Handle PLT32 against local symbols.
[platform/upstream/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 //   http://people.redhat.com/drepper/tls.pdf
50 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54  public:
55   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57   Target_i386()
58     : Sized_target<32, false>(&i386_info),
59       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60       copy_relocs_(NULL), dynbss_(NULL)
61   { }
62
63   // Scan the relocations to look for symbol adjustments.
64   void
65   scan_relocs(const General_options& options,
66               Symbol_table* symtab,
67               Layout* layout,
68               Sized_relobj<32, false>* object,
69               unsigned int data_shndx,
70               unsigned int sh_type,
71               const unsigned char* prelocs,
72               size_t reloc_count,
73               size_t local_symbol_count,
74               const unsigned char* plocal_symbols,
75               Symbol** global_symbols);
76
77   // Finalize the sections.
78   void
79   do_finalize_sections(Layout*);
80
81   // Return the value to use for a dynamic which requires special
82   // treatment.
83   uint64_t
84   do_dynsym_value(const Symbol*) const;
85
86   // Relocate a section.
87   void
88   relocate_section(const Relocate_info<32, false>*,
89                    unsigned int sh_type,
90                    const unsigned char* prelocs,
91                    size_t reloc_count,
92                    unsigned char* view,
93                    elfcpp::Elf_types<32>::Elf_Addr view_address,
94                    off_t view_size);
95
96   // Return a string used to fill a code section with nops.
97   std::string
98   do_code_fill(off_t length);
99
100  private:
101   // The class which scans relocations.
102   struct Scan
103   {
104     inline void
105     local(const General_options& options, Symbol_table* symtab,
106           Layout* layout, Target_i386* target,
107           Sized_relobj<32, false>* object,
108           unsigned int data_shndx,
109           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
110           const elfcpp::Sym<32, false>& lsym);
111
112     inline void
113     global(const General_options& options, Symbol_table* symtab,
114            Layout* layout, Target_i386* target,
115            Sized_relobj<32, false>* object,
116            unsigned int data_shndx,
117            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
118            Symbol* gsym);
119
120     static void
121     unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
122
123     static void
124     unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
125                              Symbol*);
126   };
127
128   // The class which implements relocation.
129   class Relocate
130   {
131    public:
132     Relocate()
133       : skip_call_tls_get_addr_(false),
134         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
135     { }
136
137     ~Relocate()
138     {
139       if (this->skip_call_tls_get_addr_)
140         {
141           // FIXME: This needs to specify the location somehow.
142           gold_error(_("missing expected TLS relocation"));
143         }
144     }
145
146     // Do a relocation.  Return false if the caller should not issue
147     // any warnings about this relocation.
148     inline bool
149     relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
150              const elfcpp::Rel<32, false>&,
151              unsigned int r_type, const Sized_symbol<32>*,
152              const Symbol_value<32>*,
153              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
154              off_t);
155
156    private:
157     // Do a TLS relocation.
158     inline void
159     relocate_tls(const Relocate_info<32, false>*, size_t relnum,
160                  const elfcpp::Rel<32, false>&,
161                  unsigned int r_type, const Sized_symbol<32>*,
162                  const Symbol_value<32>*,
163                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
164
165     // Do a TLS Initial-Exec to Local-Exec transition.
166     static inline void
167     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
168                  Output_segment* tls_segment,
169                  const elfcpp::Rel<32, false>&, unsigned int r_type,
170                  elfcpp::Elf_types<32>::Elf_Addr value,
171                  unsigned char* view,
172                  off_t view_size);
173
174     // Do a TLS General-Dynamic to Local-Exec transition.
175     inline void
176     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
177                  Output_segment* tls_segment,
178                  const elfcpp::Rel<32, false>&, unsigned int r_type,
179                  elfcpp::Elf_types<32>::Elf_Addr value,
180                  unsigned char* view,
181                  off_t view_size);
182
183     // Do a TLS Local-Dynamic to Local-Exec transition.
184     inline void
185     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
186                  Output_segment* tls_segment,
187                  const elfcpp::Rel<32, false>&, unsigned int r_type,
188                  elfcpp::Elf_types<32>::Elf_Addr value,
189                  unsigned char* view,
190                  off_t view_size);
191
192     // We need to keep track of which type of local dynamic relocation
193     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
194     enum Local_dynamic_type
195     {
196       LOCAL_DYNAMIC_NONE,
197       LOCAL_DYNAMIC_SUN,
198       LOCAL_DYNAMIC_GNU
199     };
200
201     // This is set if we should skip the next reloc, which should be a
202     // PLT32 reloc against ___tls_get_addr.
203     bool skip_call_tls_get_addr_;
204     // The type of local dynamic relocation we have seen in the section
205     // being relocated, if any.
206     Local_dynamic_type local_dynamic_type_;
207   };
208
209   // Adjust TLS relocation type based on the options and whether this
210   // is a local symbol.
211   static tls::Tls_optimization
212   optimize_tls_reloc(bool is_final, int r_type);
213
214   // Get the GOT section, creating it if necessary.
215   Output_data_got<32, false>*
216   got_section(Symbol_table*, Layout*);
217
218   // Create a PLT entry for a global symbol.
219   void
220   make_plt_entry(Symbol_table*, Layout*, Symbol*);
221
222   // Get the PLT section.
223   const Output_data_plt_i386*
224   plt_section() const
225   {
226     gold_assert(this->plt_ != NULL);
227     return this->plt_;
228   }
229
230   // Get the dynamic reloc section, creating it if necessary.
231   Reloc_section*
232   rel_dyn_section(Layout*);
233
234   // Copy a relocation against a global symbol.
235   void
236   copy_reloc(const General_options*, Symbol_table*, Layout*,
237              Sized_relobj<32, false>*, unsigned int,
238              Symbol*, const elfcpp::Rel<32, false>&);
239
240   // Information about this specific target which we pass to the
241   // general Target structure.
242   static const Target::Target_info i386_info;
243
244   // The GOT section.
245   Output_data_got<32, false>* got_;
246   // The PLT section.
247   Output_data_plt_i386* plt_;
248   // The GOT PLT section.
249   Output_data_space* got_plt_;
250   // The dynamic reloc section.
251   Reloc_section* rel_dyn_;
252   // Relocs saved to avoid a COPY reloc.
253   Copy_relocs<32, false>* copy_relocs_;
254   // Space for variables copied with a COPY reloc.
255   Output_data_space* dynbss_;
256 };
257
258 const Target::Target_info Target_i386::i386_info =
259 {
260   32,                   // size
261   false,                // is_big_endian
262   elfcpp::EM_386,       // machine_code
263   false,                // has_make_symbol
264   false,                // has_resolve
265   true,                 // has_code_fill
266   "/usr/lib/libc.so.1", // dynamic_linker
267   0x08048000,           // default_text_segment_address
268   0x1000,               // abi_pagesize
269   0x1000                // common_pagesize
270 };
271
272 // Get the GOT section, creating it if necessary.
273
274 Output_data_got<32, false>*
275 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
276 {
277   if (this->got_ == NULL)
278     {
279       gold_assert(symtab != NULL && layout != NULL);
280
281       this->got_ = new Output_data_got<32, false>();
282
283       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
284                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
285                                       this->got_);
286
287       // The old GNU linker creates a .got.plt section.  We just
288       // create another set of data in the .got section.  Note that we
289       // always create a PLT if we create a GOT, although the PLT
290       // might be empty.
291       this->got_plt_ = new Output_data_space(4);
292       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
293                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
294                                       this->got_plt_);
295
296       // The first three entries are reserved.
297       this->got_plt_->set_space_size(3 * 4);
298
299       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
300       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
301                                     this->got_plt_,
302                                     0, 0, elfcpp::STT_OBJECT,
303                                     elfcpp::STB_LOCAL,
304                                     elfcpp::STV_HIDDEN, 0,
305                                     false, false);
306     }
307
308   return this->got_;
309 }
310
311 // Get the dynamic reloc section, creating it if necessary.
312
313 Target_i386::Reloc_section*
314 Target_i386::rel_dyn_section(Layout* layout)
315 {
316   if (this->rel_dyn_ == NULL)
317     {
318       gold_assert(layout != NULL);
319       this->rel_dyn_ = new Reloc_section();
320       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
321                                       elfcpp::SHF_ALLOC, this->rel_dyn_);
322     }
323   return this->rel_dyn_;
324 }
325
326 // A class to handle the PLT data.
327
328 class Output_data_plt_i386 : public Output_section_data
329 {
330  public:
331   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
332
333   Output_data_plt_i386(Layout*, Output_data_space*);
334
335   // Add an entry to the PLT.
336   void
337   add_entry(Symbol* gsym);
338
339   // Return the .rel.plt section data.
340   const Reloc_section*
341   rel_plt() const
342   { return this->rel_; }
343
344  protected:
345   void
346   do_adjust_output_section(Output_section* os);
347
348  private:
349   // The size of an entry in the PLT.
350   static const int plt_entry_size = 16;
351
352   // The first entry in the PLT for an executable.
353   static unsigned char exec_first_plt_entry[plt_entry_size];
354
355   // The first entry in the PLT for a shared object.
356   static unsigned char dyn_first_plt_entry[plt_entry_size];
357
358   // Other entries in the PLT for an executable.
359   static unsigned char exec_plt_entry[plt_entry_size];
360
361   // Other entries in the PLT for a shared object.
362   static unsigned char dyn_plt_entry[plt_entry_size];
363
364   // Set the final size.
365   void
366   do_set_address(uint64_t, off_t)
367   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
368
369   // Write out the PLT data.
370   void
371   do_write(Output_file*);
372
373   // The reloc section.
374   Reloc_section* rel_;
375   // The .got.plt section.
376   Output_data_space* got_plt_;
377   // The number of PLT entries.
378   unsigned int count_;
379 };
380
381 // Create the PLT section.  The ordinary .got section is an argument,
382 // since we need to refer to the start.  We also create our own .got
383 // section just for PLT entries.
384
385 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
386                                            Output_data_space* got_plt)
387   : Output_section_data(4), got_plt_(got_plt), count_(0)
388 {
389   this->rel_ = new Reloc_section();
390   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
391                                   elfcpp::SHF_ALLOC, this->rel_);
392 }
393
394 void
395 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
396 {
397   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
398   // linker, and so do we.
399   os->set_entsize(4);
400 }
401
402 // Add an entry to the PLT.
403
404 void
405 Output_data_plt_i386::add_entry(Symbol* gsym)
406 {
407   gold_assert(!gsym->has_plt_offset());
408
409   // Note that when setting the PLT offset we skip the initial
410   // reserved PLT entry.
411   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
412
413   ++this->count_;
414
415   off_t got_offset = this->got_plt_->data_size();
416
417   // Every PLT entry needs a GOT entry which points back to the PLT
418   // entry (this will be changed by the dynamic linker, normally
419   // lazily when the function is called).
420   this->got_plt_->set_space_size(got_offset + 4);
421
422   // Every PLT entry needs a reloc.
423   gsym->set_needs_dynsym_entry();
424   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
425                          got_offset);
426
427   // Note that we don't need to save the symbol.  The contents of the
428   // PLT are independent of which symbols are used.  The symbols only
429   // appear in the relocations.
430 }
431
432 // The first entry in the PLT for an executable.
433
434 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
435 {
436   0xff, 0x35,   // pushl contents of memory address
437   0, 0, 0, 0,   // replaced with address of .got + 4
438   0xff, 0x25,   // jmp indirect
439   0, 0, 0, 0,   // replaced with address of .got + 8
440   0, 0, 0, 0    // unused
441 };
442
443 // The first entry in the PLT for a shared object.
444
445 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
446 {
447   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
448   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
449   0, 0, 0, 0                    // unused
450 };
451
452 // Subsequent entries in the PLT for an executable.
453
454 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
455 {
456   0xff, 0x25,   // jmp indirect
457   0, 0, 0, 0,   // replaced with address of symbol in .got
458   0x68,         // pushl immediate
459   0, 0, 0, 0,   // replaced with offset into relocation table
460   0xe9,         // jmp relative
461   0, 0, 0, 0    // replaced with offset to start of .plt
462 };
463
464 // Subsequent entries in the PLT for a shared object.
465
466 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
467 {
468   0xff, 0xa3,   // jmp *offset(%ebx)
469   0, 0, 0, 0,   // replaced with offset of symbol in .got
470   0x68,         // pushl immediate
471   0, 0, 0, 0,   // replaced with offset into relocation table
472   0xe9,         // jmp relative
473   0, 0, 0, 0    // replaced with offset to start of .plt
474 };
475
476 // Write out the PLT.  This uses the hand-coded instructions above,
477 // and adjusts them as needed.  This is all specified by the i386 ELF
478 // Processor Supplement.
479
480 void
481 Output_data_plt_i386::do_write(Output_file* of)
482 {
483   const off_t offset = this->offset();
484   const off_t oview_size = this->data_size();
485   unsigned char* const oview = of->get_output_view(offset, oview_size);
486
487   const off_t got_file_offset = this->got_plt_->offset();
488   const off_t got_size = this->got_plt_->data_size();
489   unsigned char* const got_view = of->get_output_view(got_file_offset,
490                                                       got_size);
491
492   unsigned char* pov = oview;
493
494   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
495   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
496
497   if (parameters->output_is_shared())
498     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
499   else
500     {
501       memcpy(pov, exec_first_plt_entry, plt_entry_size);
502       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
503       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
504     }
505   pov += plt_entry_size;
506
507   unsigned char* got_pov = got_view;
508
509   memset(got_pov, 0, 12);
510   got_pov += 12;
511
512   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
513
514   unsigned int plt_offset = plt_entry_size;
515   unsigned int plt_rel_offset = 0;
516   unsigned int got_offset = 12;
517   const unsigned int count = this->count_;
518   for (unsigned int i = 0;
519        i < count;
520        ++i,
521          pov += plt_entry_size,
522          got_pov += 4,
523          plt_offset += plt_entry_size,
524          plt_rel_offset += rel_size,
525          got_offset += 4)
526     {
527       // Set and adjust the PLT entry itself.
528
529       if (parameters->output_is_shared())
530         {
531           memcpy(pov, dyn_plt_entry, plt_entry_size);
532           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
533         }
534       else
535         {
536           memcpy(pov, exec_plt_entry, plt_entry_size);
537           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
538                                                       (got_address
539                                                        + got_offset));
540         }
541
542       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
543       elfcpp::Swap<32, false>::writeval(pov + 12,
544                                         - (plt_offset + plt_entry_size));
545
546       // Set the entry in the GOT.
547       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
548     }
549
550   gold_assert(pov - oview == oview_size);
551   gold_assert(got_pov - got_view == got_size);
552
553   of->write_output_view(offset, oview_size, oview);
554   of->write_output_view(got_file_offset, got_size, got_view);
555 }
556
557 // Create a PLT entry for a global symbol.
558
559 void
560 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
561 {
562   if (gsym->has_plt_offset())
563     return;
564
565   if (this->plt_ == NULL)
566     {
567       // Create the GOT sections first.
568       this->got_section(symtab, layout);
569
570       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
571       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
572                                       (elfcpp::SHF_ALLOC
573                                        | elfcpp::SHF_EXECINSTR),
574                                       this->plt_);
575     }
576
577   this->plt_->add_entry(gsym);
578 }
579
580 // Handle a relocation against a non-function symbol defined in a
581 // dynamic object.  The traditional way to handle this is to generate
582 // a COPY relocation to copy the variable at runtime from the shared
583 // object into the executable's data segment.  However, this is
584 // undesirable in general, as if the size of the object changes in the
585 // dynamic object, the executable will no longer work correctly.  If
586 // this relocation is in a writable section, then we can create a
587 // dynamic reloc and the dynamic linker will resolve it to the correct
588 // address at runtime.  However, we do not want do that if the
589 // relocation is in a read-only section, as it would prevent the
590 // readonly segment from being shared.  And if we have to eventually
591 // generate a COPY reloc, then any dynamic relocations will be
592 // useless.  So this means that if this is a writable section, we need
593 // to save the relocation until we see whether we have to create a
594 // COPY relocation for this symbol for any other relocation.
595
596 void
597 Target_i386::copy_reloc(const General_options* options,
598                         Symbol_table* symtab,
599                         Layout* layout,
600                         Sized_relobj<32, false>* object,
601                         unsigned int data_shndx, Symbol* gsym,
602                         const elfcpp::Rel<32, false>& rel)
603 {
604   Sized_symbol<32>* ssym;
605   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
606                                                         SELECT_SIZE(32));
607
608   if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
609                                                data_shndx, ssym))
610     {
611       // So far we do not need a COPY reloc.  Save this relocation.
612       // If it turns out that we never need a COPY reloc for this
613       // symbol, then we will emit the relocation.
614       if (this->copy_relocs_ == NULL)
615         this->copy_relocs_ = new Copy_relocs<32, false>();
616       this->copy_relocs_->save(ssym, object, data_shndx, rel);
617     }
618   else
619     {
620       // Allocate space for this symbol in the .bss section.
621
622       elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
623
624       // There is no defined way to determine the required alignment
625       // of the symbol.  We pick the alignment based on the size.  We
626       // set an arbitrary maximum of 256.
627       unsigned int align;
628       for (align = 1; align < 512; align <<= 1)
629         if ((symsize & align) != 0)
630           break;
631
632       if (this->dynbss_ == NULL)
633         {
634           this->dynbss_ = new Output_data_space(align);
635           layout->add_output_section_data(".bss",
636                                           elfcpp::SHT_NOBITS,
637                                           (elfcpp::SHF_ALLOC
638                                            | elfcpp::SHF_WRITE),
639                                           this->dynbss_);
640         }
641
642       Output_data_space* dynbss = this->dynbss_;
643
644       if (align > dynbss->addralign())
645         dynbss->set_space_alignment(align);
646
647       off_t dynbss_size = dynbss->data_size();
648       dynbss_size = align_address(dynbss_size, align);
649       off_t offset = dynbss_size;
650       dynbss->set_space_size(dynbss_size + symsize);
651
652       // Define the symbol in the .dynbss section.
653       symtab->define_in_output_data(this, ssym->name(), ssym->version(),
654                                     dynbss, offset, symsize, ssym->type(),
655                                     ssym->binding(), ssym->visibility(),
656                                     ssym->nonvis(), false, false);
657
658       // Add the COPY reloc.
659       ssym->set_needs_dynsym_entry();
660       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
661       rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
662     }
663 }
664
665 // Optimize the TLS relocation type based on what we know about the
666 // symbol.  IS_FINAL is true if the final address of this symbol is
667 // known at link time.
668
669 tls::Tls_optimization
670 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
671 {
672   // If we are generating a shared library, then we can't do anything
673   // in the linker.
674   if (parameters->output_is_shared())
675     return tls::TLSOPT_NONE;
676
677   switch (r_type)
678     {
679     case elfcpp::R_386_TLS_GD:
680     case elfcpp::R_386_TLS_GOTDESC:
681     case elfcpp::R_386_TLS_DESC_CALL:
682       // These are General-Dynamic which permits fully general TLS
683       // access.  Since we know that we are generating an executable,
684       // we can convert this to Initial-Exec.  If we also know that
685       // this is a local symbol, we can further switch to Local-Exec.
686       if (is_final)
687         return tls::TLSOPT_TO_LE;
688       return tls::TLSOPT_TO_IE;
689
690     case elfcpp::R_386_TLS_LDM:
691       // This is Local-Dynamic, which refers to a local symbol in the
692       // dynamic TLS block.  Since we know that we generating an
693       // executable, we can switch to Local-Exec.
694       return tls::TLSOPT_TO_LE;
695
696     case elfcpp::R_386_TLS_LDO_32:
697       // Another type of Local-Dynamic relocation.
698       return tls::TLSOPT_TO_LE;
699
700     case elfcpp::R_386_TLS_IE:
701     case elfcpp::R_386_TLS_GOTIE:
702     case elfcpp::R_386_TLS_IE_32:
703       // These are Initial-Exec relocs which get the thread offset
704       // from the GOT.  If we know that we are linking against the
705       // local symbol, we can switch to Local-Exec, which links the
706       // thread offset into the instruction.
707       if (is_final)
708         return tls::TLSOPT_TO_LE;
709       return tls::TLSOPT_NONE;
710
711     case elfcpp::R_386_TLS_LE:
712     case elfcpp::R_386_TLS_LE_32:
713       // When we already have Local-Exec, there is nothing further we
714       // can do.
715       return tls::TLSOPT_NONE;
716
717     default:
718       gold_unreachable();
719     }
720 }
721
722 // Report an unsupported relocation against a local symbol.
723
724 void
725 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
726                                            unsigned int r_type)
727 {
728   gold_error(_("%s: unsupported reloc %u against local symbol"),
729              object->name().c_str(), r_type);
730 }
731
732 // Scan a relocation for a local symbol.
733
734 inline void
735 Target_i386::Scan::local(const General_options&,
736                          Symbol_table* symtab,
737                          Layout* layout,
738                          Target_i386* target,
739                          Sized_relobj<32, false>* object,
740                          unsigned int data_shndx,
741                          const elfcpp::Rel<32, false>& reloc,
742                          unsigned int r_type,
743                          const elfcpp::Sym<32, false>&)
744 {
745   switch (r_type)
746     {
747     case elfcpp::R_386_NONE:
748     case elfcpp::R_386_GNU_VTINHERIT:
749     case elfcpp::R_386_GNU_VTENTRY:
750       break;
751
752     case elfcpp::R_386_32:
753     case elfcpp::R_386_16:
754     case elfcpp::R_386_8:
755       // If building a shared library (or a position-independent
756       // executable), we need to create a dynamic relocation for
757       // this location. The relocation applied at link time will
758       // apply the link-time value, so we flag the location with
759       // an R_386_RELATIVE relocation so the dynamic loader can
760       // relocate it easily.
761       if (parameters->output_is_position_independent())
762         {
763           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
764           rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE, data_shndx,
765                              reloc.get_r_offset());
766         }
767       break;
768
769     case elfcpp::R_386_PC32:
770     case elfcpp::R_386_PC16:
771     case elfcpp::R_386_PC8:
772       break;
773
774     case elfcpp::R_386_PLT32:
775       // Since we know this is a local symbol, we can handle this as a
776       // PC32 reloc.
777       break;
778
779     case elfcpp::R_386_GOTOFF:
780     case elfcpp::R_386_GOTPC:
781       // We need a GOT section.
782       target->got_section(symtab, layout);
783       break;
784
785     case elfcpp::R_386_GOT32:
786       {
787         // The symbol requires a GOT entry.
788         Output_data_got<32, false>* got = target->got_section(symtab, layout);
789         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
790         if (got->add_local(object, r_sym))
791           {
792             // If we are generating a shared object, we need to add a
793             // dynamic RELATIVE relocation for this symbol.
794             if (parameters->output_is_position_independent())
795               {
796                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
797                 rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE,
798                                    data_shndx, reloc.get_r_offset());
799               }
800           }
801       }
802       break;
803
804       // These are relocations which should only be seen by the
805       // dynamic linker, and should never be seen here.
806     case elfcpp::R_386_COPY:
807     case elfcpp::R_386_GLOB_DAT:
808     case elfcpp::R_386_JUMP_SLOT:
809     case elfcpp::R_386_RELATIVE:
810     case elfcpp::R_386_TLS_TPOFF:
811     case elfcpp::R_386_TLS_DTPMOD32:
812     case elfcpp::R_386_TLS_DTPOFF32:
813     case elfcpp::R_386_TLS_TPOFF32:
814     case elfcpp::R_386_TLS_DESC:
815       gold_error(_("%s: unexpected reloc %u in object file"),
816                  object->name().c_str(), r_type);
817       break;
818
819       // These are initial TLS relocs, which are expected when
820       // linking.
821     case elfcpp::R_386_TLS_IE:
822     case elfcpp::R_386_TLS_GOTIE:
823     case elfcpp::R_386_TLS_LE:
824     case elfcpp::R_386_TLS_GD:
825     case elfcpp::R_386_TLS_LDM:
826     case elfcpp::R_386_TLS_LDO_32:
827     case elfcpp::R_386_TLS_IE_32:
828     case elfcpp::R_386_TLS_LE_32:
829     case elfcpp::R_386_TLS_GOTDESC:
830     case elfcpp::R_386_TLS_DESC_CALL:
831       {
832         bool output_is_shared = parameters->output_is_shared();
833         const tls::Tls_optimization optimized_type
834             = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
835         switch (r_type)
836           {
837           case elfcpp::R_386_TLS_LE:
838           case elfcpp::R_386_TLS_LE_32:
839             // FIXME: If generating a shared object, we need to copy
840             // this relocation into the object.
841             gold_assert(!output_is_shared);
842             break;
843
844           case elfcpp::R_386_TLS_IE:
845           case elfcpp::R_386_TLS_IE_32:
846           case elfcpp::R_386_TLS_GOTIE:
847             // FIXME: If not relaxing to LE, we need to generate a
848             // TPOFF or TPOFF32 reloc.
849             if (optimized_type != tls::TLSOPT_TO_LE)
850               unsupported_reloc_local(object, r_type);
851             break;
852
853           case elfcpp::R_386_TLS_LDM:
854             // FIXME: If not relaxing to LE, we need to generate a
855             // DTPMOD32 reloc.
856             if (optimized_type != tls::TLSOPT_TO_LE)
857               unsupported_reloc_local(object, r_type);
858             break;
859
860           case elfcpp::R_386_TLS_LDO_32:
861             break;
862
863           case elfcpp::R_386_TLS_GD:
864           case elfcpp::R_386_TLS_GOTDESC:
865           case elfcpp::R_386_TLS_DESC_CALL:
866             // FIXME: If not relaxing to LE, we need to generate
867             // DTPMOD32 and DTPOFF32 relocs.
868             if (optimized_type != tls::TLSOPT_TO_LE)
869               unsupported_reloc_local(object, r_type);
870             break;
871
872           default:
873             gold_unreachable();
874           }
875       }
876       break;
877
878     case elfcpp::R_386_32PLT:
879     case elfcpp::R_386_TLS_GD_32:
880     case elfcpp::R_386_TLS_GD_PUSH:
881     case elfcpp::R_386_TLS_GD_CALL:
882     case elfcpp::R_386_TLS_GD_POP:
883     case elfcpp::R_386_TLS_LDM_32:
884     case elfcpp::R_386_TLS_LDM_PUSH:
885     case elfcpp::R_386_TLS_LDM_CALL:
886     case elfcpp::R_386_TLS_LDM_POP:
887     case elfcpp::R_386_USED_BY_INTEL_200:
888     default:
889       unsupported_reloc_local(object, r_type);
890       break;
891     }
892 }
893
894 // Report an unsupported relocation against a global symbol.
895
896 void
897 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
898                                             unsigned int r_type,
899                                             Symbol* gsym)
900 {
901   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
902              object->name().c_str(), r_type, gsym->name());
903 }
904
905 // Scan a relocation for a global symbol.
906
907 inline void
908 Target_i386::Scan::global(const General_options& options,
909                           Symbol_table* symtab,
910                           Layout* layout,
911                           Target_i386* target,
912                           Sized_relobj<32, false>* object,
913                           unsigned int data_shndx,
914                           const elfcpp::Rel<32, false>& reloc,
915                           unsigned int r_type,
916                           Symbol* gsym)
917 {
918   switch (r_type)
919     {
920     case elfcpp::R_386_NONE:
921     case elfcpp::R_386_GNU_VTINHERIT:
922     case elfcpp::R_386_GNU_VTENTRY:
923       break;
924
925     case elfcpp::R_386_32:
926     case elfcpp::R_386_PC32:
927     case elfcpp::R_386_16:
928     case elfcpp::R_386_PC16:
929     case elfcpp::R_386_8:
930     case elfcpp::R_386_PC8:
931       if (gsym->is_from_dynobj()
932           || (parameters->output_is_shared()
933               && gsym->is_preemptible()))
934         {
935           // (a) This symbol is defined in a dynamic object.  If it is a
936           // function, we make a PLT entry.  Otherwise we need to
937           // either generate a COPY reloc or copy this reloc.
938           // (b) We are building a shared object and this symbol is
939           // preemptible. If it is a function, we make a PLT entry.
940           // Otherwise, we copy the reloc. We do not make COPY relocs
941           // in shared objects.
942           if (gsym->type() == elfcpp::STT_FUNC)
943             {
944               target->make_plt_entry(symtab, layout, gsym);
945
946               // If this is not a PC relative reference, then we may
947               // be taking the address of the function.  In that case
948               // we need to set the entry in the dynamic symbol table
949               // to the address of the PLT entry.
950               if (r_type != elfcpp::R_386_PC32
951                   && r_type != elfcpp::R_386_PC16
952                   && r_type != elfcpp::R_386_PC8
953                   && gsym->is_from_dynobj())
954                 gsym->set_needs_dynsym_value();
955             }
956           else if (parameters->output_is_shared())
957             {
958               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
959               rel_dyn->add_global(gsym, r_type, object, data_shndx, 
960                                   reloc.get_r_offset());
961             }
962           else
963             target->copy_reloc(&options, symtab, layout, object, data_shndx,
964                                gsym, reloc);
965         }
966
967       break;
968
969     case elfcpp::R_386_GOT32:
970       {
971         // The symbol requires a GOT entry.
972         Output_data_got<32, false>* got = target->got_section(symtab, layout);
973         if (got->add_global(gsym))
974           {
975             // If this symbol is not fully resolved, we need to add a
976             // dynamic relocation for it.
977             if (!gsym->final_value_is_known())
978               {
979                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
980                 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
981                                     gsym->got_offset());
982               }
983           }
984       }
985       break;
986
987     case elfcpp::R_386_PLT32:
988       // If the symbol is fully resolved, this is just a PC32 reloc.
989       // Otherwise we need a PLT entry.
990       if (gsym->final_value_is_known())
991         break;
992       // If building a shared library, we can also skip the PLT entry
993       // if the symbol is defined in the output file and is protected
994       // or hidden.
995       if (gsym->is_defined()
996           && !gsym->is_from_dynobj()
997           && !gsym->is_preemptible())
998         break;
999       target->make_plt_entry(symtab, layout, gsym);
1000       break;
1001
1002     case elfcpp::R_386_GOTOFF:
1003     case elfcpp::R_386_GOTPC:
1004       // We need a GOT section.
1005       target->got_section(symtab, layout);
1006       break;
1007
1008       // These are relocations which should only be seen by the
1009       // dynamic linker, and should never be seen here.
1010     case elfcpp::R_386_COPY:
1011     case elfcpp::R_386_GLOB_DAT:
1012     case elfcpp::R_386_JUMP_SLOT:
1013     case elfcpp::R_386_RELATIVE:
1014     case elfcpp::R_386_TLS_TPOFF:
1015     case elfcpp::R_386_TLS_DTPMOD32:
1016     case elfcpp::R_386_TLS_DTPOFF32:
1017     case elfcpp::R_386_TLS_TPOFF32:
1018     case elfcpp::R_386_TLS_DESC:
1019       gold_error(_("%s: unexpected reloc %u in object file"),
1020                  object->name().c_str(), r_type);
1021       break;
1022
1023       // These are initial tls relocs, which are expected when
1024       // linking.
1025     case elfcpp::R_386_TLS_IE:
1026     case elfcpp::R_386_TLS_GOTIE:
1027     case elfcpp::R_386_TLS_LE:
1028     case elfcpp::R_386_TLS_GD:
1029     case elfcpp::R_386_TLS_LDM:
1030     case elfcpp::R_386_TLS_LDO_32:
1031     case elfcpp::R_386_TLS_IE_32:
1032     case elfcpp::R_386_TLS_LE_32:
1033     case elfcpp::R_386_TLS_GOTDESC:
1034     case elfcpp::R_386_TLS_DESC_CALL:
1035       {
1036         const bool is_final = gsym->final_value_is_known();
1037         const tls::Tls_optimization optimized_type
1038             = Target_i386::optimize_tls_reloc(is_final, r_type);
1039         switch (r_type)
1040           {
1041           case elfcpp::R_386_TLS_LE:
1042           case elfcpp::R_386_TLS_LE_32:
1043             // FIXME: If generating a shared object, we need to copy
1044             // this relocation into the object.
1045             gold_assert(!parameters->output_is_shared());
1046             break;
1047
1048           case elfcpp::R_386_TLS_IE:
1049           case elfcpp::R_386_TLS_IE_32:
1050           case elfcpp::R_386_TLS_GOTIE:
1051             // FIXME: If not relaxing to LE, we need to generate a
1052             // TPOFF or TPOFF32 reloc.
1053             if (optimized_type != tls::TLSOPT_TO_LE)
1054               unsupported_reloc_global(object, r_type, gsym);
1055             break;
1056
1057           case elfcpp::R_386_TLS_LDM:
1058             // FIXME: If not relaxing to LE, we need to generate a
1059             // DTPMOD32 reloc.
1060             if (optimized_type != tls::TLSOPT_TO_LE)
1061               unsupported_reloc_global(object, r_type, gsym);
1062             break;
1063
1064           case elfcpp::R_386_TLS_LDO_32:
1065             break;
1066
1067           case elfcpp::R_386_TLS_GD:
1068           case elfcpp::R_386_TLS_GOTDESC:
1069           case elfcpp::R_386_TLS_DESC_CALL:
1070             // FIXME: If not relaxing to LE, we need to generate
1071             // DTPMOD32 and DTPOFF32 relocs.
1072             if (optimized_type != tls::TLSOPT_TO_LE)
1073               unsupported_reloc_global(object, r_type, gsym);
1074             break;
1075
1076           default:
1077             gold_unreachable();
1078           }
1079       }
1080       break;
1081
1082     case elfcpp::R_386_32PLT:
1083     case elfcpp::R_386_TLS_GD_32:
1084     case elfcpp::R_386_TLS_GD_PUSH:
1085     case elfcpp::R_386_TLS_GD_CALL:
1086     case elfcpp::R_386_TLS_GD_POP:
1087     case elfcpp::R_386_TLS_LDM_32:
1088     case elfcpp::R_386_TLS_LDM_PUSH:
1089     case elfcpp::R_386_TLS_LDM_CALL:
1090     case elfcpp::R_386_TLS_LDM_POP:
1091     case elfcpp::R_386_USED_BY_INTEL_200:
1092     default:
1093       unsupported_reloc_global(object, r_type, gsym);
1094       break;
1095     }
1096 }
1097
1098 // Scan relocations for a section.
1099
1100 void
1101 Target_i386::scan_relocs(const General_options& options,
1102                          Symbol_table* symtab,
1103                          Layout* layout,
1104                          Sized_relobj<32, false>* object,
1105                          unsigned int data_shndx,
1106                          unsigned int sh_type,
1107                          const unsigned char* prelocs,
1108                          size_t reloc_count,
1109                          size_t local_symbol_count,
1110                          const unsigned char* plocal_symbols,
1111                          Symbol** global_symbols)
1112 {
1113   if (sh_type == elfcpp::SHT_RELA)
1114     {
1115       gold_error(_("%s: unsupported RELA reloc section"),
1116                  object->name().c_str());
1117       return;
1118     }
1119
1120   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1121                     Target_i386::Scan>(
1122     options,
1123     symtab,
1124     layout,
1125     this,
1126     object,
1127     data_shndx,
1128     prelocs,
1129     reloc_count,
1130     local_symbol_count,
1131     plocal_symbols,
1132     global_symbols);
1133 }
1134
1135 // Finalize the sections.
1136
1137 void
1138 Target_i386::do_finalize_sections(Layout* layout)
1139 {
1140   // Fill in some more dynamic tags.
1141   Output_data_dynamic* const odyn = layout->dynamic_data();
1142   if (odyn != NULL)
1143     {
1144       if (this->got_plt_ != NULL)
1145         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1146
1147       if (this->plt_ != NULL)
1148         {
1149           const Output_data* od = this->plt_->rel_plt();
1150           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1151           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1152           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1153         }
1154
1155       if (this->rel_dyn_ != NULL)
1156         {
1157           const Output_data* od = this->rel_dyn_;
1158           odyn->add_section_address(elfcpp::DT_REL, od);
1159           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1160           odyn->add_constant(elfcpp::DT_RELENT,
1161                              elfcpp::Elf_sizes<32>::rel_size);
1162         }
1163
1164       if (!parameters->output_is_shared())
1165         {
1166           // The value of the DT_DEBUG tag is filled in by the dynamic
1167           // linker at run time, and used by the debugger.
1168           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1169         }
1170     }
1171
1172   // Emit any relocs we saved in an attempt to avoid generating COPY
1173   // relocs.
1174   if (this->copy_relocs_ == NULL)
1175     return;
1176   if (this->copy_relocs_->any_to_emit())
1177     {
1178       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1179       this->copy_relocs_->emit(rel_dyn);
1180     }
1181   delete this->copy_relocs_;
1182   this->copy_relocs_ = NULL;
1183 }
1184
1185 // Perform a relocation.
1186
1187 inline bool
1188 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1189                                 Target_i386* target,
1190                                 size_t relnum,
1191                                 const elfcpp::Rel<32, false>& rel,
1192                                 unsigned int r_type,
1193                                 const Sized_symbol<32>* gsym,
1194                                 const Symbol_value<32>* psymval,
1195                                 unsigned char* view,
1196                                 elfcpp::Elf_types<32>::Elf_Addr address,
1197                                 off_t view_size)
1198 {
1199   if (this->skip_call_tls_get_addr_)
1200     {
1201       if (r_type != elfcpp::R_386_PLT32
1202           || gsym == NULL
1203           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1204         gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1205                                _("missing expected TLS relocation"));
1206       else
1207         {
1208           this->skip_call_tls_get_addr_ = false;
1209           return false;
1210         }
1211     }
1212
1213   // Pick the value to use for symbols defined in shared objects.
1214   Symbol_value<32> symval;
1215   if (gsym != NULL
1216       && (gsym->is_from_dynobj()
1217           || (parameters->output_is_shared()
1218               && gsym->is_preemptible()))
1219       && gsym->has_plt_offset())
1220     {
1221       symval.set_output_value(target->plt_section()->address()
1222                               + gsym->plt_offset());
1223       psymval = &symval;
1224     }
1225
1226   const Sized_relobj<32, false>* object = relinfo->object;
1227
1228   // Get the GOT offset if needed.
1229   bool have_got_offset = false;
1230   unsigned int got_offset = 0;
1231   switch (r_type)
1232     {
1233     case elfcpp::R_386_GOT32:
1234       if (gsym != NULL)
1235         {
1236           gold_assert(gsym->has_got_offset());
1237           got_offset = gsym->got_offset();
1238         }
1239       else
1240         {
1241           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1242           got_offset = object->local_got_offset(r_sym);
1243         }
1244       have_got_offset = true;
1245       break;
1246
1247     default:
1248       break;
1249     }
1250
1251   switch (r_type)
1252     {
1253     case elfcpp::R_386_NONE:
1254     case elfcpp::R_386_GNU_VTINHERIT:
1255     case elfcpp::R_386_GNU_VTENTRY:
1256       break;
1257
1258     case elfcpp::R_386_32:
1259       Relocate_functions<32, false>::rel32(view, object, psymval);
1260       break;
1261
1262     case elfcpp::R_386_PC32:
1263       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1264       break;
1265
1266     case elfcpp::R_386_16:
1267       Relocate_functions<32, false>::rel16(view, object, psymval);
1268       break;
1269
1270     case elfcpp::R_386_PC16:
1271       Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1272       break;
1273
1274     case elfcpp::R_386_8:
1275       Relocate_functions<32, false>::rel8(view, object, psymval);
1276       break;
1277
1278     case elfcpp::R_386_PC8:
1279       Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1280       break;
1281
1282     case elfcpp::R_386_PLT32:
1283       gold_assert(gsym == NULL
1284                   || gsym->has_plt_offset()
1285                   || gsym->final_value_is_known());
1286       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1287       break;
1288
1289     case elfcpp::R_386_GOT32:
1290       gold_assert(have_got_offset);
1291       Relocate_functions<32, false>::rel32(view, got_offset);
1292       break;
1293
1294     case elfcpp::R_386_GOTOFF:
1295       {
1296         elfcpp::Elf_types<32>::Elf_Addr value;
1297         value = (psymval->value(object, 0)
1298                  - target->got_section(NULL, NULL)->address());
1299         Relocate_functions<32, false>::rel32(view, value);
1300       }
1301       break;
1302
1303     case elfcpp::R_386_GOTPC:
1304       {
1305         elfcpp::Elf_types<32>::Elf_Addr value;
1306         value = target->got_section(NULL, NULL)->address();
1307         Relocate_functions<32, false>::pcrel32(view, value, address);
1308       }
1309       break;
1310
1311     case elfcpp::R_386_COPY:
1312     case elfcpp::R_386_GLOB_DAT:
1313     case elfcpp::R_386_JUMP_SLOT:
1314     case elfcpp::R_386_RELATIVE:
1315       // These are outstanding tls relocs, which are unexpected when
1316       // linking.
1317     case elfcpp::R_386_TLS_TPOFF:
1318     case elfcpp::R_386_TLS_DTPMOD32:
1319     case elfcpp::R_386_TLS_DTPOFF32:
1320     case elfcpp::R_386_TLS_TPOFF32:
1321     case elfcpp::R_386_TLS_DESC:
1322       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1323                              _("unexpected reloc %u in object file"),
1324                              r_type);
1325       break;
1326
1327       // These are initial tls relocs, which are expected when
1328       // linking.
1329     case elfcpp::R_386_TLS_IE:
1330     case elfcpp::R_386_TLS_GOTIE:
1331     case elfcpp::R_386_TLS_LE:
1332     case elfcpp::R_386_TLS_GD:
1333     case elfcpp::R_386_TLS_LDM:
1334     case elfcpp::R_386_TLS_LDO_32:
1335     case elfcpp::R_386_TLS_IE_32:
1336     case elfcpp::R_386_TLS_LE_32:
1337     case elfcpp::R_386_TLS_GOTDESC:
1338     case elfcpp::R_386_TLS_DESC_CALL:
1339       this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1340                          address, view_size);
1341       break;
1342
1343     case elfcpp::R_386_32PLT:
1344     case elfcpp::R_386_TLS_GD_32:
1345     case elfcpp::R_386_TLS_GD_PUSH:
1346     case elfcpp::R_386_TLS_GD_CALL:
1347     case elfcpp::R_386_TLS_GD_POP:
1348     case elfcpp::R_386_TLS_LDM_32:
1349     case elfcpp::R_386_TLS_LDM_PUSH:
1350     case elfcpp::R_386_TLS_LDM_CALL:
1351     case elfcpp::R_386_TLS_LDM_POP:
1352     case elfcpp::R_386_USED_BY_INTEL_200:
1353     default:
1354       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1355                              _("unsupported reloc %u"),
1356                              r_type);
1357       break;
1358     }
1359
1360   return true;
1361 }
1362
1363 // Perform a TLS relocation.
1364
1365 inline void
1366 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1367                                     size_t relnum,
1368                                     const elfcpp::Rel<32, false>& rel,
1369                                     unsigned int r_type,
1370                                     const Sized_symbol<32>* gsym,
1371                                     const Symbol_value<32>* psymval,
1372                                     unsigned char* view,
1373                                     elfcpp::Elf_types<32>::Elf_Addr,
1374                                     off_t view_size)
1375 {
1376   Output_segment* tls_segment = relinfo->layout->tls_segment();
1377   if (tls_segment == NULL)
1378     {
1379       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1380                              _("TLS reloc but no TLS segment"));
1381       return;
1382     }
1383
1384   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1385
1386   const bool is_final = (gsym == NULL
1387                          ? !parameters->output_is_position_independent()
1388                          : gsym->final_value_is_known());
1389   const tls::Tls_optimization optimized_type
1390       = Target_i386::optimize_tls_reloc(is_final, r_type);
1391   switch (r_type)
1392     {
1393     case elfcpp::R_386_TLS_LE_32:
1394       value = tls_segment->vaddr() + tls_segment->memsz() - value;
1395       Relocate_functions<32, false>::rel32(view, value);
1396       break;
1397
1398     case elfcpp::R_386_TLS_LE:
1399       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1400       Relocate_functions<32, false>::rel32(view, value);
1401       break;
1402
1403     case elfcpp::R_386_TLS_IE:
1404     case elfcpp::R_386_TLS_GOTIE:
1405     case elfcpp::R_386_TLS_IE_32:
1406       if (optimized_type == tls::TLSOPT_TO_LE)
1407         {
1408           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1409                                               rel, r_type, value, view,
1410                                               view_size);
1411           break;
1412         }
1413       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1414                              _("unsupported reloc %u"),
1415                              r_type);
1416       break;
1417
1418     case elfcpp::R_386_TLS_GD:
1419       if (optimized_type == tls::TLSOPT_TO_LE)
1420         {
1421           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1422                              rel, r_type, value, view,
1423                              view_size);
1424           break;
1425         }
1426       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1427                              _("unsupported reloc %u"),
1428                              r_type);
1429       break;
1430
1431     case elfcpp::R_386_TLS_LDM:
1432       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1433         {
1434           gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1435                                  _("both SUN and GNU model "
1436                                    "TLS relocations"));
1437           break;
1438         }
1439       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1440       if (optimized_type == tls::TLSOPT_TO_LE)
1441         {
1442           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1443                              value, view, view_size);
1444           break;
1445         }
1446       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1447                              _("unsupported reloc %u"),
1448                              r_type);
1449       break;
1450
1451     case elfcpp::R_386_TLS_LDO_32:
1452       // This reloc can appear in debugging sections, in which case we
1453       // won't see the TLS_LDM reloc.  The local_dynamic_type field
1454       // tells us this.
1455       if (optimized_type != tls::TLSOPT_TO_LE
1456           || this->local_dynamic_type_ == LOCAL_DYNAMIC_NONE)
1457         value = value - tls_segment->vaddr();
1458       else if (this->local_dynamic_type_ == LOCAL_DYNAMIC_GNU)
1459         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1460       else
1461         value = tls_segment->vaddr() + tls_segment->memsz() - value;
1462       Relocate_functions<32, false>::rel32(view, value);
1463       break;
1464
1465     case elfcpp::R_386_TLS_GOTDESC:
1466     case elfcpp::R_386_TLS_DESC_CALL:
1467       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1468                              _("unsupported reloc %u"),
1469                              r_type);
1470       break;
1471     }
1472 }
1473
1474 // Do a relocation in which we convert a TLS Initial-Exec to a
1475 // Local-Exec.
1476
1477 inline void
1478 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1479                                     size_t relnum,
1480                                     Output_segment* tls_segment,
1481                                     const elfcpp::Rel<32, false>& rel,
1482                                     unsigned int r_type,
1483                                     elfcpp::Elf_types<32>::Elf_Addr value,
1484                                     unsigned char* view,
1485                                     off_t view_size)
1486 {
1487   // We have to actually change the instructions, which means that we
1488   // need to examine the opcodes to figure out which instruction we
1489   // are looking at.
1490   if (r_type == elfcpp::R_386_TLS_IE)
1491     {
1492       // movl %gs:XX,%eax  ==>  movl $YY,%eax
1493       // movl %gs:XX,%reg  ==>  movl $YY,%reg
1494       // addl %gs:XX,%reg  ==>  addl $YY,%reg
1495       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
1496       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1497
1498       unsigned char op1 = view[-1];
1499       if (op1 == 0xa1)
1500         {
1501           // movl XX,%eax  ==>  movl $YY,%eax
1502           view[-1] = 0xb8;
1503         }
1504       else
1505         {
1506           tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1507
1508           unsigned char op2 = view[-2];
1509           if (op2 == 0x8b)
1510             {
1511               // movl XX,%reg  ==>  movl $YY,%reg
1512               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1513                              (op1 & 0xc7) == 0x05);
1514               view[-2] = 0xc7;
1515               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1516             }
1517           else if (op2 == 0x03)
1518             {
1519               // addl XX,%reg  ==>  addl $YY,%reg
1520               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1521                              (op1 & 0xc7) == 0x05);
1522               view[-2] = 0x81;
1523               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1524             }
1525           else
1526             tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1527         }
1528     }
1529   else
1530     {
1531       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1532       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1533       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1534       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1535       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1536
1537       unsigned char op1 = view[-1];
1538       unsigned char op2 = view[-2];
1539       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1540                      (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1541       if (op2 == 0x8b)
1542         {
1543           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1544           view[-2] = 0xc7;
1545           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1546         }
1547       else if (op2 == 0x2b)
1548         {
1549           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1550           view[-2] = 0x81;
1551           view[-1] = 0xe8 | ((op1 >> 3) & 7);
1552         }
1553       else if (op2 == 0x03)
1554         {
1555           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1556           view[-2] = 0x81;
1557           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1558         }
1559       else
1560         tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1561     }
1562
1563   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1564   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1565     value = - value;
1566
1567   Relocate_functions<32, false>::rel32(view, value);
1568 }
1569
1570 // Do a relocation in which we convert a TLS General-Dynamic to a
1571 // Local-Exec.
1572
1573 inline void
1574 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1575                                     size_t relnum,
1576                                     Output_segment* tls_segment,
1577                                     const elfcpp::Rel<32, false>& rel,
1578                                     unsigned int,
1579                                     elfcpp::Elf_types<32>::Elf_Addr value,
1580                                     unsigned char* view,
1581                                     off_t view_size)
1582 {
1583   // leal foo(,%reg,1),%eax; call ___tls_get_addr
1584   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1585   // leal foo(%reg),%eax; call ___tls_get_addr
1586   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1587
1588   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1589   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1590
1591   unsigned char op1 = view[-1];
1592   unsigned char op2 = view[-2];
1593
1594   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1595                  op2 == 0x8d || op2 == 0x04);
1596   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1597
1598   int roff = 5;
1599
1600   if (op2 == 0x04)
1601     {
1602       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1603       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1604       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1605                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1606       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1607     }
1608   else
1609     {
1610       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1611                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1612       if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1613           && view[9] == 0x90)
1614         {
1615           // There is a trailing nop.  Use the size byte subl.
1616           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1617           roff = 6;
1618         }
1619       else
1620         {
1621           // Use the five byte subl.
1622           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1623         }
1624     }
1625
1626   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1627   Relocate_functions<32, false>::rel32(view + roff, value);
1628
1629   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1630   // We can skip it.
1631   this->skip_call_tls_get_addr_ = true;
1632 }
1633
1634 // Do a relocation in which we convert a TLS Local-Dynamic to a
1635 // Local-Exec.
1636
1637 inline void
1638 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
1639                                     size_t relnum,
1640                                     Output_segment*,
1641                                     const elfcpp::Rel<32, false>& rel,
1642                                     unsigned int,
1643                                     elfcpp::Elf_types<32>::Elf_Addr,
1644                                     unsigned char* view,
1645                                     off_t view_size)
1646 {
1647   // leal foo(%reg), %eax; call ___tls_get_addr
1648   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
1649
1650   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1651   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1652
1653   // FIXME: Does this test really always pass?
1654   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1655                  view[-2] == 0x8d && view[-1] == 0x83);
1656
1657   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1658
1659   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
1660
1661   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1662   // We can skip it.
1663   this->skip_call_tls_get_addr_ = true;
1664 }
1665
1666 // Relocate section data.
1667
1668 void
1669 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1670                               unsigned int sh_type,
1671                               const unsigned char* prelocs,
1672                               size_t reloc_count,
1673                               unsigned char* view,
1674                               elfcpp::Elf_types<32>::Elf_Addr address,
1675                               off_t view_size)
1676 {
1677   gold_assert(sh_type == elfcpp::SHT_REL);
1678
1679   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1680                          Target_i386::Relocate>(
1681     relinfo,
1682     this,
1683     prelocs,
1684     reloc_count,
1685     view,
1686     address,
1687     view_size);
1688 }
1689
1690 // Return the value to use for a dynamic which requires special
1691 // treatment.  This is how we support equality comparisons of function
1692 // pointers across shared library boundaries, as described in the
1693 // processor specific ABI supplement.
1694
1695 uint64_t
1696 Target_i386::do_dynsym_value(const Symbol* gsym) const
1697 {
1698   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1699   return this->plt_section()->address() + gsym->plt_offset();
1700 }
1701
1702 // Return a string used to fill a code section with nops to take up
1703 // the specified length.
1704
1705 std::string
1706 Target_i386::do_code_fill(off_t length)
1707 {
1708   if (length >= 16)
1709     {
1710       // Build a jmp instruction to skip over the bytes.
1711       unsigned char jmp[5];
1712       jmp[0] = 0xe9;
1713       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1714       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1715               + std::string(length - 5, '\0'));
1716     }
1717
1718   // Nop sequences of various lengths.
1719   const char nop1[1] = { 0x90 };                   // nop
1720   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1721   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1722   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1723   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1724                          0x00 };                   // leal 0(%esi,1),%esi
1725   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1726                          0x00, 0x00 };
1727   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1728                          0x00, 0x00, 0x00 };
1729   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1730                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1731   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1732                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1733                          0x00 };
1734   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1735                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1736                            0x00, 0x00 };
1737   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1738                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1739                            0x00, 0x00, 0x00 };
1740   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1741                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1742                            0x00, 0x00, 0x00, 0x00 };
1743   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1744                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1745                            0x27, 0x00, 0x00, 0x00,
1746                            0x00 };
1747   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1748                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1749                            0xbc, 0x27, 0x00, 0x00,
1750                            0x00, 0x00 };
1751   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1752                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1753                            0x90, 0x90, 0x90, 0x90,
1754                            0x90, 0x90, 0x90 };
1755
1756   const char* nops[16] = {
1757     NULL,
1758     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1759     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1760   };
1761
1762   return std::string(nops[length], length);
1763 }
1764
1765 // The selector for i386 object files.
1766
1767 class Target_selector_i386 : public Target_selector
1768 {
1769 public:
1770   Target_selector_i386()
1771     : Target_selector(elfcpp::EM_386, 32, false)
1772   { }
1773
1774   Target*
1775   recognize(int machine, int osabi, int abiversion);
1776
1777  private:
1778   Target_i386* target_;
1779 };
1780
1781 // Recognize an i386 object file when we already know that the machine
1782 // number is EM_386.
1783
1784 Target*
1785 Target_selector_i386::recognize(int, int, int)
1786 {
1787   if (this->target_ == NULL)
1788     this->target_ = new Target_i386();
1789   return this->target_;
1790 }
1791
1792 Target_selector_i386 target_selector_i386;
1793
1794 } // End anonymous namespace.