b4fff11a1b1cf3e5740e6032aa6b3e46ee46f2ff
[external/binutils.git] / gold / incremental.cc
1 // inremental.cc -- incremental linking support for gold
2
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 // Written by Mikolaj Zalewski <mikolajz@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <set>
26 #include <cstdarg>
27 #include "libiberty.h"
28
29 #include "elfcpp.h"
30 #include "options.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "incremental.h"
34 #include "archive.h"
35 #include "object.h"
36 #include "target-select.h"
37 #include "target.h"
38 #include "fileread.h"
39 #include "script.h"
40
41 namespace gold {
42
43 // Version number for the .gnu_incremental_inputs section.
44 // Version 1 was the initial checkin.
45 // Version 2 adds some padding to ensure 8-byte alignment where necessary.
46 const unsigned int INCREMENTAL_LINK_VERSION = 2;
47
48 // This class manages the .gnu_incremental_inputs section, which holds
49 // the header information, a directory of input files, and separate
50 // entries for each input file.
51
52 template<int size, bool big_endian>
53 class Output_section_incremental_inputs : public Output_section_data
54 {
55  public:
56   Output_section_incremental_inputs(const Incremental_inputs* inputs,
57                                     const Symbol_table* symtab)
58     : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
59   { }
60
61  protected:
62   // This is called to update the section size prior to assigning
63   // the address and file offset.
64   void
65   update_data_size()
66   { this->set_final_data_size(); }
67
68   // Set the final data size.
69   void
70   set_final_data_size();
71
72   // Write the data to the file.
73   void
74   do_write(Output_file*);
75
76   // Write to a map file.
77   void
78   do_print_to_mapfile(Mapfile* mapfile) const
79   { mapfile->print_output_data(this, _("** incremental_inputs")); }
80
81  private:
82   // Write the section header.
83   unsigned char*
84   write_header(unsigned char* pov, unsigned int input_file_count,
85                section_offset_type command_line_offset);
86
87   // Write the input file entries.
88   unsigned char*
89   write_input_files(unsigned char* oview, unsigned char* pov,
90                     Stringpool* strtab);
91
92   // Write the supplemental information blocks.
93   unsigned char*
94   write_info_blocks(unsigned char* oview, unsigned char* pov,
95                     Stringpool* strtab, unsigned int* global_syms,
96                     unsigned int global_sym_count);
97
98   // Write the contents of the .gnu_incremental_symtab section.
99   void
100   write_symtab(unsigned char* pov, unsigned int* global_syms,
101                unsigned int global_sym_count);
102
103   // Write the contents of the .gnu_incremental_got_plt section.
104   void
105   write_got_plt(unsigned char* pov, off_t view_size);
106
107   // Typedefs for writing the data to the output sections.
108   typedef elfcpp::Swap<size, big_endian> Swap;
109   typedef elfcpp::Swap<16, big_endian> Swap16;
110   typedef elfcpp::Swap<32, big_endian> Swap32;
111   typedef elfcpp::Swap<64, big_endian> Swap64;
112
113   // Sizes of various structures.
114   static const int sizeof_addr = size / 8;
115   static const int header_size =
116       Incremental_inputs_reader<size, big_endian>::header_size;
117   static const int input_entry_size =
118       Incremental_inputs_reader<size, big_endian>::input_entry_size;
119   static const unsigned int object_info_size =
120       Incremental_inputs_reader<size, big_endian>::object_info_size;
121   static const unsigned int input_section_entry_size =
122       Incremental_inputs_reader<size, big_endian>::input_section_entry_size;
123   static const unsigned int global_sym_entry_size =
124       Incremental_inputs_reader<size, big_endian>::global_sym_entry_size;
125   static const unsigned int incr_reloc_size =
126       Incremental_relocs_reader<size, big_endian>::reloc_size;
127
128   // The Incremental_inputs object.
129   const Incremental_inputs* inputs_;
130
131   // The symbol table.
132   const Symbol_table* symtab_;
133 };
134
135 // Inform the user why we don't do an incremental link.  Not called in
136 // the obvious case of missing output file.  TODO: Is this helpful?
137
138 void
139 vexplain_no_incremental(const char* format, va_list args)
140 {
141   char* buf = NULL;
142   if (vasprintf(&buf, format, args) < 0)
143     gold_nomem();
144   gold_info(_("the link might take longer: "
145               "cannot perform incremental link: %s"), buf);
146   free(buf);
147 }
148
149 void
150 explain_no_incremental(const char* format, ...)
151 {
152   va_list args;
153   va_start(args, format);
154   vexplain_no_incremental(format, args);
155   va_end(args);
156 }
157
158 // Report an error.
159
160 void
161 Incremental_binary::error(const char* format, ...) const
162 {
163   va_list args;
164   va_start(args, format);
165   // Current code only checks if the file can be used for incremental linking,
166   // so errors shouldn't fail the build, but only result in a fallback to a
167   // full build.
168   // TODO: when we implement incremental editing of the file, we may need a
169   // flag that will cause errors to be treated seriously.
170   vexplain_no_incremental(format, args);
171   va_end(args);
172 }
173
174 // Return TRUE if a section of type SH_TYPE can be updated in place
175 // during an incremental update.  We can update sections of type PROGBITS,
176 // NOBITS, INIT_ARRAY, FINI_ARRAY, PREINIT_ARRAY, and NOTE.  All others
177 // will be regenerated.
178
179 bool
180 can_incremental_update(unsigned int sh_type)
181 {
182   return (sh_type == elfcpp::SHT_PROGBITS
183           || sh_type == elfcpp::SHT_NOBITS
184           || sh_type == elfcpp::SHT_INIT_ARRAY
185           || sh_type == elfcpp::SHT_FINI_ARRAY
186           || sh_type == elfcpp::SHT_PREINIT_ARRAY
187           || sh_type == elfcpp::SHT_NOTE);
188 }
189
190 // Find the .gnu_incremental_inputs section and related sections.
191
192 template<int size, bool big_endian>
193 bool
194 Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
195     unsigned int* p_inputs_shndx,
196     unsigned int* p_symtab_shndx,
197     unsigned int* p_relocs_shndx,
198     unsigned int* p_got_plt_shndx,
199     unsigned int* p_strtab_shndx)
200 {
201   unsigned int inputs_shndx =
202       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
203   if (inputs_shndx == elfcpp::SHN_UNDEF)  // Not found.
204     return false;
205
206   unsigned int symtab_shndx =
207       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
208   if (symtab_shndx == elfcpp::SHN_UNDEF)  // Not found.
209     return false;
210   if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
211     return false;
212
213   unsigned int relocs_shndx =
214       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
215   if (relocs_shndx == elfcpp::SHN_UNDEF)  // Not found.
216     return false;
217   if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
218     return false;
219
220   unsigned int got_plt_shndx =
221       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
222   if (got_plt_shndx == elfcpp::SHN_UNDEF)  // Not found.
223     return false;
224   if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
225     return false;
226
227   unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
228   if (strtab_shndx == elfcpp::SHN_UNDEF
229       || strtab_shndx > this->elf_file_.shnum()
230       || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
231     return false;
232
233   if (p_inputs_shndx != NULL)
234     *p_inputs_shndx = inputs_shndx;
235   if (p_symtab_shndx != NULL)
236     *p_symtab_shndx = symtab_shndx;
237   if (p_relocs_shndx != NULL)
238     *p_relocs_shndx = relocs_shndx;
239   if (p_got_plt_shndx != NULL)
240     *p_got_plt_shndx = got_plt_shndx;
241   if (p_strtab_shndx != NULL)
242     *p_strtab_shndx = strtab_shndx;
243   return true;
244 }
245
246 // Set up the readers into the incremental info sections.
247
248 template<int size, bool big_endian>
249 void
250 Sized_incremental_binary<size, big_endian>::setup_readers()
251 {
252   unsigned int inputs_shndx;
253   unsigned int symtab_shndx;
254   unsigned int relocs_shndx;
255   unsigned int got_plt_shndx;
256   unsigned int strtab_shndx;
257
258   if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
259                                               &relocs_shndx, &got_plt_shndx,
260                                               &strtab_shndx))
261     return;
262
263   Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
264   Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
265   Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
266   Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
267   Location strtab_location(this->elf_file_.section_contents(strtab_shndx));
268
269   View inputs_view = this->view(inputs_location);
270   View symtab_view = this->view(symtab_location);
271   View relocs_view = this->view(relocs_location);
272   View got_plt_view = this->view(got_plt_location);
273   View strtab_view = this->view(strtab_location);
274
275   elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);
276
277   this->inputs_reader_ =
278       Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
279   this->symtab_reader_ =
280       Incremental_symtab_reader<big_endian>(symtab_view.data(),
281                                             symtab_location.data_size);
282   this->relocs_reader_ =
283       Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
284                                                   relocs_location.data_size);
285   this->got_plt_reader_ =
286       Incremental_got_plt_reader<big_endian>(got_plt_view.data());
287
288   // Find the main symbol table.
289   unsigned int main_symtab_shndx =
290       this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
291   gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
292   this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);
293
294   // Find the main symbol string table.
295   unsigned int main_strtab_shndx =
296       this->elf_file_.section_link(main_symtab_shndx);
297   gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
298               && main_strtab_shndx < this->elf_file_.shnum());
299   this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);
300
301   // Walk the list of input files (a) to setup an Input_reader for each
302   // input file, and (b) to record maps of files added from archive
303   // libraries and scripts.
304   Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
305   unsigned int count = inputs.input_file_count();
306   this->input_objects_.resize(count);
307   this->input_entry_readers_.reserve(count);
308   this->library_map_.resize(count);
309   this->script_map_.resize(count);
310   for (unsigned int i = 0; i < count; i++)
311     {
312       Input_entry_reader input_file = inputs.input_file(i);
313       this->input_entry_readers_.push_back(Sized_input_reader(input_file));
314       switch (input_file.type())
315         {
316         case INCREMENTAL_INPUT_OBJECT:
317         case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
318         case INCREMENTAL_INPUT_SHARED_LIBRARY:
319           // No special treatment necessary.
320           break;
321         case INCREMENTAL_INPUT_ARCHIVE:
322           {
323             Incremental_library* lib =
324                 new Incremental_library(input_file.filename(), i,
325                                         &this->input_entry_readers_[i]);
326             this->library_map_[i] = lib;
327             unsigned int member_count = input_file.get_member_count();
328             for (unsigned int j = 0; j < member_count; j++)
329               {
330                 int member_offset = input_file.get_member_offset(j);
331                 int member_index = inputs.input_file_index(member_offset);
332                 this->library_map_[member_index] = lib;
333               }
334           }
335           break;
336         case INCREMENTAL_INPUT_SCRIPT:
337           {
338             Script_info* script = new Script_info(input_file.filename(), i);
339             this->script_map_[i] = script;
340             unsigned int object_count = input_file.get_object_count();
341             for (unsigned int j = 0; j < object_count; j++)
342               {
343                 int object_offset = input_file.get_object_offset(j);
344                 int object_index = inputs.input_file_index(object_offset);
345                 this->script_map_[object_index] = script;
346               }
347           }
348           break;
349         default:
350           gold_unreachable();
351         }
352     }
353
354   // Initialize the map of global symbols.
355   unsigned int nglobals = this->symtab_reader_.symbol_count();
356   this->symbol_map_.resize(nglobals);
357
358   this->has_incremental_info_ = true;
359 }
360
361 // Walk the list of input files given on the command line, and build
362 // a direct map of file index to the corresponding input argument.
363
364 void
365 check_input_args(std::vector<const Input_argument*>& input_args_map,
366                  Input_arguments::const_iterator begin,
367                  Input_arguments::const_iterator end)
368 {
369   for (Input_arguments::const_iterator p = begin;
370        p != end;
371        ++p)
372     {
373       if (p->is_group())
374         {
375           const Input_file_group* group = p->group();
376           check_input_args(input_args_map, group->begin(), group->end());
377         }
378       else if (p->is_lib())
379         {
380           const Input_file_lib* lib = p->lib();
381           check_input_args(input_args_map, lib->begin(), lib->end());
382         }
383       else
384         {
385           gold_assert(p->is_file());
386           unsigned int arg_serial = p->file().arg_serial();
387           if (arg_serial > 0)
388             {
389               gold_assert(arg_serial <= input_args_map.size());
390               gold_assert(input_args_map[arg_serial - 1] == 0);
391               input_args_map[arg_serial - 1] = &*p;
392             }
393         }
394     }
395 }
396
397 // Determine whether an incremental link based on the existing output file
398 // can be done.
399
400 template<int size, bool big_endian>
401 bool
402 Sized_incremental_binary<size, big_endian>::do_check_inputs(
403     const Command_line& cmdline,
404     Incremental_inputs* incremental_inputs)
405 {
406   Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
407
408   if (!this->has_incremental_info_)
409     {
410       explain_no_incremental(_("no incremental data from previous build"));
411       return false;
412     }
413
414   if (inputs.version() != INCREMENTAL_LINK_VERSION)
415     {
416       explain_no_incremental(_("different version of incremental build data"));
417       return false;
418     }
419
420   if (incremental_inputs->command_line() != inputs.command_line())
421     {
422       gold_debug(DEBUG_INCREMENTAL,
423                  "old command line: %s",
424                  inputs.command_line());
425       gold_debug(DEBUG_INCREMENTAL,
426                  "new command line: %s",
427                  incremental_inputs->command_line().c_str());
428       explain_no_incremental(_("command line changed"));
429       return false;
430     }
431
432   // Walk the list of input files given on the command line, and build
433   // a direct map of argument serial numbers to the corresponding input
434   // arguments.
435   this->input_args_map_.resize(cmdline.number_of_input_files());
436   check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());
437
438   // Walk the list of input files to check for conditions that prevent
439   // an incremental update link.
440   unsigned int count = inputs.input_file_count();
441   for (unsigned int i = 0; i < count; i++)
442     {
443       Input_entry_reader input_file = inputs.input_file(i);
444       switch (input_file.type())
445         {
446         case INCREMENTAL_INPUT_OBJECT:
447         case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
448         case INCREMENTAL_INPUT_SHARED_LIBRARY:
449         case INCREMENTAL_INPUT_ARCHIVE:
450           // No special treatment necessary.
451           break;
452         case INCREMENTAL_INPUT_SCRIPT:
453           if (this->do_file_has_changed(i))
454             {
455               explain_no_incremental(_("%s: script file changed"),
456                                      input_file.filename());
457               return false;
458             }
459           break;
460         default:
461           gold_unreachable();
462         }
463     }
464
465   return true;
466 }
467
468 // Return TRUE if input file N has changed since the last incremental link.
469
470 template<int size, bool big_endian>
471 bool
472 Sized_incremental_binary<size, big_endian>::do_file_has_changed(
473     unsigned int n) const
474 {
475   Input_entry_reader input_file = this->inputs_reader_.input_file(n);
476   Incremental_disposition disp = INCREMENTAL_CHECK;
477
478   // For files named in scripts, find the file that was actually named
479   // on the command line, so that we can get the incremental disposition
480   // flag.
481   Script_info* script = this->get_script_info(n);
482   if (script != NULL)
483     n = script->input_file_index();
484
485   const Input_argument* input_argument = this->get_input_argument(n);
486   if (input_argument != NULL)
487     disp = input_argument->file().options().incremental_disposition();
488
489   // For files at the beginning of the command line (i.e., those added
490   // implicitly by gcc), check whether the --incremental-startup-unchanged
491   // option was used.
492   if (disp == INCREMENTAL_STARTUP)
493     disp = parameters->options().incremental_startup_disposition();
494
495   if (disp != INCREMENTAL_CHECK)
496     return disp == INCREMENTAL_CHANGED;
497
498   const char* filename = input_file.filename();
499   Timespec old_mtime = input_file.get_mtime();
500   Timespec new_mtime;
501   if (!get_mtime(filename, &new_mtime))
502     {
503       // If we can't open get the current modification time, assume it has
504       // changed.  If the file doesn't exist, we'll issue an error when we
505       // try to open it later.
506       return true;
507     }
508
509   if (new_mtime.seconds > old_mtime.seconds)
510     return true;
511   if (new_mtime.seconds == old_mtime.seconds
512       && new_mtime.nanoseconds > old_mtime.nanoseconds)
513     return true;
514   return false;
515 }
516
517 // Initialize the layout of the output file based on the existing
518 // output file.
519
520 template<int size, bool big_endian>
521 void
522 Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
523 {
524   typedef elfcpp::Shdr<size, big_endian> Shdr;
525   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
526
527   // Get views of the section headers and the section string table.
528   const off_t shoff = this->elf_file_.shoff();
529   const unsigned int shnum = this->elf_file_.shnum();
530   const unsigned int shstrndx = this->elf_file_.shstrndx();
531   Location shdrs_location(shoff, shnum * shdr_size);
532   Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
533   View shdrs_view = this->view(shdrs_location);
534   View shstrndx_view = this->view(shstrndx_location);
535   elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
536                               shstrndx_location.data_size);
537
538   layout->set_incremental_base(this);
539
540   // Initialize the layout.
541   this->section_map_.resize(shnum);
542   const unsigned char* pshdr = shdrs_view.data() + shdr_size;
543   for (unsigned int i = 1; i < shnum; i++)
544     {
545       Shdr shdr(pshdr);
546       const char* name;
547       if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
548         name = NULL;
549       gold_debug(DEBUG_INCREMENTAL,
550                  "Output section: %2d %08lx %08lx %08lx %3d %s",
551                  i,
552                  static_cast<long>(shdr.get_sh_addr()),
553                  static_cast<long>(shdr.get_sh_offset()),
554                  static_cast<long>(shdr.get_sh_size()),
555                  shdr.get_sh_type(), name ? name : "<null>");
556       this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
557       pshdr += shdr_size;
558     }
559 }
560
561 // Mark regions of the input file that must be kept unchanged.
562
563 template<int size, bool big_endian>
564 void
565 Sized_incremental_binary<size, big_endian>::do_reserve_layout(
566     unsigned int input_file_index)
567 {
568   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
569
570   Input_entry_reader input_file =
571       this->inputs_reader_.input_file(input_file_index);
572
573   if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
574     {
575       // Reserve the BSS space used for COPY relocations.
576       unsigned int nsyms = input_file.get_global_symbol_count();
577       Incremental_binary::View symtab_view(NULL);
578       unsigned int symtab_count;
579       elfcpp::Elf_strtab strtab(NULL, 0);
580       this->get_symtab_view(&symtab_view, &symtab_count, &strtab);
581       for (unsigned int i = 0; i < nsyms; ++i)
582         {
583           bool is_def;
584           bool is_copy;
585           unsigned int output_symndx =
586               input_file.get_output_symbol_index(i, &is_def, &is_copy);
587           if (is_copy)
588             {
589               const unsigned char* sym_p = (symtab_view.data()
590                                             + output_symndx * sym_size);
591               elfcpp::Sym<size, big_endian> gsym(sym_p);
592               unsigned int shndx = gsym.get_st_shndx();
593               if (shndx < 1 || shndx >= this->section_map_.size())
594                 continue;
595               Output_section* os = this->section_map_[shndx];
596               off_t offset = gsym.get_st_value() - os->address();
597               os->reserve(offset, gsym.get_st_size());
598               gold_debug(DEBUG_INCREMENTAL,
599                          "Reserve for COPY reloc: %s, off %d, size %d",
600                          os->name(),
601                          static_cast<int>(offset),
602                          static_cast<int>(gsym.get_st_size()));
603             }
604         }
605       return;
606     }
607
608   unsigned int shnum = input_file.get_input_section_count();
609   for (unsigned int i = 0; i < shnum; i++)
610     {
611       typename Input_entry_reader::Input_section_info sect =
612           input_file.get_input_section(i);
613       if (sect.output_shndx == 0 || sect.sh_offset == -1)
614         continue;
615       Output_section* os = this->section_map_[sect.output_shndx];
616       gold_assert(os != NULL);
617       os->reserve(sect.sh_offset, sect.sh_size);
618     }
619 }
620
621 // Process the GOT and PLT entries from the existing output file.
622
623 template<int size, bool big_endian>
624 void
625 Sized_incremental_binary<size, big_endian>::do_process_got_plt(
626     Symbol_table* symtab,
627     Layout* layout)
628 {
629   Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
630   Sized_target<size, big_endian>* target =
631       parameters->sized_target<size, big_endian>();
632
633   // Get the number of symbols in the main symbol table and in the
634   // incremental symbol table.  The difference between the two counts
635   // is the index of the first forced-local or global symbol in the
636   // main symbol table.
637   unsigned int symtab_count =
638       this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
639   unsigned int isym_count = this->symtab_reader_.symbol_count();
640   unsigned int first_global = symtab_count - isym_count;
641
642   // Tell the target how big the GOT and PLT sections are.
643   unsigned int got_count = got_plt_reader.get_got_entry_count();
644   unsigned int plt_count = got_plt_reader.get_plt_entry_count();
645   Output_data_got_base* got =
646       target->init_got_plt_for_update(symtab, layout, got_count, plt_count);
647
648   // Read the GOT entries from the base file and build the outgoing GOT.
649   for (unsigned int i = 0; i < got_count; ++i)
650     {
651       unsigned int got_type = got_plt_reader.get_got_type(i);
652       if ((got_type & 0x7f) == 0x7f)
653         {
654           // This is the second entry of a pair.
655           got->reserve_slot(i);
656           continue;
657         }
658       unsigned int symndx = got_plt_reader.get_got_symndx(i);
659       if (got_type & 0x80)
660         {
661           // This is an entry for a local symbol.  Ignore this entry if
662           // the object file was replaced.
663           unsigned int input_index = got_plt_reader.get_got_input_index(i);
664           gold_debug(DEBUG_INCREMENTAL,
665                      "GOT entry %d, type %02x: (local symbol)",
666                      i, got_type & 0x7f);
667           Sized_relobj_incr<size, big_endian>* obj =
668               this->input_object(input_index);
669           if (obj != NULL)
670             target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
671         }
672       else
673         {
674           // This is an entry for a global symbol.  GOT_DESC is the symbol
675           // table index.
676           // FIXME: This should really be a fatal error (corrupt input).
677           gold_assert(symndx >= first_global && symndx < symtab_count);
678           Symbol* sym = this->global_symbol(symndx - first_global);
679           // Add the GOT entry only if the symbol is still referenced.
680           if (sym != NULL && sym->in_reg())
681             {
682               gold_debug(DEBUG_INCREMENTAL,
683                          "GOT entry %d, type %02x: %s",
684                          i, got_type, sym->name());
685               target->reserve_global_got_entry(i, sym, got_type);
686             }
687         }
688     }
689
690   // Read the PLT entries from the base file and pass each to the target.
691   for (unsigned int i = 0; i < plt_count; ++i)
692     {
693       unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
694       // FIXME: This should really be a fatal error (corrupt input).
695       gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
696       Symbol* sym = this->global_symbol(plt_desc - first_global);
697       // Add the PLT entry only if the symbol is still referenced.
698       if (sym != NULL && sym->in_reg())
699         {
700           gold_debug(DEBUG_INCREMENTAL,
701                      "PLT entry %d: %s",
702                      i, sym->name());
703           target->register_global_plt_entry(symtab, layout, i, sym);
704         }
705     }
706 }
707
708 // Emit COPY relocations from the existing output file.
709
710 template<int size, bool big_endian>
711 void
712 Sized_incremental_binary<size, big_endian>::do_emit_copy_relocs(
713     Symbol_table* symtab)
714 {
715   Sized_target<size, big_endian>* target =
716       parameters->sized_target<size, big_endian>();
717
718   for (typename Copy_relocs::iterator p = this->copy_relocs_.begin();
719        p != this->copy_relocs_.end();
720        ++p)
721     {
722       if (!(*p).symbol->is_copied_from_dynobj())
723         target->emit_copy_reloc(symtab, (*p).symbol, (*p).output_section,
724                                 (*p).offset);
725     }
726 }
727
728 // Apply incremental relocations for symbols whose values have changed.
729
730 template<int size, bool big_endian>
731 void
732 Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
733     const Symbol_table* symtab,
734     Layout* layout,
735     Output_file* of)
736 {
737   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
738   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
739   Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
740   Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
741   unsigned int nglobals = isymtab.symbol_count();
742   const unsigned int incr_reloc_size = irelocs.reloc_size;
743
744   Relocate_info<size, big_endian> relinfo;
745   relinfo.symtab = symtab;
746   relinfo.layout = layout;
747   relinfo.object = NULL;
748   relinfo.reloc_shndx = 0;
749   relinfo.reloc_shdr = NULL;
750   relinfo.data_shndx = 0;
751   relinfo.data_shdr = NULL;
752
753   Sized_target<size, big_endian>* target =
754       parameters->sized_target<size, big_endian>();
755
756   for (unsigned int i = 0; i < nglobals; i++)
757     {
758       const Symbol* gsym = this->global_symbol(i);
759
760       // If the symbol is not referenced from any unchanged input files,
761       // we do not need to reapply any of its relocations.
762       if (gsym == NULL)
763         continue;
764
765       // If the symbol is defined in an unchanged file, we do not need to
766       // reapply any of its relocations.
767       if (gsym->source() == Symbol::FROM_OBJECT
768           && gsym->object()->is_incremental())
769         continue;
770
771       gold_debug(DEBUG_INCREMENTAL,
772                  "Applying incremental relocations for global symbol %s [%d]",
773                  gsym->name(), i);
774
775       // Follow the linked list of input symbol table entries for this symbol.
776       // We don't bother to figure out whether the symbol table entry belongs
777       // to a changed or unchanged file because it's easier just to apply all
778       // the relocations -- although we might scribble over an area that has
779       // been reallocated, we do this before copying any new data into the
780       // output file.
781       unsigned int offset = isymtab.get_list_head(i);
782       while (offset > 0)
783         {
784           Incremental_global_symbol_reader<big_endian> sym_info =
785               this->inputs_reader().global_symbol_reader_at_offset(offset);
786           unsigned int r_base = sym_info.reloc_offset();
787           unsigned int r_count = sym_info.reloc_count();
788
789           // Apply each relocation for this symbol table entry.
790           for (unsigned int j = 0; j < r_count;
791                ++j, r_base += incr_reloc_size)
792             {
793               unsigned int r_type = irelocs.get_r_type(r_base);
794               unsigned int r_shndx = irelocs.get_r_shndx(r_base);
795               Address r_offset = irelocs.get_r_offset(r_base);
796               Addend r_addend = irelocs.get_r_addend(r_base);
797               Output_section* os = this->output_section(r_shndx);
798               Address address = os->address();
799               off_t section_offset = os->offset();
800               size_t view_size = os->data_size();
801               unsigned char* const view = of->get_output_view(section_offset,
802                                                               view_size);
803
804               gold_debug(DEBUG_INCREMENTAL,
805                          "  %08lx: %s + %d: type %d addend %ld",
806                          (long)(section_offset + r_offset),
807                          os->name(),
808                          (int)r_offset,
809                          r_type,
810                          (long)r_addend);
811
812               target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
813                                        gsym, view, address, view_size);
814
815               // FIXME: Do something more efficient if write_output_view
816               // ever becomes more than a no-op.
817               of->write_output_view(section_offset, view_size, view);
818             }
819           offset = sym_info.next_offset();
820         }
821     }
822 }
823
824 // Get a view of the main symbol table and the symbol string table.
825
826 template<int size, bool big_endian>
827 void
828 Sized_incremental_binary<size, big_endian>::get_symtab_view(
829     View* symtab_view,
830     unsigned int* nsyms,
831     elfcpp::Elf_strtab* strtab)
832 {
833   *symtab_view = this->view(this->main_symtab_loc_);
834   *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
835
836   View strtab_view(this->view(this->main_strtab_loc_));
837   *strtab = elfcpp::Elf_strtab(strtab_view.data(),
838                                this->main_strtab_loc_.data_size);
839 }
840
841 namespace
842 {
843
844 // Create a Sized_incremental_binary object of the specified size and
845 // endianness. Fails if the target architecture is not supported.
846
847 template<int size, bool big_endian>
848 Incremental_binary*
849 make_sized_incremental_binary(Output_file* file,
850                               const elfcpp::Ehdr<size, big_endian>& ehdr)
851 {
852   Target* target = select_target(NULL, 0, // XXX
853                                  ehdr.get_e_machine(), size, big_endian,
854                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
855                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
856   if (target == NULL)
857     {
858       explain_no_incremental(_("unsupported ELF machine number %d"),
859                ehdr.get_e_machine());
860       return NULL;
861     }
862
863   if (!parameters->target_valid())
864     set_parameters_target(target);
865   else if (target != &parameters->target())
866     gold_error(_("%s: incompatible target"), file->filename());
867
868   return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
869 }
870
871 }  // End of anonymous namespace.
872
873 // Create an Incremental_binary object for FILE.  Returns NULL is this is not
874 // possible, e.g. FILE is not an ELF file or has an unsupported target.  FILE
875 // should be opened.
876
877 Incremental_binary*
878 open_incremental_binary(Output_file* file)
879 {
880   off_t filesize = file->filesize();
881   int want = elfcpp::Elf_recognizer::max_header_size;
882   if (filesize < want)
883     want = filesize;
884
885   const unsigned char* p = file->get_input_view(0, want);
886   if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
887     {
888       explain_no_incremental(_("output is not an ELF file."));
889       return NULL;
890     }
891
892   int size = 0;
893   bool big_endian = false;
894   std::string error;
895   if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
896                                                &error))
897     {
898       explain_no_incremental(error.c_str());
899       return NULL;
900     }
901
902   Incremental_binary* result = NULL;
903   if (size == 32)
904     {
905       if (big_endian)
906         {
907 #ifdef HAVE_TARGET_32_BIG
908           result = make_sized_incremental_binary<32, true>(
909               file, elfcpp::Ehdr<32, true>(p));
910 #else
911           explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
912 #endif
913         }
914       else
915         {
916 #ifdef HAVE_TARGET_32_LITTLE
917           result = make_sized_incremental_binary<32, false>(
918               file, elfcpp::Ehdr<32, false>(p));
919 #else
920           explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
921 #endif
922         }
923     }
924   else if (size == 64)
925     {
926       if (big_endian)
927         {
928 #ifdef HAVE_TARGET_64_BIG
929           result = make_sized_incremental_binary<64, true>(
930               file, elfcpp::Ehdr<64, true>(p));
931 #else
932           explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
933 #endif
934         }
935       else
936         {
937 #ifdef HAVE_TARGET_64_LITTLE
938           result = make_sized_incremental_binary<64, false>(
939               file, elfcpp::Ehdr<64, false>(p));
940 #else
941           explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
942 #endif
943         }
944     }
945   else
946     gold_unreachable();
947
948   return result;
949 }
950
951 // Class Incremental_inputs.
952
953 // Add the command line to the string table, setting
954 // command_line_key_.  In incremental builds, the command line is
955 // stored in .gnu_incremental_inputs so that the next linker run can
956 // check if the command line options didn't change.
957
958 void
959 Incremental_inputs::report_command_line(int argc, const char* const* argv)
960 {
961   // Always store 'gold' as argv[0] to avoid a full relink if the user used a
962   // different path to the linker.
963   std::string args("gold");
964   // Copied from collect_argv in main.cc.
965   for (int i = 1; i < argc; ++i)
966     {
967       // Adding/removing these options should not result in a full relink.
968       if (strcmp(argv[i], "--incremental") == 0
969           || strcmp(argv[i], "--incremental-full") == 0
970           || strcmp(argv[i], "--incremental-update") == 0
971           || strcmp(argv[i], "--incremental-changed") == 0
972           || strcmp(argv[i], "--incremental-unchanged") == 0
973           || strcmp(argv[i], "--incremental-unknown") == 0
974           || strcmp(argv[i], "--incremental-startup-unchanged") == 0
975           || is_prefix_of("--incremental-base=", argv[i])
976           || is_prefix_of("--incremental-patch=", argv[i])
977           || is_prefix_of("--debug=", argv[i]))
978         continue;
979       if (strcmp(argv[i], "--incremental-base") == 0
980           || strcmp(argv[i], "--incremental-patch") == 0
981           || strcmp(argv[i], "--debug") == 0)
982         {
983           // When these options are used without the '=', skip the
984           // following parameter as well.
985           ++i;
986           continue;
987         }
988
989       args.append(" '");
990       // Now append argv[i], but with all single-quotes escaped
991       const char* argpos = argv[i];
992       while (1)
993         {
994           const int len = strcspn(argpos, "'");
995           args.append(argpos, len);
996           if (argpos[len] == '\0')
997             break;
998           args.append("'\"'\"'");
999           argpos += len + 1;
1000         }
1001       args.append("'");
1002     }
1003
1004   this->command_line_ = args;
1005   this->strtab_->add(this->command_line_.c_str(), false,
1006                      &this->command_line_key_);
1007 }
1008
1009 // Record the input archive file ARCHIVE.  This is called by the
1010 // Add_archive_symbols task before determining which archive members
1011 // to include.  We create the Incremental_archive_entry here and
1012 // attach it to the Archive, but we do not add it to the list of
1013 // input objects until report_archive_end is called.
1014
1015 void
1016 Incremental_inputs::report_archive_begin(Library_base* arch,
1017                                          unsigned int arg_serial,
1018                                          Script_info* script_info)
1019 {
1020   Stringpool::Key filename_key;
1021   Timespec mtime = arch->get_mtime();
1022
1023   // For a file loaded from a script, don't record its argument serial number.
1024   if (script_info != NULL)
1025     arg_serial = 0;
1026
1027   this->strtab_->add(arch->filename().c_str(), false, &filename_key);
1028   Incremental_archive_entry* entry =
1029       new Incremental_archive_entry(filename_key, arg_serial, mtime);
1030   arch->set_incremental_info(entry);
1031
1032   if (script_info != NULL)
1033     {
1034       Incremental_script_entry* script_entry = script_info->incremental_info();
1035       gold_assert(script_entry != NULL);
1036       script_entry->add_object(entry);
1037     }
1038 }
1039
1040 // Visitor class for processing the unused global symbols in a library.
1041 // An instance of this class is passed to the library's
1042 // for_all_unused_symbols() iterator, which will call the visit()
1043 // function for each global symbol defined in each unused library
1044 // member.  We add those symbol names to the incremental info for the
1045 // library.
1046
1047 class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
1048 {
1049  public:
1050   Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
1051     : entry_(entry), strtab_(strtab)
1052   { }
1053
1054   void
1055   visit(const char* sym)
1056   {
1057     Stringpool::Key symbol_key;
1058     this->strtab_->add(sym, true, &symbol_key);
1059     this->entry_->add_unused_global_symbol(symbol_key);
1060   }
1061
1062  private:
1063   Incremental_archive_entry* entry_;
1064   Stringpool* strtab_;
1065 };
1066
1067 // Finish recording the input archive file ARCHIVE.  This is called by the
1068 // Add_archive_symbols task after determining which archive members
1069 // to include.
1070
1071 void
1072 Incremental_inputs::report_archive_end(Library_base* arch)
1073 {
1074   Incremental_archive_entry* entry = arch->incremental_info();
1075
1076   gold_assert(entry != NULL);
1077   this->inputs_.push_back(entry);
1078
1079   // Collect unused global symbols.
1080   Unused_symbol_visitor v(entry, this->strtab_);
1081   arch->for_all_unused_symbols(&v);
1082 }
1083
1084 // Record the input object file OBJ.  If ARCH is not NULL, attach
1085 // the object file to the archive.  This is called by the
1086 // Add_symbols task after finding out the type of the file.
1087
1088 void
1089 Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
1090                                   Library_base* arch, Script_info* script_info)
1091 {
1092   Stringpool::Key filename_key;
1093   Timespec mtime = obj->get_mtime();
1094
1095   // For a file loaded from a script, don't record its argument serial number.
1096   if (script_info != NULL)
1097     arg_serial = 0;
1098
1099   this->strtab_->add(obj->name().c_str(), false, &filename_key);
1100
1101   Incremental_input_entry* input_entry;
1102
1103   this->current_object_ = obj;
1104
1105   if (!obj->is_dynamic())
1106     {
1107       this->current_object_entry_ =
1108           new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
1109       input_entry = this->current_object_entry_;
1110       if (arch != NULL)
1111         {
1112           Incremental_archive_entry* arch_entry = arch->incremental_info();
1113           gold_assert(arch_entry != NULL);
1114           arch_entry->add_object(this->current_object_entry_);
1115         }
1116     }
1117   else
1118     {
1119       this->current_object_entry_ = NULL;
1120       Stringpool::Key soname_key;
1121       Dynobj* dynobj = obj->dynobj();
1122       gold_assert(dynobj != NULL);
1123       this->strtab_->add(dynobj->soname(), false, &soname_key);
1124       input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
1125                                                  arg_serial, mtime);
1126     }
1127
1128   if (obj->is_in_system_directory())
1129     input_entry->set_is_in_system_directory();
1130
1131   if (obj->as_needed())
1132     input_entry->set_as_needed();
1133
1134   this->inputs_.push_back(input_entry);
1135
1136   if (script_info != NULL)
1137     {
1138       Incremental_script_entry* script_entry = script_info->incremental_info();
1139       gold_assert(script_entry != NULL);
1140       script_entry->add_object(input_entry);
1141     }
1142 }
1143
1144 // Record an input section SHNDX from object file OBJ.
1145
1146 void
1147 Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
1148                                          const char* name, off_t sh_size)
1149 {
1150   Stringpool::Key key = 0;
1151
1152   if (name != NULL)
1153     this->strtab_->add(name, true, &key);
1154
1155   gold_assert(obj == this->current_object_);
1156   gold_assert(this->current_object_entry_ != NULL);
1157   this->current_object_entry_->add_input_section(shndx, key, sh_size);
1158 }
1159
1160 // Record a kept COMDAT group belonging to object file OBJ.
1161
1162 void
1163 Incremental_inputs::report_comdat_group(Object* obj, const char* name)
1164 {
1165   Stringpool::Key key = 0;
1166
1167   if (name != NULL)
1168     this->strtab_->add(name, true, &key);
1169   gold_assert(obj == this->current_object_);
1170   gold_assert(this->current_object_entry_ != NULL);
1171   this->current_object_entry_->add_comdat_group(key);
1172 }
1173
1174 // Record that the input argument INPUT is a script SCRIPT.  This is
1175 // called by read_script after parsing the script and reading the list
1176 // of inputs added by this script.
1177
1178 void
1179 Incremental_inputs::report_script(Script_info* script,
1180                                   unsigned int arg_serial,
1181                                   Timespec mtime)
1182 {
1183   Stringpool::Key filename_key;
1184
1185   this->strtab_->add(script->filename().c_str(), false, &filename_key);
1186   Incremental_script_entry* entry =
1187       new Incremental_script_entry(filename_key, arg_serial, script, mtime);
1188   this->inputs_.push_back(entry);
1189   script->set_incremental_info(entry);
1190 }
1191
1192 // Finalize the incremental link information.  Called from
1193 // Layout::finalize.
1194
1195 void
1196 Incremental_inputs::finalize()
1197 {
1198   // Finalize the string table.
1199   this->strtab_->set_string_offsets();
1200 }
1201
1202 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
1203
1204 void
1205 Incremental_inputs::create_data_sections(Symbol_table* symtab)
1206 {
1207   int reloc_align = 4;
1208
1209   switch (parameters->size_and_endianness())
1210     {
1211 #ifdef HAVE_TARGET_32_LITTLE
1212     case Parameters::TARGET_32_LITTLE:
1213       this->inputs_section_ =
1214           new Output_section_incremental_inputs<32, false>(this, symtab);
1215       reloc_align = 4;
1216       break;
1217 #endif
1218 #ifdef HAVE_TARGET_32_BIG
1219     case Parameters::TARGET_32_BIG:
1220       this->inputs_section_ =
1221           new Output_section_incremental_inputs<32, true>(this, symtab);
1222       reloc_align = 4;
1223       break;
1224 #endif
1225 #ifdef HAVE_TARGET_64_LITTLE
1226     case Parameters::TARGET_64_LITTLE:
1227       this->inputs_section_ =
1228           new Output_section_incremental_inputs<64, false>(this, symtab);
1229       reloc_align = 8;
1230       break;
1231 #endif
1232 #ifdef HAVE_TARGET_64_BIG
1233     case Parameters::TARGET_64_BIG:
1234       this->inputs_section_ =
1235           new Output_section_incremental_inputs<64, true>(this, symtab);
1236       reloc_align = 8;
1237       break;
1238 #endif
1239     default:
1240       gold_unreachable();
1241     }
1242   this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
1243   this->relocs_section_ = new Output_data_space(reloc_align,
1244                                                 "** incremental_relocs");
1245   this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
1246 }
1247
1248 // Return the sh_entsize value for the .gnu_incremental_relocs section.
1249 unsigned int
1250 Incremental_inputs::relocs_entsize() const
1251 {
1252   return 8 + 2 * parameters->target().get_size() / 8;
1253 }
1254
1255 // Class Output_section_incremental_inputs.
1256
1257 // Finalize the offsets for each input section and supplemental info block,
1258 // and set the final data size of the incremental output sections.
1259
1260 template<int size, bool big_endian>
1261 void
1262 Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
1263 {
1264   const Incremental_inputs* inputs = this->inputs_;
1265
1266   // Offset of each input entry.
1267   unsigned int input_offset = this->header_size;
1268
1269   // Offset of each supplemental info block.
1270   unsigned int file_index = 0;
1271   unsigned int info_offset = this->header_size;
1272   info_offset += this->input_entry_size * inputs->input_file_count();
1273
1274   // Count each input file and its supplemental information block.
1275   for (Incremental_inputs::Input_list::const_iterator p =
1276            inputs->input_files().begin();
1277        p != inputs->input_files().end();
1278        ++p)
1279     {
1280       // Set the index and offset of the input file entry.
1281       (*p)->set_offset(file_index, input_offset);
1282       ++file_index;
1283       input_offset += this->input_entry_size;
1284
1285       // Set the offset of the supplemental info block.
1286       switch ((*p)->type())
1287         {
1288         case INCREMENTAL_INPUT_SCRIPT:
1289           {
1290             Incremental_script_entry *entry = (*p)->script_entry();
1291             gold_assert(entry != NULL);
1292             (*p)->set_info_offset(info_offset);
1293             // Object count.
1294             info_offset += 4;
1295             // Each member.
1296             info_offset += (entry->get_object_count() * 4);
1297           }
1298           break;
1299         case INCREMENTAL_INPUT_OBJECT:
1300         case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1301           {
1302             Incremental_object_entry* entry = (*p)->object_entry();
1303             gold_assert(entry != NULL);
1304             (*p)->set_info_offset(info_offset);
1305             // Input section count, global symbol count, local symbol offset,
1306             // local symbol count, first dynamic reloc, dynamic reloc count,
1307             // comdat group count.
1308             info_offset += this->object_info_size;
1309             // Each input section.
1310             info_offset += (entry->get_input_section_count()
1311                             * this->input_section_entry_size);
1312             // Each global symbol.
1313             const Object::Symbols* syms = entry->object()->get_global_symbols();
1314             info_offset += syms->size() * this->global_sym_entry_size;
1315             // Each comdat group.
1316             info_offset += entry->get_comdat_group_count() * 4;
1317           }
1318           break;
1319         case INCREMENTAL_INPUT_SHARED_LIBRARY:
1320           {
1321             Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1322             gold_assert(entry != NULL);
1323             (*p)->set_info_offset(info_offset);
1324             // Global symbol count, soname index.
1325             info_offset += 8;
1326             // Each global symbol.
1327             const Object::Symbols* syms = entry->object()->get_global_symbols();
1328             gold_assert(syms != NULL);
1329             unsigned int nsyms = syms->size();
1330             unsigned int nsyms_out = 0;
1331             for (unsigned int i = 0; i < nsyms; ++i)
1332               {
1333                 const Symbol* sym = (*syms)[i];
1334                 if (sym == NULL)
1335                   continue;
1336                 if (sym->is_forwarder())
1337                   sym = this->symtab_->resolve_forwards(sym);
1338                 if (sym->symtab_index() != -1U)
1339                   ++nsyms_out;
1340               }
1341             info_offset += nsyms_out * 4;
1342           }
1343           break;
1344         case INCREMENTAL_INPUT_ARCHIVE:
1345           {
1346             Incremental_archive_entry* entry = (*p)->archive_entry();
1347             gold_assert(entry != NULL);
1348             (*p)->set_info_offset(info_offset);
1349             // Member count + unused global symbol count.
1350             info_offset += 8;
1351             // Each member.
1352             info_offset += (entry->get_member_count() * 4);
1353             // Each global symbol.
1354             info_offset += (entry->get_unused_global_symbol_count() * 4);
1355           }
1356           break;
1357         default:
1358           gold_unreachable();
1359         }
1360
1361      // Pad so each supplemental info block begins at an 8-byte boundary.
1362      if (info_offset & 4)
1363        info_offset += 4;
1364    }
1365
1366   this->set_data_size(info_offset);
1367
1368   // Set the size of the .gnu_incremental_symtab section.
1369   inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
1370                                                   * sizeof(unsigned int));
1371
1372   // Set the size of the .gnu_incremental_relocs section.
1373   inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
1374                                                   * this->incr_reloc_size);
1375
1376   // Set the size of the .gnu_incremental_got_plt section.
1377   Sized_target<size, big_endian>* target =
1378     parameters->sized_target<size, big_endian>();
1379   unsigned int got_count = target->got_entry_count();
1380   unsigned int plt_count = target->plt_entry_count();
1381   unsigned int got_plt_size = 8;  // GOT entry count, PLT entry count.
1382   got_plt_size = (got_plt_size + got_count + 3) & ~3;  // GOT type array.
1383   got_plt_size += got_count * 8 + plt_count * 4;  // GOT array, PLT array.
1384   inputs->got_plt_section()->set_current_data_size(got_plt_size);
1385 }
1386
1387 // Write the contents of the .gnu_incremental_inputs and
1388 // .gnu_incremental_symtab sections.
1389
1390 template<int size, bool big_endian>
1391 void
1392 Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
1393 {
1394   const Incremental_inputs* inputs = this->inputs_;
1395   Stringpool* strtab = inputs->get_stringpool();
1396
1397   // Get a view into the .gnu_incremental_inputs section.
1398   const off_t off = this->offset();
1399   const off_t oview_size = this->data_size();
1400   unsigned char* const oview = of->get_output_view(off, oview_size);
1401   unsigned char* pov = oview;
1402
1403   // Get a view into the .gnu_incremental_symtab section.
1404   const off_t symtab_off = inputs->symtab_section()->offset();
1405   const off_t symtab_size = inputs->symtab_section()->data_size();
1406   unsigned char* const symtab_view = of->get_output_view(symtab_off,
1407                                                          symtab_size);
1408
1409   // Allocate an array of linked list heads for the .gnu_incremental_symtab
1410   // section.  Each element corresponds to a global symbol in the output
1411   // symbol table, and points to the head of the linked list that threads
1412   // through the object file input entries.  The value of each element
1413   // is the section-relative offset to a global symbol entry in a
1414   // supplemental information block.
1415   unsigned int global_sym_count = this->symtab_->output_count();
1416   unsigned int* global_syms = new unsigned int[global_sym_count];
1417   memset(global_syms, 0, global_sym_count * sizeof(unsigned int));
1418
1419   // Write the section header.
1420   Stringpool::Key command_line_key = inputs->command_line_key();
1421   pov = this->write_header(pov, inputs->input_file_count(),
1422                            strtab->get_offset_from_key(command_line_key));
1423
1424   // Write the list of input files.
1425   pov = this->write_input_files(oview, pov, strtab);
1426
1427   // Write the supplemental information blocks for each input file.
1428   pov = this->write_info_blocks(oview, pov, strtab, global_syms,
1429                                 global_sym_count);
1430
1431   gold_assert(pov - oview == oview_size);
1432
1433   // Write the .gnu_incremental_symtab section.
1434   gold_assert(static_cast<off_t>(global_sym_count) * 4 == symtab_size);
1435   this->write_symtab(symtab_view, global_syms, global_sym_count);
1436
1437   delete[] global_syms;
1438
1439   // Write the .gnu_incremental_got_plt section.
1440   const off_t got_plt_off = inputs->got_plt_section()->offset();
1441   const off_t got_plt_size = inputs->got_plt_section()->data_size();
1442   unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
1443                                                           got_plt_size);
1444   this->write_got_plt(got_plt_view, got_plt_size);
1445
1446   of->write_output_view(off, oview_size, oview);
1447   of->write_output_view(symtab_off, symtab_size, symtab_view);
1448   of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
1449 }
1450
1451 // Write the section header: version, input file count, offset of command line
1452 // in the string table, and 4 bytes of padding.
1453
1454 template<int size, bool big_endian>
1455 unsigned char*
1456 Output_section_incremental_inputs<size, big_endian>::write_header(
1457     unsigned char* pov,
1458     unsigned int input_file_count,
1459     section_offset_type command_line_offset)
1460 {
1461   Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
1462   Swap32::writeval(pov + 4, input_file_count);
1463   Swap32::writeval(pov + 8, command_line_offset);
1464   Swap32::writeval(pov + 12, 0);
1465   gold_assert(this->header_size == 16);
1466   return pov + this->header_size;
1467 }
1468
1469 // Write the input file entries.
1470
1471 template<int size, bool big_endian>
1472 unsigned char*
1473 Output_section_incremental_inputs<size, big_endian>::write_input_files(
1474     unsigned char* oview,
1475     unsigned char* pov,
1476     Stringpool* strtab)
1477 {
1478   const Incremental_inputs* inputs = this->inputs_;
1479
1480   for (Incremental_inputs::Input_list::const_iterator p =
1481            inputs->input_files().begin();
1482        p != inputs->input_files().end();
1483        ++p)
1484     {
1485       gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
1486       section_offset_type filename_offset =
1487           strtab->get_offset_from_key((*p)->get_filename_key());
1488       const Timespec& mtime = (*p)->get_mtime();
1489       unsigned int flags = (*p)->type();
1490       if ((*p)->is_in_system_directory())
1491         flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
1492       if ((*p)->as_needed())
1493         flags |= INCREMENTAL_INPUT_AS_NEEDED;
1494       Swap32::writeval(pov, filename_offset);
1495       Swap32::writeval(pov + 4, (*p)->get_info_offset());
1496       Swap64::writeval(pov + 8, mtime.seconds);
1497       Swap32::writeval(pov + 16, mtime.nanoseconds);
1498       Swap16::writeval(pov + 20, flags);
1499       Swap16::writeval(pov + 22, (*p)->arg_serial());
1500       gold_assert(this->input_entry_size == 24);
1501       pov += this->input_entry_size;
1502     }
1503   return pov;
1504 }
1505
1506 // Write the supplemental information blocks.
1507
1508 template<int size, bool big_endian>
1509 unsigned char*
1510 Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
1511     unsigned char* oview,
1512     unsigned char* pov,
1513     Stringpool* strtab,
1514     unsigned int* global_syms,
1515     unsigned int global_sym_count)
1516 {
1517   const Incremental_inputs* inputs = this->inputs_;
1518   unsigned int first_global_index = this->symtab_->first_global_index();
1519
1520   for (Incremental_inputs::Input_list::const_iterator p =
1521            inputs->input_files().begin();
1522        p != inputs->input_files().end();
1523        ++p)
1524     {
1525       switch ((*p)->type())
1526         {
1527         case INCREMENTAL_INPUT_SCRIPT:
1528           {
1529             gold_assert(static_cast<unsigned int>(pov - oview)
1530                         == (*p)->get_info_offset());
1531             Incremental_script_entry* entry = (*p)->script_entry();
1532             gold_assert(entry != NULL);
1533
1534             // Write the object count.
1535             unsigned int nobjects = entry->get_object_count();
1536             Swap32::writeval(pov, nobjects);
1537             pov += 4;
1538
1539             // For each object, write the offset to its input file entry.
1540             for (unsigned int i = 0; i < nobjects; ++i)
1541               {
1542                 Incremental_input_entry* obj = entry->get_object(i);
1543                 Swap32::writeval(pov, obj->get_offset());
1544                 pov += 4;
1545               }
1546           }
1547           break;
1548
1549         case INCREMENTAL_INPUT_OBJECT:
1550         case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1551           {
1552             gold_assert(static_cast<unsigned int>(pov - oview)
1553                         == (*p)->get_info_offset());
1554             Incremental_object_entry* entry = (*p)->object_entry();
1555             gold_assert(entry != NULL);
1556             const Object* obj = entry->object();
1557             const Relobj* relobj = static_cast<const Relobj*>(obj);
1558             const Object::Symbols* syms = obj->get_global_symbols();
1559             // Write the input section count and global symbol count.
1560             unsigned int nsections = entry->get_input_section_count();
1561             unsigned int nsyms = syms->size();
1562             off_t locals_offset = relobj->local_symbol_offset();
1563             unsigned int nlocals = relobj->output_local_symbol_count();
1564             unsigned int first_dynrel = relobj->first_dyn_reloc();
1565             unsigned int ndynrel = relobj->dyn_reloc_count();
1566             unsigned int ncomdat = entry->get_comdat_group_count();
1567             Swap32::writeval(pov, nsections);
1568             Swap32::writeval(pov + 4, nsyms);
1569             Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
1570             Swap32::writeval(pov + 12, nlocals);
1571             Swap32::writeval(pov + 16, first_dynrel);
1572             Swap32::writeval(pov + 20, ndynrel);
1573             Swap32::writeval(pov + 24, ncomdat);
1574             Swap32::writeval(pov + 28, 0);
1575             gold_assert(this->object_info_size == 32);
1576             pov += this->object_info_size;
1577
1578             // Build a temporary array to map input section indexes
1579             // from the original object file index to the index in the
1580             // incremental info table.
1581             unsigned int* index_map = new unsigned int[obj->shnum()];
1582             memset(index_map, 0, obj->shnum() * sizeof(unsigned int));
1583
1584             // For each input section, write the name, output section index,
1585             // offset within output section, and input section size.
1586             for (unsigned int i = 0; i < nsections; i++)
1587               {
1588                 unsigned int shndx = entry->get_input_section_index(i);
1589                 index_map[shndx] = i + 1;
1590                 Stringpool::Key key = entry->get_input_section_name_key(i);
1591                 off_t name_offset = 0;
1592                 if (key != 0)
1593                   name_offset = strtab->get_offset_from_key(key);
1594                 int out_shndx = 0;
1595                 off_t out_offset = 0;
1596                 off_t sh_size = 0;
1597                 Output_section* os = obj->output_section(shndx);
1598                 if (os != NULL)
1599                   {
1600                     out_shndx = os->out_shndx();
1601                     out_offset = obj->output_section_offset(shndx);
1602                     sh_size = entry->get_input_section_size(i);
1603                   }
1604                 Swap32::writeval(pov, name_offset);
1605                 Swap32::writeval(pov + 4, out_shndx);
1606                 Swap::writeval(pov + 8, out_offset);
1607                 Swap::writeval(pov + 8 + sizeof_addr, sh_size);
1608                 gold_assert(this->input_section_entry_size
1609                             == 8 + 2 * sizeof_addr);
1610                 pov += this->input_section_entry_size;
1611               }
1612
1613             // For each global symbol, write its associated relocations,
1614             // add it to the linked list of globals, then write the
1615             // supplemental information:  global symbol table index,
1616             // input section index, linked list chain pointer, relocation
1617             // count, and offset to the relocations.
1618             for (unsigned int i = 0; i < nsyms; i++)
1619               {
1620                 const Symbol* sym = (*syms)[i];
1621                 if (sym->is_forwarder())
1622                   sym = this->symtab_->resolve_forwards(sym);
1623                 unsigned int shndx = 0;
1624                 if (sym->source() != Symbol::FROM_OBJECT)
1625                   {
1626                     // The symbol was defined by the linker (e.g., common).
1627                     // We mark these symbols with a special SHNDX of -1,
1628                     // but exclude linker-predefined symbols and symbols
1629                     // copied from shared objects.
1630                     if (!sym->is_predefined()
1631                         && !sym->is_copied_from_dynobj())
1632                       shndx = -1U;
1633                   }
1634                 else if (sym->object() == obj && sym->is_defined())
1635                   {
1636                     bool is_ordinary;
1637                     unsigned int orig_shndx = sym->shndx(&is_ordinary);
1638                     if (is_ordinary)
1639                       shndx = index_map[orig_shndx];
1640                     else
1641                       shndx = 1;
1642                   }
1643                 unsigned int symtab_index = sym->symtab_index();
1644                 unsigned int chain = 0;
1645                 unsigned int first_reloc = 0;
1646                 unsigned int nrelocs = obj->get_incremental_reloc_count(i);
1647                 if (nrelocs > 0)
1648                   {
1649                     gold_assert(symtab_index != -1U
1650                                 && (symtab_index - first_global_index
1651                                     < global_sym_count));
1652                     first_reloc = obj->get_incremental_reloc_base(i);
1653                     chain = global_syms[symtab_index - first_global_index];
1654                     global_syms[symtab_index - first_global_index] =
1655                         pov - oview;
1656                   }
1657                 Swap32::writeval(pov, symtab_index);
1658                 Swap32::writeval(pov + 4, shndx);
1659                 Swap32::writeval(pov + 8, chain);
1660                 Swap32::writeval(pov + 12, nrelocs);
1661                 Swap32::writeval(pov + 16,
1662                                  first_reloc * (8 + 2 * sizeof_addr));
1663                 gold_assert(this->global_sym_entry_size == 20);
1664                 pov += this->global_sym_entry_size;
1665               }
1666
1667             // For each kept COMDAT group, write the group signature.
1668             for (unsigned int i = 0; i < ncomdat; i++)
1669               {
1670                 Stringpool::Key key = entry->get_comdat_signature_key(i);
1671                 off_t name_offset = 0;
1672                 if (key != 0)
1673                   name_offset = strtab->get_offset_from_key(key);
1674                 Swap32::writeval(pov, name_offset);
1675                 pov += 4;
1676               }
1677
1678             delete[] index_map;
1679           }
1680           break;
1681
1682         case INCREMENTAL_INPUT_SHARED_LIBRARY:
1683           {
1684             gold_assert(static_cast<unsigned int>(pov - oview)
1685                         == (*p)->get_info_offset());
1686             Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1687             gold_assert(entry != NULL);
1688             Object* obj = entry->object();
1689             Dynobj* dynobj = obj->dynobj();
1690             gold_assert(dynobj != NULL);
1691             const Object::Symbols* syms = obj->get_global_symbols();
1692
1693             // Write the soname string table index.
1694             section_offset_type soname_offset =
1695                 strtab->get_offset_from_key(entry->get_soname_key());
1696             Swap32::writeval(pov, soname_offset);
1697             pov += 4;
1698
1699             // Skip the global symbol count for now.
1700             unsigned char* orig_pov = pov;
1701             pov += 4;
1702
1703             // For each global symbol, write the global symbol table index.
1704             unsigned int nsyms = syms->size();
1705             unsigned int nsyms_out = 0;
1706             for (unsigned int i = 0; i < nsyms; i++)
1707               {
1708                 const Symbol* sym = (*syms)[i];
1709                 if (sym == NULL)
1710                   continue;
1711                 if (sym->is_forwarder())
1712                   sym = this->symtab_->resolve_forwards(sym);
1713                 if (sym->symtab_index() == -1U)
1714                   continue;
1715                 unsigned int flags = 0;
1716                 // If the symbol has hidden or internal visibility, we
1717                 // mark it as defined in the shared object so we don't
1718                 // try to resolve it during an incremental update.
1719                 if (sym->visibility() == elfcpp::STV_HIDDEN
1720                     || sym->visibility() == elfcpp::STV_INTERNAL)
1721                   flags = INCREMENTAL_SHLIB_SYM_DEF;
1722                 else if (sym->source() == Symbol::FROM_OBJECT
1723                          && sym->object() == obj
1724                          && sym->is_defined())
1725                   flags = INCREMENTAL_SHLIB_SYM_DEF;
1726                 else if (sym->is_copied_from_dynobj()
1727                          && this->symtab_->get_copy_source(sym) == dynobj)
1728                   flags = INCREMENTAL_SHLIB_SYM_COPY;
1729                 flags <<= INCREMENTAL_SHLIB_SYM_FLAGS_SHIFT;
1730                 Swap32::writeval(pov, sym->symtab_index() | flags);
1731                 pov += 4;
1732                 ++nsyms_out;
1733               }
1734
1735             // Now write the global symbol count.
1736             Swap32::writeval(orig_pov, nsyms_out);
1737           }
1738           break;
1739
1740         case INCREMENTAL_INPUT_ARCHIVE:
1741           {
1742             gold_assert(static_cast<unsigned int>(pov - oview)
1743                         == (*p)->get_info_offset());
1744             Incremental_archive_entry* entry = (*p)->archive_entry();
1745             gold_assert(entry != NULL);
1746
1747             // Write the member count and unused global symbol count.
1748             unsigned int nmembers = entry->get_member_count();
1749             unsigned int nsyms = entry->get_unused_global_symbol_count();
1750             Swap32::writeval(pov, nmembers);
1751             Swap32::writeval(pov + 4, nsyms);
1752             pov += 8;
1753
1754             // For each member, write the offset to its input file entry.
1755             for (unsigned int i = 0; i < nmembers; ++i)
1756               {
1757                 Incremental_object_entry* member = entry->get_member(i);
1758                 Swap32::writeval(pov, member->get_offset());
1759                 pov += 4;
1760               }
1761
1762             // For each global symbol, write the name offset.
1763             for (unsigned int i = 0; i < nsyms; ++i)
1764               {
1765                 Stringpool::Key key = entry->get_unused_global_symbol(i);
1766                 Swap32::writeval(pov, strtab->get_offset_from_key(key));
1767                 pov += 4;
1768               }
1769           }
1770           break;
1771
1772         default:
1773           gold_unreachable();
1774         }
1775
1776      // Pad the info block to a multiple of 8 bytes.
1777      if (static_cast<unsigned int>(pov - oview) & 4)
1778       {
1779         Swap32::writeval(pov, 0);
1780         pov += 4;
1781       }
1782     }
1783   return pov;
1784 }
1785
1786 // Write the contents of the .gnu_incremental_symtab section.
1787
1788 template<int size, bool big_endian>
1789 void
1790 Output_section_incremental_inputs<size, big_endian>::write_symtab(
1791     unsigned char* pov,
1792     unsigned int* global_syms,
1793     unsigned int global_sym_count)
1794 {
1795   for (unsigned int i = 0; i < global_sym_count; ++i)
1796     {
1797       Swap32::writeval(pov, global_syms[i]);
1798       pov += 4;
1799     }
1800 }
1801
1802 // This struct holds the view information needed to write the
1803 // .gnu_incremental_got_plt section.
1804
1805 struct Got_plt_view_info
1806 {
1807   // Start of the GOT type array in the output view.
1808   unsigned char* got_type_p;
1809   // Start of the GOT descriptor array in the output view.
1810   unsigned char* got_desc_p;
1811   // Start of the PLT descriptor array in the output view.
1812   unsigned char* plt_desc_p;
1813   // Number of GOT entries.
1814   unsigned int got_count;
1815   // Number of PLT entries.
1816   unsigned int plt_count;
1817   // Offset of the first non-reserved PLT entry (this is a target-dependent value).
1818   unsigned int first_plt_entry_offset;
1819   // Size of a PLT entry (this is a target-dependent value).
1820   unsigned int plt_entry_size;
1821   // Symbol index to write in the GOT descriptor array.  For global symbols,
1822   // this is the global symbol table index; for local symbols, it is the
1823   // local symbol table index.
1824   unsigned int sym_index;
1825   // Input file index to write in the GOT descriptor array.  For global
1826   // symbols, this is 0; for local symbols, it is the index of the input
1827   // file entry in the .gnu_incremental_inputs section.
1828   unsigned int input_index;
1829 };
1830
1831 // Functor class for processing a GOT offset list for local symbols.
1832 // Writes the GOT type and symbol index into the GOT type and descriptor
1833 // arrays in the output section.
1834
1835 template<int size, bool big_endian>
1836 class Local_got_offset_visitor : public Got_offset_list::Visitor
1837 {
1838  public:
1839   Local_got_offset_visitor(struct Got_plt_view_info& info)
1840     : info_(info)
1841   { }
1842
1843   void
1844   visit(unsigned int got_type, unsigned int got_offset)
1845   {
1846     unsigned int got_index = got_offset / this->got_entry_size_;
1847     gold_assert(got_index < this->info_.got_count);
1848     // We can only handle GOT entry types in the range 0..0x7e
1849     // because we use a byte array to store them, and we use the
1850     // high bit to flag a local symbol.
1851     gold_assert(got_type < 0x7f);
1852     this->info_.got_type_p[got_index] = got_type | 0x80;
1853     unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1854     elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1855     elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
1856   }
1857
1858  private:
1859   static const unsigned int got_entry_size_ = size / 8;
1860   struct Got_plt_view_info& info_;
1861 };
1862
1863 // Functor class for processing a GOT offset list.  Writes the GOT type
1864 // and symbol index into the GOT type and descriptor arrays in the output
1865 // section.
1866
1867 template<int size, bool big_endian>
1868 class Global_got_offset_visitor : public Got_offset_list::Visitor
1869 {
1870  public:
1871   Global_got_offset_visitor(struct Got_plt_view_info& info)
1872     : info_(info)
1873   { }
1874
1875   void
1876   visit(unsigned int got_type, unsigned int got_offset)
1877   {
1878     unsigned int got_index = got_offset / this->got_entry_size_;
1879     gold_assert(got_index < this->info_.got_count);
1880     // We can only handle GOT entry types in the range 0..0x7e
1881     // because we use a byte array to store them, and we use the
1882     // high bit to flag a local symbol.
1883     gold_assert(got_type < 0x7f);
1884     this->info_.got_type_p[got_index] = got_type;
1885     unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1886     elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1887     elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
1888   }
1889
1890  private:
1891   static const unsigned int got_entry_size_ = size / 8;
1892   struct Got_plt_view_info& info_;
1893 };
1894
1895 // Functor class for processing the global symbol table.  Processes the
1896 // GOT offset list for the symbol, and writes the symbol table index
1897 // into the PLT descriptor array in the output section.
1898
1899 template<int size, bool big_endian>
1900 class Global_symbol_visitor_got_plt
1901 {
1902  public:
1903   Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
1904     : info_(info)
1905   { }
1906
1907   void
1908   operator()(const Sized_symbol<size>* sym)
1909   {
1910     typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
1911     const Got_offset_list* got_offsets = sym->got_offset_list();
1912     if (got_offsets != NULL)
1913       {
1914         this->info_.sym_index = sym->symtab_index();
1915         this->info_.input_index = 0;
1916         Got_visitor v(this->info_);
1917         got_offsets->for_all_got_offsets(&v);
1918       }
1919     if (sym->has_plt_offset())
1920       {
1921         unsigned int plt_index =
1922             ((sym->plt_offset() - this->info_.first_plt_entry_offset)
1923              / this->info_.plt_entry_size);
1924         gold_assert(plt_index < this->info_.plt_count);
1925         unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
1926         elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
1927       }
1928   }
1929
1930  private:
1931   struct Got_plt_view_info& info_;
1932 };
1933
1934 // Write the contents of the .gnu_incremental_got_plt section.
1935
1936 template<int size, bool big_endian>
1937 void
1938 Output_section_incremental_inputs<size, big_endian>::write_got_plt(
1939     unsigned char* pov,
1940     off_t view_size)
1941 {
1942   Sized_target<size, big_endian>* target =
1943     parameters->sized_target<size, big_endian>();
1944
1945   // Set up the view information for the functors.
1946   struct Got_plt_view_info view_info;
1947   view_info.got_count = target->got_entry_count();
1948   view_info.plt_count = target->plt_entry_count();
1949   view_info.first_plt_entry_offset = target->first_plt_entry_offset();
1950   view_info.plt_entry_size = target->plt_entry_size();
1951   view_info.got_type_p = pov + 8;
1952   view_info.got_desc_p = (view_info.got_type_p
1953                           + ((view_info.got_count + 3) & ~3));
1954   view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;
1955
1956   gold_assert(pov + view_size ==
1957               view_info.plt_desc_p + view_info.plt_count * 4);
1958
1959   // Write the section header.
1960   Swap32::writeval(pov, view_info.got_count);
1961   Swap32::writeval(pov + 4, view_info.plt_count);
1962
1963   // Initialize the GOT type array to 0xff (reserved).
1964   memset(view_info.got_type_p, 0xff, view_info.got_count);
1965
1966   // Write the incremental GOT descriptors for local symbols.
1967   typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
1968   for (Incremental_inputs::Input_list::const_iterator p =
1969            this->inputs_->input_files().begin();
1970        p != this->inputs_->input_files().end();
1971        ++p)
1972     {
1973       if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
1974           && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
1975         continue;
1976       Incremental_object_entry* entry = (*p)->object_entry();
1977       gold_assert(entry != NULL);
1978       const Object* obj = entry->object();
1979       gold_assert(obj != NULL);
1980       view_info.input_index = (*p)->get_file_index();
1981       Got_visitor v(view_info);
1982       obj->for_all_local_got_entries(&v);
1983     }
1984
1985   // Write the incremental GOT and PLT descriptors for global symbols.
1986   typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
1987   symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
1988 }
1989
1990 // Class Sized_relobj_incr.  Most of these methods are not used for
1991 // Incremental objects, but are required to be implemented by the
1992 // base class Object.
1993
1994 template<int size, bool big_endian>
1995 Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
1996     const std::string& name,
1997     Sized_incremental_binary<size, big_endian>* ibase,
1998     unsigned int input_file_index)
1999   : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
2000     input_file_index_(input_file_index),
2001     input_reader_(ibase->inputs_reader().input_file(input_file_index)),
2002     local_symbol_count_(0), output_local_dynsym_count_(0),
2003     local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
2004     symbols_(), defined_count_(0), incr_reloc_offset_(-1U),
2005     incr_reloc_count_(0), incr_reloc_output_index_(0), incr_relocs_(NULL),
2006     local_symbols_()
2007 {
2008   if (this->input_reader_.is_in_system_directory())
2009     this->set_is_in_system_directory();
2010   const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
2011   this->set_shnum(shnum);
2012   ibase->set_input_object(input_file_index, this);
2013 }
2014
2015 // Read the symbols.
2016
2017 template<int size, bool big_endian>
2018 void
2019 Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
2020 {
2021   gold_unreachable();
2022 }
2023
2024 // Lay out the input sections.
2025
2026 template<int size, bool big_endian>
2027 void
2028 Sized_relobj_incr<size, big_endian>::do_layout(
2029     Symbol_table*,
2030     Layout* layout,
2031     Read_symbols_data*)
2032 {
2033   const unsigned int shnum = this->shnum();
2034   Incremental_inputs* incremental_inputs = layout->incremental_inputs();
2035   gold_assert(incremental_inputs != NULL);
2036   Output_sections& out_sections(this->output_sections());
2037   out_sections.resize(shnum);
2038   this->section_offsets().resize(shnum);
2039
2040   // Keep track of .debug_info and .debug_types sections.
2041   std::vector<unsigned int> debug_info_sections;
2042   std::vector<unsigned int> debug_types_sections;
2043
2044   for (unsigned int i = 1; i < shnum; i++)
2045     {
2046       typename Input_entry_reader::Input_section_info sect =
2047           this->input_reader_.get_input_section(i - 1);
2048       // Add the section to the incremental inputs layout.
2049       incremental_inputs->report_input_section(this, i, sect.name,
2050                                                sect.sh_size);
2051       if (sect.output_shndx == 0 || sect.sh_offset == -1)
2052         continue;
2053       Output_section* os = this->ibase_->output_section(sect.output_shndx);
2054       gold_assert(os != NULL);
2055       out_sections[i] = os;
2056       this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);
2057
2058       // When generating a .gdb_index section, we do additional
2059       // processing of .debug_info and .debug_types sections after all
2060       // the other sections.
2061       if (parameters->options().gdb_index())
2062         {
2063           const char* name = os->name();
2064           if (strcmp(name, ".debug_info") == 0)
2065             debug_info_sections.push_back(i);
2066           else if (strcmp(name, ".debug_types") == 0)
2067             debug_types_sections.push_back(i);
2068         }
2069     }
2070
2071   // Process the COMDAT groups.
2072   unsigned int ncomdat = this->input_reader_.get_comdat_group_count();
2073   for (unsigned int i = 0; i < ncomdat; i++)
2074     {
2075       const char* signature = this->input_reader_.get_comdat_group_signature(i);
2076       if (signature == NULL || signature[0] == '\0')
2077         this->error(_("COMDAT group has no signature"));
2078       bool keep = layout->find_or_add_kept_section(signature, this, i, true,
2079                                                    true, NULL);
2080       if (keep)
2081         incremental_inputs->report_comdat_group(this, signature);
2082       else
2083         this->error(_("COMDAT group %s included twice in incremental link"),
2084                     signature);
2085     }
2086
2087   // When building a .gdb_index section, scan the .debug_info and
2088   // .debug_types sections.
2089   for (std::vector<unsigned int>::const_iterator p
2090            = debug_info_sections.begin();
2091        p != debug_info_sections.end();
2092        ++p)
2093     {
2094       unsigned int i = *p;
2095       layout->add_to_gdb_index(false, this, NULL, 0, i, 0, 0);
2096     }
2097   for (std::vector<unsigned int>::const_iterator p
2098            = debug_types_sections.begin();
2099        p != debug_types_sections.end();
2100        ++p)
2101     {
2102       unsigned int i = *p;
2103       layout->add_to_gdb_index(true, this, 0, 0, i, 0, 0);
2104     }
2105 }
2106
2107 // Layout sections whose layout was deferred while waiting for
2108 // input files from a plugin.
2109 template<int size, bool big_endian>
2110 void
2111 Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
2112 {
2113 }
2114
2115 // Add the symbols to the symbol table.
2116
2117 template<int size, bool big_endian>
2118 void
2119 Sized_relobj_incr<size, big_endian>::do_add_symbols(
2120     Symbol_table* symtab,
2121     Read_symbols_data*,
2122     Layout*)
2123 {
2124   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2125   unsigned char symbuf[sym_size];
2126   elfcpp::Sym<size, big_endian> sym(symbuf);
2127   elfcpp::Sym_write<size, big_endian> osym(symbuf);
2128
2129   typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2130
2131   unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2132   this->symbols_.resize(nsyms);
2133
2134   Incremental_binary::View symtab_view(NULL);
2135   unsigned int symtab_count;
2136   elfcpp::Elf_strtab strtab(NULL, 0);
2137   this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2138
2139   Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2140   unsigned int isym_count = isymtab.symbol_count();
2141   unsigned int first_global = symtab_count - isym_count;
2142
2143   const unsigned char* sym_p;
2144   for (unsigned int i = 0; i < nsyms; ++i)
2145     {
2146       Incremental_global_symbol_reader<big_endian> info =
2147           this->input_reader_.get_global_symbol_reader(i);
2148       unsigned int output_symndx = info.output_symndx();
2149       sym_p = symtab_view.data() + output_symndx * sym_size;
2150       elfcpp::Sym<size, big_endian> gsym(sym_p);
2151       const char* name;
2152       if (!strtab.get_c_string(gsym.get_st_name(), &name))
2153         name = "";
2154
2155       typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
2156       unsigned int shndx = gsym.get_st_shndx();
2157       elfcpp::STB st_bind = gsym.get_st_bind();
2158       elfcpp::STT st_type = gsym.get_st_type();
2159
2160       // Local hidden symbols start out as globals, but get converted to
2161       // to local during output.
2162       if (st_bind == elfcpp::STB_LOCAL)
2163         st_bind = elfcpp::STB_GLOBAL;
2164
2165       unsigned int input_shndx = info.shndx();
2166       if (input_shndx == 0 || input_shndx == -1U)
2167         {
2168           shndx = elfcpp::SHN_UNDEF;
2169           v = 0;
2170         }
2171       else if (shndx != elfcpp::SHN_ABS)
2172         {
2173           // Find the input section and calculate the section-relative value.
2174           gold_assert(shndx != elfcpp::SHN_UNDEF);
2175           Output_section* os = this->ibase_->output_section(shndx);
2176           gold_assert(os != NULL && os->has_fixed_layout());
2177           typename Input_entry_reader::Input_section_info sect =
2178               this->input_reader_.get_input_section(input_shndx - 1);
2179           gold_assert(sect.output_shndx == shndx);
2180           if (st_type != elfcpp::STT_TLS)
2181             v -= os->address();
2182           v -= sect.sh_offset;
2183           shndx = input_shndx;
2184         }
2185
2186       osym.put_st_name(0);
2187       osym.put_st_value(v);
2188       osym.put_st_size(gsym.get_st_size());
2189       osym.put_st_info(st_bind, st_type);
2190       osym.put_st_other(gsym.get_st_other());
2191       osym.put_st_shndx(shndx);
2192
2193       Symbol* res = symtab->add_from_incrobj(this, name, NULL, &sym);
2194
2195       if (shndx != elfcpp::SHN_UNDEF)
2196         ++this->defined_count_;
2197
2198       // If this is a linker-defined symbol that hasn't yet been defined,
2199       // define it now.
2200       if (input_shndx == -1U && !res->is_defined())
2201         {
2202           shndx = gsym.get_st_shndx();
2203           v = gsym.get_st_value();
2204           Elf_size_type symsize = gsym.get_st_size();
2205           if (shndx == elfcpp::SHN_ABS)
2206             {
2207               symtab->define_as_constant(name, NULL,
2208                                          Symbol_table::INCREMENTAL_BASE,
2209                                          v, symsize, st_type, st_bind,
2210                                          gsym.get_st_visibility(), 0,
2211                                          false, false);
2212             }
2213           else
2214             {
2215               Output_section* os = this->ibase_->output_section(shndx);
2216               gold_assert(os != NULL && os->has_fixed_layout());
2217               v -= os->address();
2218               if (symsize > 0)
2219                 os->reserve(v, symsize);
2220               symtab->define_in_output_data(name, NULL,
2221                                             Symbol_table::INCREMENTAL_BASE,
2222                                             os, v, symsize, st_type, st_bind,
2223                                             gsym.get_st_visibility(), 0,
2224                                             false, false);
2225             }
2226         }
2227
2228       this->symbols_[i] = res;
2229       this->ibase_->add_global_symbol(output_symndx - first_global, res);
2230     }
2231 }
2232
2233 // Return TRUE if we should include this object from an archive library.
2234
2235 template<int size, bool big_endian>
2236 Archive::Should_include
2237 Sized_relobj_incr<size, big_endian>::do_should_include_member(
2238     Symbol_table*,
2239     Layout*,
2240     Read_symbols_data*,
2241     std::string*)
2242 {
2243   gold_unreachable();
2244 }
2245
2246 // Iterate over global symbols, calling a visitor class V for each.
2247
2248 template<int size, bool big_endian>
2249 void
2250 Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
2251     Read_symbols_data*,
2252     Library_base::Symbol_visitor_base*)
2253 {
2254   // This routine is not used for incremental objects.
2255 }
2256
2257 // Get the size of a section.
2258
2259 template<int size, bool big_endian>
2260 uint64_t
2261 Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
2262 {
2263   gold_unreachable();
2264 }
2265
2266 // Get the name of a section.  This returns the name of the output
2267 // section, because we don't usually track the names of the input
2268 // sections.
2269
2270 template<int size, bool big_endian>
2271 std::string
2272 Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int shndx) const
2273 {
2274   const Output_sections& out_sections(this->output_sections());
2275   const Output_section* os = out_sections[shndx];
2276   if (os == NULL)
2277     return NULL;
2278   return os->name();
2279 }
2280
2281 // Return a view of the contents of a section.
2282
2283 template<int size, bool big_endian>
2284 const unsigned char*
2285 Sized_relobj_incr<size, big_endian>::do_section_contents(
2286     unsigned int shndx,
2287     section_size_type* plen,
2288     bool)
2289 {
2290   Output_sections& out_sections(this->output_sections());
2291   Output_section* os = out_sections[shndx];
2292   gold_assert(os != NULL);
2293   off_t section_offset = os->offset();
2294   typename Input_entry_reader::Input_section_info sect =
2295       this->input_reader_.get_input_section(shndx - 1);
2296   section_offset += sect.sh_offset;
2297   *plen = sect.sh_size;
2298   return this->ibase_->view(section_offset, sect.sh_size).data();
2299 }
2300
2301 // Return section flags.
2302
2303 template<int size, bool big_endian>
2304 uint64_t
2305 Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
2306 {
2307   gold_unreachable();
2308 }
2309
2310 // Return section entsize.
2311
2312 template<int size, bool big_endian>
2313 uint64_t
2314 Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
2315 {
2316   gold_unreachable();
2317 }
2318
2319 // Return section address.
2320
2321 template<int size, bool big_endian>
2322 uint64_t
2323 Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
2324 {
2325   gold_unreachable();
2326 }
2327
2328 // Return section type.
2329
2330 template<int size, bool big_endian>
2331 unsigned int
2332 Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
2333 {
2334   gold_unreachable();
2335 }
2336
2337 // Return the section link field.
2338
2339 template<int size, bool big_endian>
2340 unsigned int
2341 Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
2342 {
2343   gold_unreachable();
2344 }
2345
2346 // Return the section link field.
2347
2348 template<int size, bool big_endian>
2349 unsigned int
2350 Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
2351 {
2352   gold_unreachable();
2353 }
2354
2355 // Return the section alignment.
2356
2357 template<int size, bool big_endian>
2358 uint64_t
2359 Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
2360 {
2361   gold_unreachable();
2362 }
2363
2364 // Return the Xindex structure to use.
2365
2366 template<int size, bool big_endian>
2367 Xindex*
2368 Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
2369 {
2370   gold_unreachable();
2371 }
2372
2373 // Get symbol counts.
2374
2375 template<int size, bool big_endian>
2376 void
2377 Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
2378     const Symbol_table*,
2379     size_t* defined,
2380     size_t* used) const
2381 {
2382   *defined = this->defined_count_;
2383   size_t count = 0;
2384   for (typename Symbols::const_iterator p = this->symbols_.begin();
2385        p != this->symbols_.end();
2386        ++p)
2387     if (*p != NULL
2388         && (*p)->source() == Symbol::FROM_OBJECT
2389         && (*p)->object() == this
2390         && (*p)->is_defined())
2391       ++count;
2392   *used = count;
2393 }
2394
2395 // Read the relocs.
2396
2397 template<int size, bool big_endian>
2398 void
2399 Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
2400 {
2401 }
2402
2403 // Process the relocs to find list of referenced sections. Used only
2404 // during garbage collection.
2405
2406 template<int size, bool big_endian>
2407 void
2408 Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
2409                                                           Layout*,
2410                                                           Read_relocs_data*)
2411 {
2412   gold_unreachable();
2413 }
2414
2415 // Scan the relocs and adjust the symbol table.
2416
2417 template<int size, bool big_endian>
2418 void
2419 Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
2420                                                     Layout* layout,
2421                                                     Read_relocs_data*)
2422 {
2423   // Count the incremental relocations for this object.
2424   unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2425   this->allocate_incremental_reloc_counts();
2426   for (unsigned int i = 0; i < nsyms; i++)
2427     {
2428       Incremental_global_symbol_reader<big_endian> sym =
2429           this->input_reader_.get_global_symbol_reader(i);
2430       unsigned int reloc_count = sym.reloc_count();
2431       if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
2432         this->incr_reloc_offset_ = sym.reloc_offset();
2433       this->incr_reloc_count_ += reloc_count;
2434       for (unsigned int j = 0; j < reloc_count; j++)
2435         this->count_incremental_reloc(i);
2436     }
2437   this->incr_reloc_output_index_ =
2438       layout->incremental_inputs()->get_reloc_count();
2439   this->finalize_incremental_relocs(layout, false);
2440
2441   // The incoming incremental relocations may not end up in the same
2442   // location after the incremental update, because the incremental info
2443   // is regenerated in each link.  Because the new location may overlap
2444   // with other data in the updated output file, we need to copy the
2445   // relocations into a buffer so that we can still read them safely
2446   // after we start writing updates to the output file.
2447   if (this->incr_reloc_count_ > 0)
2448     {
2449       const Incremental_relocs_reader<size, big_endian>& relocs_reader =
2450           this->ibase_->relocs_reader();
2451       const unsigned int incr_reloc_size = relocs_reader.reloc_size;
2452       unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2453       this->incr_relocs_ = new unsigned char[len];
2454       memcpy(this->incr_relocs_,
2455              relocs_reader.data(this->incr_reloc_offset_),
2456              len);
2457     }
2458 }
2459
2460 // Count the local symbols.
2461
2462 template<int size, bool big_endian>
2463 void
2464 Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
2465     Stringpool_template<char>* pool,
2466     Stringpool_template<char>*)
2467 {
2468   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2469
2470   // Set the count of local symbols based on the incremental info.
2471   unsigned int nlocals = this->input_reader_.get_local_symbol_count();
2472   this->local_symbol_count_ = nlocals;
2473   this->local_symbols_.reserve(nlocals);
2474
2475   // Get views of the base file's symbol table and string table.
2476   Incremental_binary::View symtab_view(NULL);
2477   unsigned int symtab_count;
2478   elfcpp::Elf_strtab strtab(NULL, 0);
2479   this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2480
2481   // Read the local symbols from the base file's symbol table.
2482   off_t off = this->input_reader_.get_local_symbol_offset();
2483   const unsigned char* symp = symtab_view.data() + off;
2484   for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
2485     {
2486       elfcpp::Sym<size, big_endian> sym(symp);
2487       const char* name;
2488       if (!strtab.get_c_string(sym.get_st_name(), &name))
2489         name = "";
2490       gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
2491       name = pool->add(name, true, NULL);
2492       this->local_symbols_.push_back(Local_symbol(name,
2493                                                   sym.get_st_value(),
2494                                                   sym.get_st_size(),
2495                                                   sym.get_st_shndx(),
2496                                                   sym.get_st_type(),
2497                                                   false));
2498     }
2499 }
2500
2501 // Finalize the local symbols.
2502
2503 template<int size, bool big_endian>
2504 unsigned int
2505 Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
2506     unsigned int index,
2507     off_t off,
2508     Symbol_table*)
2509 {
2510   this->local_symbol_index_ = index;
2511   this->local_symbol_offset_ = off;
2512   return index + this->local_symbol_count_;
2513 }
2514
2515 // Set the offset where local dynamic symbol information will be stored.
2516
2517 template<int size, bool big_endian>
2518 unsigned int
2519 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
2520     unsigned int index)
2521 {
2522   // FIXME: set local dynsym indexes.
2523   return index;
2524 }
2525
2526 // Set the offset where local dynamic symbol information will be stored.
2527
2528 template<int size, bool big_endian>
2529 unsigned int
2530 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
2531 {
2532   return 0;
2533 }
2534
2535 // Relocate the input sections and write out the local symbols.
2536 // We don't actually do any relocation here.  For unchanged input files,
2537 // we reapply relocations only for symbols that have changed; that happens
2538 // in queue_final_tasks.  We do need to rewrite the incremental relocations
2539 // for this object.
2540
2541 template<int size, bool big_endian>
2542 void
2543 Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
2544                                                  const Layout* layout,
2545                                                  Output_file* of)
2546 {
2547   if (this->incr_reloc_count_ == 0)
2548     return;
2549
2550   const unsigned int incr_reloc_size =
2551       Incremental_relocs_reader<size, big_endian>::reloc_size;
2552
2553   // Get a view for the .gnu_incremental_relocs section.
2554   Incremental_inputs* inputs = layout->incremental_inputs();
2555   gold_assert(inputs != NULL);
2556   const off_t relocs_off = inputs->relocs_section()->offset();
2557   const off_t relocs_size = inputs->relocs_section()->data_size();
2558   unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
2559
2560   // Copy the relocations from the buffer.
2561   off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
2562   unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2563   memcpy(view + off, this->incr_relocs_, len);
2564
2565   // The output section table may have changed, so we need to map
2566   // the old section index to the new section index for each relocation.
2567   for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
2568     {
2569       unsigned char* pov = view + off + i * incr_reloc_size;
2570       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
2571       Output_section* os = this->ibase_->output_section(shndx);
2572       gold_assert(os != NULL);
2573       shndx = os->out_shndx();
2574       elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
2575     }
2576
2577   of->write_output_view(off, len, view);
2578
2579   // Get views into the output file for the portions of the symbol table
2580   // and the dynamic symbol table that we will be writing.
2581   off_t symtab_off = layout->symtab_section()->offset();
2582   off_t output_size = this->local_symbol_count_ * This::sym_size;
2583   unsigned char* oview = NULL;
2584   if (output_size > 0)
2585     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2586                                 output_size);
2587
2588   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2589   unsigned char* dyn_oview = NULL;
2590   if (dyn_output_size > 0)
2591     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2592                                     dyn_output_size);
2593
2594   // Write the local symbols.
2595   unsigned char* ov = oview;
2596   unsigned char* dyn_ov = dyn_oview;
2597   const Stringpool* sympool = layout->sympool();
2598   const Stringpool* dynpool = layout->dynpool();
2599   Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
2600   Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
2601   for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
2602     {
2603       Local_symbol& lsym(this->local_symbols_[i]);
2604
2605       bool is_ordinary;
2606       unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
2607                                                      &is_ordinary);
2608       if (is_ordinary)
2609         {
2610           Output_section* os = this->ibase_->output_section(st_shndx);
2611           st_shndx = os->out_shndx();
2612           if (st_shndx >= elfcpp::SHN_LORESERVE)
2613             {
2614               symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
2615               if (lsym.needs_dynsym_entry)
2616                 dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
2617               st_shndx = elfcpp::SHN_XINDEX;
2618             }
2619         }
2620
2621       // Write the symbol to the output symbol table.
2622       {
2623         elfcpp::Sym_write<size, big_endian> osym(ov);
2624         osym.put_st_name(sympool->get_offset(lsym.name));
2625         osym.put_st_value(lsym.st_value);
2626         osym.put_st_size(lsym.st_size);
2627         osym.put_st_info(elfcpp::STB_LOCAL,
2628                          static_cast<elfcpp::STT>(lsym.st_type));
2629         osym.put_st_other(0);
2630         osym.put_st_shndx(st_shndx);
2631         ov += sym_size;
2632       }
2633
2634       // Write the symbol to the output dynamic symbol table.
2635       if (lsym.needs_dynsym_entry)
2636         {
2637           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2638           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2639           osym.put_st_name(dynpool->get_offset(lsym.name));
2640           osym.put_st_value(lsym.st_value);
2641           osym.put_st_size(lsym.st_size);
2642           osym.put_st_info(elfcpp::STB_LOCAL,
2643                            static_cast<elfcpp::STT>(lsym.st_type));
2644           osym.put_st_other(0);
2645           osym.put_st_shndx(st_shndx);
2646           dyn_ov += sym_size;
2647         }
2648     }
2649
2650   if (output_size > 0)
2651     {
2652       gold_assert(ov - oview == output_size);
2653       of->write_output_view(symtab_off + this->local_symbol_offset_,
2654                             output_size, oview);
2655     }
2656
2657   if (dyn_output_size > 0)
2658     {
2659       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2660       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2661                             dyn_oview);
2662     }
2663 }
2664
2665 // Set the offset of a section.
2666
2667 template<int size, bool big_endian>
2668 void
2669 Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
2670                                                            uint64_t)
2671 {
2672 }
2673
2674 // Class Sized_incr_dynobj.  Most of these methods are not used for
2675 // Incremental objects, but are required to be implemented by the
2676 // base class Object.
2677
2678 template<int size, bool big_endian>
2679 Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
2680     const std::string& name,
2681     Sized_incremental_binary<size, big_endian>* ibase,
2682     unsigned int input_file_index)
2683   : Dynobj(name, NULL), ibase_(ibase),
2684     input_file_index_(input_file_index),
2685     input_reader_(ibase->inputs_reader().input_file(input_file_index)),
2686     symbols_(), defined_count_(0)
2687 {
2688   if (this->input_reader_.is_in_system_directory())
2689     this->set_is_in_system_directory();
2690   if (this->input_reader_.as_needed())
2691     this->set_as_needed();
2692   this->set_soname_string(this->input_reader_.get_soname());
2693   this->set_shnum(0);
2694 }
2695
2696 // Read the symbols.
2697
2698 template<int size, bool big_endian>
2699 void
2700 Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
2701 {
2702   gold_unreachable();
2703 }
2704
2705 // Lay out the input sections.
2706
2707 template<int size, bool big_endian>
2708 void
2709 Sized_incr_dynobj<size, big_endian>::do_layout(
2710     Symbol_table*,
2711     Layout*,
2712     Read_symbols_data*)
2713 {
2714 }
2715
2716 // Add the symbols to the symbol table.
2717
2718 template<int size, bool big_endian>
2719 void
2720 Sized_incr_dynobj<size, big_endian>::do_add_symbols(
2721     Symbol_table* symtab,
2722     Read_symbols_data*,
2723     Layout*)
2724 {
2725   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2726   unsigned char symbuf[sym_size];
2727   elfcpp::Sym<size, big_endian> sym(symbuf);
2728   elfcpp::Sym_write<size, big_endian> osym(symbuf);
2729
2730   unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2731   this->symbols_.resize(nsyms);
2732
2733   Incremental_binary::View symtab_view(NULL);
2734   unsigned int symtab_count;
2735   elfcpp::Elf_strtab strtab(NULL, 0);
2736   this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2737
2738   Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2739   unsigned int isym_count = isymtab.symbol_count();
2740   unsigned int first_global = symtab_count - isym_count;
2741
2742   // We keep a set of symbols that we have generated COPY relocations
2743   // for, indexed by the symbol value. We do not need more than one
2744   // COPY relocation per address.
2745   typedef typename std::set<Address> Copied_symbols;
2746   Copied_symbols copied_symbols;
2747
2748   const unsigned char* sym_p;
2749   for (unsigned int i = 0; i < nsyms; ++i)
2750     {
2751       bool is_def;
2752       bool is_copy;
2753       unsigned int output_symndx =
2754           this->input_reader_.get_output_symbol_index(i, &is_def, &is_copy);
2755       sym_p = symtab_view.data() + output_symndx * sym_size;
2756       elfcpp::Sym<size, big_endian> gsym(sym_p);
2757       const char* name;
2758       if (!strtab.get_c_string(gsym.get_st_name(), &name))
2759         name = "";
2760
2761       Address v;
2762       unsigned int shndx;
2763       elfcpp::STB st_bind = gsym.get_st_bind();
2764       elfcpp::STT st_type = gsym.get_st_type();
2765
2766       // Local hidden symbols start out as globals, but get converted to
2767       // to local during output.
2768       if (st_bind == elfcpp::STB_LOCAL)
2769         st_bind = elfcpp::STB_GLOBAL;
2770
2771       if (!is_def)
2772         {
2773           shndx = elfcpp::SHN_UNDEF;
2774           v = 0;
2775         }
2776       else
2777         {
2778           // For a symbol defined in a shared object, the section index
2779           // is meaningless, as long as it's not SHN_UNDEF.
2780           shndx = 1;
2781           v = gsym.get_st_value();
2782           ++this->defined_count_;
2783         }
2784
2785       osym.put_st_name(0);
2786       osym.put_st_value(v);
2787       osym.put_st_size(gsym.get_st_size());
2788       osym.put_st_info(st_bind, st_type);
2789       osym.put_st_other(gsym.get_st_other());
2790       osym.put_st_shndx(shndx);
2791
2792       Sized_symbol<size>* res =
2793           symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
2794       this->symbols_[i] = res;
2795       this->ibase_->add_global_symbol(output_symndx - first_global,
2796                                       this->symbols_[i]);
2797
2798       if (is_copy)
2799         {
2800           std::pair<typename Copied_symbols::iterator, bool> ins =
2801               copied_symbols.insert(v);
2802           if (ins.second)
2803             {
2804               unsigned int shndx = gsym.get_st_shndx();
2805               Output_section* os = this->ibase_->output_section(shndx);
2806               off_t offset = v - os->address();
2807               this->ibase_->add_copy_reloc(this->symbols_[i], os, offset);
2808             }
2809         }
2810     }
2811 }
2812
2813 // Return TRUE if we should include this object from an archive library.
2814
2815 template<int size, bool big_endian>
2816 Archive::Should_include
2817 Sized_incr_dynobj<size, big_endian>::do_should_include_member(
2818     Symbol_table*,
2819     Layout*,
2820     Read_symbols_data*,
2821     std::string*)
2822 {
2823   gold_unreachable();
2824 }
2825
2826 // Iterate over global symbols, calling a visitor class V for each.
2827
2828 template<int size, bool big_endian>
2829 void
2830 Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
2831     Read_symbols_data*,
2832     Library_base::Symbol_visitor_base*)
2833 {
2834   // This routine is not used for dynamic libraries.
2835 }
2836
2837 // Iterate over local symbols, calling a visitor class V for each GOT offset
2838 // associated with a local symbol.
2839
2840 template<int size, bool big_endian>
2841 void
2842 Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
2843     Got_offset_list::Visitor*) const
2844 {
2845 }
2846
2847 // Get the size of a section.
2848
2849 template<int size, bool big_endian>
2850 uint64_t
2851 Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
2852 {
2853   gold_unreachable();
2854 }
2855
2856 // Get the name of a section.
2857
2858 template<int size, bool big_endian>
2859 std::string
2860 Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int) const
2861 {
2862   gold_unreachable();
2863 }
2864
2865 // Return a view of the contents of a section.
2866
2867 template<int size, bool big_endian>
2868 const unsigned char*
2869 Sized_incr_dynobj<size, big_endian>::do_section_contents(
2870     unsigned int,
2871     section_size_type*,
2872     bool)
2873 {
2874   gold_unreachable();
2875 }
2876
2877 // Return section flags.
2878
2879 template<int size, bool big_endian>
2880 uint64_t
2881 Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
2882 {
2883   gold_unreachable();
2884 }
2885
2886 // Return section entsize.
2887
2888 template<int size, bool big_endian>
2889 uint64_t
2890 Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
2891 {
2892   gold_unreachable();
2893 }
2894
2895 // Return section address.
2896
2897 template<int size, bool big_endian>
2898 uint64_t
2899 Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
2900 {
2901   gold_unreachable();
2902 }
2903
2904 // Return section type.
2905
2906 template<int size, bool big_endian>
2907 unsigned int
2908 Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
2909 {
2910   gold_unreachable();
2911 }
2912
2913 // Return the section link field.
2914
2915 template<int size, bool big_endian>
2916 unsigned int
2917 Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
2918 {
2919   gold_unreachable();
2920 }
2921
2922 // Return the section link field.
2923
2924 template<int size, bool big_endian>
2925 unsigned int
2926 Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
2927 {
2928   gold_unreachable();
2929 }
2930
2931 // Return the section alignment.
2932
2933 template<int size, bool big_endian>
2934 uint64_t
2935 Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
2936 {
2937   gold_unreachable();
2938 }
2939
2940 // Return the Xindex structure to use.
2941
2942 template<int size, bool big_endian>
2943 Xindex*
2944 Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
2945 {
2946   gold_unreachable();
2947 }
2948
2949 // Get symbol counts.
2950
2951 template<int size, bool big_endian>
2952 void
2953 Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
2954     const Symbol_table*,
2955     size_t* defined,
2956     size_t* used) const
2957 {
2958   *defined = this->defined_count_;
2959   size_t count = 0;
2960   for (typename Symbols::const_iterator p = this->symbols_.begin();
2961        p != this->symbols_.end();
2962        ++p)
2963     if (*p != NULL
2964         && (*p)->source() == Symbol::FROM_OBJECT
2965         && (*p)->object() == this
2966         && (*p)->is_defined()
2967         && (*p)->dynsym_index() != -1U)
2968       ++count;
2969   *used = count;
2970 }
2971
2972 // Allocate an incremental object of the appropriate size and endianness.
2973
2974 Object*
2975 make_sized_incremental_object(
2976     Incremental_binary* ibase,
2977     unsigned int input_file_index,
2978     Incremental_input_type input_type,
2979     const Incremental_binary::Input_reader* input_reader)
2980 {
2981   Object* obj = NULL;
2982   std::string name(input_reader->filename());
2983
2984   switch (parameters->size_and_endianness())
2985     {
2986 #ifdef HAVE_TARGET_32_LITTLE
2987     case Parameters::TARGET_32_LITTLE:
2988       {
2989         Sized_incremental_binary<32, false>* sized_ibase =
2990             static_cast<Sized_incremental_binary<32, false>*>(ibase);
2991         if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2992           obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
2993                                                  input_file_index);
2994         else
2995           obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
2996                                                  input_file_index);
2997       }
2998       break;
2999 #endif
3000 #ifdef HAVE_TARGET_32_BIG
3001     case Parameters::TARGET_32_BIG:
3002       {
3003         Sized_incremental_binary<32, true>* sized_ibase =
3004             static_cast<Sized_incremental_binary<32, true>*>(ibase);
3005         if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
3006           obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
3007                                                 input_file_index);
3008         else
3009           obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
3010                                                 input_file_index);
3011       }
3012       break;
3013 #endif
3014 #ifdef HAVE_TARGET_64_LITTLE
3015     case Parameters::TARGET_64_LITTLE:
3016       {
3017         Sized_incremental_binary<64, false>* sized_ibase =
3018             static_cast<Sized_incremental_binary<64, false>*>(ibase);
3019         if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
3020           obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
3021                                                  input_file_index);
3022         else
3023           obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
3024                                                  input_file_index);
3025      }
3026       break;
3027 #endif
3028 #ifdef HAVE_TARGET_64_BIG
3029     case Parameters::TARGET_64_BIG:
3030       {
3031         Sized_incremental_binary<64, true>* sized_ibase =
3032             static_cast<Sized_incremental_binary<64, true>*>(ibase);
3033         if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
3034           obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
3035                                                 input_file_index);
3036         else
3037           obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
3038                                                 input_file_index);
3039       }
3040       break;
3041 #endif
3042     default:
3043       gold_unreachable();
3044     }
3045
3046   gold_assert(obj != NULL);
3047   return obj;
3048 }
3049
3050 // Copy the unused symbols from the incremental input info.
3051 // We need to do this because we may be overwriting the incremental
3052 // input info in the base file before we write the new incremental
3053 // info.
3054 void
3055 Incremental_library::copy_unused_symbols()
3056 {
3057   unsigned int symcount = this->input_reader_->get_unused_symbol_count();
3058   this->unused_symbols_.reserve(symcount);
3059   for (unsigned int i = 0; i < symcount; ++i)
3060     {
3061       std::string name(this->input_reader_->get_unused_symbol(i));
3062       this->unused_symbols_.push_back(name);
3063     }
3064 }
3065
3066 // Iterator for unused global symbols in the library.
3067 void
3068 Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
3069 {
3070   for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
3071        p != this->unused_symbols_.end();
3072        ++p)
3073   v->visit(p->c_str());
3074 }
3075
3076 // Instantiate the templates we need.
3077
3078 #ifdef HAVE_TARGET_32_LITTLE
3079 template
3080 class Sized_incremental_binary<32, false>;
3081
3082 template
3083 class Sized_relobj_incr<32, false>;
3084
3085 template
3086 class Sized_incr_dynobj<32, false>;
3087 #endif
3088
3089 #ifdef HAVE_TARGET_32_BIG
3090 template
3091 class Sized_incremental_binary<32, true>;
3092
3093 template
3094 class Sized_relobj_incr<32, true>;
3095
3096 template
3097 class Sized_incr_dynobj<32, true>;
3098 #endif
3099
3100 #ifdef HAVE_TARGET_64_LITTLE
3101 template
3102 class Sized_incremental_binary<64, false>;
3103
3104 template
3105 class Sized_relobj_incr<64, false>;
3106
3107 template
3108 class Sized_incr_dynobj<64, false>;
3109 #endif
3110
3111 #ifdef HAVE_TARGET_64_BIG
3112 template
3113 class Sized_incremental_binary<64, true>;
3114
3115 template
3116 class Sized_relobj_incr<64, true>;
3117
3118 template
3119 class Sized_incr_dynobj<64, true>;
3120 #endif
3121
3122 } // End namespace gold.