Do not use linker script to place static relocation sections.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110
111   ++Free_list::num_removes;
112
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122         {
123           // Case 1: the indicated region spans the whole node.
124           // Add some fuzz to avoid creating tiny free chunks.
125           if (p->start_ + 3 >= start && p->end_ <= end + 3)
126             p = this->list_.erase(p);
127           // Case 2: remove a chunk from the start of the node.
128           else if (p->start_ + 3 >= start)
129             p->start_ = end;
130           // Case 3: remove a chunk from the end of the node.
131           else if (p->end_ <= end + 3)
132             p->end_ = start;
133           // Case 4: remove a chunk from the middle, and split
134           // the node into two.
135           else
136             {
137               Free_list_node newnode(p->start_, start);
138               p->start_ = end;
139               this->list_.insert(p, newnode);
140               ++Free_list::num_nodes;
141             }
142           this->last_remove_ = p;
143           return;
144         }
145     }
146
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150              "Free_list::remove(%d,%d) not found",
151              static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162              "Free_list::allocate(%08lx, %d, %08lx)",
163              static_cast<long>(len), static_cast<int>(align),
164              static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167
168   ++Free_list::num_allocates;
169
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182         {
183           this->length_ = end;
184           p->end_ = end;
185         }
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187         {
188           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189             this->list_.erase(p);
190           else if (p->start_ + fuzz >= start)
191             p->start_ = end;
192           else if (p->end_ <= end + fuzz)
193             p->end_ = start;
194           else
195             {
196               Free_list_node newnode(p->start_, start);
197               p->start_ = end;
198               this->list_.insert(p, newnode);
199               ++Free_list::num_nodes;
200             }
201           return start;
202         }
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220               static_cast<long>(p->end_),
221               static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229           program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231           program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233           program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235           program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237           program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239           program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248             size_t offset,
249             size_t size,
250             unsigned char* dst,
251             Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260         this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264
265   Task_token*
266   is_runnable()
267   { return NULL; }
268
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308   gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347       if (i >= this->section_infos_.size())
348         {
349           gold_fatal("Section_info of %s missing.\n", os->name());
350         }
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353         gold_fatal("Section order changed.  Expecting %s but see %s\n",
354                    info.output_section->name(), os->name());
355       if (address != info.address
356           || data_size != info.data_size
357           || offset != info.offset)
358         gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376                                      this->symtab_,
377                                      this->target_,
378                                      task);
379
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394         of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408                                                              this->layout_,
409                                                              of);
410
411       of->resize(file_size);
412     }
413
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416                           this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_()
478 {
479   // Make space for more than enough segments for a typical file.
480   // This is just for efficiency--it's OK if we wind up needing more.
481   this->segment_list_.reserve(12);
482
483   // We expect two unattached Output_data objects: the file header and
484   // the segment headers.
485   this->special_output_list_.reserve(2);
486
487   // Initialize structure needed for an incremental build.
488   if (parameters->incremental())
489     this->incremental_inputs_ = new Incremental_inputs;
490
491   // The section name pool is worth optimizing in all cases, because
492   // it is small, but there are often overlaps due to .rel sections.
493   this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501   this->incremental_base_ = base;
502   this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510  return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520   "abbrev",
521   "addr",         // Fission extension
522   // "aranges",   // not used by gdb as of 7.4
523   "frame",
524   "gdb_scripts",
525   "info",
526   "types",
527   "line",
528   "loc",
529   "macinfo",
530   "macro",
531   // "pubnames",  // not used by gdb as of 7.4
532   // "pubtypes",  // not used by gdb as of 7.4
533   // "gnu_pubnames",  // Fission extension
534   // "gnu_pubtypes",  // Fission extension
535   "ranges",
536   "str",
537   "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544   "abbrev",
545   // "addr",      // Fission extension
546   // "aranges",   // not used by gdb as of 7.4
547   // "frame",
548   // "gdb_scripts",
549   "info",
550   // "types",
551   "line",
552   // "loc",
553   // "macinfo",
554   // "macro",
555   // "pubnames",  // not used by gdb as of 7.4
556   // "pubtypes",  // not used by gdb as of 7.4
557   // "gnu_pubnames",  // Fission extension
558   // "gnu_pubtypes",  // Fission extension
559   // "ranges",
560   "str",
561   "str_offsets",  // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569   "aranges",
570   "pubnames",
571   "gnu_pubnames",
572   "pubtypes",
573   "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583   // We can do this faster: binary search or a hashtable.  But why bother?
584   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585     if (strcmp(suffix, gdb_sections[i]) == 0)
586       return true;
587   return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595   // We can do this faster: binary search or a hashtable.  But why bother?
596   for (size_t i = 0;
597        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598        ++i)
599     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600       return true;
601   return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610   // We can do this faster: binary search or a hashtable.  But why bother?
611   for (size_t i = 0;
612        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613        ++i)
614     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615       return true;
616   return false;
617 }
618
619 // Sometimes we compress sections.  This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections.  This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631   return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files.  Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640   return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646   gold_assert(secname[0] == '.' && secname[1] == 'z');
647   std::string ret(".");
648   ret.append(secname, 2, std::string::npos);
649   return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657                         const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659   if (!parameters->options().relocatable()
660       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661     return false;
662
663   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667     return parameters->target().should_include_section(sh_type);
668
669   switch (sh_type)
670     {
671     case elfcpp::SHT_NULL:
672     case elfcpp::SHT_SYMTAB:
673     case elfcpp::SHT_DYNSYM:
674     case elfcpp::SHT_HASH:
675     case elfcpp::SHT_DYNAMIC:
676     case elfcpp::SHT_SYMTAB_SHNDX:
677       return false;
678
679     case elfcpp::SHT_STRTAB:
680       // Discard the sections which have special meanings in the ELF
681       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
682       // checking the sh_link fields of the appropriate sections.
683       return (strcmp(name, ".dynstr") != 0
684               && strcmp(name, ".strtab") != 0
685               && strcmp(name, ".shstrtab") != 0);
686
687     case elfcpp::SHT_RELA:
688     case elfcpp::SHT_REL:
689     case elfcpp::SHT_GROUP:
690       // If we are emitting relocations these should be handled
691       // elsewhere.
692       gold_assert(!parameters->options().relocatable());
693       return false;
694
695     case elfcpp::SHT_PROGBITS:
696       if (parameters->options().strip_debug()
697           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698         {
699           if (is_debug_info_section(name))
700             return false;
701         }
702       if (parameters->options().strip_debug_non_line()
703           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704         {
705           // Debugging sections can only be recognized by name.
706           if (is_prefix_of(".debug_", name)
707               && !is_lines_only_debug_section(name + 7))
708             return false;
709           if (is_prefix_of(".zdebug_", name)
710               && !is_lines_only_debug_section(name + 8))
711             return false;
712         }
713       if (parameters->options().strip_debug_gdb()
714           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715         {
716           // Debugging sections can only be recognized by name.
717           if (is_prefix_of(".debug_", name)
718               && !is_gdb_debug_section(name + 7))
719             return false;
720           if (is_prefix_of(".zdebug_", name)
721               && !is_gdb_debug_section(name + 8))
722             return false;
723         }
724       if (parameters->options().gdb_index()
725           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726         {
727           // When building .gdb_index, we can strip .debug_pubnames,
728           // .debug_pubtypes, and .debug_aranges sections.
729           if (is_prefix_of(".debug_", name)
730               && is_gdb_fast_lookup_section(name + 7))
731             return false;
732           if (is_prefix_of(".zdebug_", name)
733               && is_gdb_fast_lookup_section(name + 8))
734             return false;
735         }
736       if (parameters->options().strip_lto_sections()
737           && !parameters->options().relocatable()
738           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739         {
740           // Ignore LTO sections containing intermediate code.
741           if (is_prefix_of(".gnu.lto_", name))
742             return false;
743         }
744       // The GNU linker strips .gnu_debuglink sections, so we do too.
745       // This is a feature used to keep debugging information in
746       // separate files.
747       if (strcmp(name, ".gnu_debuglink") == 0)
748         return false;
749       return true;
750
751     default:
752       return true;
753     }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761   for (Section_list::const_iterator p = this->section_list_.begin();
762        p != this->section_list_.end();
763        ++p)
764     if (strcmp((*p)->name(), name) == 0)
765       return *p;
766   return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear.  Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774                             elfcpp::Elf_Word clear) const
775 {
776   for (Segment_list::const_iterator p = this->segment_list_.begin();
777        p != this->segment_list_.end();
778        ++p)
779     if (static_cast<elfcpp::PT>((*p)->type()) == type
780         && ((*p)->flags() & set) == set
781         && ((*p)->flags() & clear) == 0)
782       return *p;
783   return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section.  This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors.  Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run.  This set just keeps track of
794 // these sections which need to be reversed.  It is only changed by
795 // Layout::layout.  It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807           != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS.  NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key.  ORDER is where this should appear
813 // in the output sections.  IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818                            Output_section_order order, bool is_relro)
819 {
820   elfcpp::Elf_Word lookup_type = type;
821
822   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
824   // .init_array, .fini_array, and .preinit_array sections by name
825   // whatever their type in the input file.  We do this because the
826   // types are not always right in the input files.
827   if (lookup_type == elfcpp::SHT_INIT_ARRAY
828       || lookup_type == elfcpp::SHT_FINI_ARRAY
829       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830     lookup_type = elfcpp::SHT_PROGBITS;
831
832   elfcpp::Elf_Xword lookup_flags = flags;
833
834   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835   // read-write with read-only sections.  Some other ELF linkers do
836   // not do this.  FIXME: Perhaps there should be an option
837   // controlling this.
838   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841   const std::pair<Key, Output_section*> v(key, NULL);
842   std::pair<Section_name_map::iterator, bool> ins(
843     this->section_name_map_.insert(v));
844
845   if (!ins.second)
846     return ins.first->second;
847   else
848     {
849       // This is the first time we've seen this name/type/flags
850       // combination.  For compatibility with the GNU linker, we
851       // combine sections with contents and zero flags with sections
852       // with non-zero flags.  This is a workaround for cases where
853       // assembler code forgets to set section flags.  FIXME: Perhaps
854       // there should be an option to control this.
855       Output_section* os = NULL;
856
857       if (lookup_type == elfcpp::SHT_PROGBITS)
858         {
859           if (flags == 0)
860             {
861               Output_section* same_name = this->find_output_section(name);
862               if (same_name != NULL
863                   && (same_name->type() == elfcpp::SHT_PROGBITS
864                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
865                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
866                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868                 os = same_name;
869             }
870           else if ((flags & elfcpp::SHF_TLS) == 0)
871             {
872               elfcpp::Elf_Xword zero_flags = 0;
873               const Key zero_key(name_key, std::make_pair(lookup_type,
874                                                           zero_flags));
875               Section_name_map::iterator p =
876                   this->section_name_map_.find(zero_key);
877               if (p != this->section_name_map_.end())
878                 os = p->second;
879             }
880         }
881
882       if (os == NULL)
883         os = this->make_output_section(name, type, flags, order, is_relro);
884
885       ins.first->second = os;
886       return os;
887     }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896   if (! this->script_options_->saw_sections_clause())
897     return false;
898
899   Script_sections* ss = this->script_options_->script_sections();
900   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901   Output_section** output_section_slot;
902   Script_sections::Section_type script_section_type;
903   bool keep;
904
905   name = ss->output_section_name(file_name, name, &output_section_slot,
906                                  &script_section_type, &keep);
907   return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916   // Some flags in the input section should not be automatically
917   // copied to the output section.
918   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919                             | elfcpp::SHF_GROUP
920                             | elfcpp::SHF_COMPRESSED
921                             | elfcpp::SHF_MERGE
922                             | elfcpp::SHF_STRINGS);
923
924   // We only clear the SHF_LINK_ORDER flag in for
925   // a non-relocatable link.
926   if (!parameters->options().relocatable())
927     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929   return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
934 // linker created section.  IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file.  ORDER is where this section should appear in the output
937 // sections.  IS_RELRO is true for a relro section.  This will return
938 // NULL if the input section should be discarded.
939
940 Output_section*
941 Layout::choose_output_section(const Relobj* relobj, const char* name,
942                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
943                               bool is_input_section, Output_section_order order,
944                               bool is_relro, bool is_reloc)
945 {
946   // We should not see any input sections after we have attached
947   // sections to segments.
948   gold_assert(!is_input_section || !this->sections_are_attached_);
949
950   flags = this->get_output_section_flags(flags);
951
952   if (this->script_options_->saw_sections_clause() && !is_reloc)
953     {
954       // We are using a SECTIONS clause, so the output section is
955       // chosen based only on the name.
956
957       Script_sections* ss = this->script_options_->script_sections();
958       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
959       Output_section** output_section_slot;
960       Script_sections::Section_type script_section_type;
961       const char* orig_name = name;
962       bool keep;
963       name = ss->output_section_name(file_name, name, &output_section_slot,
964                                      &script_section_type, &keep);
965
966       if (name == NULL)
967         {
968           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
969                                      "because it is not allowed by the "
970                                      "SECTIONS clause of the linker script"),
971                      orig_name);
972           // The SECTIONS clause says to discard this input section.
973           return NULL;
974         }
975
976       // We can only handle script section types ST_NONE and ST_NOLOAD.
977       switch (script_section_type)
978         {
979         case Script_sections::ST_NONE:
980           break;
981         case Script_sections::ST_NOLOAD:
982           flags &= elfcpp::SHF_ALLOC;
983           break;
984         default:
985           gold_unreachable();
986         }
987
988       // If this is an orphan section--one not mentioned in the linker
989       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
990       // default processing below.
991
992       if (output_section_slot != NULL)
993         {
994           if (*output_section_slot != NULL)
995             {
996               (*output_section_slot)->update_flags_for_input_section(flags);
997               return *output_section_slot;
998             }
999
1000           // We don't put sections found in the linker script into
1001           // SECTION_NAME_MAP_.  That keeps us from getting confused
1002           // if an orphan section is mapped to a section with the same
1003           // name as one in the linker script.
1004
1005           name = this->namepool_.add(name, false, NULL);
1006
1007           Output_section* os = this->make_output_section(name, type, flags,
1008                                                          order, is_relro);
1009
1010           os->set_found_in_sections_clause();
1011
1012           // Special handling for NOLOAD sections.
1013           if (script_section_type == Script_sections::ST_NOLOAD)
1014             {
1015               os->set_is_noload();
1016
1017               // The constructor of Output_section sets addresses of non-ALLOC
1018               // sections to 0 by default.  We don't want that for NOLOAD
1019               // sections even if they have no SHF_ALLOC flag.
1020               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1021                   && os->is_address_valid())
1022                 {
1023                   gold_assert(os->address() == 0
1024                               && !os->is_offset_valid()
1025                               && !os->is_data_size_valid());
1026                   os->reset_address_and_file_offset();
1027                 }
1028             }
1029
1030           *output_section_slot = os;
1031           return os;
1032         }
1033     }
1034
1035   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1036
1037   size_t len = strlen(name);
1038   std::string uncompressed_name;
1039
1040   // Compressed debug sections should be mapped to the corresponding
1041   // uncompressed section.
1042   if (is_compressed_debug_section(name))
1043     {
1044       uncompressed_name =
1045           corresponding_uncompressed_section_name(std::string(name, len));
1046       name = uncompressed_name.c_str();
1047       len = uncompressed_name.length();
1048     }
1049
1050   // Turn NAME from the name of the input section into the name of the
1051   // output section.
1052   if (is_input_section
1053       && !this->script_options_->saw_sections_clause()
1054       && !parameters->options().relocatable())
1055     {
1056       const char *orig_name = name;
1057       name = parameters->target().output_section_name(relobj, name, &len);
1058       if (name == NULL)
1059         name = Layout::output_section_name(relobj, orig_name, &len);
1060     }
1061
1062   Stringpool::Key name_key;
1063   name = this->namepool_.add_with_length(name, len, true, &name_key);
1064
1065   // Find or make the output section.  The output section is selected
1066   // based on the section name, type, and flags.
1067   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1068 }
1069
1070 // For incremental links, record the initial fixed layout of a section
1071 // from the base file, and return a pointer to the Output_section.
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::init_fixed_output_section(const char* name,
1076                                   elfcpp::Shdr<size, big_endian>& shdr)
1077 {
1078   unsigned int sh_type = shdr.get_sh_type();
1079
1080   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1081   // PRE_INIT_ARRAY, and NOTE sections.
1082   // All others will be created from scratch and reallocated.
1083   if (!can_incremental_update(sh_type))
1084     return NULL;
1085
1086   // If we're generating a .gdb_index section, we need to regenerate
1087   // it from scratch.
1088   if (parameters->options().gdb_index()
1089       && sh_type == elfcpp::SHT_PROGBITS
1090       && strcmp(name, ".gdb_index") == 0)
1091     return NULL;
1092
1093   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1094   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1095   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1096   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1097   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1098       shdr.get_sh_addralign();
1099
1100   // Make the output section.
1101   Stringpool::Key name_key;
1102   name = this->namepool_.add(name, true, &name_key);
1103   Output_section* os = this->get_output_section(name, name_key, sh_type,
1104                                                 sh_flags, ORDER_INVALID, false);
1105   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1106   if (sh_type != elfcpp::SHT_NOBITS)
1107     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1108   return os;
1109 }
1110
1111 // Return the index by which an input section should be ordered.  This
1112 // is used to sort some .text sections, for compatibility with GNU ld.
1113
1114 int
1115 Layout::special_ordering_of_input_section(const char* name)
1116 {
1117   // The GNU linker has some special handling for some sections that
1118   // wind up in the .text section.  Sections that start with these
1119   // prefixes must appear first, and must appear in the order listed
1120   // here.
1121   static const char* const text_section_sort[] =
1122   {
1123     ".text.unlikely",
1124     ".text.exit",
1125     ".text.startup",
1126     ".text.hot"
1127   };
1128
1129   for (size_t i = 0;
1130        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1131        i++)
1132     if (is_prefix_of(text_section_sort[i], name))
1133       return i;
1134
1135   return -1;
1136 }
1137
1138 // Return the output section to use for input section SHNDX, with name
1139 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1140 // index of a relocation section which applies to this section, or 0
1141 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1142 // relocation section if there is one.  Set *OFF to the offset of this
1143 // input section without the output section.  Return NULL if the
1144 // section should be discarded.  Set *OFF to -1 if the section
1145 // contents should not be written directly to the output file, but
1146 // will instead receive special handling.
1147
1148 template<int size, bool big_endian>
1149 Output_section*
1150 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1151                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1152                unsigned int reloc_shndx, unsigned int, off_t* off)
1153 {
1154   *off = 0;
1155
1156   if (!this->include_section(object, name, shdr))
1157     return NULL;
1158
1159   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1160
1161   // In a relocatable link a grouped section must not be combined with
1162   // any other sections.
1163   Output_section* os;
1164   if (parameters->options().relocatable()
1165       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1166     {
1167       // Some flags in the input section should not be automatically
1168       // copied to the output section.
1169       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1170                                  & ~ elfcpp::SHF_COMPRESSED);
1171       name = this->namepool_.add(name, true, NULL);
1172       os = this->make_output_section(name, sh_type, flags,
1173                                      ORDER_INVALID, false);
1174     }
1175   else
1176     {
1177       // Plugins can choose to place one or more subsets of sections in
1178       // unique segments and this is done by mapping these section subsets
1179       // to unique output sections.  Check if this section needs to be
1180       // remapped to a unique output section.
1181       Section_segment_map::iterator it
1182           = this->section_segment_map_.find(Const_section_id(object, shndx));
1183       if (it == this->section_segment_map_.end())
1184         {
1185           os = this->choose_output_section(object, name, sh_type,
1186                                            shdr.get_sh_flags(), true,
1187                                            ORDER_INVALID, false, false);
1188         }
1189       else
1190         {
1191           // We know the name of the output section, directly call
1192           // get_output_section here by-passing choose_output_section.
1193           elfcpp::Elf_Xword flags
1194             = this->get_output_section_flags(shdr.get_sh_flags());
1195
1196           const char* os_name = it->second->name;
1197           Stringpool::Key name_key;
1198           os_name = this->namepool_.add(os_name, true, &name_key);
1199           os = this->get_output_section(os_name, name_key, sh_type, flags,
1200                                         ORDER_INVALID, false);
1201           if (!os->is_unique_segment())
1202             {
1203               os->set_is_unique_segment();
1204               os->set_extra_segment_flags(it->second->flags);
1205               os->set_segment_alignment(it->second->align);
1206             }
1207         }
1208       if (os == NULL)
1209         return NULL;
1210     }
1211
1212   // By default the GNU linker sorts input sections whose names match
1213   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1214   // sections are sorted by name.  This is used to implement
1215   // constructor priority ordering.  We are compatible.  When we put
1216   // .ctor sections in .init_array and .dtor sections in .fini_array,
1217   // we must also sort plain .ctor and .dtor sections.
1218   if (!this->script_options_->saw_sections_clause()
1219       && !parameters->options().relocatable()
1220       && (is_prefix_of(".ctors.", name)
1221           || is_prefix_of(".dtors.", name)
1222           || is_prefix_of(".init_array.", name)
1223           || is_prefix_of(".fini_array.", name)
1224           || (parameters->options().ctors_in_init_array()
1225               && (strcmp(name, ".ctors") == 0
1226                   || strcmp(name, ".dtors") == 0))))
1227     os->set_must_sort_attached_input_sections();
1228
1229   // By default the GNU linker sorts some special text sections ahead
1230   // of others.  We are compatible.
1231   if (parameters->options().text_reorder()
1232       && !this->script_options_->saw_sections_clause()
1233       && !this->is_section_ordering_specified()
1234       && !parameters->options().relocatable()
1235       && Layout::special_ordering_of_input_section(name) >= 0)
1236     os->set_must_sort_attached_input_sections();
1237
1238   // If this is a .ctors or .ctors.* section being mapped to a
1239   // .init_array section, or a .dtors or .dtors.* section being mapped
1240   // to a .fini_array section, we will need to reverse the words if
1241   // there is more than one.  Record this section for later.  See
1242   // ctors_sections_in_init_array above.
1243   if (!this->script_options_->saw_sections_clause()
1244       && !parameters->options().relocatable()
1245       && shdr.get_sh_size() > size / 8
1246       && (((strcmp(name, ".ctors") == 0
1247             || is_prefix_of(".ctors.", name))
1248            && strcmp(os->name(), ".init_array") == 0)
1249           || ((strcmp(name, ".dtors") == 0
1250                || is_prefix_of(".dtors.", name))
1251               && strcmp(os->name(), ".fini_array") == 0)))
1252     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1253
1254   // FIXME: Handle SHF_LINK_ORDER somewhere.
1255
1256   elfcpp::Elf_Xword orig_flags = os->flags();
1257
1258   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1259                                this->script_options_->saw_sections_clause());
1260
1261   // If the flags changed, we may have to change the order.
1262   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1263     {
1264       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1265       elfcpp::Elf_Xword new_flags =
1266         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1267       if (orig_flags != new_flags)
1268         os->set_order(this->default_section_order(os, false));
1269     }
1270
1271   this->have_added_input_section_ = true;
1272
1273   return os;
1274 }
1275
1276 // Maps section SECN to SEGMENT s.
1277 void
1278 Layout::insert_section_segment_map(Const_section_id secn,
1279                                    Unique_segment_info *s)
1280 {
1281   gold_assert(this->unique_segment_for_sections_specified_);
1282   this->section_segment_map_[secn] = s;
1283 }
1284
1285 // Handle a relocation section when doing a relocatable link.
1286
1287 template<int size, bool big_endian>
1288 Output_section*
1289 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1290                      unsigned int,
1291                      const elfcpp::Shdr<size, big_endian>& shdr,
1292                      Output_section* data_section,
1293                      Relocatable_relocs* rr)
1294 {
1295   gold_assert(parameters->options().relocatable()
1296               || parameters->options().emit_relocs());
1297
1298   int sh_type = shdr.get_sh_type();
1299
1300   std::string name;
1301   if (sh_type == elfcpp::SHT_REL)
1302     name = ".rel";
1303   else if (sh_type == elfcpp::SHT_RELA)
1304     name = ".rela";
1305   else
1306     gold_unreachable();
1307   name += data_section->name();
1308
1309   // In a relocatable link relocs for a grouped section must not be
1310   // combined with other reloc sections.
1311   Output_section* os;
1312   if (!parameters->options().relocatable()
1313       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1314     os = this->choose_output_section(object, name.c_str(), sh_type,
1315                                      shdr.get_sh_flags(), false,
1316                                      ORDER_INVALID, false, true);
1317   else
1318     {
1319       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1320       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1321                                      ORDER_INVALID, false);
1322     }
1323
1324   os->set_should_link_to_symtab();
1325   os->set_info_section(data_section);
1326
1327   Output_section_data* posd;
1328   if (sh_type == elfcpp::SHT_REL)
1329     {
1330       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1331       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1332                                            size,
1333                                            big_endian>(rr);
1334     }
1335   else if (sh_type == elfcpp::SHT_RELA)
1336     {
1337       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1338       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1339                                            size,
1340                                            big_endian>(rr);
1341     }
1342   else
1343     gold_unreachable();
1344
1345   os->add_output_section_data(posd);
1346   rr->set_output_data(posd);
1347
1348   return os;
1349 }
1350
1351 // Handle a group section when doing a relocatable link.
1352
1353 template<int size, bool big_endian>
1354 void
1355 Layout::layout_group(Symbol_table* symtab,
1356                      Sized_relobj_file<size, big_endian>* object,
1357                      unsigned int,
1358                      const char* group_section_name,
1359                      const char* signature,
1360                      const elfcpp::Shdr<size, big_endian>& shdr,
1361                      elfcpp::Elf_Word flags,
1362                      std::vector<unsigned int>* shndxes)
1363 {
1364   gold_assert(parameters->options().relocatable());
1365   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1366   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1367   Output_section* os = this->make_output_section(group_section_name,
1368                                                  elfcpp::SHT_GROUP,
1369                                                  shdr.get_sh_flags(),
1370                                                  ORDER_INVALID, false);
1371
1372   // We need to find a symbol with the signature in the symbol table.
1373   // If we don't find one now, we need to look again later.
1374   Symbol* sym = symtab->lookup(signature, NULL);
1375   if (sym != NULL)
1376     os->set_info_symndx(sym);
1377   else
1378     {
1379       // Reserve some space to minimize reallocations.
1380       if (this->group_signatures_.empty())
1381         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1382
1383       // We will wind up using a symbol whose name is the signature.
1384       // So just put the signature in the symbol name pool to save it.
1385       signature = symtab->canonicalize_name(signature);
1386       this->group_signatures_.push_back(Group_signature(os, signature));
1387     }
1388
1389   os->set_should_link_to_symtab();
1390   os->set_entsize(4);
1391
1392   section_size_type entry_count =
1393     convert_to_section_size_type(shdr.get_sh_size() / 4);
1394   Output_section_data* posd =
1395     new Output_data_group<size, big_endian>(object, entry_count, flags,
1396                                             shndxes);
1397   os->add_output_section_data(posd);
1398 }
1399
1400 // Special GNU handling of sections name .eh_frame.  They will
1401 // normally hold exception frame data as defined by the C++ ABI
1402 // (http://codesourcery.com/cxx-abi/).
1403
1404 template<int size, bool big_endian>
1405 Output_section*
1406 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1407                         const unsigned char* symbols,
1408                         off_t symbols_size,
1409                         const unsigned char* symbol_names,
1410                         off_t symbol_names_size,
1411                         unsigned int shndx,
1412                         const elfcpp::Shdr<size, big_endian>& shdr,
1413                         unsigned int reloc_shndx, unsigned int reloc_type,
1414                         off_t* off)
1415 {
1416   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1417               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1418   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1419
1420   Output_section* os = this->make_eh_frame_section(object);
1421   if (os == NULL)
1422     return NULL;
1423
1424   gold_assert(this->eh_frame_section_ == os);
1425
1426   elfcpp::Elf_Xword orig_flags = os->flags();
1427
1428   Eh_frame::Eh_frame_section_disposition disp =
1429       Eh_frame::EH_UNRECOGNIZED_SECTION;
1430   if (!parameters->incremental())
1431     {
1432       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1433                                                              symbols,
1434                                                              symbols_size,
1435                                                              symbol_names,
1436                                                              symbol_names_size,
1437                                                              shndx,
1438                                                              reloc_shndx,
1439                                                              reloc_type);
1440     }
1441
1442   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1443     {
1444       os->update_flags_for_input_section(shdr.get_sh_flags());
1445
1446       // A writable .eh_frame section is a RELRO section.
1447       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1448           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1449         {
1450           os->set_is_relro();
1451           os->set_order(ORDER_RELRO);
1452         }
1453
1454       *off = -1;
1455       return os;
1456     }
1457
1458   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1459     {
1460       // We found the end marker section, so now we can add the set of
1461       // optimized sections to the output section.  We need to postpone
1462       // adding this until we've found a section we can optimize so that
1463       // the .eh_frame section in crtbeginT.o winds up at the start of
1464       // the output section.
1465       os->add_output_section_data(this->eh_frame_data_);
1466       this->added_eh_frame_data_ = true;
1467      }
1468
1469   // We couldn't handle this .eh_frame section for some reason.
1470   // Add it as a normal section.
1471   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1472   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1473                                reloc_shndx, saw_sections_clause);
1474   this->have_added_input_section_ = true;
1475
1476   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478     os->set_order(this->default_section_order(os, false));
1479
1480   return os;
1481 }
1482
1483 void
1484 Layout::finalize_eh_frame_section()
1485 {
1486   // If we never found an end marker section, we need to add the
1487   // optimized eh sections to the output section now.
1488   if (!parameters->incremental()
1489       && this->eh_frame_section_ != NULL
1490       && !this->added_eh_frame_data_)
1491     {
1492       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1493       this->added_eh_frame_data_ = true;
1494     }
1495 }
1496
1497 // Create and return the magic .eh_frame section.  Create
1498 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1499 // input .eh_frame section; it may be NULL.
1500
1501 Output_section*
1502 Layout::make_eh_frame_section(const Relobj* object)
1503 {
1504   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1505   // SHT_PROGBITS.
1506   Output_section* os = this->choose_output_section(object, ".eh_frame",
1507                                                    elfcpp::SHT_PROGBITS,
1508                                                    elfcpp::SHF_ALLOC, false,
1509                                                    ORDER_EHFRAME, false, false);
1510   if (os == NULL)
1511     return NULL;
1512
1513   if (this->eh_frame_section_ == NULL)
1514     {
1515       this->eh_frame_section_ = os;
1516       this->eh_frame_data_ = new Eh_frame();
1517
1518       // For incremental linking, we do not optimize .eh_frame sections
1519       // or create a .eh_frame_hdr section.
1520       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1521         {
1522           Output_section* hdr_os =
1523             this->choose_output_section(NULL, ".eh_frame_hdr",
1524                                         elfcpp::SHT_PROGBITS,
1525                                         elfcpp::SHF_ALLOC, false,
1526                                         ORDER_EHFRAME, false, false);
1527
1528           if (hdr_os != NULL)
1529             {
1530               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1531                                                         this->eh_frame_data_);
1532               hdr_os->add_output_section_data(hdr_posd);
1533
1534               hdr_os->set_after_input_sections();
1535
1536               if (!this->script_options_->saw_phdrs_clause())
1537                 {
1538                   Output_segment* hdr_oseg;
1539                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1540                                                        elfcpp::PF_R);
1541                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1542                                                           elfcpp::PF_R);
1543                 }
1544
1545               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1546             }
1547         }
1548     }
1549
1550   return os;
1551 }
1552
1553 // Add an exception frame for a PLT.  This is called from target code.
1554
1555 void
1556 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1557                              size_t cie_length, const unsigned char* fde_data,
1558                              size_t fde_length)
1559 {
1560   if (parameters->incremental())
1561     {
1562       // FIXME: Maybe this could work some day....
1563       return;
1564     }
1565   Output_section* os = this->make_eh_frame_section(NULL);
1566   if (os == NULL)
1567     return;
1568   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1569                                             fde_data, fde_length);
1570   if (!this->added_eh_frame_data_)
1571     {
1572       os->add_output_section_data(this->eh_frame_data_);
1573       this->added_eh_frame_data_ = true;
1574     }
1575 }
1576
1577 // Scan a .debug_info or .debug_types section, and add summary
1578 // information to the .gdb_index section.
1579
1580 template<int size, bool big_endian>
1581 void
1582 Layout::add_to_gdb_index(bool is_type_unit,
1583                          Sized_relobj<size, big_endian>* object,
1584                          const unsigned char* symbols,
1585                          off_t symbols_size,
1586                          unsigned int shndx,
1587                          unsigned int reloc_shndx,
1588                          unsigned int reloc_type)
1589 {
1590   if (this->gdb_index_data_ == NULL)
1591     {
1592       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1593                                                        elfcpp::SHT_PROGBITS, 0,
1594                                                        false, ORDER_INVALID,
1595                                                        false, false);
1596       if (os == NULL)
1597         return;
1598
1599       this->gdb_index_data_ = new Gdb_index(os);
1600       os->add_output_section_data(this->gdb_index_data_);
1601       os->set_after_input_sections();
1602     }
1603
1604   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1605                                          symbols_size, shndx, reloc_shndx,
1606                                          reloc_type);
1607 }
1608
1609 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1610 // the output section.
1611
1612 Output_section*
1613 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1614                                 elfcpp::Elf_Xword flags,
1615                                 Output_section_data* posd,
1616                                 Output_section_order order, bool is_relro)
1617 {
1618   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1619                                                    false, order, is_relro,
1620                                                    false);
1621   if (os != NULL)
1622     os->add_output_section_data(posd);
1623   return os;
1624 }
1625
1626 // Map section flags to segment flags.
1627
1628 elfcpp::Elf_Word
1629 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1630 {
1631   elfcpp::Elf_Word ret = elfcpp::PF_R;
1632   if ((flags & elfcpp::SHF_WRITE) != 0)
1633     ret |= elfcpp::PF_W;
1634   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1635     ret |= elfcpp::PF_X;
1636   return ret;
1637 }
1638
1639 // Make a new Output_section, and attach it to segments as
1640 // appropriate.  ORDER is the order in which this section should
1641 // appear in the output segment.  IS_RELRO is true if this is a relro
1642 // (read-only after relocations) section.
1643
1644 Output_section*
1645 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1646                             elfcpp::Elf_Xword flags,
1647                             Output_section_order order, bool is_relro)
1648 {
1649   Output_section* os;
1650   if ((flags & elfcpp::SHF_ALLOC) == 0
1651       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1652       && is_compressible_debug_section(name))
1653     os = new Output_compressed_section(&parameters->options(), name, type,
1654                                        flags);
1655   else if ((flags & elfcpp::SHF_ALLOC) == 0
1656            && parameters->options().strip_debug_non_line()
1657            && strcmp(".debug_abbrev", name) == 0)
1658     {
1659       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1660           name, type, flags);
1661       if (this->debug_info_)
1662         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1663     }
1664   else if ((flags & elfcpp::SHF_ALLOC) == 0
1665            && parameters->options().strip_debug_non_line()
1666            && strcmp(".debug_info", name) == 0)
1667     {
1668       os = this->debug_info_ = new Output_reduced_debug_info_section(
1669           name, type, flags);
1670       if (this->debug_abbrev_)
1671         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1672     }
1673   else
1674     {
1675       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1676       // not have correct section types.  Force them here.
1677       if (type == elfcpp::SHT_PROGBITS)
1678         {
1679           if (is_prefix_of(".init_array", name))
1680             type = elfcpp::SHT_INIT_ARRAY;
1681           else if (is_prefix_of(".preinit_array", name))
1682             type = elfcpp::SHT_PREINIT_ARRAY;
1683           else if (is_prefix_of(".fini_array", name))
1684             type = elfcpp::SHT_FINI_ARRAY;
1685         }
1686
1687       // FIXME: const_cast is ugly.
1688       Target* target = const_cast<Target*>(&parameters->target());
1689       os = target->make_output_section(name, type, flags);
1690     }
1691
1692   // With -z relro, we have to recognize the special sections by name.
1693   // There is no other way.
1694   bool is_relro_local = false;
1695   if (!this->script_options_->saw_sections_clause()
1696       && parameters->options().relro()
1697       && (flags & elfcpp::SHF_ALLOC) != 0
1698       && (flags & elfcpp::SHF_WRITE) != 0)
1699     {
1700       if (type == elfcpp::SHT_PROGBITS)
1701         {
1702           if ((flags & elfcpp::SHF_TLS) != 0)
1703             is_relro = true;
1704           else if (strcmp(name, ".data.rel.ro") == 0)
1705             is_relro = true;
1706           else if (strcmp(name, ".data.rel.ro.local") == 0)
1707             {
1708               is_relro = true;
1709               is_relro_local = true;
1710             }
1711           else if (strcmp(name, ".ctors") == 0
1712                    || strcmp(name, ".dtors") == 0
1713                    || strcmp(name, ".jcr") == 0)
1714             is_relro = true;
1715         }
1716       else if (type == elfcpp::SHT_INIT_ARRAY
1717                || type == elfcpp::SHT_FINI_ARRAY
1718                || type == elfcpp::SHT_PREINIT_ARRAY)
1719         is_relro = true;
1720     }
1721
1722   if (is_relro)
1723     os->set_is_relro();
1724
1725   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1726     order = this->default_section_order(os, is_relro_local);
1727
1728   os->set_order(order);
1729
1730   parameters->target().new_output_section(os);
1731
1732   this->section_list_.push_back(os);
1733
1734   // The GNU linker by default sorts some sections by priority, so we
1735   // do the same.  We need to know that this might happen before we
1736   // attach any input sections.
1737   if (!this->script_options_->saw_sections_clause()
1738       && !parameters->options().relocatable()
1739       && (strcmp(name, ".init_array") == 0
1740           || strcmp(name, ".fini_array") == 0
1741           || (!parameters->options().ctors_in_init_array()
1742               && (strcmp(name, ".ctors") == 0
1743                   || strcmp(name, ".dtors") == 0))))
1744     os->set_may_sort_attached_input_sections();
1745
1746   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1747   // sections before other .text sections.  We are compatible.  We
1748   // need to know that this might happen before we attach any input
1749   // sections.
1750   if (parameters->options().text_reorder()
1751       && !this->script_options_->saw_sections_clause()
1752       && !this->is_section_ordering_specified()
1753       && !parameters->options().relocatable()
1754       && strcmp(name, ".text") == 0)
1755     os->set_may_sort_attached_input_sections();
1756
1757   // GNU linker sorts section by name with --sort-section=name.
1758   if (strcmp(parameters->options().sort_section(), "name") == 0)
1759       os->set_must_sort_attached_input_sections();
1760
1761   // Check for .stab*str sections, as .stab* sections need to link to
1762   // them.
1763   if (type == elfcpp::SHT_STRTAB
1764       && !this->have_stabstr_section_
1765       && strncmp(name, ".stab", 5) == 0
1766       && strcmp(name + strlen(name) - 3, "str") == 0)
1767     this->have_stabstr_section_ = true;
1768
1769   // During a full incremental link, we add patch space to most
1770   // PROGBITS and NOBITS sections.  Flag those that may be
1771   // arbitrarily padded.
1772   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1773       && order != ORDER_INTERP
1774       && order != ORDER_INIT
1775       && order != ORDER_PLT
1776       && order != ORDER_FINI
1777       && order != ORDER_RELRO_LAST
1778       && order != ORDER_NON_RELRO_FIRST
1779       && strcmp(name, ".eh_frame") != 0
1780       && strcmp(name, ".ctors") != 0
1781       && strcmp(name, ".dtors") != 0
1782       && strcmp(name, ".jcr") != 0)
1783     {
1784       os->set_is_patch_space_allowed();
1785
1786       // Certain sections require "holes" to be filled with
1787       // specific fill patterns.  These fill patterns may have
1788       // a minimum size, so we must prevent allocations from the
1789       // free list that leave a hole smaller than the minimum.
1790       if (strcmp(name, ".debug_info") == 0)
1791         os->set_free_space_fill(new Output_fill_debug_info(false));
1792       else if (strcmp(name, ".debug_types") == 0)
1793         os->set_free_space_fill(new Output_fill_debug_info(true));
1794       else if (strcmp(name, ".debug_line") == 0)
1795         os->set_free_space_fill(new Output_fill_debug_line());
1796     }
1797
1798   // If we have already attached the sections to segments, then we
1799   // need to attach this one now.  This happens for sections created
1800   // directly by the linker.
1801   if (this->sections_are_attached_)
1802     this->attach_section_to_segment(&parameters->target(), os);
1803
1804   return os;
1805 }
1806
1807 // Return the default order in which a section should be placed in an
1808 // output segment.  This function captures a lot of the ideas in
1809 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1810 // linker created section is normally set when the section is created;
1811 // this function is used for input sections.
1812
1813 Output_section_order
1814 Layout::default_section_order(Output_section* os, bool is_relro_local)
1815 {
1816   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1817   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1818   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1819   bool is_bss = false;
1820
1821   switch (os->type())
1822     {
1823     default:
1824     case elfcpp::SHT_PROGBITS:
1825       break;
1826     case elfcpp::SHT_NOBITS:
1827       is_bss = true;
1828       break;
1829     case elfcpp::SHT_RELA:
1830     case elfcpp::SHT_REL:
1831       if (!is_write)
1832         return ORDER_DYNAMIC_RELOCS;
1833       break;
1834     case elfcpp::SHT_HASH:
1835     case elfcpp::SHT_DYNAMIC:
1836     case elfcpp::SHT_SHLIB:
1837     case elfcpp::SHT_DYNSYM:
1838     case elfcpp::SHT_GNU_HASH:
1839     case elfcpp::SHT_GNU_verdef:
1840     case elfcpp::SHT_GNU_verneed:
1841     case elfcpp::SHT_GNU_versym:
1842       if (!is_write)
1843         return ORDER_DYNAMIC_LINKER;
1844       break;
1845     case elfcpp::SHT_NOTE:
1846       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1847     }
1848
1849   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1850     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1851
1852   if (!is_bss && !is_write)
1853     {
1854       if (is_execinstr)
1855         {
1856           if (strcmp(os->name(), ".init") == 0)
1857             return ORDER_INIT;
1858           else if (strcmp(os->name(), ".fini") == 0)
1859             return ORDER_FINI;
1860         }
1861       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1862     }
1863
1864   if (os->is_relro())
1865     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1866
1867   if (os->is_small_section())
1868     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1869   if (os->is_large_section())
1870     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1871
1872   return is_bss ? ORDER_BSS : ORDER_DATA;
1873 }
1874
1875 // Attach output sections to segments.  This is called after we have
1876 // seen all the input sections.
1877
1878 void
1879 Layout::attach_sections_to_segments(const Target* target)
1880 {
1881   for (Section_list::iterator p = this->section_list_.begin();
1882        p != this->section_list_.end();
1883        ++p)
1884     this->attach_section_to_segment(target, *p);
1885
1886   this->sections_are_attached_ = true;
1887 }
1888
1889 // Attach an output section to a segment.
1890
1891 void
1892 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1893 {
1894   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1895     this->unattached_section_list_.push_back(os);
1896   else
1897     this->attach_allocated_section_to_segment(target, os);
1898 }
1899
1900 // Attach an allocated output section to a segment.
1901
1902 void
1903 Layout::attach_allocated_section_to_segment(const Target* target,
1904                                             Output_section* os)
1905 {
1906   elfcpp::Elf_Xword flags = os->flags();
1907   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1908
1909   if (parameters->options().relocatable())
1910     return;
1911
1912   // If we have a SECTIONS clause, we can't handle the attachment to
1913   // segments until after we've seen all the sections.
1914   if (this->script_options_->saw_sections_clause())
1915     return;
1916
1917   gold_assert(!this->script_options_->saw_phdrs_clause());
1918
1919   // This output section goes into a PT_LOAD segment.
1920
1921   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1922
1923   // If this output section's segment has extra flags that need to be set,
1924   // coming from a linker plugin, do that.
1925   seg_flags |= os->extra_segment_flags();
1926
1927   // Check for --section-start.
1928   uint64_t addr;
1929   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1930
1931   // In general the only thing we really care about for PT_LOAD
1932   // segments is whether or not they are writable or executable,
1933   // so that is how we search for them.
1934   // Large data sections also go into their own PT_LOAD segment.
1935   // People who need segments sorted on some other basis will
1936   // have to use a linker script.
1937
1938   Segment_list::const_iterator p;
1939   if (!os->is_unique_segment())
1940     {
1941       for (p = this->segment_list_.begin();
1942            p != this->segment_list_.end();
1943            ++p)
1944         {
1945           if ((*p)->type() != elfcpp::PT_LOAD)
1946             continue;
1947           if ((*p)->is_unique_segment())
1948             continue;
1949           if (!parameters->options().omagic()
1950               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1951             continue;
1952           if ((target->isolate_execinstr() || parameters->options().rosegment())
1953               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1954             continue;
1955           // If -Tbss was specified, we need to separate the data and BSS
1956           // segments.
1957           if (parameters->options().user_set_Tbss())
1958             {
1959               if ((os->type() == elfcpp::SHT_NOBITS)
1960                   == (*p)->has_any_data_sections())
1961                 continue;
1962             }
1963           if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1964             continue;
1965
1966           if (is_address_set)
1967             {
1968               if ((*p)->are_addresses_set())
1969                 continue;
1970
1971               (*p)->add_initial_output_data(os);
1972               (*p)->update_flags_for_output_section(seg_flags);
1973               (*p)->set_addresses(addr, addr);
1974               break;
1975             }
1976
1977           (*p)->add_output_section_to_load(this, os, seg_flags);
1978           break;
1979         }
1980     }
1981
1982   if (p == this->segment_list_.end()
1983       || os->is_unique_segment())
1984     {
1985       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1986                                                        seg_flags);
1987       if (os->is_large_data_section())
1988         oseg->set_is_large_data_segment();
1989       oseg->add_output_section_to_load(this, os, seg_flags);
1990       if (is_address_set)
1991         oseg->set_addresses(addr, addr);
1992       // Check if segment should be marked unique.  For segments marked
1993       // unique by linker plugins, set the new alignment if specified.
1994       if (os->is_unique_segment())
1995         {
1996           oseg->set_is_unique_segment();
1997           if (os->segment_alignment() != 0)
1998             oseg->set_minimum_p_align(os->segment_alignment());
1999         }
2000     }
2001
2002   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2003   // segment.
2004   if (os->type() == elfcpp::SHT_NOTE)
2005     {
2006       // See if we already have an equivalent PT_NOTE segment.
2007       for (p = this->segment_list_.begin();
2008            p != segment_list_.end();
2009            ++p)
2010         {
2011           if ((*p)->type() == elfcpp::PT_NOTE
2012               && (((*p)->flags() & elfcpp::PF_W)
2013                   == (seg_flags & elfcpp::PF_W)))
2014             {
2015               (*p)->add_output_section_to_nonload(os, seg_flags);
2016               break;
2017             }
2018         }
2019
2020       if (p == this->segment_list_.end())
2021         {
2022           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2023                                                            seg_flags);
2024           oseg->add_output_section_to_nonload(os, seg_flags);
2025         }
2026     }
2027
2028   // If we see a loadable SHF_TLS section, we create a PT_TLS
2029   // segment.  There can only be one such segment.
2030   if ((flags & elfcpp::SHF_TLS) != 0)
2031     {
2032       if (this->tls_segment_ == NULL)
2033         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2034       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2035     }
2036
2037   // If -z relro is in effect, and we see a relro section, we create a
2038   // PT_GNU_RELRO segment.  There can only be one such segment.
2039   if (os->is_relro() && parameters->options().relro())
2040     {
2041       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2042       if (this->relro_segment_ == NULL)
2043         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2044       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2045     }
2046
2047   // If we see a section named .interp, put it into a PT_INTERP
2048   // segment.  This seems broken to me, but this is what GNU ld does,
2049   // and glibc expects it.
2050   if (strcmp(os->name(), ".interp") == 0
2051       && !this->script_options_->saw_phdrs_clause())
2052     {
2053       if (this->interp_segment_ == NULL)
2054         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2055       else
2056         gold_warning(_("multiple '.interp' sections in input files "
2057                        "may cause confusing PT_INTERP segment"));
2058       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2059     }
2060 }
2061
2062 // Make an output section for a script.
2063
2064 Output_section*
2065 Layout::make_output_section_for_script(
2066     const char* name,
2067     Script_sections::Section_type section_type)
2068 {
2069   name = this->namepool_.add(name, false, NULL);
2070   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2071   if (section_type == Script_sections::ST_NOLOAD)
2072     sh_flags = 0;
2073   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2074                                                  sh_flags, ORDER_INVALID,
2075                                                  false);
2076   os->set_found_in_sections_clause();
2077   if (section_type == Script_sections::ST_NOLOAD)
2078     os->set_is_noload();
2079   return os;
2080 }
2081
2082 // Return the number of segments we expect to see.
2083
2084 size_t
2085 Layout::expected_segment_count() const
2086 {
2087   size_t ret = this->segment_list_.size();
2088
2089   // If we didn't see a SECTIONS clause in a linker script, we should
2090   // already have the complete list of segments.  Otherwise we ask the
2091   // SECTIONS clause how many segments it expects, and add in the ones
2092   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2093
2094   if (!this->script_options_->saw_sections_clause())
2095     return ret;
2096   else
2097     {
2098       const Script_sections* ss = this->script_options_->script_sections();
2099       return ret + ss->expected_segment_count(this);
2100     }
2101 }
2102
2103 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2104 // is whether we saw a .note.GNU-stack section in the object file.
2105 // GNU_STACK_FLAGS is the section flags.  The flags give the
2106 // protection required for stack memory.  We record this in an
2107 // executable as a PT_GNU_STACK segment.  If an object file does not
2108 // have a .note.GNU-stack segment, we must assume that it is an old
2109 // object.  On some targets that will force an executable stack.
2110
2111 void
2112 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2113                          const Object* obj)
2114 {
2115   if (!seen_gnu_stack)
2116     {
2117       this->input_without_gnu_stack_note_ = true;
2118       if (parameters->options().warn_execstack()
2119           && parameters->target().is_default_stack_executable())
2120         gold_warning(_("%s: missing .note.GNU-stack section"
2121                        " implies executable stack"),
2122                      obj->name().c_str());
2123     }
2124   else
2125     {
2126       this->input_with_gnu_stack_note_ = true;
2127       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2128         {
2129           this->input_requires_executable_stack_ = true;
2130           if (parameters->options().warn_execstack())
2131             gold_warning(_("%s: requires executable stack"),
2132                          obj->name().c_str());
2133         }
2134     }
2135 }
2136
2137 // Create automatic note sections.
2138
2139 void
2140 Layout::create_notes()
2141 {
2142   this->create_gold_note();
2143   this->create_stack_segment();
2144   this->create_build_id();
2145 }
2146
2147 // Create the dynamic sections which are needed before we read the
2148 // relocs.
2149
2150 void
2151 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2152 {
2153   if (parameters->doing_static_link())
2154     return;
2155
2156   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2157                                                        elfcpp::SHT_DYNAMIC,
2158                                                        (elfcpp::SHF_ALLOC
2159                                                         | elfcpp::SHF_WRITE),
2160                                                        false, ORDER_RELRO,
2161                                                        true, false);
2162
2163   // A linker script may discard .dynamic, so check for NULL.
2164   if (this->dynamic_section_ != NULL)
2165     {
2166       this->dynamic_symbol_ =
2167         symtab->define_in_output_data("_DYNAMIC", NULL,
2168                                       Symbol_table::PREDEFINED,
2169                                       this->dynamic_section_, 0, 0,
2170                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2171                                       elfcpp::STV_HIDDEN, 0, false, false);
2172
2173       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2174
2175       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2176     }
2177 }
2178
2179 // For each output section whose name can be represented as C symbol,
2180 // define __start and __stop symbols for the section.  This is a GNU
2181 // extension.
2182
2183 void
2184 Layout::define_section_symbols(Symbol_table* symtab)
2185 {
2186   for (Section_list::const_iterator p = this->section_list_.begin();
2187        p != this->section_list_.end();
2188        ++p)
2189     {
2190       const char* const name = (*p)->name();
2191       if (is_cident(name))
2192         {
2193           const std::string name_string(name);
2194           const std::string start_name(cident_section_start_prefix
2195                                        + name_string);
2196           const std::string stop_name(cident_section_stop_prefix
2197                                       + name_string);
2198
2199           symtab->define_in_output_data(start_name.c_str(),
2200                                         NULL, // version
2201                                         Symbol_table::PREDEFINED,
2202                                         *p,
2203                                         0, // value
2204                                         0, // symsize
2205                                         elfcpp::STT_NOTYPE,
2206                                         elfcpp::STB_GLOBAL,
2207                                         elfcpp::STV_DEFAULT,
2208                                         0, // nonvis
2209                                         false, // offset_is_from_end
2210                                         true); // only_if_ref
2211
2212           symtab->define_in_output_data(stop_name.c_str(),
2213                                         NULL, // version
2214                                         Symbol_table::PREDEFINED,
2215                                         *p,
2216                                         0, // value
2217                                         0, // symsize
2218                                         elfcpp::STT_NOTYPE,
2219                                         elfcpp::STB_GLOBAL,
2220                                         elfcpp::STV_DEFAULT,
2221                                         0, // nonvis
2222                                         true, // offset_is_from_end
2223                                         true); // only_if_ref
2224         }
2225     }
2226 }
2227
2228 // Define symbols for group signatures.
2229
2230 void
2231 Layout::define_group_signatures(Symbol_table* symtab)
2232 {
2233   for (Group_signatures::iterator p = this->group_signatures_.begin();
2234        p != this->group_signatures_.end();
2235        ++p)
2236     {
2237       Symbol* sym = symtab->lookup(p->signature, NULL);
2238       if (sym != NULL)
2239         p->section->set_info_symndx(sym);
2240       else
2241         {
2242           // Force the name of the group section to the group
2243           // signature, and use the group's section symbol as the
2244           // signature symbol.
2245           if (strcmp(p->section->name(), p->signature) != 0)
2246             {
2247               const char* name = this->namepool_.add(p->signature,
2248                                                      true, NULL);
2249               p->section->set_name(name);
2250             }
2251           p->section->set_needs_symtab_index();
2252           p->section->set_info_section_symndx(p->section);
2253         }
2254     }
2255
2256   this->group_signatures_.clear();
2257 }
2258
2259 // Find the first read-only PT_LOAD segment, creating one if
2260 // necessary.
2261
2262 Output_segment*
2263 Layout::find_first_load_seg(const Target* target)
2264 {
2265   Output_segment* best = NULL;
2266   for (Segment_list::const_iterator p = this->segment_list_.begin();
2267        p != this->segment_list_.end();
2268        ++p)
2269     {
2270       if ((*p)->type() == elfcpp::PT_LOAD
2271           && ((*p)->flags() & elfcpp::PF_R) != 0
2272           && (parameters->options().omagic()
2273               || ((*p)->flags() & elfcpp::PF_W) == 0)
2274           && (!target->isolate_execinstr()
2275               || ((*p)->flags() & elfcpp::PF_X) == 0))
2276         {
2277           if (best == NULL || this->segment_precedes(*p, best))
2278             best = *p;
2279         }
2280     }
2281   if (best != NULL)
2282     return best;
2283
2284   gold_assert(!this->script_options_->saw_phdrs_clause());
2285
2286   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2287                                                        elfcpp::PF_R);
2288   return load_seg;
2289 }
2290
2291 // Save states of all current output segments.  Store saved states
2292 // in SEGMENT_STATES.
2293
2294 void
2295 Layout::save_segments(Segment_states* segment_states)
2296 {
2297   for (Segment_list::const_iterator p = this->segment_list_.begin();
2298        p != this->segment_list_.end();
2299        ++p)
2300     {
2301       Output_segment* segment = *p;
2302       // Shallow copy.
2303       Output_segment* copy = new Output_segment(*segment);
2304       (*segment_states)[segment] = copy;
2305     }
2306 }
2307
2308 // Restore states of output segments and delete any segment not found in
2309 // SEGMENT_STATES.
2310
2311 void
2312 Layout::restore_segments(const Segment_states* segment_states)
2313 {
2314   // Go through the segment list and remove any segment added in the
2315   // relaxation loop.
2316   this->tls_segment_ = NULL;
2317   this->relro_segment_ = NULL;
2318   Segment_list::iterator list_iter = this->segment_list_.begin();
2319   while (list_iter != this->segment_list_.end())
2320     {
2321       Output_segment* segment = *list_iter;
2322       Segment_states::const_iterator states_iter =
2323           segment_states->find(segment);
2324       if (states_iter != segment_states->end())
2325         {
2326           const Output_segment* copy = states_iter->second;
2327           // Shallow copy to restore states.
2328           *segment = *copy;
2329
2330           // Also fix up TLS and RELRO segment pointers as appropriate.
2331           if (segment->type() == elfcpp::PT_TLS)
2332             this->tls_segment_ = segment;
2333           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2334             this->relro_segment_ = segment;
2335
2336           ++list_iter;
2337         }
2338       else
2339         {
2340           list_iter = this->segment_list_.erase(list_iter);
2341           // This is a segment created during section layout.  It should be
2342           // safe to remove it since we should have removed all pointers to it.
2343           delete segment;
2344         }
2345     }
2346 }
2347
2348 // Clean up after relaxation so that sections can be laid out again.
2349
2350 void
2351 Layout::clean_up_after_relaxation()
2352 {
2353   // Restore the segments to point state just prior to the relaxation loop.
2354   Script_sections* script_section = this->script_options_->script_sections();
2355   script_section->release_segments();
2356   this->restore_segments(this->segment_states_);
2357
2358   // Reset section addresses and file offsets
2359   for (Section_list::iterator p = this->section_list_.begin();
2360        p != this->section_list_.end();
2361        ++p)
2362     {
2363       (*p)->restore_states();
2364
2365       // If an input section changes size because of relaxation,
2366       // we need to adjust the section offsets of all input sections.
2367       // after such a section.
2368       if ((*p)->section_offsets_need_adjustment())
2369         (*p)->adjust_section_offsets();
2370
2371       (*p)->reset_address_and_file_offset();
2372     }
2373
2374   // Reset special output object address and file offsets.
2375   for (Data_list::iterator p = this->special_output_list_.begin();
2376        p != this->special_output_list_.end();
2377        ++p)
2378     (*p)->reset_address_and_file_offset();
2379
2380   // A linker script may have created some output section data objects.
2381   // They are useless now.
2382   for (Output_section_data_list::const_iterator p =
2383          this->script_output_section_data_list_.begin();
2384        p != this->script_output_section_data_list_.end();
2385        ++p)
2386     delete *p;
2387   this->script_output_section_data_list_.clear();
2388
2389   // Special-case fill output objects are recreated each time through
2390   // the relaxation loop.
2391   this->reset_relax_output();
2392 }
2393
2394 void
2395 Layout::reset_relax_output()
2396 {
2397   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2398        p != this->relax_output_list_.end();
2399        ++p)
2400     delete *p;
2401   this->relax_output_list_.clear();
2402 }
2403
2404 // Prepare for relaxation.
2405
2406 void
2407 Layout::prepare_for_relaxation()
2408 {
2409   // Create an relaxation debug check if in debugging mode.
2410   if (is_debugging_enabled(DEBUG_RELAXATION))
2411     this->relaxation_debug_check_ = new Relaxation_debug_check();
2412
2413   // Save segment states.
2414   this->segment_states_ = new Segment_states();
2415   this->save_segments(this->segment_states_);
2416
2417   for(Section_list::const_iterator p = this->section_list_.begin();
2418       p != this->section_list_.end();
2419       ++p)
2420     (*p)->save_states();
2421
2422   if (is_debugging_enabled(DEBUG_RELAXATION))
2423     this->relaxation_debug_check_->check_output_data_for_reset_values(
2424         this->section_list_, this->special_output_list_,
2425         this->relax_output_list_);
2426
2427   // Also enable recording of output section data from scripts.
2428   this->record_output_section_data_from_script_ = true;
2429 }
2430
2431 // If the user set the address of the text segment, that may not be
2432 // compatible with putting the segment headers and file headers into
2433 // that segment.  For isolate_execinstr() targets, it's the rodata
2434 // segment rather than text where we might put the headers.
2435 static inline bool
2436 load_seg_unusable_for_headers(const Target* target)
2437 {
2438   const General_options& options = parameters->options();
2439   if (target->isolate_execinstr())
2440     return (options.user_set_Trodata_segment()
2441             && options.Trodata_segment() % target->abi_pagesize() != 0);
2442   else
2443     return (options.user_set_Ttext()
2444             && options.Ttext() % target->abi_pagesize() != 0);
2445 }
2446
2447 // Relaxation loop body:  If target has no relaxation, this runs only once
2448 // Otherwise, the target relaxation hook is called at the end of
2449 // each iteration.  If the hook returns true, it means re-layout of
2450 // section is required.
2451 //
2452 // The number of segments created by a linking script without a PHDRS
2453 // clause may be affected by section sizes and alignments.  There is
2454 // a remote chance that relaxation causes different number of PT_LOAD
2455 // segments are created and sections are attached to different segments.
2456 // Therefore, we always throw away all segments created during section
2457 // layout.  In order to be able to restart the section layout, we keep
2458 // a copy of the segment list right before the relaxation loop and use
2459 // that to restore the segments.
2460 //
2461 // PASS is the current relaxation pass number.
2462 // SYMTAB is a symbol table.
2463 // PLOAD_SEG is the address of a pointer for the load segment.
2464 // PHDR_SEG is a pointer to the PHDR segment.
2465 // SEGMENT_HEADERS points to the output segment header.
2466 // FILE_HEADER points to the output file header.
2467 // PSHNDX is the address to store the output section index.
2468
2469 off_t inline
2470 Layout::relaxation_loop_body(
2471     int pass,
2472     Target* target,
2473     Symbol_table* symtab,
2474     Output_segment** pload_seg,
2475     Output_segment* phdr_seg,
2476     Output_segment_headers* segment_headers,
2477     Output_file_header* file_header,
2478     unsigned int* pshndx)
2479 {
2480   // If this is not the first iteration, we need to clean up after
2481   // relaxation so that we can lay out the sections again.
2482   if (pass != 0)
2483     this->clean_up_after_relaxation();
2484
2485   // If there is a SECTIONS clause, put all the input sections into
2486   // the required order.
2487   Output_segment* load_seg;
2488   if (this->script_options_->saw_sections_clause())
2489     load_seg = this->set_section_addresses_from_script(symtab);
2490   else if (parameters->options().relocatable())
2491     load_seg = NULL;
2492   else
2493     load_seg = this->find_first_load_seg(target);
2494
2495   if (parameters->options().oformat_enum()
2496       != General_options::OBJECT_FORMAT_ELF)
2497     load_seg = NULL;
2498
2499   if (load_seg_unusable_for_headers(target))
2500     {
2501       load_seg = NULL;
2502       phdr_seg = NULL;
2503     }
2504
2505   gold_assert(phdr_seg == NULL
2506               || load_seg != NULL
2507               || this->script_options_->saw_sections_clause());
2508
2509   // If the address of the load segment we found has been set by
2510   // --section-start rather than by a script, then adjust the VMA and
2511   // LMA downward if possible to include the file and section headers.
2512   uint64_t header_gap = 0;
2513   if (load_seg != NULL
2514       && load_seg->are_addresses_set()
2515       && !this->script_options_->saw_sections_clause()
2516       && !parameters->options().relocatable())
2517     {
2518       file_header->finalize_data_size();
2519       segment_headers->finalize_data_size();
2520       size_t sizeof_headers = (file_header->data_size()
2521                                + segment_headers->data_size());
2522       const uint64_t abi_pagesize = target->abi_pagesize();
2523       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2524       hdr_paddr &= ~(abi_pagesize - 1);
2525       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2526       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2527         load_seg = NULL;
2528       else
2529         {
2530           load_seg->set_addresses(load_seg->vaddr() - subtract,
2531                                   load_seg->paddr() - subtract);
2532           header_gap = subtract - sizeof_headers;
2533         }
2534     }
2535
2536   // Lay out the segment headers.
2537   if (!parameters->options().relocatable())
2538     {
2539       gold_assert(segment_headers != NULL);
2540       if (header_gap != 0 && load_seg != NULL)
2541         {
2542           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2543           load_seg->add_initial_output_data(z);
2544         }
2545       if (load_seg != NULL)
2546         load_seg->add_initial_output_data(segment_headers);
2547       if (phdr_seg != NULL)
2548         phdr_seg->add_initial_output_data(segment_headers);
2549     }
2550
2551   // Lay out the file header.
2552   if (load_seg != NULL)
2553     load_seg->add_initial_output_data(file_header);
2554
2555   if (this->script_options_->saw_phdrs_clause()
2556       && !parameters->options().relocatable())
2557     {
2558       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2559       // clause in a linker script.
2560       Script_sections* ss = this->script_options_->script_sections();
2561       ss->put_headers_in_phdrs(file_header, segment_headers);
2562     }
2563
2564   // We set the output section indexes in set_segment_offsets and
2565   // set_section_indexes.
2566   *pshndx = 1;
2567
2568   // Set the file offsets of all the segments, and all the sections
2569   // they contain.
2570   off_t off;
2571   if (!parameters->options().relocatable())
2572     off = this->set_segment_offsets(target, load_seg, pshndx);
2573   else
2574     off = this->set_relocatable_section_offsets(file_header, pshndx);
2575
2576    // Verify that the dummy relaxation does not change anything.
2577   if (is_debugging_enabled(DEBUG_RELAXATION))
2578     {
2579       if (pass == 0)
2580         this->relaxation_debug_check_->read_sections(this->section_list_);
2581       else
2582         this->relaxation_debug_check_->verify_sections(this->section_list_);
2583     }
2584
2585   *pload_seg = load_seg;
2586   return off;
2587 }
2588
2589 // Search the list of patterns and find the position of the given section
2590 // name in the output section.  If the section name matches a glob
2591 // pattern and a non-glob name, then the non-glob position takes
2592 // precedence.  Return 0 if no match is found.
2593
2594 unsigned int
2595 Layout::find_section_order_index(const std::string& section_name)
2596 {
2597   Unordered_map<std::string, unsigned int>::iterator map_it;
2598   map_it = this->input_section_position_.find(section_name);
2599   if (map_it != this->input_section_position_.end())
2600     return map_it->second;
2601
2602   // Absolute match failed.  Linear search the glob patterns.
2603   std::vector<std::string>::iterator it;
2604   for (it = this->input_section_glob_.begin();
2605        it != this->input_section_glob_.end();
2606        ++it)
2607     {
2608        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2609          {
2610            map_it = this->input_section_position_.find(*it);
2611            gold_assert(map_it != this->input_section_position_.end());
2612            return map_it->second;
2613          }
2614     }
2615   return 0;
2616 }
2617
2618 // Read the sequence of input sections from the file specified with
2619 // option --section-ordering-file.
2620
2621 void
2622 Layout::read_layout_from_file()
2623 {
2624   const char* filename = parameters->options().section_ordering_file();
2625   std::ifstream in;
2626   std::string line;
2627
2628   in.open(filename);
2629   if (!in)
2630     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2631                filename, strerror(errno));
2632
2633   std::getline(in, line);   // this chops off the trailing \n, if any
2634   unsigned int position = 1;
2635   this->set_section_ordering_specified();
2636
2637   while (in)
2638     {
2639       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2640         line.resize(line.length() - 1);
2641       // Ignore comments, beginning with '#'
2642       if (line[0] == '#')
2643         {
2644           std::getline(in, line);
2645           continue;
2646         }
2647       this->input_section_position_[line] = position;
2648       // Store all glob patterns in a vector.
2649       if (is_wildcard_string(line.c_str()))
2650         this->input_section_glob_.push_back(line);
2651       position++;
2652       std::getline(in, line);
2653     }
2654 }
2655
2656 // Finalize the layout.  When this is called, we have created all the
2657 // output sections and all the output segments which are based on
2658 // input sections.  We have several things to do, and we have to do
2659 // them in the right order, so that we get the right results correctly
2660 // and efficiently.
2661
2662 // 1) Finalize the list of output segments and create the segment
2663 // table header.
2664
2665 // 2) Finalize the dynamic symbol table and associated sections.
2666
2667 // 3) Determine the final file offset of all the output segments.
2668
2669 // 4) Determine the final file offset of all the SHF_ALLOC output
2670 // sections.
2671
2672 // 5) Create the symbol table sections and the section name table
2673 // section.
2674
2675 // 6) Finalize the symbol table: set symbol values to their final
2676 // value and make a final determination of which symbols are going
2677 // into the output symbol table.
2678
2679 // 7) Create the section table header.
2680
2681 // 8) Determine the final file offset of all the output sections which
2682 // are not SHF_ALLOC, including the section table header.
2683
2684 // 9) Finalize the ELF file header.
2685
2686 // This function returns the size of the output file.
2687
2688 off_t
2689 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2690                  Target* target, const Task* task)
2691 {
2692   target->finalize_sections(this, input_objects, symtab);
2693
2694   this->count_local_symbols(task, input_objects);
2695
2696   this->link_stabs_sections();
2697
2698   Output_segment* phdr_seg = NULL;
2699   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2700     {
2701       // There was a dynamic object in the link.  We need to create
2702       // some information for the dynamic linker.
2703
2704       // Create the PT_PHDR segment which will hold the program
2705       // headers.
2706       if (!this->script_options_->saw_phdrs_clause())
2707         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2708
2709       // Create the dynamic symbol table, including the hash table.
2710       Output_section* dynstr;
2711       std::vector<Symbol*> dynamic_symbols;
2712       unsigned int local_dynamic_count;
2713       Versions versions(*this->script_options()->version_script_info(),
2714                         &this->dynpool_);
2715       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2716                                   &local_dynamic_count, &dynamic_symbols,
2717                                   &versions);
2718
2719       // Create the .interp section to hold the name of the
2720       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2721       // if we saw a .interp section in an input file.
2722       if ((!parameters->options().shared()
2723            || parameters->options().dynamic_linker() != NULL)
2724           && this->interp_segment_ == NULL)
2725         this->create_interp(target);
2726
2727       // Finish the .dynamic section to hold the dynamic data, and put
2728       // it in a PT_DYNAMIC segment.
2729       this->finish_dynamic_section(input_objects, symtab);
2730
2731       // We should have added everything we need to the dynamic string
2732       // table.
2733       this->dynpool_.set_string_offsets();
2734
2735       // Create the version sections.  We can't do this until the
2736       // dynamic string table is complete.
2737       this->create_version_sections(&versions, symtab, local_dynamic_count,
2738                                     dynamic_symbols, dynstr);
2739
2740       // Set the size of the _DYNAMIC symbol.  We can't do this until
2741       // after we call create_version_sections.
2742       this->set_dynamic_symbol_size(symtab);
2743     }
2744
2745   // Create segment headers.
2746   Output_segment_headers* segment_headers =
2747     (parameters->options().relocatable()
2748      ? NULL
2749      : new Output_segment_headers(this->segment_list_));
2750
2751   // Lay out the file header.
2752   Output_file_header* file_header = new Output_file_header(target, symtab,
2753                                                            segment_headers);
2754
2755   this->special_output_list_.push_back(file_header);
2756   if (segment_headers != NULL)
2757     this->special_output_list_.push_back(segment_headers);
2758
2759   // Find approriate places for orphan output sections if we are using
2760   // a linker script.
2761   if (this->script_options_->saw_sections_clause())
2762     this->place_orphan_sections_in_script();
2763
2764   Output_segment* load_seg;
2765   off_t off;
2766   unsigned int shndx;
2767   int pass = 0;
2768
2769   // Take a snapshot of the section layout as needed.
2770   if (target->may_relax())
2771     this->prepare_for_relaxation();
2772
2773   // Run the relaxation loop to lay out sections.
2774   do
2775     {
2776       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2777                                        phdr_seg, segment_headers, file_header,
2778                                        &shndx);
2779       pass++;
2780     }
2781   while (target->may_relax()
2782          && target->relax(pass, input_objects, symtab, this, task));
2783
2784   // If there is a load segment that contains the file and program headers,
2785   // provide a symbol __ehdr_start pointing there.
2786   // A program can use this to examine itself robustly.
2787   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2788   if (ehdr_start != NULL && ehdr_start->is_predefined())
2789     {
2790       if (load_seg != NULL)
2791         ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2792       else
2793         ehdr_start->set_undefined();
2794     }
2795
2796   // Set the file offsets of all the non-data sections we've seen so
2797   // far which don't have to wait for the input sections.  We need
2798   // this in order to finalize local symbols in non-allocated
2799   // sections.
2800   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2801
2802   // Set the section indexes of all unallocated sections seen so far,
2803   // in case any of them are somehow referenced by a symbol.
2804   shndx = this->set_section_indexes(shndx);
2805
2806   // Create the symbol table sections.
2807   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2808   if (!parameters->doing_static_link())
2809     this->assign_local_dynsym_offsets(input_objects);
2810
2811   // Process any symbol assignments from a linker script.  This must
2812   // be called after the symbol table has been finalized.
2813   this->script_options_->finalize_symbols(symtab, this);
2814
2815   // Create the incremental inputs sections.
2816   if (this->incremental_inputs_)
2817     {
2818       this->incremental_inputs_->finalize();
2819       this->create_incremental_info_sections(symtab);
2820     }
2821
2822   // Create the .shstrtab section.
2823   Output_section* shstrtab_section = this->create_shstrtab();
2824
2825   // Set the file offsets of the rest of the non-data sections which
2826   // don't have to wait for the input sections.
2827   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2828
2829   // Now that all sections have been created, set the section indexes
2830   // for any sections which haven't been done yet.
2831   shndx = this->set_section_indexes(shndx);
2832
2833   // Create the section table header.
2834   this->create_shdrs(shstrtab_section, &off);
2835
2836   // If there are no sections which require postprocessing, we can
2837   // handle the section names now, and avoid a resize later.
2838   if (!this->any_postprocessing_sections_)
2839     {
2840       off = this->set_section_offsets(off,
2841                                       POSTPROCESSING_SECTIONS_PASS);
2842       off =
2843           this->set_section_offsets(off,
2844                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2845     }
2846
2847   file_header->set_section_info(this->section_headers_, shstrtab_section);
2848
2849   // Now we know exactly where everything goes in the output file
2850   // (except for non-allocated sections which require postprocessing).
2851   Output_data::layout_complete();
2852
2853   this->output_file_size_ = off;
2854
2855   return off;
2856 }
2857
2858 // Create a note header following the format defined in the ELF ABI.
2859 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2860 // of the section to create, DESCSZ is the size of the descriptor.
2861 // ALLOCATE is true if the section should be allocated in memory.
2862 // This returns the new note section.  It sets *TRAILING_PADDING to
2863 // the number of trailing zero bytes required.
2864
2865 Output_section*
2866 Layout::create_note(const char* name, int note_type,
2867                     const char* section_name, size_t descsz,
2868                     bool allocate, size_t* trailing_padding)
2869 {
2870   // Authorities all agree that the values in a .note field should
2871   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2872   // they differ on what the alignment is for 64-bit binaries.
2873   // The GABI says unambiguously they take 8-byte alignment:
2874   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2875   // Other documentation says alignment should always be 4 bytes:
2876   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2877   // GNU ld and GNU readelf both support the latter (at least as of
2878   // version 2.16.91), and glibc always generates the latter for
2879   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2880   // here.
2881 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2882   const int size = parameters->target().get_size();
2883 #else
2884   const int size = 32;
2885 #endif
2886
2887   // The contents of the .note section.
2888   size_t namesz = strlen(name) + 1;
2889   size_t aligned_namesz = align_address(namesz, size / 8);
2890   size_t aligned_descsz = align_address(descsz, size / 8);
2891
2892   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2893
2894   unsigned char* buffer = new unsigned char[notehdrsz];
2895   memset(buffer, 0, notehdrsz);
2896
2897   bool is_big_endian = parameters->target().is_big_endian();
2898
2899   if (size == 32)
2900     {
2901       if (!is_big_endian)
2902         {
2903           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2904           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2905           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2906         }
2907       else
2908         {
2909           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2910           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2911           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2912         }
2913     }
2914   else if (size == 64)
2915     {
2916       if (!is_big_endian)
2917         {
2918           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2919           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2920           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2921         }
2922       else
2923         {
2924           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2925           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2926           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2927         }
2928     }
2929   else
2930     gold_unreachable();
2931
2932   memcpy(buffer + 3 * (size / 8), name, namesz);
2933
2934   elfcpp::Elf_Xword flags = 0;
2935   Output_section_order order = ORDER_INVALID;
2936   if (allocate)
2937     {
2938       flags = elfcpp::SHF_ALLOC;
2939       order = ORDER_RO_NOTE;
2940     }
2941   Output_section* os = this->choose_output_section(NULL, section_name,
2942                                                    elfcpp::SHT_NOTE,
2943                                                    flags, false, order, false,
2944                                                    false);
2945   if (os == NULL)
2946     return NULL;
2947
2948   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2949                                                            size / 8,
2950                                                            "** note header");
2951   os->add_output_section_data(posd);
2952
2953   *trailing_padding = aligned_descsz - descsz;
2954
2955   return os;
2956 }
2957
2958 // For an executable or shared library, create a note to record the
2959 // version of gold used to create the binary.
2960
2961 void
2962 Layout::create_gold_note()
2963 {
2964   if (parameters->options().relocatable()
2965       || parameters->incremental_update())
2966     return;
2967
2968   std::string desc = std::string("gold ") + gold::get_version_string();
2969
2970   size_t trailing_padding;
2971   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2972                                          ".note.gnu.gold-version", desc.size(),
2973                                          false, &trailing_padding);
2974   if (os == NULL)
2975     return;
2976
2977   Output_section_data* posd = new Output_data_const(desc, 4);
2978   os->add_output_section_data(posd);
2979
2980   if (trailing_padding > 0)
2981     {
2982       posd = new Output_data_zero_fill(trailing_padding, 0);
2983       os->add_output_section_data(posd);
2984     }
2985 }
2986
2987 // Record whether the stack should be executable.  This can be set
2988 // from the command line using the -z execstack or -z noexecstack
2989 // options.  Otherwise, if any input file has a .note.GNU-stack
2990 // section with the SHF_EXECINSTR flag set, the stack should be
2991 // executable.  Otherwise, if at least one input file a
2992 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2993 // section, we use the target default for whether the stack should be
2994 // executable.  If -z stack-size was used to set a p_memsz value for
2995 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
2996 // don't generate a stack note.  When generating a object file, we
2997 // create a .note.GNU-stack section with the appropriate marking.
2998 // When generating an executable or shared library, we create a
2999 // PT_GNU_STACK segment.
3000
3001 void
3002 Layout::create_stack_segment()
3003 {
3004   bool is_stack_executable;
3005   if (parameters->options().is_execstack_set())
3006     {
3007       is_stack_executable = parameters->options().is_stack_executable();
3008       if (!is_stack_executable
3009           && this->input_requires_executable_stack_
3010           && parameters->options().warn_execstack())
3011         gold_warning(_("one or more inputs require executable stack, "
3012                        "but -z noexecstack was given"));
3013     }
3014   else if (!this->input_with_gnu_stack_note_
3015            && (!parameters->options().user_set_stack_size()
3016                || parameters->options().relocatable()))
3017     return;
3018   else
3019     {
3020       if (this->input_requires_executable_stack_)
3021         is_stack_executable = true;
3022       else if (this->input_without_gnu_stack_note_)
3023         is_stack_executable =
3024           parameters->target().is_default_stack_executable();
3025       else
3026         is_stack_executable = false;
3027     }
3028
3029   if (parameters->options().relocatable())
3030     {
3031       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3032       elfcpp::Elf_Xword flags = 0;
3033       if (is_stack_executable)
3034         flags |= elfcpp::SHF_EXECINSTR;
3035       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3036                                 ORDER_INVALID, false);
3037     }
3038   else
3039     {
3040       if (this->script_options_->saw_phdrs_clause())
3041         return;
3042       int flags = elfcpp::PF_R | elfcpp::PF_W;
3043       if (is_stack_executable)
3044         flags |= elfcpp::PF_X;
3045       Output_segment* seg =
3046         this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3047       seg->set_size(parameters->options().stack_size());
3048       // BFD lets targets override this default alignment, but the only
3049       // targets that do so are ones that Gold does not support so far.
3050       seg->set_minimum_p_align(16);
3051     }
3052 }
3053
3054 // If --build-id was used, set up the build ID note.
3055
3056 void
3057 Layout::create_build_id()
3058 {
3059   if (!parameters->options().user_set_build_id())
3060     return;
3061
3062   const char* style = parameters->options().build_id();
3063   if (strcmp(style, "none") == 0)
3064     return;
3065
3066   // Set DESCSZ to the size of the note descriptor.  When possible,
3067   // set DESC to the note descriptor contents.
3068   size_t descsz;
3069   std::string desc;
3070   if (strcmp(style, "md5") == 0)
3071     descsz = 128 / 8;
3072   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3073     descsz = 160 / 8;
3074   else if (strcmp(style, "uuid") == 0)
3075     {
3076 #ifndef __MINGW32__
3077       const size_t uuidsz = 128 / 8;
3078
3079       char buffer[uuidsz];
3080       memset(buffer, 0, uuidsz);
3081
3082       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3083       if (descriptor < 0)
3084         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3085                    strerror(errno));
3086       else
3087         {
3088           ssize_t got = ::read(descriptor, buffer, uuidsz);
3089           release_descriptor(descriptor, true);
3090           if (got < 0)
3091             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3092           else if (static_cast<size_t>(got) != uuidsz)
3093             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3094                        uuidsz, got);
3095         }
3096
3097       desc.assign(buffer, uuidsz);
3098       descsz = uuidsz;
3099 #else // __MINGW32__
3100       UUID uuid;
3101       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3102
3103       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3104       if (!rpc_library)
3105         gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3106       else
3107         {
3108           UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3109               GetProcAddress(rpc_library, "UuidCreate"));
3110           if (!uuid_create)
3111             gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3112           else if (uuid_create(&uuid) != RPC_S_OK)
3113             gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3114           FreeLibrary(rpc_library);
3115         }
3116       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3117       descsz = sizeof(UUID);
3118 #endif // __MINGW32__
3119     }
3120   else if (strncmp(style, "0x", 2) == 0)
3121     {
3122       hex_init();
3123       const char* p = style + 2;
3124       while (*p != '\0')
3125         {
3126           if (hex_p(p[0]) && hex_p(p[1]))
3127             {
3128               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3129               desc += c;
3130               p += 2;
3131             }
3132           else if (*p == '-' || *p == ':')
3133             ++p;
3134           else
3135             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3136                        style);
3137         }
3138       descsz = desc.size();
3139     }
3140   else
3141     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3142
3143   // Create the note.
3144   size_t trailing_padding;
3145   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3146                                          ".note.gnu.build-id", descsz, true,
3147                                          &trailing_padding);
3148   if (os == NULL)
3149     return;
3150
3151   if (!desc.empty())
3152     {
3153       // We know the value already, so we fill it in now.
3154       gold_assert(desc.size() == descsz);
3155
3156       Output_section_data* posd = new Output_data_const(desc, 4);
3157       os->add_output_section_data(posd);
3158
3159       if (trailing_padding != 0)
3160         {
3161           posd = new Output_data_zero_fill(trailing_padding, 0);
3162           os->add_output_section_data(posd);
3163         }
3164     }
3165   else
3166     {
3167       // We need to compute a checksum after we have completed the
3168       // link.
3169       gold_assert(trailing_padding == 0);
3170       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3171       os->add_output_section_data(this->build_id_note_);
3172     }
3173 }
3174
3175 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3176 // field of the former should point to the latter.  I'm not sure who
3177 // started this, but the GNU linker does it, and some tools depend
3178 // upon it.
3179
3180 void
3181 Layout::link_stabs_sections()
3182 {
3183   if (!this->have_stabstr_section_)
3184     return;
3185
3186   for (Section_list::iterator p = this->section_list_.begin();
3187        p != this->section_list_.end();
3188        ++p)
3189     {
3190       if ((*p)->type() != elfcpp::SHT_STRTAB)
3191         continue;
3192
3193       const char* name = (*p)->name();
3194       if (strncmp(name, ".stab", 5) != 0)
3195         continue;
3196
3197       size_t len = strlen(name);
3198       if (strcmp(name + len - 3, "str") != 0)
3199         continue;
3200
3201       std::string stab_name(name, len - 3);
3202       Output_section* stab_sec;
3203       stab_sec = this->find_output_section(stab_name.c_str());
3204       if (stab_sec != NULL)
3205         stab_sec->set_link_section(*p);
3206     }
3207 }
3208
3209 // Create .gnu_incremental_inputs and related sections needed
3210 // for the next run of incremental linking to check what has changed.
3211
3212 void
3213 Layout::create_incremental_info_sections(Symbol_table* symtab)
3214 {
3215   Incremental_inputs* incr = this->incremental_inputs_;
3216
3217   gold_assert(incr != NULL);
3218
3219   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3220   incr->create_data_sections(symtab);
3221
3222   // Add the .gnu_incremental_inputs section.
3223   const char* incremental_inputs_name =
3224     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3225   Output_section* incremental_inputs_os =
3226     this->make_output_section(incremental_inputs_name,
3227                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3228                               ORDER_INVALID, false);
3229   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3230
3231   // Add the .gnu_incremental_symtab section.
3232   const char* incremental_symtab_name =
3233     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3234   Output_section* incremental_symtab_os =
3235     this->make_output_section(incremental_symtab_name,
3236                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3237                               ORDER_INVALID, false);
3238   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3239   incremental_symtab_os->set_entsize(4);
3240
3241   // Add the .gnu_incremental_relocs section.
3242   const char* incremental_relocs_name =
3243     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3244   Output_section* incremental_relocs_os =
3245     this->make_output_section(incremental_relocs_name,
3246                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3247                               ORDER_INVALID, false);
3248   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3249   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3250
3251   // Add the .gnu_incremental_got_plt section.
3252   const char* incremental_got_plt_name =
3253     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3254   Output_section* incremental_got_plt_os =
3255     this->make_output_section(incremental_got_plt_name,
3256                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3257                               ORDER_INVALID, false);
3258   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3259
3260   // Add the .gnu_incremental_strtab section.
3261   const char* incremental_strtab_name =
3262     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3263   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3264                                                         elfcpp::SHT_STRTAB, 0,
3265                                                         ORDER_INVALID, false);
3266   Output_data_strtab* strtab_data =
3267       new Output_data_strtab(incr->get_stringpool());
3268   incremental_strtab_os->add_output_section_data(strtab_data);
3269
3270   incremental_inputs_os->set_after_input_sections();
3271   incremental_symtab_os->set_after_input_sections();
3272   incremental_relocs_os->set_after_input_sections();
3273   incremental_got_plt_os->set_after_input_sections();
3274
3275   incremental_inputs_os->set_link_section(incremental_strtab_os);
3276   incremental_symtab_os->set_link_section(incremental_inputs_os);
3277   incremental_relocs_os->set_link_section(incremental_inputs_os);
3278   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3279 }
3280
3281 // Return whether SEG1 should be before SEG2 in the output file.  This
3282 // is based entirely on the segment type and flags.  When this is
3283 // called the segment addresses have normally not yet been set.
3284
3285 bool
3286 Layout::segment_precedes(const Output_segment* seg1,
3287                          const Output_segment* seg2)
3288 {
3289   elfcpp::Elf_Word type1 = seg1->type();
3290   elfcpp::Elf_Word type2 = seg2->type();
3291
3292   // The single PT_PHDR segment is required to precede any loadable
3293   // segment.  We simply make it always first.
3294   if (type1 == elfcpp::PT_PHDR)
3295     {
3296       gold_assert(type2 != elfcpp::PT_PHDR);
3297       return true;
3298     }
3299   if (type2 == elfcpp::PT_PHDR)
3300     return false;
3301
3302   // The single PT_INTERP segment is required to precede any loadable
3303   // segment.  We simply make it always second.
3304   if (type1 == elfcpp::PT_INTERP)
3305     {
3306       gold_assert(type2 != elfcpp::PT_INTERP);
3307       return true;
3308     }
3309   if (type2 == elfcpp::PT_INTERP)
3310     return false;
3311
3312   // We then put PT_LOAD segments before any other segments.
3313   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3314     return true;
3315   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3316     return false;
3317
3318   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3319   // segment, because that is where the dynamic linker expects to find
3320   // it (this is just for efficiency; other positions would also work
3321   // correctly).
3322   if (type1 == elfcpp::PT_TLS
3323       && type2 != elfcpp::PT_TLS
3324       && type2 != elfcpp::PT_GNU_RELRO)
3325     return false;
3326   if (type2 == elfcpp::PT_TLS
3327       && type1 != elfcpp::PT_TLS
3328       && type1 != elfcpp::PT_GNU_RELRO)
3329     return true;
3330
3331   // We put the PT_GNU_RELRO segment last, because that is where the
3332   // dynamic linker expects to find it (as with PT_TLS, this is just
3333   // for efficiency).
3334   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3335     return false;
3336   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3337     return true;
3338
3339   const elfcpp::Elf_Word flags1 = seg1->flags();
3340   const elfcpp::Elf_Word flags2 = seg2->flags();
3341
3342   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3343   // by the numeric segment type and flags values.  There should not
3344   // be more than one segment with the same type and flags, except
3345   // when a linker script specifies such.
3346   if (type1 != elfcpp::PT_LOAD)
3347     {
3348       if (type1 != type2)
3349         return type1 < type2;
3350       gold_assert(flags1 != flags2
3351                   || this->script_options_->saw_phdrs_clause());
3352       return flags1 < flags2;
3353     }
3354
3355   // If the addresses are set already, sort by load address.
3356   if (seg1->are_addresses_set())
3357     {
3358       if (!seg2->are_addresses_set())
3359         return true;
3360
3361       unsigned int section_count1 = seg1->output_section_count();
3362       unsigned int section_count2 = seg2->output_section_count();
3363       if (section_count1 == 0 && section_count2 > 0)
3364         return true;
3365       if (section_count1 > 0 && section_count2 == 0)
3366         return false;
3367
3368       uint64_t paddr1 = (seg1->are_addresses_set()
3369                          ? seg1->paddr()
3370                          : seg1->first_section_load_address());
3371       uint64_t paddr2 = (seg2->are_addresses_set()
3372                          ? seg2->paddr()
3373                          : seg2->first_section_load_address());
3374
3375       if (paddr1 != paddr2)
3376         return paddr1 < paddr2;
3377     }
3378   else if (seg2->are_addresses_set())
3379     return false;
3380
3381   // A segment which holds large data comes after a segment which does
3382   // not hold large data.
3383   if (seg1->is_large_data_segment())
3384     {
3385       if (!seg2->is_large_data_segment())
3386         return false;
3387     }
3388   else if (seg2->is_large_data_segment())
3389     return true;
3390
3391   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3392   // segments come before writable segments.  Then writable segments
3393   // with data come before writable segments without data.  Then
3394   // executable segments come before non-executable segments.  Then
3395   // the unlikely case of a non-readable segment comes before the
3396   // normal case of a readable segment.  If there are multiple
3397   // segments with the same type and flags, we require that the
3398   // address be set, and we sort by virtual address and then physical
3399   // address.
3400   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3401     return (flags1 & elfcpp::PF_W) == 0;
3402   if ((flags1 & elfcpp::PF_W) != 0
3403       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3404     return seg1->has_any_data_sections();
3405   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3406     return (flags1 & elfcpp::PF_X) != 0;
3407   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3408     return (flags1 & elfcpp::PF_R) == 0;
3409
3410   // We shouldn't get here--we shouldn't create segments which we
3411   // can't distinguish.  Unless of course we are using a weird linker
3412   // script or overlapping --section-start options.  We could also get
3413   // here if plugins want unique segments for subsets of sections.
3414   gold_assert(this->script_options_->saw_phdrs_clause()
3415               || parameters->options().any_section_start()
3416               || this->is_unique_segment_for_sections_specified());
3417   return false;
3418 }
3419
3420 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3421
3422 static off_t
3423 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3424 {
3425   uint64_t unsigned_off = off;
3426   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3427                           | (addr & (abi_pagesize - 1)));
3428   if (aligned_off < unsigned_off)
3429     aligned_off += abi_pagesize;
3430   return aligned_off;
3431 }
3432
3433 // On targets where the text segment contains only executable code,
3434 // a non-executable segment is never the text segment.
3435
3436 static inline bool
3437 is_text_segment(const Target* target, const Output_segment* seg)
3438 {
3439   elfcpp::Elf_Xword flags = seg->flags();
3440   if ((flags & elfcpp::PF_W) != 0)
3441     return false;
3442   if ((flags & elfcpp::PF_X) == 0)
3443     return !target->isolate_execinstr();
3444   return true;
3445 }
3446
3447 // Set the file offsets of all the segments, and all the sections they
3448 // contain.  They have all been created.  LOAD_SEG must be be laid out
3449 // first.  Return the offset of the data to follow.
3450
3451 off_t
3452 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3453                             unsigned int* pshndx)
3454 {
3455   // Sort them into the final order.  We use a stable sort so that we
3456   // don't randomize the order of indistinguishable segments created
3457   // by linker scripts.
3458   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3459                    Layout::Compare_segments(this));
3460
3461   // Find the PT_LOAD segments, and set their addresses and offsets
3462   // and their section's addresses and offsets.
3463   uint64_t start_addr;
3464   if (parameters->options().user_set_Ttext())
3465     start_addr = parameters->options().Ttext();
3466   else if (parameters->options().output_is_position_independent())
3467     start_addr = 0;
3468   else
3469     start_addr = target->default_text_segment_address();
3470
3471   uint64_t addr = start_addr;
3472   off_t off = 0;
3473
3474   // If LOAD_SEG is NULL, then the file header and segment headers
3475   // will not be loadable.  But they still need to be at offset 0 in
3476   // the file.  Set their offsets now.
3477   if (load_seg == NULL)
3478     {
3479       for (Data_list::iterator p = this->special_output_list_.begin();
3480            p != this->special_output_list_.end();
3481            ++p)
3482         {
3483           off = align_address(off, (*p)->addralign());
3484           (*p)->set_address_and_file_offset(0, off);
3485           off += (*p)->data_size();
3486         }
3487     }
3488
3489   unsigned int increase_relro = this->increase_relro_;
3490   if (this->script_options_->saw_sections_clause())
3491     increase_relro = 0;
3492
3493   const bool check_sections = parameters->options().check_sections();
3494   Output_segment* last_load_segment = NULL;
3495
3496   unsigned int shndx_begin = *pshndx;
3497   unsigned int shndx_load_seg = *pshndx;
3498
3499   for (Segment_list::iterator p = this->segment_list_.begin();
3500        p != this->segment_list_.end();
3501        ++p)
3502     {
3503       if ((*p)->type() == elfcpp::PT_LOAD)
3504         {
3505           if (target->isolate_execinstr())
3506             {
3507               // When we hit the segment that should contain the
3508               // file headers, reset the file offset so we place
3509               // it and subsequent segments appropriately.
3510               // We'll fix up the preceding segments below.
3511               if (load_seg == *p)
3512                 {
3513                   if (off == 0)
3514                     load_seg = NULL;
3515                   else
3516                     {
3517                       off = 0;
3518                       shndx_load_seg = *pshndx;
3519                     }
3520                 }
3521             }
3522           else
3523             {
3524               // Verify that the file headers fall into the first segment.
3525               if (load_seg != NULL && load_seg != *p)
3526                 gold_unreachable();
3527               load_seg = NULL;
3528             }
3529
3530           bool are_addresses_set = (*p)->are_addresses_set();
3531           if (are_addresses_set)
3532             {
3533               // When it comes to setting file offsets, we care about
3534               // the physical address.
3535               addr = (*p)->paddr();
3536             }
3537           else if (parameters->options().user_set_Ttext()
3538                    && (parameters->options().omagic()
3539                        || is_text_segment(target, *p)))
3540             {
3541               are_addresses_set = true;
3542             }
3543           else if (parameters->options().user_set_Trodata_segment()
3544                    && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3545             {
3546               addr = parameters->options().Trodata_segment();
3547               are_addresses_set = true;
3548             }
3549           else if (parameters->options().user_set_Tdata()
3550                    && ((*p)->flags() & elfcpp::PF_W) != 0
3551                    && (!parameters->options().user_set_Tbss()
3552                        || (*p)->has_any_data_sections()))
3553             {
3554               addr = parameters->options().Tdata();
3555               are_addresses_set = true;
3556             }
3557           else if (parameters->options().user_set_Tbss()
3558                    && ((*p)->flags() & elfcpp::PF_W) != 0
3559                    && !(*p)->has_any_data_sections())
3560             {
3561               addr = parameters->options().Tbss();
3562               are_addresses_set = true;
3563             }
3564
3565           uint64_t orig_addr = addr;
3566           uint64_t orig_off = off;
3567
3568           uint64_t aligned_addr = 0;
3569           uint64_t abi_pagesize = target->abi_pagesize();
3570           uint64_t common_pagesize = target->common_pagesize();
3571
3572           if (!parameters->options().nmagic()
3573               && !parameters->options().omagic())
3574             (*p)->set_minimum_p_align(abi_pagesize);
3575
3576           if (!are_addresses_set)
3577             {
3578               // Skip the address forward one page, maintaining the same
3579               // position within the page.  This lets us store both segments
3580               // overlapping on a single page in the file, but the loader will
3581               // put them on different pages in memory. We will revisit this
3582               // decision once we know the size of the segment.
3583
3584               uint64_t max_align = (*p)->maximum_alignment();
3585               if (max_align > abi_pagesize)
3586                 addr = align_address(addr, max_align);
3587               aligned_addr = addr;
3588
3589               if (load_seg == *p)
3590                 {
3591                   // This is the segment that will contain the file
3592                   // headers, so its offset will have to be exactly zero.
3593                   gold_assert(orig_off == 0);
3594
3595                   // If the target wants a fixed minimum distance from the
3596                   // text segment to the read-only segment, move up now.
3597                   uint64_t min_addr =
3598                     start_addr + (parameters->options().user_set_rosegment_gap()
3599                                   ? parameters->options().rosegment_gap()
3600                                   : target->rosegment_gap());
3601                   if (addr < min_addr)
3602                     addr = min_addr;
3603
3604                   // But this is not the first segment!  To make its
3605                   // address congruent with its offset, that address better
3606                   // be aligned to the ABI-mandated page size.
3607                   addr = align_address(addr, abi_pagesize);
3608                   aligned_addr = addr;
3609                 }
3610               else
3611                 {
3612                   if ((addr & (abi_pagesize - 1)) != 0)
3613                     addr = addr + abi_pagesize;
3614
3615                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3616                 }
3617             }
3618
3619           if (!parameters->options().nmagic()
3620               && !parameters->options().omagic())
3621             {
3622               // Here we are also taking care of the case when
3623               // the maximum segment alignment is larger than the page size.
3624               off = align_file_offset(off, addr,
3625                                       std::max(abi_pagesize,
3626                                                (*p)->maximum_alignment()));
3627             }
3628           else
3629             {
3630               // This is -N or -n with a section script which prevents
3631               // us from using a load segment.  We need to ensure that
3632               // the file offset is aligned to the alignment of the
3633               // segment.  This is because the linker script
3634               // implicitly assumed a zero offset.  If we don't align
3635               // here, then the alignment of the sections in the
3636               // linker script may not match the alignment of the
3637               // sections in the set_section_addresses call below,
3638               // causing an error about dot moving backward.
3639               off = align_address(off, (*p)->maximum_alignment());
3640             }
3641
3642           unsigned int shndx_hold = *pshndx;
3643           bool has_relro = false;
3644           uint64_t new_addr = (*p)->set_section_addresses(target, this,
3645                                                           false, addr,
3646                                                           &increase_relro,
3647                                                           &has_relro,
3648                                                           &off, pshndx);
3649
3650           // Now that we know the size of this segment, we may be able
3651           // to save a page in memory, at the cost of wasting some
3652           // file space, by instead aligning to the start of a new
3653           // page.  Here we use the real machine page size rather than
3654           // the ABI mandated page size.  If the segment has been
3655           // aligned so that the relro data ends at a page boundary,
3656           // we do not try to realign it.
3657
3658           if (!are_addresses_set
3659               && !has_relro
3660               && aligned_addr != addr
3661               && !parameters->incremental())
3662             {
3663               uint64_t first_off = (common_pagesize
3664                                     - (aligned_addr
3665                                        & (common_pagesize - 1)));
3666               uint64_t last_off = new_addr & (common_pagesize - 1);
3667               if (first_off > 0
3668                   && last_off > 0
3669                   && ((aligned_addr & ~ (common_pagesize - 1))
3670                       != (new_addr & ~ (common_pagesize - 1)))
3671                   && first_off + last_off <= common_pagesize)
3672                 {
3673                   *pshndx = shndx_hold;
3674                   addr = align_address(aligned_addr, common_pagesize);
3675                   addr = align_address(addr, (*p)->maximum_alignment());
3676                   if ((addr & (abi_pagesize - 1)) != 0)
3677                     addr = addr + abi_pagesize;
3678                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3679                   off = align_file_offset(off, addr, abi_pagesize);
3680
3681                   increase_relro = this->increase_relro_;
3682                   if (this->script_options_->saw_sections_clause())
3683                     increase_relro = 0;
3684                   has_relro = false;
3685
3686                   new_addr = (*p)->set_section_addresses(target, this,
3687                                                          true, addr,
3688                                                          &increase_relro,
3689                                                          &has_relro,
3690                                                          &off, pshndx);
3691                 }
3692             }
3693
3694           addr = new_addr;
3695
3696           // Implement --check-sections.  We know that the segments
3697           // are sorted by LMA.
3698           if (check_sections && last_load_segment != NULL)
3699             {
3700               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3701               if (last_load_segment->paddr() + last_load_segment->memsz()
3702                   > (*p)->paddr())
3703                 {
3704                   unsigned long long lb1 = last_load_segment->paddr();
3705                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3706                   unsigned long long lb2 = (*p)->paddr();
3707                   unsigned long long le2 = lb2 + (*p)->memsz();
3708                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3709                                "[0x%llx -> 0x%llx]"),
3710                              lb1, le1, lb2, le2);
3711                 }
3712             }
3713           last_load_segment = *p;
3714         }
3715     }
3716
3717   if (load_seg != NULL && target->isolate_execinstr())
3718     {
3719       // Process the early segments again, setting their file offsets
3720       // so they land after the segments starting at LOAD_SEG.
3721       off = align_file_offset(off, 0, target->abi_pagesize());
3722
3723       this->reset_relax_output();
3724
3725       for (Segment_list::iterator p = this->segment_list_.begin();
3726            *p != load_seg;
3727            ++p)
3728         {
3729           if ((*p)->type() == elfcpp::PT_LOAD)
3730             {
3731               // We repeat the whole job of assigning addresses and
3732               // offsets, but we really only want to change the offsets and
3733               // must ensure that the addresses all come out the same as
3734               // they did the first time through.
3735               bool has_relro = false;
3736               const uint64_t old_addr = (*p)->vaddr();
3737               const uint64_t old_end = old_addr + (*p)->memsz();
3738               uint64_t new_addr = (*p)->set_section_addresses(target, this,
3739                                                               true, old_addr,
3740                                                               &increase_relro,
3741                                                               &has_relro,
3742                                                               &off,
3743                                                               &shndx_begin);
3744               gold_assert(new_addr == old_end);
3745             }
3746         }
3747
3748       gold_assert(shndx_begin == shndx_load_seg);
3749     }
3750
3751   // Handle the non-PT_LOAD segments, setting their offsets from their
3752   // section's offsets.
3753   for (Segment_list::iterator p = this->segment_list_.begin();
3754        p != this->segment_list_.end();
3755        ++p)
3756     {
3757       // PT_GNU_STACK was set up correctly when it was created.
3758       if ((*p)->type() != elfcpp::PT_LOAD
3759           && (*p)->type() != elfcpp::PT_GNU_STACK)
3760         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3761                          ? increase_relro
3762                          : 0);
3763     }
3764
3765   // Set the TLS offsets for each section in the PT_TLS segment.
3766   if (this->tls_segment_ != NULL)
3767     this->tls_segment_->set_tls_offsets();
3768
3769   return off;
3770 }
3771
3772 // Set the offsets of all the allocated sections when doing a
3773 // relocatable link.  This does the same jobs as set_segment_offsets,
3774 // only for a relocatable link.
3775
3776 off_t
3777 Layout::set_relocatable_section_offsets(Output_data* file_header,
3778                                         unsigned int* pshndx)
3779 {
3780   off_t off = 0;
3781
3782   file_header->set_address_and_file_offset(0, 0);
3783   off += file_header->data_size();
3784
3785   for (Section_list::iterator p = this->section_list_.begin();
3786        p != this->section_list_.end();
3787        ++p)
3788     {
3789       // We skip unallocated sections here, except that group sections
3790       // have to come first.
3791       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3792           && (*p)->type() != elfcpp::SHT_GROUP)
3793         continue;
3794
3795       off = align_address(off, (*p)->addralign());
3796
3797       // The linker script might have set the address.
3798       if (!(*p)->is_address_valid())
3799         (*p)->set_address(0);
3800       (*p)->set_file_offset(off);
3801       (*p)->finalize_data_size();
3802       if ((*p)->type() != elfcpp::SHT_NOBITS)
3803         off += (*p)->data_size();
3804
3805       (*p)->set_out_shndx(*pshndx);
3806       ++*pshndx;
3807     }
3808
3809   return off;
3810 }
3811
3812 // Set the file offset of all the sections not associated with a
3813 // segment.
3814
3815 off_t
3816 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3817 {
3818   off_t startoff = off;
3819   off_t maxoff = off;
3820
3821   for (Section_list::iterator p = this->unattached_section_list_.begin();
3822        p != this->unattached_section_list_.end();
3823        ++p)
3824     {
3825       // The symtab section is handled in create_symtab_sections.
3826       if (*p == this->symtab_section_)
3827         continue;
3828
3829       // If we've already set the data size, don't set it again.
3830       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3831         continue;
3832
3833       if (pass == BEFORE_INPUT_SECTIONS_PASS
3834           && (*p)->requires_postprocessing())
3835         {
3836           (*p)->create_postprocessing_buffer();
3837           this->any_postprocessing_sections_ = true;
3838         }
3839
3840       if (pass == BEFORE_INPUT_SECTIONS_PASS
3841           && (*p)->after_input_sections())
3842         continue;
3843       else if (pass == POSTPROCESSING_SECTIONS_PASS
3844                && (!(*p)->after_input_sections()
3845                    || (*p)->type() == elfcpp::SHT_STRTAB))
3846         continue;
3847       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3848                && (!(*p)->after_input_sections()
3849                    || (*p)->type() != elfcpp::SHT_STRTAB))
3850         continue;
3851
3852       if (!parameters->incremental_update())
3853         {
3854           off = align_address(off, (*p)->addralign());
3855           (*p)->set_file_offset(off);
3856           (*p)->finalize_data_size();
3857         }
3858       else
3859         {
3860           // Incremental update: allocate file space from free list.
3861           (*p)->pre_finalize_data_size();
3862           off_t current_size = (*p)->current_data_size();
3863           off = this->allocate(current_size, (*p)->addralign(), startoff);
3864           if (off == -1)
3865             {
3866               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3867                 this->free_list_.dump();
3868               gold_assert((*p)->output_section() != NULL);
3869               gold_fallback(_("out of patch space for section %s; "
3870                               "relink with --incremental-full"),
3871                             (*p)->output_section()->name());
3872             }
3873           (*p)->set_file_offset(off);
3874           (*p)->finalize_data_size();
3875           if ((*p)->data_size() > current_size)
3876             {
3877               gold_assert((*p)->output_section() != NULL);
3878               gold_fallback(_("%s: section changed size; "
3879                               "relink with --incremental-full"),
3880                             (*p)->output_section()->name());
3881             }
3882           gold_debug(DEBUG_INCREMENTAL,
3883                      "set_section_offsets: %08lx %08lx %s",
3884                      static_cast<long>(off),
3885                      static_cast<long>((*p)->data_size()),
3886                      ((*p)->output_section() != NULL
3887                       ? (*p)->output_section()->name() : "(special)"));
3888         }
3889
3890       off += (*p)->data_size();
3891       if (off > maxoff)
3892         maxoff = off;
3893
3894       // At this point the name must be set.
3895       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3896         this->namepool_.add((*p)->name(), false, NULL);
3897     }
3898   return maxoff;
3899 }
3900
3901 // Set the section indexes of all the sections not associated with a
3902 // segment.
3903
3904 unsigned int
3905 Layout::set_section_indexes(unsigned int shndx)
3906 {
3907   for (Section_list::iterator p = this->unattached_section_list_.begin();
3908        p != this->unattached_section_list_.end();
3909        ++p)
3910     {
3911       if (!(*p)->has_out_shndx())
3912         {
3913           (*p)->set_out_shndx(shndx);
3914           ++shndx;
3915         }
3916     }
3917   return shndx;
3918 }
3919
3920 // Set the section addresses according to the linker script.  This is
3921 // only called when we see a SECTIONS clause.  This returns the
3922 // program segment which should hold the file header and segment
3923 // headers, if any.  It will return NULL if they should not be in a
3924 // segment.
3925
3926 Output_segment*
3927 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3928 {
3929   Script_sections* ss = this->script_options_->script_sections();
3930   gold_assert(ss->saw_sections_clause());
3931   return this->script_options_->set_section_addresses(symtab, this);
3932 }
3933
3934 // Place the orphan sections in the linker script.
3935
3936 void
3937 Layout::place_orphan_sections_in_script()
3938 {
3939   Script_sections* ss = this->script_options_->script_sections();
3940   gold_assert(ss->saw_sections_clause());
3941
3942   // Place each orphaned output section in the script.
3943   for (Section_list::iterator p = this->section_list_.begin();
3944        p != this->section_list_.end();
3945        ++p)
3946     {
3947       if (!(*p)->found_in_sections_clause())
3948         ss->place_orphan(*p);
3949     }
3950 }
3951
3952 // Count the local symbols in the regular symbol table and the dynamic
3953 // symbol table, and build the respective string pools.
3954
3955 void
3956 Layout::count_local_symbols(const Task* task,
3957                             const Input_objects* input_objects)
3958 {
3959   // First, figure out an upper bound on the number of symbols we'll
3960   // be inserting into each pool.  This helps us create the pools with
3961   // the right size, to avoid unnecessary hashtable resizing.
3962   unsigned int symbol_count = 0;
3963   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3964        p != input_objects->relobj_end();
3965        ++p)
3966     symbol_count += (*p)->local_symbol_count();
3967
3968   // Go from "upper bound" to "estimate."  We overcount for two
3969   // reasons: we double-count symbols that occur in more than one
3970   // object file, and we count symbols that are dropped from the
3971   // output.  Add it all together and assume we overcount by 100%.
3972   symbol_count /= 2;
3973
3974   // We assume all symbols will go into both the sympool and dynpool.
3975   this->sympool_.reserve(symbol_count);
3976   this->dynpool_.reserve(symbol_count);
3977
3978   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3979        p != input_objects->relobj_end();
3980        ++p)
3981     {
3982       Task_lock_obj<Object> tlo(task, *p);
3983       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3984     }
3985 }
3986
3987 // Create the symbol table sections.  Here we also set the final
3988 // values of the symbols.  At this point all the loadable sections are
3989 // fully laid out.  SHNUM is the number of sections so far.
3990
3991 void
3992 Layout::create_symtab_sections(const Input_objects* input_objects,
3993                                Symbol_table* symtab,
3994                                unsigned int shnum,
3995                                off_t* poff)
3996 {
3997   int symsize;
3998   unsigned int align;
3999   if (parameters->target().get_size() == 32)
4000     {
4001       symsize = elfcpp::Elf_sizes<32>::sym_size;
4002       align = 4;
4003     }
4004   else if (parameters->target().get_size() == 64)
4005     {
4006       symsize = elfcpp::Elf_sizes<64>::sym_size;
4007       align = 8;
4008     }
4009   else
4010     gold_unreachable();
4011
4012   // Compute file offsets relative to the start of the symtab section.
4013   off_t off = 0;
4014
4015   // Save space for the dummy symbol at the start of the section.  We
4016   // never bother to write this out--it will just be left as zero.
4017   off += symsize;
4018   unsigned int local_symbol_index = 1;
4019
4020   // Add STT_SECTION symbols for each Output section which needs one.
4021   for (Section_list::iterator p = this->section_list_.begin();
4022        p != this->section_list_.end();
4023        ++p)
4024     {
4025       if (!(*p)->needs_symtab_index())
4026         (*p)->set_symtab_index(-1U);
4027       else
4028         {
4029           (*p)->set_symtab_index(local_symbol_index);
4030           ++local_symbol_index;
4031           off += symsize;
4032         }
4033     }
4034
4035   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4036        p != input_objects->relobj_end();
4037        ++p)
4038     {
4039       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4040                                                         off, symtab);
4041       off += (index - local_symbol_index) * symsize;
4042       local_symbol_index = index;
4043     }
4044
4045   unsigned int local_symcount = local_symbol_index;
4046   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4047
4048   off_t dynoff;
4049   size_t dyn_global_index;
4050   size_t dyncount;
4051   if (this->dynsym_section_ == NULL)
4052     {
4053       dynoff = 0;
4054       dyn_global_index = 0;
4055       dyncount = 0;
4056     }
4057   else
4058     {
4059       dyn_global_index = this->dynsym_section_->info();
4060       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4061       dynoff = this->dynsym_section_->offset() + locsize;
4062       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4063       gold_assert(static_cast<off_t>(dyncount * symsize)
4064                   == this->dynsym_section_->data_size() - locsize);
4065     }
4066
4067   off_t global_off = off;
4068   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4069                          &this->sympool_, &local_symcount);
4070
4071   if (!parameters->options().strip_all())
4072     {
4073       this->sympool_.set_string_offsets();
4074
4075       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4076       Output_section* osymtab = this->make_output_section(symtab_name,
4077                                                           elfcpp::SHT_SYMTAB,
4078                                                           0, ORDER_INVALID,
4079                                                           false);
4080       this->symtab_section_ = osymtab;
4081
4082       Output_section_data* pos = new Output_data_fixed_space(off, align,
4083                                                              "** symtab");
4084       osymtab->add_output_section_data(pos);
4085
4086       // We generate a .symtab_shndx section if we have more than
4087       // SHN_LORESERVE sections.  Technically it is possible that we
4088       // don't need one, because it is possible that there are no
4089       // symbols in any of sections with indexes larger than
4090       // SHN_LORESERVE.  That is probably unusual, though, and it is
4091       // easier to always create one than to compute section indexes
4092       // twice (once here, once when writing out the symbols).
4093       if (shnum >= elfcpp::SHN_LORESERVE)
4094         {
4095           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4096                                                                false, NULL);
4097           Output_section* osymtab_xindex =
4098             this->make_output_section(symtab_xindex_name,
4099                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
4100                                       ORDER_INVALID, false);
4101
4102           size_t symcount = off / symsize;
4103           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4104
4105           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4106
4107           osymtab_xindex->set_link_section(osymtab);
4108           osymtab_xindex->set_addralign(4);
4109           osymtab_xindex->set_entsize(4);
4110
4111           osymtab_xindex->set_after_input_sections();
4112
4113           // This tells the driver code to wait until the symbol table
4114           // has written out before writing out the postprocessing
4115           // sections, including the .symtab_shndx section.
4116           this->any_postprocessing_sections_ = true;
4117         }
4118
4119       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4120       Output_section* ostrtab = this->make_output_section(strtab_name,
4121                                                           elfcpp::SHT_STRTAB,
4122                                                           0, ORDER_INVALID,
4123                                                           false);
4124
4125       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4126       ostrtab->add_output_section_data(pstr);
4127
4128       off_t symtab_off;
4129       if (!parameters->incremental_update())
4130         symtab_off = align_address(*poff, align);
4131       else
4132         {
4133           symtab_off = this->allocate(off, align, *poff);
4134           if (off == -1)
4135             gold_fallback(_("out of patch space for symbol table; "
4136                             "relink with --incremental-full"));
4137           gold_debug(DEBUG_INCREMENTAL,
4138                      "create_symtab_sections: %08lx %08lx .symtab",
4139                      static_cast<long>(symtab_off),
4140                      static_cast<long>(off));
4141         }
4142
4143       symtab->set_file_offset(symtab_off + global_off);
4144       osymtab->set_file_offset(symtab_off);
4145       osymtab->finalize_data_size();
4146       osymtab->set_link_section(ostrtab);
4147       osymtab->set_info(local_symcount);
4148       osymtab->set_entsize(symsize);
4149
4150       if (symtab_off + off > *poff)
4151         *poff = symtab_off + off;
4152     }
4153 }
4154
4155 // Create the .shstrtab section, which holds the names of the
4156 // sections.  At the time this is called, we have created all the
4157 // output sections except .shstrtab itself.
4158
4159 Output_section*
4160 Layout::create_shstrtab()
4161 {
4162   // FIXME: We don't need to create a .shstrtab section if we are
4163   // stripping everything.
4164
4165   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4166
4167   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4168                                                  ORDER_INVALID, false);
4169
4170   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4171     {
4172       // We can't write out this section until we've set all the
4173       // section names, and we don't set the names of compressed
4174       // output sections until relocations are complete.  FIXME: With
4175       // the current names we use, this is unnecessary.
4176       os->set_after_input_sections();
4177     }
4178
4179   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4180   os->add_output_section_data(posd);
4181
4182   return os;
4183 }
4184
4185 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4186 // offset.
4187
4188 void
4189 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4190 {
4191   Output_section_headers* oshdrs;
4192   oshdrs = new Output_section_headers(this,
4193                                       &this->segment_list_,
4194                                       &this->section_list_,
4195                                       &this->unattached_section_list_,
4196                                       &this->namepool_,
4197                                       shstrtab_section);
4198   off_t off;
4199   if (!parameters->incremental_update())
4200     off = align_address(*poff, oshdrs->addralign());
4201   else
4202     {
4203       oshdrs->pre_finalize_data_size();
4204       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4205       if (off == -1)
4206           gold_fallback(_("out of patch space for section header table; "
4207                           "relink with --incremental-full"));
4208       gold_debug(DEBUG_INCREMENTAL,
4209                  "create_shdrs: %08lx %08lx (section header table)",
4210                  static_cast<long>(off),
4211                  static_cast<long>(off + oshdrs->data_size()));
4212     }
4213   oshdrs->set_address_and_file_offset(0, off);
4214   off += oshdrs->data_size();
4215   if (off > *poff)
4216     *poff = off;
4217   this->section_headers_ = oshdrs;
4218 }
4219
4220 // Count the allocated sections.
4221
4222 size_t
4223 Layout::allocated_output_section_count() const
4224 {
4225   size_t section_count = 0;
4226   for (Segment_list::const_iterator p = this->segment_list_.begin();
4227        p != this->segment_list_.end();
4228        ++p)
4229     section_count += (*p)->output_section_count();
4230   return section_count;
4231 }
4232
4233 // Create the dynamic symbol table.
4234
4235 void
4236 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4237                               Symbol_table* symtab,
4238                               Output_section** pdynstr,
4239                               unsigned int* plocal_dynamic_count,
4240                               std::vector<Symbol*>* pdynamic_symbols,
4241                               Versions* pversions)
4242 {
4243   // Count all the symbols in the dynamic symbol table, and set the
4244   // dynamic symbol indexes.
4245
4246   // Skip symbol 0, which is always all zeroes.
4247   unsigned int index = 1;
4248
4249   // Add STT_SECTION symbols for each Output section which needs one.
4250   for (Section_list::iterator p = this->section_list_.begin();
4251        p != this->section_list_.end();
4252        ++p)
4253     {
4254       if (!(*p)->needs_dynsym_index())
4255         (*p)->set_dynsym_index(-1U);
4256       else
4257         {
4258           (*p)->set_dynsym_index(index);
4259           ++index;
4260         }
4261     }
4262
4263   // Count the local symbols that need to go in the dynamic symbol table,
4264   // and set the dynamic symbol indexes.
4265   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4266        p != input_objects->relobj_end();
4267        ++p)
4268     {
4269       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4270       index = new_index;
4271     }
4272
4273   unsigned int local_symcount = index;
4274   *plocal_dynamic_count = local_symcount;
4275
4276   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4277                                      &this->dynpool_, pversions);
4278
4279   int symsize;
4280   unsigned int align;
4281   const int size = parameters->target().get_size();
4282   if (size == 32)
4283     {
4284       symsize = elfcpp::Elf_sizes<32>::sym_size;
4285       align = 4;
4286     }
4287   else if (size == 64)
4288     {
4289       symsize = elfcpp::Elf_sizes<64>::sym_size;
4290       align = 8;
4291     }
4292   else
4293     gold_unreachable();
4294
4295   // Create the dynamic symbol table section.
4296
4297   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4298                                                        elfcpp::SHT_DYNSYM,
4299                                                        elfcpp::SHF_ALLOC,
4300                                                        false,
4301                                                        ORDER_DYNAMIC_LINKER,
4302                                                        false, false);
4303
4304   // Check for NULL as a linker script may discard .dynsym.
4305   if (dynsym != NULL)
4306     {
4307       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4308                                                                align,
4309                                                                "** dynsym");
4310       dynsym->add_output_section_data(odata);
4311
4312       dynsym->set_info(local_symcount);
4313       dynsym->set_entsize(symsize);
4314       dynsym->set_addralign(align);
4315
4316       this->dynsym_section_ = dynsym;
4317     }
4318
4319   Output_data_dynamic* const odyn = this->dynamic_data_;
4320   if (odyn != NULL)
4321     {
4322       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4323       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4324     }
4325
4326   // If there are more than SHN_LORESERVE allocated sections, we
4327   // create a .dynsym_shndx section.  It is possible that we don't
4328   // need one, because it is possible that there are no dynamic
4329   // symbols in any of the sections with indexes larger than
4330   // SHN_LORESERVE.  This is probably unusual, though, and at this
4331   // time we don't know the actual section indexes so it is
4332   // inconvenient to check.
4333   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4334     {
4335       Output_section* dynsym_xindex =
4336         this->choose_output_section(NULL, ".dynsym_shndx",
4337                                     elfcpp::SHT_SYMTAB_SHNDX,
4338                                     elfcpp::SHF_ALLOC,
4339                                     false, ORDER_DYNAMIC_LINKER, false, false);
4340
4341       if (dynsym_xindex != NULL)
4342         {
4343           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4344
4345           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4346
4347           dynsym_xindex->set_link_section(dynsym);
4348           dynsym_xindex->set_addralign(4);
4349           dynsym_xindex->set_entsize(4);
4350
4351           dynsym_xindex->set_after_input_sections();
4352
4353           // This tells the driver code to wait until the symbol table
4354           // has written out before writing out the postprocessing
4355           // sections, including the .dynsym_shndx section.
4356           this->any_postprocessing_sections_ = true;
4357         }
4358     }
4359
4360   // Create the dynamic string table section.
4361
4362   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4363                                                        elfcpp::SHT_STRTAB,
4364                                                        elfcpp::SHF_ALLOC,
4365                                                        false,
4366                                                        ORDER_DYNAMIC_LINKER,
4367                                                        false, false);
4368   *pdynstr = dynstr;
4369   if (dynstr != NULL)
4370     {
4371       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4372       dynstr->add_output_section_data(strdata);
4373
4374       if (dynsym != NULL)
4375         dynsym->set_link_section(dynstr);
4376       if (this->dynamic_section_ != NULL)
4377         this->dynamic_section_->set_link_section(dynstr);
4378
4379       if (odyn != NULL)
4380         {
4381           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4382           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4383         }
4384     }
4385
4386   // Create the hash tables.  The Gnu-style hash table must be
4387   // built first, because it changes the order of the symbols
4388   // in the dynamic symbol table.
4389
4390   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4391       || strcmp(parameters->options().hash_style(), "both") == 0)
4392     {
4393       unsigned char* phash;
4394       unsigned int hashlen;
4395       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4396                                     &phash, &hashlen);
4397
4398       Output_section* hashsec =
4399         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4400                                     elfcpp::SHF_ALLOC, false,
4401                                     ORDER_DYNAMIC_LINKER, false, false);
4402
4403       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4404                                                                    hashlen,
4405                                                                    align,
4406                                                                    "** hash");
4407       if (hashsec != NULL && hashdata != NULL)
4408         hashsec->add_output_section_data(hashdata);
4409
4410       if (hashsec != NULL)
4411         {
4412           if (dynsym != NULL)
4413             hashsec->set_link_section(dynsym);
4414
4415           // For a 64-bit target, the entries in .gnu.hash do not have
4416           // a uniform size, so we only set the entry size for a
4417           // 32-bit target.
4418           if (parameters->target().get_size() == 32)
4419             hashsec->set_entsize(4);
4420
4421           if (odyn != NULL)
4422             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4423         }
4424     }
4425
4426   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4427       || strcmp(parameters->options().hash_style(), "both") == 0)
4428     {
4429       unsigned char* phash;
4430       unsigned int hashlen;
4431       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4432                                     &phash, &hashlen);
4433
4434       Output_section* hashsec =
4435         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4436                                     elfcpp::SHF_ALLOC, false,
4437                                     ORDER_DYNAMIC_LINKER, false, false);
4438
4439       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4440                                                                    hashlen,
4441                                                                    align,
4442                                                                    "** hash");
4443       if (hashsec != NULL && hashdata != NULL)
4444         hashsec->add_output_section_data(hashdata);
4445
4446       if (hashsec != NULL)
4447         {
4448           if (dynsym != NULL)
4449             hashsec->set_link_section(dynsym);
4450           hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4451         }
4452
4453       if (odyn != NULL)
4454         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4455     }
4456 }
4457
4458 // Assign offsets to each local portion of the dynamic symbol table.
4459
4460 void
4461 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4462 {
4463   Output_section* dynsym = this->dynsym_section_;
4464   if (dynsym == NULL)
4465     return;
4466
4467   off_t off = dynsym->offset();
4468
4469   // Skip the dummy symbol at the start of the section.
4470   off += dynsym->entsize();
4471
4472   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4473        p != input_objects->relobj_end();
4474        ++p)
4475     {
4476       unsigned int count = (*p)->set_local_dynsym_offset(off);
4477       off += count * dynsym->entsize();
4478     }
4479 }
4480
4481 // Create the version sections.
4482
4483 void
4484 Layout::create_version_sections(const Versions* versions,
4485                                 const Symbol_table* symtab,
4486                                 unsigned int local_symcount,
4487                                 const std::vector<Symbol*>& dynamic_symbols,
4488                                 const Output_section* dynstr)
4489 {
4490   if (!versions->any_defs() && !versions->any_needs())
4491     return;
4492
4493   switch (parameters->size_and_endianness())
4494     {
4495 #ifdef HAVE_TARGET_32_LITTLE
4496     case Parameters::TARGET_32_LITTLE:
4497       this->sized_create_version_sections<32, false>(versions, symtab,
4498                                                      local_symcount,
4499                                                      dynamic_symbols, dynstr);
4500       break;
4501 #endif
4502 #ifdef HAVE_TARGET_32_BIG
4503     case Parameters::TARGET_32_BIG:
4504       this->sized_create_version_sections<32, true>(versions, symtab,
4505                                                     local_symcount,
4506                                                     dynamic_symbols, dynstr);
4507       break;
4508 #endif
4509 #ifdef HAVE_TARGET_64_LITTLE
4510     case Parameters::TARGET_64_LITTLE:
4511       this->sized_create_version_sections<64, false>(versions, symtab,
4512                                                      local_symcount,
4513                                                      dynamic_symbols, dynstr);
4514       break;
4515 #endif
4516 #ifdef HAVE_TARGET_64_BIG
4517     case Parameters::TARGET_64_BIG:
4518       this->sized_create_version_sections<64, true>(versions, symtab,
4519                                                     local_symcount,
4520                                                     dynamic_symbols, dynstr);
4521       break;
4522 #endif
4523     default:
4524       gold_unreachable();
4525     }
4526 }
4527
4528 // Create the version sections, sized version.
4529
4530 template<int size, bool big_endian>
4531 void
4532 Layout::sized_create_version_sections(
4533     const Versions* versions,
4534     const Symbol_table* symtab,
4535     unsigned int local_symcount,
4536     const std::vector<Symbol*>& dynamic_symbols,
4537     const Output_section* dynstr)
4538 {
4539   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4540                                                      elfcpp::SHT_GNU_versym,
4541                                                      elfcpp::SHF_ALLOC,
4542                                                      false,
4543                                                      ORDER_DYNAMIC_LINKER,
4544                                                      false, false);
4545
4546   // Check for NULL since a linker script may discard this section.
4547   if (vsec != NULL)
4548     {
4549       unsigned char* vbuf;
4550       unsigned int vsize;
4551       versions->symbol_section_contents<size, big_endian>(symtab,
4552                                                           &this->dynpool_,
4553                                                           local_symcount,
4554                                                           dynamic_symbols,
4555                                                           &vbuf, &vsize);
4556
4557       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4558                                                                 "** versions");
4559
4560       vsec->add_output_section_data(vdata);
4561       vsec->set_entsize(2);
4562       vsec->set_link_section(this->dynsym_section_);
4563     }
4564
4565   Output_data_dynamic* const odyn = this->dynamic_data_;
4566   if (odyn != NULL && vsec != NULL)
4567     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4568
4569   if (versions->any_defs())
4570     {
4571       Output_section* vdsec;
4572       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4573                                           elfcpp::SHT_GNU_verdef,
4574                                           elfcpp::SHF_ALLOC,
4575                                           false, ORDER_DYNAMIC_LINKER, false,
4576                                           false);
4577
4578       if (vdsec != NULL)
4579         {
4580           unsigned char* vdbuf;
4581           unsigned int vdsize;
4582           unsigned int vdentries;
4583           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4584                                                            &vdbuf, &vdsize,
4585                                                            &vdentries);
4586
4587           Output_section_data* vddata =
4588             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4589
4590           vdsec->add_output_section_data(vddata);
4591           vdsec->set_link_section(dynstr);
4592           vdsec->set_info(vdentries);
4593
4594           if (odyn != NULL)
4595             {
4596               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4597               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4598             }
4599         }
4600     }
4601
4602   if (versions->any_needs())
4603     {
4604       Output_section* vnsec;
4605       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4606                                           elfcpp::SHT_GNU_verneed,
4607                                           elfcpp::SHF_ALLOC,
4608                                           false, ORDER_DYNAMIC_LINKER, false,
4609                                           false);
4610
4611       if (vnsec != NULL)
4612         {
4613           unsigned char* vnbuf;
4614           unsigned int vnsize;
4615           unsigned int vnentries;
4616           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4617                                                             &vnbuf, &vnsize,
4618                                                             &vnentries);
4619
4620           Output_section_data* vndata =
4621             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4622
4623           vnsec->add_output_section_data(vndata);
4624           vnsec->set_link_section(dynstr);
4625           vnsec->set_info(vnentries);
4626
4627           if (odyn != NULL)
4628             {
4629               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4630               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4631             }
4632         }
4633     }
4634 }
4635
4636 // Create the .interp section and PT_INTERP segment.
4637
4638 void
4639 Layout::create_interp(const Target* target)
4640 {
4641   gold_assert(this->interp_segment_ == NULL);
4642
4643   const char* interp = parameters->options().dynamic_linker();
4644   if (interp == NULL)
4645     {
4646       interp = target->dynamic_linker();
4647       gold_assert(interp != NULL);
4648     }
4649
4650   size_t len = strlen(interp) + 1;
4651
4652   Output_section_data* odata = new Output_data_const(interp, len, 1);
4653
4654   Output_section* osec = this->choose_output_section(NULL, ".interp",
4655                                                      elfcpp::SHT_PROGBITS,
4656                                                      elfcpp::SHF_ALLOC,
4657                                                      false, ORDER_INTERP,
4658                                                      false, false);
4659   if (osec != NULL)
4660     osec->add_output_section_data(odata);
4661 }
4662
4663 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4664 // called by the target-specific code.  This does nothing if not doing
4665 // a dynamic link.
4666
4667 // USE_REL is true for REL relocs rather than RELA relocs.
4668
4669 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4670
4671 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4672 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4673 // some targets have multiple reloc sections in PLT_REL.
4674
4675 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4676 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4677 // section.
4678
4679 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4680 // executable.
4681
4682 void
4683 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4684                                 const Output_data* plt_rel,
4685                                 const Output_data_reloc_generic* dyn_rel,
4686                                 bool add_debug, bool dynrel_includes_plt)
4687 {
4688   Output_data_dynamic* odyn = this->dynamic_data_;
4689   if (odyn == NULL)
4690     return;
4691
4692   if (plt_got != NULL && plt_got->output_section() != NULL)
4693     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4694
4695   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4696     {
4697       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4698       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4699       odyn->add_constant(elfcpp::DT_PLTREL,
4700                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4701     }
4702
4703   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4704       || (dynrel_includes_plt
4705           && plt_rel != NULL
4706           && plt_rel->output_section() != NULL))
4707     {
4708       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4709       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4710       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4711                                 (have_dyn_rel
4712                                  ? dyn_rel->output_section()
4713                                  : plt_rel->output_section()));
4714       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4715       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4716         odyn->add_section_size(size_tag,
4717                                dyn_rel->output_section(),
4718                                plt_rel->output_section());
4719       else if (have_dyn_rel)
4720         odyn->add_section_size(size_tag, dyn_rel->output_section());
4721       else
4722         odyn->add_section_size(size_tag, plt_rel->output_section());
4723       const int size = parameters->target().get_size();
4724       elfcpp::DT rel_tag;
4725       int rel_size;
4726       if (use_rel)
4727         {
4728           rel_tag = elfcpp::DT_RELENT;
4729           if (size == 32)
4730             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4731           else if (size == 64)
4732             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4733           else
4734             gold_unreachable();
4735         }
4736       else
4737         {
4738           rel_tag = elfcpp::DT_RELAENT;
4739           if (size == 32)
4740             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4741           else if (size == 64)
4742             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4743           else
4744             gold_unreachable();
4745         }
4746       odyn->add_constant(rel_tag, rel_size);
4747
4748       if (parameters->options().combreloc() && have_dyn_rel)
4749         {
4750           size_t c = dyn_rel->relative_reloc_count();
4751           if (c > 0)
4752             odyn->add_constant((use_rel
4753                                 ? elfcpp::DT_RELCOUNT
4754                                 : elfcpp::DT_RELACOUNT),
4755                                c);
4756         }
4757     }
4758
4759   if (add_debug && !parameters->options().shared())
4760     {
4761       // The value of the DT_DEBUG tag is filled in by the dynamic
4762       // linker at run time, and used by the debugger.
4763       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4764     }
4765 }
4766
4767 void
4768 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4769 {
4770   Output_data_dynamic* odyn = this->dynamic_data_;
4771   if (odyn == NULL)
4772     return;
4773   odyn->add_constant(tag, val);
4774 }
4775
4776 // Finish the .dynamic section and PT_DYNAMIC segment.
4777
4778 void
4779 Layout::finish_dynamic_section(const Input_objects* input_objects,
4780                                const Symbol_table* symtab)
4781 {
4782   if (!this->script_options_->saw_phdrs_clause()
4783       && this->dynamic_section_ != NULL)
4784     {
4785       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4786                                                        (elfcpp::PF_R
4787                                                         | elfcpp::PF_W));
4788       oseg->add_output_section_to_nonload(this->dynamic_section_,
4789                                           elfcpp::PF_R | elfcpp::PF_W);
4790     }
4791
4792   Output_data_dynamic* const odyn = this->dynamic_data_;
4793   if (odyn == NULL)
4794     return;
4795
4796   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4797        p != input_objects->dynobj_end();
4798        ++p)
4799     {
4800       if (!(*p)->is_needed() && (*p)->as_needed())
4801         {
4802           // This dynamic object was linked with --as-needed, but it
4803           // is not needed.
4804           continue;
4805         }
4806
4807       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4808     }
4809
4810   if (parameters->options().shared())
4811     {
4812       const char* soname = parameters->options().soname();
4813       if (soname != NULL)
4814         odyn->add_string(elfcpp::DT_SONAME, soname);
4815     }
4816
4817   Symbol* sym = symtab->lookup(parameters->options().init());
4818   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4819     odyn->add_symbol(elfcpp::DT_INIT, sym);
4820
4821   sym = symtab->lookup(parameters->options().fini());
4822   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4823     odyn->add_symbol(elfcpp::DT_FINI, sym);
4824
4825   // Look for .init_array, .preinit_array and .fini_array by checking
4826   // section types.
4827   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4828       p != this->section_list_.end();
4829       ++p)
4830     switch((*p)->type())
4831       {
4832       case elfcpp::SHT_FINI_ARRAY:
4833         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4834         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4835         break;
4836       case elfcpp::SHT_INIT_ARRAY:
4837         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4838         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4839         break;
4840       case elfcpp::SHT_PREINIT_ARRAY:
4841         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4842         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4843         break;
4844       default:
4845         break;
4846       }
4847
4848   // Add a DT_RPATH entry if needed.
4849   const General_options::Dir_list& rpath(parameters->options().rpath());
4850   if (!rpath.empty())
4851     {
4852       std::string rpath_val;
4853       for (General_options::Dir_list::const_iterator p = rpath.begin();
4854            p != rpath.end();
4855            ++p)
4856         {
4857           if (rpath_val.empty())
4858             rpath_val = p->name();
4859           else
4860             {
4861               // Eliminate duplicates.
4862               General_options::Dir_list::const_iterator q;
4863               for (q = rpath.begin(); q != p; ++q)
4864                 if (q->name() == p->name())
4865                   break;
4866               if (q == p)
4867                 {
4868                   rpath_val += ':';
4869                   rpath_val += p->name();
4870                 }
4871             }
4872         }
4873
4874       if (!parameters->options().enable_new_dtags())
4875         odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4876       else
4877         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4878     }
4879
4880   // Look for text segments that have dynamic relocations.
4881   bool have_textrel = false;
4882   if (!this->script_options_->saw_sections_clause())
4883     {
4884       for (Segment_list::const_iterator p = this->segment_list_.begin();
4885            p != this->segment_list_.end();
4886            ++p)
4887         {
4888           if ((*p)->type() == elfcpp::PT_LOAD
4889               && ((*p)->flags() & elfcpp::PF_W) == 0
4890               && (*p)->has_dynamic_reloc())
4891             {
4892               have_textrel = true;
4893               break;
4894             }
4895         }
4896     }
4897   else
4898     {
4899       // We don't know the section -> segment mapping, so we are
4900       // conservative and just look for readonly sections with
4901       // relocations.  If those sections wind up in writable segments,
4902       // then we have created an unnecessary DT_TEXTREL entry.
4903       for (Section_list::const_iterator p = this->section_list_.begin();
4904            p != this->section_list_.end();
4905            ++p)
4906         {
4907           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4908               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4909               && (*p)->has_dynamic_reloc())
4910             {
4911               have_textrel = true;
4912               break;
4913             }
4914         }
4915     }
4916
4917   if (parameters->options().filter() != NULL)
4918     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4919   if (parameters->options().any_auxiliary())
4920     {
4921       for (options::String_set::const_iterator p =
4922              parameters->options().auxiliary_begin();
4923            p != parameters->options().auxiliary_end();
4924            ++p)
4925         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4926     }
4927
4928   // Add a DT_FLAGS entry if necessary.
4929   unsigned int flags = 0;
4930   if (have_textrel)
4931     {
4932       // Add a DT_TEXTREL for compatibility with older loaders.
4933       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4934       flags |= elfcpp::DF_TEXTREL;
4935
4936       if (parameters->options().text())
4937         gold_error(_("read-only segment has dynamic relocations"));
4938       else if (parameters->options().warn_shared_textrel()
4939                && parameters->options().shared())
4940         gold_warning(_("shared library text segment is not shareable"));
4941     }
4942   if (parameters->options().shared() && this->has_static_tls())
4943     flags |= elfcpp::DF_STATIC_TLS;
4944   if (parameters->options().origin())
4945     flags |= elfcpp::DF_ORIGIN;
4946   if (parameters->options().Bsymbolic()
4947       && !parameters->options().have_dynamic_list())
4948     {
4949       flags |= elfcpp::DF_SYMBOLIC;
4950       // Add DT_SYMBOLIC for compatibility with older loaders.
4951       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4952     }
4953   if (parameters->options().now())
4954     flags |= elfcpp::DF_BIND_NOW;
4955   if (flags != 0)
4956     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4957
4958   flags = 0;
4959   if (parameters->options().global())
4960     flags |= elfcpp::DF_1_GLOBAL;
4961   if (parameters->options().initfirst())
4962     flags |= elfcpp::DF_1_INITFIRST;
4963   if (parameters->options().interpose())
4964     flags |= elfcpp::DF_1_INTERPOSE;
4965   if (parameters->options().loadfltr())
4966     flags |= elfcpp::DF_1_LOADFLTR;
4967   if (parameters->options().nodefaultlib())
4968     flags |= elfcpp::DF_1_NODEFLIB;
4969   if (parameters->options().nodelete())
4970     flags |= elfcpp::DF_1_NODELETE;
4971   if (parameters->options().nodlopen())
4972     flags |= elfcpp::DF_1_NOOPEN;
4973   if (parameters->options().nodump())
4974     flags |= elfcpp::DF_1_NODUMP;
4975   if (!parameters->options().shared())
4976     flags &= ~(elfcpp::DF_1_INITFIRST
4977                | elfcpp::DF_1_NODELETE
4978                | elfcpp::DF_1_NOOPEN);
4979   if (parameters->options().origin())
4980     flags |= elfcpp::DF_1_ORIGIN;
4981   if (parameters->options().now())
4982     flags |= elfcpp::DF_1_NOW;
4983   if (parameters->options().Bgroup())
4984     flags |= elfcpp::DF_1_GROUP;
4985   if (flags != 0)
4986     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4987 }
4988
4989 // Set the size of the _DYNAMIC symbol table to be the size of the
4990 // dynamic data.
4991
4992 void
4993 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4994 {
4995   Output_data_dynamic* const odyn = this->dynamic_data_;
4996   if (odyn == NULL)
4997     return;
4998   odyn->finalize_data_size();
4999   if (this->dynamic_symbol_ == NULL)
5000     return;
5001   off_t data_size = odyn->data_size();
5002   const int size = parameters->target().get_size();
5003   if (size == 32)
5004     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5005   else if (size == 64)
5006     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5007   else
5008     gold_unreachable();
5009 }
5010
5011 // The mapping of input section name prefixes to output section names.
5012 // In some cases one prefix is itself a prefix of another prefix; in
5013 // such a case the longer prefix must come first.  These prefixes are
5014 // based on the GNU linker default ELF linker script.
5015
5016 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5017 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5018 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5019 {
5020   MAPPING_INIT(".text.", ".text"),
5021   MAPPING_INIT(".rodata.", ".rodata"),
5022   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5023   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5024   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5025   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5026   MAPPING_INIT(".data.", ".data"),
5027   MAPPING_INIT(".bss.", ".bss"),
5028   MAPPING_INIT(".tdata.", ".tdata"),
5029   MAPPING_INIT(".tbss.", ".tbss"),
5030   MAPPING_INIT(".init_array.", ".init_array"),
5031   MAPPING_INIT(".fini_array.", ".fini_array"),
5032   MAPPING_INIT(".sdata.", ".sdata"),
5033   MAPPING_INIT(".sbss.", ".sbss"),
5034   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5035   // differently depending on whether it is creating a shared library.
5036   MAPPING_INIT(".sdata2.", ".sdata"),
5037   MAPPING_INIT(".sbss2.", ".sbss"),
5038   MAPPING_INIT(".lrodata.", ".lrodata"),
5039   MAPPING_INIT(".ldata.", ".ldata"),
5040   MAPPING_INIT(".lbss.", ".lbss"),
5041   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5042   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5043   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5044   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5045   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5046   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5047   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5048   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5049   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5050   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5051   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5052   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5053   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5054   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5055   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5056   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5057   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5058   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5059   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5060   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5061   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5062 };
5063 #undef MAPPING_INIT
5064 #undef MAPPING_INIT_EXACT
5065
5066 const int Layout::section_name_mapping_count =
5067   (sizeof(Layout::section_name_mapping)
5068    / sizeof(Layout::section_name_mapping[0]));
5069
5070 // Choose the output section name to use given an input section name.
5071 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5072 // length of NAME.
5073
5074 const char*
5075 Layout::output_section_name(const Relobj* relobj, const char* name,
5076                             size_t* plen)
5077 {
5078   // gcc 4.3 generates the following sorts of section names when it
5079   // needs a section name specific to a function:
5080   //   .text.FN
5081   //   .rodata.FN
5082   //   .sdata2.FN
5083   //   .data.FN
5084   //   .data.rel.FN
5085   //   .data.rel.local.FN
5086   //   .data.rel.ro.FN
5087   //   .data.rel.ro.local.FN
5088   //   .sdata.FN
5089   //   .bss.FN
5090   //   .sbss.FN
5091   //   .tdata.FN
5092   //   .tbss.FN
5093
5094   // The GNU linker maps all of those to the part before the .FN,
5095   // except that .data.rel.local.FN is mapped to .data, and
5096   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5097   // beginning with .data.rel.ro.local are grouped together.
5098
5099   // For an anonymous namespace, the string FN can contain a '.'.
5100
5101   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5102   // GNU linker maps to .rodata.
5103
5104   // The .data.rel.ro sections are used with -z relro.  The sections
5105   // are recognized by name.  We use the same names that the GNU
5106   // linker does for these sections.
5107
5108   // It is hard to handle this in a principled way, so we don't even
5109   // try.  We use a table of mappings.  If the input section name is
5110   // not found in the table, we simply use it as the output section
5111   // name.
5112
5113   const Section_name_mapping* psnm = section_name_mapping;
5114   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5115     {
5116       if (psnm->fromlen > 0)
5117         {
5118           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5119             {
5120               *plen = psnm->tolen;
5121               return psnm->to;
5122             }
5123         }
5124       else
5125         {
5126           if (strcmp(name, psnm->from) == 0)
5127             {
5128               *plen = psnm->tolen;
5129               return psnm->to;
5130             }
5131         }
5132     }
5133
5134   // As an additional complication, .ctors sections are output in
5135   // either .ctors or .init_array sections, and .dtors sections are
5136   // output in either .dtors or .fini_array sections.
5137   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5138     {
5139       if (parameters->options().ctors_in_init_array())
5140         {
5141           *plen = 11;
5142           return name[1] == 'c' ? ".init_array" : ".fini_array";
5143         }
5144       else
5145         {
5146           *plen = 6;
5147           return name[1] == 'c' ? ".ctors" : ".dtors";
5148         }
5149     }
5150   if (parameters->options().ctors_in_init_array()
5151       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5152     {
5153       // To make .init_array/.fini_array work with gcc we must exclude
5154       // .ctors and .dtors sections from the crtbegin and crtend
5155       // files.
5156       if (relobj == NULL
5157           || (!Layout::match_file_name(relobj, "crtbegin")
5158               && !Layout::match_file_name(relobj, "crtend")))
5159         {
5160           *plen = 11;
5161           return name[1] == 'c' ? ".init_array" : ".fini_array";
5162         }
5163     }
5164
5165   return name;
5166 }
5167
5168 // Return true if RELOBJ is an input file whose base name matches
5169 // FILE_NAME.  The base name must have an extension of ".o", and must
5170 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5171 // to match crtbegin.o as well as crtbeginS.o without getting confused
5172 // by other possibilities.  Overall matching the file name this way is
5173 // a dreadful hack, but the GNU linker does it in order to better
5174 // support gcc, and we need to be compatible.
5175
5176 bool
5177 Layout::match_file_name(const Relobj* relobj, const char* match)
5178 {
5179   const std::string& file_name(relobj->name());
5180   const char* base_name = lbasename(file_name.c_str());
5181   size_t match_len = strlen(match);
5182   if (strncmp(base_name, match, match_len) != 0)
5183     return false;
5184   size_t base_len = strlen(base_name);
5185   if (base_len != match_len + 2 && base_len != match_len + 3)
5186     return false;
5187   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5188 }
5189
5190 // Check if a comdat group or .gnu.linkonce section with the given
5191 // NAME is selected for the link.  If there is already a section,
5192 // *KEPT_SECTION is set to point to the existing section and the
5193 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5194 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5195 // *KEPT_SECTION is set to the internal copy and the function returns
5196 // true.
5197
5198 bool
5199 Layout::find_or_add_kept_section(const std::string& name,
5200                                  Relobj* object,
5201                                  unsigned int shndx,
5202                                  bool is_comdat,
5203                                  bool is_group_name,
5204                                  Kept_section** kept_section)
5205 {
5206   // It's normal to see a couple of entries here, for the x86 thunk
5207   // sections.  If we see more than a few, we're linking a C++
5208   // program, and we resize to get more space to minimize rehashing.
5209   if (this->signatures_.size() > 4
5210       && !this->resized_signatures_)
5211     {
5212       reserve_unordered_map(&this->signatures_,
5213                             this->number_of_input_files_ * 64);
5214       this->resized_signatures_ = true;
5215     }
5216
5217   Kept_section candidate;
5218   std::pair<Signatures::iterator, bool> ins =
5219     this->signatures_.insert(std::make_pair(name, candidate));
5220
5221   if (kept_section != NULL)
5222     *kept_section = &ins.first->second;
5223   if (ins.second)
5224     {
5225       // This is the first time we've seen this signature.
5226       ins.first->second.set_object(object);
5227       ins.first->second.set_shndx(shndx);
5228       if (is_comdat)
5229         ins.first->second.set_is_comdat();
5230       if (is_group_name)
5231         ins.first->second.set_is_group_name();
5232       return true;
5233     }
5234
5235   // We have already seen this signature.
5236
5237   if (ins.first->second.is_group_name())
5238     {
5239       // We've already seen a real section group with this signature.
5240       // If the kept group is from a plugin object, and we're in the
5241       // replacement phase, accept the new one as a replacement.
5242       if (ins.first->second.object() == NULL
5243           && parameters->options().plugins()->in_replacement_phase())
5244         {
5245           ins.first->second.set_object(object);
5246           ins.first->second.set_shndx(shndx);
5247           return true;
5248         }
5249       return false;
5250     }
5251   else if (is_group_name)
5252     {
5253       // This is a real section group, and we've already seen a
5254       // linkonce section with this signature.  Record that we've seen
5255       // a section group, and don't include this section group.
5256       ins.first->second.set_is_group_name();
5257       return false;
5258     }
5259   else
5260     {
5261       // We've already seen a linkonce section and this is a linkonce
5262       // section.  These don't block each other--this may be the same
5263       // symbol name with different section types.
5264       return true;
5265     }
5266 }
5267
5268 // Store the allocated sections into the section list.
5269
5270 void
5271 Layout::get_allocated_sections(Section_list* section_list) const
5272 {
5273   for (Section_list::const_iterator p = this->section_list_.begin();
5274        p != this->section_list_.end();
5275        ++p)
5276     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5277       section_list->push_back(*p);
5278 }
5279
5280 // Store the executable sections into the section list.
5281
5282 void
5283 Layout::get_executable_sections(Section_list* section_list) const
5284 {
5285   for (Section_list::const_iterator p = this->section_list_.begin();
5286        p != this->section_list_.end();
5287        ++p)
5288     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5289         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5290       section_list->push_back(*p);
5291 }
5292
5293 // Create an output segment.
5294
5295 Output_segment*
5296 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5297 {
5298   gold_assert(!parameters->options().relocatable());
5299   Output_segment* oseg = new Output_segment(type, flags);
5300   this->segment_list_.push_back(oseg);
5301
5302   if (type == elfcpp::PT_TLS)
5303     this->tls_segment_ = oseg;
5304   else if (type == elfcpp::PT_GNU_RELRO)
5305     this->relro_segment_ = oseg;
5306   else if (type == elfcpp::PT_INTERP)
5307     this->interp_segment_ = oseg;
5308
5309   return oseg;
5310 }
5311
5312 // Return the file offset of the normal symbol table.
5313
5314 off_t
5315 Layout::symtab_section_offset() const
5316 {
5317   if (this->symtab_section_ != NULL)
5318     return this->symtab_section_->offset();
5319   return 0;
5320 }
5321
5322 // Return the section index of the normal symbol table.  It may have
5323 // been stripped by the -s/--strip-all option.
5324
5325 unsigned int
5326 Layout::symtab_section_shndx() const
5327 {
5328   if (this->symtab_section_ != NULL)
5329     return this->symtab_section_->out_shndx();
5330   return 0;
5331 }
5332
5333 // Write out the Output_sections.  Most won't have anything to write,
5334 // since most of the data will come from input sections which are
5335 // handled elsewhere.  But some Output_sections do have Output_data.
5336
5337 void
5338 Layout::write_output_sections(Output_file* of) const
5339 {
5340   for (Section_list::const_iterator p = this->section_list_.begin();
5341        p != this->section_list_.end();
5342        ++p)
5343     {
5344       if (!(*p)->after_input_sections())
5345         (*p)->write(of);
5346     }
5347 }
5348
5349 // Write out data not associated with a section or the symbol table.
5350
5351 void
5352 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5353 {
5354   if (!parameters->options().strip_all())
5355     {
5356       const Output_section* symtab_section = this->symtab_section_;
5357       for (Section_list::const_iterator p = this->section_list_.begin();
5358            p != this->section_list_.end();
5359            ++p)
5360         {
5361           if ((*p)->needs_symtab_index())
5362             {
5363               gold_assert(symtab_section != NULL);
5364               unsigned int index = (*p)->symtab_index();
5365               gold_assert(index > 0 && index != -1U);
5366               off_t off = (symtab_section->offset()
5367                            + index * symtab_section->entsize());
5368               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5369             }
5370         }
5371     }
5372
5373   const Output_section* dynsym_section = this->dynsym_section_;
5374   for (Section_list::const_iterator p = this->section_list_.begin();
5375        p != this->section_list_.end();
5376        ++p)
5377     {
5378       if ((*p)->needs_dynsym_index())
5379         {
5380           gold_assert(dynsym_section != NULL);
5381           unsigned int index = (*p)->dynsym_index();
5382           gold_assert(index > 0 && index != -1U);
5383           off_t off = (dynsym_section->offset()
5384                        + index * dynsym_section->entsize());
5385           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5386         }
5387     }
5388
5389   // Write out the Output_data which are not in an Output_section.
5390   for (Data_list::const_iterator p = this->special_output_list_.begin();
5391        p != this->special_output_list_.end();
5392        ++p)
5393     (*p)->write(of);
5394
5395   // Write out the Output_data which are not in an Output_section
5396   // and are regenerated in each iteration of relaxation.
5397   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5398        p != this->relax_output_list_.end();
5399        ++p)
5400     (*p)->write(of);
5401 }
5402
5403 // Write out the Output_sections which can only be written after the
5404 // input sections are complete.
5405
5406 void
5407 Layout::write_sections_after_input_sections(Output_file* of)
5408 {
5409   // Determine the final section offsets, and thus the final output
5410   // file size.  Note we finalize the .shstrab last, to allow the
5411   // after_input_section sections to modify their section-names before
5412   // writing.
5413   if (this->any_postprocessing_sections_)
5414     {
5415       off_t off = this->output_file_size_;
5416       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5417
5418       // Now that we've finalized the names, we can finalize the shstrab.
5419       off =
5420         this->set_section_offsets(off,
5421                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5422
5423       if (off > this->output_file_size_)
5424         {
5425           of->resize(off);
5426           this->output_file_size_ = off;
5427         }
5428     }
5429
5430   for (Section_list::const_iterator p = this->section_list_.begin();
5431        p != this->section_list_.end();
5432        ++p)
5433     {
5434       if ((*p)->after_input_sections())
5435         (*p)->write(of);
5436     }
5437
5438   this->section_headers_->write(of);
5439 }
5440
5441 // If a tree-style build ID was requested, the parallel part of that computation
5442 // is already done, and the final hash-of-hashes is computed here.  For other
5443 // types of build IDs, all the work is done here.
5444
5445 void
5446 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5447                        size_t size_of_hashes) const
5448 {
5449   if (this->build_id_note_ == NULL)
5450     return;
5451
5452   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5453                                           this->build_id_note_->data_size());
5454
5455   if (array_of_hashes == NULL)
5456     {
5457       const size_t output_file_size = this->output_file_size();
5458       const unsigned char* iv = of->get_input_view(0, output_file_size);
5459       const char* style = parameters->options().build_id();
5460
5461       // If we get here with style == "tree" then the output must be
5462       // too small for chunking, and we use SHA-1 in that case.
5463       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5464         sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5465       else if (strcmp(style, "md5") == 0)
5466         md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5467       else
5468         gold_unreachable();
5469
5470       of->free_input_view(0, output_file_size, iv);
5471     }
5472   else
5473     {
5474       // Non-overlapping substrings of the output file have been hashed.
5475       // Compute SHA-1 hash of the hashes.
5476       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5477                   size_of_hashes, ov);
5478       delete[] array_of_hashes;
5479     }
5480
5481   of->write_output_view(this->build_id_note_->offset(),
5482                         this->build_id_note_->data_size(),
5483                         ov);
5484 }
5485
5486 // Write out a binary file.  This is called after the link is
5487 // complete.  IN is the temporary output file we used to generate the
5488 // ELF code.  We simply walk through the segments, read them from
5489 // their file offset in IN, and write them to their load address in
5490 // the output file.  FIXME: with a bit more work, we could support
5491 // S-records and/or Intel hex format here.
5492
5493 void
5494 Layout::write_binary(Output_file* in) const
5495 {
5496   gold_assert(parameters->options().oformat_enum()
5497               == General_options::OBJECT_FORMAT_BINARY);
5498
5499   // Get the size of the binary file.
5500   uint64_t max_load_address = 0;
5501   for (Segment_list::const_iterator p = this->segment_list_.begin();
5502        p != this->segment_list_.end();
5503        ++p)
5504     {
5505       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5506         {
5507           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5508           if (max_paddr > max_load_address)
5509             max_load_address = max_paddr;
5510         }
5511     }
5512
5513   Output_file out(parameters->options().output_file_name());
5514   out.open(max_load_address);
5515
5516   for (Segment_list::const_iterator p = this->segment_list_.begin();
5517        p != this->segment_list_.end();
5518        ++p)
5519     {
5520       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5521         {
5522           const unsigned char* vin = in->get_input_view((*p)->offset(),
5523                                                         (*p)->filesz());
5524           unsigned char* vout = out.get_output_view((*p)->paddr(),
5525                                                     (*p)->filesz());
5526           memcpy(vout, vin, (*p)->filesz());
5527           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5528           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5529         }
5530     }
5531
5532   out.close();
5533 }
5534
5535 // Print the output sections to the map file.
5536
5537 void
5538 Layout::print_to_mapfile(Mapfile* mapfile) const
5539 {
5540   for (Segment_list::const_iterator p = this->segment_list_.begin();
5541        p != this->segment_list_.end();
5542        ++p)
5543     (*p)->print_sections_to_mapfile(mapfile);
5544   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5545        p != this->unattached_section_list_.end();
5546        ++p)
5547     (*p)->print_to_mapfile(mapfile);
5548 }
5549
5550 // Print statistical information to stderr.  This is used for --stats.
5551
5552 void
5553 Layout::print_stats() const
5554 {
5555   this->namepool_.print_stats("section name pool");
5556   this->sympool_.print_stats("output symbol name pool");
5557   this->dynpool_.print_stats("dynamic name pool");
5558
5559   for (Section_list::const_iterator p = this->section_list_.begin();
5560        p != this->section_list_.end();
5561        ++p)
5562     (*p)->print_merge_stats();
5563 }
5564
5565 // Write_sections_task methods.
5566
5567 // We can always run this task.
5568
5569 Task_token*
5570 Write_sections_task::is_runnable()
5571 {
5572   return NULL;
5573 }
5574
5575 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5576 // when finished.
5577
5578 void
5579 Write_sections_task::locks(Task_locker* tl)
5580 {
5581   tl->add(this, this->output_sections_blocker_);
5582   if (this->input_sections_blocker_ != NULL)
5583     tl->add(this, this->input_sections_blocker_);
5584   tl->add(this, this->final_blocker_);
5585 }
5586
5587 // Run the task--write out the data.
5588
5589 void
5590 Write_sections_task::run(Workqueue*)
5591 {
5592   this->layout_->write_output_sections(this->of_);
5593 }
5594
5595 // Write_data_task methods.
5596
5597 // We can always run this task.
5598
5599 Task_token*
5600 Write_data_task::is_runnable()
5601 {
5602   return NULL;
5603 }
5604
5605 // We need to unlock FINAL_BLOCKER when finished.
5606
5607 void
5608 Write_data_task::locks(Task_locker* tl)
5609 {
5610   tl->add(this, this->final_blocker_);
5611 }
5612
5613 // Run the task--write out the data.
5614
5615 void
5616 Write_data_task::run(Workqueue*)
5617 {
5618   this->layout_->write_data(this->symtab_, this->of_);
5619 }
5620
5621 // Write_symbols_task methods.
5622
5623 // We can always run this task.
5624
5625 Task_token*
5626 Write_symbols_task::is_runnable()
5627 {
5628   return NULL;
5629 }
5630
5631 // We need to unlock FINAL_BLOCKER when finished.
5632
5633 void
5634 Write_symbols_task::locks(Task_locker* tl)
5635 {
5636   tl->add(this, this->final_blocker_);
5637 }
5638
5639 // Run the task--write out the symbols.
5640
5641 void
5642 Write_symbols_task::run(Workqueue*)
5643 {
5644   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5645                                this->layout_->symtab_xindex(),
5646                                this->layout_->dynsym_xindex(), this->of_);
5647 }
5648
5649 // Write_after_input_sections_task methods.
5650
5651 // We can only run this task after the input sections have completed.
5652
5653 Task_token*
5654 Write_after_input_sections_task::is_runnable()
5655 {
5656   if (this->input_sections_blocker_->is_blocked())
5657     return this->input_sections_blocker_;
5658   return NULL;
5659 }
5660
5661 // We need to unlock FINAL_BLOCKER when finished.
5662
5663 void
5664 Write_after_input_sections_task::locks(Task_locker* tl)
5665 {
5666   tl->add(this, this->final_blocker_);
5667 }
5668
5669 // Run the task.
5670
5671 void
5672 Write_after_input_sections_task::run(Workqueue*)
5673 {
5674   this->layout_->write_sections_after_input_sections(this->of_);
5675 }
5676
5677 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5678 // or as a "tree" where each chunk of the string is hashed and then those
5679 // hashes are put into a (much smaller) string which is hashed with sha1.
5680 // We compute a checksum over the entire file because that is simplest.
5681
5682 void
5683 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5684 {
5685   Task_token* post_hash_tasks_blocker = new Task_token(true);
5686   const Layout* layout = this->layout_;
5687   Output_file* of = this->of_;
5688   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5689                            : static_cast<size_t>(layout->output_file_size()));
5690   unsigned char* array_of_hashes = NULL;
5691   size_t size_of_hashes = 0;
5692
5693   if (strcmp(this->options_->build_id(), "tree") == 0
5694       && this->options_->build_id_chunk_size_for_treehash() > 0
5695       && filesize > 0
5696       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5697     {
5698       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5699       const size_t chunk_size =
5700           this->options_->build_id_chunk_size_for_treehash();
5701       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5702       post_hash_tasks_blocker->add_blockers(num_hashes);
5703       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5704       array_of_hashes = new unsigned char[size_of_hashes];
5705       unsigned char *dst = array_of_hashes;
5706       for (size_t i = 0, src_offset = 0; i < num_hashes;
5707            i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5708         {
5709           size_t size = std::min(chunk_size, filesize - src_offset);
5710           workqueue->queue(new Hash_task(of,
5711                                          src_offset,
5712                                          size,
5713                                          dst,
5714                                          post_hash_tasks_blocker));
5715         }
5716     }
5717
5718   // Queue the final task to write the build id and close the output file.
5719   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5720                                                            layout,
5721                                                            of,
5722                                                            array_of_hashes,
5723                                                            size_of_hashes),
5724                                      post_hash_tasks_blocker,
5725                                      "Task_function Close_task_runner"));
5726 }
5727
5728 // Close_task_runner methods.
5729
5730 // Finish up the build ID computation, if necessary, and write a binary file,
5731 // if necessary.  Then close the output file.
5732
5733 void
5734 Close_task_runner::run(Workqueue*, const Task*)
5735 {
5736   // At this point the multi-threaded part of the build ID computation,
5737   // if any, is done.  See Build_id_task_runner.
5738   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5739                                 this->size_of_hashes_);
5740
5741   // If we've been asked to create a binary file, we do so here.
5742   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5743     this->layout_->write_binary(this->of_);
5744
5745   this->of_->close();
5746 }
5747
5748 // Instantiate the templates we need.  We could use the configure
5749 // script to restrict this to only the ones for implemented targets.
5750
5751 #ifdef HAVE_TARGET_32_LITTLE
5752 template
5753 Output_section*
5754 Layout::init_fixed_output_section<32, false>(
5755     const char* name,
5756     elfcpp::Shdr<32, false>& shdr);
5757 #endif
5758
5759 #ifdef HAVE_TARGET_32_BIG
5760 template
5761 Output_section*
5762 Layout::init_fixed_output_section<32, true>(
5763     const char* name,
5764     elfcpp::Shdr<32, true>& shdr);
5765 #endif
5766
5767 #ifdef HAVE_TARGET_64_LITTLE
5768 template
5769 Output_section*
5770 Layout::init_fixed_output_section<64, false>(
5771     const char* name,
5772     elfcpp::Shdr<64, false>& shdr);
5773 #endif
5774
5775 #ifdef HAVE_TARGET_64_BIG
5776 template
5777 Output_section*
5778 Layout::init_fixed_output_section<64, true>(
5779     const char* name,
5780     elfcpp::Shdr<64, true>& shdr);
5781 #endif
5782
5783 #ifdef HAVE_TARGET_32_LITTLE
5784 template
5785 Output_section*
5786 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5787                           unsigned int shndx,
5788                           const char* name,
5789                           const elfcpp::Shdr<32, false>& shdr,
5790                           unsigned int, unsigned int, off_t*);
5791 #endif
5792
5793 #ifdef HAVE_TARGET_32_BIG
5794 template
5795 Output_section*
5796 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5797                          unsigned int shndx,
5798                          const char* name,
5799                          const elfcpp::Shdr<32, true>& shdr,
5800                          unsigned int, unsigned int, off_t*);
5801 #endif
5802
5803 #ifdef HAVE_TARGET_64_LITTLE
5804 template
5805 Output_section*
5806 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5807                           unsigned int shndx,
5808                           const char* name,
5809                           const elfcpp::Shdr<64, false>& shdr,
5810                           unsigned int, unsigned int, off_t*);
5811 #endif
5812
5813 #ifdef HAVE_TARGET_64_BIG
5814 template
5815 Output_section*
5816 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5817                          unsigned int shndx,
5818                          const char* name,
5819                          const elfcpp::Shdr<64, true>& shdr,
5820                          unsigned int, unsigned int, off_t*);
5821 #endif
5822
5823 #ifdef HAVE_TARGET_32_LITTLE
5824 template
5825 Output_section*
5826 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5827                                 unsigned int reloc_shndx,
5828                                 const elfcpp::Shdr<32, false>& shdr,
5829                                 Output_section* data_section,
5830                                 Relocatable_relocs* rr);
5831 #endif
5832
5833 #ifdef HAVE_TARGET_32_BIG
5834 template
5835 Output_section*
5836 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5837                                unsigned int reloc_shndx,
5838                                const elfcpp::Shdr<32, true>& shdr,
5839                                Output_section* data_section,
5840                                Relocatable_relocs* rr);
5841 #endif
5842
5843 #ifdef HAVE_TARGET_64_LITTLE
5844 template
5845 Output_section*
5846 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5847                                 unsigned int reloc_shndx,
5848                                 const elfcpp::Shdr<64, false>& shdr,
5849                                 Output_section* data_section,
5850                                 Relocatable_relocs* rr);
5851 #endif
5852
5853 #ifdef HAVE_TARGET_64_BIG
5854 template
5855 Output_section*
5856 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5857                                unsigned int reloc_shndx,
5858                                const elfcpp::Shdr<64, true>& shdr,
5859                                Output_section* data_section,
5860                                Relocatable_relocs* rr);
5861 #endif
5862
5863 #ifdef HAVE_TARGET_32_LITTLE
5864 template
5865 void
5866 Layout::layout_group<32, false>(Symbol_table* symtab,
5867                                 Sized_relobj_file<32, false>* object,
5868                                 unsigned int,
5869                                 const char* group_section_name,
5870                                 const char* signature,
5871                                 const elfcpp::Shdr<32, false>& shdr,
5872                                 elfcpp::Elf_Word flags,
5873                                 std::vector<unsigned int>* shndxes);
5874 #endif
5875
5876 #ifdef HAVE_TARGET_32_BIG
5877 template
5878 void
5879 Layout::layout_group<32, true>(Symbol_table* symtab,
5880                                Sized_relobj_file<32, true>* object,
5881                                unsigned int,
5882                                const char* group_section_name,
5883                                const char* signature,
5884                                const elfcpp::Shdr<32, true>& shdr,
5885                                elfcpp::Elf_Word flags,
5886                                std::vector<unsigned int>* shndxes);
5887 #endif
5888
5889 #ifdef HAVE_TARGET_64_LITTLE
5890 template
5891 void
5892 Layout::layout_group<64, false>(Symbol_table* symtab,
5893                                 Sized_relobj_file<64, false>* object,
5894                                 unsigned int,
5895                                 const char* group_section_name,
5896                                 const char* signature,
5897                                 const elfcpp::Shdr<64, false>& shdr,
5898                                 elfcpp::Elf_Word flags,
5899                                 std::vector<unsigned int>* shndxes);
5900 #endif
5901
5902 #ifdef HAVE_TARGET_64_BIG
5903 template
5904 void
5905 Layout::layout_group<64, true>(Symbol_table* symtab,
5906                                Sized_relobj_file<64, true>* object,
5907                                unsigned int,
5908                                const char* group_section_name,
5909                                const char* signature,
5910                                const elfcpp::Shdr<64, true>& shdr,
5911                                elfcpp::Elf_Word flags,
5912                                std::vector<unsigned int>* shndxes);
5913 #endif
5914
5915 #ifdef HAVE_TARGET_32_LITTLE
5916 template
5917 Output_section*
5918 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5919                                    const unsigned char* symbols,
5920                                    off_t symbols_size,
5921                                    const unsigned char* symbol_names,
5922                                    off_t symbol_names_size,
5923                                    unsigned int shndx,
5924                                    const elfcpp::Shdr<32, false>& shdr,
5925                                    unsigned int reloc_shndx,
5926                                    unsigned int reloc_type,
5927                                    off_t* off);
5928 #endif
5929
5930 #ifdef HAVE_TARGET_32_BIG
5931 template
5932 Output_section*
5933 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5934                                   const unsigned char* symbols,
5935                                   off_t symbols_size,
5936                                   const unsigned char* symbol_names,
5937                                   off_t symbol_names_size,
5938                                   unsigned int shndx,
5939                                   const elfcpp::Shdr<32, true>& shdr,
5940                                   unsigned int reloc_shndx,
5941                                   unsigned int reloc_type,
5942                                   off_t* off);
5943 #endif
5944
5945 #ifdef HAVE_TARGET_64_LITTLE
5946 template
5947 Output_section*
5948 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5949                                    const unsigned char* symbols,
5950                                    off_t symbols_size,
5951                                    const unsigned char* symbol_names,
5952                                    off_t symbol_names_size,
5953                                    unsigned int shndx,
5954                                    const elfcpp::Shdr<64, false>& shdr,
5955                                    unsigned int reloc_shndx,
5956                                    unsigned int reloc_type,
5957                                    off_t* off);
5958 #endif
5959
5960 #ifdef HAVE_TARGET_64_BIG
5961 template
5962 Output_section*
5963 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5964                                   const unsigned char* symbols,
5965                                   off_t symbols_size,
5966                                   const unsigned char* symbol_names,
5967                                   off_t symbol_names_size,
5968                                   unsigned int shndx,
5969                                   const elfcpp::Shdr<64, true>& shdr,
5970                                   unsigned int reloc_shndx,
5971                                   unsigned int reloc_type,
5972                                   off_t* off);
5973 #endif
5974
5975 #ifdef HAVE_TARGET_32_LITTLE
5976 template
5977 void
5978 Layout::add_to_gdb_index(bool is_type_unit,
5979                          Sized_relobj<32, false>* object,
5980                          const unsigned char* symbols,
5981                          off_t symbols_size,
5982                          unsigned int shndx,
5983                          unsigned int reloc_shndx,
5984                          unsigned int reloc_type);
5985 #endif
5986
5987 #ifdef HAVE_TARGET_32_BIG
5988 template
5989 void
5990 Layout::add_to_gdb_index(bool is_type_unit,
5991                          Sized_relobj<32, true>* object,
5992                          const unsigned char* symbols,
5993                          off_t symbols_size,
5994                          unsigned int shndx,
5995                          unsigned int reloc_shndx,
5996                          unsigned int reloc_type);
5997 #endif
5998
5999 #ifdef HAVE_TARGET_64_LITTLE
6000 template
6001 void
6002 Layout::add_to_gdb_index(bool is_type_unit,
6003                          Sized_relobj<64, false>* object,
6004                          const unsigned char* symbols,
6005                          off_t symbols_size,
6006                          unsigned int shndx,
6007                          unsigned int reloc_shndx,
6008                          unsigned int reloc_type);
6009 #endif
6010
6011 #ifdef HAVE_TARGET_64_BIG
6012 template
6013 void
6014 Layout::add_to_gdb_index(bool is_type_unit,
6015                          Sized_relobj<64, true>* object,
6016                          const unsigned char* symbols,
6017                          off_t symbols_size,
6018                          unsigned int shndx,
6019                          unsigned int reloc_shndx,
6020                          unsigned int reloc_type);
6021 #endif
6022
6023 } // End namespace gold.