1107fa6d7453064ec04b55ef491fcc50734778cf
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Layout::Relaxation_debug_check methods.
59
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
64 void
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66     const Layout::Section_list& sections,
67     const Layout::Data_list& special_outputs)
68 {
69   for(Layout::Section_list::const_iterator p = sections.begin();
70       p != sections.end();
71       ++p)
72     gold_assert((*p)->address_and_file_offset_have_reset_values());
73
74   for(Layout::Data_list::const_iterator p = special_outputs.begin();
75       p != special_outputs.end();
76       ++p)
77     gold_assert((*p)->address_and_file_offset_have_reset_values());
78 }
79   
80 // Save information of SECTIONS for checking later.
81
82 void
83 Layout::Relaxation_debug_check::read_sections(
84     const Layout::Section_list& sections)
85 {
86   for(Layout::Section_list::const_iterator p = sections.begin();
87       p != sections.end();
88       ++p)
89     {
90       Output_section* os = *p;
91       Section_info info;
92       info.output_section = os;
93       info.address = os->is_address_valid() ? os->address() : 0;
94       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
95       info.offset = os->is_offset_valid()? os->offset() : -1 ;
96       this->section_infos_.push_back(info);
97     }
98 }
99
100 // Verify SECTIONS using previously recorded information.
101
102 void
103 Layout::Relaxation_debug_check::verify_sections(
104     const Layout::Section_list& sections)
105 {
106   size_t i = 0;
107   for(Layout::Section_list::const_iterator p = sections.begin();
108       p != sections.end();
109       ++p, ++i)
110     {
111       Output_section* os = *p;
112       uint64_t address = os->is_address_valid() ? os->address() : 0;
113       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
114       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
115
116       if (i >= this->section_infos_.size())
117         {
118           gold_fatal("Section_info of %s missing.\n", os->name());
119         }
120       const Section_info& info = this->section_infos_[i];
121       if (os != info.output_section)
122         gold_fatal("Section order changed.  Expecting %s but see %s\n",
123                    info.output_section->name(), os->name());
124       if (address != info.address
125           || data_size != info.data_size
126           || offset != info.offset)
127         gold_fatal("Section %s changed.\n", os->name());
128     }
129 }
130
131 // Layout_task_runner methods.
132
133 // Lay out the sections.  This is called after all the input objects
134 // have been read.
135
136 void
137 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
138 {
139   off_t file_size = this->layout_->finalize(this->input_objects_,
140                                             this->symtab_,
141                                             this->target_,
142                                             task);
143
144   // Now we know the final size of the output file and we know where
145   // each piece of information goes.
146
147   if (this->mapfile_ != NULL)
148     {
149       this->mapfile_->print_discarded_sections(this->input_objects_);
150       this->layout_->print_to_mapfile(this->mapfile_);
151     }
152
153   Output_file* of = new Output_file(parameters->options().output_file_name());
154   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
155     of->set_is_temporary();
156   of->open(file_size);
157
158   // Queue up the final set of tasks.
159   gold::queue_final_tasks(this->options_, this->input_objects_,
160                           this->symtab_, this->layout_, workqueue, of);
161 }
162
163 // Layout methods.
164
165 Layout::Layout(int number_of_input_files, Script_options* script_options)
166   : number_of_input_files_(number_of_input_files),
167     script_options_(script_options),
168     namepool_(),
169     sympool_(),
170     dynpool_(),
171     signatures_(),
172     section_name_map_(),
173     segment_list_(),
174     section_list_(),
175     unattached_section_list_(),
176     special_output_list_(),
177     section_headers_(NULL),
178     tls_segment_(NULL),
179     relro_segment_(NULL),
180     increase_relro_(0),
181     symtab_section_(NULL),
182     symtab_xindex_(NULL),
183     dynsym_section_(NULL),
184     dynsym_xindex_(NULL),
185     dynamic_section_(NULL),
186     dynamic_symbol_(NULL),
187     dynamic_data_(NULL),
188     eh_frame_section_(NULL),
189     eh_frame_data_(NULL),
190     added_eh_frame_data_(false),
191     eh_frame_hdr_section_(NULL),
192     build_id_note_(NULL),
193     debug_abbrev_(NULL),
194     debug_info_(NULL),
195     group_signatures_(),
196     output_file_size_(-1),
197     have_added_input_section_(false),
198     sections_are_attached_(false),
199     input_requires_executable_stack_(false),
200     input_with_gnu_stack_note_(false),
201     input_without_gnu_stack_note_(false),
202     has_static_tls_(false),
203     any_postprocessing_sections_(false),
204     resized_signatures_(false),
205     have_stabstr_section_(false),
206     incremental_inputs_(NULL),
207     record_output_section_data_from_script_(false),
208     script_output_section_data_list_(),
209     segment_states_(NULL),
210     relaxation_debug_check_(NULL)
211 {
212   // Make space for more than enough segments for a typical file.
213   // This is just for efficiency--it's OK if we wind up needing more.
214   this->segment_list_.reserve(12);
215
216   // We expect two unattached Output_data objects: the file header and
217   // the segment headers.
218   this->special_output_list_.reserve(2);
219
220   // Initialize structure needed for an incremental build.
221   if (parameters->options().incremental())
222     this->incremental_inputs_ = new Incremental_inputs;
223
224   // The section name pool is worth optimizing in all cases, because
225   // it is small, but there are often overlaps due to .rel sections.
226   this->namepool_.set_optimize();
227 }
228
229 // Hash a key we use to look up an output section mapping.
230
231 size_t
232 Layout::Hash_key::operator()(const Layout::Key& k) const
233 {
234  return k.first + k.second.first + k.second.second;
235 }
236
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb.  Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
240
241 static const char* gdb_sections[] =
242 { ".debug_abbrev",
243   // ".debug_aranges",   // not used by gdb as of 6.7.1
244   ".debug_frame",
245   ".debug_info",
246   ".debug_types",
247   ".debug_line",
248   ".debug_loc",
249   ".debug_macinfo",
250   // ".debug_pubnames",  // not used by gdb as of 6.7.1
251   ".debug_ranges",
252   ".debug_str",
253 };
254
255 static const char* lines_only_debug_sections[] =
256 { ".debug_abbrev",
257   // ".debug_aranges",   // not used by gdb as of 6.7.1
258   // ".debug_frame",
259   ".debug_info",
260   // ".debug_types",
261   ".debug_line",
262   // ".debug_loc",
263   // ".debug_macinfo",
264   // ".debug_pubnames",  // not used by gdb as of 6.7.1
265   // ".debug_ranges",
266   ".debug_str",
267 };
268
269 static inline bool
270 is_gdb_debug_section(const char* str)
271 {
272   // We can do this faster: binary search or a hashtable.  But why bother?
273   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
274     if (strcmp(str, gdb_sections[i]) == 0)
275       return true;
276   return false;
277 }
278
279 static inline bool
280 is_lines_only_debug_section(const char* str)
281 {
282   // We can do this faster: binary search or a hashtable.  But why bother?
283   for (size_t i = 0;
284        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
285        ++i)
286     if (strcmp(str, lines_only_debug_sections[i]) == 0)
287       return true;
288   return false;
289 }
290
291 // Whether to include this section in the link.
292
293 template<int size, bool big_endian>
294 bool
295 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
296                         const elfcpp::Shdr<size, big_endian>& shdr)
297 {
298   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
299     return false;
300
301   switch (shdr.get_sh_type())
302     {
303     case elfcpp::SHT_NULL:
304     case elfcpp::SHT_SYMTAB:
305     case elfcpp::SHT_DYNSYM:
306     case elfcpp::SHT_HASH:
307     case elfcpp::SHT_DYNAMIC:
308     case elfcpp::SHT_SYMTAB_SHNDX:
309       return false;
310
311     case elfcpp::SHT_STRTAB:
312       // Discard the sections which have special meanings in the ELF
313       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
314       // checking the sh_link fields of the appropriate sections.
315       return (strcmp(name, ".dynstr") != 0
316               && strcmp(name, ".strtab") != 0
317               && strcmp(name, ".shstrtab") != 0);
318
319     case elfcpp::SHT_RELA:
320     case elfcpp::SHT_REL:
321     case elfcpp::SHT_GROUP:
322       // If we are emitting relocations these should be handled
323       // elsewhere.
324       gold_assert(!parameters->options().relocatable()
325                   && !parameters->options().emit_relocs());
326       return false;
327
328     case elfcpp::SHT_PROGBITS:
329       if (parameters->options().strip_debug()
330           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
331         {
332           if (is_debug_info_section(name))
333             return false;
334         }
335       if (parameters->options().strip_debug_non_line()
336           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
337         {
338           // Debugging sections can only be recognized by name.
339           if (is_prefix_of(".debug", name)
340               && !is_lines_only_debug_section(name))
341             return false;
342         }
343       if (parameters->options().strip_debug_gdb()
344           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
345         {
346           // Debugging sections can only be recognized by name.
347           if (is_prefix_of(".debug", name)
348               && !is_gdb_debug_section(name))
349             return false;
350         }
351       if (parameters->options().strip_lto_sections()
352           && !parameters->options().relocatable()
353           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
354         {
355           // Ignore LTO sections containing intermediate code.
356           if (is_prefix_of(".gnu.lto_", name))
357             return false;
358         }
359       // The GNU linker strips .gnu_debuglink sections, so we do too.
360       // This is a feature used to keep debugging information in
361       // separate files.
362       if (strcmp(name, ".gnu_debuglink") == 0)
363         return false;
364       return true;
365
366     default:
367       return true;
368     }
369 }
370
371 // Return an output section named NAME, or NULL if there is none.
372
373 Output_section*
374 Layout::find_output_section(const char* name) const
375 {
376   for (Section_list::const_iterator p = this->section_list_.begin();
377        p != this->section_list_.end();
378        ++p)
379     if (strcmp((*p)->name(), name) == 0)
380       return *p;
381   return NULL;
382 }
383
384 // Return an output segment of type TYPE, with segment flags SET set
385 // and segment flags CLEAR clear.  Return NULL if there is none.
386
387 Output_segment*
388 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
389                             elfcpp::Elf_Word clear) const
390 {
391   for (Segment_list::const_iterator p = this->segment_list_.begin();
392        p != this->segment_list_.end();
393        ++p)
394     if (static_cast<elfcpp::PT>((*p)->type()) == type
395         && ((*p)->flags() & set) == set
396         && ((*p)->flags() & clear) == 0)
397       return *p;
398   return NULL;
399 }
400
401 // Return the output section to use for section NAME with type TYPE
402 // and section flags FLAGS.  NAME must be canonicalized in the string
403 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
404 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
405 // is used by the dynamic linker.  IS_RELRO is true for a relro
406 // section.  IS_LAST_RELRO is true for the last relro section.
407 // IS_FIRST_NON_RELRO is true for the first non-relro section.
408
409 Output_section*
410 Layout::get_output_section(const char* name, Stringpool::Key name_key,
411                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
412                            Output_section_order order, bool is_relro)
413 {
414   elfcpp::Elf_Xword lookup_flags = flags;
415
416   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
417   // read-write with read-only sections.  Some other ELF linkers do
418   // not do this.  FIXME: Perhaps there should be an option
419   // controlling this.
420   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
421
422   const Key key(name_key, std::make_pair(type, lookup_flags));
423   const std::pair<Key, Output_section*> v(key, NULL);
424   std::pair<Section_name_map::iterator, bool> ins(
425     this->section_name_map_.insert(v));
426
427   if (!ins.second)
428     return ins.first->second;
429   else
430     {
431       // This is the first time we've seen this name/type/flags
432       // combination.  For compatibility with the GNU linker, we
433       // combine sections with contents and zero flags with sections
434       // with non-zero flags.  This is a workaround for cases where
435       // assembler code forgets to set section flags.  FIXME: Perhaps
436       // there should be an option to control this.
437       Output_section* os = NULL;
438
439       if (type == elfcpp::SHT_PROGBITS)
440         {
441           if (flags == 0)
442             {
443               Output_section* same_name = this->find_output_section(name);
444               if (same_name != NULL
445                   && same_name->type() == elfcpp::SHT_PROGBITS
446                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
447                 os = same_name;
448             }
449           else if ((flags & elfcpp::SHF_TLS) == 0)
450             {
451               elfcpp::Elf_Xword zero_flags = 0;
452               const Key zero_key(name_key, std::make_pair(type, zero_flags));
453               Section_name_map::iterator p =
454                   this->section_name_map_.find(zero_key);
455               if (p != this->section_name_map_.end())
456                 os = p->second;
457             }
458         }
459
460       if (os == NULL)
461         os = this->make_output_section(name, type, flags, order, is_relro);
462
463       ins.first->second = os;
464       return os;
465     }
466 }
467
468 // Pick the output section to use for section NAME, in input file
469 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
470 // linker created section.  IS_INPUT_SECTION is true if we are
471 // choosing an output section for an input section found in a input
472 // file.  IS_INTERP is true if this is the .interp section.
473 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
474 // dynamic linker.  IS_RELRO is true for a relro section.
475 // IS_LAST_RELRO is true for the last relro section.
476 // IS_FIRST_NON_RELRO is true for the first non-relro section.  This
477 // will return NULL if the input section should be discarded.
478
479 Output_section*
480 Layout::choose_output_section(const Relobj* relobj, const char* name,
481                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
482                               bool is_input_section, Output_section_order order,
483                               bool is_relro)
484 {
485   // We should not see any input sections after we have attached
486   // sections to segments.
487   gold_assert(!is_input_section || !this->sections_are_attached_);
488
489   // Some flags in the input section should not be automatically
490   // copied to the output section.
491   flags &= ~ (elfcpp::SHF_INFO_LINK
492               | elfcpp::SHF_LINK_ORDER
493               | elfcpp::SHF_GROUP
494               | elfcpp::SHF_MERGE
495               | elfcpp::SHF_STRINGS);
496
497   if (this->script_options_->saw_sections_clause())
498     {
499       // We are using a SECTIONS clause, so the output section is
500       // chosen based only on the name.
501
502       Script_sections* ss = this->script_options_->script_sections();
503       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
504       Output_section** output_section_slot;
505       Script_sections::Section_type script_section_type;
506       name = ss->output_section_name(file_name, name, &output_section_slot,
507                                      &script_section_type);
508       if (name == NULL)
509         {
510           // The SECTIONS clause says to discard this input section.
511           return NULL;
512         }
513
514       // We can only handle script section types ST_NONE and ST_NOLOAD.
515       switch (script_section_type)
516         {
517         case Script_sections::ST_NONE:
518           break;
519         case Script_sections::ST_NOLOAD:
520           flags &= elfcpp::SHF_ALLOC;
521           break;
522         default:
523           gold_unreachable();
524         }
525
526       // If this is an orphan section--one not mentioned in the linker
527       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
528       // default processing below.
529
530       if (output_section_slot != NULL)
531         {
532           if (*output_section_slot != NULL)
533             {
534               (*output_section_slot)->update_flags_for_input_section(flags);
535               return *output_section_slot;
536             }
537
538           // We don't put sections found in the linker script into
539           // SECTION_NAME_MAP_.  That keeps us from getting confused
540           // if an orphan section is mapped to a section with the same
541           // name as one in the linker script.
542
543           name = this->namepool_.add(name, false, NULL);
544
545           Output_section* os = this->make_output_section(name, type, flags,
546                                                          order, is_relro);
547
548           os->set_found_in_sections_clause();
549
550           // Special handling for NOLOAD sections.
551           if (script_section_type == Script_sections::ST_NOLOAD)
552             {
553               os->set_is_noload();
554
555               // The constructor of Output_section sets addresses of non-ALLOC
556               // sections to 0 by default.  We don't want that for NOLOAD
557               // sections even if they have no SHF_ALLOC flag.
558               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
559                   && os->is_address_valid())
560                 {
561                   gold_assert(os->address() == 0
562                               && !os->is_offset_valid()
563                               && !os->is_data_size_valid());
564                   os->reset_address_and_file_offset();
565                 }
566             }
567
568           *output_section_slot = os;
569           return os;
570         }
571     }
572
573   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
574
575   // Turn NAME from the name of the input section into the name of the
576   // output section.
577
578   size_t len = strlen(name);
579   if (is_input_section
580       && !this->script_options_->saw_sections_clause()
581       && !parameters->options().relocatable())
582     name = Layout::output_section_name(name, &len);
583
584   Stringpool::Key name_key;
585   name = this->namepool_.add_with_length(name, len, true, &name_key);
586
587   // Find or make the output section.  The output section is selected
588   // based on the section name, type, and flags.
589   return this->get_output_section(name, name_key, type, flags, order, is_relro);
590 }
591
592 // Return the output section to use for input section SHNDX, with name
593 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
594 // index of a relocation section which applies to this section, or 0
595 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
596 // relocation section if there is one.  Set *OFF to the offset of this
597 // input section without the output section.  Return NULL if the
598 // section should be discarded.  Set *OFF to -1 if the section
599 // contents should not be written directly to the output file, but
600 // will instead receive special handling.
601
602 template<int size, bool big_endian>
603 Output_section*
604 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
605                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
606                unsigned int reloc_shndx, unsigned int, off_t* off)
607 {
608   *off = 0;
609
610   if (!this->include_section(object, name, shdr))
611     return NULL;
612
613   Output_section* os;
614
615   // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
616   // correct section types.  Force them here.
617   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
618   if (sh_type == elfcpp::SHT_PROGBITS)
619     {
620       static const char init_array_prefix[] = ".init_array";
621       static const char preinit_array_prefix[] = ".preinit_array";
622       static const char fini_array_prefix[] = ".fini_array";
623       static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
624       static size_t preinit_array_prefix_size =
625         sizeof(preinit_array_prefix) - 1;
626       static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
627
628       if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
629         sh_type = elfcpp::SHT_INIT_ARRAY;
630       else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
631                == 0)
632         sh_type = elfcpp::SHT_PREINIT_ARRAY;
633       else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
634         sh_type = elfcpp::SHT_FINI_ARRAY;
635     }
636
637   // In a relocatable link a grouped section must not be combined with
638   // any other sections.
639   if (parameters->options().relocatable()
640       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
641     {
642       name = this->namepool_.add(name, true, NULL);
643       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
644                                      ORDER_INVALID, false);
645     }
646   else
647     {
648       os = this->choose_output_section(object, name, sh_type,
649                                        shdr.get_sh_flags(), true,
650                                        ORDER_INVALID, false);
651       if (os == NULL)
652         return NULL;
653     }
654
655   // By default the GNU linker sorts input sections whose names match
656   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
657   // are sorted by name.  This is used to implement constructor
658   // priority ordering.  We are compatible.
659   if (!this->script_options_->saw_sections_clause()
660       && (is_prefix_of(".ctors.", name)
661           || is_prefix_of(".dtors.", name)
662           || is_prefix_of(".init_array.", name)
663           || is_prefix_of(".fini_array.", name)))
664     os->set_must_sort_attached_input_sections();
665
666   // FIXME: Handle SHF_LINK_ORDER somewhere.
667
668   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
669                                this->script_options_->saw_sections_clause());
670   this->have_added_input_section_ = true;
671
672   return os;
673 }
674
675 // Handle a relocation section when doing a relocatable link.
676
677 template<int size, bool big_endian>
678 Output_section*
679 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
680                      unsigned int,
681                      const elfcpp::Shdr<size, big_endian>& shdr,
682                      Output_section* data_section,
683                      Relocatable_relocs* rr)
684 {
685   gold_assert(parameters->options().relocatable()
686               || parameters->options().emit_relocs());
687
688   int sh_type = shdr.get_sh_type();
689
690   std::string name;
691   if (sh_type == elfcpp::SHT_REL)
692     name = ".rel";
693   else if (sh_type == elfcpp::SHT_RELA)
694     name = ".rela";
695   else
696     gold_unreachable();
697   name += data_section->name();
698
699   // In a relocatable link relocs for a grouped section must not be
700   // combined with other reloc sections.
701   Output_section* os;
702   if (!parameters->options().relocatable()
703       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
704     os = this->choose_output_section(object, name.c_str(), sh_type,
705                                      shdr.get_sh_flags(), false,
706                                      ORDER_INVALID, false);
707   else
708     {
709       const char* n = this->namepool_.add(name.c_str(), true, NULL);
710       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
711                                      ORDER_INVALID, false);
712     }
713
714   os->set_should_link_to_symtab();
715   os->set_info_section(data_section);
716
717   Output_section_data* posd;
718   if (sh_type == elfcpp::SHT_REL)
719     {
720       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
721       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
722                                            size,
723                                            big_endian>(rr);
724     }
725   else if (sh_type == elfcpp::SHT_RELA)
726     {
727       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
728       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
729                                            size,
730                                            big_endian>(rr);
731     }
732   else
733     gold_unreachable();
734
735   os->add_output_section_data(posd);
736   rr->set_output_data(posd);
737
738   return os;
739 }
740
741 // Handle a group section when doing a relocatable link.
742
743 template<int size, bool big_endian>
744 void
745 Layout::layout_group(Symbol_table* symtab,
746                      Sized_relobj<size, big_endian>* object,
747                      unsigned int,
748                      const char* group_section_name,
749                      const char* signature,
750                      const elfcpp::Shdr<size, big_endian>& shdr,
751                      elfcpp::Elf_Word flags,
752                      std::vector<unsigned int>* shndxes)
753 {
754   gold_assert(parameters->options().relocatable());
755   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
756   group_section_name = this->namepool_.add(group_section_name, true, NULL);
757   Output_section* os = this->make_output_section(group_section_name,
758                                                  elfcpp::SHT_GROUP,
759                                                  shdr.get_sh_flags(),
760                                                  ORDER_INVALID, false);
761
762   // We need to find a symbol with the signature in the symbol table.
763   // If we don't find one now, we need to look again later.
764   Symbol* sym = symtab->lookup(signature, NULL);
765   if (sym != NULL)
766     os->set_info_symndx(sym);
767   else
768     {
769       // Reserve some space to minimize reallocations.
770       if (this->group_signatures_.empty())
771         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
772
773       // We will wind up using a symbol whose name is the signature.
774       // So just put the signature in the symbol name pool to save it.
775       signature = symtab->canonicalize_name(signature);
776       this->group_signatures_.push_back(Group_signature(os, signature));
777     }
778
779   os->set_should_link_to_symtab();
780   os->set_entsize(4);
781
782   section_size_type entry_count =
783     convert_to_section_size_type(shdr.get_sh_size() / 4);
784   Output_section_data* posd =
785     new Output_data_group<size, big_endian>(object, entry_count, flags,
786                                             shndxes);
787   os->add_output_section_data(posd);
788 }
789
790 // Special GNU handling of sections name .eh_frame.  They will
791 // normally hold exception frame data as defined by the C++ ABI
792 // (http://codesourcery.com/cxx-abi/).
793
794 template<int size, bool big_endian>
795 Output_section*
796 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
797                         const unsigned char* symbols,
798                         off_t symbols_size,
799                         const unsigned char* symbol_names,
800                         off_t symbol_names_size,
801                         unsigned int shndx,
802                         const elfcpp::Shdr<size, big_endian>& shdr,
803                         unsigned int reloc_shndx, unsigned int reloc_type,
804                         off_t* off)
805 {
806   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
807   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
808
809   const char* const name = ".eh_frame";
810   Output_section* os = this->choose_output_section(object, name,
811                                                    elfcpp::SHT_PROGBITS,
812                                                    elfcpp::SHF_ALLOC, false,
813                                                    ORDER_EHFRAME, false);
814   if (os == NULL)
815     return NULL;
816
817   if (this->eh_frame_section_ == NULL)
818     {
819       this->eh_frame_section_ = os;
820       this->eh_frame_data_ = new Eh_frame();
821
822       if (parameters->options().eh_frame_hdr())
823         {
824           Output_section* hdr_os =
825             this->choose_output_section(NULL, ".eh_frame_hdr",
826                                         elfcpp::SHT_PROGBITS,
827                                         elfcpp::SHF_ALLOC, false,
828                                         ORDER_EHFRAME, false);
829
830           if (hdr_os != NULL)
831             {
832               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
833                                                         this->eh_frame_data_);
834               hdr_os->add_output_section_data(hdr_posd);
835
836               hdr_os->set_after_input_sections();
837
838               if (!this->script_options_->saw_phdrs_clause())
839                 {
840                   Output_segment* hdr_oseg;
841                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
842                                                        elfcpp::PF_R);
843                   hdr_oseg->add_output_section_to_nonload(hdr_os,
844                                                           elfcpp::PF_R);
845                 }
846
847               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
848             }
849         }
850     }
851
852   gold_assert(this->eh_frame_section_ == os);
853
854   if (this->eh_frame_data_->add_ehframe_input_section(object,
855                                                       symbols,
856                                                       symbols_size,
857                                                       symbol_names,
858                                                       symbol_names_size,
859                                                       shndx,
860                                                       reloc_shndx,
861                                                       reloc_type))
862     {
863       os->update_flags_for_input_section(shdr.get_sh_flags());
864
865       // We found a .eh_frame section we are going to optimize, so now
866       // we can add the set of optimized sections to the output
867       // section.  We need to postpone adding this until we've found a
868       // section we can optimize so that the .eh_frame section in
869       // crtbegin.o winds up at the start of the output section.
870       if (!this->added_eh_frame_data_)
871         {
872           os->add_output_section_data(this->eh_frame_data_);
873           this->added_eh_frame_data_ = true;
874         }
875       *off = -1;
876     }
877   else
878     {
879       // We couldn't handle this .eh_frame section for some reason.
880       // Add it as a normal section.
881       bool saw_sections_clause = this->script_options_->saw_sections_clause();
882       *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
883                                    saw_sections_clause);
884       this->have_added_input_section_ = true;
885     }
886
887   return os;
888 }
889
890 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
891 // the output section.
892
893 Output_section*
894 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
895                                 elfcpp::Elf_Xword flags,
896                                 Output_section_data* posd,
897                                 Output_section_order order, bool is_relro)
898 {
899   Output_section* os = this->choose_output_section(NULL, name, type, flags,
900                                                    false, order, is_relro);
901   if (os != NULL)
902     os->add_output_section_data(posd);
903   return os;
904 }
905
906 // Map section flags to segment flags.
907
908 elfcpp::Elf_Word
909 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
910 {
911   elfcpp::Elf_Word ret = elfcpp::PF_R;
912   if ((flags & elfcpp::SHF_WRITE) != 0)
913     ret |= elfcpp::PF_W;
914   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
915     ret |= elfcpp::PF_X;
916   return ret;
917 }
918
919 // Sometimes we compress sections.  This is typically done for
920 // sections that are not part of normal program execution (such as
921 // .debug_* sections), and where the readers of these sections know
922 // how to deal with compressed sections.  This routine doesn't say for
923 // certain whether we'll compress -- it depends on commandline options
924 // as well -- just whether this section is a candidate for compression.
925 // (The Output_compressed_section class decides whether to compress
926 // a given section, and picks the name of the compressed section.)
927
928 static bool
929 is_compressible_debug_section(const char* secname)
930 {
931   return (is_prefix_of(".debug", secname));
932 }
933
934 // We may see compressed debug sections in input files.  Return TRUE
935 // if this is the name of a compressed debug section.
936
937 bool
938 is_compressed_debug_section(const char* secname)
939 {
940   return (is_prefix_of(".zdebug", secname));
941 }
942
943 // Make a new Output_section, and attach it to segments as
944 // appropriate.  ORDER is the order in which this section should
945 // appear in the output segment.  IS_RELRO is true if this is a relro
946 // (read-only after relocations) section.
947
948 Output_section*
949 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
950                             elfcpp::Elf_Xword flags,
951                             Output_section_order order, bool is_relro)
952 {
953   Output_section* os;
954   if ((flags & elfcpp::SHF_ALLOC) == 0
955       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
956       && is_compressible_debug_section(name))
957     os = new Output_compressed_section(&parameters->options(), name, type,
958                                        flags);
959   else if ((flags & elfcpp::SHF_ALLOC) == 0
960            && parameters->options().strip_debug_non_line()
961            && strcmp(".debug_abbrev", name) == 0)
962     {
963       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
964           name, type, flags);
965       if (this->debug_info_)
966         this->debug_info_->set_abbreviations(this->debug_abbrev_);
967     }
968   else if ((flags & elfcpp::SHF_ALLOC) == 0
969            && parameters->options().strip_debug_non_line()
970            && strcmp(".debug_info", name) == 0)
971     {
972       os = this->debug_info_ = new Output_reduced_debug_info_section(
973           name, type, flags);
974       if (this->debug_abbrev_)
975         this->debug_info_->set_abbreviations(this->debug_abbrev_);
976     }
977  else
978     {
979       // FIXME: const_cast is ugly.
980       Target* target = const_cast<Target*>(&parameters->target());
981       os = target->make_output_section(name, type, flags);
982     }
983
984   // With -z relro, we have to recognize the special sections by name.
985   // There is no other way.
986   bool is_relro_local = false;
987   if (!this->script_options_->saw_sections_clause()
988       && parameters->options().relro()
989       && type == elfcpp::SHT_PROGBITS
990       && (flags & elfcpp::SHF_ALLOC) != 0
991       && (flags & elfcpp::SHF_WRITE) != 0)
992     {
993       if (strcmp(name, ".data.rel.ro") == 0)
994         is_relro = true;
995       else if (strcmp(name, ".data.rel.ro.local") == 0)
996         {
997           is_relro = true;
998           is_relro_local = true;
999         }
1000       else if (type == elfcpp::SHT_INIT_ARRAY
1001                || type == elfcpp::SHT_FINI_ARRAY
1002                || type == elfcpp::SHT_PREINIT_ARRAY)
1003         is_relro = true;
1004       else if (strcmp(name, ".ctors") == 0
1005                || strcmp(name, ".dtors") == 0
1006                || strcmp(name, ".jcr") == 0)
1007         is_relro = true;
1008     }
1009
1010   if (is_relro)
1011     os->set_is_relro();
1012
1013   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1014     order = this->default_section_order(os, is_relro_local);
1015
1016   os->set_order(order);
1017
1018   parameters->target().new_output_section(os);
1019
1020   this->section_list_.push_back(os);
1021
1022   // The GNU linker by default sorts some sections by priority, so we
1023   // do the same.  We need to know that this might happen before we
1024   // attach any input sections.
1025   if (!this->script_options_->saw_sections_clause()
1026       && (strcmp(name, ".ctors") == 0
1027           || strcmp(name, ".dtors") == 0
1028           || strcmp(name, ".init_array") == 0
1029           || strcmp(name, ".fini_array") == 0))
1030     os->set_may_sort_attached_input_sections();
1031
1032   // Check for .stab*str sections, as .stab* sections need to link to
1033   // them.
1034   if (type == elfcpp::SHT_STRTAB
1035       && !this->have_stabstr_section_
1036       && strncmp(name, ".stab", 5) == 0
1037       && strcmp(name + strlen(name) - 3, "str") == 0)
1038     this->have_stabstr_section_ = true;
1039
1040   // If we have already attached the sections to segments, then we
1041   // need to attach this one now.  This happens for sections created
1042   // directly by the linker.
1043   if (this->sections_are_attached_)
1044     this->attach_section_to_segment(os);
1045
1046   return os;
1047 }
1048
1049 // Return the default order in which a section should be placed in an
1050 // output segment.  This function captures a lot of the ideas in
1051 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1052 // linker created section is normally set when the section is created;
1053 // this function is used for input sections.
1054
1055 Output_section_order
1056 Layout::default_section_order(Output_section* os, bool is_relro_local)
1057 {
1058   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1059   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1060   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1061   bool is_bss = false;
1062
1063   switch (os->type())
1064     {
1065     default:
1066     case elfcpp::SHT_PROGBITS:
1067       break;
1068     case elfcpp::SHT_NOBITS:
1069       is_bss = true;
1070       break;
1071     case elfcpp::SHT_RELA:
1072     case elfcpp::SHT_REL:
1073       if (!is_write)
1074         return ORDER_DYNAMIC_RELOCS;
1075       break;
1076     case elfcpp::SHT_HASH:
1077     case elfcpp::SHT_DYNAMIC:
1078     case elfcpp::SHT_SHLIB:
1079     case elfcpp::SHT_DYNSYM:
1080     case elfcpp::SHT_GNU_HASH:
1081     case elfcpp::SHT_GNU_verdef:
1082     case elfcpp::SHT_GNU_verneed:
1083     case elfcpp::SHT_GNU_versym:
1084       if (!is_write)
1085         return ORDER_DYNAMIC_LINKER;
1086       break;
1087     case elfcpp::SHT_NOTE:
1088       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1089     }
1090
1091   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1092     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1093
1094   if (!is_bss && !is_write)
1095     {
1096       if (is_execinstr)
1097         {
1098           if (strcmp(os->name(), ".init") == 0)
1099             return ORDER_INIT;
1100           else if (strcmp(os->name(), ".fini") == 0)
1101             return ORDER_FINI;
1102         }
1103       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1104     }
1105
1106   if (os->is_relro())
1107     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1108
1109   if (os->is_small_section())
1110     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1111   if (os->is_large_section())
1112     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1113
1114   return is_bss ? ORDER_BSS : ORDER_DATA;
1115 }
1116
1117 // Attach output sections to segments.  This is called after we have
1118 // seen all the input sections.
1119
1120 void
1121 Layout::attach_sections_to_segments()
1122 {
1123   for (Section_list::iterator p = this->section_list_.begin();
1124        p != this->section_list_.end();
1125        ++p)
1126     this->attach_section_to_segment(*p);
1127
1128   this->sections_are_attached_ = true;
1129 }
1130
1131 // Attach an output section to a segment.
1132
1133 void
1134 Layout::attach_section_to_segment(Output_section* os)
1135 {
1136   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1137     this->unattached_section_list_.push_back(os);
1138   else
1139     this->attach_allocated_section_to_segment(os);
1140 }
1141
1142 // Attach an allocated output section to a segment.
1143
1144 void
1145 Layout::attach_allocated_section_to_segment(Output_section* os)
1146 {
1147   elfcpp::Elf_Xword flags = os->flags();
1148   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1149
1150   if (parameters->options().relocatable())
1151     return;
1152
1153   // If we have a SECTIONS clause, we can't handle the attachment to
1154   // segments until after we've seen all the sections.
1155   if (this->script_options_->saw_sections_clause())
1156     return;
1157
1158   gold_assert(!this->script_options_->saw_phdrs_clause());
1159
1160   // This output section goes into a PT_LOAD segment.
1161
1162   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1163
1164   // Check for --section-start.
1165   uint64_t addr;
1166   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1167
1168   // In general the only thing we really care about for PT_LOAD
1169   // segments is whether or not they are writable, so that is how we
1170   // search for them.  Large data sections also go into their own
1171   // PT_LOAD segment.  People who need segments sorted on some other
1172   // basis will have to use a linker script.
1173
1174   Segment_list::const_iterator p;
1175   for (p = this->segment_list_.begin();
1176        p != this->segment_list_.end();
1177        ++p)
1178     {
1179       if ((*p)->type() != elfcpp::PT_LOAD)
1180         continue;
1181       if (!parameters->options().omagic()
1182           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1183         continue;
1184       // If -Tbss was specified, we need to separate the data and BSS
1185       // segments.
1186       if (parameters->options().user_set_Tbss())
1187         {
1188           if ((os->type() == elfcpp::SHT_NOBITS)
1189               == (*p)->has_any_data_sections())
1190             continue;
1191         }
1192       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1193         continue;
1194
1195       if (is_address_set)
1196         {
1197           if ((*p)->are_addresses_set())
1198             continue;
1199
1200           (*p)->add_initial_output_data(os);
1201           (*p)->update_flags_for_output_section(seg_flags);
1202           (*p)->set_addresses(addr, addr);
1203           break;
1204         }
1205
1206       (*p)->add_output_section_to_load(this, os, seg_flags);
1207       break;
1208     }
1209
1210   if (p == this->segment_list_.end())
1211     {
1212       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1213                                                        seg_flags);
1214       if (os->is_large_data_section())
1215         oseg->set_is_large_data_segment();
1216       oseg->add_output_section_to_load(this, os, seg_flags);
1217       if (is_address_set)
1218         oseg->set_addresses(addr, addr);
1219     }
1220
1221   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1222   // segment.
1223   if (os->type() == elfcpp::SHT_NOTE)
1224     {
1225       // See if we already have an equivalent PT_NOTE segment.
1226       for (p = this->segment_list_.begin();
1227            p != segment_list_.end();
1228            ++p)
1229         {
1230           if ((*p)->type() == elfcpp::PT_NOTE
1231               && (((*p)->flags() & elfcpp::PF_W)
1232                   == (seg_flags & elfcpp::PF_W)))
1233             {
1234               (*p)->add_output_section_to_nonload(os, seg_flags);
1235               break;
1236             }
1237         }
1238
1239       if (p == this->segment_list_.end())
1240         {
1241           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1242                                                            seg_flags);
1243           oseg->add_output_section_to_nonload(os, seg_flags);
1244         }
1245     }
1246
1247   // If we see a loadable SHF_TLS section, we create a PT_TLS
1248   // segment.  There can only be one such segment.
1249   if ((flags & elfcpp::SHF_TLS) != 0)
1250     {
1251       if (this->tls_segment_ == NULL)
1252         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1253       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1254     }
1255
1256   // If -z relro is in effect, and we see a relro section, we create a
1257   // PT_GNU_RELRO segment.  There can only be one such segment.
1258   if (os->is_relro() && parameters->options().relro())
1259     {
1260       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1261       if (this->relro_segment_ == NULL)
1262         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1263       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1264     }
1265 }
1266
1267 // Make an output section for a script.
1268
1269 Output_section*
1270 Layout::make_output_section_for_script(
1271     const char* name,
1272     Script_sections::Section_type section_type)
1273 {
1274   name = this->namepool_.add(name, false, NULL);
1275   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1276   if (section_type == Script_sections::ST_NOLOAD)
1277     sh_flags = 0;
1278   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1279                                                  sh_flags, ORDER_INVALID,
1280                                                  false);
1281   os->set_found_in_sections_clause();
1282   if (section_type == Script_sections::ST_NOLOAD)
1283     os->set_is_noload();
1284   return os;
1285 }
1286
1287 // Return the number of segments we expect to see.
1288
1289 size_t
1290 Layout::expected_segment_count() const
1291 {
1292   size_t ret = this->segment_list_.size();
1293
1294   // If we didn't see a SECTIONS clause in a linker script, we should
1295   // already have the complete list of segments.  Otherwise we ask the
1296   // SECTIONS clause how many segments it expects, and add in the ones
1297   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1298
1299   if (!this->script_options_->saw_sections_clause())
1300     return ret;
1301   else
1302     {
1303       const Script_sections* ss = this->script_options_->script_sections();
1304       return ret + ss->expected_segment_count(this);
1305     }
1306 }
1307
1308 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1309 // is whether we saw a .note.GNU-stack section in the object file.
1310 // GNU_STACK_FLAGS is the section flags.  The flags give the
1311 // protection required for stack memory.  We record this in an
1312 // executable as a PT_GNU_STACK segment.  If an object file does not
1313 // have a .note.GNU-stack segment, we must assume that it is an old
1314 // object.  On some targets that will force an executable stack.
1315
1316 void
1317 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1318 {
1319   if (!seen_gnu_stack)
1320     this->input_without_gnu_stack_note_ = true;
1321   else
1322     {
1323       this->input_with_gnu_stack_note_ = true;
1324       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1325         this->input_requires_executable_stack_ = true;
1326     }
1327 }
1328
1329 // Create automatic note sections.
1330
1331 void
1332 Layout::create_notes()
1333 {
1334   this->create_gold_note();
1335   this->create_executable_stack_info();
1336   this->create_build_id();
1337 }
1338
1339 // Create the dynamic sections which are needed before we read the
1340 // relocs.
1341
1342 void
1343 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1344 {
1345   if (parameters->doing_static_link())
1346     return;
1347
1348   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1349                                                        elfcpp::SHT_DYNAMIC,
1350                                                        (elfcpp::SHF_ALLOC
1351                                                         | elfcpp::SHF_WRITE),
1352                                                        false, ORDER_RELRO,
1353                                                        true);
1354
1355   this->dynamic_symbol_ =
1356     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1357                                   this->dynamic_section_, 0, 0,
1358                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1359                                   elfcpp::STV_HIDDEN, 0, false, false);
1360
1361   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1362
1363   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1364 }
1365
1366 // For each output section whose name can be represented as C symbol,
1367 // define __start and __stop symbols for the section.  This is a GNU
1368 // extension.
1369
1370 void
1371 Layout::define_section_symbols(Symbol_table* symtab)
1372 {
1373   for (Section_list::const_iterator p = this->section_list_.begin();
1374        p != this->section_list_.end();
1375        ++p)
1376     {
1377       const char* const name = (*p)->name();
1378       if (is_cident(name))
1379         {
1380           const std::string name_string(name);
1381           const std::string start_name(cident_section_start_prefix
1382                                        + name_string);
1383           const std::string stop_name(cident_section_stop_prefix
1384                                       + name_string);
1385
1386           symtab->define_in_output_data(start_name.c_str(),
1387                                         NULL, // version
1388                                         Symbol_table::PREDEFINED,
1389                                         *p,
1390                                         0, // value
1391                                         0, // symsize
1392                                         elfcpp::STT_NOTYPE,
1393                                         elfcpp::STB_GLOBAL,
1394                                         elfcpp::STV_DEFAULT,
1395                                         0, // nonvis
1396                                         false, // offset_is_from_end
1397                                         true); // only_if_ref
1398
1399           symtab->define_in_output_data(stop_name.c_str(),
1400                                         NULL, // version
1401                                         Symbol_table::PREDEFINED,
1402                                         *p,
1403                                         0, // value
1404                                         0, // symsize
1405                                         elfcpp::STT_NOTYPE,
1406                                         elfcpp::STB_GLOBAL,
1407                                         elfcpp::STV_DEFAULT,
1408                                         0, // nonvis
1409                                         true, // offset_is_from_end
1410                                         true); // only_if_ref
1411         }
1412     }
1413 }
1414
1415 // Define symbols for group signatures.
1416
1417 void
1418 Layout::define_group_signatures(Symbol_table* symtab)
1419 {
1420   for (Group_signatures::iterator p = this->group_signatures_.begin();
1421        p != this->group_signatures_.end();
1422        ++p)
1423     {
1424       Symbol* sym = symtab->lookup(p->signature, NULL);
1425       if (sym != NULL)
1426         p->section->set_info_symndx(sym);
1427       else
1428         {
1429           // Force the name of the group section to the group
1430           // signature, and use the group's section symbol as the
1431           // signature symbol.
1432           if (strcmp(p->section->name(), p->signature) != 0)
1433             {
1434               const char* name = this->namepool_.add(p->signature,
1435                                                      true, NULL);
1436               p->section->set_name(name);
1437             }
1438           p->section->set_needs_symtab_index();
1439           p->section->set_info_section_symndx(p->section);
1440         }
1441     }
1442
1443   this->group_signatures_.clear();
1444 }
1445
1446 // Find the first read-only PT_LOAD segment, creating one if
1447 // necessary.
1448
1449 Output_segment*
1450 Layout::find_first_load_seg()
1451 {
1452   for (Segment_list::const_iterator p = this->segment_list_.begin();
1453        p != this->segment_list_.end();
1454        ++p)
1455     {
1456       if ((*p)->type() == elfcpp::PT_LOAD
1457           && ((*p)->flags() & elfcpp::PF_R) != 0
1458           && (parameters->options().omagic()
1459               || ((*p)->flags() & elfcpp::PF_W) == 0))
1460         return *p;
1461     }
1462
1463   gold_assert(!this->script_options_->saw_phdrs_clause());
1464
1465   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1466                                                        elfcpp::PF_R);
1467   return load_seg;
1468 }
1469
1470 // Save states of all current output segments.  Store saved states
1471 // in SEGMENT_STATES.
1472
1473 void
1474 Layout::save_segments(Segment_states* segment_states)
1475 {
1476   for (Segment_list::const_iterator p = this->segment_list_.begin();
1477        p != this->segment_list_.end();
1478        ++p)
1479     {
1480       Output_segment* segment = *p;
1481       // Shallow copy.
1482       Output_segment* copy = new Output_segment(*segment);
1483       (*segment_states)[segment] = copy;
1484     }
1485 }
1486
1487 // Restore states of output segments and delete any segment not found in
1488 // SEGMENT_STATES.
1489
1490 void
1491 Layout::restore_segments(const Segment_states* segment_states)
1492 {
1493   // Go through the segment list and remove any segment added in the
1494   // relaxation loop.
1495   this->tls_segment_ = NULL;
1496   this->relro_segment_ = NULL;
1497   Segment_list::iterator list_iter = this->segment_list_.begin();
1498   while (list_iter != this->segment_list_.end())
1499     {
1500       Output_segment* segment = *list_iter;
1501       Segment_states::const_iterator states_iter =
1502           segment_states->find(segment);
1503       if (states_iter != segment_states->end())
1504         {
1505           const Output_segment* copy = states_iter->second;
1506           // Shallow copy to restore states.
1507           *segment = *copy;
1508
1509           // Also fix up TLS and RELRO segment pointers as appropriate.
1510           if (segment->type() == elfcpp::PT_TLS)
1511             this->tls_segment_ = segment;
1512           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1513             this->relro_segment_ = segment;
1514
1515           ++list_iter;
1516         } 
1517       else
1518         {
1519           list_iter = this->segment_list_.erase(list_iter); 
1520           // This is a segment created during section layout.  It should be
1521           // safe to remove it since we should have removed all pointers to it.
1522           delete segment;
1523         }
1524     }
1525 }
1526
1527 // Clean up after relaxation so that sections can be laid out again.
1528
1529 void
1530 Layout::clean_up_after_relaxation()
1531 {
1532   // Restore the segments to point state just prior to the relaxation loop.
1533   Script_sections* script_section = this->script_options_->script_sections();
1534   script_section->release_segments();
1535   this->restore_segments(this->segment_states_);
1536
1537   // Reset section addresses and file offsets
1538   for (Section_list::iterator p = this->section_list_.begin();
1539        p != this->section_list_.end();
1540        ++p)
1541     {
1542       (*p)->restore_states();
1543
1544       // If an input section changes size because of relaxation,
1545       // we need to adjust the section offsets of all input sections.
1546       // after such a section.
1547       if ((*p)->section_offsets_need_adjustment())
1548         (*p)->adjust_section_offsets();
1549
1550       (*p)->reset_address_and_file_offset();
1551     }
1552   
1553   // Reset special output object address and file offsets.
1554   for (Data_list::iterator p = this->special_output_list_.begin();
1555        p != this->special_output_list_.end();
1556        ++p)
1557     (*p)->reset_address_and_file_offset();
1558
1559   // A linker script may have created some output section data objects.
1560   // They are useless now.
1561   for (Output_section_data_list::const_iterator p =
1562          this->script_output_section_data_list_.begin();
1563        p != this->script_output_section_data_list_.end();
1564        ++p)
1565     delete *p;
1566   this->script_output_section_data_list_.clear(); 
1567 }
1568
1569 // Prepare for relaxation.
1570
1571 void
1572 Layout::prepare_for_relaxation()
1573 {
1574   // Create an relaxation debug check if in debugging mode.
1575   if (is_debugging_enabled(DEBUG_RELAXATION))
1576     this->relaxation_debug_check_ = new Relaxation_debug_check();
1577
1578   // Save segment states.
1579   this->segment_states_ = new Segment_states();
1580   this->save_segments(this->segment_states_);
1581
1582   for(Section_list::const_iterator p = this->section_list_.begin();
1583       p != this->section_list_.end();
1584       ++p)
1585     (*p)->save_states();
1586
1587   if (is_debugging_enabled(DEBUG_RELAXATION))
1588     this->relaxation_debug_check_->check_output_data_for_reset_values(
1589         this->section_list_, this->special_output_list_);
1590
1591   // Also enable recording of output section data from scripts.
1592   this->record_output_section_data_from_script_ = true;
1593 }
1594
1595 // Relaxation loop body:  If target has no relaxation, this runs only once
1596 // Otherwise, the target relaxation hook is called at the end of
1597 // each iteration.  If the hook returns true, it means re-layout of
1598 // section is required.  
1599 //
1600 // The number of segments created by a linking script without a PHDRS
1601 // clause may be affected by section sizes and alignments.  There is
1602 // a remote chance that relaxation causes different number of PT_LOAD
1603 // segments are created and sections are attached to different segments.
1604 // Therefore, we always throw away all segments created during section
1605 // layout.  In order to be able to restart the section layout, we keep
1606 // a copy of the segment list right before the relaxation loop and use
1607 // that to restore the segments.
1608 // 
1609 // PASS is the current relaxation pass number. 
1610 // SYMTAB is a symbol table.
1611 // PLOAD_SEG is the address of a pointer for the load segment.
1612 // PHDR_SEG is a pointer to the PHDR segment.
1613 // SEGMENT_HEADERS points to the output segment header.
1614 // FILE_HEADER points to the output file header.
1615 // PSHNDX is the address to store the output section index.
1616
1617 off_t inline
1618 Layout::relaxation_loop_body(
1619     int pass,
1620     Target* target,
1621     Symbol_table* symtab,
1622     Output_segment** pload_seg,
1623     Output_segment* phdr_seg,
1624     Output_segment_headers* segment_headers,
1625     Output_file_header* file_header,
1626     unsigned int* pshndx)
1627 {
1628   // If this is not the first iteration, we need to clean up after
1629   // relaxation so that we can lay out the sections again.
1630   if (pass != 0)
1631     this->clean_up_after_relaxation();
1632
1633   // If there is a SECTIONS clause, put all the input sections into
1634   // the required order.
1635   Output_segment* load_seg;
1636   if (this->script_options_->saw_sections_clause())
1637     load_seg = this->set_section_addresses_from_script(symtab);
1638   else if (parameters->options().relocatable())
1639     load_seg = NULL;
1640   else
1641     load_seg = this->find_first_load_seg();
1642
1643   if (parameters->options().oformat_enum()
1644       != General_options::OBJECT_FORMAT_ELF)
1645     load_seg = NULL;
1646
1647   // If the user set the address of the text segment, that may not be
1648   // compatible with putting the segment headers and file headers into
1649   // that segment.
1650   if (parameters->options().user_set_Ttext())
1651     load_seg = NULL;
1652
1653   gold_assert(phdr_seg == NULL
1654               || load_seg != NULL
1655               || this->script_options_->saw_sections_clause());
1656
1657   // If the address of the load segment we found has been set by
1658   // --section-start rather than by a script, then we don't want to
1659   // use it for the file and segment headers.
1660   if (load_seg != NULL
1661       && load_seg->are_addresses_set()
1662       && !this->script_options_->saw_sections_clause())
1663     load_seg = NULL;
1664
1665   // Lay out the segment headers.
1666   if (!parameters->options().relocatable())
1667     {
1668       gold_assert(segment_headers != NULL);
1669       if (load_seg != NULL)
1670         load_seg->add_initial_output_data(segment_headers);
1671       if (phdr_seg != NULL)
1672         phdr_seg->add_initial_output_data(segment_headers);
1673     }
1674
1675   // Lay out the file header.
1676   if (load_seg != NULL)
1677     load_seg->add_initial_output_data(file_header);
1678
1679   if (this->script_options_->saw_phdrs_clause()
1680       && !parameters->options().relocatable())
1681     {
1682       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1683       // clause in a linker script.
1684       Script_sections* ss = this->script_options_->script_sections();
1685       ss->put_headers_in_phdrs(file_header, segment_headers);
1686     }
1687
1688   // We set the output section indexes in set_segment_offsets and
1689   // set_section_indexes.
1690   *pshndx = 1;
1691
1692   // Set the file offsets of all the segments, and all the sections
1693   // they contain.
1694   off_t off;
1695   if (!parameters->options().relocatable())
1696     off = this->set_segment_offsets(target, load_seg, pshndx);
1697   else
1698     off = this->set_relocatable_section_offsets(file_header, pshndx);
1699
1700    // Verify that the dummy relaxation does not change anything.
1701   if (is_debugging_enabled(DEBUG_RELAXATION))
1702     {
1703       if (pass == 0)
1704         this->relaxation_debug_check_->read_sections(this->section_list_);
1705       else
1706         this->relaxation_debug_check_->verify_sections(this->section_list_);
1707     }
1708
1709   *pload_seg = load_seg;
1710   return off;
1711 }
1712
1713 // Search the list of patterns and find the postion of the given section
1714 // name in the output section.  If the section name matches a glob
1715 // pattern and a non-glob name, then the non-glob position takes
1716 // precedence.  Return 0 if no match is found.
1717
1718 unsigned int
1719 Layout::find_section_order_index(const std::string& section_name)
1720 {
1721   Unordered_map<std::string, unsigned int>::iterator map_it;
1722   map_it = this->input_section_position_.find(section_name);
1723   if (map_it != this->input_section_position_.end())
1724     return map_it->second;
1725
1726   // Absolute match failed.  Linear search the glob patterns.
1727   std::vector<std::string>::iterator it;
1728   for (it = this->input_section_glob_.begin();
1729        it != this->input_section_glob_.end();
1730        ++it)
1731     {
1732        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
1733          {
1734            map_it = this->input_section_position_.find(*it);
1735            gold_assert(map_it != this->input_section_position_.end());
1736            return map_it->second;
1737          }
1738     }
1739   return 0;
1740 }
1741
1742 // Read the sequence of input sections from the file specified with
1743 // --section-ordering-file.
1744
1745 void
1746 Layout::read_layout_from_file()
1747 {
1748   const char* filename = parameters->options().section_ordering_file();
1749   std::ifstream in;
1750   std::string line;
1751
1752   in.open(filename);
1753   if (!in)
1754     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1755                filename, strerror(errno));
1756
1757   std::getline(in, line);   // this chops off the trailing \n, if any
1758   unsigned int position = 1;
1759
1760   while (in)
1761     {
1762       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
1763         line.resize(line.length() - 1);
1764       // Ignore comments, beginning with '#'
1765       if (line[0] == '#')
1766         {
1767           std::getline(in, line);
1768           continue;
1769         }
1770       this->input_section_position_[line] = position;
1771       // Store all glob patterns in a vector.
1772       if (is_wildcard_string(line.c_str()))
1773         this->input_section_glob_.push_back(line);
1774       position++;
1775       std::getline(in, line);
1776     }
1777 }
1778
1779 // Finalize the layout.  When this is called, we have created all the
1780 // output sections and all the output segments which are based on
1781 // input sections.  We have several things to do, and we have to do
1782 // them in the right order, so that we get the right results correctly
1783 // and efficiently.
1784
1785 // 1) Finalize the list of output segments and create the segment
1786 // table header.
1787
1788 // 2) Finalize the dynamic symbol table and associated sections.
1789
1790 // 3) Determine the final file offset of all the output segments.
1791
1792 // 4) Determine the final file offset of all the SHF_ALLOC output
1793 // sections.
1794
1795 // 5) Create the symbol table sections and the section name table
1796 // section.
1797
1798 // 6) Finalize the symbol table: set symbol values to their final
1799 // value and make a final determination of which symbols are going
1800 // into the output symbol table.
1801
1802 // 7) Create the section table header.
1803
1804 // 8) Determine the final file offset of all the output sections which
1805 // are not SHF_ALLOC, including the section table header.
1806
1807 // 9) Finalize the ELF file header.
1808
1809 // This function returns the size of the output file.
1810
1811 off_t
1812 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1813                  Target* target, const Task* task)
1814 {
1815   target->finalize_sections(this, input_objects, symtab);
1816
1817   this->count_local_symbols(task, input_objects);
1818
1819   this->link_stabs_sections();
1820
1821   Output_segment* phdr_seg = NULL;
1822   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1823     {
1824       // There was a dynamic object in the link.  We need to create
1825       // some information for the dynamic linker.
1826
1827       // Create the PT_PHDR segment which will hold the program
1828       // headers.
1829       if (!this->script_options_->saw_phdrs_clause())
1830         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1831
1832       // Create the dynamic symbol table, including the hash table.
1833       Output_section* dynstr;
1834       std::vector<Symbol*> dynamic_symbols;
1835       unsigned int local_dynamic_count;
1836       Versions versions(*this->script_options()->version_script_info(),
1837                         &this->dynpool_);
1838       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1839                                   &local_dynamic_count, &dynamic_symbols,
1840                                   &versions);
1841
1842       // Create the .interp section to hold the name of the
1843       // interpreter, and put it in a PT_INTERP segment.
1844       if (!parameters->options().shared())
1845         this->create_interp(target);
1846
1847       // Finish the .dynamic section to hold the dynamic data, and put
1848       // it in a PT_DYNAMIC segment.
1849       this->finish_dynamic_section(input_objects, symtab);
1850
1851       // We should have added everything we need to the dynamic string
1852       // table.
1853       this->dynpool_.set_string_offsets();
1854
1855       // Create the version sections.  We can't do this until the
1856       // dynamic string table is complete.
1857       this->create_version_sections(&versions, symtab, local_dynamic_count,
1858                                     dynamic_symbols, dynstr);
1859
1860       // Set the size of the _DYNAMIC symbol.  We can't do this until
1861       // after we call create_version_sections.
1862       this->set_dynamic_symbol_size(symtab);
1863     }
1864   
1865   if (this->incremental_inputs_)
1866     {
1867       this->incremental_inputs_->finalize();
1868       this->create_incremental_info_sections();
1869     }
1870
1871   // Create segment headers.
1872   Output_segment_headers* segment_headers =
1873     (parameters->options().relocatable()
1874      ? NULL
1875      : new Output_segment_headers(this->segment_list_));
1876
1877   // Lay out the file header.
1878   Output_file_header* file_header
1879     = new Output_file_header(target, symtab, segment_headers,
1880                              parameters->options().entry());
1881
1882   this->special_output_list_.push_back(file_header);
1883   if (segment_headers != NULL)
1884     this->special_output_list_.push_back(segment_headers);
1885
1886   // Find approriate places for orphan output sections if we are using
1887   // a linker script.
1888   if (this->script_options_->saw_sections_clause())
1889     this->place_orphan_sections_in_script();
1890   
1891   Output_segment* load_seg;
1892   off_t off;
1893   unsigned int shndx;
1894   int pass = 0;
1895
1896   // Take a snapshot of the section layout as needed.
1897   if (target->may_relax())
1898     this->prepare_for_relaxation();
1899   
1900   // Run the relaxation loop to lay out sections.
1901   do
1902     {
1903       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1904                                        phdr_seg, segment_headers, file_header,
1905                                        &shndx);
1906       pass++;
1907     }
1908   while (target->may_relax()
1909          && target->relax(pass, input_objects, symtab, this));
1910
1911   // Set the file offsets of all the non-data sections we've seen so
1912   // far which don't have to wait for the input sections.  We need
1913   // this in order to finalize local symbols in non-allocated
1914   // sections.
1915   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1916
1917   // Set the section indexes of all unallocated sections seen so far,
1918   // in case any of them are somehow referenced by a symbol.
1919   shndx = this->set_section_indexes(shndx);
1920
1921   // Create the symbol table sections.
1922   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1923   if (!parameters->doing_static_link())
1924     this->assign_local_dynsym_offsets(input_objects);
1925
1926   // Process any symbol assignments from a linker script.  This must
1927   // be called after the symbol table has been finalized.
1928   this->script_options_->finalize_symbols(symtab, this);
1929
1930   // Create the .shstrtab section.
1931   Output_section* shstrtab_section = this->create_shstrtab();
1932
1933   // Set the file offsets of the rest of the non-data sections which
1934   // don't have to wait for the input sections.
1935   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1936
1937   // Now that all sections have been created, set the section indexes
1938   // for any sections which haven't been done yet.
1939   shndx = this->set_section_indexes(shndx);
1940
1941   // Create the section table header.
1942   this->create_shdrs(shstrtab_section, &off);
1943
1944   // If there are no sections which require postprocessing, we can
1945   // handle the section names now, and avoid a resize later.
1946   if (!this->any_postprocessing_sections_)
1947     off = this->set_section_offsets(off,
1948                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1949
1950   file_header->set_section_info(this->section_headers_, shstrtab_section);
1951
1952   // Now we know exactly where everything goes in the output file
1953   // (except for non-allocated sections which require postprocessing).
1954   Output_data::layout_complete();
1955
1956   this->output_file_size_ = off;
1957
1958   return off;
1959 }
1960
1961 // Create a note header following the format defined in the ELF ABI.
1962 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1963 // of the section to create, DESCSZ is the size of the descriptor.
1964 // ALLOCATE is true if the section should be allocated in memory.
1965 // This returns the new note section.  It sets *TRAILING_PADDING to
1966 // the number of trailing zero bytes required.
1967
1968 Output_section*
1969 Layout::create_note(const char* name, int note_type,
1970                     const char* section_name, size_t descsz,
1971                     bool allocate, size_t* trailing_padding)
1972 {
1973   // Authorities all agree that the values in a .note field should
1974   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1975   // they differ on what the alignment is for 64-bit binaries.
1976   // The GABI says unambiguously they take 8-byte alignment:
1977   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1978   // Other documentation says alignment should always be 4 bytes:
1979   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1980   // GNU ld and GNU readelf both support the latter (at least as of
1981   // version 2.16.91), and glibc always generates the latter for
1982   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1983   // here.
1984 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1985   const int size = parameters->target().get_size();
1986 #else
1987   const int size = 32;
1988 #endif
1989
1990   // The contents of the .note section.
1991   size_t namesz = strlen(name) + 1;
1992   size_t aligned_namesz = align_address(namesz, size / 8);
1993   size_t aligned_descsz = align_address(descsz, size / 8);
1994
1995   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1996
1997   unsigned char* buffer = new unsigned char[notehdrsz];
1998   memset(buffer, 0, notehdrsz);
1999
2000   bool is_big_endian = parameters->target().is_big_endian();
2001
2002   if (size == 32)
2003     {
2004       if (!is_big_endian)
2005         {
2006           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2007           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2008           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2009         }
2010       else
2011         {
2012           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2013           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2014           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2015         }
2016     }
2017   else if (size == 64)
2018     {
2019       if (!is_big_endian)
2020         {
2021           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2022           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2023           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2024         }
2025       else
2026         {
2027           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2028           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2029           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2030         }
2031     }
2032   else
2033     gold_unreachable();
2034
2035   memcpy(buffer + 3 * (size / 8), name, namesz);
2036
2037   elfcpp::Elf_Xword flags = 0;
2038   Output_section_order order = ORDER_INVALID;
2039   if (allocate)
2040     {
2041       flags = elfcpp::SHF_ALLOC;
2042       order = ORDER_RO_NOTE;
2043     }
2044   Output_section* os = this->choose_output_section(NULL, section_name,
2045                                                    elfcpp::SHT_NOTE,
2046                                                    flags, false, order, false);
2047   if (os == NULL)
2048     return NULL;
2049
2050   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2051                                                            size / 8,
2052                                                            "** note header");
2053   os->add_output_section_data(posd);
2054
2055   *trailing_padding = aligned_descsz - descsz;
2056
2057   return os;
2058 }
2059
2060 // For an executable or shared library, create a note to record the
2061 // version of gold used to create the binary.
2062
2063 void
2064 Layout::create_gold_note()
2065 {
2066   if (parameters->options().relocatable())
2067     return;
2068
2069   std::string desc = std::string("gold ") + gold::get_version_string();
2070
2071   size_t trailing_padding;
2072   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2073                                          ".note.gnu.gold-version", desc.size(),
2074                                          false, &trailing_padding);
2075   if (os == NULL)
2076     return;
2077
2078   Output_section_data* posd = new Output_data_const(desc, 4);
2079   os->add_output_section_data(posd);
2080
2081   if (trailing_padding > 0)
2082     {
2083       posd = new Output_data_zero_fill(trailing_padding, 0);
2084       os->add_output_section_data(posd);
2085     }
2086 }
2087
2088 // Record whether the stack should be executable.  This can be set
2089 // from the command line using the -z execstack or -z noexecstack
2090 // options.  Otherwise, if any input file has a .note.GNU-stack
2091 // section with the SHF_EXECINSTR flag set, the stack should be
2092 // executable.  Otherwise, if at least one input file a
2093 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2094 // section, we use the target default for whether the stack should be
2095 // executable.  Otherwise, we don't generate a stack note.  When
2096 // generating a object file, we create a .note.GNU-stack section with
2097 // the appropriate marking.  When generating an executable or shared
2098 // library, we create a PT_GNU_STACK segment.
2099
2100 void
2101 Layout::create_executable_stack_info()
2102 {
2103   bool is_stack_executable;
2104   if (parameters->options().is_execstack_set())
2105     is_stack_executable = parameters->options().is_stack_executable();
2106   else if (!this->input_with_gnu_stack_note_)
2107     return;
2108   else
2109     {
2110       if (this->input_requires_executable_stack_)
2111         is_stack_executable = true;
2112       else if (this->input_without_gnu_stack_note_)
2113         is_stack_executable =
2114           parameters->target().is_default_stack_executable();
2115       else
2116         is_stack_executable = false;
2117     }
2118
2119   if (parameters->options().relocatable())
2120     {
2121       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2122       elfcpp::Elf_Xword flags = 0;
2123       if (is_stack_executable)
2124         flags |= elfcpp::SHF_EXECINSTR;
2125       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2126                                 ORDER_INVALID, false);
2127     }
2128   else
2129     {
2130       if (this->script_options_->saw_phdrs_clause())
2131         return;
2132       int flags = elfcpp::PF_R | elfcpp::PF_W;
2133       if (is_stack_executable)
2134         flags |= elfcpp::PF_X;
2135       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2136     }
2137 }
2138
2139 // If --build-id was used, set up the build ID note.
2140
2141 void
2142 Layout::create_build_id()
2143 {
2144   if (!parameters->options().user_set_build_id())
2145     return;
2146
2147   const char* style = parameters->options().build_id();
2148   if (strcmp(style, "none") == 0)
2149     return;
2150
2151   // Set DESCSZ to the size of the note descriptor.  When possible,
2152   // set DESC to the note descriptor contents.
2153   size_t descsz;
2154   std::string desc;
2155   if (strcmp(style, "md5") == 0)
2156     descsz = 128 / 8;
2157   else if (strcmp(style, "sha1") == 0)
2158     descsz = 160 / 8;
2159   else if (strcmp(style, "uuid") == 0)
2160     {
2161       const size_t uuidsz = 128 / 8;
2162
2163       char buffer[uuidsz];
2164       memset(buffer, 0, uuidsz);
2165
2166       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2167       if (descriptor < 0)
2168         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2169                    strerror(errno));
2170       else
2171         {
2172           ssize_t got = ::read(descriptor, buffer, uuidsz);
2173           release_descriptor(descriptor, true);
2174           if (got < 0)
2175             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2176           else if (static_cast<size_t>(got) != uuidsz)
2177             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2178                        uuidsz, got);
2179         }
2180
2181       desc.assign(buffer, uuidsz);
2182       descsz = uuidsz;
2183     }
2184   else if (strncmp(style, "0x", 2) == 0)
2185     {
2186       hex_init();
2187       const char* p = style + 2;
2188       while (*p != '\0')
2189         {
2190           if (hex_p(p[0]) && hex_p(p[1]))
2191             {
2192               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2193               desc += c;
2194               p += 2;
2195             }
2196           else if (*p == '-' || *p == ':')
2197             ++p;
2198           else
2199             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2200                        style);
2201         }
2202       descsz = desc.size();
2203     }
2204   else
2205     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2206
2207   // Create the note.
2208   size_t trailing_padding;
2209   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2210                                          ".note.gnu.build-id", descsz, true,
2211                                          &trailing_padding);
2212   if (os == NULL)
2213     return;
2214
2215   if (!desc.empty())
2216     {
2217       // We know the value already, so we fill it in now.
2218       gold_assert(desc.size() == descsz);
2219
2220       Output_section_data* posd = new Output_data_const(desc, 4);
2221       os->add_output_section_data(posd);
2222
2223       if (trailing_padding != 0)
2224         {
2225           posd = new Output_data_zero_fill(trailing_padding, 0);
2226           os->add_output_section_data(posd);
2227         }
2228     }
2229   else
2230     {
2231       // We need to compute a checksum after we have completed the
2232       // link.
2233       gold_assert(trailing_padding == 0);
2234       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2235       os->add_output_section_data(this->build_id_note_);
2236     }
2237 }
2238
2239 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2240 // field of the former should point to the latter.  I'm not sure who
2241 // started this, but the GNU linker does it, and some tools depend
2242 // upon it.
2243
2244 void
2245 Layout::link_stabs_sections()
2246 {
2247   if (!this->have_stabstr_section_)
2248     return;
2249
2250   for (Section_list::iterator p = this->section_list_.begin();
2251        p != this->section_list_.end();
2252        ++p)
2253     {
2254       if ((*p)->type() != elfcpp::SHT_STRTAB)
2255         continue;
2256
2257       const char* name = (*p)->name();
2258       if (strncmp(name, ".stab", 5) != 0)
2259         continue;
2260
2261       size_t len = strlen(name);
2262       if (strcmp(name + len - 3, "str") != 0)
2263         continue;
2264
2265       std::string stab_name(name, len - 3);
2266       Output_section* stab_sec;
2267       stab_sec = this->find_output_section(stab_name.c_str());
2268       if (stab_sec != NULL)
2269         stab_sec->set_link_section(*p);
2270     }
2271 }
2272
2273 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2274 // for the next run of incremental linking to check what has changed.
2275
2276 void
2277 Layout::create_incremental_info_sections()
2278 {
2279   gold_assert(this->incremental_inputs_ != NULL);
2280
2281   // Add the .gnu_incremental_inputs section.
2282   const char *incremental_inputs_name =
2283     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2284   Output_section* inputs_os =
2285     this->make_output_section(incremental_inputs_name,
2286                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2287                               ORDER_INVALID, false);
2288   Output_section_data* posd =
2289       this->incremental_inputs_->create_incremental_inputs_section_data();
2290   inputs_os->add_output_section_data(posd);
2291   
2292   // Add the .gnu_incremental_strtab section.
2293   const char *incremental_strtab_name =
2294     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2295   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2296                                                         elfcpp::SHT_STRTAB,
2297                                                         0, ORDER_INVALID,
2298                                                         false);
2299   Output_data_strtab* strtab_data =
2300     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2301   strtab_os->add_output_section_data(strtab_data);
2302   
2303   inputs_os->set_link_section(strtab_data);
2304 }
2305
2306 // Return whether SEG1 should be before SEG2 in the output file.  This
2307 // is based entirely on the segment type and flags.  When this is
2308 // called the segment addresses has normally not yet been set.
2309
2310 bool
2311 Layout::segment_precedes(const Output_segment* seg1,
2312                          const Output_segment* seg2)
2313 {
2314   elfcpp::Elf_Word type1 = seg1->type();
2315   elfcpp::Elf_Word type2 = seg2->type();
2316
2317   // The single PT_PHDR segment is required to precede any loadable
2318   // segment.  We simply make it always first.
2319   if (type1 == elfcpp::PT_PHDR)
2320     {
2321       gold_assert(type2 != elfcpp::PT_PHDR);
2322       return true;
2323     }
2324   if (type2 == elfcpp::PT_PHDR)
2325     return false;
2326
2327   // The single PT_INTERP segment is required to precede any loadable
2328   // segment.  We simply make it always second.
2329   if (type1 == elfcpp::PT_INTERP)
2330     {
2331       gold_assert(type2 != elfcpp::PT_INTERP);
2332       return true;
2333     }
2334   if (type2 == elfcpp::PT_INTERP)
2335     return false;
2336
2337   // We then put PT_LOAD segments before any other segments.
2338   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2339     return true;
2340   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2341     return false;
2342
2343   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2344   // segment, because that is where the dynamic linker expects to find
2345   // it (this is just for efficiency; other positions would also work
2346   // correctly).
2347   if (type1 == elfcpp::PT_TLS
2348       && type2 != elfcpp::PT_TLS
2349       && type2 != elfcpp::PT_GNU_RELRO)
2350     return false;
2351   if (type2 == elfcpp::PT_TLS
2352       && type1 != elfcpp::PT_TLS
2353       && type1 != elfcpp::PT_GNU_RELRO)
2354     return true;
2355
2356   // We put the PT_GNU_RELRO segment last, because that is where the
2357   // dynamic linker expects to find it (as with PT_TLS, this is just
2358   // for efficiency).
2359   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2360     return false;
2361   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2362     return true;
2363
2364   const elfcpp::Elf_Word flags1 = seg1->flags();
2365   const elfcpp::Elf_Word flags2 = seg2->flags();
2366
2367   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2368   // by the numeric segment type and flags values.  There should not
2369   // be more than one segment with the same type and flags.
2370   if (type1 != elfcpp::PT_LOAD)
2371     {
2372       if (type1 != type2)
2373         return type1 < type2;
2374       gold_assert(flags1 != flags2);
2375       return flags1 < flags2;
2376     }
2377
2378   // If the addresses are set already, sort by load address.
2379   if (seg1->are_addresses_set())
2380     {
2381       if (!seg2->are_addresses_set())
2382         return true;
2383
2384       unsigned int section_count1 = seg1->output_section_count();
2385       unsigned int section_count2 = seg2->output_section_count();
2386       if (section_count1 == 0 && section_count2 > 0)
2387         return true;
2388       if (section_count1 > 0 && section_count2 == 0)
2389         return false;
2390
2391       uint64_t paddr1 = seg1->first_section_load_address();
2392       uint64_t paddr2 = seg2->first_section_load_address();
2393       if (paddr1 != paddr2)
2394         return paddr1 < paddr2;
2395     }
2396   else if (seg2->are_addresses_set())
2397     return false;
2398
2399   // A segment which holds large data comes after a segment which does
2400   // not hold large data.
2401   if (seg1->is_large_data_segment())
2402     {
2403       if (!seg2->is_large_data_segment())
2404         return false;
2405     }
2406   else if (seg2->is_large_data_segment())
2407     return true;
2408
2409   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2410   // segments come before writable segments.  Then writable segments
2411   // with data come before writable segments without data.  Then
2412   // executable segments come before non-executable segments.  Then
2413   // the unlikely case of a non-readable segment comes before the
2414   // normal case of a readable segment.  If there are multiple
2415   // segments with the same type and flags, we require that the
2416   // address be set, and we sort by virtual address and then physical
2417   // address.
2418   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2419     return (flags1 & elfcpp::PF_W) == 0;
2420   if ((flags1 & elfcpp::PF_W) != 0
2421       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2422     return seg1->has_any_data_sections();
2423   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2424     return (flags1 & elfcpp::PF_X) != 0;
2425   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2426     return (flags1 & elfcpp::PF_R) == 0;
2427
2428   // We shouldn't get here--we shouldn't create segments which we
2429   // can't distinguish.
2430   gold_unreachable();
2431 }
2432
2433 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2434
2435 static off_t
2436 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2437 {
2438   uint64_t unsigned_off = off;
2439   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2440                           | (addr & (abi_pagesize - 1)));
2441   if (aligned_off < unsigned_off)
2442     aligned_off += abi_pagesize;
2443   return aligned_off;
2444 }
2445
2446 // Set the file offsets of all the segments, and all the sections they
2447 // contain.  They have all been created.  LOAD_SEG must be be laid out
2448 // first.  Return the offset of the data to follow.
2449
2450 off_t
2451 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2452                             unsigned int *pshndx)
2453 {
2454   // Sort them into the final order.
2455   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2456             Layout::Compare_segments());
2457
2458   // Find the PT_LOAD segments, and set their addresses and offsets
2459   // and their section's addresses and offsets.
2460   uint64_t addr;
2461   if (parameters->options().user_set_Ttext())
2462     addr = parameters->options().Ttext();
2463   else if (parameters->options().output_is_position_independent())
2464     addr = 0;
2465   else
2466     addr = target->default_text_segment_address();
2467   off_t off = 0;
2468
2469   // If LOAD_SEG is NULL, then the file header and segment headers
2470   // will not be loadable.  But they still need to be at offset 0 in
2471   // the file.  Set their offsets now.
2472   if (load_seg == NULL)
2473     {
2474       for (Data_list::iterator p = this->special_output_list_.begin();
2475            p != this->special_output_list_.end();
2476            ++p)
2477         {
2478           off = align_address(off, (*p)->addralign());
2479           (*p)->set_address_and_file_offset(0, off);
2480           off += (*p)->data_size();
2481         }
2482     }
2483
2484   unsigned int increase_relro = this->increase_relro_;
2485   if (this->script_options_->saw_sections_clause())
2486     increase_relro = 0;
2487
2488   const bool check_sections = parameters->options().check_sections();
2489   Output_segment* last_load_segment = NULL;
2490
2491   bool was_readonly = false;
2492   for (Segment_list::iterator p = this->segment_list_.begin();
2493        p != this->segment_list_.end();
2494        ++p)
2495     {
2496       if ((*p)->type() == elfcpp::PT_LOAD)
2497         {
2498           if (load_seg != NULL && load_seg != *p)
2499             gold_unreachable();
2500           load_seg = NULL;
2501
2502           bool are_addresses_set = (*p)->are_addresses_set();
2503           if (are_addresses_set)
2504             {
2505               // When it comes to setting file offsets, we care about
2506               // the physical address.
2507               addr = (*p)->paddr();
2508             }
2509           else if (parameters->options().user_set_Tdata()
2510                    && ((*p)->flags() & elfcpp::PF_W) != 0
2511                    && (!parameters->options().user_set_Tbss()
2512                        || (*p)->has_any_data_sections()))
2513             {
2514               addr = parameters->options().Tdata();
2515               are_addresses_set = true;
2516             }
2517           else if (parameters->options().user_set_Tbss()
2518                    && ((*p)->flags() & elfcpp::PF_W) != 0
2519                    && !(*p)->has_any_data_sections())
2520             {
2521               addr = parameters->options().Tbss();
2522               are_addresses_set = true;
2523             }
2524
2525           uint64_t orig_addr = addr;
2526           uint64_t orig_off = off;
2527
2528           uint64_t aligned_addr = 0;
2529           uint64_t abi_pagesize = target->abi_pagesize();
2530           uint64_t common_pagesize = target->common_pagesize();
2531
2532           if (!parameters->options().nmagic()
2533               && !parameters->options().omagic())
2534             (*p)->set_minimum_p_align(common_pagesize);
2535
2536           if (!are_addresses_set)
2537             {
2538               // If the last segment was readonly, and this one is
2539               // not, then skip the address forward one page,
2540               // maintaining the same position within the page.  This
2541               // lets us store both segments overlapping on a single
2542               // page in the file, but the loader will put them on
2543               // different pages in memory.
2544
2545               addr = align_address(addr, (*p)->maximum_alignment());
2546               aligned_addr = addr;
2547
2548               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2549                 {
2550                   if ((addr & (abi_pagesize - 1)) != 0)
2551                     addr = addr + abi_pagesize;
2552                 }
2553
2554               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2555             }
2556
2557           if (!parameters->options().nmagic()
2558               && !parameters->options().omagic())
2559             off = align_file_offset(off, addr, abi_pagesize);
2560           else if (load_seg == NULL)
2561             {
2562               // This is -N or -n with a section script which prevents
2563               // us from using a load segment.  We need to ensure that
2564               // the file offset is aligned to the alignment of the
2565               // segment.  This is because the linker script
2566               // implicitly assumed a zero offset.  If we don't align
2567               // here, then the alignment of the sections in the
2568               // linker script may not match the alignment of the
2569               // sections in the set_section_addresses call below,
2570               // causing an error about dot moving backward.
2571               off = align_address(off, (*p)->maximum_alignment());
2572             }
2573
2574           unsigned int shndx_hold = *pshndx;
2575           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2576                                                           increase_relro,
2577                                                           &off, pshndx);
2578
2579           // Now that we know the size of this segment, we may be able
2580           // to save a page in memory, at the cost of wasting some
2581           // file space, by instead aligning to the start of a new
2582           // page.  Here we use the real machine page size rather than
2583           // the ABI mandated page size.
2584
2585           if (!are_addresses_set && aligned_addr != addr)
2586             {
2587               uint64_t first_off = (common_pagesize
2588                                     - (aligned_addr
2589                                        & (common_pagesize - 1)));
2590               uint64_t last_off = new_addr & (common_pagesize - 1);
2591               if (first_off > 0
2592                   && last_off > 0
2593                   && ((aligned_addr & ~ (common_pagesize - 1))
2594                       != (new_addr & ~ (common_pagesize - 1)))
2595                   && first_off + last_off <= common_pagesize)
2596                 {
2597                   *pshndx = shndx_hold;
2598                   addr = align_address(aligned_addr, common_pagesize);
2599                   addr = align_address(addr, (*p)->maximum_alignment());
2600                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2601                   off = align_file_offset(off, addr, abi_pagesize);
2602                   new_addr = (*p)->set_section_addresses(this, true, addr,
2603                                                          increase_relro,
2604                                                          &off, pshndx);
2605                 }
2606             }
2607
2608           addr = new_addr;
2609
2610           if (((*p)->flags() & elfcpp::PF_W) == 0)
2611             was_readonly = true;
2612
2613           // Implement --check-sections.  We know that the segments
2614           // are sorted by LMA.
2615           if (check_sections && last_load_segment != NULL)
2616             {
2617               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2618               if (last_load_segment->paddr() + last_load_segment->memsz()
2619                   > (*p)->paddr())
2620                 {
2621                   unsigned long long lb1 = last_load_segment->paddr();
2622                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2623                   unsigned long long lb2 = (*p)->paddr();
2624                   unsigned long long le2 = lb2 + (*p)->memsz();
2625                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2626                                "[0x%llx -> 0x%llx]"),
2627                              lb1, le1, lb2, le2);
2628                 }
2629             }
2630           last_load_segment = *p;
2631         }
2632     }
2633
2634   // Handle the non-PT_LOAD segments, setting their offsets from their
2635   // section's offsets.
2636   for (Segment_list::iterator p = this->segment_list_.begin();
2637        p != this->segment_list_.end();
2638        ++p)
2639     {
2640       if ((*p)->type() != elfcpp::PT_LOAD)
2641         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2642                          ? increase_relro
2643                          : 0);
2644     }
2645
2646   // Set the TLS offsets for each section in the PT_TLS segment.
2647   if (this->tls_segment_ != NULL)
2648     this->tls_segment_->set_tls_offsets();
2649
2650   return off;
2651 }
2652
2653 // Set the offsets of all the allocated sections when doing a
2654 // relocatable link.  This does the same jobs as set_segment_offsets,
2655 // only for a relocatable link.
2656
2657 off_t
2658 Layout::set_relocatable_section_offsets(Output_data* file_header,
2659                                         unsigned int *pshndx)
2660 {
2661   off_t off = 0;
2662
2663   file_header->set_address_and_file_offset(0, 0);
2664   off += file_header->data_size();
2665
2666   for (Section_list::iterator p = this->section_list_.begin();
2667        p != this->section_list_.end();
2668        ++p)
2669     {
2670       // We skip unallocated sections here, except that group sections
2671       // have to come first.
2672       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2673           && (*p)->type() != elfcpp::SHT_GROUP)
2674         continue;
2675
2676       off = align_address(off, (*p)->addralign());
2677
2678       // The linker script might have set the address.
2679       if (!(*p)->is_address_valid())
2680         (*p)->set_address(0);
2681       (*p)->set_file_offset(off);
2682       (*p)->finalize_data_size();
2683       off += (*p)->data_size();
2684
2685       (*p)->set_out_shndx(*pshndx);
2686       ++*pshndx;
2687     }
2688
2689   return off;
2690 }
2691
2692 // Set the file offset of all the sections not associated with a
2693 // segment.
2694
2695 off_t
2696 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2697 {
2698   for (Section_list::iterator p = this->unattached_section_list_.begin();
2699        p != this->unattached_section_list_.end();
2700        ++p)
2701     {
2702       // The symtab section is handled in create_symtab_sections.
2703       if (*p == this->symtab_section_)
2704         continue;
2705
2706       // If we've already set the data size, don't set it again.
2707       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2708         continue;
2709
2710       if (pass == BEFORE_INPUT_SECTIONS_PASS
2711           && (*p)->requires_postprocessing())
2712         {
2713           (*p)->create_postprocessing_buffer();
2714           this->any_postprocessing_sections_ = true;
2715         }
2716
2717       if (pass == BEFORE_INPUT_SECTIONS_PASS
2718           && (*p)->after_input_sections())
2719         continue;
2720       else if (pass == POSTPROCESSING_SECTIONS_PASS
2721                && (!(*p)->after_input_sections()
2722                    || (*p)->type() == elfcpp::SHT_STRTAB))
2723         continue;
2724       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2725                && (!(*p)->after_input_sections()
2726                    || (*p)->type() != elfcpp::SHT_STRTAB))
2727         continue;
2728
2729       off = align_address(off, (*p)->addralign());
2730       (*p)->set_file_offset(off);
2731       (*p)->finalize_data_size();
2732       off += (*p)->data_size();
2733
2734       // At this point the name must be set.
2735       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2736         this->namepool_.add((*p)->name(), false, NULL);
2737     }
2738   return off;
2739 }
2740
2741 // Set the section indexes of all the sections not associated with a
2742 // segment.
2743
2744 unsigned int
2745 Layout::set_section_indexes(unsigned int shndx)
2746 {
2747   for (Section_list::iterator p = this->unattached_section_list_.begin();
2748        p != this->unattached_section_list_.end();
2749        ++p)
2750     {
2751       if (!(*p)->has_out_shndx())
2752         {
2753           (*p)->set_out_shndx(shndx);
2754           ++shndx;
2755         }
2756     }
2757   return shndx;
2758 }
2759
2760 // Set the section addresses according to the linker script.  This is
2761 // only called when we see a SECTIONS clause.  This returns the
2762 // program segment which should hold the file header and segment
2763 // headers, if any.  It will return NULL if they should not be in a
2764 // segment.
2765
2766 Output_segment*
2767 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2768 {
2769   Script_sections* ss = this->script_options_->script_sections();
2770   gold_assert(ss->saw_sections_clause());
2771   return this->script_options_->set_section_addresses(symtab, this);
2772 }
2773
2774 // Place the orphan sections in the linker script.
2775
2776 void
2777 Layout::place_orphan_sections_in_script()
2778 {
2779   Script_sections* ss = this->script_options_->script_sections();
2780   gold_assert(ss->saw_sections_clause());
2781
2782   // Place each orphaned output section in the script.
2783   for (Section_list::iterator p = this->section_list_.begin();
2784        p != this->section_list_.end();
2785        ++p)
2786     {
2787       if (!(*p)->found_in_sections_clause())
2788         ss->place_orphan(*p);
2789     }
2790 }
2791
2792 // Count the local symbols in the regular symbol table and the dynamic
2793 // symbol table, and build the respective string pools.
2794
2795 void
2796 Layout::count_local_symbols(const Task* task,
2797                             const Input_objects* input_objects)
2798 {
2799   // First, figure out an upper bound on the number of symbols we'll
2800   // be inserting into each pool.  This helps us create the pools with
2801   // the right size, to avoid unnecessary hashtable resizing.
2802   unsigned int symbol_count = 0;
2803   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2804        p != input_objects->relobj_end();
2805        ++p)
2806     symbol_count += (*p)->local_symbol_count();
2807
2808   // Go from "upper bound" to "estimate."  We overcount for two
2809   // reasons: we double-count symbols that occur in more than one
2810   // object file, and we count symbols that are dropped from the
2811   // output.  Add it all together and assume we overcount by 100%.
2812   symbol_count /= 2;
2813
2814   // We assume all symbols will go into both the sympool and dynpool.
2815   this->sympool_.reserve(symbol_count);
2816   this->dynpool_.reserve(symbol_count);
2817
2818   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2819        p != input_objects->relobj_end();
2820        ++p)
2821     {
2822       Task_lock_obj<Object> tlo(task, *p);
2823       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2824     }
2825 }
2826
2827 // Create the symbol table sections.  Here we also set the final
2828 // values of the symbols.  At this point all the loadable sections are
2829 // fully laid out.  SHNUM is the number of sections so far.
2830
2831 void
2832 Layout::create_symtab_sections(const Input_objects* input_objects,
2833                                Symbol_table* symtab,
2834                                unsigned int shnum,
2835                                off_t* poff)
2836 {
2837   int symsize;
2838   unsigned int align;
2839   if (parameters->target().get_size() == 32)
2840     {
2841       symsize = elfcpp::Elf_sizes<32>::sym_size;
2842       align = 4;
2843     }
2844   else if (parameters->target().get_size() == 64)
2845     {
2846       symsize = elfcpp::Elf_sizes<64>::sym_size;
2847       align = 8;
2848     }
2849   else
2850     gold_unreachable();
2851
2852   off_t off = *poff;
2853   off = align_address(off, align);
2854   off_t startoff = off;
2855
2856   // Save space for the dummy symbol at the start of the section.  We
2857   // never bother to write this out--it will just be left as zero.
2858   off += symsize;
2859   unsigned int local_symbol_index = 1;
2860
2861   // Add STT_SECTION symbols for each Output section which needs one.
2862   for (Section_list::iterator p = this->section_list_.begin();
2863        p != this->section_list_.end();
2864        ++p)
2865     {
2866       if (!(*p)->needs_symtab_index())
2867         (*p)->set_symtab_index(-1U);
2868       else
2869         {
2870           (*p)->set_symtab_index(local_symbol_index);
2871           ++local_symbol_index;
2872           off += symsize;
2873         }
2874     }
2875
2876   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2877        p != input_objects->relobj_end();
2878        ++p)
2879     {
2880       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2881                                                         off, symtab);
2882       off += (index - local_symbol_index) * symsize;
2883       local_symbol_index = index;
2884     }
2885
2886   unsigned int local_symcount = local_symbol_index;
2887   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2888
2889   off_t dynoff;
2890   size_t dyn_global_index;
2891   size_t dyncount;
2892   if (this->dynsym_section_ == NULL)
2893     {
2894       dynoff = 0;
2895       dyn_global_index = 0;
2896       dyncount = 0;
2897     }
2898   else
2899     {
2900       dyn_global_index = this->dynsym_section_->info();
2901       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2902       dynoff = this->dynsym_section_->offset() + locsize;
2903       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2904       gold_assert(static_cast<off_t>(dyncount * symsize)
2905                   == this->dynsym_section_->data_size() - locsize);
2906     }
2907
2908   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2909                          &this->sympool_, &local_symcount);
2910
2911   if (!parameters->options().strip_all())
2912     {
2913       this->sympool_.set_string_offsets();
2914
2915       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2916       Output_section* osymtab = this->make_output_section(symtab_name,
2917                                                           elfcpp::SHT_SYMTAB,
2918                                                           0, ORDER_INVALID,
2919                                                           false);
2920       this->symtab_section_ = osymtab;
2921
2922       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2923                                                              align,
2924                                                              "** symtab");
2925       osymtab->add_output_section_data(pos);
2926
2927       // We generate a .symtab_shndx section if we have more than
2928       // SHN_LORESERVE sections.  Technically it is possible that we
2929       // don't need one, because it is possible that there are no
2930       // symbols in any of sections with indexes larger than
2931       // SHN_LORESERVE.  That is probably unusual, though, and it is
2932       // easier to always create one than to compute section indexes
2933       // twice (once here, once when writing out the symbols).
2934       if (shnum >= elfcpp::SHN_LORESERVE)
2935         {
2936           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2937                                                                false, NULL);
2938           Output_section* osymtab_xindex =
2939             this->make_output_section(symtab_xindex_name,
2940                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
2941                                       ORDER_INVALID, false);
2942
2943           size_t symcount = (off - startoff) / symsize;
2944           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2945
2946           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2947
2948           osymtab_xindex->set_link_section(osymtab);
2949           osymtab_xindex->set_addralign(4);
2950           osymtab_xindex->set_entsize(4);
2951
2952           osymtab_xindex->set_after_input_sections();
2953
2954           // This tells the driver code to wait until the symbol table
2955           // has written out before writing out the postprocessing
2956           // sections, including the .symtab_shndx section.
2957           this->any_postprocessing_sections_ = true;
2958         }
2959
2960       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2961       Output_section* ostrtab = this->make_output_section(strtab_name,
2962                                                           elfcpp::SHT_STRTAB,
2963                                                           0, ORDER_INVALID,
2964                                                           false);
2965
2966       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2967       ostrtab->add_output_section_data(pstr);
2968
2969       osymtab->set_file_offset(startoff);
2970       osymtab->finalize_data_size();
2971       osymtab->set_link_section(ostrtab);
2972       osymtab->set_info(local_symcount);
2973       osymtab->set_entsize(symsize);
2974
2975       *poff = off;
2976     }
2977 }
2978
2979 // Create the .shstrtab section, which holds the names of the
2980 // sections.  At the time this is called, we have created all the
2981 // output sections except .shstrtab itself.
2982
2983 Output_section*
2984 Layout::create_shstrtab()
2985 {
2986   // FIXME: We don't need to create a .shstrtab section if we are
2987   // stripping everything.
2988
2989   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2990
2991   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2992                                                  ORDER_INVALID, false);
2993
2994   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
2995     {
2996       // We can't write out this section until we've set all the
2997       // section names, and we don't set the names of compressed
2998       // output sections until relocations are complete.  FIXME: With
2999       // the current names we use, this is unnecessary.
3000       os->set_after_input_sections();
3001     }
3002
3003   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3004   os->add_output_section_data(posd);
3005
3006   return os;
3007 }
3008
3009 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3010 // offset.
3011
3012 void
3013 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3014 {
3015   Output_section_headers* oshdrs;
3016   oshdrs = new Output_section_headers(this,
3017                                       &this->segment_list_,
3018                                       &this->section_list_,
3019                                       &this->unattached_section_list_,
3020                                       &this->namepool_,
3021                                       shstrtab_section);
3022   off_t off = align_address(*poff, oshdrs->addralign());
3023   oshdrs->set_address_and_file_offset(0, off);
3024   off += oshdrs->data_size();
3025   *poff = off;
3026   this->section_headers_ = oshdrs;
3027 }
3028
3029 // Count the allocated sections.
3030
3031 size_t
3032 Layout::allocated_output_section_count() const
3033 {
3034   size_t section_count = 0;
3035   for (Segment_list::const_iterator p = this->segment_list_.begin();
3036        p != this->segment_list_.end();
3037        ++p)
3038     section_count += (*p)->output_section_count();
3039   return section_count;
3040 }
3041
3042 // Create the dynamic symbol table.
3043
3044 void
3045 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3046                               Symbol_table* symtab,
3047                               Output_section **pdynstr,
3048                               unsigned int* plocal_dynamic_count,
3049                               std::vector<Symbol*>* pdynamic_symbols,
3050                               Versions* pversions)
3051 {
3052   // Count all the symbols in the dynamic symbol table, and set the
3053   // dynamic symbol indexes.
3054
3055   // Skip symbol 0, which is always all zeroes.
3056   unsigned int index = 1;
3057
3058   // Add STT_SECTION symbols for each Output section which needs one.
3059   for (Section_list::iterator p = this->section_list_.begin();
3060        p != this->section_list_.end();
3061        ++p)
3062     {
3063       if (!(*p)->needs_dynsym_index())
3064         (*p)->set_dynsym_index(-1U);
3065       else
3066         {
3067           (*p)->set_dynsym_index(index);
3068           ++index;
3069         }
3070     }
3071
3072   // Count the local symbols that need to go in the dynamic symbol table,
3073   // and set the dynamic symbol indexes.
3074   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3075        p != input_objects->relobj_end();
3076        ++p)
3077     {
3078       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3079       index = new_index;
3080     }
3081
3082   unsigned int local_symcount = index;
3083   *plocal_dynamic_count = local_symcount;
3084
3085   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3086                                      &this->dynpool_, pversions);
3087
3088   int symsize;
3089   unsigned int align;
3090   const int size = parameters->target().get_size();
3091   if (size == 32)
3092     {
3093       symsize = elfcpp::Elf_sizes<32>::sym_size;
3094       align = 4;
3095     }
3096   else if (size == 64)
3097     {
3098       symsize = elfcpp::Elf_sizes<64>::sym_size;
3099       align = 8;
3100     }
3101   else
3102     gold_unreachable();
3103
3104   // Create the dynamic symbol table section.
3105
3106   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3107                                                        elfcpp::SHT_DYNSYM,
3108                                                        elfcpp::SHF_ALLOC,
3109                                                        false,
3110                                                        ORDER_DYNAMIC_LINKER,
3111                                                        false);
3112
3113   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3114                                                            align,
3115                                                            "** dynsym");
3116   dynsym->add_output_section_data(odata);
3117
3118   dynsym->set_info(local_symcount);
3119   dynsym->set_entsize(symsize);
3120   dynsym->set_addralign(align);
3121
3122   this->dynsym_section_ = dynsym;
3123
3124   Output_data_dynamic* const odyn = this->dynamic_data_;
3125   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3126   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3127
3128   // If there are more than SHN_LORESERVE allocated sections, we
3129   // create a .dynsym_shndx section.  It is possible that we don't
3130   // need one, because it is possible that there are no dynamic
3131   // symbols in any of the sections with indexes larger than
3132   // SHN_LORESERVE.  This is probably unusual, though, and at this
3133   // time we don't know the actual section indexes so it is
3134   // inconvenient to check.
3135   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3136     {
3137       Output_section* dynsym_xindex =
3138         this->choose_output_section(NULL, ".dynsym_shndx",
3139                                     elfcpp::SHT_SYMTAB_SHNDX,
3140                                     elfcpp::SHF_ALLOC,
3141                                     false, ORDER_DYNAMIC_LINKER, false);
3142
3143       this->dynsym_xindex_ = new Output_symtab_xindex(index);
3144
3145       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3146
3147       dynsym_xindex->set_link_section(dynsym);
3148       dynsym_xindex->set_addralign(4);
3149       dynsym_xindex->set_entsize(4);
3150
3151       dynsym_xindex->set_after_input_sections();
3152
3153       // This tells the driver code to wait until the symbol table has
3154       // written out before writing out the postprocessing sections,
3155       // including the .dynsym_shndx section.
3156       this->any_postprocessing_sections_ = true;
3157     }
3158
3159   // Create the dynamic string table section.
3160
3161   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3162                                                        elfcpp::SHT_STRTAB,
3163                                                        elfcpp::SHF_ALLOC,
3164                                                        false,
3165                                                        ORDER_DYNAMIC_LINKER,
3166                                                        false);
3167
3168   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3169   dynstr->add_output_section_data(strdata);
3170
3171   dynsym->set_link_section(dynstr);
3172   this->dynamic_section_->set_link_section(dynstr);
3173
3174   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3175   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3176
3177   *pdynstr = dynstr;
3178
3179   // Create the hash tables.
3180
3181   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3182       || strcmp(parameters->options().hash_style(), "both") == 0)
3183     {
3184       unsigned char* phash;
3185       unsigned int hashlen;
3186       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3187                                     &phash, &hashlen);
3188
3189       Output_section* hashsec =
3190         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3191                                     elfcpp::SHF_ALLOC, false,
3192                                     ORDER_DYNAMIC_LINKER, false);
3193
3194       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3195                                                                    hashlen,
3196                                                                    align,
3197                                                                    "** hash");
3198       hashsec->add_output_section_data(hashdata);
3199
3200       hashsec->set_link_section(dynsym);
3201       hashsec->set_entsize(4);
3202
3203       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3204     }
3205
3206   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3207       || strcmp(parameters->options().hash_style(), "both") == 0)
3208     {
3209       unsigned char* phash;
3210       unsigned int hashlen;
3211       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3212                                     &phash, &hashlen);
3213
3214       Output_section* hashsec =
3215         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3216                                     elfcpp::SHF_ALLOC, false,
3217                                     ORDER_DYNAMIC_LINKER, false);
3218
3219       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3220                                                                    hashlen,
3221                                                                    align,
3222                                                                    "** hash");
3223       hashsec->add_output_section_data(hashdata);
3224
3225       hashsec->set_link_section(dynsym);
3226
3227       // For a 64-bit target, the entries in .gnu.hash do not have a
3228       // uniform size, so we only set the entry size for a 32-bit
3229       // target.
3230       if (parameters->target().get_size() == 32)
3231         hashsec->set_entsize(4);
3232
3233       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3234     }
3235 }
3236
3237 // Assign offsets to each local portion of the dynamic symbol table.
3238
3239 void
3240 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3241 {
3242   Output_section* dynsym = this->dynsym_section_;
3243   gold_assert(dynsym != NULL);
3244
3245   off_t off = dynsym->offset();
3246
3247   // Skip the dummy symbol at the start of the section.
3248   off += dynsym->entsize();
3249
3250   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3251        p != input_objects->relobj_end();
3252        ++p)
3253     {
3254       unsigned int count = (*p)->set_local_dynsym_offset(off);
3255       off += count * dynsym->entsize();
3256     }
3257 }
3258
3259 // Create the version sections.
3260
3261 void
3262 Layout::create_version_sections(const Versions* versions,
3263                                 const Symbol_table* symtab,
3264                                 unsigned int local_symcount,
3265                                 const std::vector<Symbol*>& dynamic_symbols,
3266                                 const Output_section* dynstr)
3267 {
3268   if (!versions->any_defs() && !versions->any_needs())
3269     return;
3270
3271   switch (parameters->size_and_endianness())
3272     {
3273 #ifdef HAVE_TARGET_32_LITTLE
3274     case Parameters::TARGET_32_LITTLE:
3275       this->sized_create_version_sections<32, false>(versions, symtab,
3276                                                      local_symcount,
3277                                                      dynamic_symbols, dynstr);
3278       break;
3279 #endif
3280 #ifdef HAVE_TARGET_32_BIG
3281     case Parameters::TARGET_32_BIG:
3282       this->sized_create_version_sections<32, true>(versions, symtab,
3283                                                     local_symcount,
3284                                                     dynamic_symbols, dynstr);
3285       break;
3286 #endif
3287 #ifdef HAVE_TARGET_64_LITTLE
3288     case Parameters::TARGET_64_LITTLE:
3289       this->sized_create_version_sections<64, false>(versions, symtab,
3290                                                      local_symcount,
3291                                                      dynamic_symbols, dynstr);
3292       break;
3293 #endif
3294 #ifdef HAVE_TARGET_64_BIG
3295     case Parameters::TARGET_64_BIG:
3296       this->sized_create_version_sections<64, true>(versions, symtab,
3297                                                     local_symcount,
3298                                                     dynamic_symbols, dynstr);
3299       break;
3300 #endif
3301     default:
3302       gold_unreachable();
3303     }
3304 }
3305
3306 // Create the version sections, sized version.
3307
3308 template<int size, bool big_endian>
3309 void
3310 Layout::sized_create_version_sections(
3311     const Versions* versions,
3312     const Symbol_table* symtab,
3313     unsigned int local_symcount,
3314     const std::vector<Symbol*>& dynamic_symbols,
3315     const Output_section* dynstr)
3316 {
3317   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3318                                                      elfcpp::SHT_GNU_versym,
3319                                                      elfcpp::SHF_ALLOC,
3320                                                      false,
3321                                                      ORDER_DYNAMIC_LINKER,
3322                                                      false);
3323
3324   unsigned char* vbuf;
3325   unsigned int vsize;
3326   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3327                                                       local_symcount,
3328                                                       dynamic_symbols,
3329                                                       &vbuf, &vsize);
3330
3331   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3332                                                             "** versions");
3333
3334   vsec->add_output_section_data(vdata);
3335   vsec->set_entsize(2);
3336   vsec->set_link_section(this->dynsym_section_);
3337
3338   Output_data_dynamic* const odyn = this->dynamic_data_;
3339   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3340
3341   if (versions->any_defs())
3342     {
3343       Output_section* vdsec;
3344       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3345                                          elfcpp::SHT_GNU_verdef,
3346                                          elfcpp::SHF_ALLOC,
3347                                          false, ORDER_DYNAMIC_LINKER, false);
3348
3349       unsigned char* vdbuf;
3350       unsigned int vdsize;
3351       unsigned int vdentries;
3352       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3353                                                        &vdsize, &vdentries);
3354
3355       Output_section_data* vddata =
3356         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3357
3358       vdsec->add_output_section_data(vddata);
3359       vdsec->set_link_section(dynstr);
3360       vdsec->set_info(vdentries);
3361
3362       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3363       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3364     }
3365
3366   if (versions->any_needs())
3367     {
3368       Output_section* vnsec;
3369       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3370                                           elfcpp::SHT_GNU_verneed,
3371                                           elfcpp::SHF_ALLOC,
3372                                           false, ORDER_DYNAMIC_LINKER, false);
3373
3374       unsigned char* vnbuf;
3375       unsigned int vnsize;
3376       unsigned int vnentries;
3377       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3378                                                         &vnbuf, &vnsize,
3379                                                         &vnentries);
3380
3381       Output_section_data* vndata =
3382         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3383
3384       vnsec->add_output_section_data(vndata);
3385       vnsec->set_link_section(dynstr);
3386       vnsec->set_info(vnentries);
3387
3388       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3389       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3390     }
3391 }
3392
3393 // Create the .interp section and PT_INTERP segment.
3394
3395 void
3396 Layout::create_interp(const Target* target)
3397 {
3398   const char* interp = parameters->options().dynamic_linker();
3399   if (interp == NULL)
3400     {
3401       interp = target->dynamic_linker();
3402       gold_assert(interp != NULL);
3403     }
3404
3405   size_t len = strlen(interp) + 1;
3406
3407   Output_section_data* odata = new Output_data_const(interp, len, 1);
3408
3409   Output_section* osec = this->choose_output_section(NULL, ".interp",
3410                                                      elfcpp::SHT_PROGBITS,
3411                                                      elfcpp::SHF_ALLOC,
3412                                                      false, ORDER_INTERP,
3413                                                      false);
3414   osec->add_output_section_data(odata);
3415
3416   if (!this->script_options_->saw_phdrs_clause())
3417     {
3418       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3419                                                        elfcpp::PF_R);
3420       oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3421     }
3422 }
3423
3424 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3425 // called by the target-specific code.  This does nothing if not doing
3426 // a dynamic link.
3427
3428 // USE_REL is true for REL relocs rather than RELA relocs.
3429
3430 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3431
3432 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3433 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3434 // some targets have multiple reloc sections in PLT_REL.
3435
3436 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3437 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3438
3439 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3440 // executable.
3441
3442 void
3443 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3444                                 const Output_data* plt_rel,
3445                                 const Output_data_reloc_generic* dyn_rel,
3446                                 bool add_debug, bool dynrel_includes_plt)
3447 {
3448   Output_data_dynamic* odyn = this->dynamic_data_;
3449   if (odyn == NULL)
3450     return;
3451
3452   if (plt_got != NULL && plt_got->output_section() != NULL)
3453     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3454
3455   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3456     {
3457       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3458       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3459       odyn->add_constant(elfcpp::DT_PLTREL,
3460                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3461     }
3462
3463   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3464     {
3465       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3466                                 dyn_rel);
3467       if (plt_rel != NULL && dynrel_includes_plt)
3468         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3469                                dyn_rel, plt_rel);
3470       else
3471         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3472                                dyn_rel);
3473       const int size = parameters->target().get_size();
3474       elfcpp::DT rel_tag;
3475       int rel_size;
3476       if (use_rel)
3477         {
3478           rel_tag = elfcpp::DT_RELENT;
3479           if (size == 32)
3480             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3481           else if (size == 64)
3482             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3483           else
3484             gold_unreachable();
3485         }
3486       else
3487         {
3488           rel_tag = elfcpp::DT_RELAENT;
3489           if (size == 32)
3490             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3491           else if (size == 64)
3492             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3493           else
3494             gold_unreachable();
3495         }
3496       odyn->add_constant(rel_tag, rel_size);
3497
3498       if (parameters->options().combreloc())
3499         {
3500           size_t c = dyn_rel->relative_reloc_count();
3501           if (c > 0)
3502             odyn->add_constant((use_rel
3503                                 ? elfcpp::DT_RELCOUNT
3504                                 : elfcpp::DT_RELACOUNT),
3505                                c);
3506         }
3507     }
3508
3509   if (add_debug && !parameters->options().shared())
3510     {
3511       // The value of the DT_DEBUG tag is filled in by the dynamic
3512       // linker at run time, and used by the debugger.
3513       odyn->add_constant(elfcpp::DT_DEBUG, 0);
3514     }
3515 }
3516
3517 // Finish the .dynamic section and PT_DYNAMIC segment.
3518
3519 void
3520 Layout::finish_dynamic_section(const Input_objects* input_objects,
3521                                const Symbol_table* symtab)
3522 {
3523   if (!this->script_options_->saw_phdrs_clause())
3524     {
3525       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3526                                                        (elfcpp::PF_R
3527                                                         | elfcpp::PF_W));
3528       oseg->add_output_section_to_nonload(this->dynamic_section_,
3529                                           elfcpp::PF_R | elfcpp::PF_W);
3530     }
3531
3532   Output_data_dynamic* const odyn = this->dynamic_data_;
3533
3534   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3535        p != input_objects->dynobj_end();
3536        ++p)
3537     {
3538       if (!(*p)->is_needed()
3539           && (*p)->input_file()->options().as_needed())
3540         {
3541           // This dynamic object was linked with --as-needed, but it
3542           // is not needed.
3543           continue;
3544         }
3545
3546       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3547     }
3548
3549   if (parameters->options().shared())
3550     {
3551       const char* soname = parameters->options().soname();
3552       if (soname != NULL)
3553         odyn->add_string(elfcpp::DT_SONAME, soname);
3554     }
3555
3556   Symbol* sym = symtab->lookup(parameters->options().init());
3557   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3558     odyn->add_symbol(elfcpp::DT_INIT, sym);
3559
3560   sym = symtab->lookup(parameters->options().fini());
3561   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3562     odyn->add_symbol(elfcpp::DT_FINI, sym);
3563
3564   // Look for .init_array, .preinit_array and .fini_array by checking
3565   // section types.
3566   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3567       p != this->section_list_.end();
3568       ++p)
3569     switch((*p)->type())
3570       {
3571       case elfcpp::SHT_FINI_ARRAY:
3572         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3573         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3574         break;
3575       case elfcpp::SHT_INIT_ARRAY:
3576         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3577         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3578         break;
3579       case elfcpp::SHT_PREINIT_ARRAY:
3580         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3581         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3582         break;
3583       default:
3584         break;
3585       }
3586   
3587   // Add a DT_RPATH entry if needed.
3588   const General_options::Dir_list& rpath(parameters->options().rpath());
3589   if (!rpath.empty())
3590     {
3591       std::string rpath_val;
3592       for (General_options::Dir_list::const_iterator p = rpath.begin();
3593            p != rpath.end();
3594            ++p)
3595         {
3596           if (rpath_val.empty())
3597             rpath_val = p->name();
3598           else
3599             {
3600               // Eliminate duplicates.
3601               General_options::Dir_list::const_iterator q;
3602               for (q = rpath.begin(); q != p; ++q)
3603                 if (q->name() == p->name())
3604                   break;
3605               if (q == p)
3606                 {
3607                   rpath_val += ':';
3608                   rpath_val += p->name();
3609                 }
3610             }
3611         }
3612
3613       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3614       if (parameters->options().enable_new_dtags())
3615         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3616     }
3617
3618   // Look for text segments that have dynamic relocations.
3619   bool have_textrel = false;
3620   if (!this->script_options_->saw_sections_clause())
3621     {
3622       for (Segment_list::const_iterator p = this->segment_list_.begin();
3623            p != this->segment_list_.end();
3624            ++p)
3625         {
3626           if (((*p)->flags() & elfcpp::PF_W) == 0
3627               && (*p)->has_dynamic_reloc())
3628             {
3629               have_textrel = true;
3630               break;
3631             }
3632         }
3633     }
3634   else
3635     {
3636       // We don't know the section -> segment mapping, so we are
3637       // conservative and just look for readonly sections with
3638       // relocations.  If those sections wind up in writable segments,
3639       // then we have created an unnecessary DT_TEXTREL entry.
3640       for (Section_list::const_iterator p = this->section_list_.begin();
3641            p != this->section_list_.end();
3642            ++p)
3643         {
3644           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3645               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3646               && ((*p)->has_dynamic_reloc()))
3647             {
3648               have_textrel = true;
3649               break;
3650             }
3651         }
3652     }
3653
3654   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3655   // post-link tools can easily modify these flags if desired.
3656   unsigned int flags = 0;
3657   if (have_textrel)
3658     {
3659       // Add a DT_TEXTREL for compatibility with older loaders.
3660       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3661       flags |= elfcpp::DF_TEXTREL;
3662
3663       if (parameters->options().text())
3664         gold_error(_("read-only segment has dynamic relocations"));
3665       else if (parameters->options().warn_shared_textrel()
3666                && parameters->options().shared())
3667         gold_warning(_("shared library text segment is not shareable"));
3668     }
3669   if (parameters->options().shared() && this->has_static_tls())
3670     flags |= elfcpp::DF_STATIC_TLS;
3671   if (parameters->options().origin())
3672     flags |= elfcpp::DF_ORIGIN;
3673   if (parameters->options().Bsymbolic())
3674     {
3675       flags |= elfcpp::DF_SYMBOLIC;
3676       // Add DT_SYMBOLIC for compatibility with older loaders.
3677       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3678     }
3679   if (parameters->options().now())
3680     flags |= elfcpp::DF_BIND_NOW;
3681   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3682
3683   flags = 0;
3684   if (parameters->options().initfirst())
3685     flags |= elfcpp::DF_1_INITFIRST;
3686   if (parameters->options().interpose())
3687     flags |= elfcpp::DF_1_INTERPOSE;
3688   if (parameters->options().loadfltr())
3689     flags |= elfcpp::DF_1_LOADFLTR;
3690   if (parameters->options().nodefaultlib())
3691     flags |= elfcpp::DF_1_NODEFLIB;
3692   if (parameters->options().nodelete())
3693     flags |= elfcpp::DF_1_NODELETE;
3694   if (parameters->options().nodlopen())
3695     flags |= elfcpp::DF_1_NOOPEN;
3696   if (parameters->options().nodump())
3697     flags |= elfcpp::DF_1_NODUMP;
3698   if (!parameters->options().shared())
3699     flags &= ~(elfcpp::DF_1_INITFIRST
3700                | elfcpp::DF_1_NODELETE
3701                | elfcpp::DF_1_NOOPEN);
3702   if (parameters->options().origin())
3703     flags |= elfcpp::DF_1_ORIGIN;
3704   if (parameters->options().now())
3705     flags |= elfcpp::DF_1_NOW;
3706   if (flags)
3707     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3708 }
3709
3710 // Set the size of the _DYNAMIC symbol table to be the size of the
3711 // dynamic data.
3712
3713 void
3714 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3715 {
3716   Output_data_dynamic* const odyn = this->dynamic_data_;
3717   odyn->finalize_data_size();
3718   off_t data_size = odyn->data_size();
3719   const int size = parameters->target().get_size();
3720   if (size == 32)
3721     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3722   else if (size == 64)
3723     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3724   else
3725     gold_unreachable();
3726 }
3727
3728 // The mapping of input section name prefixes to output section names.
3729 // In some cases one prefix is itself a prefix of another prefix; in
3730 // such a case the longer prefix must come first.  These prefixes are
3731 // based on the GNU linker default ELF linker script.
3732
3733 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3734 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3735 {
3736   MAPPING_INIT(".text.", ".text"),
3737   MAPPING_INIT(".ctors.", ".ctors"),
3738   MAPPING_INIT(".dtors.", ".dtors"),
3739   MAPPING_INIT(".rodata.", ".rodata"),
3740   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3741   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3742   MAPPING_INIT(".data.", ".data"),
3743   MAPPING_INIT(".bss.", ".bss"),
3744   MAPPING_INIT(".tdata.", ".tdata"),
3745   MAPPING_INIT(".tbss.", ".tbss"),
3746   MAPPING_INIT(".init_array.", ".init_array"),
3747   MAPPING_INIT(".fini_array.", ".fini_array"),
3748   MAPPING_INIT(".sdata.", ".sdata"),
3749   MAPPING_INIT(".sbss.", ".sbss"),
3750   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3751   // differently depending on whether it is creating a shared library.
3752   MAPPING_INIT(".sdata2.", ".sdata"),
3753   MAPPING_INIT(".sbss2.", ".sbss"),
3754   MAPPING_INIT(".lrodata.", ".lrodata"),
3755   MAPPING_INIT(".ldata.", ".ldata"),
3756   MAPPING_INIT(".lbss.", ".lbss"),
3757   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3758   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3759   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3760   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3761   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3762   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3763   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3764   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3765   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3766   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3767   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3768   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3769   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3770   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3771   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3772   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3773   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3774   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3775   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3776   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3777   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3778 };
3779 #undef MAPPING_INIT
3780
3781 const int Layout::section_name_mapping_count =
3782   (sizeof(Layout::section_name_mapping)
3783    / sizeof(Layout::section_name_mapping[0]));
3784
3785 // Choose the output section name to use given an input section name.
3786 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3787 // length of NAME.
3788
3789 const char*
3790 Layout::output_section_name(const char* name, size_t* plen)
3791 {
3792   // gcc 4.3 generates the following sorts of section names when it
3793   // needs a section name specific to a function:
3794   //   .text.FN
3795   //   .rodata.FN
3796   //   .sdata2.FN
3797   //   .data.FN
3798   //   .data.rel.FN
3799   //   .data.rel.local.FN
3800   //   .data.rel.ro.FN
3801   //   .data.rel.ro.local.FN
3802   //   .sdata.FN
3803   //   .bss.FN
3804   //   .sbss.FN
3805   //   .tdata.FN
3806   //   .tbss.FN
3807
3808   // The GNU linker maps all of those to the part before the .FN,
3809   // except that .data.rel.local.FN is mapped to .data, and
3810   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3811   // beginning with .data.rel.ro.local are grouped together.
3812
3813   // For an anonymous namespace, the string FN can contain a '.'.
3814
3815   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3816   // GNU linker maps to .rodata.
3817
3818   // The .data.rel.ro sections are used with -z relro.  The sections
3819   // are recognized by name.  We use the same names that the GNU
3820   // linker does for these sections.
3821
3822   // It is hard to handle this in a principled way, so we don't even
3823   // try.  We use a table of mappings.  If the input section name is
3824   // not found in the table, we simply use it as the output section
3825   // name.
3826
3827   const Section_name_mapping* psnm = section_name_mapping;
3828   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3829     {
3830       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3831         {
3832           *plen = psnm->tolen;
3833           return psnm->to;
3834         }
3835     }
3836
3837   // Compressed debug sections should be mapped to the corresponding
3838   // uncompressed section.
3839   if (is_compressed_debug_section(name))
3840     {
3841       size_t len = strlen(name);
3842       char *uncompressed_name = new char[len];
3843       uncompressed_name[0] = '.';
3844       gold_assert(name[0] == '.' && name[1] == 'z');
3845       strncpy(&uncompressed_name[1], &name[2], len - 2);
3846       uncompressed_name[len - 1] = '\0';
3847       *plen = len - 1;
3848       return uncompressed_name;
3849     }
3850
3851   return name;
3852 }
3853
3854 // Check if a comdat group or .gnu.linkonce section with the given
3855 // NAME is selected for the link.  If there is already a section,
3856 // *KEPT_SECTION is set to point to the existing section and the
3857 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3858 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3859 // *KEPT_SECTION is set to the internal copy and the function returns
3860 // true.
3861
3862 bool
3863 Layout::find_or_add_kept_section(const std::string& name,
3864                                  Relobj* object,
3865                                  unsigned int shndx,
3866                                  bool is_comdat,
3867                                  bool is_group_name,
3868                                  Kept_section** kept_section)
3869 {
3870   // It's normal to see a couple of entries here, for the x86 thunk
3871   // sections.  If we see more than a few, we're linking a C++
3872   // program, and we resize to get more space to minimize rehashing.
3873   if (this->signatures_.size() > 4
3874       && !this->resized_signatures_)
3875     {
3876       reserve_unordered_map(&this->signatures_,
3877                             this->number_of_input_files_ * 64);
3878       this->resized_signatures_ = true;
3879     }
3880
3881   Kept_section candidate;
3882   std::pair<Signatures::iterator, bool> ins =
3883     this->signatures_.insert(std::make_pair(name, candidate));
3884
3885   if (kept_section != NULL)
3886     *kept_section = &ins.first->second;
3887   if (ins.second)
3888     {
3889       // This is the first time we've seen this signature.
3890       ins.first->second.set_object(object);
3891       ins.first->second.set_shndx(shndx);
3892       if (is_comdat)
3893         ins.first->second.set_is_comdat();
3894       if (is_group_name)
3895         ins.first->second.set_is_group_name();
3896       return true;
3897     }
3898
3899   // We have already seen this signature.
3900
3901   if (ins.first->second.is_group_name())
3902     {
3903       // We've already seen a real section group with this signature.
3904       // If the kept group is from a plugin object, and we're in the
3905       // replacement phase, accept the new one as a replacement.
3906       if (ins.first->second.object() == NULL
3907           && parameters->options().plugins()->in_replacement_phase())
3908         {
3909           ins.first->second.set_object(object);
3910           ins.first->second.set_shndx(shndx);
3911           return true;
3912         }
3913       return false;
3914     }
3915   else if (is_group_name)
3916     {
3917       // This is a real section group, and we've already seen a
3918       // linkonce section with this signature.  Record that we've seen
3919       // a section group, and don't include this section group.
3920       ins.first->second.set_is_group_name();
3921       return false;
3922     }
3923   else
3924     {
3925       // We've already seen a linkonce section and this is a linkonce
3926       // section.  These don't block each other--this may be the same
3927       // symbol name with different section types.
3928       return true;
3929     }
3930 }
3931
3932 // Store the allocated sections into the section list.
3933
3934 void
3935 Layout::get_allocated_sections(Section_list* section_list) const
3936 {
3937   for (Section_list::const_iterator p = this->section_list_.begin();
3938        p != this->section_list_.end();
3939        ++p)
3940     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3941       section_list->push_back(*p);
3942 }
3943
3944 // Create an output segment.
3945
3946 Output_segment*
3947 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3948 {
3949   gold_assert(!parameters->options().relocatable());
3950   Output_segment* oseg = new Output_segment(type, flags);
3951   this->segment_list_.push_back(oseg);
3952
3953   if (type == elfcpp::PT_TLS)
3954     this->tls_segment_ = oseg;
3955   else if (type == elfcpp::PT_GNU_RELRO)
3956     this->relro_segment_ = oseg;
3957
3958   return oseg;
3959 }
3960
3961 // Write out the Output_sections.  Most won't have anything to write,
3962 // since most of the data will come from input sections which are
3963 // handled elsewhere.  But some Output_sections do have Output_data.
3964
3965 void
3966 Layout::write_output_sections(Output_file* of) const
3967 {
3968   for (Section_list::const_iterator p = this->section_list_.begin();
3969        p != this->section_list_.end();
3970        ++p)
3971     {
3972       if (!(*p)->after_input_sections())
3973         (*p)->write(of);
3974     }
3975 }
3976
3977 // Write out data not associated with a section or the symbol table.
3978
3979 void
3980 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3981 {
3982   if (!parameters->options().strip_all())
3983     {
3984       const Output_section* symtab_section = this->symtab_section_;
3985       for (Section_list::const_iterator p = this->section_list_.begin();
3986            p != this->section_list_.end();
3987            ++p)
3988         {
3989           if ((*p)->needs_symtab_index())
3990             {
3991               gold_assert(symtab_section != NULL);
3992               unsigned int index = (*p)->symtab_index();
3993               gold_assert(index > 0 && index != -1U);
3994               off_t off = (symtab_section->offset()
3995                            + index * symtab_section->entsize());
3996               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3997             }
3998         }
3999     }
4000
4001   const Output_section* dynsym_section = this->dynsym_section_;
4002   for (Section_list::const_iterator p = this->section_list_.begin();
4003        p != this->section_list_.end();
4004        ++p)
4005     {
4006       if ((*p)->needs_dynsym_index())
4007         {
4008           gold_assert(dynsym_section != NULL);
4009           unsigned int index = (*p)->dynsym_index();
4010           gold_assert(index > 0 && index != -1U);
4011           off_t off = (dynsym_section->offset()
4012                        + index * dynsym_section->entsize());
4013           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4014         }
4015     }
4016
4017   // Write out the Output_data which are not in an Output_section.
4018   for (Data_list::const_iterator p = this->special_output_list_.begin();
4019        p != this->special_output_list_.end();
4020        ++p)
4021     (*p)->write(of);
4022 }
4023
4024 // Write out the Output_sections which can only be written after the
4025 // input sections are complete.
4026
4027 void
4028 Layout::write_sections_after_input_sections(Output_file* of)
4029 {
4030   // Determine the final section offsets, and thus the final output
4031   // file size.  Note we finalize the .shstrab last, to allow the
4032   // after_input_section sections to modify their section-names before
4033   // writing.
4034   if (this->any_postprocessing_sections_)
4035     {
4036       off_t off = this->output_file_size_;
4037       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4038
4039       // Now that we've finalized the names, we can finalize the shstrab.
4040       off =
4041         this->set_section_offsets(off,
4042                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4043
4044       if (off > this->output_file_size_)
4045         {
4046           of->resize(off);
4047           this->output_file_size_ = off;
4048         }
4049     }
4050
4051   for (Section_list::const_iterator p = this->section_list_.begin();
4052        p != this->section_list_.end();
4053        ++p)
4054     {
4055       if ((*p)->after_input_sections())
4056         (*p)->write(of);
4057     }
4058
4059   this->section_headers_->write(of);
4060 }
4061
4062 // If the build ID requires computing a checksum, do so here, and
4063 // write it out.  We compute a checksum over the entire file because
4064 // that is simplest.
4065
4066 void
4067 Layout::write_build_id(Output_file* of) const
4068 {
4069   if (this->build_id_note_ == NULL)
4070     return;
4071
4072   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4073
4074   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4075                                           this->build_id_note_->data_size());
4076
4077   const char* style = parameters->options().build_id();
4078   if (strcmp(style, "sha1") == 0)
4079     {
4080       sha1_ctx ctx;
4081       sha1_init_ctx(&ctx);
4082       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4083       sha1_finish_ctx(&ctx, ov);
4084     }
4085   else if (strcmp(style, "md5") == 0)
4086     {
4087       md5_ctx ctx;
4088       md5_init_ctx(&ctx);
4089       md5_process_bytes(iv, this->output_file_size_, &ctx);
4090       md5_finish_ctx(&ctx, ov);
4091     }
4092   else
4093     gold_unreachable();
4094
4095   of->write_output_view(this->build_id_note_->offset(),
4096                         this->build_id_note_->data_size(),
4097                         ov);
4098
4099   of->free_input_view(0, this->output_file_size_, iv);
4100 }
4101
4102 // Write out a binary file.  This is called after the link is
4103 // complete.  IN is the temporary output file we used to generate the
4104 // ELF code.  We simply walk through the segments, read them from
4105 // their file offset in IN, and write them to their load address in
4106 // the output file.  FIXME: with a bit more work, we could support
4107 // S-records and/or Intel hex format here.
4108
4109 void
4110 Layout::write_binary(Output_file* in) const
4111 {
4112   gold_assert(parameters->options().oformat_enum()
4113               == General_options::OBJECT_FORMAT_BINARY);
4114
4115   // Get the size of the binary file.
4116   uint64_t max_load_address = 0;
4117   for (Segment_list::const_iterator p = this->segment_list_.begin();
4118        p != this->segment_list_.end();
4119        ++p)
4120     {
4121       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4122         {
4123           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4124           if (max_paddr > max_load_address)
4125             max_load_address = max_paddr;
4126         }
4127     }
4128
4129   Output_file out(parameters->options().output_file_name());
4130   out.open(max_load_address);
4131
4132   for (Segment_list::const_iterator p = this->segment_list_.begin();
4133        p != this->segment_list_.end();
4134        ++p)
4135     {
4136       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4137         {
4138           const unsigned char* vin = in->get_input_view((*p)->offset(),
4139                                                         (*p)->filesz());
4140           unsigned char* vout = out.get_output_view((*p)->paddr(),
4141                                                     (*p)->filesz());
4142           memcpy(vout, vin, (*p)->filesz());
4143           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4144           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4145         }
4146     }
4147
4148   out.close();
4149 }
4150
4151 // Print the output sections to the map file.
4152
4153 void
4154 Layout::print_to_mapfile(Mapfile* mapfile) const
4155 {
4156   for (Segment_list::const_iterator p = this->segment_list_.begin();
4157        p != this->segment_list_.end();
4158        ++p)
4159     (*p)->print_sections_to_mapfile(mapfile);
4160 }
4161
4162 // Print statistical information to stderr.  This is used for --stats.
4163
4164 void
4165 Layout::print_stats() const
4166 {
4167   this->namepool_.print_stats("section name pool");
4168   this->sympool_.print_stats("output symbol name pool");
4169   this->dynpool_.print_stats("dynamic name pool");
4170
4171   for (Section_list::const_iterator p = this->section_list_.begin();
4172        p != this->section_list_.end();
4173        ++p)
4174     (*p)->print_merge_stats();
4175 }
4176
4177 // Write_sections_task methods.
4178
4179 // We can always run this task.
4180
4181 Task_token*
4182 Write_sections_task::is_runnable()
4183 {
4184   return NULL;
4185 }
4186
4187 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4188 // when finished.
4189
4190 void
4191 Write_sections_task::locks(Task_locker* tl)
4192 {
4193   tl->add(this, this->output_sections_blocker_);
4194   tl->add(this, this->final_blocker_);
4195 }
4196
4197 // Run the task--write out the data.
4198
4199 void
4200 Write_sections_task::run(Workqueue*)
4201 {
4202   this->layout_->write_output_sections(this->of_);
4203 }
4204
4205 // Write_data_task methods.
4206
4207 // We can always run this task.
4208
4209 Task_token*
4210 Write_data_task::is_runnable()
4211 {
4212   return NULL;
4213 }
4214
4215 // We need to unlock FINAL_BLOCKER when finished.
4216
4217 void
4218 Write_data_task::locks(Task_locker* tl)
4219 {
4220   tl->add(this, this->final_blocker_);
4221 }
4222
4223 // Run the task--write out the data.
4224
4225 void
4226 Write_data_task::run(Workqueue*)
4227 {
4228   this->layout_->write_data(this->symtab_, this->of_);
4229 }
4230
4231 // Write_symbols_task methods.
4232
4233 // We can always run this task.
4234
4235 Task_token*
4236 Write_symbols_task::is_runnable()
4237 {
4238   return NULL;
4239 }
4240
4241 // We need to unlock FINAL_BLOCKER when finished.
4242
4243 void
4244 Write_symbols_task::locks(Task_locker* tl)
4245 {
4246   tl->add(this, this->final_blocker_);
4247 }
4248
4249 // Run the task--write out the symbols.
4250
4251 void
4252 Write_symbols_task::run(Workqueue*)
4253 {
4254   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4255                                this->layout_->symtab_xindex(),
4256                                this->layout_->dynsym_xindex(), this->of_);
4257 }
4258
4259 // Write_after_input_sections_task methods.
4260
4261 // We can only run this task after the input sections have completed.
4262
4263 Task_token*
4264 Write_after_input_sections_task::is_runnable()
4265 {
4266   if (this->input_sections_blocker_->is_blocked())
4267     return this->input_sections_blocker_;
4268   return NULL;
4269 }
4270
4271 // We need to unlock FINAL_BLOCKER when finished.
4272
4273 void
4274 Write_after_input_sections_task::locks(Task_locker* tl)
4275 {
4276   tl->add(this, this->final_blocker_);
4277 }
4278
4279 // Run the task.
4280
4281 void
4282 Write_after_input_sections_task::run(Workqueue*)
4283 {
4284   this->layout_->write_sections_after_input_sections(this->of_);
4285 }
4286
4287 // Close_task_runner methods.
4288
4289 // Run the task--close the file.
4290
4291 void
4292 Close_task_runner::run(Workqueue*, const Task*)
4293 {
4294   // If we need to compute a checksum for the BUILD if, we do so here.
4295   this->layout_->write_build_id(this->of_);
4296
4297   // If we've been asked to create a binary file, we do so here.
4298   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4299     this->layout_->write_binary(this->of_);
4300
4301   this->of_->close();
4302 }
4303
4304 // Instantiate the templates we need.  We could use the configure
4305 // script to restrict this to only the ones for implemented targets.
4306
4307 #ifdef HAVE_TARGET_32_LITTLE
4308 template
4309 Output_section*
4310 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4311                           const char* name,
4312                           const elfcpp::Shdr<32, false>& shdr,
4313                           unsigned int, unsigned int, off_t*);
4314 #endif
4315
4316 #ifdef HAVE_TARGET_32_BIG
4317 template
4318 Output_section*
4319 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4320                          const char* name,
4321                          const elfcpp::Shdr<32, true>& shdr,
4322                          unsigned int, unsigned int, off_t*);
4323 #endif
4324
4325 #ifdef HAVE_TARGET_64_LITTLE
4326 template
4327 Output_section*
4328 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4329                           const char* name,
4330                           const elfcpp::Shdr<64, false>& shdr,
4331                           unsigned int, unsigned int, off_t*);
4332 #endif
4333
4334 #ifdef HAVE_TARGET_64_BIG
4335 template
4336 Output_section*
4337 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4338                          const char* name,
4339                          const elfcpp::Shdr<64, true>& shdr,
4340                          unsigned int, unsigned int, off_t*);
4341 #endif
4342
4343 #ifdef HAVE_TARGET_32_LITTLE
4344 template
4345 Output_section*
4346 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4347                                 unsigned int reloc_shndx,
4348                                 const elfcpp::Shdr<32, false>& shdr,
4349                                 Output_section* data_section,
4350                                 Relocatable_relocs* rr);
4351 #endif
4352
4353 #ifdef HAVE_TARGET_32_BIG
4354 template
4355 Output_section*
4356 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4357                                unsigned int reloc_shndx,
4358                                const elfcpp::Shdr<32, true>& shdr,
4359                                Output_section* data_section,
4360                                Relocatable_relocs* rr);
4361 #endif
4362
4363 #ifdef HAVE_TARGET_64_LITTLE
4364 template
4365 Output_section*
4366 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4367                                 unsigned int reloc_shndx,
4368                                 const elfcpp::Shdr<64, false>& shdr,
4369                                 Output_section* data_section,
4370                                 Relocatable_relocs* rr);
4371 #endif
4372
4373 #ifdef HAVE_TARGET_64_BIG
4374 template
4375 Output_section*
4376 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4377                                unsigned int reloc_shndx,
4378                                const elfcpp::Shdr<64, true>& shdr,
4379                                Output_section* data_section,
4380                                Relocatable_relocs* rr);
4381 #endif
4382
4383 #ifdef HAVE_TARGET_32_LITTLE
4384 template
4385 void
4386 Layout::layout_group<32, false>(Symbol_table* symtab,
4387                                 Sized_relobj<32, false>* object,
4388                                 unsigned int,
4389                                 const char* group_section_name,
4390                                 const char* signature,
4391                                 const elfcpp::Shdr<32, false>& shdr,
4392                                 elfcpp::Elf_Word flags,
4393                                 std::vector<unsigned int>* shndxes);
4394 #endif
4395
4396 #ifdef HAVE_TARGET_32_BIG
4397 template
4398 void
4399 Layout::layout_group<32, true>(Symbol_table* symtab,
4400                                Sized_relobj<32, true>* object,
4401                                unsigned int,
4402                                const char* group_section_name,
4403                                const char* signature,
4404                                const elfcpp::Shdr<32, true>& shdr,
4405                                elfcpp::Elf_Word flags,
4406                                std::vector<unsigned int>* shndxes);
4407 #endif
4408
4409 #ifdef HAVE_TARGET_64_LITTLE
4410 template
4411 void
4412 Layout::layout_group<64, false>(Symbol_table* symtab,
4413                                 Sized_relobj<64, false>* object,
4414                                 unsigned int,
4415                                 const char* group_section_name,
4416                                 const char* signature,
4417                                 const elfcpp::Shdr<64, false>& shdr,
4418                                 elfcpp::Elf_Word flags,
4419                                 std::vector<unsigned int>* shndxes);
4420 #endif
4421
4422 #ifdef HAVE_TARGET_64_BIG
4423 template
4424 void
4425 Layout::layout_group<64, true>(Symbol_table* symtab,
4426                                Sized_relobj<64, true>* object,
4427                                unsigned int,
4428                                const char* group_section_name,
4429                                const char* signature,
4430                                const elfcpp::Shdr<64, true>& shdr,
4431                                elfcpp::Elf_Word flags,
4432                                std::vector<unsigned int>* shndxes);
4433 #endif
4434
4435 #ifdef HAVE_TARGET_32_LITTLE
4436 template
4437 Output_section*
4438 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4439                                    const unsigned char* symbols,
4440                                    off_t symbols_size,
4441                                    const unsigned char* symbol_names,
4442                                    off_t symbol_names_size,
4443                                    unsigned int shndx,
4444                                    const elfcpp::Shdr<32, false>& shdr,
4445                                    unsigned int reloc_shndx,
4446                                    unsigned int reloc_type,
4447                                    off_t* off);
4448 #endif
4449
4450 #ifdef HAVE_TARGET_32_BIG
4451 template
4452 Output_section*
4453 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4454                                    const unsigned char* symbols,
4455                                    off_t symbols_size,
4456                                   const unsigned char* symbol_names,
4457                                   off_t symbol_names_size,
4458                                   unsigned int shndx,
4459                                   const elfcpp::Shdr<32, true>& shdr,
4460                                   unsigned int reloc_shndx,
4461                                   unsigned int reloc_type,
4462                                   off_t* off);
4463 #endif
4464
4465 #ifdef HAVE_TARGET_64_LITTLE
4466 template
4467 Output_section*
4468 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4469                                    const unsigned char* symbols,
4470                                    off_t symbols_size,
4471                                    const unsigned char* symbol_names,
4472                                    off_t symbol_names_size,
4473                                    unsigned int shndx,
4474                                    const elfcpp::Shdr<64, false>& shdr,
4475                                    unsigned int reloc_shndx,
4476                                    unsigned int reloc_type,
4477                                    off_t* off);
4478 #endif
4479
4480 #ifdef HAVE_TARGET_64_BIG
4481 template
4482 Output_section*
4483 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4484                                    const unsigned char* symbols,
4485                                    off_t symbols_size,
4486                                   const unsigned char* symbol_names,
4487                                   off_t symbol_names_size,
4488                                   unsigned int shndx,
4489                                   const elfcpp::Shdr<64, true>& shdr,
4490                                   unsigned int reloc_shndx,
4491                                   unsigned int reloc_type,
4492                                   off_t* off);
4493 #endif
4494
4495 } // End namespace gold.