194d088c2a19a4cce1f22ce53f87db77e983ca99
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     lto_slim_object_(false),
470     script_output_section_data_list_(),
471     segment_states_(NULL),
472     relaxation_debug_check_(NULL),
473     section_order_map_(),
474     section_segment_map_(),
475     input_section_position_(),
476     input_section_glob_(),
477     incremental_base_(NULL),
478     free_list_(),
479     gnu_properties_()
480 {
481   // Make space for more than enough segments for a typical file.
482   // This is just for efficiency--it's OK if we wind up needing more.
483   this->segment_list_.reserve(12);
484
485   // We expect two unattached Output_data objects: the file header and
486   // the segment headers.
487   this->special_output_list_.reserve(2);
488
489   // Initialize structure needed for an incremental build.
490   if (parameters->incremental())
491     this->incremental_inputs_ = new Incremental_inputs;
492
493   // The section name pool is worth optimizing in all cases, because
494   // it is small, but there are often overlaps due to .rel sections.
495   this->namepool_.set_optimize();
496 }
497
498 // For incremental links, record the base file to be modified.
499
500 void
501 Layout::set_incremental_base(Incremental_binary* base)
502 {
503   this->incremental_base_ = base;
504   this->free_list_.init(base->output_file()->filesize(), true);
505 }
506
507 // Hash a key we use to look up an output section mapping.
508
509 size_t
510 Layout::Hash_key::operator()(const Layout::Key& k) const
511 {
512  return k.first + k.second.first + k.second.second;
513 }
514
515 // These are the debug sections that are actually used by gdb.
516 // Currently, we've checked versions of gdb up to and including 7.4.
517 // We only check the part of the name that follows ".debug_" or
518 // ".zdebug_".
519
520 static const char* gdb_sections[] =
521 {
522   "abbrev",
523   "addr",         // Fission extension
524   // "aranges",   // not used by gdb as of 7.4
525   "frame",
526   "gdb_scripts",
527   "info",
528   "types",
529   "line",
530   "loc",
531   "macinfo",
532   "macro",
533   // "pubnames",  // not used by gdb as of 7.4
534   // "pubtypes",  // not used by gdb as of 7.4
535   // "gnu_pubnames",  // Fission extension
536   // "gnu_pubtypes",  // Fission extension
537   "ranges",
538   "str",
539   "str_offsets",
540 };
541
542 // This is the minimum set of sections needed for line numbers.
543
544 static const char* lines_only_debug_sections[] =
545 {
546   "abbrev",
547   // "addr",      // Fission extension
548   // "aranges",   // not used by gdb as of 7.4
549   // "frame",
550   // "gdb_scripts",
551   "info",
552   // "types",
553   "line",
554   // "loc",
555   // "macinfo",
556   // "macro",
557   // "pubnames",  // not used by gdb as of 7.4
558   // "pubtypes",  // not used by gdb as of 7.4
559   // "gnu_pubnames",  // Fission extension
560   // "gnu_pubtypes",  // Fission extension
561   // "ranges",
562   "str",
563   "str_offsets",  // Fission extension
564 };
565
566 // These sections are the DWARF fast-lookup tables, and are not needed
567 // when building a .gdb_index section.
568
569 static const char* gdb_fast_lookup_sections[] =
570 {
571   "aranges",
572   "pubnames",
573   "gnu_pubnames",
574   "pubtypes",
575   "gnu_pubtypes",
576 };
577
578 // Returns whether the given debug section is in the list of
579 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
580 // portion of the name following ".debug_" or ".zdebug_".
581
582 static inline bool
583 is_gdb_debug_section(const char* suffix)
584 {
585   // We can do this faster: binary search or a hashtable.  But why bother?
586   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
587     if (strcmp(suffix, gdb_sections[i]) == 0)
588       return true;
589   return false;
590 }
591
592 // Returns whether the given section is needed for lines-only debugging.
593
594 static inline bool
595 is_lines_only_debug_section(const char* suffix)
596 {
597   // We can do this faster: binary search or a hashtable.  But why bother?
598   for (size_t i = 0;
599        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
600        ++i)
601     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
602       return true;
603   return false;
604 }
605
606 // Returns whether the given section is a fast-lookup section that
607 // will not be needed when building a .gdb_index section.
608
609 static inline bool
610 is_gdb_fast_lookup_section(const char* suffix)
611 {
612   // We can do this faster: binary search or a hashtable.  But why bother?
613   for (size_t i = 0;
614        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
615        ++i)
616     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
617       return true;
618   return false;
619 }
620
621 // Sometimes we compress sections.  This is typically done for
622 // sections that are not part of normal program execution (such as
623 // .debug_* sections), and where the readers of these sections know
624 // how to deal with compressed sections.  This routine doesn't say for
625 // certain whether we'll compress -- it depends on commandline options
626 // as well -- just whether this section is a candidate for compression.
627 // (The Output_compressed_section class decides whether to compress
628 // a given section, and picks the name of the compressed section.)
629
630 static bool
631 is_compressible_debug_section(const char* secname)
632 {
633   return (is_prefix_of(".debug", secname));
634 }
635
636 // We may see compressed debug sections in input files.  Return TRUE
637 // if this is the name of a compressed debug section.
638
639 bool
640 is_compressed_debug_section(const char* secname)
641 {
642   return (is_prefix_of(".zdebug", secname));
643 }
644
645 std::string
646 corresponding_uncompressed_section_name(std::string secname)
647 {
648   gold_assert(secname[0] == '.' && secname[1] == 'z');
649   std::string ret(".");
650   ret.append(secname, 2, std::string::npos);
651   return ret;
652 }
653
654 // Whether to include this section in the link.
655
656 template<int size, bool big_endian>
657 bool
658 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
659                         const elfcpp::Shdr<size, big_endian>& shdr)
660 {
661   if (!parameters->options().relocatable()
662       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
663     return false;
664
665   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
666
667   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
668       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
669     return parameters->target().should_include_section(sh_type);
670
671   switch (sh_type)
672     {
673     case elfcpp::SHT_NULL:
674     case elfcpp::SHT_SYMTAB:
675     case elfcpp::SHT_DYNSYM:
676     case elfcpp::SHT_HASH:
677     case elfcpp::SHT_DYNAMIC:
678     case elfcpp::SHT_SYMTAB_SHNDX:
679       return false;
680
681     case elfcpp::SHT_STRTAB:
682       // Discard the sections which have special meanings in the ELF
683       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
684       // checking the sh_link fields of the appropriate sections.
685       return (strcmp(name, ".dynstr") != 0
686               && strcmp(name, ".strtab") != 0
687               && strcmp(name, ".shstrtab") != 0);
688
689     case elfcpp::SHT_RELA:
690     case elfcpp::SHT_REL:
691     case elfcpp::SHT_GROUP:
692       // If we are emitting relocations these should be handled
693       // elsewhere.
694       gold_assert(!parameters->options().relocatable());
695       return false;
696
697     case elfcpp::SHT_PROGBITS:
698       if (parameters->options().strip_debug()
699           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700         {
701           if (is_debug_info_section(name))
702             return false;
703         }
704       if (parameters->options().strip_debug_non_line()
705           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
706         {
707           // Debugging sections can only be recognized by name.
708           if (is_prefix_of(".debug_", name)
709               && !is_lines_only_debug_section(name + 7))
710             return false;
711           if (is_prefix_of(".zdebug_", name)
712               && !is_lines_only_debug_section(name + 8))
713             return false;
714         }
715       if (parameters->options().strip_debug_gdb()
716           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
717         {
718           // Debugging sections can only be recognized by name.
719           if (is_prefix_of(".debug_", name)
720               && !is_gdb_debug_section(name + 7))
721             return false;
722           if (is_prefix_of(".zdebug_", name)
723               && !is_gdb_debug_section(name + 8))
724             return false;
725         }
726       if (parameters->options().gdb_index()
727           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
728         {
729           // When building .gdb_index, we can strip .debug_pubnames,
730           // .debug_pubtypes, and .debug_aranges sections.
731           if (is_prefix_of(".debug_", name)
732               && is_gdb_fast_lookup_section(name + 7))
733             return false;
734           if (is_prefix_of(".zdebug_", name)
735               && is_gdb_fast_lookup_section(name + 8))
736             return false;
737         }
738       if (parameters->options().strip_lto_sections()
739           && !parameters->options().relocatable()
740           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
741         {
742           // Ignore LTO sections containing intermediate code.
743           if (is_prefix_of(".gnu.lto_", name))
744             return false;
745         }
746       // The GNU linker strips .gnu_debuglink sections, so we do too.
747       // This is a feature used to keep debugging information in
748       // separate files.
749       if (strcmp(name, ".gnu_debuglink") == 0)
750         return false;
751       return true;
752
753     default:
754       return true;
755     }
756 }
757
758 // Return an output section named NAME, or NULL if there is none.
759
760 Output_section*
761 Layout::find_output_section(const char* name) const
762 {
763   for (Section_list::const_iterator p = this->section_list_.begin();
764        p != this->section_list_.end();
765        ++p)
766     if (strcmp((*p)->name(), name) == 0)
767       return *p;
768   return NULL;
769 }
770
771 // Return an output segment of type TYPE, with segment flags SET set
772 // and segment flags CLEAR clear.  Return NULL if there is none.
773
774 Output_segment*
775 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
776                             elfcpp::Elf_Word clear) const
777 {
778   for (Segment_list::const_iterator p = this->segment_list_.begin();
779        p != this->segment_list_.end();
780        ++p)
781     if (static_cast<elfcpp::PT>((*p)->type()) == type
782         && ((*p)->flags() & set) == set
783         && ((*p)->flags() & clear) == 0)
784       return *p;
785   return NULL;
786 }
787
788 // When we put a .ctors or .dtors section with more than one word into
789 // a .init_array or .fini_array section, we need to reverse the words
790 // in the .ctors/.dtors section.  This is because .init_array executes
791 // constructors front to back, where .ctors executes them back to
792 // front, and vice-versa for .fini_array/.dtors.  Although we do want
793 // to remap .ctors/.dtors into .init_array/.fini_array because it can
794 // be more efficient, we don't want to change the order in which
795 // constructors/destructors are run.  This set just keeps track of
796 // these sections which need to be reversed.  It is only changed by
797 // Layout::layout.  It should be a private member of Layout, but that
798 // would require layout.h to #include object.h to get the definition
799 // of Section_id.
800 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
801
802 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
803 // .init_array/.fini_array section.
804
805 bool
806 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
807 {
808   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
809           != ctors_sections_in_init_array.end());
810 }
811
812 // Return the output section to use for section NAME with type TYPE
813 // and section flags FLAGS.  NAME must be canonicalized in the string
814 // pool, and NAME_KEY is the key.  ORDER is where this should appear
815 // in the output sections.  IS_RELRO is true for a relro section.
816
817 Output_section*
818 Layout::get_output_section(const char* name, Stringpool::Key name_key,
819                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
820                            Output_section_order order, bool is_relro)
821 {
822   elfcpp::Elf_Word lookup_type = type;
823
824   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
825   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
826   // .init_array, .fini_array, and .preinit_array sections by name
827   // whatever their type in the input file.  We do this because the
828   // types are not always right in the input files.
829   if (lookup_type == elfcpp::SHT_INIT_ARRAY
830       || lookup_type == elfcpp::SHT_FINI_ARRAY
831       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
832     lookup_type = elfcpp::SHT_PROGBITS;
833
834   elfcpp::Elf_Xword lookup_flags = flags;
835
836   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
837   // read-write with read-only sections.  Some other ELF linkers do
838   // not do this.  FIXME: Perhaps there should be an option
839   // controlling this.
840   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
841
842   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
843   const std::pair<Key, Output_section*> v(key, NULL);
844   std::pair<Section_name_map::iterator, bool> ins(
845     this->section_name_map_.insert(v));
846
847   if (!ins.second)
848     return ins.first->second;
849   else
850     {
851       // This is the first time we've seen this name/type/flags
852       // combination.  For compatibility with the GNU linker, we
853       // combine sections with contents and zero flags with sections
854       // with non-zero flags.  This is a workaround for cases where
855       // assembler code forgets to set section flags.  FIXME: Perhaps
856       // there should be an option to control this.
857       Output_section* os = NULL;
858
859       if (lookup_type == elfcpp::SHT_PROGBITS)
860         {
861           if (flags == 0)
862             {
863               Output_section* same_name = this->find_output_section(name);
864               if (same_name != NULL
865                   && (same_name->type() == elfcpp::SHT_PROGBITS
866                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
867                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
868                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
869                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
870                 os = same_name;
871             }
872           else if ((flags & elfcpp::SHF_TLS) == 0)
873             {
874               elfcpp::Elf_Xword zero_flags = 0;
875               const Key zero_key(name_key, std::make_pair(lookup_type,
876                                                           zero_flags));
877               Section_name_map::iterator p =
878                   this->section_name_map_.find(zero_key);
879               if (p != this->section_name_map_.end())
880                 os = p->second;
881             }
882         }
883
884       if (os == NULL)
885         os = this->make_output_section(name, type, flags, order, is_relro);
886
887       ins.first->second = os;
888       return os;
889     }
890 }
891
892 // Returns TRUE iff NAME (an input section from RELOBJ) will
893 // be mapped to an output section that should be KEPT.
894
895 bool
896 Layout::keep_input_section(const Relobj* relobj, const char* name)
897 {
898   if (! this->script_options_->saw_sections_clause())
899     return false;
900
901   Script_sections* ss = this->script_options_->script_sections();
902   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
903   Output_section** output_section_slot;
904   Script_sections::Section_type script_section_type;
905   bool keep;
906
907   name = ss->output_section_name(file_name, name, &output_section_slot,
908                                  &script_section_type, &keep, true);
909   return name != NULL && keep;
910 }
911
912 // Clear the input section flags that should not be copied to the
913 // output section.
914
915 elfcpp::Elf_Xword
916 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
917 {
918   // Some flags in the input section should not be automatically
919   // copied to the output section.
920   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
921                             | elfcpp::SHF_GROUP
922                             | elfcpp::SHF_COMPRESSED
923                             | elfcpp::SHF_MERGE
924                             | elfcpp::SHF_STRINGS);
925
926   // We only clear the SHF_LINK_ORDER flag in for
927   // a non-relocatable link.
928   if (!parameters->options().relocatable())
929     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
930
931   return input_section_flags;
932 }
933
934 // Pick the output section to use for section NAME, in input file
935 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
936 // linker created section.  IS_INPUT_SECTION is true if we are
937 // choosing an output section for an input section found in a input
938 // file.  ORDER is where this section should appear in the output
939 // sections.  IS_RELRO is true for a relro section.  This will return
940 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
941 // is true if the section name should be matched against input specs
942 // in a linker script.
943
944 Output_section*
945 Layout::choose_output_section(const Relobj* relobj, const char* name,
946                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
947                               bool is_input_section, Output_section_order order,
948                               bool is_relro, bool is_reloc,
949                               bool match_input_spec)
950 {
951   // We should not see any input sections after we have attached
952   // sections to segments.
953   gold_assert(!is_input_section || !this->sections_are_attached_);
954
955   flags = this->get_output_section_flags(flags);
956
957   if (this->script_options_->saw_sections_clause() && !is_reloc)
958     {
959       // We are using a SECTIONS clause, so the output section is
960       // chosen based only on the name.
961
962       Script_sections* ss = this->script_options_->script_sections();
963       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
964       Output_section** output_section_slot;
965       Script_sections::Section_type script_section_type;
966       const char* orig_name = name;
967       bool keep;
968       name = ss->output_section_name(file_name, name, &output_section_slot,
969                                      &script_section_type, &keep,
970                                      match_input_spec);
971
972       if (name == NULL)
973         {
974           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
975                                      "because it is not allowed by the "
976                                      "SECTIONS clause of the linker script"),
977                      orig_name);
978           // The SECTIONS clause says to discard this input section.
979           return NULL;
980         }
981
982       // We can only handle script section types ST_NONE and ST_NOLOAD.
983       switch (script_section_type)
984         {
985         case Script_sections::ST_NONE:
986           break;
987         case Script_sections::ST_NOLOAD:
988           flags &= elfcpp::SHF_ALLOC;
989           break;
990         default:
991           gold_unreachable();
992         }
993
994       // If this is an orphan section--one not mentioned in the linker
995       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
996       // default processing below.
997
998       if (output_section_slot != NULL)
999         {
1000           if (*output_section_slot != NULL)
1001             {
1002               (*output_section_slot)->update_flags_for_input_section(flags);
1003               return *output_section_slot;
1004             }
1005
1006           // We don't put sections found in the linker script into
1007           // SECTION_NAME_MAP_.  That keeps us from getting confused
1008           // if an orphan section is mapped to a section with the same
1009           // name as one in the linker script.
1010
1011           name = this->namepool_.add(name, false, NULL);
1012
1013           Output_section* os = this->make_output_section(name, type, flags,
1014                                                          order, is_relro);
1015
1016           os->set_found_in_sections_clause();
1017
1018           // Special handling for NOLOAD sections.
1019           if (script_section_type == Script_sections::ST_NOLOAD)
1020             {
1021               os->set_is_noload();
1022
1023               // The constructor of Output_section sets addresses of non-ALLOC
1024               // sections to 0 by default.  We don't want that for NOLOAD
1025               // sections even if they have no SHF_ALLOC flag.
1026               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1027                   && os->is_address_valid())
1028                 {
1029                   gold_assert(os->address() == 0
1030                               && !os->is_offset_valid()
1031                               && !os->is_data_size_valid());
1032                   os->reset_address_and_file_offset();
1033                 }
1034             }
1035
1036           *output_section_slot = os;
1037           return os;
1038         }
1039     }
1040
1041   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1042
1043   size_t len = strlen(name);
1044   std::string uncompressed_name;
1045
1046   // Compressed debug sections should be mapped to the corresponding
1047   // uncompressed section.
1048   if (is_compressed_debug_section(name))
1049     {
1050       uncompressed_name =
1051           corresponding_uncompressed_section_name(std::string(name, len));
1052       name = uncompressed_name.c_str();
1053       len = uncompressed_name.length();
1054     }
1055
1056   // Turn NAME from the name of the input section into the name of the
1057   // output section.
1058   if (is_input_section
1059       && !this->script_options_->saw_sections_clause()
1060       && !parameters->options().relocatable())
1061     {
1062       const char *orig_name = name;
1063       name = parameters->target().output_section_name(relobj, name, &len);
1064       if (name == NULL)
1065         name = Layout::output_section_name(relobj, orig_name, &len);
1066     }
1067
1068   Stringpool::Key name_key;
1069   name = this->namepool_.add_with_length(name, len, true, &name_key);
1070
1071   // Find or make the output section.  The output section is selected
1072   // based on the section name, type, and flags.
1073   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1074 }
1075
1076 // For incremental links, record the initial fixed layout of a section
1077 // from the base file, and return a pointer to the Output_section.
1078
1079 template<int size, bool big_endian>
1080 Output_section*
1081 Layout::init_fixed_output_section(const char* name,
1082                                   elfcpp::Shdr<size, big_endian>& shdr)
1083 {
1084   unsigned int sh_type = shdr.get_sh_type();
1085
1086   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1087   // PRE_INIT_ARRAY, and NOTE sections.
1088   // All others will be created from scratch and reallocated.
1089   if (!can_incremental_update(sh_type))
1090     return NULL;
1091
1092   // If we're generating a .gdb_index section, we need to regenerate
1093   // it from scratch.
1094   if (parameters->options().gdb_index()
1095       && sh_type == elfcpp::SHT_PROGBITS
1096       && strcmp(name, ".gdb_index") == 0)
1097     return NULL;
1098
1099   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1100   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1102   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1103   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1104       shdr.get_sh_addralign();
1105
1106   // Make the output section.
1107   Stringpool::Key name_key;
1108   name = this->namepool_.add(name, true, &name_key);
1109   Output_section* os = this->get_output_section(name, name_key, sh_type,
1110                                                 sh_flags, ORDER_INVALID, false);
1111   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1112   if (sh_type != elfcpp::SHT_NOBITS)
1113     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1114   return os;
1115 }
1116
1117 // Return the index by which an input section should be ordered.  This
1118 // is used to sort some .text sections, for compatibility with GNU ld.
1119
1120 int
1121 Layout::special_ordering_of_input_section(const char* name)
1122 {
1123   // The GNU linker has some special handling for some sections that
1124   // wind up in the .text section.  Sections that start with these
1125   // prefixes must appear first, and must appear in the order listed
1126   // here.
1127   static const char* const text_section_sort[] =
1128   {
1129     ".text.unlikely",
1130     ".text.exit",
1131     ".text.startup",
1132     ".text.hot"
1133   };
1134
1135   for (size_t i = 0;
1136        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1137        i++)
1138     if (is_prefix_of(text_section_sort[i], name))
1139       return i;
1140
1141   return -1;
1142 }
1143
1144 // Return the output section to use for input section SHNDX, with name
1145 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1146 // index of a relocation section which applies to this section, or 0
1147 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1148 // relocation section if there is one.  Set *OFF to the offset of this
1149 // input section without the output section.  Return NULL if the
1150 // section should be discarded.  Set *OFF to -1 if the section
1151 // contents should not be written directly to the output file, but
1152 // will instead receive special handling.
1153
1154 template<int size, bool big_endian>
1155 Output_section*
1156 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1157                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1158                unsigned int sh_type, unsigned int reloc_shndx,
1159                unsigned int, off_t* off)
1160 {
1161   *off = 0;
1162
1163   if (!this->include_section(object, name, shdr))
1164     return NULL;
1165
1166   // In a relocatable link a grouped section must not be combined with
1167   // any other sections.
1168   Output_section* os;
1169   if (parameters->options().relocatable()
1170       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1171     {
1172       // Some flags in the input section should not be automatically
1173       // copied to the output section.
1174       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1175                                  & ~ elfcpp::SHF_COMPRESSED);
1176       name = this->namepool_.add(name, true, NULL);
1177       os = this->make_output_section(name, sh_type, flags,
1178                                      ORDER_INVALID, false);
1179     }
1180   else
1181     {
1182       // All ".text.unlikely.*" sections can be moved to a unique
1183       // segment with --text-unlikely-segment option.
1184       bool text_unlikely_segment
1185           = (parameters->options().text_unlikely_segment()
1186              && is_prefix_of(".text.unlikely",
1187                              object->section_name(shndx).c_str()));
1188       if (text_unlikely_segment)
1189         {
1190           elfcpp::Elf_Xword flags
1191             = this->get_output_section_flags(shdr.get_sh_flags());
1192
1193           Stringpool::Key name_key;
1194           const char* os_name = this->namepool_.add(".text.unlikely", true,
1195                                                     &name_key);
1196           os = this->get_output_section(os_name, name_key, sh_type, flags,
1197                                         ORDER_INVALID, false);
1198           // Map this output section to a unique segment.  This is done to
1199           // separate "text" that is not likely to be executed from "text"
1200           // that is likely executed.
1201           os->set_is_unique_segment();
1202         }
1203       else
1204         {
1205           // Plugins can choose to place one or more subsets of sections in
1206           // unique segments and this is done by mapping these section subsets
1207           // to unique output sections.  Check if this section needs to be
1208           // remapped to a unique output section.
1209           Section_segment_map::iterator it
1210             = this->section_segment_map_.find(Const_section_id(object, shndx));
1211           if (it == this->section_segment_map_.end())
1212             {
1213               os = this->choose_output_section(object, name, sh_type,
1214                                                shdr.get_sh_flags(), true,
1215                                                ORDER_INVALID, false, false,
1216                                                true);
1217             }
1218           else
1219             {
1220               // We know the name of the output section, directly call
1221               // get_output_section here by-passing choose_output_section.
1222               elfcpp::Elf_Xword flags
1223                 = this->get_output_section_flags(shdr.get_sh_flags());
1224
1225               const char* os_name = it->second->name;
1226               Stringpool::Key name_key;
1227               os_name = this->namepool_.add(os_name, true, &name_key);
1228               os = this->get_output_section(os_name, name_key, sh_type, flags,
1229                                         ORDER_INVALID, false);
1230               if (!os->is_unique_segment())
1231                 {
1232                   os->set_is_unique_segment();
1233                   os->set_extra_segment_flags(it->second->flags);
1234                   os->set_segment_alignment(it->second->align);
1235                 }
1236             }
1237           }
1238       if (os == NULL)
1239         return NULL;
1240     }
1241
1242   // By default the GNU linker sorts input sections whose names match
1243   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1244   // sections are sorted by name.  This is used to implement
1245   // constructor priority ordering.  We are compatible.  When we put
1246   // .ctor sections in .init_array and .dtor sections in .fini_array,
1247   // we must also sort plain .ctor and .dtor sections.
1248   if (!this->script_options_->saw_sections_clause()
1249       && !parameters->options().relocatable()
1250       && (is_prefix_of(".ctors.", name)
1251           || is_prefix_of(".dtors.", name)
1252           || is_prefix_of(".init_array.", name)
1253           || is_prefix_of(".fini_array.", name)
1254           || (parameters->options().ctors_in_init_array()
1255               && (strcmp(name, ".ctors") == 0
1256                   || strcmp(name, ".dtors") == 0))))
1257     os->set_must_sort_attached_input_sections();
1258
1259   // By default the GNU linker sorts some special text sections ahead
1260   // of others.  We are compatible.
1261   if (parameters->options().text_reorder()
1262       && !this->script_options_->saw_sections_clause()
1263       && !this->is_section_ordering_specified()
1264       && !parameters->options().relocatable()
1265       && Layout::special_ordering_of_input_section(name) >= 0)
1266     os->set_must_sort_attached_input_sections();
1267
1268   // If this is a .ctors or .ctors.* section being mapped to a
1269   // .init_array section, or a .dtors or .dtors.* section being mapped
1270   // to a .fini_array section, we will need to reverse the words if
1271   // there is more than one.  Record this section for later.  See
1272   // ctors_sections_in_init_array above.
1273   if (!this->script_options_->saw_sections_clause()
1274       && !parameters->options().relocatable()
1275       && shdr.get_sh_size() > size / 8
1276       && (((strcmp(name, ".ctors") == 0
1277             || is_prefix_of(".ctors.", name))
1278            && strcmp(os->name(), ".init_array") == 0)
1279           || ((strcmp(name, ".dtors") == 0
1280                || is_prefix_of(".dtors.", name))
1281               && strcmp(os->name(), ".fini_array") == 0)))
1282     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1283
1284   // FIXME: Handle SHF_LINK_ORDER somewhere.
1285
1286   elfcpp::Elf_Xword orig_flags = os->flags();
1287
1288   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1289                                this->script_options_->saw_sections_clause());
1290
1291   // If the flags changed, we may have to change the order.
1292   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1293     {
1294       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1295       elfcpp::Elf_Xword new_flags =
1296         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1297       if (orig_flags != new_flags)
1298         os->set_order(this->default_section_order(os, false));
1299     }
1300
1301   this->have_added_input_section_ = true;
1302
1303   return os;
1304 }
1305
1306 // Maps section SECN to SEGMENT s.
1307 void
1308 Layout::insert_section_segment_map(Const_section_id secn,
1309                                    Unique_segment_info *s)
1310 {
1311   gold_assert(this->unique_segment_for_sections_specified_);
1312   this->section_segment_map_[secn] = s;
1313 }
1314
1315 // Handle a relocation section when doing a relocatable link.
1316
1317 template<int size, bool big_endian>
1318 Output_section*
1319 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1320                      unsigned int,
1321                      const elfcpp::Shdr<size, big_endian>& shdr,
1322                      Output_section* data_section,
1323                      Relocatable_relocs* rr)
1324 {
1325   gold_assert(parameters->options().relocatable()
1326               || parameters->options().emit_relocs());
1327
1328   int sh_type = shdr.get_sh_type();
1329
1330   std::string name;
1331   if (sh_type == elfcpp::SHT_REL)
1332     name = ".rel";
1333   else if (sh_type == elfcpp::SHT_RELA)
1334     name = ".rela";
1335   else
1336     gold_unreachable();
1337   name += data_section->name();
1338
1339   // If the output data section already has a reloc section, use that;
1340   // otherwise, make a new one.
1341   Output_section* os = data_section->reloc_section();
1342   if (os == NULL)
1343     {
1344       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1345       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1346                                      ORDER_INVALID, false);
1347       os->set_should_link_to_symtab();
1348       os->set_info_section(data_section);
1349       data_section->set_reloc_section(os);
1350     }
1351
1352   Output_section_data* posd;
1353   if (sh_type == elfcpp::SHT_REL)
1354     {
1355       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1356       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1357                                            size,
1358                                            big_endian>(rr);
1359     }
1360   else if (sh_type == elfcpp::SHT_RELA)
1361     {
1362       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1363       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1364                                            size,
1365                                            big_endian>(rr);
1366     }
1367   else
1368     gold_unreachable();
1369
1370   os->add_output_section_data(posd);
1371   rr->set_output_data(posd);
1372
1373   return os;
1374 }
1375
1376 // Handle a group section when doing a relocatable link.
1377
1378 template<int size, bool big_endian>
1379 void
1380 Layout::layout_group(Symbol_table* symtab,
1381                      Sized_relobj_file<size, big_endian>* object,
1382                      unsigned int,
1383                      const char* group_section_name,
1384                      const char* signature,
1385                      const elfcpp::Shdr<size, big_endian>& shdr,
1386                      elfcpp::Elf_Word flags,
1387                      std::vector<unsigned int>* shndxes)
1388 {
1389   gold_assert(parameters->options().relocatable());
1390   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1391   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1392   Output_section* os = this->make_output_section(group_section_name,
1393                                                  elfcpp::SHT_GROUP,
1394                                                  shdr.get_sh_flags(),
1395                                                  ORDER_INVALID, false);
1396
1397   // We need to find a symbol with the signature in the symbol table.
1398   // If we don't find one now, we need to look again later.
1399   Symbol* sym = symtab->lookup(signature, NULL);
1400   if (sym != NULL)
1401     os->set_info_symndx(sym);
1402   else
1403     {
1404       // Reserve some space to minimize reallocations.
1405       if (this->group_signatures_.empty())
1406         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1407
1408       // We will wind up using a symbol whose name is the signature.
1409       // So just put the signature in the symbol name pool to save it.
1410       signature = symtab->canonicalize_name(signature);
1411       this->group_signatures_.push_back(Group_signature(os, signature));
1412     }
1413
1414   os->set_should_link_to_symtab();
1415   os->set_entsize(4);
1416
1417   section_size_type entry_count =
1418     convert_to_section_size_type(shdr.get_sh_size() / 4);
1419   Output_section_data* posd =
1420     new Output_data_group<size, big_endian>(object, entry_count, flags,
1421                                             shndxes);
1422   os->add_output_section_data(posd);
1423 }
1424
1425 // Special GNU handling of sections name .eh_frame.  They will
1426 // normally hold exception frame data as defined by the C++ ABI
1427 // (http://codesourcery.com/cxx-abi/).
1428
1429 template<int size, bool big_endian>
1430 Output_section*
1431 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1432                         const unsigned char* symbols,
1433                         off_t symbols_size,
1434                         const unsigned char* symbol_names,
1435                         off_t symbol_names_size,
1436                         unsigned int shndx,
1437                         const elfcpp::Shdr<size, big_endian>& shdr,
1438                         unsigned int reloc_shndx, unsigned int reloc_type,
1439                         off_t* off)
1440 {
1441   const unsigned int unwind_section_type =
1442       parameters->target().unwind_section_type();
1443
1444   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1445               || shdr.get_sh_type() == unwind_section_type);
1446   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1447
1448   Output_section* os = this->make_eh_frame_section(object);
1449   if (os == NULL)
1450     return NULL;
1451
1452   gold_assert(this->eh_frame_section_ == os);
1453
1454   elfcpp::Elf_Xword orig_flags = os->flags();
1455
1456   Eh_frame::Eh_frame_section_disposition disp =
1457       Eh_frame::EH_UNRECOGNIZED_SECTION;
1458   if (!parameters->incremental())
1459     {
1460       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1461                                                              symbols,
1462                                                              symbols_size,
1463                                                              symbol_names,
1464                                                              symbol_names_size,
1465                                                              shndx,
1466                                                              reloc_shndx,
1467                                                              reloc_type);
1468     }
1469
1470   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1471     {
1472       os->update_flags_for_input_section(shdr.get_sh_flags());
1473
1474       // A writable .eh_frame section is a RELRO section.
1475       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1476           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1477         {
1478           os->set_is_relro();
1479           os->set_order(ORDER_RELRO);
1480         }
1481
1482       *off = -1;
1483       return os;
1484     }
1485
1486   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1487     {
1488       // We found the end marker section, so now we can add the set of
1489       // optimized sections to the output section.  We need to postpone
1490       // adding this until we've found a section we can optimize so that
1491       // the .eh_frame section in crtbeginT.o winds up at the start of
1492       // the output section.
1493       os->add_output_section_data(this->eh_frame_data_);
1494       this->added_eh_frame_data_ = true;
1495      }
1496
1497   // We couldn't handle this .eh_frame section for some reason.
1498   // Add it as a normal section.
1499   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1500   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1501                                reloc_shndx, saw_sections_clause);
1502   this->have_added_input_section_ = true;
1503
1504   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1505       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1506     os->set_order(this->default_section_order(os, false));
1507
1508   return os;
1509 }
1510
1511 void
1512 Layout::finalize_eh_frame_section()
1513 {
1514   // If we never found an end marker section, we need to add the
1515   // optimized eh sections to the output section now.
1516   if (!parameters->incremental()
1517       && this->eh_frame_section_ != NULL
1518       && !this->added_eh_frame_data_)
1519     {
1520       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1521       this->added_eh_frame_data_ = true;
1522     }
1523 }
1524
1525 // Create and return the magic .eh_frame section.  Create
1526 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1527 // input .eh_frame section; it may be NULL.
1528
1529 Output_section*
1530 Layout::make_eh_frame_section(const Relobj* object)
1531 {
1532   const unsigned int unwind_section_type =
1533       parameters->target().unwind_section_type();
1534
1535   Output_section* os = this->choose_output_section(object, ".eh_frame",
1536                                                    unwind_section_type,
1537                                                    elfcpp::SHF_ALLOC, false,
1538                                                    ORDER_EHFRAME, false, false,
1539                                                    false);
1540   if (os == NULL)
1541     return NULL;
1542
1543   if (this->eh_frame_section_ == NULL)
1544     {
1545       this->eh_frame_section_ = os;
1546       this->eh_frame_data_ = new Eh_frame();
1547
1548       // For incremental linking, we do not optimize .eh_frame sections
1549       // or create a .eh_frame_hdr section.
1550       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1551         {
1552           Output_section* hdr_os =
1553             this->choose_output_section(NULL, ".eh_frame_hdr",
1554                                         unwind_section_type,
1555                                         elfcpp::SHF_ALLOC, false,
1556                                         ORDER_EHFRAME, false, false,
1557                                         false);
1558
1559           if (hdr_os != NULL)
1560             {
1561               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1562                                                         this->eh_frame_data_);
1563               hdr_os->add_output_section_data(hdr_posd);
1564
1565               hdr_os->set_after_input_sections();
1566
1567               if (!this->script_options_->saw_phdrs_clause())
1568                 {
1569                   Output_segment* hdr_oseg;
1570                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1571                                                        elfcpp::PF_R);
1572                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1573                                                           elfcpp::PF_R);
1574                 }
1575
1576               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1577             }
1578         }
1579     }
1580
1581   return os;
1582 }
1583
1584 // Add an exception frame for a PLT.  This is called from target code.
1585
1586 void
1587 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1588                              size_t cie_length, const unsigned char* fde_data,
1589                              size_t fde_length)
1590 {
1591   if (parameters->incremental())
1592     {
1593       // FIXME: Maybe this could work some day....
1594       return;
1595     }
1596   Output_section* os = this->make_eh_frame_section(NULL);
1597   if (os == NULL)
1598     return;
1599   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1600                                             fde_data, fde_length);
1601   if (!this->added_eh_frame_data_)
1602     {
1603       os->add_output_section_data(this->eh_frame_data_);
1604       this->added_eh_frame_data_ = true;
1605     }
1606 }
1607
1608 // Remove all post-map .eh_frame information for a PLT.
1609
1610 void
1611 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1612                                 size_t cie_length)
1613 {
1614   if (parameters->incremental())
1615     {
1616       // FIXME: Maybe this could work some day....
1617       return;
1618     }
1619   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1620 }
1621
1622 // Scan a .debug_info or .debug_types section, and add summary
1623 // information to the .gdb_index section.
1624
1625 template<int size, bool big_endian>
1626 void
1627 Layout::add_to_gdb_index(bool is_type_unit,
1628                          Sized_relobj<size, big_endian>* object,
1629                          const unsigned char* symbols,
1630                          off_t symbols_size,
1631                          unsigned int shndx,
1632                          unsigned int reloc_shndx,
1633                          unsigned int reloc_type)
1634 {
1635   if (this->gdb_index_data_ == NULL)
1636     {
1637       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1638                                                        elfcpp::SHT_PROGBITS, 0,
1639                                                        false, ORDER_INVALID,
1640                                                        false, false, false);
1641       if (os == NULL)
1642         return;
1643
1644       this->gdb_index_data_ = new Gdb_index(os);
1645       os->add_output_section_data(this->gdb_index_data_);
1646       os->set_after_input_sections();
1647     }
1648
1649   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1650                                          symbols_size, shndx, reloc_shndx,
1651                                          reloc_type);
1652 }
1653
1654 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1655 // the output section.
1656
1657 Output_section*
1658 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1659                                 elfcpp::Elf_Xword flags,
1660                                 Output_section_data* posd,
1661                                 Output_section_order order, bool is_relro)
1662 {
1663   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1664                                                    false, order, is_relro,
1665                                                    false, false);
1666   if (os != NULL)
1667     os->add_output_section_data(posd);
1668   return os;
1669 }
1670
1671 // Map section flags to segment flags.
1672
1673 elfcpp::Elf_Word
1674 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1675 {
1676   elfcpp::Elf_Word ret = elfcpp::PF_R;
1677   if ((flags & elfcpp::SHF_WRITE) != 0)
1678     ret |= elfcpp::PF_W;
1679   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1680     ret |= elfcpp::PF_X;
1681   return ret;
1682 }
1683
1684 // Make a new Output_section, and attach it to segments as
1685 // appropriate.  ORDER is the order in which this section should
1686 // appear in the output segment.  IS_RELRO is true if this is a relro
1687 // (read-only after relocations) section.
1688
1689 Output_section*
1690 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1691                             elfcpp::Elf_Xword flags,
1692                             Output_section_order order, bool is_relro)
1693 {
1694   Output_section* os;
1695   if ((flags & elfcpp::SHF_ALLOC) == 0
1696       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1697       && is_compressible_debug_section(name))
1698     os = new Output_compressed_section(&parameters->options(), name, type,
1699                                        flags);
1700   else if ((flags & elfcpp::SHF_ALLOC) == 0
1701            && parameters->options().strip_debug_non_line()
1702            && strcmp(".debug_abbrev", name) == 0)
1703     {
1704       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1705           name, type, flags);
1706       if (this->debug_info_)
1707         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1708     }
1709   else if ((flags & elfcpp::SHF_ALLOC) == 0
1710            && parameters->options().strip_debug_non_line()
1711            && strcmp(".debug_info", name) == 0)
1712     {
1713       os = this->debug_info_ = new Output_reduced_debug_info_section(
1714           name, type, flags);
1715       if (this->debug_abbrev_)
1716         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1717     }
1718   else
1719     {
1720       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1721       // not have correct section types.  Force them here.
1722       if (type == elfcpp::SHT_PROGBITS)
1723         {
1724           if (is_prefix_of(".init_array", name))
1725             type = elfcpp::SHT_INIT_ARRAY;
1726           else if (is_prefix_of(".preinit_array", name))
1727             type = elfcpp::SHT_PREINIT_ARRAY;
1728           else if (is_prefix_of(".fini_array", name))
1729             type = elfcpp::SHT_FINI_ARRAY;
1730         }
1731
1732       // FIXME: const_cast is ugly.
1733       Target* target = const_cast<Target*>(&parameters->target());
1734       os = target->make_output_section(name, type, flags);
1735     }
1736
1737   // With -z relro, we have to recognize the special sections by name.
1738   // There is no other way.
1739   bool is_relro_local = false;
1740   if (!this->script_options_->saw_sections_clause()
1741       && parameters->options().relro()
1742       && (flags & elfcpp::SHF_ALLOC) != 0
1743       && (flags & elfcpp::SHF_WRITE) != 0)
1744     {
1745       if (type == elfcpp::SHT_PROGBITS)
1746         {
1747           if ((flags & elfcpp::SHF_TLS) != 0)
1748             is_relro = true;
1749           else if (strcmp(name, ".data.rel.ro") == 0)
1750             is_relro = true;
1751           else if (strcmp(name, ".data.rel.ro.local") == 0)
1752             {
1753               is_relro = true;
1754               is_relro_local = true;
1755             }
1756           else if (strcmp(name, ".ctors") == 0
1757                    || strcmp(name, ".dtors") == 0
1758                    || strcmp(name, ".jcr") == 0)
1759             is_relro = true;
1760         }
1761       else if (type == elfcpp::SHT_INIT_ARRAY
1762                || type == elfcpp::SHT_FINI_ARRAY
1763                || type == elfcpp::SHT_PREINIT_ARRAY)
1764         is_relro = true;
1765     }
1766
1767   if (is_relro)
1768     os->set_is_relro();
1769
1770   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1771     order = this->default_section_order(os, is_relro_local);
1772
1773   os->set_order(order);
1774
1775   parameters->target().new_output_section(os);
1776
1777   this->section_list_.push_back(os);
1778
1779   // The GNU linker by default sorts some sections by priority, so we
1780   // do the same.  We need to know that this might happen before we
1781   // attach any input sections.
1782   if (!this->script_options_->saw_sections_clause()
1783       && !parameters->options().relocatable()
1784       && (strcmp(name, ".init_array") == 0
1785           || strcmp(name, ".fini_array") == 0
1786           || (!parameters->options().ctors_in_init_array()
1787               && (strcmp(name, ".ctors") == 0
1788                   || strcmp(name, ".dtors") == 0))))
1789     os->set_may_sort_attached_input_sections();
1790
1791   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1792   // sections before other .text sections.  We are compatible.  We
1793   // need to know that this might happen before we attach any input
1794   // sections.
1795   if (parameters->options().text_reorder()
1796       && !this->script_options_->saw_sections_clause()
1797       && !this->is_section_ordering_specified()
1798       && !parameters->options().relocatable()
1799       && strcmp(name, ".text") == 0)
1800     os->set_may_sort_attached_input_sections();
1801
1802   // GNU linker sorts section by name with --sort-section=name.
1803   if (strcmp(parameters->options().sort_section(), "name") == 0)
1804       os->set_must_sort_attached_input_sections();
1805
1806   // Check for .stab*str sections, as .stab* sections need to link to
1807   // them.
1808   if (type == elfcpp::SHT_STRTAB
1809       && !this->have_stabstr_section_
1810       && strncmp(name, ".stab", 5) == 0
1811       && strcmp(name + strlen(name) - 3, "str") == 0)
1812     this->have_stabstr_section_ = true;
1813
1814   // During a full incremental link, we add patch space to most
1815   // PROGBITS and NOBITS sections.  Flag those that may be
1816   // arbitrarily padded.
1817   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1818       && order != ORDER_INTERP
1819       && order != ORDER_INIT
1820       && order != ORDER_PLT
1821       && order != ORDER_FINI
1822       && order != ORDER_RELRO_LAST
1823       && order != ORDER_NON_RELRO_FIRST
1824       && strcmp(name, ".eh_frame") != 0
1825       && strcmp(name, ".ctors") != 0
1826       && strcmp(name, ".dtors") != 0
1827       && strcmp(name, ".jcr") != 0)
1828     {
1829       os->set_is_patch_space_allowed();
1830
1831       // Certain sections require "holes" to be filled with
1832       // specific fill patterns.  These fill patterns may have
1833       // a minimum size, so we must prevent allocations from the
1834       // free list that leave a hole smaller than the minimum.
1835       if (strcmp(name, ".debug_info") == 0)
1836         os->set_free_space_fill(new Output_fill_debug_info(false));
1837       else if (strcmp(name, ".debug_types") == 0)
1838         os->set_free_space_fill(new Output_fill_debug_info(true));
1839       else if (strcmp(name, ".debug_line") == 0)
1840         os->set_free_space_fill(new Output_fill_debug_line());
1841     }
1842
1843   // If we have already attached the sections to segments, then we
1844   // need to attach this one now.  This happens for sections created
1845   // directly by the linker.
1846   if (this->sections_are_attached_)
1847     this->attach_section_to_segment(&parameters->target(), os);
1848
1849   return os;
1850 }
1851
1852 // Return the default order in which a section should be placed in an
1853 // output segment.  This function captures a lot of the ideas in
1854 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1855 // linker created section is normally set when the section is created;
1856 // this function is used for input sections.
1857
1858 Output_section_order
1859 Layout::default_section_order(Output_section* os, bool is_relro_local)
1860 {
1861   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1862   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1863   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1864   bool is_bss = false;
1865
1866   switch (os->type())
1867     {
1868     default:
1869     case elfcpp::SHT_PROGBITS:
1870       break;
1871     case elfcpp::SHT_NOBITS:
1872       is_bss = true;
1873       break;
1874     case elfcpp::SHT_RELA:
1875     case elfcpp::SHT_REL:
1876       if (!is_write)
1877         return ORDER_DYNAMIC_RELOCS;
1878       break;
1879     case elfcpp::SHT_HASH:
1880     case elfcpp::SHT_DYNAMIC:
1881     case elfcpp::SHT_SHLIB:
1882     case elfcpp::SHT_DYNSYM:
1883     case elfcpp::SHT_GNU_HASH:
1884     case elfcpp::SHT_GNU_verdef:
1885     case elfcpp::SHT_GNU_verneed:
1886     case elfcpp::SHT_GNU_versym:
1887       if (!is_write)
1888         return ORDER_DYNAMIC_LINKER;
1889       break;
1890     case elfcpp::SHT_NOTE:
1891       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1892     }
1893
1894   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1895     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1896
1897   if (!is_bss && !is_write)
1898     {
1899       if (is_execinstr)
1900         {
1901           if (strcmp(os->name(), ".init") == 0)
1902             return ORDER_INIT;
1903           else if (strcmp(os->name(), ".fini") == 0)
1904             return ORDER_FINI;
1905           else if (parameters->options().keep_text_section_prefix())
1906             {
1907               // -z,keep-text-section-prefix introduces additional
1908               // output sections.
1909               if (strcmp(os->name(), ".text.hot") == 0)
1910                 return ORDER_TEXT_HOT;
1911               else if (strcmp(os->name(), ".text.startup") == 0)
1912                 return ORDER_TEXT_STARTUP;
1913               else if (strcmp(os->name(), ".text.exit") == 0)
1914                 return ORDER_TEXT_EXIT;
1915               else if (strcmp(os->name(), ".text.unlikely") == 0)
1916                 return ORDER_TEXT_UNLIKELY;
1917             }
1918         }
1919       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1920     }
1921
1922   if (os->is_relro())
1923     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1924
1925   if (os->is_small_section())
1926     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1927   if (os->is_large_section())
1928     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1929
1930   return is_bss ? ORDER_BSS : ORDER_DATA;
1931 }
1932
1933 // Attach output sections to segments.  This is called after we have
1934 // seen all the input sections.
1935
1936 void
1937 Layout::attach_sections_to_segments(const Target* target)
1938 {
1939   for (Section_list::iterator p = this->section_list_.begin();
1940        p != this->section_list_.end();
1941        ++p)
1942     this->attach_section_to_segment(target, *p);
1943
1944   this->sections_are_attached_ = true;
1945 }
1946
1947 // Attach an output section to a segment.
1948
1949 void
1950 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1951 {
1952   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1953     this->unattached_section_list_.push_back(os);
1954   else
1955     this->attach_allocated_section_to_segment(target, os);
1956 }
1957
1958 // Attach an allocated output section to a segment.
1959
1960 void
1961 Layout::attach_allocated_section_to_segment(const Target* target,
1962                                             Output_section* os)
1963 {
1964   elfcpp::Elf_Xword flags = os->flags();
1965   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1966
1967   if (parameters->options().relocatable())
1968     return;
1969
1970   // If we have a SECTIONS clause, we can't handle the attachment to
1971   // segments until after we've seen all the sections.
1972   if (this->script_options_->saw_sections_clause())
1973     return;
1974
1975   gold_assert(!this->script_options_->saw_phdrs_clause());
1976
1977   // This output section goes into a PT_LOAD segment.
1978
1979   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1980
1981   // If this output section's segment has extra flags that need to be set,
1982   // coming from a linker plugin, do that.
1983   seg_flags |= os->extra_segment_flags();
1984
1985   // Check for --section-start.
1986   uint64_t addr;
1987   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1988
1989   // In general the only thing we really care about for PT_LOAD
1990   // segments is whether or not they are writable or executable,
1991   // so that is how we search for them.
1992   // Large data sections also go into their own PT_LOAD segment.
1993   // People who need segments sorted on some other basis will
1994   // have to use a linker script.
1995
1996   Segment_list::const_iterator p;
1997   if (!os->is_unique_segment())
1998     {
1999       for (p = this->segment_list_.begin();
2000            p != this->segment_list_.end();
2001            ++p)
2002         {
2003           if ((*p)->type() != elfcpp::PT_LOAD)
2004             continue;
2005           if ((*p)->is_unique_segment())
2006             continue;
2007           if (!parameters->options().omagic()
2008               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2009             continue;
2010           if ((target->isolate_execinstr() || parameters->options().rosegment())
2011               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2012             continue;
2013           // If -Tbss was specified, we need to separate the data and BSS
2014           // segments.
2015           if (parameters->options().user_set_Tbss())
2016             {
2017               if ((os->type() == elfcpp::SHT_NOBITS)
2018                   == (*p)->has_any_data_sections())
2019                 continue;
2020             }
2021           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2022             continue;
2023
2024           if (is_address_set)
2025             {
2026               if ((*p)->are_addresses_set())
2027                 continue;
2028
2029               (*p)->add_initial_output_data(os);
2030               (*p)->update_flags_for_output_section(seg_flags);
2031               (*p)->set_addresses(addr, addr);
2032               break;
2033             }
2034
2035           (*p)->add_output_section_to_load(this, os, seg_flags);
2036           break;
2037         }
2038     }
2039
2040   if (p == this->segment_list_.end()
2041       || os->is_unique_segment())
2042     {
2043       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2044                                                        seg_flags);
2045       if (os->is_large_data_section())
2046         oseg->set_is_large_data_segment();
2047       oseg->add_output_section_to_load(this, os, seg_flags);
2048       if (is_address_set)
2049         oseg->set_addresses(addr, addr);
2050       // Check if segment should be marked unique.  For segments marked
2051       // unique by linker plugins, set the new alignment if specified.
2052       if (os->is_unique_segment())
2053         {
2054           oseg->set_is_unique_segment();
2055           if (os->segment_alignment() != 0)
2056             oseg->set_minimum_p_align(os->segment_alignment());
2057         }
2058     }
2059
2060   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2061   // segment.
2062   if (os->type() == elfcpp::SHT_NOTE)
2063     {
2064       // See if we already have an equivalent PT_NOTE segment.
2065       for (p = this->segment_list_.begin();
2066            p != segment_list_.end();
2067            ++p)
2068         {
2069           if ((*p)->type() == elfcpp::PT_NOTE
2070               && (((*p)->flags() & elfcpp::PF_W)
2071                   == (seg_flags & elfcpp::PF_W)))
2072             {
2073               (*p)->add_output_section_to_nonload(os, seg_flags);
2074               break;
2075             }
2076         }
2077
2078       if (p == this->segment_list_.end())
2079         {
2080           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2081                                                            seg_flags);
2082           oseg->add_output_section_to_nonload(os, seg_flags);
2083         }
2084     }
2085
2086   // If we see a loadable SHF_TLS section, we create a PT_TLS
2087   // segment.  There can only be one such segment.
2088   if ((flags & elfcpp::SHF_TLS) != 0)
2089     {
2090       if (this->tls_segment_ == NULL)
2091         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2092       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2093     }
2094
2095   // If -z relro is in effect, and we see a relro section, we create a
2096   // PT_GNU_RELRO segment.  There can only be one such segment.
2097   if (os->is_relro() && parameters->options().relro())
2098     {
2099       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2100       if (this->relro_segment_ == NULL)
2101         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2102       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2103     }
2104
2105   // If we see a section named .interp, put it into a PT_INTERP
2106   // segment.  This seems broken to me, but this is what GNU ld does,
2107   // and glibc expects it.
2108   if (strcmp(os->name(), ".interp") == 0
2109       && !this->script_options_->saw_phdrs_clause())
2110     {
2111       if (this->interp_segment_ == NULL)
2112         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2113       else
2114         gold_warning(_("multiple '.interp' sections in input files "
2115                        "may cause confusing PT_INTERP segment"));
2116       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2117     }
2118 }
2119
2120 // Make an output section for a script.
2121
2122 Output_section*
2123 Layout::make_output_section_for_script(
2124     const char* name,
2125     Script_sections::Section_type section_type)
2126 {
2127   name = this->namepool_.add(name, false, NULL);
2128   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2129   if (section_type == Script_sections::ST_NOLOAD)
2130     sh_flags = 0;
2131   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2132                                                  sh_flags, ORDER_INVALID,
2133                                                  false);
2134   os->set_found_in_sections_clause();
2135   if (section_type == Script_sections::ST_NOLOAD)
2136     os->set_is_noload();
2137   return os;
2138 }
2139
2140 // Return the number of segments we expect to see.
2141
2142 size_t
2143 Layout::expected_segment_count() const
2144 {
2145   size_t ret = this->segment_list_.size();
2146
2147   // If we didn't see a SECTIONS clause in a linker script, we should
2148   // already have the complete list of segments.  Otherwise we ask the
2149   // SECTIONS clause how many segments it expects, and add in the ones
2150   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2151
2152   if (!this->script_options_->saw_sections_clause())
2153     return ret;
2154   else
2155     {
2156       const Script_sections* ss = this->script_options_->script_sections();
2157       return ret + ss->expected_segment_count(this);
2158     }
2159 }
2160
2161 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2162 // is whether we saw a .note.GNU-stack section in the object file.
2163 // GNU_STACK_FLAGS is the section flags.  The flags give the
2164 // protection required for stack memory.  We record this in an
2165 // executable as a PT_GNU_STACK segment.  If an object file does not
2166 // have a .note.GNU-stack segment, we must assume that it is an old
2167 // object.  On some targets that will force an executable stack.
2168
2169 void
2170 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2171                          const Object* obj)
2172 {
2173   if (!seen_gnu_stack)
2174     {
2175       this->input_without_gnu_stack_note_ = true;
2176       if (parameters->options().warn_execstack()
2177           && parameters->target().is_default_stack_executable())
2178         gold_warning(_("%s: missing .note.GNU-stack section"
2179                        " implies executable stack"),
2180                      obj->name().c_str());
2181     }
2182   else
2183     {
2184       this->input_with_gnu_stack_note_ = true;
2185       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2186         {
2187           this->input_requires_executable_stack_ = true;
2188           if (parameters->options().warn_execstack())
2189             gold_warning(_("%s: requires executable stack"),
2190                          obj->name().c_str());
2191         }
2192     }
2193 }
2194
2195 // Read a value with given size and endianness.
2196
2197 static inline uint64_t
2198 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2199                  const Object* object)
2200 {
2201   uint64_t val = 0;
2202   if (size == 4)
2203     {
2204       if (is_big_endian)
2205         val = elfcpp::Swap<32, true>::readval(buf);
2206       else
2207         val = elfcpp::Swap<32, false>::readval(buf);
2208     }
2209   else if (size == 8)
2210     {
2211       if (is_big_endian)
2212         val = elfcpp::Swap<64, true>::readval(buf);
2213       else
2214         val = elfcpp::Swap<64, false>::readval(buf);
2215     }
2216   else
2217     {
2218       gold_warning(_("%s: in .note.gnu.property section, "
2219                      "pr_datasz must be 4 or 8"),
2220                    object->name().c_str());
2221     }
2222   return val;
2223 }
2224
2225 // Write a value with given size and endianness.
2226
2227 static inline void
2228 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2229                   bool is_big_endian)
2230 {
2231   if (size == 4)
2232     {
2233       if (is_big_endian)
2234         elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2235       else
2236         elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2237     }
2238   else if (size == 8)
2239     {
2240       if (is_big_endian)
2241         elfcpp::Swap<64, true>::writeval(buf, value);
2242       else
2243         elfcpp::Swap<64, false>::writeval(buf, value);
2244     }
2245   else
2246     {
2247       // We will have already complained about this.
2248     }
2249 }
2250
2251 // Handle the .note.gnu.property section at layout time.
2252
2253 void
2254 Layout::layout_gnu_property(unsigned int note_type,
2255                             unsigned int pr_type,
2256                             size_t pr_datasz,
2257                             const unsigned char* pr_data,
2258                             const Object* object)
2259 {
2260   // We currently support only the one note type.
2261   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2262
2263   if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2264       && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2265     {
2266       // Target-dependent property value; call the target to record.
2267       const int size = parameters->target().get_size();
2268       const bool is_big_endian = parameters->target().is_big_endian();
2269       if (size == 32)
2270         {
2271           if (is_big_endian)
2272             {
2273 #ifdef HAVE_TARGET_32_BIG
2274               parameters->sized_target<32, true>()->
2275                   record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2276                                       object);
2277 #else
2278               gold_unreachable();
2279 #endif
2280             }
2281           else
2282             {
2283 #ifdef HAVE_TARGET_32_LITTLE
2284               parameters->sized_target<32, false>()->
2285                   record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2286                                       object);
2287 #else
2288               gold_unreachable();
2289 #endif
2290             }
2291         }
2292       else if (size == 64)
2293         {
2294           if (is_big_endian)
2295             {
2296 #ifdef HAVE_TARGET_64_BIG
2297               parameters->sized_target<64, true>()->
2298                   record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2299                                       object);
2300 #else
2301               gold_unreachable();
2302 #endif
2303             }
2304           else
2305             {
2306 #ifdef HAVE_TARGET_64_LITTLE
2307               parameters->sized_target<64, false>()->
2308                   record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2309                                       object);
2310 #else
2311               gold_unreachable();
2312 #endif
2313             }
2314         }
2315       else
2316         gold_unreachable();
2317       return;
2318     }
2319
2320   Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2321   if (pprop == this->gnu_properties_.end())
2322     {
2323       Gnu_property prop;
2324       prop.pr_datasz = pr_datasz;
2325       prop.pr_data = new unsigned char[pr_datasz];
2326       memcpy(prop.pr_data, pr_data, pr_datasz);
2327       this->gnu_properties_[pr_type] = prop;
2328     }
2329   else
2330     {
2331       const bool is_big_endian = parameters->target().is_big_endian();
2332       switch (pr_type)
2333         {
2334         case elfcpp::GNU_PROPERTY_STACK_SIZE:
2335           // Record the maximum value seen.
2336           {
2337             uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2338                                              pprop->second.pr_data,
2339                                              is_big_endian, object);
2340             uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2341                                              is_big_endian, object);
2342             if (val2 > val1)
2343               write_sized_value(val2, pprop->second.pr_datasz,
2344                                 pprop->second.pr_data, is_big_endian);
2345           }
2346           break;
2347         case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2348           // No data to merge.
2349           break;
2350         default:
2351           gold_warning(_("%s: unknown program property type %d "
2352                          "in .note.gnu.property section"),
2353                        object->name().c_str(), pr_type);
2354         }
2355     }
2356 }
2357
2358 // Merge per-object properties with program properties.
2359 // This lets the target identify objects that are missing certain
2360 // properties, in cases where properties must be ANDed together.
2361
2362 void
2363 Layout::merge_gnu_properties(const Object* object)
2364 {
2365   const int size = parameters->target().get_size();
2366   const bool is_big_endian = parameters->target().is_big_endian();
2367   if (size == 32)
2368     {
2369       if (is_big_endian)
2370         {
2371 #ifdef HAVE_TARGET_32_BIG
2372           parameters->sized_target<32, true>()->merge_gnu_properties(object);
2373 #else
2374           gold_unreachable();
2375 #endif
2376         }
2377       else
2378         {
2379 #ifdef HAVE_TARGET_32_LITTLE
2380           parameters->sized_target<32, false>()->merge_gnu_properties(object);
2381 #else
2382           gold_unreachable();
2383 #endif
2384         }
2385     }
2386   else if (size == 64)
2387     {
2388       if (is_big_endian)
2389         {
2390 #ifdef HAVE_TARGET_64_BIG
2391           parameters->sized_target<64, true>()->merge_gnu_properties(object);
2392 #else
2393           gold_unreachable();
2394 #endif
2395         }
2396       else
2397         {
2398 #ifdef HAVE_TARGET_64_LITTLE
2399           parameters->sized_target<64, false>()->merge_gnu_properties(object);
2400 #else
2401           gold_unreachable();
2402 #endif
2403         }
2404     }
2405   else
2406     gold_unreachable();
2407 }
2408
2409 // Add a target-specific property for the output .note.gnu.property section.
2410
2411 void
2412 Layout::add_gnu_property(unsigned int note_type,
2413                          unsigned int pr_type,
2414                          size_t pr_datasz,
2415                          const unsigned char* pr_data)
2416 {
2417   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2418
2419   Gnu_property prop;
2420   prop.pr_datasz = pr_datasz;
2421   prop.pr_data = new unsigned char[pr_datasz];
2422   memcpy(prop.pr_data, pr_data, pr_datasz);
2423   this->gnu_properties_[pr_type] = prop;
2424 }
2425
2426 // Create automatic note sections.
2427
2428 void
2429 Layout::create_notes()
2430 {
2431   this->create_gnu_properties_note();
2432   this->create_gold_note();
2433   this->create_stack_segment();
2434   this->create_build_id();
2435 }
2436
2437 // Create the dynamic sections which are needed before we read the
2438 // relocs.
2439
2440 void
2441 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2442 {
2443   if (parameters->doing_static_link())
2444     return;
2445
2446   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2447                                                        elfcpp::SHT_DYNAMIC,
2448                                                        (elfcpp::SHF_ALLOC
2449                                                         | elfcpp::SHF_WRITE),
2450                                                        false, ORDER_RELRO,
2451                                                        true, false, false);
2452
2453   // A linker script may discard .dynamic, so check for NULL.
2454   if (this->dynamic_section_ != NULL)
2455     {
2456       this->dynamic_symbol_ =
2457         symtab->define_in_output_data("_DYNAMIC", NULL,
2458                                       Symbol_table::PREDEFINED,
2459                                       this->dynamic_section_, 0, 0,
2460                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2461                                       elfcpp::STV_HIDDEN, 0, false, false);
2462
2463       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2464
2465       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2466     }
2467 }
2468
2469 // For each output section whose name can be represented as C symbol,
2470 // define __start and __stop symbols for the section.  This is a GNU
2471 // extension.
2472
2473 void
2474 Layout::define_section_symbols(Symbol_table* symtab)
2475 {
2476   for (Section_list::const_iterator p = this->section_list_.begin();
2477        p != this->section_list_.end();
2478        ++p)
2479     {
2480       const char* const name = (*p)->name();
2481       if (is_cident(name))
2482         {
2483           const std::string name_string(name);
2484           const std::string start_name(cident_section_start_prefix
2485                                        + name_string);
2486           const std::string stop_name(cident_section_stop_prefix
2487                                       + name_string);
2488
2489           symtab->define_in_output_data(start_name.c_str(),
2490                                         NULL, // version
2491                                         Symbol_table::PREDEFINED,
2492                                         *p,
2493                                         0, // value
2494                                         0, // symsize
2495                                         elfcpp::STT_NOTYPE,
2496                                         elfcpp::STB_GLOBAL,
2497                                         elfcpp::STV_PROTECTED,
2498                                         0, // nonvis
2499                                         false, // offset_is_from_end
2500                                         true); // only_if_ref
2501
2502           symtab->define_in_output_data(stop_name.c_str(),
2503                                         NULL, // version
2504                                         Symbol_table::PREDEFINED,
2505                                         *p,
2506                                         0, // value
2507                                         0, // symsize
2508                                         elfcpp::STT_NOTYPE,
2509                                         elfcpp::STB_GLOBAL,
2510                                         elfcpp::STV_PROTECTED,
2511                                         0, // nonvis
2512                                         true, // offset_is_from_end
2513                                         true); // only_if_ref
2514         }
2515     }
2516 }
2517
2518 // Define symbols for group signatures.
2519
2520 void
2521 Layout::define_group_signatures(Symbol_table* symtab)
2522 {
2523   for (Group_signatures::iterator p = this->group_signatures_.begin();
2524        p != this->group_signatures_.end();
2525        ++p)
2526     {
2527       Symbol* sym = symtab->lookup(p->signature, NULL);
2528       if (sym != NULL)
2529         p->section->set_info_symndx(sym);
2530       else
2531         {
2532           // Force the name of the group section to the group
2533           // signature, and use the group's section symbol as the
2534           // signature symbol.
2535           if (strcmp(p->section->name(), p->signature) != 0)
2536             {
2537               const char* name = this->namepool_.add(p->signature,
2538                                                      true, NULL);
2539               p->section->set_name(name);
2540             }
2541           p->section->set_needs_symtab_index();
2542           p->section->set_info_section_symndx(p->section);
2543         }
2544     }
2545
2546   this->group_signatures_.clear();
2547 }
2548
2549 // Find the first read-only PT_LOAD segment, creating one if
2550 // necessary.
2551
2552 Output_segment*
2553 Layout::find_first_load_seg(const Target* target)
2554 {
2555   Output_segment* best = NULL;
2556   for (Segment_list::const_iterator p = this->segment_list_.begin();
2557        p != this->segment_list_.end();
2558        ++p)
2559     {
2560       if ((*p)->type() == elfcpp::PT_LOAD
2561           && ((*p)->flags() & elfcpp::PF_R) != 0
2562           && (parameters->options().omagic()
2563               || ((*p)->flags() & elfcpp::PF_W) == 0)
2564           && (!target->isolate_execinstr()
2565               || ((*p)->flags() & elfcpp::PF_X) == 0))
2566         {
2567           if (best == NULL || this->segment_precedes(*p, best))
2568             best = *p;
2569         }
2570     }
2571   if (best != NULL)
2572     return best;
2573
2574   gold_assert(!this->script_options_->saw_phdrs_clause());
2575
2576   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2577                                                        elfcpp::PF_R);
2578   return load_seg;
2579 }
2580
2581 // Save states of all current output segments.  Store saved states
2582 // in SEGMENT_STATES.
2583
2584 void
2585 Layout::save_segments(Segment_states* segment_states)
2586 {
2587   for (Segment_list::const_iterator p = this->segment_list_.begin();
2588        p != this->segment_list_.end();
2589        ++p)
2590     {
2591       Output_segment* segment = *p;
2592       // Shallow copy.
2593       Output_segment* copy = new Output_segment(*segment);
2594       (*segment_states)[segment] = copy;
2595     }
2596 }
2597
2598 // Restore states of output segments and delete any segment not found in
2599 // SEGMENT_STATES.
2600
2601 void
2602 Layout::restore_segments(const Segment_states* segment_states)
2603 {
2604   // Go through the segment list and remove any segment added in the
2605   // relaxation loop.
2606   this->tls_segment_ = NULL;
2607   this->relro_segment_ = NULL;
2608   Segment_list::iterator list_iter = this->segment_list_.begin();
2609   while (list_iter != this->segment_list_.end())
2610     {
2611       Output_segment* segment = *list_iter;
2612       Segment_states::const_iterator states_iter =
2613           segment_states->find(segment);
2614       if (states_iter != segment_states->end())
2615         {
2616           const Output_segment* copy = states_iter->second;
2617           // Shallow copy to restore states.
2618           *segment = *copy;
2619
2620           // Also fix up TLS and RELRO segment pointers as appropriate.
2621           if (segment->type() == elfcpp::PT_TLS)
2622             this->tls_segment_ = segment;
2623           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2624             this->relro_segment_ = segment;
2625
2626           ++list_iter;
2627         }
2628       else
2629         {
2630           list_iter = this->segment_list_.erase(list_iter);
2631           // This is a segment created during section layout.  It should be
2632           // safe to remove it since we should have removed all pointers to it.
2633           delete segment;
2634         }
2635     }
2636 }
2637
2638 // Clean up after relaxation so that sections can be laid out again.
2639
2640 void
2641 Layout::clean_up_after_relaxation()
2642 {
2643   // Restore the segments to point state just prior to the relaxation loop.
2644   Script_sections* script_section = this->script_options_->script_sections();
2645   script_section->release_segments();
2646   this->restore_segments(this->segment_states_);
2647
2648   // Reset section addresses and file offsets
2649   for (Section_list::iterator p = this->section_list_.begin();
2650        p != this->section_list_.end();
2651        ++p)
2652     {
2653       (*p)->restore_states();
2654
2655       // If an input section changes size because of relaxation,
2656       // we need to adjust the section offsets of all input sections.
2657       // after such a section.
2658       if ((*p)->section_offsets_need_adjustment())
2659         (*p)->adjust_section_offsets();
2660
2661       (*p)->reset_address_and_file_offset();
2662     }
2663
2664   // Reset special output object address and file offsets.
2665   for (Data_list::iterator p = this->special_output_list_.begin();
2666        p != this->special_output_list_.end();
2667        ++p)
2668     (*p)->reset_address_and_file_offset();
2669
2670   // A linker script may have created some output section data objects.
2671   // They are useless now.
2672   for (Output_section_data_list::const_iterator p =
2673          this->script_output_section_data_list_.begin();
2674        p != this->script_output_section_data_list_.end();
2675        ++p)
2676     delete *p;
2677   this->script_output_section_data_list_.clear();
2678
2679   // Special-case fill output objects are recreated each time through
2680   // the relaxation loop.
2681   this->reset_relax_output();
2682 }
2683
2684 void
2685 Layout::reset_relax_output()
2686 {
2687   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2688        p != this->relax_output_list_.end();
2689        ++p)
2690     delete *p;
2691   this->relax_output_list_.clear();
2692 }
2693
2694 // Prepare for relaxation.
2695
2696 void
2697 Layout::prepare_for_relaxation()
2698 {
2699   // Create an relaxation debug check if in debugging mode.
2700   if (is_debugging_enabled(DEBUG_RELAXATION))
2701     this->relaxation_debug_check_ = new Relaxation_debug_check();
2702
2703   // Save segment states.
2704   this->segment_states_ = new Segment_states();
2705   this->save_segments(this->segment_states_);
2706
2707   for(Section_list::const_iterator p = this->section_list_.begin();
2708       p != this->section_list_.end();
2709       ++p)
2710     (*p)->save_states();
2711
2712   if (is_debugging_enabled(DEBUG_RELAXATION))
2713     this->relaxation_debug_check_->check_output_data_for_reset_values(
2714         this->section_list_, this->special_output_list_,
2715         this->relax_output_list_);
2716
2717   // Also enable recording of output section data from scripts.
2718   this->record_output_section_data_from_script_ = true;
2719 }
2720
2721 // If the user set the address of the text segment, that may not be
2722 // compatible with putting the segment headers and file headers into
2723 // that segment.  For isolate_execinstr() targets, it's the rodata
2724 // segment rather than text where we might put the headers.
2725 static inline bool
2726 load_seg_unusable_for_headers(const Target* target)
2727 {
2728   const General_options& options = parameters->options();
2729   if (target->isolate_execinstr())
2730     return (options.user_set_Trodata_segment()
2731             && options.Trodata_segment() % target->abi_pagesize() != 0);
2732   else
2733     return (options.user_set_Ttext()
2734             && options.Ttext() % target->abi_pagesize() != 0);
2735 }
2736
2737 // Relaxation loop body:  If target has no relaxation, this runs only once
2738 // Otherwise, the target relaxation hook is called at the end of
2739 // each iteration.  If the hook returns true, it means re-layout of
2740 // section is required.
2741 //
2742 // The number of segments created by a linking script without a PHDRS
2743 // clause may be affected by section sizes and alignments.  There is
2744 // a remote chance that relaxation causes different number of PT_LOAD
2745 // segments are created and sections are attached to different segments.
2746 // Therefore, we always throw away all segments created during section
2747 // layout.  In order to be able to restart the section layout, we keep
2748 // a copy of the segment list right before the relaxation loop and use
2749 // that to restore the segments.
2750 //
2751 // PASS is the current relaxation pass number.
2752 // SYMTAB is a symbol table.
2753 // PLOAD_SEG is the address of a pointer for the load segment.
2754 // PHDR_SEG is a pointer to the PHDR segment.
2755 // SEGMENT_HEADERS points to the output segment header.
2756 // FILE_HEADER points to the output file header.
2757 // PSHNDX is the address to store the output section index.
2758
2759 off_t inline
2760 Layout::relaxation_loop_body(
2761     int pass,
2762     Target* target,
2763     Symbol_table* symtab,
2764     Output_segment** pload_seg,
2765     Output_segment* phdr_seg,
2766     Output_segment_headers* segment_headers,
2767     Output_file_header* file_header,
2768     unsigned int* pshndx)
2769 {
2770   // If this is not the first iteration, we need to clean up after
2771   // relaxation so that we can lay out the sections again.
2772   if (pass != 0)
2773     this->clean_up_after_relaxation();
2774
2775   // If there is a SECTIONS clause, put all the input sections into
2776   // the required order.
2777   Output_segment* load_seg;
2778   if (this->script_options_->saw_sections_clause())
2779     load_seg = this->set_section_addresses_from_script(symtab);
2780   else if (parameters->options().relocatable())
2781     load_seg = NULL;
2782   else
2783     load_seg = this->find_first_load_seg(target);
2784
2785   if (parameters->options().oformat_enum()
2786       != General_options::OBJECT_FORMAT_ELF)
2787     load_seg = NULL;
2788
2789   if (load_seg_unusable_for_headers(target))
2790     {
2791       load_seg = NULL;
2792       phdr_seg = NULL;
2793     }
2794
2795   gold_assert(phdr_seg == NULL
2796               || load_seg != NULL
2797               || this->script_options_->saw_sections_clause());
2798
2799   // If the address of the load segment we found has been set by
2800   // --section-start rather than by a script, then adjust the VMA and
2801   // LMA downward if possible to include the file and section headers.
2802   uint64_t header_gap = 0;
2803   if (load_seg != NULL
2804       && load_seg->are_addresses_set()
2805       && !this->script_options_->saw_sections_clause()
2806       && !parameters->options().relocatable())
2807     {
2808       file_header->finalize_data_size();
2809       segment_headers->finalize_data_size();
2810       size_t sizeof_headers = (file_header->data_size()
2811                                + segment_headers->data_size());
2812       const uint64_t abi_pagesize = target->abi_pagesize();
2813       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2814       hdr_paddr &= ~(abi_pagesize - 1);
2815       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2816       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2817         load_seg = NULL;
2818       else
2819         {
2820           load_seg->set_addresses(load_seg->vaddr() - subtract,
2821                                   load_seg->paddr() - subtract);
2822           header_gap = subtract - sizeof_headers;
2823         }
2824     }
2825
2826   // Lay out the segment headers.
2827   if (!parameters->options().relocatable())
2828     {
2829       gold_assert(segment_headers != NULL);
2830       if (header_gap != 0 && load_seg != NULL)
2831         {
2832           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2833           load_seg->add_initial_output_data(z);
2834         }
2835       if (load_seg != NULL)
2836         load_seg->add_initial_output_data(segment_headers);
2837       if (phdr_seg != NULL)
2838         phdr_seg->add_initial_output_data(segment_headers);
2839     }
2840
2841   // Lay out the file header.
2842   if (load_seg != NULL)
2843     load_seg->add_initial_output_data(file_header);
2844
2845   if (this->script_options_->saw_phdrs_clause()
2846       && !parameters->options().relocatable())
2847     {
2848       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2849       // clause in a linker script.
2850       Script_sections* ss = this->script_options_->script_sections();
2851       ss->put_headers_in_phdrs(file_header, segment_headers);
2852     }
2853
2854   // We set the output section indexes in set_segment_offsets and
2855   // set_section_indexes.
2856   *pshndx = 1;
2857
2858   // Set the file offsets of all the segments, and all the sections
2859   // they contain.
2860   off_t off;
2861   if (!parameters->options().relocatable())
2862     off = this->set_segment_offsets(target, load_seg, pshndx);
2863   else
2864     off = this->set_relocatable_section_offsets(file_header, pshndx);
2865
2866    // Verify that the dummy relaxation does not change anything.
2867   if (is_debugging_enabled(DEBUG_RELAXATION))
2868     {
2869       if (pass == 0)
2870         this->relaxation_debug_check_->read_sections(this->section_list_);
2871       else
2872         this->relaxation_debug_check_->verify_sections(this->section_list_);
2873     }
2874
2875   *pload_seg = load_seg;
2876   return off;
2877 }
2878
2879 // Search the list of patterns and find the position of the given section
2880 // name in the output section.  If the section name matches a glob
2881 // pattern and a non-glob name, then the non-glob position takes
2882 // precedence.  Return 0 if no match is found.
2883
2884 unsigned int
2885 Layout::find_section_order_index(const std::string& section_name)
2886 {
2887   Unordered_map<std::string, unsigned int>::iterator map_it;
2888   map_it = this->input_section_position_.find(section_name);
2889   if (map_it != this->input_section_position_.end())
2890     return map_it->second;
2891
2892   // Absolute match failed.  Linear search the glob patterns.
2893   std::vector<std::string>::iterator it;
2894   for (it = this->input_section_glob_.begin();
2895        it != this->input_section_glob_.end();
2896        ++it)
2897     {
2898        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2899          {
2900            map_it = this->input_section_position_.find(*it);
2901            gold_assert(map_it != this->input_section_position_.end());
2902            return map_it->second;
2903          }
2904     }
2905   return 0;
2906 }
2907
2908 // Read the sequence of input sections from the file specified with
2909 // option --section-ordering-file.
2910
2911 void
2912 Layout::read_layout_from_file()
2913 {
2914   const char* filename = parameters->options().section_ordering_file();
2915   std::ifstream in;
2916   std::string line;
2917
2918   in.open(filename);
2919   if (!in)
2920     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2921                filename, strerror(errno));
2922
2923   std::getline(in, line);   // this chops off the trailing \n, if any
2924   unsigned int position = 1;
2925   this->set_section_ordering_specified();
2926
2927   while (in)
2928     {
2929       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2930         line.resize(line.length() - 1);
2931       // Ignore comments, beginning with '#'
2932       if (line[0] == '#')
2933         {
2934           std::getline(in, line);
2935           continue;
2936         }
2937       this->input_section_position_[line] = position;
2938       // Store all glob patterns in a vector.
2939       if (is_wildcard_string(line.c_str()))
2940         this->input_section_glob_.push_back(line);
2941       position++;
2942       std::getline(in, line);
2943     }
2944 }
2945
2946 // Finalize the layout.  When this is called, we have created all the
2947 // output sections and all the output segments which are based on
2948 // input sections.  We have several things to do, and we have to do
2949 // them in the right order, so that we get the right results correctly
2950 // and efficiently.
2951
2952 // 1) Finalize the list of output segments and create the segment
2953 // table header.
2954
2955 // 2) Finalize the dynamic symbol table and associated sections.
2956
2957 // 3) Determine the final file offset of all the output segments.
2958
2959 // 4) Determine the final file offset of all the SHF_ALLOC output
2960 // sections.
2961
2962 // 5) Create the symbol table sections and the section name table
2963 // section.
2964
2965 // 6) Finalize the symbol table: set symbol values to their final
2966 // value and make a final determination of which symbols are going
2967 // into the output symbol table.
2968
2969 // 7) Create the section table header.
2970
2971 // 8) Determine the final file offset of all the output sections which
2972 // are not SHF_ALLOC, including the section table header.
2973
2974 // 9) Finalize the ELF file header.
2975
2976 // This function returns the size of the output file.
2977
2978 off_t
2979 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2980                  Target* target, const Task* task)
2981 {
2982   unsigned int local_dynamic_count = 0;
2983   unsigned int forced_local_dynamic_count = 0;
2984
2985   target->finalize_sections(this, input_objects, symtab);
2986
2987   this->count_local_symbols(task, input_objects);
2988
2989   this->link_stabs_sections();
2990
2991   Output_segment* phdr_seg = NULL;
2992   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2993     {
2994       // There was a dynamic object in the link.  We need to create
2995       // some information for the dynamic linker.
2996
2997       // Create the PT_PHDR segment which will hold the program
2998       // headers.
2999       if (!this->script_options_->saw_phdrs_clause())
3000         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3001
3002       // Create the dynamic symbol table, including the hash table.
3003       Output_section* dynstr;
3004       std::vector<Symbol*> dynamic_symbols;
3005       Versions versions(*this->script_options()->version_script_info(),
3006                         &this->dynpool_);
3007       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3008                                   &local_dynamic_count,
3009                                   &forced_local_dynamic_count,
3010                                   &dynamic_symbols,
3011                                   &versions);
3012
3013       // Create the .interp section to hold the name of the
3014       // interpreter, and put it in a PT_INTERP segment.  Don't do it
3015       // if we saw a .interp section in an input file.
3016       if ((!parameters->options().shared()
3017            || parameters->options().dynamic_linker() != NULL)
3018           && this->interp_segment_ == NULL)
3019         this->create_interp(target);
3020
3021       // Finish the .dynamic section to hold the dynamic data, and put
3022       // it in a PT_DYNAMIC segment.
3023       this->finish_dynamic_section(input_objects, symtab);
3024
3025       // We should have added everything we need to the dynamic string
3026       // table.
3027       this->dynpool_.set_string_offsets();
3028
3029       // Create the version sections.  We can't do this until the
3030       // dynamic string table is complete.
3031       this->create_version_sections(&versions, symtab,
3032                                     (local_dynamic_count
3033                                      + forced_local_dynamic_count),
3034                                     dynamic_symbols, dynstr);
3035
3036       // Set the size of the _DYNAMIC symbol.  We can't do this until
3037       // after we call create_version_sections.
3038       this->set_dynamic_symbol_size(symtab);
3039     }
3040
3041   // Create segment headers.
3042   Output_segment_headers* segment_headers =
3043     (parameters->options().relocatable()
3044      ? NULL
3045      : new Output_segment_headers(this->segment_list_));
3046
3047   // Lay out the file header.
3048   Output_file_header* file_header = new Output_file_header(target, symtab,
3049                                                            segment_headers);
3050
3051   this->special_output_list_.push_back(file_header);
3052   if (segment_headers != NULL)
3053     this->special_output_list_.push_back(segment_headers);
3054
3055   // Find approriate places for orphan output sections if we are using
3056   // a linker script.
3057   if (this->script_options_->saw_sections_clause())
3058     this->place_orphan_sections_in_script();
3059
3060   Output_segment* load_seg;
3061   off_t off;
3062   unsigned int shndx;
3063   int pass = 0;
3064
3065   // Take a snapshot of the section layout as needed.
3066   if (target->may_relax())
3067     this->prepare_for_relaxation();
3068
3069   // Run the relaxation loop to lay out sections.
3070   do
3071     {
3072       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3073                                        phdr_seg, segment_headers, file_header,
3074                                        &shndx);
3075       pass++;
3076     }
3077   while (target->may_relax()
3078          && target->relax(pass, input_objects, symtab, this, task));
3079
3080   // If there is a load segment that contains the file and program headers,
3081   // provide a symbol __ehdr_start pointing there.
3082   // A program can use this to examine itself robustly.
3083   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3084   if (ehdr_start != NULL && ehdr_start->is_predefined())
3085     {
3086       if (load_seg != NULL)
3087         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3088       else
3089         ehdr_start->set_undefined();
3090     }
3091
3092   // Set the file offsets of all the non-data sections we've seen so
3093   // far which don't have to wait for the input sections.  We need
3094   // this in order to finalize local symbols in non-allocated
3095   // sections.
3096   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3097
3098   // Set the section indexes of all unallocated sections seen so far,
3099   // in case any of them are somehow referenced by a symbol.
3100   shndx = this->set_section_indexes(shndx);
3101
3102   // Create the symbol table sections.
3103   this->create_symtab_sections(input_objects, symtab, shndx, &off,
3104                                local_dynamic_count);
3105   if (!parameters->doing_static_link())
3106     this->assign_local_dynsym_offsets(input_objects);
3107
3108   // Process any symbol assignments from a linker script.  This must
3109   // be called after the symbol table has been finalized.
3110   this->script_options_->finalize_symbols(symtab, this);
3111
3112   // Create the incremental inputs sections.
3113   if (this->incremental_inputs_)
3114     {
3115       this->incremental_inputs_->finalize();
3116       this->create_incremental_info_sections(symtab);
3117     }
3118
3119   // Create the .shstrtab section.
3120   Output_section* shstrtab_section = this->create_shstrtab();
3121
3122   // Set the file offsets of the rest of the non-data sections which
3123   // don't have to wait for the input sections.
3124   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3125
3126   // Now that all sections have been created, set the section indexes
3127   // for any sections which haven't been done yet.
3128   shndx = this->set_section_indexes(shndx);
3129
3130   // Create the section table header.
3131   this->create_shdrs(shstrtab_section, &off);
3132
3133   // If there are no sections which require postprocessing, we can
3134   // handle the section names now, and avoid a resize later.
3135   if (!this->any_postprocessing_sections_)
3136     {
3137       off = this->set_section_offsets(off,
3138                                       POSTPROCESSING_SECTIONS_PASS);
3139       off =
3140           this->set_section_offsets(off,
3141                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3142     }
3143
3144   file_header->set_section_info(this->section_headers_, shstrtab_section);
3145
3146   // Now we know exactly where everything goes in the output file
3147   // (except for non-allocated sections which require postprocessing).
3148   Output_data::layout_complete();
3149
3150   this->output_file_size_ = off;
3151
3152   return off;
3153 }
3154
3155 // Create a note header following the format defined in the ELF ABI.
3156 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3157 // of the section to create, DESCSZ is the size of the descriptor.
3158 // ALLOCATE is true if the section should be allocated in memory.
3159 // This returns the new note section.  It sets *TRAILING_PADDING to
3160 // the number of trailing zero bytes required.
3161
3162 Output_section*
3163 Layout::create_note(const char* name, int note_type,
3164                     const char* section_name, size_t descsz,
3165                     bool allocate, size_t* trailing_padding)
3166 {
3167   // Authorities all agree that the values in a .note field should
3168   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
3169   // they differ on what the alignment is for 64-bit binaries.
3170   // The GABI says unambiguously they take 8-byte alignment:
3171   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3172   // Other documentation says alignment should always be 4 bytes:
3173   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3174   // GNU ld and GNU readelf both support the latter (at least as of
3175   // version 2.16.91), and glibc always generates the latter for
3176   // .note.ABI-tag (as of version 1.6), so that's the one we go with
3177   // here.
3178 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
3179   const int size = parameters->target().get_size();
3180 #else
3181   const int size = 32;
3182 #endif
3183
3184   // The contents of the .note section.
3185   size_t namesz = strlen(name) + 1;
3186   size_t aligned_namesz = align_address(namesz, size / 8);
3187   size_t aligned_descsz = align_address(descsz, size / 8);
3188
3189   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3190
3191   unsigned char* buffer = new unsigned char[notehdrsz];
3192   memset(buffer, 0, notehdrsz);
3193
3194   bool is_big_endian = parameters->target().is_big_endian();
3195
3196   if (size == 32)
3197     {
3198       if (!is_big_endian)
3199         {
3200           elfcpp::Swap<32, false>::writeval(buffer, namesz);
3201           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3202           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3203         }
3204       else
3205         {
3206           elfcpp::Swap<32, true>::writeval(buffer, namesz);
3207           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3208           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3209         }
3210     }
3211   else if (size == 64)
3212     {
3213       if (!is_big_endian)
3214         {
3215           elfcpp::Swap<64, false>::writeval(buffer, namesz);
3216           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3217           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3218         }
3219       else
3220         {
3221           elfcpp::Swap<64, true>::writeval(buffer, namesz);
3222           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3223           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3224         }
3225     }
3226   else
3227     gold_unreachable();
3228
3229   memcpy(buffer + 3 * (size / 8), name, namesz);
3230
3231   elfcpp::Elf_Xword flags = 0;
3232   Output_section_order order = ORDER_INVALID;
3233   if (allocate)
3234     {
3235       flags = elfcpp::SHF_ALLOC;
3236       order = ORDER_RO_NOTE;
3237     }
3238   Output_section* os = this->choose_output_section(NULL, section_name,
3239                                                    elfcpp::SHT_NOTE,
3240                                                    flags, false, order, false,
3241                                                    false, true);
3242   if (os == NULL)
3243     return NULL;
3244
3245   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3246                                                            size / 8,
3247                                                            "** note header");
3248   os->add_output_section_data(posd);
3249
3250   *trailing_padding = aligned_descsz - descsz;
3251
3252   return os;
3253 }
3254
3255 // Create a .note.gnu.property section to record program properties
3256 // accumulated from the input files.
3257
3258 void
3259 Layout::create_gnu_properties_note()
3260 {
3261   parameters->target().finalize_gnu_properties(this);
3262
3263   if (this->gnu_properties_.empty())
3264     return;
3265
3266   const unsigned int size = parameters->target().get_size();
3267   const bool is_big_endian = parameters->target().is_big_endian();
3268
3269   // Compute the total size of the properties array.
3270   size_t descsz = 0;
3271   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3272        prop != this->gnu_properties_.end();
3273        ++prop)
3274     {
3275       descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3276     }
3277
3278   // Create the note section.
3279   size_t trailing_padding;
3280   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3281                                          ".note.gnu.property", descsz,
3282                                          true, &trailing_padding);
3283   if (os == NULL)
3284     return;
3285   gold_assert(trailing_padding == 0);
3286
3287   // Allocate and fill the properties array.
3288   unsigned char* desc = new unsigned char[descsz];
3289   unsigned char* p = desc;
3290   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3291        prop != this->gnu_properties_.end();
3292        ++prop)
3293     {
3294       size_t datasz = prop->second.pr_datasz;
3295       size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3296       write_sized_value(prop->first, 4, p, is_big_endian);
3297       write_sized_value(datasz, 4, p + 4, is_big_endian);
3298       memcpy(p + 8, prop->second.pr_data, datasz);
3299       if (aligned_datasz > datasz)
3300         memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3301       p += 8 + aligned_datasz;
3302     }
3303   Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3304   os->add_output_section_data(posd);
3305 }
3306
3307 // For an executable or shared library, create a note to record the
3308 // version of gold used to create the binary.
3309
3310 void
3311 Layout::create_gold_note()
3312 {
3313   if (parameters->options().relocatable()
3314       || parameters->incremental_update())
3315     return;
3316
3317   std::string desc = std::string("gold ") + gold::get_version_string();
3318
3319   size_t trailing_padding;
3320   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3321                                          ".note.gnu.gold-version", desc.size(),
3322                                          false, &trailing_padding);
3323   if (os == NULL)
3324     return;
3325
3326   Output_section_data* posd = new Output_data_const(desc, 4);
3327   os->add_output_section_data(posd);
3328
3329   if (trailing_padding > 0)
3330     {
3331       posd = new Output_data_zero_fill(trailing_padding, 0);
3332       os->add_output_section_data(posd);
3333     }
3334 }
3335
3336 // Record whether the stack should be executable.  This can be set
3337 // from the command line using the -z execstack or -z noexecstack
3338 // options.  Otherwise, if any input file has a .note.GNU-stack
3339 // section with the SHF_EXECINSTR flag set, the stack should be
3340 // executable.  Otherwise, if at least one input file a
3341 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3342 // section, we use the target default for whether the stack should be
3343 // executable.  If -z stack-size was used to set a p_memsz value for
3344 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3345 // don't generate a stack note.  When generating a object file, we
3346 // create a .note.GNU-stack section with the appropriate marking.
3347 // When generating an executable or shared library, we create a
3348 // PT_GNU_STACK segment.
3349
3350 void
3351 Layout::create_stack_segment()
3352 {
3353   bool is_stack_executable;
3354   if (parameters->options().is_execstack_set())
3355     {
3356       is_stack_executable = parameters->options().is_stack_executable();
3357       if (!is_stack_executable
3358           && this->input_requires_executable_stack_
3359           && parameters->options().warn_execstack())
3360         gold_warning(_("one or more inputs require executable stack, "
3361                        "but -z noexecstack was given"));
3362     }
3363   else if (!this->input_with_gnu_stack_note_
3364            && (!parameters->options().user_set_stack_size()
3365                || parameters->options().relocatable()))
3366     return;
3367   else
3368     {
3369       if (this->input_requires_executable_stack_)
3370         is_stack_executable = true;
3371       else if (this->input_without_gnu_stack_note_)
3372         is_stack_executable =
3373           parameters->target().is_default_stack_executable();
3374       else
3375         is_stack_executable = false;
3376     }
3377
3378   if (parameters->options().relocatable())
3379     {
3380       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3381       elfcpp::Elf_Xword flags = 0;
3382       if (is_stack_executable)
3383         flags |= elfcpp::SHF_EXECINSTR;
3384       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3385                                 ORDER_INVALID, false);
3386     }
3387   else
3388     {
3389       if (this->script_options_->saw_phdrs_clause())
3390         return;
3391       int flags = elfcpp::PF_R | elfcpp::PF_W;
3392       if (is_stack_executable)
3393         flags |= elfcpp::PF_X;
3394       Output_segment* seg =
3395         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3396       seg->set_size(parameters->options().stack_size());
3397       // BFD lets targets override this default alignment, but the only
3398       // targets that do so are ones that Gold does not support so far.
3399       seg->set_minimum_p_align(16);
3400     }
3401 }
3402
3403 // If --build-id was used, set up the build ID note.
3404
3405 void
3406 Layout::create_build_id()
3407 {
3408   if (!parameters->options().user_set_build_id())
3409     return;
3410
3411   const char* style = parameters->options().build_id();
3412   if (strcmp(style, "none") == 0)
3413     return;
3414
3415   // Set DESCSZ to the size of the note descriptor.  When possible,
3416   // set DESC to the note descriptor contents.
3417   size_t descsz;
3418   std::string desc;
3419   if (strcmp(style, "md5") == 0)
3420     descsz = 128 / 8;
3421   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3422     descsz = 160 / 8;
3423   else if (strcmp(style, "uuid") == 0)
3424     {
3425 #ifndef __MINGW32__
3426       const size_t uuidsz = 128 / 8;
3427
3428       char buffer[uuidsz];
3429       memset(buffer, 0, uuidsz);
3430
3431       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3432       if (descriptor < 0)
3433         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3434                    strerror(errno));
3435       else
3436         {
3437           ssize_t got = ::read(descriptor, buffer, uuidsz);
3438           release_descriptor(descriptor, true);
3439           if (got < 0)
3440             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3441           else if (static_cast<size_t>(got) != uuidsz)
3442             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3443                        uuidsz, got);
3444         }
3445
3446       desc.assign(buffer, uuidsz);
3447       descsz = uuidsz;
3448 #else // __MINGW32__
3449       UUID uuid;
3450       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3451
3452       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3453       if (!rpc_library)
3454         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3455       else
3456         {
3457           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3458               GetProcAddress(rpc_library, "UuidCreate"));
3459           if (!uuid_create)
3460             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3461           else if (uuid_create(&uuid) != RPC_S_OK)
3462             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3463           FreeLibrary(rpc_library);
3464         }
3465       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3466       descsz = sizeof(UUID);
3467 #endif // __MINGW32__
3468     }
3469   else if (strncmp(style, "0x", 2) == 0)
3470     {
3471       hex_init();
3472       const char* p = style + 2;
3473       while (*p != '\0')
3474         {
3475           if (hex_p(p[0]) && hex_p(p[1]))
3476             {
3477               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3478               desc += c;
3479               p += 2;
3480             }
3481           else if (*p == '-' || *p == ':')
3482             ++p;
3483           else
3484             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3485                        style);
3486         }
3487       descsz = desc.size();
3488     }
3489   else
3490     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3491
3492   // Create the note.
3493   size_t trailing_padding;
3494   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3495                                          ".note.gnu.build-id", descsz, true,
3496                                          &trailing_padding);
3497   if (os == NULL)
3498     return;
3499
3500   if (!desc.empty())
3501     {
3502       // We know the value already, so we fill it in now.
3503       gold_assert(desc.size() == descsz);
3504
3505       Output_section_data* posd = new Output_data_const(desc, 4);
3506       os->add_output_section_data(posd);
3507
3508       if (trailing_padding != 0)
3509         {
3510           posd = new Output_data_zero_fill(trailing_padding, 0);
3511           os->add_output_section_data(posd);
3512         }
3513     }
3514   else
3515     {
3516       // We need to compute a checksum after we have completed the
3517       // link.
3518       gold_assert(trailing_padding == 0);
3519       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3520       os->add_output_section_data(this->build_id_note_);
3521     }
3522 }
3523
3524 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3525 // field of the former should point to the latter.  I'm not sure who
3526 // started this, but the GNU linker does it, and some tools depend
3527 // upon it.
3528
3529 void
3530 Layout::link_stabs_sections()
3531 {
3532   if (!this->have_stabstr_section_)
3533     return;
3534
3535   for (Section_list::iterator p = this->section_list_.begin();
3536        p != this->section_list_.end();
3537        ++p)
3538     {
3539       if ((*p)->type() != elfcpp::SHT_STRTAB)
3540         continue;
3541
3542       const char* name = (*p)->name();
3543       if (strncmp(name, ".stab", 5) != 0)
3544         continue;
3545
3546       size_t len = strlen(name);
3547       if (strcmp(name + len - 3, "str") != 0)
3548         continue;
3549
3550       std::string stab_name(name, len - 3);
3551       Output_section* stab_sec;
3552       stab_sec = this->find_output_section(stab_name.c_str());
3553       if (stab_sec != NULL)
3554         stab_sec->set_link_section(*p);
3555     }
3556 }
3557
3558 // Create .gnu_incremental_inputs and related sections needed
3559 // for the next run of incremental linking to check what has changed.
3560
3561 void
3562 Layout::create_incremental_info_sections(Symbol_table* symtab)
3563 {
3564   Incremental_inputs* incr = this->incremental_inputs_;
3565
3566   gold_assert(incr != NULL);
3567
3568   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3569   incr->create_data_sections(symtab);
3570
3571   // Add the .gnu_incremental_inputs section.
3572   const char* incremental_inputs_name =
3573     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3574   Output_section* incremental_inputs_os =
3575     this->make_output_section(incremental_inputs_name,
3576                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3577                               ORDER_INVALID, false);
3578   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3579
3580   // Add the .gnu_incremental_symtab section.
3581   const char* incremental_symtab_name =
3582     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3583   Output_section* incremental_symtab_os =
3584     this->make_output_section(incremental_symtab_name,
3585                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3586                               ORDER_INVALID, false);
3587   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3588   incremental_symtab_os->set_entsize(4);
3589
3590   // Add the .gnu_incremental_relocs section.
3591   const char* incremental_relocs_name =
3592     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3593   Output_section* incremental_relocs_os =
3594     this->make_output_section(incremental_relocs_name,
3595                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3596                               ORDER_INVALID, false);
3597   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3598   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3599
3600   // Add the .gnu_incremental_got_plt section.
3601   const char* incremental_got_plt_name =
3602     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3603   Output_section* incremental_got_plt_os =
3604     this->make_output_section(incremental_got_plt_name,
3605                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3606                               ORDER_INVALID, false);
3607   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3608
3609   // Add the .gnu_incremental_strtab section.
3610   const char* incremental_strtab_name =
3611     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3612   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3613                                                         elfcpp::SHT_STRTAB, 0,
3614                                                         ORDER_INVALID, false);
3615   Output_data_strtab* strtab_data =
3616       new Output_data_strtab(incr->get_stringpool());
3617   incremental_strtab_os->add_output_section_data(strtab_data);
3618
3619   incremental_inputs_os->set_after_input_sections();
3620   incremental_symtab_os->set_after_input_sections();
3621   incremental_relocs_os->set_after_input_sections();
3622   incremental_got_plt_os->set_after_input_sections();
3623
3624   incremental_inputs_os->set_link_section(incremental_strtab_os);
3625   incremental_symtab_os->set_link_section(incremental_inputs_os);
3626   incremental_relocs_os->set_link_section(incremental_inputs_os);
3627   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3628 }
3629
3630 // Return whether SEG1 should be before SEG2 in the output file.  This
3631 // is based entirely on the segment type and flags.  When this is
3632 // called the segment addresses have normally not yet been set.
3633
3634 bool
3635 Layout::segment_precedes(const Output_segment* seg1,
3636                          const Output_segment* seg2)
3637 {
3638   // In order to produce a stable ordering if we're called with the same pointer
3639   // return false.
3640   if (seg1 == seg2)
3641     return false;
3642
3643   elfcpp::Elf_Word type1 = seg1->type();
3644   elfcpp::Elf_Word type2 = seg2->type();
3645
3646   // The single PT_PHDR segment is required to precede any loadable
3647   // segment.  We simply make it always first.
3648   if (type1 == elfcpp::PT_PHDR)
3649     {
3650       gold_assert(type2 != elfcpp::PT_PHDR);
3651       return true;
3652     }
3653   if (type2 == elfcpp::PT_PHDR)
3654     return false;
3655
3656   // The single PT_INTERP segment is required to precede any loadable
3657   // segment.  We simply make it always second.
3658   if (type1 == elfcpp::PT_INTERP)
3659     {
3660       gold_assert(type2 != elfcpp::PT_INTERP);
3661       return true;
3662     }
3663   if (type2 == elfcpp::PT_INTERP)
3664     return false;
3665
3666   // We then put PT_LOAD segments before any other segments.
3667   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3668     return true;
3669   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3670     return false;
3671
3672   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3673   // segment, because that is where the dynamic linker expects to find
3674   // it (this is just for efficiency; other positions would also work
3675   // correctly).
3676   if (type1 == elfcpp::PT_TLS
3677       && type2 != elfcpp::PT_TLS
3678       && type2 != elfcpp::PT_GNU_RELRO)
3679     return false;
3680   if (type2 == elfcpp::PT_TLS
3681       && type1 != elfcpp::PT_TLS
3682       && type1 != elfcpp::PT_GNU_RELRO)
3683     return true;
3684
3685   // We put the PT_GNU_RELRO segment last, because that is where the
3686   // dynamic linker expects to find it (as with PT_TLS, this is just
3687   // for efficiency).
3688   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3689     return false;
3690   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3691     return true;
3692
3693   const elfcpp::Elf_Word flags1 = seg1->flags();
3694   const elfcpp::Elf_Word flags2 = seg2->flags();
3695
3696   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3697   // by the numeric segment type and flags values.  There should not
3698   // be more than one segment with the same type and flags, except
3699   // when a linker script specifies such.
3700   if (type1 != elfcpp::PT_LOAD)
3701     {
3702       if (type1 != type2)
3703         return type1 < type2;
3704       gold_assert(flags1 != flags2
3705                   || this->script_options_->saw_phdrs_clause());
3706       return flags1 < flags2;
3707     }
3708
3709   // If the addresses are set already, sort by load address.
3710   if (seg1->are_addresses_set())
3711     {
3712       if (!seg2->are_addresses_set())
3713         return true;
3714
3715       unsigned int section_count1 = seg1->output_section_count();
3716       unsigned int section_count2 = seg2->output_section_count();
3717       if (section_count1 == 0 && section_count2 > 0)
3718         return true;
3719       if (section_count1 > 0 && section_count2 == 0)
3720         return false;
3721
3722       uint64_t paddr1 = (seg1->are_addresses_set()
3723                          ? seg1->paddr()
3724                          : seg1->first_section_load_address());
3725       uint64_t paddr2 = (seg2->are_addresses_set()
3726                          ? seg2->paddr()
3727                          : seg2->first_section_load_address());
3728
3729       if (paddr1 != paddr2)
3730         return paddr1 < paddr2;
3731     }
3732   else if (seg2->are_addresses_set())
3733     return false;
3734
3735   // A segment which holds large data comes after a segment which does
3736   // not hold large data.
3737   if (seg1->is_large_data_segment())
3738     {
3739       if (!seg2->is_large_data_segment())
3740         return false;
3741     }
3742   else if (seg2->is_large_data_segment())
3743     return true;
3744
3745   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3746   // segments come before writable segments.  Then writable segments
3747   // with data come before writable segments without data.  Then
3748   // executable segments come before non-executable segments.  Then
3749   // the unlikely case of a non-readable segment comes before the
3750   // normal case of a readable segment.  If there are multiple
3751   // segments with the same type and flags, we require that the
3752   // address be set, and we sort by virtual address and then physical
3753   // address.
3754   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3755     return (flags1 & elfcpp::PF_W) == 0;
3756   if ((flags1 & elfcpp::PF_W) != 0
3757       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3758     return seg1->has_any_data_sections();
3759   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3760     return (flags1 & elfcpp::PF_X) != 0;
3761   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3762     return (flags1 & elfcpp::PF_R) == 0;
3763
3764   // We shouldn't get here--we shouldn't create segments which we
3765   // can't distinguish.  Unless of course we are using a weird linker
3766   // script or overlapping --section-start options.  We could also get
3767   // here if plugins want unique segments for subsets of sections.
3768   gold_assert(this->script_options_->saw_phdrs_clause()
3769               || parameters->options().any_section_start()
3770               || this->is_unique_segment_for_sections_specified()
3771               || parameters->options().text_unlikely_segment());
3772   return false;
3773 }
3774
3775 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3776
3777 static off_t
3778 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3779 {
3780   uint64_t unsigned_off = off;
3781   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3782                           | (addr & (abi_pagesize - 1)));
3783   if (aligned_off < unsigned_off)
3784     aligned_off += abi_pagesize;
3785   return aligned_off;
3786 }
3787
3788 // On targets where the text segment contains only executable code,
3789 // a non-executable segment is never the text segment.
3790
3791 static inline bool
3792 is_text_segment(const Target* target, const Output_segment* seg)
3793 {
3794   elfcpp::Elf_Xword flags = seg->flags();
3795   if ((flags & elfcpp::PF_W) != 0)
3796     return false;
3797   if ((flags & elfcpp::PF_X) == 0)
3798     return !target->isolate_execinstr();
3799   return true;
3800 }
3801
3802 // Set the file offsets of all the segments, and all the sections they
3803 // contain.  They have all been created.  LOAD_SEG must be laid out
3804 // first.  Return the offset of the data to follow.
3805
3806 off_t
3807 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3808                             unsigned int* pshndx)
3809 {
3810   // Sort them into the final order.  We use a stable sort so that we
3811   // don't randomize the order of indistinguishable segments created
3812   // by linker scripts.
3813   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3814                    Layout::Compare_segments(this));
3815
3816   // Find the PT_LOAD segments, and set their addresses and offsets
3817   // and their section's addresses and offsets.
3818   uint64_t start_addr;
3819   if (parameters->options().user_set_Ttext())
3820     start_addr = parameters->options().Ttext();
3821   else if (parameters->options().output_is_position_independent())
3822     start_addr = 0;
3823   else
3824     start_addr = target->default_text_segment_address();
3825
3826   uint64_t addr = start_addr;
3827   off_t off = 0;
3828
3829   // If LOAD_SEG is NULL, then the file header and segment headers
3830   // will not be loadable.  But they still need to be at offset 0 in
3831   // the file.  Set their offsets now.
3832   if (load_seg == NULL)
3833     {
3834       for (Data_list::iterator p = this->special_output_list_.begin();
3835            p != this->special_output_list_.end();
3836            ++p)
3837         {
3838           off = align_address(off, (*p)->addralign());
3839           (*p)->set_address_and_file_offset(0, off);
3840           off += (*p)->data_size();
3841         }
3842     }
3843
3844   unsigned int increase_relro = this->increase_relro_;
3845   if (this->script_options_->saw_sections_clause())
3846     increase_relro = 0;
3847
3848   const bool check_sections = parameters->options().check_sections();
3849   Output_segment* last_load_segment = NULL;
3850
3851   unsigned int shndx_begin = *pshndx;
3852   unsigned int shndx_load_seg = *pshndx;
3853
3854   for (Segment_list::iterator p = this->segment_list_.begin();
3855        p != this->segment_list_.end();
3856        ++p)
3857     {
3858       if ((*p)->type() == elfcpp::PT_LOAD)
3859         {
3860           if (target->isolate_execinstr())
3861             {
3862               // When we hit the segment that should contain the
3863               // file headers, reset the file offset so we place
3864               // it and subsequent segments appropriately.
3865               // We'll fix up the preceding segments below.
3866               if (load_seg == *p)
3867                 {
3868                   if (off == 0)
3869                     load_seg = NULL;
3870                   else
3871                     {
3872                       off = 0;
3873                       shndx_load_seg = *pshndx;
3874                     }
3875                 }
3876             }
3877           else
3878             {
3879               // Verify that the file headers fall into the first segment.
3880               if (load_seg != NULL && load_seg != *p)
3881                 gold_unreachable();
3882               load_seg = NULL;
3883             }
3884
3885           bool are_addresses_set = (*p)->are_addresses_set();
3886           if (are_addresses_set)
3887             {
3888               // When it comes to setting file offsets, we care about
3889               // the physical address.
3890               addr = (*p)->paddr();
3891             }
3892           else if (parameters->options().user_set_Ttext()
3893                    && (parameters->options().omagic()
3894                        || is_text_segment(target, *p)))
3895             {
3896               are_addresses_set = true;
3897             }
3898           else if (parameters->options().user_set_Trodata_segment()
3899                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3900             {
3901               addr = parameters->options().Trodata_segment();
3902               are_addresses_set = true;
3903             }
3904           else if (parameters->options().user_set_Tdata()
3905                    && ((*p)->flags() & elfcpp::PF_W) != 0
3906                    && (!parameters->options().user_set_Tbss()
3907                        || (*p)->has_any_data_sections()))
3908             {
3909               addr = parameters->options().Tdata();
3910               are_addresses_set = true;
3911             }
3912           else if (parameters->options().user_set_Tbss()
3913                    && ((*p)->flags() & elfcpp::PF_W) != 0
3914                    && !(*p)->has_any_data_sections())
3915             {
3916               addr = parameters->options().Tbss();
3917               are_addresses_set = true;
3918             }
3919
3920           uint64_t orig_addr = addr;
3921           uint64_t orig_off = off;
3922
3923           uint64_t aligned_addr = 0;
3924           uint64_t abi_pagesize = target->abi_pagesize();
3925           uint64_t common_pagesize = target->common_pagesize();
3926
3927           if (!parameters->options().nmagic()
3928               && !parameters->options().omagic())
3929             (*p)->set_minimum_p_align(abi_pagesize);
3930
3931           if (!are_addresses_set)
3932             {
3933               // Skip the address forward one page, maintaining the same
3934               // position within the page.  This lets us store both segments
3935               // overlapping on a single page in the file, but the loader will
3936               // put them on different pages in memory. We will revisit this
3937               // decision once we know the size of the segment.
3938
3939               uint64_t max_align = (*p)->maximum_alignment();
3940               if (max_align > abi_pagesize)
3941                 addr = align_address(addr, max_align);
3942               aligned_addr = addr;
3943
3944               if (load_seg == *p)
3945                 {
3946                   // This is the segment that will contain the file
3947                   // headers, so its offset will have to be exactly zero.
3948                   gold_assert(orig_off == 0);
3949
3950                   // If the target wants a fixed minimum distance from the
3951                   // text segment to the read-only segment, move up now.
3952                   uint64_t min_addr =
3953                     start_addr + (parameters->options().user_set_rosegment_gap()
3954                                   ? parameters->options().rosegment_gap()
3955                                   : target->rosegment_gap());
3956                   if (addr < min_addr)
3957                     addr = min_addr;
3958
3959                   // But this is not the first segment!  To make its
3960                   // address congruent with its offset, that address better
3961                   // be aligned to the ABI-mandated page size.
3962                   addr = align_address(addr, abi_pagesize);
3963                   aligned_addr = addr;
3964                 }
3965               else
3966                 {
3967                   if ((addr & (abi_pagesize - 1)) != 0)
3968                     addr = addr + abi_pagesize;
3969
3970                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3971                 }
3972             }
3973
3974           if (!parameters->options().nmagic()
3975               && !parameters->options().omagic())
3976             {
3977               // Here we are also taking care of the case when
3978               // the maximum segment alignment is larger than the page size.
3979               off = align_file_offset(off, addr,
3980                                       std::max(abi_pagesize,
3981                                                (*p)->maximum_alignment()));
3982             }
3983           else
3984             {
3985               // This is -N or -n with a section script which prevents
3986               // us from using a load segment.  We need to ensure that
3987               // the file offset is aligned to the alignment of the
3988               // segment.  This is because the linker script
3989               // implicitly assumed a zero offset.  If we don't align
3990               // here, then the alignment of the sections in the
3991               // linker script may not match the alignment of the
3992               // sections in the set_section_addresses call below,
3993               // causing an error about dot moving backward.
3994               off = align_address(off, (*p)->maximum_alignment());
3995             }
3996
3997           unsigned int shndx_hold = *pshndx;
3998           bool has_relro = false;
3999           uint64_t new_addr = (*p)->set_section_addresses(target, this,
4000                                                           false, addr,
4001                                                           &increase_relro,
4002                                                           &has_relro,
4003                                                           &off, pshndx);
4004
4005           // Now that we know the size of this segment, we may be able
4006           // to save a page in memory, at the cost of wasting some
4007           // file space, by instead aligning to the start of a new
4008           // page.  Here we use the real machine page size rather than
4009           // the ABI mandated page size.  If the segment has been
4010           // aligned so that the relro data ends at a page boundary,
4011           // we do not try to realign it.
4012
4013           if (!are_addresses_set
4014               && !has_relro
4015               && aligned_addr != addr
4016               && !parameters->incremental())
4017             {
4018               uint64_t first_off = (common_pagesize
4019                                     - (aligned_addr
4020                                        & (common_pagesize - 1)));
4021               uint64_t last_off = new_addr & (common_pagesize - 1);
4022               if (first_off > 0
4023                   && last_off > 0
4024                   && ((aligned_addr & ~ (common_pagesize - 1))
4025                       != (new_addr & ~ (common_pagesize - 1)))
4026                   && first_off + last_off <= common_pagesize)
4027                 {
4028                   *pshndx = shndx_hold;
4029                   addr = align_address(aligned_addr, common_pagesize);
4030                   addr = align_address(addr, (*p)->maximum_alignment());
4031                   if ((addr & (abi_pagesize - 1)) != 0)
4032                     addr = addr + abi_pagesize;
4033                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4034                   off = align_file_offset(off, addr, abi_pagesize);
4035
4036                   increase_relro = this->increase_relro_;
4037                   if (this->script_options_->saw_sections_clause())
4038                     increase_relro = 0;
4039                   has_relro = false;
4040
4041                   new_addr = (*p)->set_section_addresses(target, this,
4042                                                          true, addr,
4043                                                          &increase_relro,
4044                                                          &has_relro,
4045                                                          &off, pshndx);
4046                 }
4047             }
4048
4049           addr = new_addr;
4050
4051           // Implement --check-sections.  We know that the segments
4052           // are sorted by LMA.
4053           if (check_sections && last_load_segment != NULL)
4054             {
4055               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4056               if (last_load_segment->paddr() + last_load_segment->memsz()
4057                   > (*p)->paddr())
4058                 {
4059                   unsigned long long lb1 = last_load_segment->paddr();
4060                   unsigned long long le1 = lb1 + last_load_segment->memsz();
4061                   unsigned long long lb2 = (*p)->paddr();
4062                   unsigned long long le2 = lb2 + (*p)->memsz();
4063                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4064                                "[0x%llx -> 0x%llx]"),
4065                              lb1, le1, lb2, le2);
4066                 }
4067             }
4068           last_load_segment = *p;
4069         }
4070     }
4071
4072   if (load_seg != NULL && target->isolate_execinstr())
4073     {
4074       // Process the early segments again, setting their file offsets
4075       // so they land after the segments starting at LOAD_SEG.
4076       off = align_file_offset(off, 0, target->abi_pagesize());
4077
4078       this->reset_relax_output();
4079
4080       for (Segment_list::iterator p = this->segment_list_.begin();
4081            *p != load_seg;
4082            ++p)
4083         {
4084           if ((*p)->type() == elfcpp::PT_LOAD)
4085             {
4086               // We repeat the whole job of assigning addresses and
4087               // offsets, but we really only want to change the offsets and
4088               // must ensure that the addresses all come out the same as
4089               // they did the first time through.
4090               bool has_relro = false;
4091               const uint64_t old_addr = (*p)->vaddr();
4092               const uint64_t old_end = old_addr + (*p)->memsz();
4093               uint64_t new_addr = (*p)->set_section_addresses(target, this,
4094                                                               true, old_addr,
4095                                                               &increase_relro,
4096                                                               &has_relro,
4097                                                               &off,
4098                                                               &shndx_begin);
4099               gold_assert(new_addr == old_end);
4100             }
4101         }
4102
4103       gold_assert(shndx_begin == shndx_load_seg);
4104     }
4105
4106   // Handle the non-PT_LOAD segments, setting their offsets from their
4107   // section's offsets.
4108   for (Segment_list::iterator p = this->segment_list_.begin();
4109        p != this->segment_list_.end();
4110        ++p)
4111     {
4112       // PT_GNU_STACK was set up correctly when it was created.
4113       if ((*p)->type() != elfcpp::PT_LOAD
4114           && (*p)->type() != elfcpp::PT_GNU_STACK)
4115         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4116                          ? increase_relro
4117                          : 0);
4118     }
4119
4120   // Set the TLS offsets for each section in the PT_TLS segment.
4121   if (this->tls_segment_ != NULL)
4122     this->tls_segment_->set_tls_offsets();
4123
4124   return off;
4125 }
4126
4127 // Set the offsets of all the allocated sections when doing a
4128 // relocatable link.  This does the same jobs as set_segment_offsets,
4129 // only for a relocatable link.
4130
4131 off_t
4132 Layout::set_relocatable_section_offsets(Output_data* file_header,
4133                                         unsigned int* pshndx)
4134 {
4135   off_t off = 0;
4136
4137   file_header->set_address_and_file_offset(0, 0);
4138   off += file_header->data_size();
4139
4140   for (Section_list::iterator p = this->section_list_.begin();
4141        p != this->section_list_.end();
4142        ++p)
4143     {
4144       // We skip unallocated sections here, except that group sections
4145       // have to come first.
4146       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4147           && (*p)->type() != elfcpp::SHT_GROUP)
4148         continue;
4149
4150       off = align_address(off, (*p)->addralign());
4151
4152       // The linker script might have set the address.
4153       if (!(*p)->is_address_valid())
4154         (*p)->set_address(0);
4155       (*p)->set_file_offset(off);
4156       (*p)->finalize_data_size();
4157       if ((*p)->type() != elfcpp::SHT_NOBITS)
4158         off += (*p)->data_size();
4159
4160       (*p)->set_out_shndx(*pshndx);
4161       ++*pshndx;
4162     }
4163
4164   return off;
4165 }
4166
4167 // Set the file offset of all the sections not associated with a
4168 // segment.
4169
4170 off_t
4171 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4172 {
4173   off_t startoff = off;
4174   off_t maxoff = off;
4175
4176   for (Section_list::iterator p = this->unattached_section_list_.begin();
4177        p != this->unattached_section_list_.end();
4178        ++p)
4179     {
4180       // The symtab section is handled in create_symtab_sections.
4181       if (*p == this->symtab_section_)
4182         continue;
4183
4184       // If we've already set the data size, don't set it again.
4185       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4186         continue;
4187
4188       if (pass == BEFORE_INPUT_SECTIONS_PASS
4189           && (*p)->requires_postprocessing())
4190         {
4191           (*p)->create_postprocessing_buffer();
4192           this->any_postprocessing_sections_ = true;
4193         }
4194
4195       if (pass == BEFORE_INPUT_SECTIONS_PASS
4196           && (*p)->after_input_sections())
4197         continue;
4198       else if (pass == POSTPROCESSING_SECTIONS_PASS
4199                && (!(*p)->after_input_sections()
4200                    || (*p)->type() == elfcpp::SHT_STRTAB))
4201         continue;
4202       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4203                && (!(*p)->after_input_sections()
4204                    || (*p)->type() != elfcpp::SHT_STRTAB))
4205         continue;
4206
4207       if (!parameters->incremental_update())
4208         {
4209           off = align_address(off, (*p)->addralign());
4210           (*p)->set_file_offset(off);
4211           (*p)->finalize_data_size();
4212         }
4213       else
4214         {
4215           // Incremental update: allocate file space from free list.
4216           (*p)->pre_finalize_data_size();
4217           off_t current_size = (*p)->current_data_size();
4218           off = this->allocate(current_size, (*p)->addralign(), startoff);
4219           if (off == -1)
4220             {
4221               if (is_debugging_enabled(DEBUG_INCREMENTAL))
4222                 this->free_list_.dump();
4223               gold_assert((*p)->output_section() != NULL);
4224               gold_fallback(_("out of patch space for section %s; "
4225                               "relink with --incremental-full"),
4226                             (*p)->output_section()->name());
4227             }
4228           (*p)->set_file_offset(off);
4229           (*p)->finalize_data_size();
4230           if ((*p)->data_size() > current_size)
4231             {
4232               gold_assert((*p)->output_section() != NULL);
4233               gold_fallback(_("%s: section changed size; "
4234                               "relink with --incremental-full"),
4235                             (*p)->output_section()->name());
4236             }
4237           gold_debug(DEBUG_INCREMENTAL,
4238                      "set_section_offsets: %08lx %08lx %s",
4239                      static_cast<long>(off),
4240                      static_cast<long>((*p)->data_size()),
4241                      ((*p)->output_section() != NULL
4242                       ? (*p)->output_section()->name() : "(special)"));
4243         }
4244
4245       off += (*p)->data_size();
4246       if (off > maxoff)
4247         maxoff = off;
4248
4249       // At this point the name must be set.
4250       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4251         this->namepool_.add((*p)->name(), false, NULL);
4252     }
4253   return maxoff;
4254 }
4255
4256 // Set the section indexes of all the sections not associated with a
4257 // segment.
4258
4259 unsigned int
4260 Layout::set_section_indexes(unsigned int shndx)
4261 {
4262   for (Section_list::iterator p = this->unattached_section_list_.begin();
4263        p != this->unattached_section_list_.end();
4264        ++p)
4265     {
4266       if (!(*p)->has_out_shndx())
4267         {
4268           (*p)->set_out_shndx(shndx);
4269           ++shndx;
4270         }
4271     }
4272   return shndx;
4273 }
4274
4275 // Set the section addresses according to the linker script.  This is
4276 // only called when we see a SECTIONS clause.  This returns the
4277 // program segment which should hold the file header and segment
4278 // headers, if any.  It will return NULL if they should not be in a
4279 // segment.
4280
4281 Output_segment*
4282 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4283 {
4284   Script_sections* ss = this->script_options_->script_sections();
4285   gold_assert(ss->saw_sections_clause());
4286   return this->script_options_->set_section_addresses(symtab, this);
4287 }
4288
4289 // Place the orphan sections in the linker script.
4290
4291 void
4292 Layout::place_orphan_sections_in_script()
4293 {
4294   Script_sections* ss = this->script_options_->script_sections();
4295   gold_assert(ss->saw_sections_clause());
4296
4297   // Place each orphaned output section in the script.
4298   for (Section_list::iterator p = this->section_list_.begin();
4299        p != this->section_list_.end();
4300        ++p)
4301     {
4302       if (!(*p)->found_in_sections_clause())
4303         ss->place_orphan(*p);
4304     }
4305 }
4306
4307 // Count the local symbols in the regular symbol table and the dynamic
4308 // symbol table, and build the respective string pools.
4309
4310 void
4311 Layout::count_local_symbols(const Task* task,
4312                             const Input_objects* input_objects)
4313 {
4314   // First, figure out an upper bound on the number of symbols we'll
4315   // be inserting into each pool.  This helps us create the pools with
4316   // the right size, to avoid unnecessary hashtable resizing.
4317   unsigned int symbol_count = 0;
4318   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4319        p != input_objects->relobj_end();
4320        ++p)
4321     symbol_count += (*p)->local_symbol_count();
4322
4323   // Go from "upper bound" to "estimate."  We overcount for two
4324   // reasons: we double-count symbols that occur in more than one
4325   // object file, and we count symbols that are dropped from the
4326   // output.  Add it all together and assume we overcount by 100%.
4327   symbol_count /= 2;
4328
4329   // We assume all symbols will go into both the sympool and dynpool.
4330   this->sympool_.reserve(symbol_count);
4331   this->dynpool_.reserve(symbol_count);
4332
4333   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4334        p != input_objects->relobj_end();
4335        ++p)
4336     {
4337       Task_lock_obj<Object> tlo(task, *p);
4338       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4339     }
4340 }
4341
4342 // Create the symbol table sections.  Here we also set the final
4343 // values of the symbols.  At this point all the loadable sections are
4344 // fully laid out.  SHNUM is the number of sections so far.
4345
4346 void
4347 Layout::create_symtab_sections(const Input_objects* input_objects,
4348                                Symbol_table* symtab,
4349                                unsigned int shnum,
4350                                off_t* poff,
4351                                unsigned int local_dynamic_count)
4352 {
4353   int symsize;
4354   unsigned int align;
4355   if (parameters->target().get_size() == 32)
4356     {
4357       symsize = elfcpp::Elf_sizes<32>::sym_size;
4358       align = 4;
4359     }
4360   else if (parameters->target().get_size() == 64)
4361     {
4362       symsize = elfcpp::Elf_sizes<64>::sym_size;
4363       align = 8;
4364     }
4365   else
4366     gold_unreachable();
4367
4368   // Compute file offsets relative to the start of the symtab section.
4369   off_t off = 0;
4370
4371   // Save space for the dummy symbol at the start of the section.  We
4372   // never bother to write this out--it will just be left as zero.
4373   off += symsize;
4374   unsigned int local_symbol_index = 1;
4375
4376   // Add STT_SECTION symbols for each Output section which needs one.
4377   for (Section_list::iterator p = this->section_list_.begin();
4378        p != this->section_list_.end();
4379        ++p)
4380     {
4381       if (!(*p)->needs_symtab_index())
4382         (*p)->set_symtab_index(-1U);
4383       else
4384         {
4385           (*p)->set_symtab_index(local_symbol_index);
4386           ++local_symbol_index;
4387           off += symsize;
4388         }
4389     }
4390
4391   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4392        p != input_objects->relobj_end();
4393        ++p)
4394     {
4395       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4396                                                         off, symtab);
4397       off += (index - local_symbol_index) * symsize;
4398       local_symbol_index = index;
4399     }
4400
4401   unsigned int local_symcount = local_symbol_index;
4402   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4403
4404   off_t dynoff;
4405   size_t dyncount;
4406   if (this->dynsym_section_ == NULL)
4407     {
4408       dynoff = 0;
4409       dyncount = 0;
4410     }
4411   else
4412     {
4413       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4414       dynoff = this->dynsym_section_->offset() + locsize;
4415       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4416       gold_assert(static_cast<off_t>(dyncount * symsize)
4417                   == this->dynsym_section_->data_size() - locsize);
4418     }
4419
4420   off_t global_off = off;
4421   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4422                          &this->sympool_, &local_symcount);
4423
4424   if (!parameters->options().strip_all())
4425     {
4426       this->sympool_.set_string_offsets();
4427
4428       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4429       Output_section* osymtab = this->make_output_section(symtab_name,
4430                                                           elfcpp::SHT_SYMTAB,
4431                                                           0, ORDER_INVALID,
4432                                                           false);
4433       this->symtab_section_ = osymtab;
4434
4435       Output_section_data* pos = new Output_data_fixed_space(off, align,
4436                                                              "** symtab");
4437       osymtab->add_output_section_data(pos);
4438
4439       // We generate a .symtab_shndx section if we have more than
4440       // SHN_LORESERVE sections.  Technically it is possible that we
4441       // don't need one, because it is possible that there are no
4442       // symbols in any of sections with indexes larger than
4443       // SHN_LORESERVE.  That is probably unusual, though, and it is
4444       // easier to always create one than to compute section indexes
4445       // twice (once here, once when writing out the symbols).
4446       if (shnum >= elfcpp::SHN_LORESERVE)
4447         {
4448           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4449                                                                false, NULL);
4450           Output_section* osymtab_xindex =
4451             this->make_output_section(symtab_xindex_name,
4452                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4453                                       ORDER_INVALID, false);
4454
4455           size_t symcount = off / symsize;
4456           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4457
4458           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4459
4460           osymtab_xindex->set_link_section(osymtab);
4461           osymtab_xindex->set_addralign(4);
4462           osymtab_xindex->set_entsize(4);
4463
4464           osymtab_xindex->set_after_input_sections();
4465
4466           // This tells the driver code to wait until the symbol table
4467           // has written out before writing out the postprocessing
4468           // sections, including the .symtab_shndx section.
4469           this->any_postprocessing_sections_ = true;
4470         }
4471
4472       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4473       Output_section* ostrtab = this->make_output_section(strtab_name,
4474                                                           elfcpp::SHT_STRTAB,
4475                                                           0, ORDER_INVALID,
4476                                                           false);
4477
4478       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4479       ostrtab->add_output_section_data(pstr);
4480
4481       off_t symtab_off;
4482       if (!parameters->incremental_update())
4483         symtab_off = align_address(*poff, align);
4484       else
4485         {
4486           symtab_off = this->allocate(off, align, *poff);
4487           if (off == -1)
4488             gold_fallback(_("out of patch space for symbol table; "
4489                             "relink with --incremental-full"));
4490           gold_debug(DEBUG_INCREMENTAL,
4491                      "create_symtab_sections: %08lx %08lx .symtab",
4492                      static_cast<long>(symtab_off),
4493                      static_cast<long>(off));
4494         }
4495
4496       symtab->set_file_offset(symtab_off + global_off);
4497       osymtab->set_file_offset(symtab_off);
4498       osymtab->finalize_data_size();
4499       osymtab->set_link_section(ostrtab);
4500       osymtab->set_info(local_symcount);
4501       osymtab->set_entsize(symsize);
4502
4503       if (symtab_off + off > *poff)
4504         *poff = symtab_off + off;
4505     }
4506 }
4507
4508 // Create the .shstrtab section, which holds the names of the
4509 // sections.  At the time this is called, we have created all the
4510 // output sections except .shstrtab itself.
4511
4512 Output_section*
4513 Layout::create_shstrtab()
4514 {
4515   // FIXME: We don't need to create a .shstrtab section if we are
4516   // stripping everything.
4517
4518   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4519
4520   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4521                                                  ORDER_INVALID, false);
4522
4523   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4524     {
4525       // We can't write out this section until we've set all the
4526       // section names, and we don't set the names of compressed
4527       // output sections until relocations are complete.  FIXME: With
4528       // the current names we use, this is unnecessary.
4529       os->set_after_input_sections();
4530     }
4531
4532   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4533   os->add_output_section_data(posd);
4534
4535   return os;
4536 }
4537
4538 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4539 // offset.
4540
4541 void
4542 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4543 {
4544   Output_section_headers* oshdrs;
4545   oshdrs = new Output_section_headers(this,
4546                                       &this->segment_list_,
4547                                       &this->section_list_,
4548                                       &this->unattached_section_list_,
4549                                       &this->namepool_,
4550                                       shstrtab_section);
4551   off_t off;
4552   if (!parameters->incremental_update())
4553     off = align_address(*poff, oshdrs->addralign());
4554   else
4555     {
4556       oshdrs->pre_finalize_data_size();
4557       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4558       if (off == -1)
4559           gold_fallback(_("out of patch space for section header table; "
4560                           "relink with --incremental-full"));
4561       gold_debug(DEBUG_INCREMENTAL,
4562                  "create_shdrs: %08lx %08lx (section header table)",
4563                  static_cast<long>(off),
4564                  static_cast<long>(off + oshdrs->data_size()));
4565     }
4566   oshdrs->set_address_and_file_offset(0, off);
4567   off += oshdrs->data_size();
4568   if (off > *poff)
4569     *poff = off;
4570   this->section_headers_ = oshdrs;
4571 }
4572
4573 // Count the allocated sections.
4574
4575 size_t
4576 Layout::allocated_output_section_count() const
4577 {
4578   size_t section_count = 0;
4579   for (Segment_list::const_iterator p = this->segment_list_.begin();
4580        p != this->segment_list_.end();
4581        ++p)
4582     section_count += (*p)->output_section_count();
4583   return section_count;
4584 }
4585
4586 // Create the dynamic symbol table.
4587 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4588 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4589 // to the number of global symbols that have been forced local.
4590 // We need to remember the former because the forced-local symbols are
4591 // written along with the global symbols in Symtab::write_globals().
4592
4593 void
4594 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4595                               Symbol_table* symtab,
4596                               Output_section** pdynstr,
4597                               unsigned int* plocal_dynamic_count,
4598                               unsigned int* pforced_local_dynamic_count,
4599                               std::vector<Symbol*>* pdynamic_symbols,
4600                               Versions* pversions)
4601 {
4602   // Count all the symbols in the dynamic symbol table, and set the
4603   // dynamic symbol indexes.
4604
4605   // Skip symbol 0, which is always all zeroes.
4606   unsigned int index = 1;
4607
4608   // Add STT_SECTION symbols for each Output section which needs one.
4609   for (Section_list::iterator p = this->section_list_.begin();
4610        p != this->section_list_.end();
4611        ++p)
4612     {
4613       if (!(*p)->needs_dynsym_index())
4614         (*p)->set_dynsym_index(-1U);
4615       else
4616         {
4617           (*p)->set_dynsym_index(index);
4618           ++index;
4619         }
4620     }
4621
4622   // Count the local symbols that need to go in the dynamic symbol table,
4623   // and set the dynamic symbol indexes.
4624   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4625        p != input_objects->relobj_end();
4626        ++p)
4627     {
4628       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4629       index = new_index;
4630     }
4631
4632   unsigned int local_symcount = index;
4633   unsigned int forced_local_count = 0;
4634
4635   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4636                                      pdynamic_symbols, &this->dynpool_,
4637                                      pversions);
4638
4639   *plocal_dynamic_count = local_symcount;
4640   *pforced_local_dynamic_count = forced_local_count;
4641
4642   int symsize;
4643   unsigned int align;
4644   const int size = parameters->target().get_size();
4645   if (size == 32)
4646     {
4647       symsize = elfcpp::Elf_sizes<32>::sym_size;
4648       align = 4;
4649     }
4650   else if (size == 64)
4651     {
4652       symsize = elfcpp::Elf_sizes<64>::sym_size;
4653       align = 8;
4654     }
4655   else
4656     gold_unreachable();
4657
4658   // Create the dynamic symbol table section.
4659
4660   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4661                                                        elfcpp::SHT_DYNSYM,
4662                                                        elfcpp::SHF_ALLOC,
4663                                                        false,
4664                                                        ORDER_DYNAMIC_LINKER,
4665                                                        false, false, false);
4666
4667   // Check for NULL as a linker script may discard .dynsym.
4668   if (dynsym != NULL)
4669     {
4670       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4671                                                                align,
4672                                                                "** dynsym");
4673       dynsym->add_output_section_data(odata);
4674
4675       dynsym->set_info(local_symcount + forced_local_count);
4676       dynsym->set_entsize(symsize);
4677       dynsym->set_addralign(align);
4678
4679       this->dynsym_section_ = dynsym;
4680     }
4681
4682   Output_data_dynamic* const odyn = this->dynamic_data_;
4683   if (odyn != NULL)
4684     {
4685       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4686       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4687     }
4688
4689   // If there are more than SHN_LORESERVE allocated sections, we
4690   // create a .dynsym_shndx section.  It is possible that we don't
4691   // need one, because it is possible that there are no dynamic
4692   // symbols in any of the sections with indexes larger than
4693   // SHN_LORESERVE.  This is probably unusual, though, and at this
4694   // time we don't know the actual section indexes so it is
4695   // inconvenient to check.
4696   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4697     {
4698       Output_section* dynsym_xindex =
4699         this->choose_output_section(NULL, ".dynsym_shndx",
4700                                     elfcpp::SHT_SYMTAB_SHNDX,
4701                                     elfcpp::SHF_ALLOC,
4702                                     false, ORDER_DYNAMIC_LINKER, false, false,
4703                                     false);
4704
4705       if (dynsym_xindex != NULL)
4706         {
4707           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4708
4709           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4710
4711           dynsym_xindex->set_link_section(dynsym);
4712           dynsym_xindex->set_addralign(4);
4713           dynsym_xindex->set_entsize(4);
4714
4715           dynsym_xindex->set_after_input_sections();
4716
4717           // This tells the driver code to wait until the symbol table
4718           // has written out before writing out the postprocessing
4719           // sections, including the .dynsym_shndx section.
4720           this->any_postprocessing_sections_ = true;
4721         }
4722     }
4723
4724   // Create the dynamic string table section.
4725
4726   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4727                                                        elfcpp::SHT_STRTAB,
4728                                                        elfcpp::SHF_ALLOC,
4729                                                        false,
4730                                                        ORDER_DYNAMIC_LINKER,
4731                                                        false, false, false);
4732   *pdynstr = dynstr;
4733   if (dynstr != NULL)
4734     {
4735       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4736       dynstr->add_output_section_data(strdata);
4737
4738       if (dynsym != NULL)
4739         dynsym->set_link_section(dynstr);
4740       if (this->dynamic_section_ != NULL)
4741         this->dynamic_section_->set_link_section(dynstr);
4742
4743       if (odyn != NULL)
4744         {
4745           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4746           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4747         }
4748     }
4749
4750   // Create the hash tables.  The Gnu-style hash table must be
4751   // built first, because it changes the order of the symbols
4752   // in the dynamic symbol table.
4753
4754   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4755       || strcmp(parameters->options().hash_style(), "both") == 0)
4756     {
4757       unsigned char* phash;
4758       unsigned int hashlen;
4759       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4760                                     local_symcount + forced_local_count,
4761                                     &phash, &hashlen);
4762
4763       Output_section* hashsec =
4764         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4765                                     elfcpp::SHF_ALLOC, false,
4766                                     ORDER_DYNAMIC_LINKER, false, false,
4767                                     false);
4768
4769       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4770                                                                    hashlen,
4771                                                                    align,
4772                                                                    "** hash");
4773       if (hashsec != NULL && hashdata != NULL)
4774         hashsec->add_output_section_data(hashdata);
4775
4776       if (hashsec != NULL)
4777         {
4778           if (dynsym != NULL)
4779             hashsec->set_link_section(dynsym);
4780
4781           // For a 64-bit target, the entries in .gnu.hash do not have
4782           // a uniform size, so we only set the entry size for a
4783           // 32-bit target.
4784           if (parameters->target().get_size() == 32)
4785             hashsec->set_entsize(4);
4786
4787           if (odyn != NULL)
4788             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4789         }
4790     }
4791
4792   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4793       || strcmp(parameters->options().hash_style(), "both") == 0)
4794     {
4795       unsigned char* phash;
4796       unsigned int hashlen;
4797       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4798                                     local_symcount + forced_local_count,
4799                                     &phash, &hashlen);
4800
4801       Output_section* hashsec =
4802         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4803                                     elfcpp::SHF_ALLOC, false,
4804                                     ORDER_DYNAMIC_LINKER, false, false,
4805                                     false);
4806
4807       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4808                                                                    hashlen,
4809                                                                    align,
4810                                                                    "** hash");
4811       if (hashsec != NULL && hashdata != NULL)
4812         hashsec->add_output_section_data(hashdata);
4813
4814       if (hashsec != NULL)
4815         {
4816           if (dynsym != NULL)
4817             hashsec->set_link_section(dynsym);
4818           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4819         }
4820
4821       if (odyn != NULL)
4822         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4823     }
4824 }
4825
4826 // Assign offsets to each local portion of the dynamic symbol table.
4827
4828 void
4829 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4830 {
4831   Output_section* dynsym = this->dynsym_section_;
4832   if (dynsym == NULL)
4833     return;
4834
4835   off_t off = dynsym->offset();
4836
4837   // Skip the dummy symbol at the start of the section.
4838   off += dynsym->entsize();
4839
4840   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4841        p != input_objects->relobj_end();
4842        ++p)
4843     {
4844       unsigned int count = (*p)->set_local_dynsym_offset(off);
4845       off += count * dynsym->entsize();
4846     }
4847 }
4848
4849 // Create the version sections.
4850
4851 void
4852 Layout::create_version_sections(const Versions* versions,
4853                                 const Symbol_table* symtab,
4854                                 unsigned int local_symcount,
4855                                 const std::vector<Symbol*>& dynamic_symbols,
4856                                 const Output_section* dynstr)
4857 {
4858   if (!versions->any_defs() && !versions->any_needs())
4859     return;
4860
4861   switch (parameters->size_and_endianness())
4862     {
4863 #ifdef HAVE_TARGET_32_LITTLE
4864     case Parameters::TARGET_32_LITTLE:
4865       this->sized_create_version_sections<32, false>(versions, symtab,
4866                                                      local_symcount,
4867                                                      dynamic_symbols, dynstr);
4868       break;
4869 #endif
4870 #ifdef HAVE_TARGET_32_BIG
4871     case Parameters::TARGET_32_BIG:
4872       this->sized_create_version_sections<32, true>(versions, symtab,
4873                                                     local_symcount,
4874                                                     dynamic_symbols, dynstr);
4875       break;
4876 #endif
4877 #ifdef HAVE_TARGET_64_LITTLE
4878     case Parameters::TARGET_64_LITTLE:
4879       this->sized_create_version_sections<64, false>(versions, symtab,
4880                                                      local_symcount,
4881                                                      dynamic_symbols, dynstr);
4882       break;
4883 #endif
4884 #ifdef HAVE_TARGET_64_BIG
4885     case Parameters::TARGET_64_BIG:
4886       this->sized_create_version_sections<64, true>(versions, symtab,
4887                                                     local_symcount,
4888                                                     dynamic_symbols, dynstr);
4889       break;
4890 #endif
4891     default:
4892       gold_unreachable();
4893     }
4894 }
4895
4896 // Create the version sections, sized version.
4897
4898 template<int size, bool big_endian>
4899 void
4900 Layout::sized_create_version_sections(
4901     const Versions* versions,
4902     const Symbol_table* symtab,
4903     unsigned int local_symcount,
4904     const std::vector<Symbol*>& dynamic_symbols,
4905     const Output_section* dynstr)
4906 {
4907   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4908                                                      elfcpp::SHT_GNU_versym,
4909                                                      elfcpp::SHF_ALLOC,
4910                                                      false,
4911                                                      ORDER_DYNAMIC_LINKER,
4912                                                      false, false, false);
4913
4914   // Check for NULL since a linker script may discard this section.
4915   if (vsec != NULL)
4916     {
4917       unsigned char* vbuf;
4918       unsigned int vsize;
4919       versions->symbol_section_contents<size, big_endian>(symtab,
4920                                                           &this->dynpool_,
4921                                                           local_symcount,
4922                                                           dynamic_symbols,
4923                                                           &vbuf, &vsize);
4924
4925       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4926                                                                 "** versions");
4927
4928       vsec->add_output_section_data(vdata);
4929       vsec->set_entsize(2);
4930       vsec->set_link_section(this->dynsym_section_);
4931     }
4932
4933   Output_data_dynamic* const odyn = this->dynamic_data_;
4934   if (odyn != NULL && vsec != NULL)
4935     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4936
4937   if (versions->any_defs())
4938     {
4939       Output_section* vdsec;
4940       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4941                                           elfcpp::SHT_GNU_verdef,
4942                                           elfcpp::SHF_ALLOC,
4943                                           false, ORDER_DYNAMIC_LINKER, false,
4944                                           false, false);
4945
4946       if (vdsec != NULL)
4947         {
4948           unsigned char* vdbuf;
4949           unsigned int vdsize;
4950           unsigned int vdentries;
4951           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4952                                                            &vdbuf, &vdsize,
4953                                                            &vdentries);
4954
4955           Output_section_data* vddata =
4956             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4957
4958           vdsec->add_output_section_data(vddata);
4959           vdsec->set_link_section(dynstr);
4960           vdsec->set_info(vdentries);
4961
4962           if (odyn != NULL)
4963             {
4964               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4965               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4966             }
4967         }
4968     }
4969
4970   if (versions->any_needs())
4971     {
4972       Output_section* vnsec;
4973       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4974                                           elfcpp::SHT_GNU_verneed,
4975                                           elfcpp::SHF_ALLOC,
4976                                           false, ORDER_DYNAMIC_LINKER, false,
4977                                           false, false);
4978
4979       if (vnsec != NULL)
4980         {
4981           unsigned char* vnbuf;
4982           unsigned int vnsize;
4983           unsigned int vnentries;
4984           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4985                                                             &vnbuf, &vnsize,
4986                                                             &vnentries);
4987
4988           Output_section_data* vndata =
4989             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4990
4991           vnsec->add_output_section_data(vndata);
4992           vnsec->set_link_section(dynstr);
4993           vnsec->set_info(vnentries);
4994
4995           if (odyn != NULL)
4996             {
4997               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4998               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4999             }
5000         }
5001     }
5002 }
5003
5004 // Create the .interp section and PT_INTERP segment.
5005
5006 void
5007 Layout::create_interp(const Target* target)
5008 {
5009   gold_assert(this->interp_segment_ == NULL);
5010
5011   const char* interp = parameters->options().dynamic_linker();
5012   if (interp == NULL)
5013     {
5014       interp = target->dynamic_linker();
5015       gold_assert(interp != NULL);
5016     }
5017
5018   size_t len = strlen(interp) + 1;
5019
5020   Output_section_data* odata = new Output_data_const(interp, len, 1);
5021
5022   Output_section* osec = this->choose_output_section(NULL, ".interp",
5023                                                      elfcpp::SHT_PROGBITS,
5024                                                      elfcpp::SHF_ALLOC,
5025                                                      false, ORDER_INTERP,
5026                                                      false, false, false);
5027   if (osec != NULL)
5028     osec->add_output_section_data(odata);
5029 }
5030
5031 // Add dynamic tags for the PLT and the dynamic relocs.  This is
5032 // called by the target-specific code.  This does nothing if not doing
5033 // a dynamic link.
5034
5035 // USE_REL is true for REL relocs rather than RELA relocs.
5036
5037 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5038
5039 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5040 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
5041 // some targets have multiple reloc sections in PLT_REL.
5042
5043 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5044 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
5045 // section.
5046
5047 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5048 // executable.
5049
5050 void
5051 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5052                                 const Output_data* plt_rel,
5053                                 const Output_data_reloc_generic* dyn_rel,
5054                                 bool add_debug, bool dynrel_includes_plt)
5055 {
5056   Output_data_dynamic* odyn = this->dynamic_data_;
5057   if (odyn == NULL)
5058     return;
5059
5060   if (plt_got != NULL && plt_got->output_section() != NULL)
5061     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5062
5063   if (plt_rel != NULL && plt_rel->output_section() != NULL)
5064     {
5065       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5066       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5067       odyn->add_constant(elfcpp::DT_PLTREL,
5068                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5069     }
5070
5071   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5072       || (dynrel_includes_plt
5073           && plt_rel != NULL
5074           && plt_rel->output_section() != NULL))
5075     {
5076       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5077       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5078       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5079                                 (have_dyn_rel
5080                                  ? dyn_rel->output_section()
5081                                  : plt_rel->output_section()));
5082       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5083       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5084         odyn->add_section_size(size_tag,
5085                                dyn_rel->output_section(),
5086                                plt_rel->output_section());
5087       else if (have_dyn_rel)
5088         odyn->add_section_size(size_tag, dyn_rel->output_section());
5089       else
5090         odyn->add_section_size(size_tag, plt_rel->output_section());
5091       const int size = parameters->target().get_size();
5092       elfcpp::DT rel_tag;
5093       int rel_size;
5094       if (use_rel)
5095         {
5096           rel_tag = elfcpp::DT_RELENT;
5097           if (size == 32)
5098             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5099           else if (size == 64)
5100             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5101           else
5102             gold_unreachable();
5103         }
5104       else
5105         {
5106           rel_tag = elfcpp::DT_RELAENT;
5107           if (size == 32)
5108             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5109           else if (size == 64)
5110             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5111           else
5112             gold_unreachable();
5113         }
5114       odyn->add_constant(rel_tag, rel_size);
5115
5116       if (parameters->options().combreloc() && have_dyn_rel)
5117         {
5118           size_t c = dyn_rel->relative_reloc_count();
5119           if (c > 0)
5120             odyn->add_constant((use_rel
5121                                 ? elfcpp::DT_RELCOUNT
5122                                 : elfcpp::DT_RELACOUNT),
5123                                c);
5124         }
5125     }
5126
5127   if (add_debug && !parameters->options().shared())
5128     {
5129       // The value of the DT_DEBUG tag is filled in by the dynamic
5130       // linker at run time, and used by the debugger.
5131       odyn->add_constant(elfcpp::DT_DEBUG, 0);
5132     }
5133 }
5134
5135 void
5136 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5137 {
5138   Output_data_dynamic* odyn = this->dynamic_data_;
5139   if (odyn == NULL)
5140     return;
5141   odyn->add_constant(tag, val);
5142 }
5143
5144 // Finish the .dynamic section and PT_DYNAMIC segment.
5145
5146 void
5147 Layout::finish_dynamic_section(const Input_objects* input_objects,
5148                                const Symbol_table* symtab)
5149 {
5150   if (!this->script_options_->saw_phdrs_clause()
5151       && this->dynamic_section_ != NULL)
5152     {
5153       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5154                                                        (elfcpp::PF_R
5155                                                         | elfcpp::PF_W));
5156       oseg->add_output_section_to_nonload(this->dynamic_section_,
5157                                           elfcpp::PF_R | elfcpp::PF_W);
5158     }
5159
5160   Output_data_dynamic* const odyn = this->dynamic_data_;
5161   if (odyn == NULL)
5162     return;
5163
5164   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5165        p != input_objects->dynobj_end();
5166        ++p)
5167     {
5168       if (!(*p)->is_needed() && (*p)->as_needed())
5169         {
5170           // This dynamic object was linked with --as-needed, but it
5171           // is not needed.
5172           continue;
5173         }
5174
5175       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5176     }
5177
5178   if (parameters->options().shared())
5179     {
5180       const char* soname = parameters->options().soname();
5181       if (soname != NULL)
5182         odyn->add_string(elfcpp::DT_SONAME, soname);
5183     }
5184
5185   Symbol* sym = symtab->lookup(parameters->options().init());
5186   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5187     odyn->add_symbol(elfcpp::DT_INIT, sym);
5188
5189   sym = symtab->lookup(parameters->options().fini());
5190   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5191     odyn->add_symbol(elfcpp::DT_FINI, sym);
5192
5193   // Look for .init_array, .preinit_array and .fini_array by checking
5194   // section types.
5195   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5196       p != this->section_list_.end();
5197       ++p)
5198     switch((*p)->type())
5199       {
5200       case elfcpp::SHT_FINI_ARRAY:
5201         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5202         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5203         break;
5204       case elfcpp::SHT_INIT_ARRAY:
5205         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5206         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5207         break;
5208       case elfcpp::SHT_PREINIT_ARRAY:
5209         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5210         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5211         break;
5212       default:
5213         break;
5214       }
5215
5216   // Add a DT_RPATH entry if needed.
5217   const General_options::Dir_list& rpath(parameters->options().rpath());
5218   if (!rpath.empty())
5219     {
5220       std::string rpath_val;
5221       for (General_options::Dir_list::const_iterator p = rpath.begin();
5222            p != rpath.end();
5223            ++p)
5224         {
5225           if (rpath_val.empty())
5226             rpath_val = p->name();
5227           else
5228             {
5229               // Eliminate duplicates.
5230               General_options::Dir_list::const_iterator q;
5231               for (q = rpath.begin(); q != p; ++q)
5232                 if (q->name() == p->name())
5233                   break;
5234               if (q == p)
5235                 {
5236                   rpath_val += ':';
5237                   rpath_val += p->name();
5238                 }
5239             }
5240         }
5241
5242       if (!parameters->options().enable_new_dtags())
5243         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5244       else
5245         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5246     }
5247
5248   // Look for text segments that have dynamic relocations.
5249   bool have_textrel = false;
5250   if (!this->script_options_->saw_sections_clause())
5251     {
5252       for (Segment_list::const_iterator p = this->segment_list_.begin();
5253            p != this->segment_list_.end();
5254            ++p)
5255         {
5256           if ((*p)->type() == elfcpp::PT_LOAD
5257               && ((*p)->flags() & elfcpp::PF_W) == 0
5258               && (*p)->has_dynamic_reloc())
5259             {
5260               have_textrel = true;
5261               break;
5262             }
5263         }
5264     }
5265   else
5266     {
5267       // We don't know the section -> segment mapping, so we are
5268       // conservative and just look for readonly sections with
5269       // relocations.  If those sections wind up in writable segments,
5270       // then we have created an unnecessary DT_TEXTREL entry.
5271       for (Section_list::const_iterator p = this->section_list_.begin();
5272            p != this->section_list_.end();
5273            ++p)
5274         {
5275           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5276               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5277               && (*p)->has_dynamic_reloc())
5278             {
5279               have_textrel = true;
5280               break;
5281             }
5282         }
5283     }
5284
5285   if (parameters->options().filter() != NULL)
5286     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5287   if (parameters->options().any_auxiliary())
5288     {
5289       for (options::String_set::const_iterator p =
5290              parameters->options().auxiliary_begin();
5291            p != parameters->options().auxiliary_end();
5292            ++p)
5293         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5294     }
5295
5296   // Add a DT_FLAGS entry if necessary.
5297   unsigned int flags = 0;
5298   if (have_textrel)
5299     {
5300       // Add a DT_TEXTREL for compatibility with older loaders.
5301       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5302       flags |= elfcpp::DF_TEXTREL;
5303
5304       if (parameters->options().text())
5305         gold_error(_("read-only segment has dynamic relocations"));
5306       else if (parameters->options().warn_shared_textrel()
5307                && parameters->options().shared())
5308         gold_warning(_("shared library text segment is not shareable"));
5309     }
5310   if (parameters->options().shared() && this->has_static_tls())
5311     flags |= elfcpp::DF_STATIC_TLS;
5312   if (parameters->options().origin())
5313     flags |= elfcpp::DF_ORIGIN;
5314   if (parameters->options().Bsymbolic()
5315       && !parameters->options().have_dynamic_list())
5316     {
5317       flags |= elfcpp::DF_SYMBOLIC;
5318       // Add DT_SYMBOLIC for compatibility with older loaders.
5319       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5320     }
5321   if (parameters->options().now())
5322     flags |= elfcpp::DF_BIND_NOW;
5323   if (flags != 0)
5324     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5325
5326   flags = 0;
5327   if (parameters->options().global())
5328     flags |= elfcpp::DF_1_GLOBAL;
5329   if (parameters->options().initfirst())
5330     flags |= elfcpp::DF_1_INITFIRST;
5331   if (parameters->options().interpose())
5332     flags |= elfcpp::DF_1_INTERPOSE;
5333   if (parameters->options().loadfltr())
5334     flags |= elfcpp::DF_1_LOADFLTR;
5335   if (parameters->options().nodefaultlib())
5336     flags |= elfcpp::DF_1_NODEFLIB;
5337   if (parameters->options().nodelete())
5338     flags |= elfcpp::DF_1_NODELETE;
5339   if (parameters->options().nodlopen())
5340     flags |= elfcpp::DF_1_NOOPEN;
5341   if (parameters->options().nodump())
5342     flags |= elfcpp::DF_1_NODUMP;
5343   if (!parameters->options().shared())
5344     flags &= ~(elfcpp::DF_1_INITFIRST
5345                | elfcpp::DF_1_NODELETE
5346                | elfcpp::DF_1_NOOPEN);
5347   if (parameters->options().origin())
5348     flags |= elfcpp::DF_1_ORIGIN;
5349   if (parameters->options().now())
5350     flags |= elfcpp::DF_1_NOW;
5351   if (parameters->options().Bgroup())
5352     flags |= elfcpp::DF_1_GROUP;
5353   if (flags != 0)
5354     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5355 }
5356
5357 // Set the size of the _DYNAMIC symbol table to be the size of the
5358 // dynamic data.
5359
5360 void
5361 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5362 {
5363   Output_data_dynamic* const odyn = this->dynamic_data_;
5364   if (odyn == NULL)
5365     return;
5366   odyn->finalize_data_size();
5367   if (this->dynamic_symbol_ == NULL)
5368     return;
5369   off_t data_size = odyn->data_size();
5370   const int size = parameters->target().get_size();
5371   if (size == 32)
5372     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5373   else if (size == 64)
5374     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5375   else
5376     gold_unreachable();
5377 }
5378
5379 // The mapping of input section name prefixes to output section names.
5380 // In some cases one prefix is itself a prefix of another prefix; in
5381 // such a case the longer prefix must come first.  These prefixes are
5382 // based on the GNU linker default ELF linker script.
5383
5384 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5385 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5386 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5387 {
5388   MAPPING_INIT(".text.", ".text"),
5389   MAPPING_INIT(".rodata.", ".rodata"),
5390   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5391   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5392   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5393   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5394   MAPPING_INIT(".data.", ".data"),
5395   MAPPING_INIT(".bss.", ".bss"),
5396   MAPPING_INIT(".tdata.", ".tdata"),
5397   MAPPING_INIT(".tbss.", ".tbss"),
5398   MAPPING_INIT(".init_array.", ".init_array"),
5399   MAPPING_INIT(".fini_array.", ".fini_array"),
5400   MAPPING_INIT(".sdata.", ".sdata"),
5401   MAPPING_INIT(".sbss.", ".sbss"),
5402   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5403   // differently depending on whether it is creating a shared library.
5404   MAPPING_INIT(".sdata2.", ".sdata"),
5405   MAPPING_INIT(".sbss2.", ".sbss"),
5406   MAPPING_INIT(".lrodata.", ".lrodata"),
5407   MAPPING_INIT(".ldata.", ".ldata"),
5408   MAPPING_INIT(".lbss.", ".lbss"),
5409   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5410   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5411   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5412   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5413   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5414   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5415   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5416   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5417   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5418   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5419   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5420   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5421   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5422   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5423   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5424   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5425   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5426   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5427   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5428   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5429   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5430   MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5431 };
5432
5433 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5434 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5435 {
5436   MAPPING_INIT(".text.hot.", ".text.hot"),
5437   MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5438   MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5439   MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5440   MAPPING_INIT(".text.startup.", ".text.startup"),
5441   MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5442   MAPPING_INIT(".text.exit.", ".text.exit"),
5443   MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5444   MAPPING_INIT(".text.", ".text"),
5445 };
5446 #undef MAPPING_INIT
5447 #undef MAPPING_INIT_EXACT
5448
5449 const int Layout::section_name_mapping_count =
5450   (sizeof(Layout::section_name_mapping)
5451    / sizeof(Layout::section_name_mapping[0]));
5452
5453 const int Layout::text_section_name_mapping_count =
5454   (sizeof(Layout::text_section_name_mapping)
5455    / sizeof(Layout::text_section_name_mapping[0]));
5456
5457 // Find section name NAME in PSNM and return the mapped name if found
5458 // with the length set in PLEN.
5459 const char *
5460 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5461                            const int count,
5462                            const char* name, size_t* plen)
5463 {
5464   for (int i = 0; i < count; ++i, ++psnm)
5465     {
5466       if (psnm->fromlen > 0)
5467         {
5468           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5469             {
5470               *plen = psnm->tolen;
5471               return psnm->to;
5472             }
5473         }
5474       else
5475         {
5476           if (strcmp(name, psnm->from) == 0)
5477             {
5478               *plen = psnm->tolen;
5479               return psnm->to;
5480             }
5481         }
5482     }
5483   return NULL;
5484 }
5485
5486 // Choose the output section name to use given an input section name.
5487 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5488 // length of NAME.
5489
5490 const char*
5491 Layout::output_section_name(const Relobj* relobj, const char* name,
5492                             size_t* plen)
5493 {
5494   // gcc 4.3 generates the following sorts of section names when it
5495   // needs a section name specific to a function:
5496   //   .text.FN
5497   //   .rodata.FN
5498   //   .sdata2.FN
5499   //   .data.FN
5500   //   .data.rel.FN
5501   //   .data.rel.local.FN
5502   //   .data.rel.ro.FN
5503   //   .data.rel.ro.local.FN
5504   //   .sdata.FN
5505   //   .bss.FN
5506   //   .sbss.FN
5507   //   .tdata.FN
5508   //   .tbss.FN
5509
5510   // The GNU linker maps all of those to the part before the .FN,
5511   // except that .data.rel.local.FN is mapped to .data, and
5512   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5513   // beginning with .data.rel.ro.local are grouped together.
5514
5515   // For an anonymous namespace, the string FN can contain a '.'.
5516
5517   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5518   // GNU linker maps to .rodata.
5519
5520   // The .data.rel.ro sections are used with -z relro.  The sections
5521   // are recognized by name.  We use the same names that the GNU
5522   // linker does for these sections.
5523
5524   // It is hard to handle this in a principled way, so we don't even
5525   // try.  We use a table of mappings.  If the input section name is
5526   // not found in the table, we simply use it as the output section
5527   // name.
5528
5529   if (parameters->options().keep_text_section_prefix()
5530       && is_prefix_of(".text", name))
5531     {
5532       const char* match = match_section_name(text_section_name_mapping,
5533                                              text_section_name_mapping_count,
5534                                              name, plen);
5535       if (match != NULL)
5536         return match;
5537     }
5538
5539   const char* match = match_section_name(section_name_mapping,
5540                                          section_name_mapping_count, name, plen);
5541   if (match != NULL)
5542     return match;
5543
5544   // As an additional complication, .ctors sections are output in
5545   // either .ctors or .init_array sections, and .dtors sections are
5546   // output in either .dtors or .fini_array sections.
5547   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5548     {
5549       if (parameters->options().ctors_in_init_array())
5550         {
5551           *plen = 11;
5552           return name[1] == 'c' ? ".init_array" : ".fini_array";
5553         }
5554       else
5555         {
5556           *plen = 6;
5557           return name[1] == 'c' ? ".ctors" : ".dtors";
5558         }
5559     }
5560   if (parameters->options().ctors_in_init_array()
5561       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5562     {
5563       // To make .init_array/.fini_array work with gcc we must exclude
5564       // .ctors and .dtors sections from the crtbegin and crtend
5565       // files.
5566       if (relobj == NULL
5567           || (!Layout::match_file_name(relobj, "crtbegin")
5568               && !Layout::match_file_name(relobj, "crtend")))
5569         {
5570           *plen = 11;
5571           return name[1] == 'c' ? ".init_array" : ".fini_array";
5572         }
5573     }
5574
5575   return name;
5576 }
5577
5578 // Return true if RELOBJ is an input file whose base name matches
5579 // FILE_NAME.  The base name must have an extension of ".o", and must
5580 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5581 // to match crtbegin.o as well as crtbeginS.o without getting confused
5582 // by other possibilities.  Overall matching the file name this way is
5583 // a dreadful hack, but the GNU linker does it in order to better
5584 // support gcc, and we need to be compatible.
5585
5586 bool
5587 Layout::match_file_name(const Relobj* relobj, const char* match)
5588 {
5589   const std::string& file_name(relobj->name());
5590   const char* base_name = lbasename(file_name.c_str());
5591   size_t match_len = strlen(match);
5592   if (strncmp(base_name, match, match_len) != 0)
5593     return false;
5594   size_t base_len = strlen(base_name);
5595   if (base_len != match_len + 2 && base_len != match_len + 3)
5596     return false;
5597   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5598 }
5599
5600 // Check if a comdat group or .gnu.linkonce section with the given
5601 // NAME is selected for the link.  If there is already a section,
5602 // *KEPT_SECTION is set to point to the existing section and the
5603 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5604 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5605 // *KEPT_SECTION is set to the internal copy and the function returns
5606 // true.
5607
5608 bool
5609 Layout::find_or_add_kept_section(const std::string& name,
5610                                  Relobj* object,
5611                                  unsigned int shndx,
5612                                  bool is_comdat,
5613                                  bool is_group_name,
5614                                  Kept_section** kept_section)
5615 {
5616   // It's normal to see a couple of entries here, for the x86 thunk
5617   // sections.  If we see more than a few, we're linking a C++
5618   // program, and we resize to get more space to minimize rehashing.
5619   if (this->signatures_.size() > 4
5620       && !this->resized_signatures_)
5621     {
5622       reserve_unordered_map(&this->signatures_,
5623                             this->number_of_input_files_ * 64);
5624       this->resized_signatures_ = true;
5625     }
5626
5627   Kept_section candidate;
5628   std::pair<Signatures::iterator, bool> ins =
5629     this->signatures_.insert(std::make_pair(name, candidate));
5630
5631   if (kept_section != NULL)
5632     *kept_section = &ins.first->second;
5633   if (ins.second)
5634     {
5635       // This is the first time we've seen this signature.
5636       ins.first->second.set_object(object);
5637       ins.first->second.set_shndx(shndx);
5638       if (is_comdat)
5639         ins.first->second.set_is_comdat();
5640       if (is_group_name)
5641         ins.first->second.set_is_group_name();
5642       return true;
5643     }
5644
5645   // We have already seen this signature.
5646
5647   if (ins.first->second.is_group_name())
5648     {
5649       // We've already seen a real section group with this signature.
5650       // If the kept group is from a plugin object, and we're in the
5651       // replacement phase, accept the new one as a replacement.
5652       if (ins.first->second.object() == NULL
5653           && parameters->options().plugins()->in_replacement_phase())
5654         {
5655           ins.first->second.set_object(object);
5656           ins.first->second.set_shndx(shndx);
5657           return true;
5658         }
5659       return false;
5660     }
5661   else if (is_group_name)
5662     {
5663       // This is a real section group, and we've already seen a
5664       // linkonce section with this signature.  Record that we've seen
5665       // a section group, and don't include this section group.
5666       ins.first->second.set_is_group_name();
5667       return false;
5668     }
5669   else
5670     {
5671       // We've already seen a linkonce section and this is a linkonce
5672       // section.  These don't block each other--this may be the same
5673       // symbol name with different section types.
5674       return true;
5675     }
5676 }
5677
5678 // Store the allocated sections into the section list.
5679
5680 void
5681 Layout::get_allocated_sections(Section_list* section_list) const
5682 {
5683   for (Section_list::const_iterator p = this->section_list_.begin();
5684        p != this->section_list_.end();
5685        ++p)
5686     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5687       section_list->push_back(*p);
5688 }
5689
5690 // Store the executable sections into the section list.
5691
5692 void
5693 Layout::get_executable_sections(Section_list* section_list) const
5694 {
5695   for (Section_list::const_iterator p = this->section_list_.begin();
5696        p != this->section_list_.end();
5697        ++p)
5698     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5699         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5700       section_list->push_back(*p);
5701 }
5702
5703 // Create an output segment.
5704
5705 Output_segment*
5706 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5707 {
5708   gold_assert(!parameters->options().relocatable());
5709   Output_segment* oseg = new Output_segment(type, flags);
5710   this->segment_list_.push_back(oseg);
5711
5712   if (type == elfcpp::PT_TLS)
5713     this->tls_segment_ = oseg;
5714   else if (type == elfcpp::PT_GNU_RELRO)
5715     this->relro_segment_ = oseg;
5716   else if (type == elfcpp::PT_INTERP)
5717     this->interp_segment_ = oseg;
5718
5719   return oseg;
5720 }
5721
5722 // Return the file offset of the normal symbol table.
5723
5724 off_t
5725 Layout::symtab_section_offset() const
5726 {
5727   if (this->symtab_section_ != NULL)
5728     return this->symtab_section_->offset();
5729   return 0;
5730 }
5731
5732 // Return the section index of the normal symbol table.  It may have
5733 // been stripped by the -s/--strip-all option.
5734
5735 unsigned int
5736 Layout::symtab_section_shndx() const
5737 {
5738   if (this->symtab_section_ != NULL)
5739     return this->symtab_section_->out_shndx();
5740   return 0;
5741 }
5742
5743 // Write out the Output_sections.  Most won't have anything to write,
5744 // since most of the data will come from input sections which are
5745 // handled elsewhere.  But some Output_sections do have Output_data.
5746
5747 void
5748 Layout::write_output_sections(Output_file* of) const
5749 {
5750   for (Section_list::const_iterator p = this->section_list_.begin();
5751        p != this->section_list_.end();
5752        ++p)
5753     {
5754       if (!(*p)->after_input_sections())
5755         (*p)->write(of);
5756     }
5757 }
5758
5759 // Write out data not associated with a section or the symbol table.
5760
5761 void
5762 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5763 {
5764   if (!parameters->options().strip_all())
5765     {
5766       const Output_section* symtab_section = this->symtab_section_;
5767       for (Section_list::const_iterator p = this->section_list_.begin();
5768            p != this->section_list_.end();
5769            ++p)
5770         {
5771           if ((*p)->needs_symtab_index())
5772             {
5773               gold_assert(symtab_section != NULL);
5774               unsigned int index = (*p)->symtab_index();
5775               gold_assert(index > 0 && index != -1U);
5776               off_t off = (symtab_section->offset()
5777                            + index * symtab_section->entsize());
5778               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5779             }
5780         }
5781     }
5782
5783   const Output_section* dynsym_section = this->dynsym_section_;
5784   for (Section_list::const_iterator p = this->section_list_.begin();
5785        p != this->section_list_.end();
5786        ++p)
5787     {
5788       if ((*p)->needs_dynsym_index())
5789         {
5790           gold_assert(dynsym_section != NULL);
5791           unsigned int index = (*p)->dynsym_index();
5792           gold_assert(index > 0 && index != -1U);
5793           off_t off = (dynsym_section->offset()
5794                        + index * dynsym_section->entsize());
5795           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5796         }
5797     }
5798
5799   // Write out the Output_data which are not in an Output_section.
5800   for (Data_list::const_iterator p = this->special_output_list_.begin();
5801        p != this->special_output_list_.end();
5802        ++p)
5803     (*p)->write(of);
5804
5805   // Write out the Output_data which are not in an Output_section
5806   // and are regenerated in each iteration of relaxation.
5807   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5808        p != this->relax_output_list_.end();
5809        ++p)
5810     (*p)->write(of);
5811 }
5812
5813 // Write out the Output_sections which can only be written after the
5814 // input sections are complete.
5815
5816 void
5817 Layout::write_sections_after_input_sections(Output_file* of)
5818 {
5819   // Determine the final section offsets, and thus the final output
5820   // file size.  Note we finalize the .shstrab last, to allow the
5821   // after_input_section sections to modify their section-names before
5822   // writing.
5823   if (this->any_postprocessing_sections_)
5824     {
5825       off_t off = this->output_file_size_;
5826       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5827
5828       // Now that we've finalized the names, we can finalize the shstrab.
5829       off =
5830         this->set_section_offsets(off,
5831                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5832
5833       if (off > this->output_file_size_)
5834         {
5835           of->resize(off);
5836           this->output_file_size_ = off;
5837         }
5838     }
5839
5840   for (Section_list::const_iterator p = this->section_list_.begin();
5841        p != this->section_list_.end();
5842        ++p)
5843     {
5844       if ((*p)->after_input_sections())
5845         (*p)->write(of);
5846     }
5847
5848   this->section_headers_->write(of);
5849 }
5850
5851 // If a tree-style build ID was requested, the parallel part of that computation
5852 // is already done, and the final hash-of-hashes is computed here.  For other
5853 // types of build IDs, all the work is done here.
5854
5855 void
5856 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5857                        size_t size_of_hashes) const
5858 {
5859   if (this->build_id_note_ == NULL)
5860     return;
5861
5862   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5863                                           this->build_id_note_->data_size());
5864
5865   if (array_of_hashes == NULL)
5866     {
5867       const size_t output_file_size = this->output_file_size();
5868       const unsigned char* iv = of->get_input_view(0, output_file_size);
5869       const char* style = parameters->options().build_id();
5870
5871       // If we get here with style == "tree" then the output must be
5872       // too small for chunking, and we use SHA-1 in that case.
5873       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5874         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5875       else if (strcmp(style, "md5") == 0)
5876         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5877       else
5878         gold_unreachable();
5879
5880       of->free_input_view(0, output_file_size, iv);
5881     }
5882   else
5883     {
5884       // Non-overlapping substrings of the output file have been hashed.
5885       // Compute SHA-1 hash of the hashes.
5886       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5887                   size_of_hashes, ov);
5888       delete[] array_of_hashes;
5889     }
5890
5891   of->write_output_view(this->build_id_note_->offset(),
5892                         this->build_id_note_->data_size(),
5893                         ov);
5894 }
5895
5896 // Write out a binary file.  This is called after the link is
5897 // complete.  IN is the temporary output file we used to generate the
5898 // ELF code.  We simply walk through the segments, read them from
5899 // their file offset in IN, and write them to their load address in
5900 // the output file.  FIXME: with a bit more work, we could support
5901 // S-records and/or Intel hex format here.
5902
5903 void
5904 Layout::write_binary(Output_file* in) const
5905 {
5906   gold_assert(parameters->options().oformat_enum()
5907               == General_options::OBJECT_FORMAT_BINARY);
5908
5909   // Get the size of the binary file.
5910   uint64_t max_load_address = 0;
5911   for (Segment_list::const_iterator p = this->segment_list_.begin();
5912        p != this->segment_list_.end();
5913        ++p)
5914     {
5915       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5916         {
5917           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5918           if (max_paddr > max_load_address)
5919             max_load_address = max_paddr;
5920         }
5921     }
5922
5923   Output_file out(parameters->options().output_file_name());
5924   out.open(max_load_address);
5925
5926   for (Segment_list::const_iterator p = this->segment_list_.begin();
5927        p != this->segment_list_.end();
5928        ++p)
5929     {
5930       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5931         {
5932           const unsigned char* vin = in->get_input_view((*p)->offset(),
5933                                                         (*p)->filesz());
5934           unsigned char* vout = out.get_output_view((*p)->paddr(),
5935                                                     (*p)->filesz());
5936           memcpy(vout, vin, (*p)->filesz());
5937           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5938           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5939         }
5940     }
5941
5942   out.close();
5943 }
5944
5945 // Print the output sections to the map file.
5946
5947 void
5948 Layout::print_to_mapfile(Mapfile* mapfile) const
5949 {
5950   for (Segment_list::const_iterator p = this->segment_list_.begin();
5951        p != this->segment_list_.end();
5952        ++p)
5953     (*p)->print_sections_to_mapfile(mapfile);
5954   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5955        p != this->unattached_section_list_.end();
5956        ++p)
5957     (*p)->print_to_mapfile(mapfile);
5958 }
5959
5960 // Print statistical information to stderr.  This is used for --stats.
5961
5962 void
5963 Layout::print_stats() const
5964 {
5965   this->namepool_.print_stats("section name pool");
5966   this->sympool_.print_stats("output symbol name pool");
5967   this->dynpool_.print_stats("dynamic name pool");
5968
5969   for (Section_list::const_iterator p = this->section_list_.begin();
5970        p != this->section_list_.end();
5971        ++p)
5972     (*p)->print_merge_stats();
5973 }
5974
5975 // Write_sections_task methods.
5976
5977 // We can always run this task.
5978
5979 Task_token*
5980 Write_sections_task::is_runnable()
5981 {
5982   return NULL;
5983 }
5984
5985 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5986 // when finished.
5987
5988 void
5989 Write_sections_task::locks(Task_locker* tl)
5990 {
5991   tl->add(this, this->output_sections_blocker_);
5992   if (this->input_sections_blocker_ != NULL)
5993     tl->add(this, this->input_sections_blocker_);
5994   tl->add(this, this->final_blocker_);
5995 }
5996
5997 // Run the task--write out the data.
5998
5999 void
6000 Write_sections_task::run(Workqueue*)
6001 {
6002   this->layout_->write_output_sections(this->of_);
6003 }
6004
6005 // Write_data_task methods.
6006
6007 // We can always run this task.
6008
6009 Task_token*
6010 Write_data_task::is_runnable()
6011 {
6012   return NULL;
6013 }
6014
6015 // We need to unlock FINAL_BLOCKER when finished.
6016
6017 void
6018 Write_data_task::locks(Task_locker* tl)
6019 {
6020   tl->add(this, this->final_blocker_);
6021 }
6022
6023 // Run the task--write out the data.
6024
6025 void
6026 Write_data_task::run(Workqueue*)
6027 {
6028   this->layout_->write_data(this->symtab_, this->of_);
6029 }
6030
6031 // Write_symbols_task methods.
6032
6033 // We can always run this task.
6034
6035 Task_token*
6036 Write_symbols_task::is_runnable()
6037 {
6038   return NULL;
6039 }
6040
6041 // We need to unlock FINAL_BLOCKER when finished.
6042
6043 void
6044 Write_symbols_task::locks(Task_locker* tl)
6045 {
6046   tl->add(this, this->final_blocker_);
6047 }
6048
6049 // Run the task--write out the symbols.
6050
6051 void
6052 Write_symbols_task::run(Workqueue*)
6053 {
6054   this->symtab_->write_globals(this->sympool_, this->dynpool_,
6055                                this->layout_->symtab_xindex(),
6056                                this->layout_->dynsym_xindex(), this->of_);
6057 }
6058
6059 // Write_after_input_sections_task methods.
6060
6061 // We can only run this task after the input sections have completed.
6062
6063 Task_token*
6064 Write_after_input_sections_task::is_runnable()
6065 {
6066   if (this->input_sections_blocker_->is_blocked())
6067     return this->input_sections_blocker_;
6068   return NULL;
6069 }
6070
6071 // We need to unlock FINAL_BLOCKER when finished.
6072
6073 void
6074 Write_after_input_sections_task::locks(Task_locker* tl)
6075 {
6076   tl->add(this, this->final_blocker_);
6077 }
6078
6079 // Run the task.
6080
6081 void
6082 Write_after_input_sections_task::run(Workqueue*)
6083 {
6084   this->layout_->write_sections_after_input_sections(this->of_);
6085 }
6086
6087 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6088 // or as a "tree" where each chunk of the string is hashed and then those
6089 // hashes are put into a (much smaller) string which is hashed with sha1.
6090 // We compute a checksum over the entire file because that is simplest.
6091
6092 void
6093 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6094 {
6095   Task_token* post_hash_tasks_blocker = new Task_token(true);
6096   const Layout* layout = this->layout_;
6097   Output_file* of = this->of_;
6098   const size_t filesize = (layout->output_file_size() <= 0 ? 0
6099                            : static_cast<size_t>(layout->output_file_size()));
6100   unsigned char* array_of_hashes = NULL;
6101   size_t size_of_hashes = 0;
6102
6103   if (strcmp(this->options_->build_id(), "tree") == 0
6104       && this->options_->build_id_chunk_size_for_treehash() > 0
6105       && filesize > 0
6106       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6107     {
6108       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6109       const size_t chunk_size =
6110           this->options_->build_id_chunk_size_for_treehash();
6111       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6112       post_hash_tasks_blocker->add_blockers(num_hashes);
6113       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6114       array_of_hashes = new unsigned char[size_of_hashes];
6115       unsigned char *dst = array_of_hashes;
6116       for (size_t i = 0, src_offset = 0; i < num_hashes;
6117            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6118         {
6119           size_t size = std::min(chunk_size, filesize - src_offset);
6120           workqueue->queue(new Hash_task(of,
6121                                          src_offset,
6122                                          size,
6123                                          dst,
6124                                          post_hash_tasks_blocker));
6125         }
6126     }
6127
6128   // Queue the final task to write the build id and close the output file.
6129   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6130                                                            layout,
6131                                                            of,
6132                                                            array_of_hashes,
6133                                                            size_of_hashes),
6134                                      post_hash_tasks_blocker,
6135                                      "Task_function Close_task_runner"));
6136 }
6137
6138 // Close_task_runner methods.
6139
6140 // Finish up the build ID computation, if necessary, and write a binary file,
6141 // if necessary.  Then close the output file.
6142
6143 void
6144 Close_task_runner::run(Workqueue*, const Task*)
6145 {
6146   // At this point the multi-threaded part of the build ID computation,
6147   // if any, is done.  See Build_id_task_runner.
6148   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6149                                 this->size_of_hashes_);
6150
6151   // If we've been asked to create a binary file, we do so here.
6152   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6153     this->layout_->write_binary(this->of_);
6154
6155   this->of_->close();
6156 }
6157
6158 // Instantiate the templates we need.  We could use the configure
6159 // script to restrict this to only the ones for implemented targets.
6160
6161 #ifdef HAVE_TARGET_32_LITTLE
6162 template
6163 Output_section*
6164 Layout::init_fixed_output_section<32, false>(
6165     const char* name,
6166     elfcpp::Shdr<32, false>& shdr);
6167 #endif
6168
6169 #ifdef HAVE_TARGET_32_BIG
6170 template
6171 Output_section*
6172 Layout::init_fixed_output_section<32, true>(
6173     const char* name,
6174     elfcpp::Shdr<32, true>& shdr);
6175 #endif
6176
6177 #ifdef HAVE_TARGET_64_LITTLE
6178 template
6179 Output_section*
6180 Layout::init_fixed_output_section<64, false>(
6181     const char* name,
6182     elfcpp::Shdr<64, false>& shdr);
6183 #endif
6184
6185 #ifdef HAVE_TARGET_64_BIG
6186 template
6187 Output_section*
6188 Layout::init_fixed_output_section<64, true>(
6189     const char* name,
6190     elfcpp::Shdr<64, true>& shdr);
6191 #endif
6192
6193 #ifdef HAVE_TARGET_32_LITTLE
6194 template
6195 Output_section*
6196 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6197                           unsigned int shndx,
6198                           const char* name,
6199                           const elfcpp::Shdr<32, false>& shdr,
6200                           unsigned int, unsigned int, unsigned int, off_t*);
6201 #endif
6202
6203 #ifdef HAVE_TARGET_32_BIG
6204 template
6205 Output_section*
6206 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6207                          unsigned int shndx,
6208                          const char* name,
6209                          const elfcpp::Shdr<32, true>& shdr,
6210                          unsigned int, unsigned int, unsigned int, off_t*);
6211 #endif
6212
6213 #ifdef HAVE_TARGET_64_LITTLE
6214 template
6215 Output_section*
6216 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6217                           unsigned int shndx,
6218                           const char* name,
6219                           const elfcpp::Shdr<64, false>& shdr,
6220                           unsigned int, unsigned int, unsigned int, off_t*);
6221 #endif
6222
6223 #ifdef HAVE_TARGET_64_BIG
6224 template
6225 Output_section*
6226 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6227                          unsigned int shndx,
6228                          const char* name,
6229                          const elfcpp::Shdr<64, true>& shdr,
6230                          unsigned int, unsigned int, unsigned int, off_t*);
6231 #endif
6232
6233 #ifdef HAVE_TARGET_32_LITTLE
6234 template
6235 Output_section*
6236 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6237                                 unsigned int reloc_shndx,
6238                                 const elfcpp::Shdr<32, false>& shdr,
6239                                 Output_section* data_section,
6240                                 Relocatable_relocs* rr);
6241 #endif
6242
6243 #ifdef HAVE_TARGET_32_BIG
6244 template
6245 Output_section*
6246 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6247                                unsigned int reloc_shndx,
6248                                const elfcpp::Shdr<32, true>& shdr,
6249                                Output_section* data_section,
6250                                Relocatable_relocs* rr);
6251 #endif
6252
6253 #ifdef HAVE_TARGET_64_LITTLE
6254 template
6255 Output_section*
6256 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6257                                 unsigned int reloc_shndx,
6258                                 const elfcpp::Shdr<64, false>& shdr,
6259                                 Output_section* data_section,
6260                                 Relocatable_relocs* rr);
6261 #endif
6262
6263 #ifdef HAVE_TARGET_64_BIG
6264 template
6265 Output_section*
6266 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6267                                unsigned int reloc_shndx,
6268                                const elfcpp::Shdr<64, true>& shdr,
6269                                Output_section* data_section,
6270                                Relocatable_relocs* rr);
6271 #endif
6272
6273 #ifdef HAVE_TARGET_32_LITTLE
6274 template
6275 void
6276 Layout::layout_group<32, false>(Symbol_table* symtab,
6277                                 Sized_relobj_file<32, false>* object,
6278                                 unsigned int,
6279                                 const char* group_section_name,
6280                                 const char* signature,
6281                                 const elfcpp::Shdr<32, false>& shdr,
6282                                 elfcpp::Elf_Word flags,
6283                                 std::vector<unsigned int>* shndxes);
6284 #endif
6285
6286 #ifdef HAVE_TARGET_32_BIG
6287 template
6288 void
6289 Layout::layout_group<32, true>(Symbol_table* symtab,
6290                                Sized_relobj_file<32, true>* object,
6291                                unsigned int,
6292                                const char* group_section_name,
6293                                const char* signature,
6294                                const elfcpp::Shdr<32, true>& shdr,
6295                                elfcpp::Elf_Word flags,
6296                                std::vector<unsigned int>* shndxes);
6297 #endif
6298
6299 #ifdef HAVE_TARGET_64_LITTLE
6300 template
6301 void
6302 Layout::layout_group<64, false>(Symbol_table* symtab,
6303                                 Sized_relobj_file<64, false>* object,
6304                                 unsigned int,
6305                                 const char* group_section_name,
6306                                 const char* signature,
6307                                 const elfcpp::Shdr<64, false>& shdr,
6308                                 elfcpp::Elf_Word flags,
6309                                 std::vector<unsigned int>* shndxes);
6310 #endif
6311
6312 #ifdef HAVE_TARGET_64_BIG
6313 template
6314 void
6315 Layout::layout_group<64, true>(Symbol_table* symtab,
6316                                Sized_relobj_file<64, true>* object,
6317                                unsigned int,
6318                                const char* group_section_name,
6319                                const char* signature,
6320                                const elfcpp::Shdr<64, true>& shdr,
6321                                elfcpp::Elf_Word flags,
6322                                std::vector<unsigned int>* shndxes);
6323 #endif
6324
6325 #ifdef HAVE_TARGET_32_LITTLE
6326 template
6327 Output_section*
6328 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6329                                    const unsigned char* symbols,
6330                                    off_t symbols_size,
6331                                    const unsigned char* symbol_names,
6332                                    off_t symbol_names_size,
6333                                    unsigned int shndx,
6334                                    const elfcpp::Shdr<32, false>& shdr,
6335                                    unsigned int reloc_shndx,
6336                                    unsigned int reloc_type,
6337                                    off_t* off);
6338 #endif
6339
6340 #ifdef HAVE_TARGET_32_BIG
6341 template
6342 Output_section*
6343 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6344                                   const unsigned char* symbols,
6345                                   off_t symbols_size,
6346                                   const unsigned char* symbol_names,
6347                                   off_t symbol_names_size,
6348                                   unsigned int shndx,
6349                                   const elfcpp::Shdr<32, true>& shdr,
6350                                   unsigned int reloc_shndx,
6351                                   unsigned int reloc_type,
6352                                   off_t* off);
6353 #endif
6354
6355 #ifdef HAVE_TARGET_64_LITTLE
6356 template
6357 Output_section*
6358 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6359                                    const unsigned char* symbols,
6360                                    off_t symbols_size,
6361                                    const unsigned char* symbol_names,
6362                                    off_t symbol_names_size,
6363                                    unsigned int shndx,
6364                                    const elfcpp::Shdr<64, false>& shdr,
6365                                    unsigned int reloc_shndx,
6366                                    unsigned int reloc_type,
6367                                    off_t* off);
6368 #endif
6369
6370 #ifdef HAVE_TARGET_64_BIG
6371 template
6372 Output_section*
6373 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6374                                   const unsigned char* symbols,
6375                                   off_t symbols_size,
6376                                   const unsigned char* symbol_names,
6377                                   off_t symbol_names_size,
6378                                   unsigned int shndx,
6379                                   const elfcpp::Shdr<64, true>& shdr,
6380                                   unsigned int reloc_shndx,
6381                                   unsigned int reloc_type,
6382                                   off_t* off);
6383 #endif
6384
6385 #ifdef HAVE_TARGET_32_LITTLE
6386 template
6387 void
6388 Layout::add_to_gdb_index(bool is_type_unit,
6389                          Sized_relobj<32, false>* object,
6390                          const unsigned char* symbols,
6391                          off_t symbols_size,
6392                          unsigned int shndx,
6393                          unsigned int reloc_shndx,
6394                          unsigned int reloc_type);
6395 #endif
6396
6397 #ifdef HAVE_TARGET_32_BIG
6398 template
6399 void
6400 Layout::add_to_gdb_index(bool is_type_unit,
6401                          Sized_relobj<32, true>* object,
6402                          const unsigned char* symbols,
6403                          off_t symbols_size,
6404                          unsigned int shndx,
6405                          unsigned int reloc_shndx,
6406                          unsigned int reloc_type);
6407 #endif
6408
6409 #ifdef HAVE_TARGET_64_LITTLE
6410 template
6411 void
6412 Layout::add_to_gdb_index(bool is_type_unit,
6413                          Sized_relobj<64, false>* object,
6414                          const unsigned char* symbols,
6415                          off_t symbols_size,
6416                          unsigned int shndx,
6417                          unsigned int reloc_shndx,
6418                          unsigned int reloc_type);
6419 #endif
6420
6421 #ifdef HAVE_TARGET_64_BIG
6422 template
6423 void
6424 Layout::add_to_gdb_index(bool is_type_unit,
6425                          Sized_relobj<64, true>* object,
6426                          const unsigned char* symbols,
6427                          off_t symbols_size,
6428                          unsigned int shndx,
6429                          unsigned int reloc_shndx,
6430                          unsigned int reloc_type);
6431 #endif
6432
6433 } // End namespace gold.