* incremental.cc (Incremental_inputs::report_command_line): Ignore
[external/binutils.git] / gold / incremental.cc
1 // inremental.cc -- incremental linking support for gold
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Mikolaj Zalewski <mikolajz@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <set>
26 #include <cstdarg>
27 #include "libiberty.h"
28
29 #include "elfcpp.h"
30 #include "options.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "incremental.h"
34 #include "archive.h"
35 #include "object.h"
36 #include "output.h"
37 #include "target-select.h"
38 #include "target.h"
39 #include "fileread.h"
40 #include "script.h"
41
42 namespace gold {
43
44 // Version information. Will change frequently during the development, later
45 // we could think about backward (and forward?) compatibility.
46 const unsigned int INCREMENTAL_LINK_VERSION = 1;
47
48 // This class manages the .gnu_incremental_inputs section, which holds
49 // the header information, a directory of input files, and separate
50 // entries for each input file.
51
52 template<int size, bool big_endian>
53 class Output_section_incremental_inputs : public Output_section_data
54 {
55  public:
56   Output_section_incremental_inputs(const Incremental_inputs* inputs,
57                                     const Symbol_table* symtab)
58     : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
59   { }
60
61  protected:
62   // This is called to update the section size prior to assigning
63   // the address and file offset.
64   void
65   update_data_size()
66   { this->set_final_data_size(); }
67
68   // Set the final data size.
69   void
70   set_final_data_size();
71
72   // Write the data to the file.
73   void
74   do_write(Output_file*);
75
76   // Write to a map file.
77   void
78   do_print_to_mapfile(Mapfile* mapfile) const
79   { mapfile->print_output_data(this, _("** incremental_inputs")); }
80
81  private:
82   // Write the section header.
83   unsigned char*
84   write_header(unsigned char* pov, unsigned int input_file_count,
85                section_offset_type command_line_offset);
86
87   // Write the input file entries.
88   unsigned char*
89   write_input_files(unsigned char* oview, unsigned char* pov,
90                     Stringpool* strtab);
91
92   // Write the supplemental information blocks.
93   unsigned char*
94   write_info_blocks(unsigned char* oview, unsigned char* pov,
95                     Stringpool* strtab, unsigned int* global_syms,
96                     unsigned int global_sym_count);
97
98   // Write the contents of the .gnu_incremental_symtab section.
99   void
100   write_symtab(unsigned char* pov, unsigned int* global_syms,
101                unsigned int global_sym_count);
102
103   // Write the contents of the .gnu_incremental_got_plt section.
104   void
105   write_got_plt(unsigned char* pov, off_t view_size);
106
107   // Typedefs for writing the data to the output sections.
108   typedef elfcpp::Swap<size, big_endian> Swap;
109   typedef elfcpp::Swap<16, big_endian> Swap16;
110   typedef elfcpp::Swap<32, big_endian> Swap32;
111   typedef elfcpp::Swap<64, big_endian> Swap64;
112
113   // Sizes of various structures.
114   static const int sizeof_addr = size / 8;
115   static const int header_size = 16;
116   static const int input_entry_size = 24;
117
118   // The Incremental_inputs object.
119   const Incremental_inputs* inputs_;
120
121   // The symbol table.
122   const Symbol_table* symtab_;
123 };
124
125 // Inform the user why we don't do an incremental link.  Not called in
126 // the obvious case of missing output file.  TODO: Is this helpful?
127
128 void
129 vexplain_no_incremental(const char* format, va_list args)
130 {
131   char* buf = NULL;
132   if (vasprintf(&buf, format, args) < 0)
133     gold_nomem();
134   gold_info(_("the link might take longer: "
135               "cannot perform incremental link: %s"), buf);
136   free(buf);
137 }
138
139 void
140 explain_no_incremental(const char* format, ...)
141 {
142   va_list args;
143   va_start(args, format);
144   vexplain_no_incremental(format, args);
145   va_end(args);
146 }
147
148 // Report an error.
149
150 void
151 Incremental_binary::error(const char* format, ...) const
152 {
153   va_list args;
154   va_start(args, format);
155   // Current code only checks if the file can be used for incremental linking,
156   // so errors shouldn't fail the build, but only result in a fallback to a
157   // full build.
158   // TODO: when we implement incremental editing of the file, we may need a
159   // flag that will cause errors to be treated seriously.
160   vexplain_no_incremental(format, args);
161   va_end(args);
162 }
163
164 // Find the .gnu_incremental_inputs section and related sections.
165
166 template<int size, bool big_endian>
167 bool
168 Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
169     unsigned int* p_inputs_shndx,
170     unsigned int* p_symtab_shndx,
171     unsigned int* p_relocs_shndx,
172     unsigned int* p_got_plt_shndx,
173     unsigned int* p_strtab_shndx)
174 {
175   unsigned int inputs_shndx =
176       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
177   if (inputs_shndx == elfcpp::SHN_UNDEF)  // Not found.
178     return false;
179
180   unsigned int symtab_shndx =
181       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
182   if (symtab_shndx == elfcpp::SHN_UNDEF)  // Not found.
183     return false;
184   if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
185     return false;
186
187   unsigned int relocs_shndx =
188       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
189   if (relocs_shndx == elfcpp::SHN_UNDEF)  // Not found.
190     return false;
191   if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
192     return false;
193
194   unsigned int got_plt_shndx =
195       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
196   if (got_plt_shndx == elfcpp::SHN_UNDEF)  // Not found.
197     return false;
198   if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
199     return false;
200
201   unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
202   if (strtab_shndx == elfcpp::SHN_UNDEF
203       || strtab_shndx > this->elf_file_.shnum()
204       || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
205     return false;
206
207   if (p_inputs_shndx != NULL)
208     *p_inputs_shndx = inputs_shndx;
209   if (p_symtab_shndx != NULL)
210     *p_symtab_shndx = symtab_shndx;
211   if (p_relocs_shndx != NULL)
212     *p_relocs_shndx = relocs_shndx;
213   if (p_got_plt_shndx != NULL)
214     *p_got_plt_shndx = got_plt_shndx;
215   if (p_strtab_shndx != NULL)
216     *p_strtab_shndx = strtab_shndx;
217   return true;
218 }
219
220 // Set up the readers into the incremental info sections.
221
222 template<int size, bool big_endian>
223 void
224 Sized_incremental_binary<size, big_endian>::setup_readers()
225 {
226   unsigned int inputs_shndx;
227   unsigned int symtab_shndx;
228   unsigned int relocs_shndx;
229   unsigned int got_plt_shndx;
230   unsigned int strtab_shndx;
231
232   if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
233                                               &relocs_shndx, &got_plt_shndx,
234                                               &strtab_shndx))
235     return;
236
237   Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
238   Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
239   Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
240   Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
241   Location strtab_location(this->elf_file_.section_contents(strtab_shndx));
242
243   View inputs_view = this->view(inputs_location);
244   View symtab_view = this->view(symtab_location);
245   View relocs_view = this->view(relocs_location);
246   View got_plt_view = this->view(got_plt_location);
247   View strtab_view = this->view(strtab_location);
248
249   elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);
250
251   this->inputs_reader_ =
252       Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
253   this->symtab_reader_ =
254       Incremental_symtab_reader<big_endian>(symtab_view.data(),
255                                             symtab_location.data_size);
256   this->relocs_reader_ =
257       Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
258                                                   relocs_location.data_size);
259   this->got_plt_reader_ =
260       Incremental_got_plt_reader<big_endian>(got_plt_view.data());
261
262   // Find the main symbol table.
263   unsigned int main_symtab_shndx =
264       this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
265   gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
266   this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);
267
268   // Find the main symbol string table.
269   unsigned int main_strtab_shndx =
270       this->elf_file_.section_link(main_symtab_shndx);
271   gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
272               && main_strtab_shndx < this->elf_file_.shnum());
273   this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);
274
275   // Walk the list of input files (a) to setup an Input_reader for each
276   // input file, and (b) to record maps of files added from archive
277   // libraries and scripts.
278   Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
279   unsigned int count = inputs.input_file_count();
280   this->input_objects_.resize(count);
281   this->input_entry_readers_.reserve(count);
282   this->library_map_.resize(count);
283   this->script_map_.resize(count);
284   for (unsigned int i = 0; i < count; i++)
285     {
286       Input_entry_reader input_file = inputs.input_file(i);
287       this->input_entry_readers_.push_back(Sized_input_reader(input_file));
288       switch (input_file.type())
289         {
290         case INCREMENTAL_INPUT_OBJECT:
291         case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
292         case INCREMENTAL_INPUT_SHARED_LIBRARY:
293           // No special treatment necessary.
294           break;
295         case INCREMENTAL_INPUT_ARCHIVE:
296           {
297             Incremental_library* lib =
298                 new Incremental_library(input_file.filename(), i,
299                                         &this->input_entry_readers_[i]);
300             this->library_map_[i] = lib;
301             unsigned int member_count = input_file.get_member_count();
302             for (unsigned int j = 0; j < member_count; j++)
303               {
304                 int member_offset = input_file.get_member_offset(j);
305                 int member_index = inputs.input_file_index(member_offset);
306                 this->library_map_[member_index] = lib;
307               }
308           }
309           break;
310         case INCREMENTAL_INPUT_SCRIPT:
311           {
312             Script_info* script = new Script_info(input_file.filename());
313             this->script_map_[i] = script;
314             unsigned int object_count = input_file.get_object_count();
315             for (unsigned int j = 0; j < object_count; j++)
316               {
317                 int object_offset = input_file.get_object_offset(j);
318                 int object_index = inputs.input_file_index(object_offset);
319                 this->script_map_[object_index] = script;
320               }
321           }
322           break;
323         default:
324           gold_unreachable();
325         }
326     }
327
328   // Initialize the map of global symbols.
329   unsigned int nglobals = this->symtab_reader_.symbol_count();
330   this->symbol_map_.resize(nglobals);
331
332   this->has_incremental_info_ = true;
333 }
334
335 // Walk the list of input files given on the command line, and build
336 // a direct map of file index to the corresponding input argument.
337
338 void
339 check_input_args(std::vector<const Input_argument*>& input_args_map,
340                  Input_arguments::const_iterator begin,
341                  Input_arguments::const_iterator end)
342 {
343   for (Input_arguments::const_iterator p = begin;
344        p != end;
345        ++p)
346     {
347       if (p->is_group())
348         {
349           const Input_file_group* group = p->group();
350           check_input_args(input_args_map, group->begin(), group->end());
351         }
352       else if (p->is_lib())
353         {
354           const Input_file_lib* lib = p->lib();
355           check_input_args(input_args_map, lib->begin(), lib->end());
356         }
357       else
358         {
359           gold_assert(p->is_file());
360           unsigned int arg_serial = p->file().arg_serial();
361           if (arg_serial > 0)
362             {
363               gold_assert(arg_serial <= input_args_map.size());
364               gold_assert(input_args_map[arg_serial - 1] == 0);
365               input_args_map[arg_serial - 1] = &*p;
366             }
367         }
368     }
369 }
370
371 // Determine whether an incremental link based on the existing output file
372 // can be done.
373
374 template<int size, bool big_endian>
375 bool
376 Sized_incremental_binary<size, big_endian>::do_check_inputs(
377     const Command_line& cmdline,
378     Incremental_inputs* incremental_inputs)
379 {
380   Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
381
382   if (!this->has_incremental_info_)
383     {
384       explain_no_incremental(_("no incremental data from previous build"));
385       return false;
386     }
387
388   if (inputs.version() != INCREMENTAL_LINK_VERSION)
389     {
390       explain_no_incremental(_("different version of incremental build data"));
391       return false;
392     }
393
394   if (incremental_inputs->command_line() != inputs.command_line())
395     {
396       explain_no_incremental(_("command line changed"));
397       return false;
398     }
399
400   // Walk the list of input files given on the command line, and build
401   // a direct map of argument serial numbers to the corresponding input
402   // arguments.
403   this->input_args_map_.resize(cmdline.number_of_input_files());
404   check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());
405
406   // Walk the list of input files to check for conditions that prevent
407   // an incremental update link.
408   unsigned int count = inputs.input_file_count();
409   for (unsigned int i = 0; i < count; i++)
410     {
411       Input_entry_reader input_file = inputs.input_file(i);
412       switch (input_file.type())
413         {
414         case INCREMENTAL_INPUT_OBJECT:
415         case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
416         case INCREMENTAL_INPUT_SHARED_LIBRARY:
417         case INCREMENTAL_INPUT_ARCHIVE:
418           // No special treatment necessary.
419           break;
420         case INCREMENTAL_INPUT_SCRIPT:
421           if (this->do_file_has_changed(i))
422             {
423               explain_no_incremental(_("%s: script file changed"),
424                                      input_file.filename());
425               return false;
426             }
427           break;
428         default:
429           gold_unreachable();
430         }
431     }
432
433   return true;
434 }
435
436 // Return TRUE if input file N has changed since the last incremental link.
437
438 template<int size, bool big_endian>
439 bool
440 Sized_incremental_binary<size, big_endian>::do_file_has_changed(
441     unsigned int n) const
442 {
443   Input_entry_reader input_file = this->inputs_reader_.input_file(n);
444   Incremental_disposition disp = INCREMENTAL_CHECK;
445   const Input_argument* input_argument = this->get_input_argument(n);
446   if (input_argument != NULL)
447     disp = input_argument->file().options().incremental_disposition();
448
449   if (disp != INCREMENTAL_CHECK)
450     return disp == INCREMENTAL_CHANGED;
451
452   const char* filename = input_file.filename();
453   Timespec old_mtime = input_file.get_mtime();
454   Timespec new_mtime;
455   if (!get_mtime(filename, &new_mtime))
456     {
457       // If we can't open get the current modification time, assume it has
458       // changed.  If the file doesn't exist, we'll issue an error when we
459       // try to open it later.
460       return true;
461     }
462
463   if (new_mtime.seconds > old_mtime.seconds)
464     return true;
465   if (new_mtime.seconds == old_mtime.seconds
466       && new_mtime.nanoseconds > old_mtime.nanoseconds)
467     return true;
468   return false;
469 }
470
471 // Initialize the layout of the output file based on the existing
472 // output file.
473
474 template<int size, bool big_endian>
475 void
476 Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
477 {
478   typedef elfcpp::Shdr<size, big_endian> Shdr;
479   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
480
481   // Get views of the section headers and the section string table.
482   const off_t shoff = this->elf_file_.shoff();
483   const unsigned int shnum = this->elf_file_.shnum();
484   const unsigned int shstrndx = this->elf_file_.shstrndx();
485   Location shdrs_location(shoff, shnum * shdr_size);
486   Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
487   View shdrs_view = this->view(shdrs_location);
488   View shstrndx_view = this->view(shstrndx_location);
489   elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
490                               shstrndx_location.data_size);
491
492   layout->set_incremental_base(this);
493
494   // Initialize the layout.
495   this->section_map_.resize(shnum);
496   const unsigned char* pshdr = shdrs_view.data() + shdr_size;
497   for (unsigned int i = 1; i < shnum; i++)
498     {
499       Shdr shdr(pshdr);
500       const char* name;
501       if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
502         name = NULL;
503       gold_debug(DEBUG_INCREMENTAL,
504                  "Output section: %2d %08lx %08lx %08lx %3d %s",
505                  i,
506                  static_cast<long>(shdr.get_sh_addr()),
507                  static_cast<long>(shdr.get_sh_offset()),
508                  static_cast<long>(shdr.get_sh_size()),
509                  shdr.get_sh_type(), name ? name : "<null>");
510       this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
511       pshdr += shdr_size;
512     }
513 }
514
515 // Mark regions of the input file that must be kept unchanged.
516
517 template<int size, bool big_endian>
518 void
519 Sized_incremental_binary<size, big_endian>::do_reserve_layout(
520     unsigned int input_file_index)
521 {
522   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
523
524   Input_entry_reader input_file =
525       this->inputs_reader_.input_file(input_file_index);
526
527   if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
528     {
529       // Reserve the BSS space used for COPY relocations.
530       unsigned int nsyms = input_file.get_global_symbol_count();
531       Incremental_binary::View symtab_view(NULL);
532       unsigned int symtab_count;
533       elfcpp::Elf_strtab strtab(NULL, 0);
534       this->get_symtab_view(&symtab_view, &symtab_count, &strtab);
535       for (unsigned int i = 0; i < nsyms; ++i)
536         {
537           bool is_def;
538           bool is_copy;
539           unsigned int output_symndx =
540               input_file.get_output_symbol_index(i, &is_def, &is_copy);
541           if (is_copy)
542             {
543               const unsigned char* sym_p = (symtab_view.data()
544                                             + output_symndx * sym_size);
545               elfcpp::Sym<size, big_endian> gsym(sym_p);
546               unsigned int shndx = gsym.get_st_shndx();
547               if (shndx < 1 || shndx >= this->section_map_.size())
548                 continue;
549               Output_section* os = this->section_map_[shndx];
550               off_t offset = gsym.get_st_value() - os->address();
551               os->reserve(offset, gsym.get_st_size());
552               gold_debug(DEBUG_INCREMENTAL,
553                          "Reserve for COPY reloc: %s, off %d, size %d",
554                          os->name(),
555                          static_cast<int>(offset),
556                          static_cast<int>(gsym.get_st_size()));
557             }
558         }
559       return;
560     }
561
562   unsigned int shnum = input_file.get_input_section_count();
563   for (unsigned int i = 0; i < shnum; i++)
564     {
565       typename Input_entry_reader::Input_section_info sect =
566           input_file.get_input_section(i);
567       if (sect.output_shndx == 0 || sect.sh_offset == -1)
568         continue;
569       Output_section* os = this->section_map_[sect.output_shndx];
570       gold_assert(os != NULL);
571       os->reserve(sect.sh_offset, sect.sh_size);
572     }
573 }
574
575 // Process the GOT and PLT entries from the existing output file.
576
577 template<int size, bool big_endian>
578 void
579 Sized_incremental_binary<size, big_endian>::do_process_got_plt(
580     Symbol_table* symtab,
581     Layout* layout)
582 {
583   Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
584   Sized_target<size, big_endian>* target =
585       parameters->sized_target<size, big_endian>();
586
587   // Get the number of symbols in the main symbol table and in the
588   // incremental symbol table.  The difference between the two counts
589   // is the index of the first forced-local or global symbol in the
590   // main symbol table.
591   unsigned int symtab_count =
592       this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
593   unsigned int isym_count = this->symtab_reader_.symbol_count();
594   unsigned int first_global = symtab_count - isym_count;
595
596   // Tell the target how big the GOT and PLT sections are.
597   unsigned int got_count = got_plt_reader.get_got_entry_count();
598   unsigned int plt_count = got_plt_reader.get_plt_entry_count();
599   Output_data_got<size, big_endian>* got =
600       target->init_got_plt_for_update(symtab, layout, got_count, plt_count);
601
602   // Read the GOT entries from the base file and build the outgoing GOT.
603   for (unsigned int i = 0; i < got_count; ++i)
604     {
605       unsigned int got_type = got_plt_reader.get_got_type(i);
606       if ((got_type & 0x7f) == 0x7f)
607         {
608           // This is the second entry of a pair.
609           got->reserve_slot(i);
610           continue;
611         }
612       unsigned int symndx = got_plt_reader.get_got_symndx(i);
613       if (got_type & 0x80)
614         {
615           // This is an entry for a local symbol.  Ignore this entry if
616           // the object file was replaced.
617           unsigned int input_index = got_plt_reader.get_got_input_index(i);
618           gold_debug(DEBUG_INCREMENTAL,
619                      "GOT entry %d, type %02x: (local symbol)",
620                      i, got_type & 0x7f);
621           Sized_relobj_incr<size, big_endian>* obj =
622               this->input_object(input_index);
623           if (obj != NULL)
624             target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
625         }
626       else
627         {
628           // This is an entry for a global symbol.  GOT_DESC is the symbol
629           // table index.
630           // FIXME: This should really be a fatal error (corrupt input).
631           gold_assert(symndx >= first_global && symndx < symtab_count);
632           Symbol* sym = this->global_symbol(symndx - first_global);
633           // Add the GOT entry only if the symbol is still referenced.
634           if (sym != NULL && sym->in_reg())
635             {
636               gold_debug(DEBUG_INCREMENTAL,
637                          "GOT entry %d, type %02x: %s",
638                          i, got_type, sym->name());
639               target->reserve_global_got_entry(i, sym, got_type);
640             }
641         }
642     }
643
644   // Read the PLT entries from the base file and pass each to the target.
645   for (unsigned int i = 0; i < plt_count; ++i)
646     {
647       unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
648       // FIXME: This should really be a fatal error (corrupt input).
649       gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
650       Symbol* sym = this->global_symbol(plt_desc - first_global);
651       // Add the PLT entry only if the symbol is still referenced.
652       if (sym->in_reg())
653         {
654           gold_debug(DEBUG_INCREMENTAL,
655                      "PLT entry %d: %s",
656                      i, sym->name());
657           target->register_global_plt_entry(i, sym);
658         }
659     }
660 }
661
662 // Emit COPY relocations from the existing output file.
663
664 template<int size, bool big_endian>
665 void
666 Sized_incremental_binary<size, big_endian>::do_emit_copy_relocs(
667     Symbol_table* symtab)
668 {
669   Sized_target<size, big_endian>* target =
670       parameters->sized_target<size, big_endian>();
671
672   for (typename Copy_relocs::iterator p = this->copy_relocs_.begin();
673        p != this->copy_relocs_.end();
674        ++p)
675     {
676       if (!(*p).symbol->is_copied_from_dynobj())
677         target->emit_copy_reloc(symtab, (*p).symbol, (*p).output_section,
678                                 (*p).offset);
679     }
680 }
681
682 // Apply incremental relocations for symbols whose values have changed.
683
684 template<int size, bool big_endian>
685 void
686 Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
687     const Symbol_table* symtab,
688     Layout* layout,
689     Output_file* of)
690 {
691   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
692   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
693   Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
694   Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
695   unsigned int nglobals = isymtab.symbol_count();
696   const unsigned int incr_reloc_size = irelocs.reloc_size;
697
698   Relocate_info<size, big_endian> relinfo;
699   relinfo.symtab = symtab;
700   relinfo.layout = layout;
701   relinfo.object = NULL;
702   relinfo.reloc_shndx = 0;
703   relinfo.reloc_shdr = NULL;
704   relinfo.data_shndx = 0;
705   relinfo.data_shdr = NULL;
706
707   Sized_target<size, big_endian>* target =
708       parameters->sized_target<size, big_endian>();
709
710   for (unsigned int i = 0; i < nglobals; i++)
711     {
712       const Symbol* gsym = this->global_symbol(i);
713
714       // If the symbol is not referenced from any unchanged input files,
715       // we do not need to reapply any of its relocations.
716       if (gsym == NULL)
717         continue;
718
719       // If the symbol is defined in an unchanged file, we do not need to
720       // reapply any of its relocations.
721       if (gsym->source() == Symbol::FROM_OBJECT
722           && gsym->object()->is_incremental())
723         continue;
724
725       gold_debug(DEBUG_INCREMENTAL,
726                  "Applying incremental relocations for global symbol %s [%d]",
727                  gsym->name(), i);
728
729       // Follow the linked list of input symbol table entries for this symbol.
730       // We don't bother to figure out whether the symbol table entry belongs
731       // to a changed or unchanged file because it's easier just to apply all
732       // the relocations -- although we might scribble over an area that has
733       // been reallocated, we do this before copying any new data into the
734       // output file.
735       unsigned int offset = isymtab.get_list_head(i);
736       while (offset > 0)
737         {
738           Incremental_global_symbol_reader<big_endian> sym_info =
739               this->inputs_reader().global_symbol_reader_at_offset(offset);
740           unsigned int r_base = sym_info.reloc_offset();
741           unsigned int r_count = sym_info.reloc_count();
742
743           // Apply each relocation for this symbol table entry.
744           for (unsigned int j = 0; j < r_count;
745                ++j, r_base += incr_reloc_size)
746             {
747               unsigned int r_type = irelocs.get_r_type(r_base);
748               unsigned int r_shndx = irelocs.get_r_shndx(r_base);
749               Address r_offset = irelocs.get_r_offset(r_base);
750               Addend r_addend = irelocs.get_r_addend(r_base);
751               Output_section* os = this->output_section(r_shndx);
752               Address address = os->address();
753               off_t section_offset = os->offset();
754               size_t view_size = os->data_size();
755               unsigned char* const view = of->get_output_view(section_offset,
756                                                               view_size);
757
758               gold_debug(DEBUG_INCREMENTAL,
759                          "  %08lx: %s + %d: type %d addend %ld",
760                          (long)(section_offset + r_offset),
761                          os->name(),
762                          (int)r_offset,
763                          r_type,
764                          (long)r_addend);
765
766               target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
767                                        gsym, view, address, view_size);
768
769               // FIXME: Do something more efficient if write_output_view
770               // ever becomes more than a no-op.
771               of->write_output_view(section_offset, view_size, view);
772             }
773           offset = sym_info.next_offset();
774         }
775     }
776 }
777
778 // Get a view of the main symbol table and the symbol string table.
779
780 template<int size, bool big_endian>
781 void
782 Sized_incremental_binary<size, big_endian>::get_symtab_view(
783     View* symtab_view,
784     unsigned int* nsyms,
785     elfcpp::Elf_strtab* strtab)
786 {
787   *symtab_view = this->view(this->main_symtab_loc_);
788   *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
789
790   View strtab_view(this->view(this->main_strtab_loc_));
791   *strtab = elfcpp::Elf_strtab(strtab_view.data(),
792                                this->main_strtab_loc_.data_size);
793 }
794
795 namespace
796 {
797
798 // Create a Sized_incremental_binary object of the specified size and
799 // endianness. Fails if the target architecture is not supported.
800
801 template<int size, bool big_endian>
802 Incremental_binary*
803 make_sized_incremental_binary(Output_file* file,
804                               const elfcpp::Ehdr<size, big_endian>& ehdr)
805 {
806   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
807                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
808                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
809   if (target == NULL)
810     {
811       explain_no_incremental(_("unsupported ELF machine number %d"),
812                ehdr.get_e_machine());
813       return NULL;
814     }
815
816   if (!parameters->target_valid())
817     set_parameters_target(target);
818   else if (target != &parameters->target())
819     gold_error(_("%s: incompatible target"), file->filename());
820
821   return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
822 }
823
824 }  // End of anonymous namespace.
825
826 // Create an Incremental_binary object for FILE.  Returns NULL is this is not
827 // possible, e.g. FILE is not an ELF file or has an unsupported target.  FILE
828 // should be opened.
829
830 Incremental_binary*
831 open_incremental_binary(Output_file* file)
832 {
833   off_t filesize = file->filesize();
834   int want = elfcpp::Elf_recognizer::max_header_size;
835   if (filesize < want)
836     want = filesize;
837
838   const unsigned char* p = file->get_input_view(0, want);
839   if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
840     {
841       explain_no_incremental(_("output is not an ELF file."));
842       return NULL;
843     }
844
845   int size = 0;
846   bool big_endian = false;
847   std::string error;
848   if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
849                                                &error))
850     {
851       explain_no_incremental(error.c_str());
852       return NULL;
853     }
854
855   Incremental_binary* result = NULL;
856   if (size == 32)
857     {
858       if (big_endian)
859         {
860 #ifdef HAVE_TARGET_32_BIG
861           result = make_sized_incremental_binary<32, true>(
862               file, elfcpp::Ehdr<32, true>(p));
863 #else
864           explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
865 #endif
866         }
867       else
868         {
869 #ifdef HAVE_TARGET_32_LITTLE
870           result = make_sized_incremental_binary<32, false>(
871               file, elfcpp::Ehdr<32, false>(p));
872 #else
873           explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
874 #endif
875         }
876     }
877   else if (size == 64)
878     {
879       if (big_endian)
880         {
881 #ifdef HAVE_TARGET_64_BIG
882           result = make_sized_incremental_binary<64, true>(
883               file, elfcpp::Ehdr<64, true>(p));
884 #else
885           explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
886 #endif
887         }
888       else
889         {
890 #ifdef HAVE_TARGET_64_LITTLE
891           result = make_sized_incremental_binary<64, false>(
892               file, elfcpp::Ehdr<64, false>(p));
893 #else
894           explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
895 #endif
896         }
897     }
898   else
899     gold_unreachable();
900
901   return result;
902 }
903
904 // Class Incremental_inputs.
905
906 // Add the command line to the string table, setting
907 // command_line_key_.  In incremental builds, the command line is
908 // stored in .gnu_incremental_inputs so that the next linker run can
909 // check if the command line options didn't change.
910
911 void
912 Incremental_inputs::report_command_line(int argc, const char* const* argv)
913 {
914   // Always store 'gold' as argv[0] to avoid a full relink if the user used a
915   // different path to the linker.
916   std::string args("gold");
917   // Copied from collect_argv in main.cc.
918   for (int i = 1; i < argc; ++i)
919     {
920       // Adding/removing these options should not result in a full relink.
921       if (strcmp(argv[i], "--incremental") == 0
922           || strcmp(argv[i], "--incremental-full") == 0
923           || strcmp(argv[i], "--incremental-update") == 0
924           || strcmp(argv[i], "--incremental-changed") == 0
925           || strcmp(argv[i], "--incremental-unchanged") == 0
926           || strcmp(argv[i], "--incremental-unknown") == 0
927           || is_prefix_of("--incremental-base=", argv[i])
928           || is_prefix_of("--incremental-patch=", argv[i])
929           || is_prefix_of("--debug=", argv[i]))
930         continue;
931       if (strcmp(argv[i], "--incremental-base") == 0
932           || strcmp(argv[i], "--incremental-patch") == 0
933           || strcmp(argv[i], "--debug") == 0)
934         {
935           // When these options are used without the '=', skip the
936           // following parameter as well.
937           ++i;
938           continue;
939         }
940
941       args.append(" '");
942       // Now append argv[i], but with all single-quotes escaped
943       const char* argpos = argv[i];
944       while (1)
945         {
946           const int len = strcspn(argpos, "'");
947           args.append(argpos, len);
948           if (argpos[len] == '\0')
949             break;
950           args.append("'\"'\"'");
951           argpos += len + 1;
952         }
953       args.append("'");
954     }
955
956   this->command_line_ = args;
957   this->strtab_->add(this->command_line_.c_str(), false,
958                      &this->command_line_key_);
959 }
960
961 // Record the input archive file ARCHIVE.  This is called by the
962 // Add_archive_symbols task before determining which archive members
963 // to include.  We create the Incremental_archive_entry here and
964 // attach it to the Archive, but we do not add it to the list of
965 // input objects until report_archive_end is called.
966
967 void
968 Incremental_inputs::report_archive_begin(Library_base* arch,
969                                          unsigned int arg_serial,
970                                          Script_info* script_info)
971 {
972   Stringpool::Key filename_key;
973   Timespec mtime = arch->get_mtime();
974
975   // For a file loaded from a script, don't record its argument serial number.
976   if (script_info != NULL)
977     arg_serial = 0;
978
979   this->strtab_->add(arch->filename().c_str(), false, &filename_key);
980   Incremental_archive_entry* entry =
981       new Incremental_archive_entry(filename_key, arg_serial, mtime);
982   arch->set_incremental_info(entry);
983
984   if (script_info != NULL)
985     {
986       Incremental_script_entry* script_entry = script_info->incremental_info();
987       gold_assert(script_entry != NULL);
988       script_entry->add_object(entry);
989     }
990 }
991
992 // Visitor class for processing the unused global symbols in a library.
993 // An instance of this class is passed to the library's
994 // for_all_unused_symbols() iterator, which will call the visit()
995 // function for each global symbol defined in each unused library
996 // member.  We add those symbol names to the incremental info for the
997 // library.
998
999 class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
1000 {
1001  public:
1002   Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
1003     : entry_(entry), strtab_(strtab)
1004   { }
1005
1006   void
1007   visit(const char* sym)
1008   {
1009     Stringpool::Key symbol_key;
1010     this->strtab_->add(sym, true, &symbol_key);
1011     this->entry_->add_unused_global_symbol(symbol_key);
1012   }
1013
1014  private:
1015   Incremental_archive_entry* entry_;
1016   Stringpool* strtab_;
1017 };
1018
1019 // Finish recording the input archive file ARCHIVE.  This is called by the
1020 // Add_archive_symbols task after determining which archive members
1021 // to include.
1022
1023 void
1024 Incremental_inputs::report_archive_end(Library_base* arch)
1025 {
1026   Incremental_archive_entry* entry = arch->incremental_info();
1027
1028   gold_assert(entry != NULL);
1029   this->inputs_.push_back(entry);
1030
1031   // Collect unused global symbols.
1032   Unused_symbol_visitor v(entry, this->strtab_);
1033   arch->for_all_unused_symbols(&v);
1034 }
1035
1036 // Record the input object file OBJ.  If ARCH is not NULL, attach
1037 // the object file to the archive.  This is called by the
1038 // Add_symbols task after finding out the type of the file.
1039
1040 void
1041 Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
1042                                   Library_base* arch, Script_info* script_info)
1043 {
1044   Stringpool::Key filename_key;
1045   Timespec mtime = obj->get_mtime();
1046
1047   // For a file loaded from a script, don't record its argument serial number.
1048   if (script_info != NULL)
1049     arg_serial = 0;
1050
1051   this->strtab_->add(obj->name().c_str(), false, &filename_key);
1052
1053   Incremental_input_entry* input_entry;
1054
1055   this->current_object_ = obj;
1056
1057   if (!obj->is_dynamic())
1058     {
1059       this->current_object_entry_ =
1060           new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
1061       input_entry = this->current_object_entry_;
1062       if (arch != NULL)
1063         {
1064           Incremental_archive_entry* arch_entry = arch->incremental_info();
1065           gold_assert(arch_entry != NULL);
1066           arch_entry->add_object(this->current_object_entry_);
1067         }
1068     }
1069   else
1070     {
1071       this->current_object_entry_ = NULL;
1072       Stringpool::Key soname_key;
1073       Dynobj* dynobj = obj->dynobj();
1074       gold_assert(dynobj != NULL);
1075       this->strtab_->add(dynobj->soname(), false, &soname_key);
1076       input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
1077                                                  arg_serial, mtime);
1078     }
1079
1080   if (obj->is_in_system_directory())
1081     input_entry->set_is_in_system_directory();
1082
1083   if (obj->as_needed())
1084     input_entry->set_as_needed();
1085
1086   this->inputs_.push_back(input_entry);
1087
1088   if (script_info != NULL)
1089     {
1090       Incremental_script_entry* script_entry = script_info->incremental_info();
1091       gold_assert(script_entry != NULL);
1092       script_entry->add_object(input_entry);
1093     }
1094 }
1095
1096 // Record an input section SHNDX from object file OBJ.
1097
1098 void
1099 Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
1100                                          const char* name, off_t sh_size)
1101 {
1102   Stringpool::Key key = 0;
1103
1104   if (name != NULL)
1105     this->strtab_->add(name, true, &key);
1106
1107   gold_assert(obj == this->current_object_);
1108   gold_assert(this->current_object_entry_ != NULL);
1109   this->current_object_entry_->add_input_section(shndx, key, sh_size);
1110 }
1111
1112 // Record a kept COMDAT group belonging to object file OBJ.
1113
1114 void
1115 Incremental_inputs::report_comdat_group(Object* obj, const char* name)
1116 {
1117   Stringpool::Key key = 0;
1118
1119   if (name != NULL)
1120     this->strtab_->add(name, true, &key);
1121   gold_assert(obj == this->current_object_);
1122   gold_assert(this->current_object_entry_ != NULL);
1123   this->current_object_entry_->add_comdat_group(key);
1124 }
1125
1126 // Record that the input argument INPUT is a script SCRIPT.  This is
1127 // called by read_script after parsing the script and reading the list
1128 // of inputs added by this script.
1129
1130 void
1131 Incremental_inputs::report_script(Script_info* script,
1132                                   unsigned int arg_serial,
1133                                   Timespec mtime)
1134 {
1135   Stringpool::Key filename_key;
1136
1137   this->strtab_->add(script->filename().c_str(), false, &filename_key);
1138   Incremental_script_entry* entry =
1139       new Incremental_script_entry(filename_key, arg_serial, script, mtime);
1140   this->inputs_.push_back(entry);
1141   script->set_incremental_info(entry);
1142 }
1143
1144 // Finalize the incremental link information.  Called from
1145 // Layout::finalize.
1146
1147 void
1148 Incremental_inputs::finalize()
1149 {
1150   // Finalize the string table.
1151   this->strtab_->set_string_offsets();
1152 }
1153
1154 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
1155
1156 void
1157 Incremental_inputs::create_data_sections(Symbol_table* symtab)
1158 {
1159   switch (parameters->size_and_endianness())
1160     {
1161 #ifdef HAVE_TARGET_32_LITTLE
1162     case Parameters::TARGET_32_LITTLE:
1163       this->inputs_section_ =
1164           new Output_section_incremental_inputs<32, false>(this, symtab);
1165       break;
1166 #endif
1167 #ifdef HAVE_TARGET_32_BIG
1168     case Parameters::TARGET_32_BIG:
1169       this->inputs_section_ =
1170           new Output_section_incremental_inputs<32, true>(this, symtab);
1171       break;
1172 #endif
1173 #ifdef HAVE_TARGET_64_LITTLE
1174     case Parameters::TARGET_64_LITTLE:
1175       this->inputs_section_ =
1176           new Output_section_incremental_inputs<64, false>(this, symtab);
1177       break;
1178 #endif
1179 #ifdef HAVE_TARGET_64_BIG
1180     case Parameters::TARGET_64_BIG:
1181       this->inputs_section_ =
1182           new Output_section_incremental_inputs<64, true>(this, symtab);
1183       break;
1184 #endif
1185     default:
1186       gold_unreachable();
1187     }
1188   this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
1189   this->relocs_section_ = new Output_data_space(4, "** incremental_relocs");
1190   this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
1191 }
1192
1193 // Return the sh_entsize value for the .gnu_incremental_relocs section.
1194 unsigned int
1195 Incremental_inputs::relocs_entsize() const
1196 {
1197   return 8 + 2 * parameters->target().get_size() / 8;
1198 }
1199
1200 // Class Output_section_incremental_inputs.
1201
1202 // Finalize the offsets for each input section and supplemental info block,
1203 // and set the final data size of the incremental output sections.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
1208 {
1209   const Incremental_inputs* inputs = this->inputs_;
1210   const unsigned int sizeof_addr = size / 8;
1211   const unsigned int rel_size = 8 + 2 * sizeof_addr;
1212
1213   // Offset of each input entry.
1214   unsigned int input_offset = this->header_size;
1215
1216   // Offset of each supplemental info block.
1217   unsigned int file_index = 0;
1218   unsigned int info_offset = this->header_size;
1219   info_offset += this->input_entry_size * inputs->input_file_count();
1220
1221   // Count each input file and its supplemental information block.
1222   for (Incremental_inputs::Input_list::const_iterator p =
1223            inputs->input_files().begin();
1224        p != inputs->input_files().end();
1225        ++p)
1226     {
1227       // Set the index and offset of the input file entry.
1228       (*p)->set_offset(file_index, input_offset);
1229       ++file_index;
1230       input_offset += this->input_entry_size;
1231
1232       // Set the offset of the supplemental info block.
1233       switch ((*p)->type())
1234         {
1235         case INCREMENTAL_INPUT_SCRIPT:
1236           {
1237             Incremental_script_entry *entry = (*p)->script_entry();
1238             gold_assert(entry != NULL);
1239             (*p)->set_info_offset(info_offset);
1240             // Object count.
1241             info_offset += 4;
1242             // Each member.
1243             info_offset += (entry->get_object_count() * 4);
1244           }
1245           break;
1246         case INCREMENTAL_INPUT_OBJECT:
1247         case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1248           {
1249             Incremental_object_entry* entry = (*p)->object_entry();
1250             gold_assert(entry != NULL);
1251             (*p)->set_info_offset(info_offset);
1252             // Input section count, global symbol count, local symbol offset,
1253             // local symbol count, first dynamic reloc, dynamic reloc count,
1254             // comdat group count.
1255             info_offset += 28;
1256             // Each input section.
1257             info_offset += (entry->get_input_section_count()
1258                             * (8 + 2 * sizeof_addr));
1259             // Each global symbol.
1260             const Object::Symbols* syms = entry->object()->get_global_symbols();
1261             info_offset += syms->size() * 20;
1262             // Each comdat group.
1263             info_offset += entry->get_comdat_group_count() * 4;
1264           }
1265           break;
1266         case INCREMENTAL_INPUT_SHARED_LIBRARY:
1267           {
1268             Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1269             gold_assert(entry != NULL);
1270             (*p)->set_info_offset(info_offset);
1271             // Global symbol count, soname index.
1272             info_offset += 8;
1273             // Each global symbol.
1274             const Object::Symbols* syms = entry->object()->get_global_symbols();
1275             gold_assert(syms != NULL);
1276             unsigned int nsyms = syms->size();
1277             unsigned int nsyms_out = 0;
1278             for (unsigned int i = 0; i < nsyms; ++i)
1279               {
1280                 const Symbol* sym = (*syms)[i];
1281                 if (sym == NULL)
1282                   continue;
1283                 if (sym->is_forwarder())
1284                   sym = this->symtab_->resolve_forwards(sym);
1285                 if (sym->symtab_index() != -1U)
1286                   ++nsyms_out;
1287               }
1288             info_offset += nsyms_out * 4;
1289           }
1290           break;
1291         case INCREMENTAL_INPUT_ARCHIVE:
1292           {
1293             Incremental_archive_entry* entry = (*p)->archive_entry();
1294             gold_assert(entry != NULL);
1295             (*p)->set_info_offset(info_offset);
1296             // Member count + unused global symbol count.
1297             info_offset += 8;
1298             // Each member.
1299             info_offset += (entry->get_member_count() * 4);
1300             // Each global symbol.
1301             info_offset += (entry->get_unused_global_symbol_count() * 4);
1302           }
1303           break;
1304         default:
1305           gold_unreachable();
1306         }
1307     }
1308
1309   this->set_data_size(info_offset);
1310
1311   // Set the size of the .gnu_incremental_symtab section.
1312   inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
1313                                                   * sizeof(unsigned int));
1314
1315   // Set the size of the .gnu_incremental_relocs section.
1316   inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
1317                                                   * rel_size);
1318
1319   // Set the size of the .gnu_incremental_got_plt section.
1320   Sized_target<size, big_endian>* target =
1321     parameters->sized_target<size, big_endian>();
1322   unsigned int got_count = target->got_entry_count();
1323   unsigned int plt_count = target->plt_entry_count();
1324   unsigned int got_plt_size = 8;  // GOT entry count, PLT entry count.
1325   got_plt_size = (got_plt_size + got_count + 3) & ~3;  // GOT type array.
1326   got_plt_size += got_count * 8 + plt_count * 4;  // GOT array, PLT array.
1327   inputs->got_plt_section()->set_current_data_size(got_plt_size);
1328 }
1329
1330 // Write the contents of the .gnu_incremental_inputs and
1331 // .gnu_incremental_symtab sections.
1332
1333 template<int size, bool big_endian>
1334 void
1335 Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
1336 {
1337   const Incremental_inputs* inputs = this->inputs_;
1338   Stringpool* strtab = inputs->get_stringpool();
1339
1340   // Get a view into the .gnu_incremental_inputs section.
1341   const off_t off = this->offset();
1342   const off_t oview_size = this->data_size();
1343   unsigned char* const oview = of->get_output_view(off, oview_size);
1344   unsigned char* pov = oview;
1345
1346   // Get a view into the .gnu_incremental_symtab section.
1347   const off_t symtab_off = inputs->symtab_section()->offset();
1348   const off_t symtab_size = inputs->symtab_section()->data_size();
1349   unsigned char* const symtab_view = of->get_output_view(symtab_off,
1350                                                          symtab_size);
1351
1352   // Allocate an array of linked list heads for the .gnu_incremental_symtab
1353   // section.  Each element corresponds to a global symbol in the output
1354   // symbol table, and points to the head of the linked list that threads
1355   // through the object file input entries.  The value of each element
1356   // is the section-relative offset to a global symbol entry in a
1357   // supplemental information block.
1358   unsigned int global_sym_count = this->symtab_->output_count();
1359   unsigned int* global_syms = new unsigned int[global_sym_count];
1360   memset(global_syms, 0, global_sym_count * sizeof(unsigned int));
1361
1362   // Write the section header.
1363   Stringpool::Key command_line_key = inputs->command_line_key();
1364   pov = this->write_header(pov, inputs->input_file_count(),
1365                            strtab->get_offset_from_key(command_line_key));
1366
1367   // Write the list of input files.
1368   pov = this->write_input_files(oview, pov, strtab);
1369
1370   // Write the supplemental information blocks for each input file.
1371   pov = this->write_info_blocks(oview, pov, strtab, global_syms,
1372                                 global_sym_count);
1373
1374   gold_assert(pov - oview == oview_size);
1375
1376   // Write the .gnu_incremental_symtab section.
1377   gold_assert(global_sym_count * 4 == symtab_size);
1378   this->write_symtab(symtab_view, global_syms, global_sym_count);
1379
1380   delete[] global_syms;
1381
1382   // Write the .gnu_incremental_got_plt section.
1383   const off_t got_plt_off = inputs->got_plt_section()->offset();
1384   const off_t got_plt_size = inputs->got_plt_section()->data_size();
1385   unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
1386                                                           got_plt_size);
1387   this->write_got_plt(got_plt_view, got_plt_size);
1388
1389   of->write_output_view(off, oview_size, oview);
1390   of->write_output_view(symtab_off, symtab_size, symtab_view);
1391   of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
1392 }
1393
1394 // Write the section header: version, input file count, offset of command line
1395 // in the string table, and 4 bytes of padding.
1396
1397 template<int size, bool big_endian>
1398 unsigned char*
1399 Output_section_incremental_inputs<size, big_endian>::write_header(
1400     unsigned char* pov,
1401     unsigned int input_file_count,
1402     section_offset_type command_line_offset)
1403 {
1404   Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
1405   Swap32::writeval(pov + 4, input_file_count);
1406   Swap32::writeval(pov + 8, command_line_offset);
1407   Swap32::writeval(pov + 12, 0);
1408   return pov + this->header_size;
1409 }
1410
1411 // Write the input file entries.
1412
1413 template<int size, bool big_endian>
1414 unsigned char*
1415 Output_section_incremental_inputs<size, big_endian>::write_input_files(
1416     unsigned char* oview,
1417     unsigned char* pov,
1418     Stringpool* strtab)
1419 {
1420   const Incremental_inputs* inputs = this->inputs_;
1421
1422   for (Incremental_inputs::Input_list::const_iterator p =
1423            inputs->input_files().begin();
1424        p != inputs->input_files().end();
1425        ++p)
1426     {
1427       gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
1428       section_offset_type filename_offset =
1429           strtab->get_offset_from_key((*p)->get_filename_key());
1430       const Timespec& mtime = (*p)->get_mtime();
1431       unsigned int flags = (*p)->type();
1432       if ((*p)->is_in_system_directory())
1433         flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
1434       if ((*p)->as_needed())
1435         flags |= INCREMENTAL_INPUT_AS_NEEDED;
1436       Swap32::writeval(pov, filename_offset);
1437       Swap32::writeval(pov + 4, (*p)->get_info_offset());
1438       Swap64::writeval(pov + 8, mtime.seconds);
1439       Swap32::writeval(pov + 16, mtime.nanoseconds);
1440       Swap16::writeval(pov + 20, flags);
1441       Swap16::writeval(pov + 22, (*p)->arg_serial());
1442       pov += this->input_entry_size;
1443     }
1444   return pov;
1445 }
1446
1447 // Write the supplemental information blocks.
1448
1449 template<int size, bool big_endian>
1450 unsigned char*
1451 Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
1452     unsigned char* oview,
1453     unsigned char* pov,
1454     Stringpool* strtab,
1455     unsigned int* global_syms,
1456     unsigned int global_sym_count)
1457 {
1458   const Incremental_inputs* inputs = this->inputs_;
1459   unsigned int first_global_index = this->symtab_->first_global_index();
1460
1461   for (Incremental_inputs::Input_list::const_iterator p =
1462            inputs->input_files().begin();
1463        p != inputs->input_files().end();
1464        ++p)
1465     {
1466       switch ((*p)->type())
1467         {
1468         case INCREMENTAL_INPUT_SCRIPT:
1469           {
1470             gold_assert(static_cast<unsigned int>(pov - oview)
1471                         == (*p)->get_info_offset());
1472             Incremental_script_entry* entry = (*p)->script_entry();
1473             gold_assert(entry != NULL);
1474
1475             // Write the object count.
1476             unsigned int nobjects = entry->get_object_count();
1477             Swap32::writeval(pov, nobjects);
1478             pov += 4;
1479
1480             // For each object, write the offset to its input file entry.
1481             for (unsigned int i = 0; i < nobjects; ++i)
1482               {
1483                 Incremental_input_entry* obj = entry->get_object(i);
1484                 Swap32::writeval(pov, obj->get_offset());
1485                 pov += 4;
1486               }
1487           }
1488           break;
1489
1490         case INCREMENTAL_INPUT_OBJECT:
1491         case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1492           {
1493             gold_assert(static_cast<unsigned int>(pov - oview)
1494                         == (*p)->get_info_offset());
1495             Incremental_object_entry* entry = (*p)->object_entry();
1496             gold_assert(entry != NULL);
1497             const Object* obj = entry->object();
1498             const Relobj* relobj = static_cast<const Relobj*>(obj);
1499             const Object::Symbols* syms = obj->get_global_symbols();
1500             // Write the input section count and global symbol count.
1501             unsigned int nsections = entry->get_input_section_count();
1502             unsigned int nsyms = syms->size();
1503             off_t locals_offset = relobj->local_symbol_offset();
1504             unsigned int nlocals = relobj->output_local_symbol_count();
1505             unsigned int first_dynrel = relobj->first_dyn_reloc();
1506             unsigned int ndynrel = relobj->dyn_reloc_count();
1507             unsigned int ncomdat = entry->get_comdat_group_count();
1508             Swap32::writeval(pov, nsections);
1509             Swap32::writeval(pov + 4, nsyms);
1510             Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
1511             Swap32::writeval(pov + 12, nlocals);
1512             Swap32::writeval(pov + 16, first_dynrel);
1513             Swap32::writeval(pov + 20, ndynrel);
1514             Swap32::writeval(pov + 24, ncomdat);
1515             pov += 28;
1516
1517             // Build a temporary array to map input section indexes
1518             // from the original object file index to the index in the
1519             // incremental info table.
1520             unsigned int* index_map = new unsigned int[obj->shnum()];
1521             memset(index_map, 0, obj->shnum() * sizeof(unsigned int));
1522
1523             // For each input section, write the name, output section index,
1524             // offset within output section, and input section size.
1525             for (unsigned int i = 0; i < nsections; i++)
1526               {
1527                 unsigned int shndx = entry->get_input_section_index(i);
1528                 index_map[shndx] = i + 1;
1529                 Stringpool::Key key = entry->get_input_section_name_key(i);
1530                 off_t name_offset = 0;
1531                 if (key != 0)
1532                   name_offset = strtab->get_offset_from_key(key);
1533                 int out_shndx = 0;
1534                 off_t out_offset = 0;
1535                 off_t sh_size = 0;
1536                 Output_section* os = obj->output_section(shndx);
1537                 if (os != NULL)
1538                   {
1539                     out_shndx = os->out_shndx();
1540                     out_offset = obj->output_section_offset(shndx);
1541                     sh_size = entry->get_input_section_size(i);
1542                   }
1543                 Swap32::writeval(pov, name_offset);
1544                 Swap32::writeval(pov + 4, out_shndx);
1545                 Swap::writeval(pov + 8, out_offset);
1546                 Swap::writeval(pov + 8 + sizeof_addr, sh_size);
1547                 pov += 8 + 2 * sizeof_addr;
1548               }
1549
1550             // For each global symbol, write its associated relocations,
1551             // add it to the linked list of globals, then write the
1552             // supplemental information:  global symbol table index,
1553             // input section index, linked list chain pointer, relocation
1554             // count, and offset to the relocations.
1555             for (unsigned int i = 0; i < nsyms; i++)
1556               {
1557                 const Symbol* sym = (*syms)[i];
1558                 if (sym->is_forwarder())
1559                   sym = this->symtab_->resolve_forwards(sym);
1560                 unsigned int shndx = 0;
1561                 if (sym->source() != Symbol::FROM_OBJECT)
1562                   {
1563                     // The symbol was defined by the linker (e.g., common).
1564                     // We mark these symbols with a special SHNDX of -1,
1565                     // but exclude linker-predefined symbols and symbols
1566                     // copied from shared objects.
1567                     if (!sym->is_predefined()
1568                         && !sym->is_copied_from_dynobj())
1569                       shndx = -1U;
1570                   }
1571                 else if (sym->object() == obj && sym->is_defined())
1572                   {
1573                     bool is_ordinary;
1574                     unsigned int orig_shndx = sym->shndx(&is_ordinary);
1575                     if (is_ordinary)
1576                       shndx = index_map[orig_shndx];
1577                     else
1578                       shndx = 1;
1579                   }
1580                 unsigned int symtab_index = sym->symtab_index();
1581                 unsigned int chain = 0;
1582                 unsigned int first_reloc = 0;
1583                 unsigned int nrelocs = obj->get_incremental_reloc_count(i);
1584                 if (nrelocs > 0)
1585                   {
1586                     gold_assert(symtab_index != -1U
1587                                 && (symtab_index - first_global_index
1588                                     < global_sym_count));
1589                     first_reloc = obj->get_incremental_reloc_base(i);
1590                     chain = global_syms[symtab_index - first_global_index];
1591                     global_syms[symtab_index - first_global_index] =
1592                         pov - oview;
1593                   }
1594                 Swap32::writeval(pov, symtab_index);
1595                 Swap32::writeval(pov + 4, shndx);
1596                 Swap32::writeval(pov + 8, chain);
1597                 Swap32::writeval(pov + 12, nrelocs);
1598                 Swap32::writeval(pov + 16, first_reloc * 3 * sizeof_addr);
1599                 pov += 20;
1600               }
1601
1602             // For each kept COMDAT group, write the group signature.
1603             for (unsigned int i = 0; i < ncomdat; i++)
1604               {
1605                 Stringpool::Key key = entry->get_comdat_signature_key(i);
1606                 off_t name_offset = 0;
1607                 if (key != 0)
1608                   name_offset = strtab->get_offset_from_key(key);
1609                 Swap32::writeval(pov, name_offset);
1610                 pov += 4;
1611               }
1612
1613             delete[] index_map;
1614           }
1615           break;
1616
1617         case INCREMENTAL_INPUT_SHARED_LIBRARY:
1618           {
1619             gold_assert(static_cast<unsigned int>(pov - oview)
1620                         == (*p)->get_info_offset());
1621             Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1622             gold_assert(entry != NULL);
1623             Object* obj = entry->object();
1624             Dynobj* dynobj = obj->dynobj();
1625             gold_assert(dynobj != NULL);
1626             const Object::Symbols* syms = obj->get_global_symbols();
1627
1628             // Write the soname string table index.
1629             section_offset_type soname_offset =
1630                 strtab->get_offset_from_key(entry->get_soname_key());
1631             Swap32::writeval(pov, soname_offset);
1632             pov += 4;
1633
1634             // Skip the global symbol count for now.
1635             unsigned char* orig_pov = pov;
1636             pov += 4;
1637
1638             // For each global symbol, write the global symbol table index.
1639             unsigned int nsyms = syms->size();
1640             unsigned int nsyms_out = 0;
1641             for (unsigned int i = 0; i < nsyms; i++)
1642               {
1643                 const Symbol* sym = (*syms)[i];
1644                 if (sym == NULL)
1645                   continue;
1646                 if (sym->is_forwarder())
1647                   sym = this->symtab_->resolve_forwards(sym);
1648                 if (sym->symtab_index() == -1U)
1649                   continue;
1650                 unsigned int flags = 0;
1651                 if (sym->source() == Symbol::FROM_OBJECT
1652                     && sym->object() == obj
1653                     && sym->is_defined())
1654                   flags = INCREMENTAL_SHLIB_SYM_DEF;
1655                 else if (sym->is_copied_from_dynobj()
1656                          && this->symtab_->get_copy_source(sym) == dynobj)
1657                   flags = INCREMENTAL_SHLIB_SYM_COPY;
1658                 flags <<= INCREMENTAL_SHLIB_SYM_FLAGS_SHIFT;
1659                 Swap32::writeval(pov, sym->symtab_index() | flags);
1660                 pov += 4;
1661                 ++nsyms_out;
1662               }
1663
1664             // Now write the global symbol count.
1665             Swap32::writeval(orig_pov, nsyms_out);
1666           }
1667           break;
1668
1669         case INCREMENTAL_INPUT_ARCHIVE:
1670           {
1671             gold_assert(static_cast<unsigned int>(pov - oview)
1672                         == (*p)->get_info_offset());
1673             Incremental_archive_entry* entry = (*p)->archive_entry();
1674             gold_assert(entry != NULL);
1675
1676             // Write the member count and unused global symbol count.
1677             unsigned int nmembers = entry->get_member_count();
1678             unsigned int nsyms = entry->get_unused_global_symbol_count();
1679             Swap32::writeval(pov, nmembers);
1680             Swap32::writeval(pov + 4, nsyms);
1681             pov += 8;
1682
1683             // For each member, write the offset to its input file entry.
1684             for (unsigned int i = 0; i < nmembers; ++i)
1685               {
1686                 Incremental_object_entry* member = entry->get_member(i);
1687                 Swap32::writeval(pov, member->get_offset());
1688                 pov += 4;
1689               }
1690
1691             // For each global symbol, write the name offset.
1692             for (unsigned int i = 0; i < nsyms; ++i)
1693               {
1694                 Stringpool::Key key = entry->get_unused_global_symbol(i);
1695                 Swap32::writeval(pov, strtab->get_offset_from_key(key));
1696                 pov += 4;
1697               }
1698           }
1699           break;
1700
1701         default:
1702           gold_unreachable();
1703         }
1704     }
1705   return pov;
1706 }
1707
1708 // Write the contents of the .gnu_incremental_symtab section.
1709
1710 template<int size, bool big_endian>
1711 void
1712 Output_section_incremental_inputs<size, big_endian>::write_symtab(
1713     unsigned char* pov,
1714     unsigned int* global_syms,
1715     unsigned int global_sym_count)
1716 {
1717   for (unsigned int i = 0; i < global_sym_count; ++i)
1718     {
1719       Swap32::writeval(pov, global_syms[i]);
1720       pov += 4;
1721     }
1722 }
1723
1724 // This struct holds the view information needed to write the
1725 // .gnu_incremental_got_plt section.
1726
1727 struct Got_plt_view_info
1728 {
1729   // Start of the GOT type array in the output view.
1730   unsigned char* got_type_p;
1731   // Start of the GOT descriptor array in the output view.
1732   unsigned char* got_desc_p;
1733   // Start of the PLT descriptor array in the output view.
1734   unsigned char* plt_desc_p;
1735   // Number of GOT entries.
1736   unsigned int got_count;
1737   // Number of PLT entries.
1738   unsigned int plt_count;
1739   // Offset of the first non-reserved PLT entry (this is a target-dependent value).
1740   unsigned int first_plt_entry_offset;
1741   // Size of a PLT entry (this is a target-dependent value).
1742   unsigned int plt_entry_size;
1743   // Symbol index to write in the GOT descriptor array.  For global symbols,
1744   // this is the global symbol table index; for local symbols, it is the
1745   // local symbol table index.
1746   unsigned int sym_index;
1747   // Input file index to write in the GOT descriptor array.  For global
1748   // symbols, this is 0; for local symbols, it is the index of the input
1749   // file entry in the .gnu_incremental_inputs section.
1750   unsigned int input_index;
1751 };
1752
1753 // Functor class for processing a GOT offset list for local symbols.
1754 // Writes the GOT type and symbol index into the GOT type and descriptor
1755 // arrays in the output section.
1756
1757 template<int size, bool big_endian>
1758 class Local_got_offset_visitor : public Got_offset_list::Visitor
1759 {
1760  public:
1761   Local_got_offset_visitor(struct Got_plt_view_info& info)
1762     : info_(info)
1763   { }
1764
1765   void
1766   visit(unsigned int got_type, unsigned int got_offset)
1767   {
1768     unsigned int got_index = got_offset / this->got_entry_size_;
1769     gold_assert(got_index < this->info_.got_count);
1770     // We can only handle GOT entry types in the range 0..0x7e
1771     // because we use a byte array to store them, and we use the
1772     // high bit to flag a local symbol.
1773     gold_assert(got_type < 0x7f);
1774     this->info_.got_type_p[got_index] = got_type | 0x80;
1775     unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1776     elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1777     elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
1778   }
1779
1780  private:
1781   static const unsigned int got_entry_size_ = size / 8;
1782   struct Got_plt_view_info& info_;
1783 };
1784
1785 // Functor class for processing a GOT offset list.  Writes the GOT type
1786 // and symbol index into the GOT type and descriptor arrays in the output
1787 // section.
1788
1789 template<int size, bool big_endian>
1790 class Global_got_offset_visitor : public Got_offset_list::Visitor
1791 {
1792  public:
1793   Global_got_offset_visitor(struct Got_plt_view_info& info)
1794     : info_(info)
1795   { }
1796
1797   void
1798   visit(unsigned int got_type, unsigned int got_offset)
1799   {
1800     unsigned int got_index = got_offset / this->got_entry_size_;
1801     gold_assert(got_index < this->info_.got_count);
1802     // We can only handle GOT entry types in the range 0..0x7e
1803     // because we use a byte array to store them, and we use the
1804     // high bit to flag a local symbol.
1805     gold_assert(got_type < 0x7f);
1806     this->info_.got_type_p[got_index] = got_type;
1807     unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1808     elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1809     elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
1810   }
1811
1812  private:
1813   static const unsigned int got_entry_size_ = size / 8;
1814   struct Got_plt_view_info& info_;
1815 };
1816
1817 // Functor class for processing the global symbol table.  Processes the
1818 // GOT offset list for the symbol, and writes the symbol table index
1819 // into the PLT descriptor array in the output section.
1820
1821 template<int size, bool big_endian>
1822 class Global_symbol_visitor_got_plt
1823 {
1824  public:
1825   Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
1826     : info_(info)
1827   { }
1828
1829   void
1830   operator()(const Sized_symbol<size>* sym)
1831   {
1832     typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
1833     const Got_offset_list* got_offsets = sym->got_offset_list();
1834     if (got_offsets != NULL)
1835       {
1836         this->info_.sym_index = sym->symtab_index();
1837         this->info_.input_index = 0;
1838         Got_visitor v(this->info_);
1839         got_offsets->for_all_got_offsets(&v);
1840       }
1841     if (sym->has_plt_offset())
1842       {
1843         unsigned int plt_index =
1844             ((sym->plt_offset() - this->info_.first_plt_entry_offset)
1845              / this->info_.plt_entry_size);
1846         gold_assert(plt_index < this->info_.plt_count);
1847         unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
1848         elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
1849       }
1850   }
1851
1852  private:
1853   struct Got_plt_view_info& info_;
1854 };
1855
1856 // Write the contents of the .gnu_incremental_got_plt section.
1857
1858 template<int size, bool big_endian>
1859 void
1860 Output_section_incremental_inputs<size, big_endian>::write_got_plt(
1861     unsigned char* pov,
1862     off_t view_size)
1863 {
1864   Sized_target<size, big_endian>* target =
1865     parameters->sized_target<size, big_endian>();
1866
1867   // Set up the view information for the functors.
1868   struct Got_plt_view_info view_info;
1869   view_info.got_count = target->got_entry_count();
1870   view_info.plt_count = target->plt_entry_count();
1871   view_info.first_plt_entry_offset = target->first_plt_entry_offset();
1872   view_info.plt_entry_size = target->plt_entry_size();
1873   view_info.got_type_p = pov + 8;
1874   view_info.got_desc_p = (view_info.got_type_p
1875                           + ((view_info.got_count + 3) & ~3));
1876   view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;
1877
1878   gold_assert(pov + view_size ==
1879               view_info.plt_desc_p + view_info.plt_count * 4);
1880
1881   // Write the section header.
1882   Swap32::writeval(pov, view_info.got_count);
1883   Swap32::writeval(pov + 4, view_info.plt_count);
1884
1885   // Initialize the GOT type array to 0xff (reserved).
1886   memset(view_info.got_type_p, 0xff, view_info.got_count);
1887
1888   // Write the incremental GOT descriptors for local symbols.
1889   typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
1890   for (Incremental_inputs::Input_list::const_iterator p =
1891            this->inputs_->input_files().begin();
1892        p != this->inputs_->input_files().end();
1893        ++p)
1894     {
1895       if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
1896           && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
1897         continue;
1898       Incremental_object_entry* entry = (*p)->object_entry();
1899       gold_assert(entry != NULL);
1900       const Object* obj = entry->object();
1901       gold_assert(obj != NULL);
1902       view_info.input_index = (*p)->get_file_index();
1903       Got_visitor v(view_info);
1904       obj->for_all_local_got_entries(&v);
1905     }
1906
1907   // Write the incremental GOT and PLT descriptors for global symbols.
1908   typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
1909   symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
1910 }
1911
1912 // Class Sized_relobj_incr.  Most of these methods are not used for
1913 // Incremental objects, but are required to be implemented by the
1914 // base class Object.
1915
1916 template<int size, bool big_endian>
1917 Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
1918     const std::string& name,
1919     Sized_incremental_binary<size, big_endian>* ibase,
1920     unsigned int input_file_index)
1921   : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
1922     input_file_index_(input_file_index),
1923     input_reader_(ibase->inputs_reader().input_file(input_file_index)),
1924     local_symbol_count_(0), output_local_dynsym_count_(0),
1925     local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
1926     symbols_(), incr_reloc_offset_(-1U), incr_reloc_count_(0),
1927     incr_reloc_output_index_(0), incr_relocs_(NULL), local_symbols_()
1928 {
1929   if (this->input_reader_.is_in_system_directory())
1930     this->set_is_in_system_directory();
1931   const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
1932   this->set_shnum(shnum);
1933   ibase->set_input_object(input_file_index, this);
1934 }
1935
1936 // Read the symbols.
1937
1938 template<int size, bool big_endian>
1939 void
1940 Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
1941 {
1942   gold_unreachable();
1943 }
1944
1945 // Lay out the input sections.
1946
1947 template<int size, bool big_endian>
1948 void
1949 Sized_relobj_incr<size, big_endian>::do_layout(
1950     Symbol_table*,
1951     Layout* layout,
1952     Read_symbols_data*)
1953 {
1954   const unsigned int shnum = this->shnum();
1955   Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1956   gold_assert(incremental_inputs != NULL);
1957   Output_sections& out_sections(this->output_sections());
1958   out_sections.resize(shnum);
1959   this->section_offsets().resize(shnum);
1960   for (unsigned int i = 1; i < shnum; i++)
1961     {
1962       typename Input_entry_reader::Input_section_info sect =
1963           this->input_reader_.get_input_section(i - 1);
1964       // Add the section to the incremental inputs layout.
1965       incremental_inputs->report_input_section(this, i, sect.name,
1966                                                sect.sh_size);
1967       if (sect.output_shndx == 0 || sect.sh_offset == -1)
1968         continue;
1969       Output_section* os = this->ibase_->output_section(sect.output_shndx);
1970       gold_assert(os != NULL);
1971       out_sections[i] = os;
1972       this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);
1973     }
1974
1975   // Process the COMDAT groups.
1976   unsigned int ncomdat = this->input_reader_.get_comdat_group_count();
1977   for (unsigned int i = 0; i < ncomdat; i++)
1978     {
1979       const char* signature = this->input_reader_.get_comdat_group_signature(i);
1980       if (signature == NULL || signature[0] == '\0')
1981         this->error(_("COMDAT group has no signature"));
1982       bool keep = layout->find_or_add_kept_section(signature, this, i, true,
1983                                                    true, NULL);
1984       if (!keep)
1985         this->error(_("COMDAT group %s included twice in incremental link"),
1986                     signature);
1987     }
1988 }
1989
1990 // Layout sections whose layout was deferred while waiting for
1991 // input files from a plugin.
1992 template<int size, bool big_endian>
1993 void
1994 Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
1995 {
1996 }
1997
1998 // Add the symbols to the symbol table.
1999
2000 template<int size, bool big_endian>
2001 void
2002 Sized_relobj_incr<size, big_endian>::do_add_symbols(
2003     Symbol_table* symtab,
2004     Read_symbols_data*,
2005     Layout*)
2006 {
2007   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2008   unsigned char symbuf[sym_size];
2009   elfcpp::Sym<size, big_endian> sym(symbuf);
2010   elfcpp::Sym_write<size, big_endian> osym(symbuf);
2011
2012   typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2013
2014   unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2015   this->symbols_.resize(nsyms);
2016
2017   Incremental_binary::View symtab_view(NULL);
2018   unsigned int symtab_count;
2019   elfcpp::Elf_strtab strtab(NULL, 0);
2020   this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2021
2022   Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2023   unsigned int isym_count = isymtab.symbol_count();
2024   unsigned int first_global = symtab_count - isym_count;
2025
2026   const unsigned char* sym_p;
2027   for (unsigned int i = 0; i < nsyms; ++i)
2028     {
2029       Incremental_global_symbol_reader<big_endian> info =
2030           this->input_reader_.get_global_symbol_reader(i);
2031       unsigned int output_symndx = info.output_symndx();
2032       sym_p = symtab_view.data() + output_symndx * sym_size;
2033       elfcpp::Sym<size, big_endian> gsym(sym_p);
2034       const char* name;
2035       if (!strtab.get_c_string(gsym.get_st_name(), &name))
2036         name = "";
2037
2038       typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
2039       unsigned int shndx = gsym.get_st_shndx();
2040       elfcpp::STB st_bind = gsym.get_st_bind();
2041       elfcpp::STT st_type = gsym.get_st_type();
2042
2043       // Local hidden symbols start out as globals, but get converted to
2044       // to local during output.
2045       if (st_bind == elfcpp::STB_LOCAL)
2046         st_bind = elfcpp::STB_GLOBAL;
2047
2048       unsigned int input_shndx = info.shndx();
2049       if (input_shndx == 0 || input_shndx == -1U)
2050         {
2051           shndx = elfcpp::SHN_UNDEF;
2052           v = 0;
2053         }
2054       else if (shndx != elfcpp::SHN_ABS)
2055         {
2056           // Find the input section and calculate the section-relative value.
2057           gold_assert(shndx != elfcpp::SHN_UNDEF);
2058           Output_section* os = this->ibase_->output_section(shndx);
2059           gold_assert(os != NULL && os->has_fixed_layout());
2060           typename Input_entry_reader::Input_section_info sect =
2061               this->input_reader_.get_input_section(input_shndx - 1);
2062           gold_assert(sect.output_shndx == shndx);
2063           if (st_type != elfcpp::STT_TLS)
2064             v -= os->address();
2065           v -= sect.sh_offset;
2066           shndx = input_shndx;
2067         }
2068
2069       osym.put_st_name(0);
2070       osym.put_st_value(v);
2071       osym.put_st_size(gsym.get_st_size());
2072       osym.put_st_info(st_bind, st_type);
2073       osym.put_st_other(gsym.get_st_other());
2074       osym.put_st_shndx(shndx);
2075
2076       Symbol* res = symtab->add_from_incrobj(this, name, NULL, &sym);
2077
2078       // If this is a linker-defined symbol that hasn't yet been defined,
2079       // define it now.
2080       if (input_shndx == -1U && !res->is_defined())
2081         {
2082           shndx = gsym.get_st_shndx();
2083           v = gsym.get_st_value();
2084           Elf_size_type symsize = gsym.get_st_size();
2085           if (shndx == elfcpp::SHN_ABS)
2086             {
2087               symtab->define_as_constant(name, NULL,
2088                                          Symbol_table::INCREMENTAL_BASE,
2089                                          v, symsize, st_type, st_bind,
2090                                          gsym.get_st_visibility(), 0,
2091                                          false, false);
2092             }
2093           else
2094             {
2095               Output_section* os = this->ibase_->output_section(shndx);
2096               gold_assert(os != NULL && os->has_fixed_layout());
2097               v -= os->address();
2098               if (symsize > 0)
2099                 os->reserve(v, symsize);
2100               symtab->define_in_output_data(name, NULL,
2101                                             Symbol_table::INCREMENTAL_BASE,
2102                                             os, v, symsize, st_type, st_bind,
2103                                             gsym.get_st_visibility(), 0,
2104                                             false, false);
2105             }
2106         }
2107
2108       this->symbols_[i] = res;
2109       this->ibase_->add_global_symbol(output_symndx - first_global, res);
2110     }
2111 }
2112
2113 // Return TRUE if we should include this object from an archive library.
2114
2115 template<int size, bool big_endian>
2116 Archive::Should_include
2117 Sized_relobj_incr<size, big_endian>::do_should_include_member(
2118     Symbol_table*,
2119     Layout*,
2120     Read_symbols_data*,
2121     std::string*)
2122 {
2123   gold_unreachable();
2124 }
2125
2126 // Iterate over global symbols, calling a visitor class V for each.
2127
2128 template<int size, bool big_endian>
2129 void
2130 Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
2131     Read_symbols_data*,
2132     Library_base::Symbol_visitor_base*)
2133 {
2134   // This routine is not used for incremental objects.
2135 }
2136
2137 // Get the size of a section.
2138
2139 template<int size, bool big_endian>
2140 uint64_t
2141 Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
2142 {
2143   gold_unreachable();
2144 }
2145
2146 // Get the name of a section.
2147
2148 template<int size, bool big_endian>
2149 std::string
2150 Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int)
2151 {
2152   gold_unreachable();
2153 }
2154
2155 // Return a view of the contents of a section.
2156
2157 template<int size, bool big_endian>
2158 Object::Location
2159 Sized_relobj_incr<size, big_endian>::do_section_contents(unsigned int)
2160 {
2161   gold_unreachable();
2162 }
2163
2164 // Return section flags.
2165
2166 template<int size, bool big_endian>
2167 uint64_t
2168 Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
2169 {
2170   gold_unreachable();
2171 }
2172
2173 // Return section entsize.
2174
2175 template<int size, bool big_endian>
2176 uint64_t
2177 Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
2178 {
2179   gold_unreachable();
2180 }
2181
2182 // Return section address.
2183
2184 template<int size, bool big_endian>
2185 uint64_t
2186 Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
2187 {
2188   gold_unreachable();
2189 }
2190
2191 // Return section type.
2192
2193 template<int size, bool big_endian>
2194 unsigned int
2195 Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
2196 {
2197   gold_unreachable();
2198 }
2199
2200 // Return the section link field.
2201
2202 template<int size, bool big_endian>
2203 unsigned int
2204 Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
2205 {
2206   gold_unreachable();
2207 }
2208
2209 // Return the section link field.
2210
2211 template<int size, bool big_endian>
2212 unsigned int
2213 Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
2214 {
2215   gold_unreachable();
2216 }
2217
2218 // Return the section alignment.
2219
2220 template<int size, bool big_endian>
2221 uint64_t
2222 Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
2223 {
2224   gold_unreachable();
2225 }
2226
2227 // Return the Xindex structure to use.
2228
2229 template<int size, bool big_endian>
2230 Xindex*
2231 Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
2232 {
2233   gold_unreachable();
2234 }
2235
2236 // Get symbol counts.
2237
2238 template<int size, bool big_endian>
2239 void
2240 Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
2241     const Symbol_table*, size_t*, size_t*) const
2242 {
2243   gold_unreachable();
2244 }
2245
2246 // Read the relocs.
2247
2248 template<int size, bool big_endian>
2249 void
2250 Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
2251 {
2252 }
2253
2254 // Process the relocs to find list of referenced sections. Used only
2255 // during garbage collection.
2256
2257 template<int size, bool big_endian>
2258 void
2259 Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
2260                                                           Layout*,
2261                                                           Read_relocs_data*)
2262 {
2263   gold_unreachable();
2264 }
2265
2266 // Scan the relocs and adjust the symbol table.
2267
2268 template<int size, bool big_endian>
2269 void
2270 Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
2271                                                     Layout* layout,
2272                                                     Read_relocs_data*)
2273 {
2274   // Count the incremental relocations for this object.
2275   unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2276   this->allocate_incremental_reloc_counts();
2277   for (unsigned int i = 0; i < nsyms; i++)
2278     {
2279       Incremental_global_symbol_reader<big_endian> sym =
2280           this->input_reader_.get_global_symbol_reader(i);
2281       unsigned int reloc_count = sym.reloc_count();
2282       if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
2283         this->incr_reloc_offset_ = sym.reloc_offset();
2284       this->incr_reloc_count_ += reloc_count;
2285       for (unsigned int j = 0; j < reloc_count; j++)
2286         this->count_incremental_reloc(i);
2287     }
2288   this->incr_reloc_output_index_ =
2289       layout->incremental_inputs()->get_reloc_count();
2290   this->finalize_incremental_relocs(layout, false);
2291
2292   // The incoming incremental relocations may not end up in the same
2293   // location after the incremental update, because the incremental info
2294   // is regenerated in each link.  Because the new location may overlap
2295   // with other data in the updated output file, we need to copy the
2296   // relocations into a buffer so that we can still read them safely
2297   // after we start writing updates to the output file.
2298   if (this->incr_reloc_count_ > 0)
2299     {
2300       const Incremental_relocs_reader<size, big_endian>& relocs_reader =
2301           this->ibase_->relocs_reader();
2302       const unsigned int incr_reloc_size = relocs_reader.reloc_size;
2303       unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2304       this->incr_relocs_ = new unsigned char[len];
2305       memcpy(this->incr_relocs_,
2306              relocs_reader.data(this->incr_reloc_offset_),
2307              len);
2308     }
2309 }
2310
2311 // Count the local symbols.
2312
2313 template<int size, bool big_endian>
2314 void
2315 Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
2316     Stringpool_template<char>* pool,
2317     Stringpool_template<char>*)
2318 {
2319   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2320
2321   // Set the count of local symbols based on the incremental info.
2322   unsigned int nlocals = this->input_reader_.get_local_symbol_count();
2323   this->local_symbol_count_ = nlocals;
2324   this->local_symbols_.reserve(nlocals);
2325
2326   // Get views of the base file's symbol table and string table.
2327   Incremental_binary::View symtab_view(NULL);
2328   unsigned int symtab_count;
2329   elfcpp::Elf_strtab strtab(NULL, 0);
2330   this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2331
2332   // Read the local symbols from the base file's symbol table.
2333   off_t off = this->input_reader_.get_local_symbol_offset();
2334   const unsigned char* symp = symtab_view.data() + off;
2335   for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
2336     {
2337       elfcpp::Sym<size, big_endian> sym(symp);
2338       const char* name;
2339       if (!strtab.get_c_string(sym.get_st_name(), &name))
2340         name = "";
2341       gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
2342       name = pool->add(name, true, NULL);
2343       this->local_symbols_.push_back(Local_symbol(name,
2344                                                   sym.get_st_value(),
2345                                                   sym.get_st_size(),
2346                                                   sym.get_st_shndx(),
2347                                                   sym.get_st_type(),
2348                                                   false));
2349     }
2350 }
2351
2352 // Finalize the local symbols.
2353
2354 template<int size, bool big_endian>
2355 unsigned int
2356 Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
2357     unsigned int index,
2358     off_t off,
2359     Symbol_table*)
2360 {
2361   this->local_symbol_index_ = index;
2362   this->local_symbol_offset_ = off;
2363   return index + this->local_symbol_count_;
2364 }
2365
2366 // Set the offset where local dynamic symbol information will be stored.
2367
2368 template<int size, bool big_endian>
2369 unsigned int
2370 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
2371     unsigned int index)
2372 {
2373   // FIXME: set local dynsym indexes.
2374   return index;
2375 }
2376
2377 // Set the offset where local dynamic symbol information will be stored.
2378
2379 template<int size, bool big_endian>
2380 unsigned int
2381 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
2382 {
2383   return 0;
2384 }
2385
2386 // Relocate the input sections and write out the local symbols.
2387 // We don't actually do any relocation here.  For unchanged input files,
2388 // we reapply relocations only for symbols that have changed; that happens
2389 // in queue_final_tasks.  We do need to rewrite the incremental relocations
2390 // for this object.
2391
2392 template<int size, bool big_endian>
2393 void
2394 Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
2395                                                  const Layout* layout,
2396                                                  Output_file* of)
2397 {
2398   if (this->incr_reloc_count_ == 0)
2399     return;
2400
2401   const unsigned int incr_reloc_size =
2402       Incremental_relocs_reader<size, big_endian>::reloc_size;
2403
2404   // Get a view for the .gnu_incremental_relocs section.
2405   Incremental_inputs* inputs = layout->incremental_inputs();
2406   gold_assert(inputs != NULL);
2407   const off_t relocs_off = inputs->relocs_section()->offset();
2408   const off_t relocs_size = inputs->relocs_section()->data_size();
2409   unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
2410
2411   // Copy the relocations from the buffer.
2412   off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
2413   unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2414   memcpy(view + off, this->incr_relocs_, len);
2415
2416   // The output section table may have changed, so we need to map
2417   // the old section index to the new section index for each relocation.
2418   for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
2419     {
2420       unsigned char* pov = view + off + i * incr_reloc_size;
2421       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
2422       Output_section* os = this->ibase_->output_section(shndx);
2423       gold_assert(os != NULL);
2424       shndx = os->out_shndx();
2425       elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
2426     }
2427
2428   of->write_output_view(off, len, view);
2429
2430   // Get views into the output file for the portions of the symbol table
2431   // and the dynamic symbol table that we will be writing.
2432   off_t symtab_off = layout->symtab_section()->offset();
2433   off_t output_size = this->local_symbol_count_ * This::sym_size;
2434   unsigned char* oview = NULL;
2435   if (output_size > 0)
2436     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2437                                 output_size);
2438
2439   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2440   unsigned char* dyn_oview = NULL;
2441   if (dyn_output_size > 0)
2442     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2443                                     dyn_output_size);
2444
2445   // Write the local symbols.
2446   unsigned char* ov = oview;
2447   unsigned char* dyn_ov = dyn_oview;
2448   const Stringpool* sympool = layout->sympool();
2449   const Stringpool* dynpool = layout->dynpool();
2450   Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
2451   Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
2452   for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
2453     {
2454       Local_symbol& lsym(this->local_symbols_[i]);
2455
2456       bool is_ordinary;
2457       unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
2458                                                      &is_ordinary);
2459       if (is_ordinary)
2460         {
2461           Output_section* os = this->ibase_->output_section(st_shndx);
2462           st_shndx = os->out_shndx();
2463           if (st_shndx >= elfcpp::SHN_LORESERVE)
2464             {
2465               symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
2466               if (lsym.needs_dynsym_entry)
2467                 dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
2468               st_shndx = elfcpp::SHN_XINDEX;
2469             }
2470         }
2471
2472       // Write the symbol to the output symbol table.
2473       {
2474         elfcpp::Sym_write<size, big_endian> osym(ov);
2475         osym.put_st_name(sympool->get_offset(lsym.name));
2476         osym.put_st_value(lsym.st_value);
2477         osym.put_st_size(lsym.st_size);
2478         osym.put_st_info(elfcpp::STB_LOCAL,
2479                          static_cast<elfcpp::STT>(lsym.st_type));
2480         osym.put_st_other(0);
2481         osym.put_st_shndx(st_shndx);
2482         ov += sym_size;
2483       }
2484
2485       // Write the symbol to the output dynamic symbol table.
2486       if (lsym.needs_dynsym_entry)
2487         {
2488           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2489           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2490           osym.put_st_name(dynpool->get_offset(lsym.name));
2491           osym.put_st_value(lsym.st_value);
2492           osym.put_st_size(lsym.st_size);
2493           osym.put_st_info(elfcpp::STB_LOCAL,
2494                            static_cast<elfcpp::STT>(lsym.st_type));
2495           osym.put_st_other(0);
2496           osym.put_st_shndx(st_shndx);
2497           dyn_ov += sym_size;
2498         }
2499     }
2500
2501   if (output_size > 0)
2502     {
2503       gold_assert(ov - oview == output_size);
2504       of->write_output_view(symtab_off + this->local_symbol_offset_,
2505                             output_size, oview);
2506     }
2507
2508   if (dyn_output_size > 0)
2509     {
2510       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2511       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2512                             dyn_oview);
2513     }
2514 }
2515
2516 // Set the offset of a section.
2517
2518 template<int size, bool big_endian>
2519 void
2520 Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
2521                                                            uint64_t)
2522 {
2523 }
2524
2525 // Class Sized_incr_dynobj.  Most of these methods are not used for
2526 // Incremental objects, but are required to be implemented by the
2527 // base class Object.
2528
2529 template<int size, bool big_endian>
2530 Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
2531     const std::string& name,
2532     Sized_incremental_binary<size, big_endian>* ibase,
2533     unsigned int input_file_index)
2534   : Dynobj(name, NULL), ibase_(ibase),
2535     input_file_index_(input_file_index),
2536     input_reader_(ibase->inputs_reader().input_file(input_file_index)),
2537     symbols_()
2538 {
2539   if (this->input_reader_.is_in_system_directory())
2540     this->set_is_in_system_directory();
2541   if (this->input_reader_.as_needed())
2542     this->set_as_needed();
2543   this->set_soname_string(this->input_reader_.get_soname());
2544   this->set_shnum(0);
2545 }
2546
2547 // Read the symbols.
2548
2549 template<int size, bool big_endian>
2550 void
2551 Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
2552 {
2553   gold_unreachable();
2554 }
2555
2556 // Lay out the input sections.
2557
2558 template<int size, bool big_endian>
2559 void
2560 Sized_incr_dynobj<size, big_endian>::do_layout(
2561     Symbol_table*,
2562     Layout*,
2563     Read_symbols_data*)
2564 {
2565 }
2566
2567 // Add the symbols to the symbol table.
2568
2569 template<int size, bool big_endian>
2570 void
2571 Sized_incr_dynobj<size, big_endian>::do_add_symbols(
2572     Symbol_table* symtab,
2573     Read_symbols_data*,
2574     Layout*)
2575 {
2576   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2577   unsigned char symbuf[sym_size];
2578   elfcpp::Sym<size, big_endian> sym(symbuf);
2579   elfcpp::Sym_write<size, big_endian> osym(symbuf);
2580
2581   typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2582
2583   unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2584   this->symbols_.resize(nsyms);
2585
2586   Incremental_binary::View symtab_view(NULL);
2587   unsigned int symtab_count;
2588   elfcpp::Elf_strtab strtab(NULL, 0);
2589   this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2590
2591   Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2592   unsigned int isym_count = isymtab.symbol_count();
2593   unsigned int first_global = symtab_count - isym_count;
2594
2595   // We keep a set of symbols that we have generated COPY relocations
2596   // for, indexed by the symbol value. We do not need more than one
2597   // COPY relocation per address.
2598   typedef typename std::set<Address> Copied_symbols;
2599   Copied_symbols copied_symbols;
2600
2601   const unsigned char* sym_p;
2602   for (unsigned int i = 0; i < nsyms; ++i)
2603     {
2604       bool is_def;
2605       bool is_copy;
2606       unsigned int output_symndx =
2607           this->input_reader_.get_output_symbol_index(i, &is_def, &is_copy);
2608       sym_p = symtab_view.data() + output_symndx * sym_size;
2609       elfcpp::Sym<size, big_endian> gsym(sym_p);
2610       const char* name;
2611       if (!strtab.get_c_string(gsym.get_st_name(), &name))
2612         name = "";
2613
2614       Address v;
2615       unsigned int shndx;
2616       elfcpp::STB st_bind = gsym.get_st_bind();
2617       elfcpp::STT st_type = gsym.get_st_type();
2618
2619       // Local hidden symbols start out as globals, but get converted to
2620       // to local during output.
2621       if (st_bind == elfcpp::STB_LOCAL)
2622         st_bind = elfcpp::STB_GLOBAL;
2623
2624       if (!is_def)
2625         {
2626           shndx = elfcpp::SHN_UNDEF;
2627           v = 0;
2628         }
2629       else
2630         {
2631           // For a symbol defined in a shared object, the section index
2632           // is meaningless, as long as it's not SHN_UNDEF.
2633           shndx = 1;
2634           v = gsym.get_st_value();
2635         }
2636
2637       osym.put_st_name(0);
2638       osym.put_st_value(v);
2639       osym.put_st_size(gsym.get_st_size());
2640       osym.put_st_info(st_bind, st_type);
2641       osym.put_st_other(gsym.get_st_other());
2642       osym.put_st_shndx(shndx);
2643
2644       Sized_symbol<size>* res =
2645           symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
2646       this->symbols_[i] = res;
2647       this->ibase_->add_global_symbol(output_symndx - first_global,
2648                                       this->symbols_[i]);
2649
2650       if (is_copy)
2651         {
2652           std::pair<typename Copied_symbols::iterator, bool> ins =
2653               copied_symbols.insert(v);
2654           if (ins.second)
2655             {
2656               unsigned int shndx = gsym.get_st_shndx();
2657               Output_section* os = this->ibase_->output_section(shndx);
2658               off_t offset = v - os->address();
2659               this->ibase_->add_copy_reloc(this->symbols_[i], os, offset);
2660             }
2661         }
2662     }
2663 }
2664
2665 // Return TRUE if we should include this object from an archive library.
2666
2667 template<int size, bool big_endian>
2668 Archive::Should_include
2669 Sized_incr_dynobj<size, big_endian>::do_should_include_member(
2670     Symbol_table*,
2671     Layout*,
2672     Read_symbols_data*,
2673     std::string*)
2674 {
2675   gold_unreachable();
2676 }
2677
2678 // Iterate over global symbols, calling a visitor class V for each.
2679
2680 template<int size, bool big_endian>
2681 void
2682 Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
2683     Read_symbols_data*,
2684     Library_base::Symbol_visitor_base*)
2685 {
2686   // This routine is not used for dynamic libraries.
2687 }
2688
2689 // Iterate over local symbols, calling a visitor class V for each GOT offset
2690 // associated with a local symbol.
2691
2692 template<int size, bool big_endian>
2693 void
2694 Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
2695     Got_offset_list::Visitor*) const
2696 {
2697 }
2698
2699 // Get the size of a section.
2700
2701 template<int size, bool big_endian>
2702 uint64_t
2703 Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
2704 {
2705   gold_unreachable();
2706 }
2707
2708 // Get the name of a section.
2709
2710 template<int size, bool big_endian>
2711 std::string
2712 Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int)
2713 {
2714   gold_unreachable();
2715 }
2716
2717 // Return a view of the contents of a section.
2718
2719 template<int size, bool big_endian>
2720 Object::Location
2721 Sized_incr_dynobj<size, big_endian>::do_section_contents(unsigned int)
2722 {
2723   gold_unreachable();
2724 }
2725
2726 // Return section flags.
2727
2728 template<int size, bool big_endian>
2729 uint64_t
2730 Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
2731 {
2732   gold_unreachable();
2733 }
2734
2735 // Return section entsize.
2736
2737 template<int size, bool big_endian>
2738 uint64_t
2739 Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
2740 {
2741   gold_unreachable();
2742 }
2743
2744 // Return section address.
2745
2746 template<int size, bool big_endian>
2747 uint64_t
2748 Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
2749 {
2750   gold_unreachable();
2751 }
2752
2753 // Return section type.
2754
2755 template<int size, bool big_endian>
2756 unsigned int
2757 Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
2758 {
2759   gold_unreachable();
2760 }
2761
2762 // Return the section link field.
2763
2764 template<int size, bool big_endian>
2765 unsigned int
2766 Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
2767 {
2768   gold_unreachable();
2769 }
2770
2771 // Return the section link field.
2772
2773 template<int size, bool big_endian>
2774 unsigned int
2775 Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
2776 {
2777   gold_unreachable();
2778 }
2779
2780 // Return the section alignment.
2781
2782 template<int size, bool big_endian>
2783 uint64_t
2784 Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
2785 {
2786   gold_unreachable();
2787 }
2788
2789 // Return the Xindex structure to use.
2790
2791 template<int size, bool big_endian>
2792 Xindex*
2793 Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
2794 {
2795   gold_unreachable();
2796 }
2797
2798 // Get symbol counts.
2799
2800 template<int size, bool big_endian>
2801 void
2802 Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
2803     const Symbol_table*, size_t*, size_t*) const
2804 {
2805   gold_unreachable();
2806 }
2807
2808 // Allocate an incremental object of the appropriate size and endianness.
2809
2810 Object*
2811 make_sized_incremental_object(
2812     Incremental_binary* ibase,
2813     unsigned int input_file_index,
2814     Incremental_input_type input_type,
2815     const Incremental_binary::Input_reader* input_reader)
2816 {
2817   Object* obj = NULL;
2818   std::string name(input_reader->filename());
2819
2820   switch (parameters->size_and_endianness())
2821     {
2822 #ifdef HAVE_TARGET_32_LITTLE
2823     case Parameters::TARGET_32_LITTLE:
2824       {
2825         Sized_incremental_binary<32, false>* sized_ibase =
2826             static_cast<Sized_incremental_binary<32, false>*>(ibase);
2827         if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2828           obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
2829                                                  input_file_index);
2830         else
2831           obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
2832                                                  input_file_index);
2833       }
2834       break;
2835 #endif
2836 #ifdef HAVE_TARGET_32_BIG
2837     case Parameters::TARGET_32_BIG:
2838       {
2839         Sized_incremental_binary<32, true>* sized_ibase =
2840             static_cast<Sized_incremental_binary<32, true>*>(ibase);
2841         if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2842           obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
2843                                                 input_file_index);
2844         else
2845           obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
2846                                                 input_file_index);
2847       }
2848       break;
2849 #endif
2850 #ifdef HAVE_TARGET_64_LITTLE
2851     case Parameters::TARGET_64_LITTLE:
2852       {
2853         Sized_incremental_binary<64, false>* sized_ibase =
2854             static_cast<Sized_incremental_binary<64, false>*>(ibase);
2855         if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2856           obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
2857                                                  input_file_index);
2858         else
2859           obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
2860                                                  input_file_index);
2861      }
2862       break;
2863 #endif
2864 #ifdef HAVE_TARGET_64_BIG
2865     case Parameters::TARGET_64_BIG:
2866       {
2867         Sized_incremental_binary<64, true>* sized_ibase =
2868             static_cast<Sized_incremental_binary<64, true>*>(ibase);
2869         if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2870           obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
2871                                                 input_file_index);
2872         else
2873           obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
2874                                                 input_file_index);
2875       }
2876       break;
2877 #endif
2878     default:
2879       gold_unreachable();
2880     }
2881
2882   gold_assert(obj != NULL);
2883   return obj;
2884 }
2885
2886 // Copy the unused symbols from the incremental input info.
2887 // We need to do this because we may be overwriting the incremental
2888 // input info in the base file before we write the new incremental
2889 // info.
2890 void
2891 Incremental_library::copy_unused_symbols()
2892 {
2893   unsigned int symcount = this->input_reader_->get_unused_symbol_count();
2894   this->unused_symbols_.reserve(symcount);
2895   for (unsigned int i = 0; i < symcount; ++i)
2896     {
2897       std::string name(this->input_reader_->get_unused_symbol(i));
2898       this->unused_symbols_.push_back(name);
2899     }
2900 }
2901
2902 // Iterator for unused global symbols in the library.
2903 void
2904 Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
2905 {
2906   for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
2907        p != this->unused_symbols_.end();
2908        ++p)
2909   v->visit(p->c_str());
2910 }
2911
2912 // Instantiate the templates we need.
2913
2914 #ifdef HAVE_TARGET_32_LITTLE
2915 template
2916 class Sized_incremental_binary<32, false>;
2917
2918 template
2919 class Sized_relobj_incr<32, false>;
2920
2921 template
2922 class Sized_incr_dynobj<32, false>;
2923 #endif
2924
2925 #ifdef HAVE_TARGET_32_BIG
2926 template
2927 class Sized_incremental_binary<32, true>;
2928
2929 template
2930 class Sized_relobj_incr<32, true>;
2931
2932 template
2933 class Sized_incr_dynobj<32, true>;
2934 #endif
2935
2936 #ifdef HAVE_TARGET_64_LITTLE
2937 template
2938 class Sized_incremental_binary<64, false>;
2939
2940 template
2941 class Sized_relobj_incr<64, false>;
2942
2943 template
2944 class Sized_incr_dynobj<64, false>;
2945 #endif
2946
2947 #ifdef HAVE_TARGET_64_BIG
2948 template
2949 class Sized_incremental_binary<64, true>;
2950
2951 template
2952 class Sized_relobj_incr<64, true>;
2953
2954 template
2955 class Sized_incr_dynobj<64, true>;
2956 #endif
2957
2958 } // End namespace gold.