889
3890       // If we've already set the data size, don't set it again.
3891       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3892         continue;
3893
3894       if (pass == BEFORE_INPUT_SECTIONS_PASS
3895           && (*p)->requires_postprocessing())
3896         {
3897           (*p)->create_postprocessing_buffer();
3898           this->any_postprocessing_sections_ = true;
3899         }
3900
3901       if (pass == BEFORE_INPUT_SECTIONS_PASS
3902           && (*p)->after_input_sections())
3903         continue;
3904       else if (pass == POSTPROCESSING_SECTIONS_PASS
3905                && (!(*p)->after_input_sections()
3906                    || (*p)->type() == elfcpp::SHT_STRTAB))
3907         continue;
3908       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3909                && (!(*p)->after_input_sections()
3910                    || (*p)->type() != elfcpp::SHT_STRTAB))
3911         continue;
3912
3913       if (!parameters->incremental_update())
3914         {
3915           off = align_address(off, (*p)->addralign());
3916           (*p)->set_file_offset(off);
3917           (*p)->finalize_data_size();
3918         }
3919       else
3920         {
3921           // Incremental update: allocate file space from free list.
3922           (*p)->pre_finalize_data_size();
3923           off_t current_size = (*p)->current_data_size();
3924           off = this->allocate(current_size, (*p)->addralign(), startoff);
3925           if (off == -1)
3926             {
3927               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3928                 this->free_list_.dump();
3929               gold_assert((*p)->output_section() != NULL);
3930               gold_fallback(_("out of patch space for section %s; "
3931                               "relink with --incremental-full"),
3932                             (*p)->output_section()->name());
3933             }
3934           (*p)->set_file_offset(off);
3935           (*p)->finalize_data_size();
3936           if ((*p)->data_size() > current_size)
3937             {
3938               gold_assert((*p)->output_section() != NULL);
3939               gold_fallback(_("%s: section changed size; "
3940                               "relink with --incremental-full"),
3941                             (*p)->output_section()->name());
3942             }
3943           gold_debug(DEBUG_INCREMENTAL,
3944                      "set_section_offsets: %08lx %08lx %s",
3945                      static_cast<long>(off),
3946                      static_cast<long>((*p)->data_size()),
3947                      ((*p)->output_section() != NULL
3948                       ? (*p)->output_section()->name() : "(special)"));
3949         }
3950
3951       off += (*p)->data_size();
3952       if (off > maxoff)
3953         maxoff = off;
3954
3955       // At this point the name must be set.
3956       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3957         this->namepool_.add((*p)->name(), false, NULL);
3958     }
3959   return maxoff;
3960 }
3961
3962 // Set the section indexes of all the sections not associated with a
3963 // segment.
3964
3965 unsigned int
3966 Layout::set_section_indexes(unsigned int shndx)
3967 {
3968   for (Section_list::iterator p = this->unattached_section_list_.begin();
3969        p != this->unattached_section_list_.end();
3970        ++p)
3971     {
3972       if (!(*p)->has_out_shndx())
3973         {
3974           (*p)->set_out_shndx(shndx);
3975           ++shndx;
3976         }
3977     }
3978   return shndx;
3979 }
3980
3981 // Set the section addresses according to the linker script.  This is
3982 // only called when we see a SECTIONS clause.  This returns the
3983 // program segment which should hold the file header and segment
3984 // headers, if any.  It will return NULL if they should not be in a
3985 // segment.
3986
3987 Output_segment*
3988 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3989 {
3990   Script_sections* ss = this->script_options_->script_sections();
3991   gold_assert(ss->saw_sections_clause());
3992   return this->script_options_->set_section_addresses(symtab, this);
3993 }
3994
3995 // Place the orphan sections in the linker script.
3996
3997 void
3998 Layout::place_orphan_sections_in_script()
3999 {
4000   Script_sections* ss = this->script_options_->script_sections();
4001   gold_assert(ss->saw_sections_clause());
4002
4003   // Place each orphaned output section in the script.
4004   for (Section_list::iterator p = this->section_list_.begin();
4005        p != this->section_list_.end();
4006        ++p)
4007     {
4008       if (!(*p)->found_in_sections_clause())
4009         ss->place_orphan(*p);
4010     }
4011 }
4012
4013 // Count the local symbols in the regular symbol table and the dynamic
4014 // symbol table, and build the respective string pools.
4015
4016 void
4017 Layout::count_local_symbols(const Task* task,
4018                             const Input_objects* input_objects)
4019 {
4020   // First, figure out an upper bound on the number of symbols we'll
4021   // be inserting into each pool.  This helps us create the pools with
4022   // the right size, to avoid unnecessary hashtable resizing.
4023   unsigned int symbol_count = 0;
4024   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4025        p != input_objects->relobj_end();
4026        ++p)
4027     symbol_count += (*p)->local_symbol_count();
4028
4029   // Go from "upper bound" to "estimate."  We overcount for two
4030   // reasons: we double-count symbols that occur in more than one
4031   // object file, and we count symbols that are dropped from the
4032   // output.  Add it all together and assume we overcount by 100%.
4033   symbol_count /= 2;
4034
4035   // We assume all symbols will go into both the sympool and dynpool.
4036   this->sympool_.reserve(symbol_count);
4037   this->dynpool_.reserve(symbol_count);
4038
4039   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4040        p != input_objects->relobj_end();
4041        ++p)
4042     {
4043       Task_lock_obj<Object> tlo(task, *p);
4044       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4045     }
4046 }
4047
4048 // Create the symbol table sections.  Here we also set the final
4049 // values of the symbols.  At this point all the loadable sections are
4050 // fully laid out.  SHNUM is the number of sections so far.
4051
4052 void
4053 Layout::create_symtab_sections(const Input_objects* input_objects,
4054                                Symbol_table* symtab,
4055                                unsigned int shnum,
4056                                off_t* poff,
4057                                unsigned int local_dynamic_count)
4058 {
4059   int symsize;
4060   unsigned int align;
4061   if (parameters->target().get_size() == 32)
4062     {
4063       symsize = elfcpp::Elf_sizes<32>::sym_size;
4064       align = 4;
4065     }
4066   else if (parameters->target().get_size() == 64)
4067     {
4068       symsize = elfcpp::Elf_sizes<64>::sym_size;
4069       align = 8;
4070     }
4071   else
4072     gold_unreachable();
4073
4074   // Compute file offsets relative to the start of the symtab section.
4075   off_t off = 0;
4076
4077   // Save space for the dummy symbol at the start of the section.  We
4078   // never bother to write this out--it will just be left as zero.
4079   off += symsize;
4080   unsigned int local_symbol_index = 1;
4081
4082   // Add STT_SECTION symbols for each Output section which needs one.
4083   for (Section_list::iterator p = this->section_list_.begin();
4084        p != this->section_list_.end();
4085        ++p)
4086     {
4087       if (!(*p)->needs_symtab_index())
4088         (*p)->set_symtab_index(-1U);
4089       else
4090         {
4091           (*p)->set_symtab_index(local_symbol_index);
4092           ++local_symbol_index;
4093           off += symsize;
4094         }
4095     }
4096
4097   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4098        p != input_objects->relobj_end();
4099        ++p)
4100     {
4101       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4102                                                         off, symtab);
4103       off += (index - local_symbol_index) * symsize;
4104       local_symbol_index = index;
4105     }
4106
4107   unsigned int local_symcount = local_symbol_index;
4108   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4109
4110   off_t dynoff;
4111   size_t dyncount;
4112   if (this->dynsym_section_ == NULL)
4113     {
4114       dynoff = 0;
4115       dyncount = 0;
4116     }
4117   else
4118     {
4119       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4120       dynoff = this->dynsym_section_->offset() + locsize;
4121       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4122       gold_assert(static_cast<off_t>(dyncount * symsize)
4123                   == this->dynsym_section_->data_size() - locsize);
4124     }
4125
4126   off_t global_off = off;
4127   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4128                          &this->sympool_, &local_symcount);
4129
4130   if (!parameters->options().strip_all())
4131     {
4132       this->sympool_.set_string_offsets();
4133
4134       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4135       Output_section* osymtab = this->make_output_section(symtab_name,
4136                                                           elfcpp::SHT_SYMTAB,
4137                                                           0, ORDER_INVALID,
4138                                                           false);
4139       this->symtab_section_ = osymtab;
4140
4141       Output_section_data* pos = new Output_data_fixed_space(off, align,
4142                                                              "** symtab");
4143       osymtab->add_output_section_data(pos);
4144
4145       // We generate a .symtab_shndx section if we have more than
4146       // SHN_LORESERVE sections.  Technically it is possible that we
4147       // don't need one, because it is possible that there are no
4148       // symbols in any of sections with indexes larger than
4149       // SHN_LORESERVE.  That is probably unusual, though, and it is
4150       // easier to always create one than to compute section indexes
4151       // twice (once here, once when writing out the symbols).
4152       if (shnum >= elfcpp::SHN_LORESERVE)
4153         {
4154           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4155                                                                false, NULL);
4156           Output_section* osymtab_xindex =
4157             this->make_output_section(symtab_xindex_name,
4158                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4159                                       ORDER_INVALID, false);
4160
4161           size_t symcount = off / symsize;
4162           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4163
4164           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4165
4166           osymtab_xindex->set_link_section(osymtab);
4167           osymtab_xindex->set_addralign(4);
4168           osymtab_xindex->set_entsize(4);
4169
4170           osymtab_xindex->set_after_input_sections();
4171
4172           // This tells the driver code to wait until the symbol table
4173           // has written out before writing out the postprocessing
4174           // sections, including the .symtab_shndx section.
4175           this->any_postprocessing_sections_ = true;
4176         }
4177
4178       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4179       Output_section* ostrtab = this->make_output_section(strtab_name,
4180                                                           elfcpp::SHT_STRTAB,
4181                                                           0, ORDER_INVALID,
4182                                                           false);
4183
4184       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4185       ostrtab->add_output_section_data(pstr);
4186
4187       off_t symtab_off;
4188       if (!parameters->incremental_update())
4189         symtab_off = align_address(*poff, align);
4190       else
4191         {
4192           symtab_off = this->allocate(off, align, *poff);
4193           if (off == -1)
4194             gold_fallback(_("out of patch space for symbol table; "
4195                             "relink with --incremental-full"));
4196           gold_debug(DEBUG_INCREMENTAL,
4197                      "create_symtab_sections: %08lx %08lx .symtab",
4198                      static_cast<long>(symtab_off),
4199                      static_cast<long>(off));
4200         }
4201
4202       symtab->set_file_offset(symtab_off + global_off);
4203       osymtab->set_file_offset(symtab_off);
4204       osymtab->finalize_data_size();
4205       osymtab->set_link_section(ostrtab);
4206       osymtab->set_info(local_symcount);
4207       osymtab->set_entsize(symsize);
4208
4209       if (symtab_off + off > *poff)
4210         *poff = symtab_off + off;
4211     }
4212 }
4213
4214 // Create the .shstrtab section, which holds the names of the
4215 // sections.  At the time this is called, we have created all the
4216 // output sections except .shstrtab itself.
4217
4218 Output_section*
4219 Layout::create_shstrtab()
4220 {
4221   // FIXME: We don't need to create a .shstrtab section if we are
4222   // stripping everything.
4223
4224   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4225
4226   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4227                                                  ORDER_INVALID, false);
4228
4229   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4230     {
4231       // We can't write out this section until we've set all the
4232       // section names, and we don't set the names of compressed
4233       // output sections until relocations are complete.  FIXME: With
4234       // the current names we use, this is unnecessary.
4235       os->set_after_input_sections();
4236     }
4237
4238   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4239   os->add_output_section_data(posd);
4240
4241   return os;
4242 }
4243
4244 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4245 // offset.
4246
4247 void
4248 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4249 {
4250   Output_section_headers* oshdrs;
4251   oshdrs = new Output_section_headers(this,
4252                                       &this->segment_list_,
4253                                       &this->section_list_,
4254                                       &this->unattached_section_list_,
4255                                       &this->namepool_,
4256                                       shstrtab_section);
4257   off_t off;
4258   if (!parameters->incremental_update())
4259     off = align_address(*poff, oshdrs->addralign());
4260   else
4261     {
4262       oshdrs->pre_finalize_data_size();
4263       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4264       if (off == -1)
4265           gold_fallback(_("out of patch space for section header table; "
4266                           "relink with --incremental-full"));
4267       gold_debug(DEBUG_INCREMENTAL,
4268                  "create_shdrs: %08lx %08lx (section header table)",
4269                  static_cast<long>(off),
4270                  static_cast<long>(off + oshdrs->data_size()));
4271     }
4272   oshdrs->set_address_and_file_offset(0, off);
4273   off += oshdrs->data_size();
4274   if (off > *poff)
4275     *poff = off;
4276   this->section_headers_ = oshdrs;
4277 }
4278
4279 // Count the allocated sections.
4280
4281 size_t
4282 Layout::allocated_output_section_count() const
4283 {
4284   size_t section_count = 0;
4285   for (Segment_list::const_iterator p = this->segment_list_.begin();
4286        p != this->segment_list_.end();
4287        ++p)
4288     section_count += (*p)->output_section_count();
4289   return section_count;
4290 }
4291
4292 // Create the dynamic symbol table.
4293 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4294 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4295 // to the number of global symbols that have been forced local.
4296 // We need to remember the former because the forced-local symbols are
4297 // written along with the global symbols in Symtab::write_globals().
4298
4299 void
4300 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4301                               Symbol_table* symtab,
4302                               Output_section** pdynstr,
4303                               unsigned int* plocal_dynamic_count,
4304                               unsigned int* pforced_local_dynamic_count,
4305                               std::vector<Symbol*>* pdynamic_symbols,
4306                               Versions* pversions)
4307 {
4308   // Count all the symbols in the dynamic symbol table, and set the
4309   // dynamic symbol indexes.
4310
4311   // Skip symbol 0, which is always all zeroes.
4312   unsigned int index = 1;
4313
4314   // Add STT_SECTION symbols for each Output section which needs one.
4315   for (Section_list::iterator p = this->section_list_.begin();
4316        p != this->section_list_.end();
4317        ++p)
4318     {
4319       if (!(*p)->needs_dynsym_index())
4320         (*p)->set_dynsym_index(-1U);
4321       else
4322         {
4323           (*p)->set_dynsym_index(index);
4324           ++index;
4325         }
4326     }
4327
4328   // Count the local symbols that need to go in the dynamic symbol table,
4329   // and set the dynamic symbol indexes.
4330   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4331        p != input_objects->relobj_end();
4332        ++p)
4333     {
4334       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4335       index = new_index;
4336     }
4337
4338   unsigned int local_symcount = index;
4339   unsigned int forced_local_count = 0;
4340
4341   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4342                                      pdynamic_symbols, &this->dynpool_,
4343                                      pversions);
4344
4345   *plocal_dynamic_count = local_symcount;
4346   *pforced_local_dynamic_count = forced_local_count;
4347
4348   int symsize;
4349   unsigned int align;
4350   const int size = parameters->target().get_size();
4351   if (size == 32)
4352     {
4353       symsize = elfcpp::Elf_sizes<32>::sym_size;
4354       align = 4;
4355     }
4356   else if (size == 64)
4357     {
4358       symsize = elfcpp::Elf_sizes<64>::sym_size;
4359       align = 8;
4360     }
4361   else
4362     gold_unreachable();
4363
4364   // Create the dynamic symbol table section.
4365
4366   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4367                                                        elfcpp::SHT_DYNSYM,
4368                                                        elfcpp::SHF_ALLOC,
4369                                                        false,
4370                                                        ORDER_DYNAMIC_LINKER,
4371                                                        false, false, false);
4372
4373   // Check for NULL as a linker script may discard .dynsym.
4374   if (dynsym != NULL)
4375     {
4376       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4377                                                                align,
4378                                                                "** dynsym");
4379       dynsym->add_output_section_data(odata);
4380
4381       dynsym->set_info(local_symcount + forced_local_count);
4382       dynsym->set_entsize(symsize);
4383       dynsym->set_addralign(align);
4384
4385       this->dynsym_section_ = dynsym;
4386     }
4387
4388   Output_data_dynamic* const odyn = this->dynamic_data_;
4389   if (odyn != NULL)
4390     {
4391       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4392       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4393     }
4394
4395   // If there are more than SHN_LORESERVE allocated sections, we
4396   // create a .dynsym_shndx section.  It is possible that we don't
4397   // need one, because it is possible that there are no dynamic
4398   // symbols in any of the sections with indexes larger than
4399   // SHN_LORESERVE.  This is probably unusual, though, and at this
4400   // time we don't know the actual section indexes so it is
4401   // inconvenient to check.
4402   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4403     {
4404       Output_section* dynsym_xindex =
4405         this->choose_output_section(NULL, ".dynsym_shndx",
4406                                     elfcpp::SHT_SYMTAB_SHNDX,
4407                                     elfcpp::SHF_ALLOC,
4408                                     false, ORDER_DYNAMIC_LINKER, false, false,
4409                                     false);
4410
4411       if (dynsym_xindex != NULL)
4412         {
4413           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4414
4415           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4416
4417           dynsym_xindex->set_link_section(dynsym);
4418           dynsym_xindex->set_addralign(4);
4419           dynsym_xindex->set_entsize(4);
4420
4421           dynsym_xindex->set_after_input_sections();
4422
4423           // This tells the driver code to wait until the symbol table
4424           // has written out before writing out the postprocessing
4425           // sections, including the .dynsym_shndx section.
4426           this->any_postprocessing_sections_ = true;
4427         }
4428     }
4429
4430   // Create the dynamic string table section.
4431
4432   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4433                                                        elfcpp::SHT_STRTAB,
4434                                                        elfcpp::SHF_ALLOC,
4435                                                        false,
4436                                                        ORDER_DYNAMIC_LINKER,
4437                                                        false, false, false);
4438   *pdynstr = dynstr;
4439   if (dynstr != NULL)
4440     {
4441       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4442       dynstr->add_output_section_data(strdata);
4443
4444       if (dynsym != NULL)
4445         dynsym->set_link_section(dynstr);
4446       if (this->dynamic_section_ != NULL)
4447         this->dynamic_section_->set_link_section(dynstr);
4448
4449       if (odyn != NULL)
4450         {
4451           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4452           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4453         }
4454     }
4455
4456   // Create the hash tables.  The Gnu-style hash table must be
4457   // built first, because it changes the order of the symbols
4458   // in the dynamic symbol table.
4459
4460   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4461       || strcmp(parameters->options().hash_style(), "both") == 0)
4462     {
4463       unsigned char* phash;
4464       unsigned int hashlen;
4465       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4466                                     local_symcount + forced_local_count,
4467                                     &phash, &hashlen);
4468
4469       Output_section* hashsec =
4470         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4471                                     elfcpp::SHF_ALLOC, false,
4472                                     ORDER_DYNAMIC_LINKER, false, false,
4473                                     false);
4474
4475       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4476                                                                    hashlen,
4477                                                                    align,
4478                                                                    "** hash");
4479       if (hashsec != NULL && hashdata != NULL)
4480         hashsec->add_output_section_data(hashdata);
4481
4482       if (hashsec != NULL)
4483         {
4484           if (dynsym != NULL)
4485             hashsec->set_link_section(dynsym);
4486
4487           // For a 64-bit target, the entries in .gnu.hash do not have
4488           // a uniform size, so we only set the entry size for a
4489           // 32-bit target.
4490           if (parameters->target().get_size() == 32)
4491             hashsec->set_entsize(4);
4492
4493           if (odyn != NULL)
4494             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4495         }
4496     }
4497
4498   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4499       || strcmp(parameters->options().hash_style(), "both") == 0)
4500     {
4501       unsigned char* phash;
4502       unsigned int hashlen;
4503       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4504                                     local_symcount + forced_local_count,
4505                                     &phash, &hashlen);
4506
4507       Output_section* hashsec =
4508         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4509                                     elfcpp::SHF_ALLOC, false,
4510                                     ORDER_DYNAMIC_LINKER, false, false,
4511                                     false);
4512
4513       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4514                                                                    hashlen,
4515                                                                    align,
4516                                                                    "** hash");
4517       if (hashsec != NULL && hashdata != NULL)
4518         hashsec->add_output_section_data(hashdata);
4519
4520       if (hashsec != NULL)
4521         {
4522           if (dynsym != NULL)
4523             hashsec->set_link_section(dynsym);
4524           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4525         }
4526
4527       if (odyn != NULL)
4528         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4529     }
4530 }
4531
4532 // Assign offsets to each local portion of the dynamic symbol table.
4533
4534 void
4535 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4536 {
4537   Output_section* dynsym = this->dynsym_section_;
4538   if (dynsym == NULL)
4539     return;
4540
4541   off_t off = dynsym->offset();
4542
4543   // Skip the dummy symbol at the start of the section.
4544   off += dynsym->entsize();
4545
4546   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4547        p != input_objects->relobj_end();
4548        ++p)
4549     {
4550       unsigned int count = (*p)->set_local_dynsym_offset(off);
4551       off += count * dynsym->entsize();
4552     }
4553 }
4554
4555 // Create the version sections.
4556
4557 void
4558 Layout::create_version_sections(const Versions* versions,
4559                                 const Symbol_table* symtab,
4560                                 unsigned int local_symcount,
4561                                 const std::vector<Symbol*>& dynamic_symbols,
4562                                 const Output_section* dynstr)
4563 {
4564   if (!versions->any_defs() && !versions->any_needs())
4565     return;
4566
4567   switch (parameters->size_and_endianness())
4568     {
4569 #ifdef HAVE_TARGET_32_LITTLE
4570     case Parameters::TARGET_32_LITTLE:
4571       this->sized_create_version_sections<32, false>(versions, symtab,
4572                                                      local_symcount,
4573                                                      dynamic_symbols, dynstr);
4574       break;
4575 #endif
4576 #ifdef HAVE_TARGET_32_BIG
4577     case Parameters::TARGET_32_BIG:
4578       this->sized_create_version_sections<32, true>(versions, symtab,
4579                                                     local_symcount,
4580                                                     dynamic_symbols, dynstr);
4581       break;
4582 #endif
4583 #ifdef HAVE_TARGET_64_LITTLE
4584     case Parameters::TARGET_64_LITTLE:
4585       this->sized_create_version_sections<64, false>(versions, symtab,
4586                                                      local_symcount,
4587                                                      dynamic_symbols, dynstr);
4588       break;
4589 #endif
4590 #ifdef HAVE_TARGET_64_BIG
4591     case Parameters::TARGET_64_BIG:
4592       this->sized_create_version_sections<64, true>(versions, symtab,
4593                                                     local_symcount,
4594                                                     dynamic_symbols, dynstr);
4595       break;
4596 #endif
4597     default:
4598       gold_unreachable();
4599     }
4600 }
4601
4602 // Create the version sections, sized version.
4603
4604 template<int size, bool big_endian>
4605 void
4606 Layout::sized_create_version_sections(
4607     const Versions* versions,
4608     const Symbol_table* symtab,
4609     unsigned int local_symcount,
4610     const std::vector<Symbol*>& dynamic_symbols,
4611     const Output_section* dynstr)
4612 {
4613   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4614                                                      elfcpp::SHT_GNU_versym,
4615                                                      elfcpp::SHF_ALLOC,
4616                                                      false,
4617                                                      ORDER_DYNAMIC_LINKER,
4618                                                      false, false, false);
4619
4620   // Check for NULL since a linker script may discard this section.
4621   if (vsec != NULL)
4622     {
4623       unsigned char* vbuf;
4624       unsigned int vsize;
4625       versions->symbol_section_contents<size, big_endian>(symtab,
4626                                                           &this->dynpool_,
4627                                                           local_symcount,
4628                                                           dynamic_symbols,
4629                                                           &vbuf, &vsize);
4630
4631       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4632                                                                 "** versions");
4633
4634       vsec->add_output_section_data(vdata);
4635       vsec->set_entsize(2);
4636       vsec->set_link_section(this->dynsym_section_);
4637     }
4638
4639   Output_data_dynamic* const odyn = this->dynamic_data_;
4640   if (odyn != NULL && vsec != NULL)
4641     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4642
4643   if (versions->any_defs())
4644     {
4645       Output_section* vdsec;
4646       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4647                                           elfcpp::SHT_GNU_verdef,
4648                                           elfcpp::SHF_ALLOC,
4649                                           false, ORDER_DYNAMIC_LINKER, false,
4650                                           false, false);
4651
4652       if (vdsec != NULL)
4653         {
4654           unsigned char* vdbuf;
4655           unsigned int vdsize;
4656           unsigned int vdentries;
4657           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4658                                                            &vdbuf, &vdsize,
4659                                                            &vdentries);
4660
4661           Output_section_data* vddata =
4662             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4663
4664           vdsec->add_output_section_data(vddata);
4665           vdsec->set_link_section(dynstr);
4666           vdsec->set_info(vdentries);
4667
4668           if (odyn != NULL)
4669             {
4670               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4671               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4672             }
4673         }
4674     }
4675
4676   if (versions->any_needs())
4677     {
4678       Output_section* vnsec;
4679       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4680                                           elfcpp::SHT_GNU_verneed,
4681                                           elfcpp::SHF_ALLOC,
4682                                           false, ORDER_DYNAMIC_LINKER, false,
4683                                           false, false);
4684
4685       if (vnsec != NULL)
4686         {
4687           unsigned char* vnbuf;
4688           unsigned int vnsize;
4689           unsigned int vnentries;
4690           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4691                                                             &vnbuf, &vnsize,
4692                                                             &vnentries);
4693
4694           Output_section_data* vndata =
4695             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4696
4697           vnsec->add_output_section_data(vndata);
4698           vnsec->set_link_section(dynstr);
4699           vnsec->set_info(vnentries);
4700
4701           if (odyn != NULL)
4702             {
4703               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4704               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4705             }
4706         }
4707     }
4708 }
4709
4710 // Create the .interp section and PT_INTERP segment.
4711
4712 void
4713 Layout::create_interp(const Target* target)
4714 {
4715   gold_assert(this->interp_segment_ == NULL);
4716
4717   const char* interp = parameters->options().dynamic_linker();
4718   if (interp == NULL)
4719     {
4720       interp = target->dynamic_linker();
4721       gold_assert(interp != NULL);
4722     }
4723
4724   size_t len = strlen(interp) + 1;
4725
4726   Output_section_data* odata = new Output_data_const(interp, len, 1);
4727
4728   Output_section* osec = this->choose_output_section(NULL, ".interp",
4729                                                      elfcpp::SHT_PROGBITS,
4730                                                      elfcpp::SHF_ALLOC,
4731                                                      false, ORDER_INTERP,
4732                                                      false, false, false);
4733   if (osec != NULL)
4734     osec->add_output_section_data(odata);
4735 }
4736
4737 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4738 // called by the target-specific code.  This does nothing if not doing
4739 // a dynamic link.
4740
4741 // USE_REL is true for REL relocs rather than RELA relocs.
4742
4743 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4744
4745 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4746 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4747 // some targets have multiple reloc sections in PLT_REL.
4748
4749 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4750 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4751 // section.
4752
4753 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4754 // executable.
4755
4756 void
4757 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4758                                 const Output_data* plt_rel,
4759                                 const Output_data_reloc_generic* dyn_rel,
4760                                 bool add_debug, bool dynrel_includes_plt)
4761 {
4762   Output_data_dynamic* odyn = this->dynamic_data_;
4763   if (odyn == NULL)
4764     return;
4765
4766   if (plt_got != NULL && plt_got->output_section() != NULL)
4767     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4768
4769   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4770     {
4771       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4772       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4773       odyn->add_constant(elfcpp::DT_PLTREL,
4774                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4775     }
4776
4777   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4778       || (dynrel_includes_plt
4779           && plt_rel != NULL
4780           && plt_rel->output_section() != NULL))
4781     {
4782       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4783       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4784       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4785                                 (have_dyn_rel
4786                                  ? dyn_rel->output_section()
4787                                  : plt_rel->output_section()));
4788       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4789       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4790         odyn->add_section_size(size_tag,
4791                                dyn_rel->output_section(),
4792                                plt_rel->output_section());
4793       else if (have_dyn_rel)
4794         odyn->add_section_size(size_tag, dyn_rel->output_section());
4795       else
4796         odyn->add_section_size(size_tag, plt_rel->output_section());
4797       const int size = parameters->target().get_size();
4798       elfcpp::DT rel_tag;
4799       int rel_size;
4800       if (use_rel)
4801         {
4802           rel_tag = elfcpp::DT_RELENT;
4803           if (size == 32)
4804             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4805           else if (size == 64)
4806             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4807           else
4808             gold_unreachable();
4809         }
4810       else
4811         {
4812           rel_tag = elfcpp::DT_RELAENT;
4813           if (size == 32)
4814             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4815           else if (size == 64)
4816             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4817           else
4818             gold_unreachable();
4819         }
4820       odyn->add_constant(rel_tag, rel_size);
4821
4822       if (parameters->options().combreloc() && have_dyn_rel)
4823         {
4824           size_t c = dyn_rel->relative_reloc_count();
4825           if (c > 0)
4826             odyn->add_constant((use_rel
4827                                 ? elfcpp::DT_RELCOUNT
4828                                 : elfcpp::DT_RELACOUNT),
4829                                c);
4830         }
4831     }
4832
4833   if (add_debug && !parameters->options().shared())
4834     {
4835       // The value of the DT_DEBUG tag is filled in by the dynamic
4836       // linker at run time, and used by the debugger.
4837       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4838     }
4839 }
4840
4841 void
4842 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4843 {
4844   Output_data_dynamic* odyn = this->dynamic_data_;
4845   if (odyn == NULL)
4846     return;
4847   odyn->add_constant(tag, val);
4848 }
4849
4850 // Finish the .dynamic section and PT_DYNAMIC segment.
4851
4852 void
4853 Layout::finish_dynamic_section(const Input_objects* input_objects,
4854                                const Symbol_table* symtab)
4855 {
4856   if (!this->script_options_->saw_phdrs_clause()
4857       && this->dynamic_section_ != NULL)
4858     {
4859       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4860                                                        (elfcpp::PF_R
4861                                                         | elfcpp::PF_W));
4862       oseg->add_output_section_to_nonload(this->dynamic_section_,
4863                                           elfcpp::PF_R | elfcpp::PF_W);
4864     }
4865
4866   Output_data_dynamic* const odyn = this->dynamic_data_;
4867   if (odyn == NULL)
4868     return;
4869
4870   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4871        p != input_objects->dynobj_end();
4872        ++p)
4873     {
4874       if (!(*p)->is_needed() && (*p)->as_needed())
4875         {
4876           // This dynamic object was linked with --as-needed, but it
4877           // is not needed.
4878           continue;
4879         }
4880
4881       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4882     }
4883
4884   if (parameters->options().shared())
4885     {
4886       const char* soname = parameters->options().soname();
4887       if (soname != NULL)
4888         odyn->add_string(elfcpp::DT_SONAME, soname);
4889     }
4890
4891   Symbol* sym = symtab->lookup(parameters->options().init());
4892   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4893     odyn->add_symbol(elfcpp::DT_INIT, sym);
4894
4895   sym = symtab->lookup(parameters->options().fini());
4896   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4897     odyn->add_symbol(elfcpp::DT_FINI, sym);
4898
4899   // Look for .init_array, .preinit_array and .fini_array by checking
4900   // section types.
4901   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4902       p != this->section_list_.end();
4903       ++p)
4904     switch((*p)->type())
4905       {
4906       case elfcpp::SHT_FINI_ARRAY:
4907         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4908         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4909         break;
4910       case elfcpp::SHT_INIT_ARRAY:
4911         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4912         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4913         break;
4914       case elfcpp::SHT_PREINIT_ARRAY:
4915         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4916         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4917         break;
4918       default:
4919         break;
4920       }
4921
4922   // Add a DT_RPATH entry if needed.
4923   const General_options::Dir_list& rpath(parameters->options().rpath());
4924   if (!rpath.empty())
4925     {
4926       std::string rpath_val;
4927       for (General_options::Dir_list::const_iterator p = rpath.begin();
4928            p != rpath.end();
4929            ++p)
4930         {
4931           if (rpath_val.empty())
4932             rpath_val = p->name();
4933           else
4934             {
4935               // Eliminate duplicates.
4936               General_options::Dir_list::const_iterator q;
4937               for (q = rpath.begin(); q != p; ++q)
4938                 if (q->name() == p->name())
4939                   break;
4940               if (q == p)
4941                 {
4942                   rpath_val += ':';
4943                   rpath_val += p->name();
4944                 }
4945             }
4946         }
4947
4948       if (!parameters->options().enable_new_dtags())
4949         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4950       else
4951         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4952     }
4953
4954   // Look for text segments that have dynamic relocations.
4955   bool have_textrel = false;
4956   if (!this->script_options_->saw_sections_clause())
4957     {
4958       for (Segment_list::const_iterator p = this->segment_list_.begin();
4959            p != this->segment_list_.end();
4960            ++p)
4961         {
4962           if ((*p)->type() == elfcpp::PT_LOAD
4963               && ((*p)->flags() & elfcpp::PF_W) == 0
4964               && (*p)->has_dynamic_reloc())
4965             {
4966               have_textrel = true;
4967               break;
4968             }
4969         }
4970     }
4971   else
4972     {
4973       // We don't know the section -> segment mapping, so we are
4974       // conservative and just look for readonly sections with
4975       // relocations.  If those sections wind up in writable segments,
4976       // then we have created an unnecessary DT_TEXTREL entry.
4977       for (Section_list::const_iterator p = this->section_list_.begin();
4978            p != this->section_list_.end();
4979            ++p)
4980         {
4981           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4982               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4983               && (*p)->has_dynamic_reloc())
4984             {
4985               have_textrel = true;
4986               break;
4987             }
4988         }
4989     }
4990
4991   if (parameters->options().filter() != NULL)
4992     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4993   if (parameters->options().any_auxiliary())
4994     {
4995       for (options::String_set::const_iterator p =
4996              parameters->options().auxiliary_begin();
4997            p != parameters->options().auxiliary_end();
4998            ++p)
4999         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5000     }
5001
5002   // Add a DT_FLAGS entry if necessary.
5003   unsigned int flags = 0;
5004   if (have_textrel)
5005     {
5006       // Add a DT_TEXTREL for compatibility with older loaders.
5007       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5008       flags |= elfcpp::DF_TEXTREL;
5009
5010       if (parameters->options().text())
5011         gold_error(_("read-only segment has dynamic relocations"));
5012       else if (parameters->options().warn_shared_textrel()
5013                && parameters->options().shared())
5014         gold_warning(_("shared library text segment is not shareable"));
5015     }
5016   if (parameters->options().shared() && this->has_static_tls())
5017     flags |= elfcpp::DF_STATIC_TLS;
5018   if (parameters->options().origin())
5019     flags |= elfcpp::DF_ORIGIN;
5020   if (parameters->options().Bsymbolic()
5021       && !parameters->options().have_dynamic_list())
5022     {
5023       flags |= elfcpp::DF_SYMBOLIC;
5024       // Add DT_SYMBOLIC for compatibility with older loaders.
5025       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5026     }
5027   if (parameters->options().now())
5028     flags |= elfcpp::DF_BIND_NOW;
5029   if (flags != 0)
5030     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5031
5032   flags = 0;
5033   if (parameters->options().global())
5034     flags |= elfcpp::DF_1_GLOBAL;
5035   if (parameters->options().initfirst())
5036     flags |= elfcpp::DF_1_INITFIRST;
5037   if (parameters->options().interpose())
5038     flags |= elfcpp::DF_1_INTERPOSE;
5039   if (parameters->options().loadfltr())
5040     flags |= elfcpp::DF_1_LOADFLTR;
5041   if (parameters->options().nodefaultlib())
5042     flags |= elfcpp::DF_1_NODEFLIB;
5043   if (parameters->options().nodelete())
5044     flags |= elfcpp::DF_1_NODELETE;
5045   if (parameters->options().nodlopen())
5046     flags |= elfcpp::DF_1_NOOPEN;
5047   if (parameters->options().nodump())
5048     flags |= elfcpp::DF_1_NODUMP;
5049   if (!parameters->options().shared())
5050     flags &= ~(elfcpp::DF_1_INITFIRST
5051                | elfcpp::DF_1_NODELETE
5052                | elfcpp::DF_1_NOOPEN);
5053   if (parameters->options().origin())
5054     flags |= elfcpp::DF_1_ORIGIN;
5055   if (parameters->options().now())
5056     flags |= elfcpp::DF_1_NOW;
5057   if (parameters->options().Bgroup())
5058     flags |= elfcpp::DF_1_GROUP;
5059   if (flags != 0)
5060     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5061 }
5062
5063 // Set the size of the _DYNAMIC symbol table to be the size of the
5064 // dynamic data.
5065
5066 void
5067 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5068 {
5069   Output_data_dynamic* const odyn = this->dynamic_data_;
5070   if (odyn == NULL)
5071     return;
5072   odyn->finalize_data_size();
5073   if (this->dynamic_symbol_ == NULL)
5074     return;
5075   off_t data_size = odyn->data_size();
5076   const int size = parameters->target().get_size();
5077   if (size == 32)
5078     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5079   else if (size == 64)
5080     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5081   else
5082     gold_unreachable();
5083 }
5084
5085 // The mapping of input section name prefixes to output section names.
5086 // In some cases one prefix is itself a prefix of another prefix; in
5087 // such a case the longer prefix must come first.  These prefixes are
5088 // based on the GNU linker default ELF linker script.
5089
5090 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5091 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5092 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5093 {
5094   MAPPING_INIT(".text.", ".text"),
5095   MAPPING_INIT(".rodata.", ".rodata"),
5096   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5097   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5098   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5099   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5100   MAPPING_INIT(".data.", ".data"),
5101   MAPPING_INIT(".bss.", ".bss"),
5102   MAPPING_INIT(".tdata.", ".tdata"),
5103   MAPPING_INIT(".tbss.", ".tbss"),
5104   MAPPING_INIT(".init_array.", ".init_array"),
5105   MAPPING_INIT(".fini_array.", ".fini_array"),
5106   MAPPING_INIT(".sdata.", ".sdata"),
5107   MAPPING_INIT(".sbss.", ".sbss"),
5108   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5109   // differently depending on whether it is creating a shared library.
5110   MAPPING_INIT(".sdata2.", ".sdata"),
5111   MAPPING_INIT(".sbss2.", ".sbss"),
5112   MAPPING_INIT(".lrodata.", ".lrodata"),
5113   MAPPING_INIT(".ldata.", ".ldata"),
5114   MAPPING_INIT(".lbss.", ".lbss"),
5115   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5116   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5117   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5118   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5119   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5120   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5121   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5122   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5123   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5124   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5125   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5126   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5127   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5128   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5129   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5130   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5131   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5132   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5133   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5134   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5135   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5136 };
5137 #undef MAPPING_INIT
5138 #undef MAPPING_INIT_EXACT
5139
5140 const int Layout::section_name_mapping_count =
5141   (sizeof(Layout::section_name_mapping)
5142    / sizeof(Layout::section_name_mapping[0]));
5143
5144 // Choose the output section name to use given an input section name.
5145 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5146 // length of NAME.
5147
5148 const char*
5149 Layout::output_section_name(const Relobj* relobj, const char* name,
5150                             size_t* plen)
5151 {
5152   // gcc 4.3 generates the following sorts of section names when it
5153   // needs a section name specific to a function:
5154   //   .text.FN
5155   //   .rodata.FN
5156   //   .sdata2.FN
5157   //   .data.FN
5158   //   .data.rel.FN
5159   //   .data.rel.local.FN
5160   //   .data.rel.ro.FN
5161   //   .data.rel.ro.local.FN
5162   //   .sdata.FN
5163   //   .bss.FN
5164   //   .sbss.FN
5165   //   .tdata.FN
5166   //   .tbss.FN
5167
5168   // The GNU linker maps all of those to the part before the .FN,
5169   // except that .data.rel.local.FN is mapped to .data, and
5170   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5171   // beginning with .data.rel.ro.local are grouped together.
5172
5173   // For an anonymous namespace, the string FN can contain a '.'.
5174
5175   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5176   // GNU linker maps to .rodata.
5177
5178   // The .data.rel.ro sections are used with -z relro.  The sections
5179   // are recognized by name.  We use the same names that the GNU
5180   // linker does for these sections.
5181
5182   // It is hard to handle this in a principled way, so we don't even
5183   // try.  We use a table of mappings.  If the input section name is
5184   // not found in the table, we simply use it as the output section
5185   // name.
5186
5187   const Section_name_mapping* psnm = section_name_mapping;
5188   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5189     {
5190       if (psnm->fromlen > 0)
5191         {
5192           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5193             {
5194               *plen = psnm->tolen;
5195               return psnm->to;
5196             }
5197         }
5198       else
5199         {
5200           if (strcmp(name, psnm->from) == 0)
5201             {
5202               *plen = psnm->tolen;
5203               return psnm->to;
5204             }
5205         }
5206     }
5207
5208   // As an additional complication, .ctors sections are output in
5209   // either .ctors or .init_array sections, and .dtors sections are
5210   // output in either .dtors or .fini_array sections.
5211   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5212     {
5213       if (parameters->options().ctors_in_init_array())
5214         {
5215           *plen = 11;
5216           return name[1] == 'c' ? ".init_array" : ".fini_array";
5217         }
5218       else
5219         {
5220           *plen = 6;
5221           return name[1] == 'c' ? ".ctors" : ".dtors";
5222         }
5223     }
5224   if (parameters->options().ctors_in_init_array()
5225       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5226     {
5227       // To make .init_array/.fini_array work with gcc we must exclude
5228       // .ctors and .dtors sections from the crtbegin and crtend
5229       // files.
5230       if (relobj == NULL
5231           || (!Layout::match_file_name(relobj, "crtbegin")
5232               && !Layout::match_file_name(relobj, "crtend")))
5233         {
5234           *plen = 11;
5235           return name[1] == 'c' ? ".init_array" : ".fini_array";
5236         }
5237     }
5238
5239   return name;
5240 }
5241
5242 // Return true if RELOBJ is an input file whose base name matches
5243 // FILE_NAME.  The base name must have an extension of ".o", and must
5244 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5245 // to match crtbegin.o as well as crtbeginS.o without getting confused
5246 // by other possibilities.  Overall matching the file name this way is
5247 // a dreadful hack, but the GNU linker does it in order to better
5248 // support gcc, and we need to be compatible.
5249
5250 bool
5251 Layout::match_file_name(const Relobj* relobj, const char* match)
5252 {
5253   const std::string& file_name(relobj->name());
5254   const char* base_name = lbasename(file_name.c_str());
5255   size_t match_len = strlen(match);
5256   if (strncmp(base_name, match, match_len) != 0)
5257     return false;
5258   size_t base_len = strlen(base_name);
5259   if (base_len != match_len + 2 && base_len != match_len + 3)
5260     return false;
5261   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5262 }
5263
5264 // Check if a comdat group or .gnu.linkonce section with the given
5265 // NAME is selected for the link.  If there is already a section,
5266 // *KEPT_SECTION is set to point to the existing section and the
5267 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5268 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5269 // *KEPT_SECTION is set to the internal copy and the function returns
5270 // true.
5271
5272 bool
5273 Layout::find_or_add_kept_section(const std::string& name,
5274                                  Relobj* object,
5275                                  unsigned int shndx,
5276                                  bool is_comdat,
5277                                  bool is_group_name,
5278                                  Kept_section** kept_section)
5279 {
5280   // It's normal to see a couple of entries here, for the x86 thunk
5281   // sections.  If we see more than a few, we're linking a C++
5282   // program, and we resize to get more space to minimize rehashing.
5283   if (this->signatures_.size() > 4
5284       && !this->resized_signatures_)
5285     {
5286       reserve_unordered_map(&this->signatures_,
5287                             this->number_of_input_files_ * 64);
5288       this->resized_signatures_ = true;
5289     }
5290
5291   Kept_section candidate;
5292   std::pair<Signatures::iterator, bool> ins =
5293     this->signatures_.insert(std::make_pair(name, candidate));
5294
5295   if (kept_section != NULL)
5296     *kept_section = &ins.first->second;
5297   if (ins.second)
5298     {
5299       // This is the first time we've seen this signature.
5300       ins.first->second.set_object(object);
5301       ins.first->second.set_shndx(shndx);
5302       if (is_comdat)
5303         ins.first->second.set_is_comdat();
5304       if (is_group_name)
5305         ins.first->second.set_is_group_name();
5306       return true;
5307     }
5308
5309   // We have already seen this signature.
5310
5311   if (ins.first->second.is_group_name())
5312     {
5313       // We've already seen a real section group with this signature.
5314       // If the kept group is from a plugin object, and we're in the
5315       // replacement phase, accept the new one as a replacement.
5316       if (ins.first->second.object() == NULL
5317           && parameters->options().plugins()->in_replacement_phase())
5318         {
5319           ins.first->second.set_object(object);
5320           ins.first->second.set_shndx(shndx);
5321           return true;
5322         }
5323       return false;
5324     }
5325   else if (is_group_name)
5326     {
5327       // This is a real section group, and we've already seen a
5328       // linkonce section with this signature.  Record that we've seen
5329       // a section group, and don't include this section group.
5330       ins.first->second.set_is_group_name();
5331       return false;
5332     }
5333   else
5334     {
5335       // We've already seen a linkonce section and this is a linkonce
5336       // section.  These don't block each other--this may be the same
5337       // symbol name with different section types.
5338       return true;
5339     }
5340 }
5341
5342 // Store the allocated sections into the section list.
5343
5344 void
5345 Layout::get_allocated_sections(Section_list* section_list) const
5346 {
5347   for (Section_list::const_iterator p = this->section_list_.begin();
5348        p != this->section_list_.end();
5349        ++p)
5350     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5351       section_list->push_back(*p);
5352 }
5353
5354 // Store the executable sections into the section list.
5355
5356 void
5357 Layout::get_executable_sections(Section_list* section_list) const
5358 {
5359   for (Section_list::const_iterator p = this->section_list_.begin();
5360        p != this->section_list_.end();
5361        ++p)
5362     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5363         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5364       section_list->push_back(*p);
5365 }
5366
5367 // Create an output segment.
5368
5369 Output_segment*
5370 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5371 {
5372   gold_assert(!parameters->options().relocatable());
5373   Output_segment* oseg = new Output_segment(type, flags);
5374   this->segment_list_.push_back(oseg);
5375
5376   if (type == elfcpp::PT_TLS)
5377     this->tls_segment_ = oseg;
5378   else if (type == elfcpp::PT_GNU_RELRO)
5379     this->relro_segment_ = oseg;
5380   else if (type == elfcpp::PT_INTERP)
5381     this->interp_segment_ = oseg;
5382
5383   return oseg;
5384 }
5385
5386 // Return the file offset of the normal symbol table.
5387
5388 off_t
5389 Layout::symtab_section_offset() const
5390 {
5391   if (this->symtab_section_ != NULL)
5392     return this->symtab_section_->offset();
5393   return 0;
5394 }
5395
5396 // Return the section index of the normal symbol table.  It may have
5397 // been stripped by the -s/--strip-all option.
5398
5399 unsigned int
5400 Layout::symtab_section_shndx() const
5401 {
5402   if (this->symtab_section_ != NULL)
5403     return this->symtab_section_->out_shndx();
5404   return 0;
5405 }
5406
5407 // Write out the Output_sections.  Most won't have anything to write,
5408 // since most of the data will come from input sections which are
5409 // handled elsewhere.  But some Output_sections do have Output_data.
5410
5411 void
5412 Layout::write_output_sections(Output_file* of) const
5413 {
5414   for (Section_list::const_iterator p = this->section_list_.begin();
5415        p != this->section_list_.end();
5416        ++p)
5417     {
5418       if (!(*p)->after_input_sections())
5419         (*p)->write(of);
5420     }
5421 }
5422
5423 // Write out data not associated with a section or the symbol table.
5424
5425 void
5426 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5427 {
5428   if (!parameters->options().strip_all())
5429     {
5430       const Output_section* symtab_section = this->symtab_section_;
5431       for (Section_list::const_iterator p = this->section_list_.begin();
5432            p != this->section_list_.end();
5433            ++p)
5434         {
5435           if ((*p)->needs_symtab_index())
5436             {
5437               gold_assert(symtab_section != NULL);
5438               unsigned int index = (*p)->symtab_index();
5439               gold_assert(index > 0 && index != -1U);
5440               off_t off = (symtab_section->offset()
5441                            + index * symtab_section->entsize());
5442               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5443             }
5444         }
5445     }
5446
5447   const Output_section* dynsym_section = this->dynsym_section_;
5448   for (Section_list::const_iterator p = this->section_list_.begin();
5449        p != this->section_list_.end();
5450        ++p)
5451     {
5452       if ((*p)->needs_dynsym_index())
5453         {
5454           gold_assert(dynsym_section != NULL);
5455           unsigned int index = (*p)->dynsym_index();
5456           gold_assert(index > 0 && index != -1U);
5457           off_t off = (dynsym_section->offset()
5458                        + index * dynsym_section->entsize());
5459           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5460         }
5461     }
5462
5463   // Write out the Output_data which are not in an Output_section.
5464   for (Data_list::const_iterator p = this->special_output_list_.begin();
5465        p != this->special_output_list_.end();
5466        ++p)
5467     (*p)->write(of);
5468
5469   // Write out the Output_data which are not in an Output_section
5470   // and are regenerated in each iteration of relaxation.
5471   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5472        p != this->relax_output_list_.end();
5473        ++p)
5474     (*p)->write(of);
5475 }
5476
5477 // Write out the Output_sections which can only be written after the
5478 // input sections are complete.
5479
5480 void
5481 Layout::write_sections_after_input_sections(Output_file* of)
5482 {
5483   // Determine the final section offsets, and thus the final output
5484   // file size.  Note we finalize the .shstrab last, to allow the
5485   // after_input_section sections to modify their section-names before
5486   // writing.
5487   if (this->any_postprocessing_sections_)
5488     {
5489       off_t off = this->output_file_size_;
5490       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5491
5492       // Now that we've finalized the names, we can finalize the shstrab.
5493       off =
5494         this->set_section_offsets(off,
5495                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5496
5497       if (off > this->output_file_size_)
5498         {
5499           of->resize(off);
5500           this->output_file_size_ = off;
5501         }
5502     }
5503
5504   for (Section_list::const_iterator p = this->section_list_.begin();
5505        p != this->section_list_.end();
5506        ++p)
5507     {
5508       if ((*p)->after_input_sections())
5509         (*p)->write(of);
5510     }
5511
5512   this->section_headers_->write(of);
5513 }
5514
5515 // If a tree-style build ID was requested, the parallel part of that computation
5516 // is already done, and the final hash-of-hashes is computed here.  For other
5517 // types of build IDs, all the work is done here.
5518
5519 void
5520 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5521                        size_t size_of_hashes) const
5522 {
5523   if (this->build_id_note_ == NULL)
5524     return;
5525
5526   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5527                                           this->build_id_note_->data_size());
5528
5529   if (array_of_hashes == NULL)
5530     {
5531       const size_t output_file_size = this->output_file_size();
5532       const unsigned char* iv = of->get_input_view(0, output_file_size);
5533       const char* style = parameters->options().build_id();
5534
5535       // If we get here with style == "tree" then the output must be
5536       // too small for chunking, and we use SHA-1 in that case.
5537       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5538         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5539       else if (strcmp(style, "md5") == 0)
5540         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5541       else
5542         gold_unreachable();
5543
5544       of->free_input_view(0, output_file_size, iv);
5545     }
5546   else
5547     {
5548       // Non-overlapping substrings of the output file have been hashed.
5549       // Compute SHA-1 hash of the hashes.
5550       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5551                   size_of_hashes, ov);
5552       delete[] array_of_hashes;
5553     }
5554
5555   of->write_output_view(this->build_id_note_->offset(),
5556                         this->build_id_note_->data_size(),
5557                         ov);
5558 }
5559
5560 // Write out a binary file.  This is called after the link is
5561 // complete.  IN is the temporary output file we used to generate the
5562 // ELF code.  We simply walk through the segments, read them from
5563 // their file offset in IN, and write them to their load address in
5564 // the output file.  FIXME: with a bit more work, we could support
5565 // S-records and/or Intel hex format here.
5566
5567 void
5568 Layout::write_binary(Output_file* in) const
5569 {
5570   gold_assert(parameters->options().oformat_enum()
5571               == General_options::OBJECT_FORMAT_BINARY);
5572
5573   // Get the size of the binary file.
5574   uint64_t max_load_address = 0;
5575   for (Segment_list::const_iterator p = this->segment_list_.begin();
5576        p != this->segment_list_.end();
5577        ++p)
5578     {
5579       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5580         {
5581           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5582           if (max_paddr > max_load_address)
5583             max_load_address = max_paddr;
5584         }
5585     }
5586
5587   Output_file out(parameters->options().output_file_name());
5588   out.open(max_load_address);
5589
5590   for (Segment_list::const_iterator p = this->segment_list_.begin();
5591        p != this->segment_list_.end();
5592        ++p)
5593     {
5594       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5595         {
5596           const unsigned char* vin = in->get_input_view((*p)->offset(),
5597                                                         (*p)->filesz());
5598           unsigned char* vout = out.get_output_view((*p)->paddr(),
5599                                                     (*p)->filesz());
5600           memcpy(vout, vin, (*p)->filesz());
5601           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5602           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5603         }
5604     }
5605
5606   out.close();
5607 }
5608
5609 // Print the output sections to the map file.
5610
5611 void
5612 Layout::print_to_mapfile(Mapfile* mapfile) const
5613 {
5614   for (Segment_list::const_iterator p = this->segment_list_.begin();
5615        p != this->segment_list_.end();
5616        ++p)
5617     (*p)->print_sections_to_mapfile(mapfile);
5618   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5619        p != this->unattached_section_list_.end();
5620        ++p)
5621     (*p)->print_to_mapfile(mapfile);
5622 }
5623
5624 // Print statistical information to stderr.  This is used for --stats.
5625
5626 void
5627 Layout::print_stats() const
5628 {
5629   this->namepool_.print_stats("section name pool");
5630   this->sympool_.print_stats("output symbol name pool");
5631   this->dynpool_.print_stats("dynamic name pool");
5632
5633   for (Section_list::const_iterator p = this->section_list_.begin();
5634        p != this->section_list_.end();
5635        ++p)
5636     (*p)->print_merge_stats();
5637 }
5638
5639 // Write_sections_task methods.
5640
5641 // We can always run this task.
5642
5643 Task_token*
5644 Write_sections_task::is_runnable()
5645 {
5646   return NULL;
5647 }
5648
5649 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5650 // when finished.
5651
5652 void
5653 Write_sections_task::locks(Task_locker* tl)
5654 {
5655   tl->add(this, this->output_sections_blocker_);
5656   if (this->input_sections_blocker_ != NULL)
5657     tl->add(this, this->input_sections_blocker_);
5658   tl->add(this, this->final_blocker_);
5659 }
5660
5661 // Run the task--write out the data.
5662
5663 void
5664 Write_sections_task::run(Workqueue*)
5665 {
5666   this->layout_->write_output_sections(this->of_);
5667 }
5668
5669 // Write_data_task methods.
5670
5671 // We can always run this task.
5672
5673 Task_token*
5674 Write_data_task::is_runnable()
5675 {
5676   return NULL;
5677 }
5678
5679 // We need to unlock FINAL_BLOCKER when finished.
5680
5681 void
5682 Write_data_task::locks(Task_locker* tl)
5683 {
5684   tl->add(this, this->final_blocker_);
5685 }
5686
5687 // Run the task--write out the data.
5688
5689 void
5690 Write_data_task::run(Workqueue*)
5691 {
5692   this->layout_->write_data(this->symtab_, this->of_);
5693 }
5694
5695 // Write_symbols_task methods.
5696
5697 // We can always run this task.
5698
5699 Task_token*
5700 Write_symbols_task::is_runnable()
5701 {
5702   return NULL;
5703 }
5704
5705 // We need to unlock FINAL_BLOCKER when finished.
5706
5707 void
5708 Write_symbols_task::locks(Task_locker* tl)
5709 {
5710   tl->add(this, this->final_blocker_);
5711 }
5712
5713 // Run the task--write out the symbols.
5714
5715 void
5716 Write_symbols_task::run(Workqueue*)
5717 {
5718   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5719                                this->layout_->symtab_xindex(),
5720                                this->layout_->dynsym_xindex(), this->of_);
5721 }
5722
5723 // Write_after_input_sections_task methods.
5724
5725 // We can only run this task after the input sections have completed.
5726
5727 Task_token*
5728 Write_after_input_sections_task::is_runnable()
5729 {
5730   if (this->input_sections_blocker_->is_blocked())
5731     return this->input_sections_blocker_;
5732   return NULL;
5733 }
5734
5735 // We need to unlock FINAL_BLOCKER when finished.
5736
5737 void
5738 Write_after_input_sections_task::locks(Task_locker* tl)
5739 {
5740   tl->add(this, this->final_blocker_);
5741 }
5742
5743 // Run the task.
5744
5745 void
5746 Write_after_input_sections_task::run(Workqueue*)
5747 {
5748   this->layout_->write_sections_after_input_sections(this->of_);
5749 }
5750
5751 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5752 // or as a "tree" where each chunk of the string is hashed and then those
5753 // hashes are put into a (much smaller) string which is hashed with sha1.
5754 // We compute a checksum over the entire file because that is simplest.
5755
5756 void
5757 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5758 {
5759   Task_token* post_hash_tasks_blocker = new Task_token(true);
5760   const Layout* layout = this->layout_;
5761   Output_file* of = this->of_;
5762   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5763                            : static_cast<size_t>(layout->output_file_size()));
5764   unsigned char* array_of_hashes = NULL;
5765   size_t size_of_hashes = 0;
5766
5767   if (strcmp(this->options_->build_id(), "tree") == 0
5768       && this->options_->build_id_chunk_size_for_treehash() > 0
5769       && filesize > 0
5770       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5771     {
5772       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5773       const size_t chunk_size =
5774           this->options_->build_id_chunk_size_for_treehash();
5775       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5776       post_hash_tasks_blocker->add_blockers(num_hashes);
5777       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5778       array_of_hashes = new unsigned char[size_of_hashes];
5779       unsigned char *dst = array_of_hashes;
5780       for (size_t i = 0, src_offset = 0; i < num_hashes;
5781            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5782         {
5783           size_t size = std::min(chunk_size, filesize - src_offset);
5784           workqueue->queue(new Hash_task(of,
5785                                          src_offset,
5786                                          size,
5787                                          dst,
5788                                          post_hash_tasks_blocker));
5789         }
5790     }
5791
5792   // Queue the final task to write the build id and close the output file.
5793   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5794                                                            layout,
5795                                                            of,
5796                                                            array_of_hashes,
5797                                                            size_of_hashes),
5798                                      post_hash_tasks_blocker,
5799                                      "Task_function Close_task_runner"));
5800 }
5801
5802 // Close_task_runner methods.
5803
5804 // Finish up the build ID computation, if necessary, and write a binary file,
5805 // if necessary.  Then close the output file.
5806
5807 void
5808 Close_task_runner::run(Workqueue*, const Task*)
5809 {
5810   // At this point the multi-threaded part of the build ID computation,
5811   // if any, is done.  See Build_id_task_runner.
5812   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5813                                 this->size_of_hashes_);
5814
5815   // If we've been asked to create a binary file, we do so here.
5816   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5817     this->layout_->write_binary(this->of_);
5818
5819   this->of_->close();
5820 }
5821
5822 // Instantiate the templates we need.  We could use the configure
5823 // script to restrict this to only the ones for implemented targets.
5824
5825 #ifdef HAVE_TARGET_32_LITTLE
5826 template
5827 Output_section*
5828 Layout::init_fixed_output_section<32, false>(
5829     const char* name,
5830     elfcpp::Shdr<32, false>& shdr);
5831 #endif
5832
5833 #ifdef HAVE_TARGET_32_BIG
5834 template
5835 Output_section*
5836 Layout::init_fixed_output_section<32, true>(
5837     const char* name,
5838     elfcpp::Shdr<32, true>& shdr);
5839 #endif
5840
5841 #ifdef HAVE_TARGET_64_LITTLE
5842 template
5843 Output_section*
5844 Layout::init_fixed_output_section<64, false>(
5845     const char* name,
5846     elfcpp::Shdr<64, false>& shdr);
5847 #endif
5848
5849 #ifdef HAVE_TARGET_64_BIG
5850 template
5851 Output_section*
5852 Layout::init_fixed_output_section<64, true>(
5853     const char* name,
5854     elfcpp::Shdr<64, true>& shdr);
5855 #endif
5856
5857 #ifdef HAVE_TARGET_32_LITTLE
5858 template
5859 Output_section*
5860 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5861                           unsigned int shndx,
5862                           const char* name,
5863                           const elfcpp::Shdr<32, false>& shdr,
5864                           unsigned int, unsigned int, off_t*);
5865 #endif
5866
5867 #ifdef HAVE_TARGET_32_BIG
5868 template
5869 Output_section*
5870 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5871                          unsigned int shndx,
5872                          const char* name,
5873                          const elfcpp::Shdr<32, true>& shdr,
5874                          unsigned int, unsigned int, off_t*);
5875 #endif
5876
5877 #ifdef HAVE_TARGET_64_LITTLE
5878 template
5879 Output_section*
5880 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5881                           unsigned int shndx,
5882                           const char* name,
5883                           const elfcpp::Shdr<64, false>& shdr,
5884                           unsigned int, unsigned int, off_t*);
5885 #endif
5886
5887 #ifdef HAVE_TARGET_64_BIG
5888 template
5889 Output_section*
5890 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5891                          unsigned int shndx,
5892                          const char* name,
5893                          const elfcpp::Shdr<64, true>& shdr,
5894                          unsigned int, unsigned int, off_t*);
5895 #endif
5896
5897 #ifdef HAVE_TARGET_32_LITTLE
5898 template
5899 Output_section*
5900 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5901                                 unsigned int reloc_shndx,
5902                                 const elfcpp::Shdr<32, false>& shdr,
5903                                 Output_section* data_section,
5904                                 Relocatable_relocs* rr);
5905 #endif
5906
5907 #ifdef HAVE_TARGET_32_BIG
5908 template
5909 Output_section*
5910 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5911                                unsigned int reloc_shndx,
5912                                const elfcpp::Shdr<32, true>& shdr,
5913                                Output_section* data_section,
5914                                Relocatable_relocs* rr);
5915 #endif
5916
5917 #ifdef HAVE_TARGET_64_LITTLE
5918 template
5919 Output_section*
5920 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5921                                 unsigned int reloc_shndx,
5922                                 const elfcpp::Shdr<64, false>& shdr,
5923                                 Output_section* data_section,
5924                                 Relocatable_relocs* rr);
5925 #endif
5926
5927 #ifdef HAVE_TARGET_64_BIG
5928 template
5929 Output_section*
5930 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5931                                unsigned int reloc_shndx,
5932                                const elfcpp::Shdr<64, true>& shdr,
5933                                Output_section* data_section,
5934                                Relocatable_relocs* rr);
5935 #endif
5936
5937 #ifdef HAVE_TARGET_32_LITTLE
5938 template
5939 void
5940 Layout::layout_group<32, false>(Symbol_table* symtab,
5941                                 Sized_relobj_file<32, false>* object,
5942                                 unsigned int,
5943                                 const char* group_section_name,
5944                                 const char* signature,
5945                                 const elfcpp::Shdr<32, false>& shdr,
5946                                 elfcpp::Elf_Word flags,
5947                                 std::vector<unsigned int>* shndxes);
5948 #endif
5949
5950 #ifdef HAVE_TARGET_32_BIG
5951 template
5952 void
5953 Layout::layout_group<32, true>(Symbol_table* symtab,
5954                                Sized_relobj_file<32, true>* object,
5955                                unsigned int,
5956                                const char* group_section_name,
5957                                const char* signature,
5958                                const elfcpp::Shdr<32, true>& shdr,
5959                                elfcpp::Elf_Word flags,
5960                                std::vector<unsigned int>* shndxes);
5961 #endif
5962
5963 #ifdef HAVE_TARGET_64_LITTLE
5964 template
5965 void
5966 Layout::layout_group<64, false>(Symbol_table* symtab,
5967                                 Sized_relobj_file<64, false>* object,
5968                                 unsigned int,
5969                                 const char* group_section_name,
5970                                 const char* signature,
5971                                 const elfcpp::Shdr<64, false>& shdr,
5972                                 elfcpp::Elf_Word flags,
5973                                 std::vector<unsigned int>* shndxes);
5974 #endif
5975
5976 #ifdef HAVE_TARGET_64_BIG
5977 template
5978 void
5979 Layout::layout_group<64, true>(Symbol_table* symtab,
5980                                Sized_relobj_file<64, true>* object,
5981                                unsigned int,
5982                                const char* group_section_name,
5983                                const char* signature,
5984                                const elfcpp::Shdr<64, true>& shdr,
5985                                elfcpp::Elf_Word flags,
5986                                std::vector<unsigned int>* shndxes);
5987 #endif
5988
5989 #ifdef HAVE_TARGET_32_LITTLE
5990 template
5991 Output_section*
5992 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5993                                    const unsigned char* symbols,
5994                                    off_t symbols_size,
5995                                    const unsigned char* symbol_names,
5996                                    off_t symbol_names_size,
5997                                    unsigned int shndx,
5998                                    const elfcpp::Shdr<32, false>& shdr,
5999                                    unsigned int reloc_shndx,
6000                                    unsigned int reloc_type,
6001                                    off_t* off);
6002 #endif
6003
6004 #ifdef HAVE_TARGET_32_BIG
6005 template
6006 Output_section*
6007 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6008                                   const unsigned char* symbols,
6009                                   off_t symbols_size,
6010                                   const unsigned char* symbol_names,
6011                                   off_t symbol_names_size,
6012                                   unsigned int shndx,
6013                                   const elfcpp::Shdr<32, true>& shdr,
6014                                   unsigned int reloc_shndx,
6015                                   unsigned int reloc_type,
6016                                   off_t* off);
6017 #endif
6018
6019 #ifdef HAVE_TARGET_64_LITTLE
6020 template
6021 Output_section*
6022 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6023                                    const unsigned char* symbols,
6024                                    off_t symbols_size,
6025                                    const unsigned char* symbol_names,
6026                                    off_t symbol_names_size,
6027                                    unsigned int shndx,
6028                                    const elfcpp::Shdr<64, false>& shdr,
6029                                    unsigned int reloc_shndx,
6030                                    unsigned int reloc_type,
6031                                    off_t* off);
6032 #endif
6033
6034 #ifdef HAVE_TARGET_64_BIG
6035 template
6036 Output_section*
6037 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6038                                   const unsigned char* symbols,
6039                                   off_t symbols_size,
6040                                   const unsigned char* symbol_names,
6041                                   off_t symbol_names_size,
6042                                   unsigned int shndx,
6043                                   const elfcpp::Shdr<64, true>& shdr,
6044                                   unsigned int reloc_shndx,
6045                                   unsigned int reloc_type,
6046                                   off_t* off);
6047 #endif
6048
6049 #ifdef HAVE_TARGET_32_LITTLE
6050 template
6051 void
6052 Layout::add_to_gdb_index(bool is_type_unit,
6053                          Sized_relobj<32, false>* object,
6054                          const unsigned char* symbols,
6055                          off_t symbols_size,
6056                          unsigned int shndx,
6057                          unsigned int reloc_shndx,
6058                          unsigned int reloc_type);
6059 #endif
6060
6061 #ifdef HAVE_TARGET_32_BIG
6062 template
6063 void
6064 Layout::add_to_gdb_index(bool is_type_unit,
6065                          Sized_relobj<32, true>* object,
6066                          const unsigned char* symbols,
6067                          off_t symbols_size,
6068                          unsigned int shndx,
6069                          unsigned int reloc_shndx,
6070                          unsigned int reloc_type);
6071 #endif
6072
6073 #ifdef HAVE_TARGET_64_LITTLE
6074 template
6075 void
6076 Layout::add_to_gdb_index(bool is_type_unit,
6077                          Sized_relobj<64, false>* object,
6078                          const unsigned char* symbols,
6079                          off_t symbols_size,
6080                          unsigned int shndx,
6081                          unsigned int reloc_shndx,
6082                          unsigned int reloc_type);
6083 #endif
6084
6085 #ifdef HAVE_TARGET_64_BIG
6086 template
6087 void
6088 Layout::add_to_gdb_index(bool is_type_unit,
6089                          Sized_relobj<64, true>* object,
6090                          const unsigned char* symbols,
6091                          off_t symbols_size,
6092                          unsigned int shndx,
6093                          unsigned int reloc_shndx,
6094                          unsigned int reloc_type);
6095 #endif
6096
6097 } // End namespace gold.