Support dynamic relocations against local section symbols.
[platform/upstream/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 //   http://people.redhat.com/drepper/tls.pdf
50 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54  public:
55   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57   Target_i386()
58     : Sized_target<32, false>(&i386_info),
59       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60       copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
61   { }
62
63   // Scan the relocations to look for symbol adjustments.
64   void
65   scan_relocs(const General_options& options,
66               Symbol_table* symtab,
67               Layout* layout,
68               Sized_relobj<32, false>* object,
69               unsigned int data_shndx,
70               unsigned int sh_type,
71               const unsigned char* prelocs,
72               size_t reloc_count,
73               Output_section* output_section,
74               bool needs_special_offset_handling,
75               size_t local_symbol_count,
76               const unsigned char* plocal_symbols);
77
78   // Finalize the sections.
79   void
80   do_finalize_sections(Layout*);
81
82   // Return the value to use for a dynamic which requires special
83   // treatment.
84   uint64_t
85   do_dynsym_value(const Symbol*) const;
86
87   // Relocate a section.
88   void
89   relocate_section(const Relocate_info<32, false>*,
90                    unsigned int sh_type,
91                    const unsigned char* prelocs,
92                    size_t reloc_count,
93                    Output_section* output_section,
94                    bool needs_special_offset_handling,
95                    unsigned char* view,
96                    elfcpp::Elf_types<32>::Elf_Addr view_address,
97                    section_size_type view_size);
98
99   // Scan the relocs during a relocatable link.
100   void
101   scan_relocatable_relocs(const General_options& options,
102                           Symbol_table* symtab,
103                           Layout* layout,
104                           Sized_relobj<32, false>* object,
105                           unsigned int data_shndx,
106                           unsigned int sh_type,
107                           const unsigned char* prelocs,
108                           size_t reloc_count,
109                           Output_section* output_section,
110                           bool needs_special_offset_handling,
111                           size_t local_symbol_count,
112                           const unsigned char* plocal_symbols,
113                           Relocatable_relocs*);
114
115   // Relocate a section during a relocatable link.
116   void
117   relocate_for_relocatable(const Relocate_info<32, false>*,
118                            unsigned int sh_type,
119                            const unsigned char* prelocs,
120                            size_t reloc_count,
121                            Output_section* output_section,
122                            off_t offset_in_output_section,
123                            const Relocatable_relocs*,
124                            unsigned char* view,
125                            elfcpp::Elf_types<32>::Elf_Addr view_address,
126                            section_size_type view_size,
127                            unsigned char* reloc_view,
128                            section_size_type reloc_view_size);
129
130   // Return a string used to fill a code section with nops.
131   std::string
132   do_code_fill(section_size_type length);
133
134   // Return whether SYM is defined by the ABI.
135   bool
136   do_is_defined_by_abi(Symbol* sym) const
137   { return strcmp(sym->name(), "___tls_get_addr") == 0; }
138
139   // Return the size of the GOT section.
140   section_size_type
141   got_size()
142   {
143     gold_assert(this->got_ != NULL);
144     return this->got_->data_size();
145   }
146
147  private:
148   // The class which scans relocations.
149   struct Scan
150   {
151     inline void
152     local(const General_options& options, Symbol_table* symtab,
153           Layout* layout, Target_i386* target,
154           Sized_relobj<32, false>* object,
155           unsigned int data_shndx,
156           Output_section* output_section,
157           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
158           const elfcpp::Sym<32, false>& lsym);
159
160     inline void
161     global(const General_options& options, Symbol_table* symtab,
162            Layout* layout, Target_i386* target,
163            Sized_relobj<32, false>* object,
164            unsigned int data_shndx,
165            Output_section* output_section,
166            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
167            Symbol* gsym);
168
169     static void
170     unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
171
172     static void
173     unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
174                              Symbol*);
175   };
176
177   // The class which implements relocation.
178   class Relocate
179   {
180    public:
181     Relocate()
182       : skip_call_tls_get_addr_(false),
183         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
184     { }
185
186     ~Relocate()
187     {
188       if (this->skip_call_tls_get_addr_)
189         {
190           // FIXME: This needs to specify the location somehow.
191           gold_error(_("missing expected TLS relocation"));
192         }
193     }
194
195     // Return whether the static relocation needs to be applied.
196     inline bool
197     should_apply_static_reloc(const Sized_symbol<32>* gsym,
198                               int ref_flags,
199                               bool is_32bit);
200
201     // Do a relocation.  Return false if the caller should not issue
202     // any warnings about this relocation.
203     inline bool
204     relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
205              const elfcpp::Rel<32, false>&,
206              unsigned int r_type, const Sized_symbol<32>*,
207              const Symbol_value<32>*,
208              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
209              section_size_type);
210
211    private:
212     // Do a TLS relocation.
213     inline void
214     relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
215                  size_t relnum, const elfcpp::Rel<32, false>&,
216                  unsigned int r_type, const Sized_symbol<32>*,
217                  const Symbol_value<32>*,
218                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
219                  section_size_type);
220
221     // Do a TLS General-Dynamic to Initial-Exec transition.
222     inline void
223     tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
224                  Output_segment* tls_segment,
225                  const elfcpp::Rel<32, false>&, unsigned int r_type,
226                  elfcpp::Elf_types<32>::Elf_Addr value,
227                  unsigned char* view,
228                  section_size_type view_size);
229
230     // Do a TLS General-Dynamic to Local-Exec transition.
231     inline void
232     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
233                  Output_segment* tls_segment,
234                  const elfcpp::Rel<32, false>&, unsigned int r_type,
235                  elfcpp::Elf_types<32>::Elf_Addr value,
236                  unsigned char* view,
237                  section_size_type view_size);
238
239     // Do a TLS Local-Dynamic to Local-Exec transition.
240     inline void
241     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
242                  Output_segment* tls_segment,
243                  const elfcpp::Rel<32, false>&, unsigned int r_type,
244                  elfcpp::Elf_types<32>::Elf_Addr value,
245                  unsigned char* view,
246                  section_size_type view_size);
247
248     // Do a TLS Initial-Exec to Local-Exec transition.
249     static inline void
250     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
251                  Output_segment* tls_segment,
252                  const elfcpp::Rel<32, false>&, unsigned int r_type,
253                  elfcpp::Elf_types<32>::Elf_Addr value,
254                  unsigned char* view,
255                  section_size_type view_size);
256
257     // We need to keep track of which type of local dynamic relocation
258     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
259     enum Local_dynamic_type
260     {
261       LOCAL_DYNAMIC_NONE,
262       LOCAL_DYNAMIC_SUN,
263       LOCAL_DYNAMIC_GNU
264     };
265
266     // This is set if we should skip the next reloc, which should be a
267     // PLT32 reloc against ___tls_get_addr.
268     bool skip_call_tls_get_addr_;
269     // The type of local dynamic relocation we have seen in the section
270     // being relocated, if any.
271     Local_dynamic_type local_dynamic_type_;
272   };
273
274   // A class which returns the size required for a relocation type,
275   // used while scanning relocs during a relocatable link.
276   class Relocatable_size_for_reloc
277   {
278    public:
279     unsigned int
280     get_size_for_reloc(unsigned int, Relobj*);
281   };
282
283   // Adjust TLS relocation type based on the options and whether this
284   // is a local symbol.
285   static tls::Tls_optimization
286   optimize_tls_reloc(bool is_final, int r_type);
287
288   // Get the GOT section, creating it if necessary.
289   Output_data_got<32, false>*
290   got_section(Symbol_table*, Layout*);
291
292   // Get the GOT PLT section.
293   Output_data_space*
294   got_plt_section() const
295   {
296     gold_assert(this->got_plt_ != NULL);
297     return this->got_plt_;
298   }
299
300   // Create a PLT entry for a global symbol.
301   void
302   make_plt_entry(Symbol_table*, Layout*, Symbol*);
303
304   // Create a GOT entry for the TLS module index.
305   unsigned int
306   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
307                       Sized_relobj<32, false>* object);
308
309   // Get the PLT section.
310   const Output_data_plt_i386*
311   plt_section() const
312   {
313     gold_assert(this->plt_ != NULL);
314     return this->plt_;
315   }
316
317   // Get the dynamic reloc section, creating it if necessary.
318   Reloc_section*
319   rel_dyn_section(Layout*);
320
321   // Return true if the symbol may need a COPY relocation.
322   // References from an executable object to non-function symbols
323   // defined in a dynamic object may need a COPY relocation.
324   bool
325   may_need_copy_reloc(Symbol* gsym)
326   {
327     return (!parameters->output_is_shared()
328             && gsym->is_from_dynobj()
329             && gsym->type() != elfcpp::STT_FUNC);
330   }
331
332   // Copy a relocation against a global symbol.
333   void
334   copy_reloc(const General_options*, Symbol_table*, Layout*,
335              Sized_relobj<32, false>*, unsigned int,
336              Output_section*, Symbol*, const elfcpp::Rel<32, false>&);
337
338   // Information about this specific target which we pass to the
339   // general Target structure.
340   static const Target::Target_info i386_info;
341
342   // The GOT section.
343   Output_data_got<32, false>* got_;
344   // The PLT section.
345   Output_data_plt_i386* plt_;
346   // The GOT PLT section.
347   Output_data_space* got_plt_;
348   // The dynamic reloc section.
349   Reloc_section* rel_dyn_;
350   // Relocs saved to avoid a COPY reloc.
351   Copy_relocs<32, false>* copy_relocs_;
352   // Space for variables copied with a COPY reloc.
353   Output_data_space* dynbss_;
354   // Offset of the GOT entry for the TLS module index;
355   unsigned int got_mod_index_offset_;
356 };
357
358 const Target::Target_info Target_i386::i386_info =
359 {
360   32,                   // size
361   false,                // is_big_endian
362   elfcpp::EM_386,       // machine_code
363   false,                // has_make_symbol
364   false,                // has_resolve
365   true,                 // has_code_fill
366   true,                 // is_default_stack_executable
367   "/usr/lib/libc.so.1", // dynamic_linker
368   0x08048000,           // default_text_segment_address
369   0x1000,               // abi_pagesize
370   0x1000                // common_pagesize
371 };
372
373 // Get the GOT section, creating it if necessary.
374
375 Output_data_got<32, false>*
376 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
377 {
378   if (this->got_ == NULL)
379     {
380       gold_assert(symtab != NULL && layout != NULL);
381
382       this->got_ = new Output_data_got<32, false>();
383
384       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
385                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
386                                       this->got_);
387
388       // The old GNU linker creates a .got.plt section.  We just
389       // create another set of data in the .got section.  Note that we
390       // always create a PLT if we create a GOT, although the PLT
391       // might be empty.
392       this->got_plt_ = new Output_data_space(4);
393       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
394                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
395                                       this->got_plt_);
396
397       // The first three entries are reserved.
398       this->got_plt_->set_current_data_size(3 * 4);
399
400       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
401       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
402                                     this->got_plt_,
403                                     0, 0, elfcpp::STT_OBJECT,
404                                     elfcpp::STB_LOCAL,
405                                     elfcpp::STV_HIDDEN, 0,
406                                     false, false);
407     }
408
409   return this->got_;
410 }
411
412 // Get the dynamic reloc section, creating it if necessary.
413
414 Target_i386::Reloc_section*
415 Target_i386::rel_dyn_section(Layout* layout)
416 {
417   if (this->rel_dyn_ == NULL)
418     {
419       gold_assert(layout != NULL);
420       this->rel_dyn_ = new Reloc_section();
421       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
422                                       elfcpp::SHF_ALLOC, this->rel_dyn_);
423     }
424   return this->rel_dyn_;
425 }
426
427 // A class to handle the PLT data.
428
429 class Output_data_plt_i386 : public Output_section_data
430 {
431  public:
432   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
433
434   Output_data_plt_i386(Layout*, Output_data_space*);
435
436   // Add an entry to the PLT.
437   void
438   add_entry(Symbol* gsym);
439
440   // Return the .rel.plt section data.
441   const Reloc_section*
442   rel_plt() const
443   { return this->rel_; }
444
445  protected:
446   void
447   do_adjust_output_section(Output_section* os);
448
449  private:
450   // The size of an entry in the PLT.
451   static const int plt_entry_size = 16;
452
453   // The first entry in the PLT for an executable.
454   static unsigned char exec_first_plt_entry[plt_entry_size];
455
456   // The first entry in the PLT for a shared object.
457   static unsigned char dyn_first_plt_entry[plt_entry_size];
458
459   // Other entries in the PLT for an executable.
460   static unsigned char exec_plt_entry[plt_entry_size];
461
462   // Other entries in the PLT for a shared object.
463   static unsigned char dyn_plt_entry[plt_entry_size];
464
465   // Set the final size.
466   void
467   set_final_data_size()
468   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
469
470   // Write out the PLT data.
471   void
472   do_write(Output_file*);
473
474   // The reloc section.
475   Reloc_section* rel_;
476   // The .got.plt section.
477   Output_data_space* got_plt_;
478   // The number of PLT entries.
479   unsigned int count_;
480 };
481
482 // Create the PLT section.  The ordinary .got section is an argument,
483 // since we need to refer to the start.  We also create our own .got
484 // section just for PLT entries.
485
486 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
487                                            Output_data_space* got_plt)
488   : Output_section_data(4), got_plt_(got_plt), count_(0)
489 {
490   this->rel_ = new Reloc_section();
491   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
492                                   elfcpp::SHF_ALLOC, this->rel_);
493 }
494
495 void
496 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
497 {
498   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
499   // linker, and so do we.
500   os->set_entsize(4);
501 }
502
503 // Add an entry to the PLT.
504
505 void
506 Output_data_plt_i386::add_entry(Symbol* gsym)
507 {
508   gold_assert(!gsym->has_plt_offset());
509
510   // Note that when setting the PLT offset we skip the initial
511   // reserved PLT entry.
512   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
513
514   ++this->count_;
515
516   section_offset_type got_offset = this->got_plt_->current_data_size();
517
518   // Every PLT entry needs a GOT entry which points back to the PLT
519   // entry (this will be changed by the dynamic linker, normally
520   // lazily when the function is called).
521   this->got_plt_->set_current_data_size(got_offset + 4);
522
523   // Every PLT entry needs a reloc.
524   gsym->set_needs_dynsym_entry();
525   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
526                          got_offset);
527
528   // Note that we don't need to save the symbol.  The contents of the
529   // PLT are independent of which symbols are used.  The symbols only
530   // appear in the relocations.
531 }
532
533 // The first entry in the PLT for an executable.
534
535 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
536 {
537   0xff, 0x35,   // pushl contents of memory address
538   0, 0, 0, 0,   // replaced with address of .got + 4
539   0xff, 0x25,   // jmp indirect
540   0, 0, 0, 0,   // replaced with address of .got + 8
541   0, 0, 0, 0    // unused
542 };
543
544 // The first entry in the PLT for a shared object.
545
546 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
547 {
548   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
549   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
550   0, 0, 0, 0                    // unused
551 };
552
553 // Subsequent entries in the PLT for an executable.
554
555 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
556 {
557   0xff, 0x25,   // jmp indirect
558   0, 0, 0, 0,   // replaced with address of symbol in .got
559   0x68,         // pushl immediate
560   0, 0, 0, 0,   // replaced with offset into relocation table
561   0xe9,         // jmp relative
562   0, 0, 0, 0    // replaced with offset to start of .plt
563 };
564
565 // Subsequent entries in the PLT for a shared object.
566
567 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
568 {
569   0xff, 0xa3,   // jmp *offset(%ebx)
570   0, 0, 0, 0,   // replaced with offset of symbol in .got
571   0x68,         // pushl immediate
572   0, 0, 0, 0,   // replaced with offset into relocation table
573   0xe9,         // jmp relative
574   0, 0, 0, 0    // replaced with offset to start of .plt
575 };
576
577 // Write out the PLT.  This uses the hand-coded instructions above,
578 // and adjusts them as needed.  This is all specified by the i386 ELF
579 // Processor Supplement.
580
581 void
582 Output_data_plt_i386::do_write(Output_file* of)
583 {
584   const off_t offset = this->offset();
585   const section_size_type oview_size =
586     convert_to_section_size_type(this->data_size());
587   unsigned char* const oview = of->get_output_view(offset, oview_size);
588
589   const off_t got_file_offset = this->got_plt_->offset();
590   const section_size_type got_size =
591     convert_to_section_size_type(this->got_plt_->data_size());
592   unsigned char* const got_view = of->get_output_view(got_file_offset,
593                                                       got_size);
594
595   unsigned char* pov = oview;
596
597   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
598   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
599
600   if (parameters->output_is_shared())
601     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
602   else
603     {
604       memcpy(pov, exec_first_plt_entry, plt_entry_size);
605       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
606       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
607     }
608   pov += plt_entry_size;
609
610   unsigned char* got_pov = got_view;
611
612   memset(got_pov, 0, 12);
613   got_pov += 12;
614
615   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
616
617   unsigned int plt_offset = plt_entry_size;
618   unsigned int plt_rel_offset = 0;
619   unsigned int got_offset = 12;
620   const unsigned int count = this->count_;
621   for (unsigned int i = 0;
622        i < count;
623        ++i,
624          pov += plt_entry_size,
625          got_pov += 4,
626          plt_offset += plt_entry_size,
627          plt_rel_offset += rel_size,
628          got_offset += 4)
629     {
630       // Set and adjust the PLT entry itself.
631
632       if (parameters->output_is_shared())
633         {
634           memcpy(pov, dyn_plt_entry, plt_entry_size);
635           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
636         }
637       else
638         {
639           memcpy(pov, exec_plt_entry, plt_entry_size);
640           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
641                                                       (got_address
642                                                        + got_offset));
643         }
644
645       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
646       elfcpp::Swap<32, false>::writeval(pov + 12,
647                                         - (plt_offset + plt_entry_size));
648
649       // Set the entry in the GOT.
650       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
651     }
652
653   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
654   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
655
656   of->write_output_view(offset, oview_size, oview);
657   of->write_output_view(got_file_offset, got_size, got_view);
658 }
659
660 // Create a PLT entry for a global symbol.
661
662 void
663 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
664 {
665   if (gsym->has_plt_offset())
666     return;
667
668   if (this->plt_ == NULL)
669     {
670       // Create the GOT sections first.
671       this->got_section(symtab, layout);
672
673       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
674       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
675                                       (elfcpp::SHF_ALLOC
676                                        | elfcpp::SHF_EXECINSTR),
677                                       this->plt_);
678     }
679
680   this->plt_->add_entry(gsym);
681 }
682
683 // Create a GOT entry for the TLS module index.
684
685 unsigned int
686 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
687                                  Sized_relobj<32, false>* object)
688 {
689   if (this->got_mod_index_offset_ == -1U)
690     {
691       gold_assert(symtab != NULL && layout != NULL && object != NULL);
692       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
693       Output_data_got<32, false>* got = this->got_section(symtab, layout);
694       unsigned int got_offset = got->add_constant(0);
695       rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
696                          got_offset);
697       got->add_constant(0);
698       this->got_mod_index_offset_ = got_offset;
699     }
700   return this->got_mod_index_offset_;
701 }
702
703 // Handle a relocation against a non-function symbol defined in a
704 // dynamic object.  The traditional way to handle this is to generate
705 // a COPY relocation to copy the variable at runtime from the shared
706 // object into the executable's data segment.  However, this is
707 // undesirable in general, as if the size of the object changes in the
708 // dynamic object, the executable will no longer work correctly.  If
709 // this relocation is in a writable section, then we can create a
710 // dynamic reloc and the dynamic linker will resolve it to the correct
711 // address at runtime.  However, we do not want do that if the
712 // relocation is in a read-only section, as it would prevent the
713 // readonly segment from being shared.  And if we have to eventually
714 // generate a COPY reloc, then any dynamic relocations will be
715 // useless.  So this means that if this is a writable section, we need
716 // to save the relocation until we see whether we have to create a
717 // COPY relocation for this symbol for any other relocation.
718
719 void
720 Target_i386::copy_reloc(const General_options* options,
721                         Symbol_table* symtab,
722                         Layout* layout,
723                         Sized_relobj<32, false>* object,
724                         unsigned int data_shndx,
725                         Output_section* output_section,
726                         Symbol* gsym,
727                         const elfcpp::Rel<32, false>& rel)
728 {
729   Sized_symbol<32>* ssym;
730   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
731                                                         SELECT_SIZE(32));
732
733   if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
734                                                data_shndx, ssym))
735     {
736       // So far we do not need a COPY reloc.  Save this relocation.
737       // If it turns out that we never need a COPY reloc for this
738       // symbol, then we will emit the relocation.
739       if (this->copy_relocs_ == NULL)
740         this->copy_relocs_ = new Copy_relocs<32, false>();
741       this->copy_relocs_->save(ssym, object, data_shndx, output_section, rel);
742     }
743   else
744     {
745       // Allocate space for this symbol in the .bss section.
746
747       elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
748
749       // There is no defined way to determine the required alignment
750       // of the symbol.  We pick the alignment based on the size.  We
751       // set an arbitrary maximum of 256.
752       unsigned int align;
753       for (align = 1; align < 512; align <<= 1)
754         if ((symsize & align) != 0)
755           break;
756
757       if (this->dynbss_ == NULL)
758         {
759           this->dynbss_ = new Output_data_space(align);
760           layout->add_output_section_data(".bss",
761                                           elfcpp::SHT_NOBITS,
762                                           (elfcpp::SHF_ALLOC
763                                            | elfcpp::SHF_WRITE),
764                                           this->dynbss_);
765         }
766
767       Output_data_space* dynbss = this->dynbss_;
768
769       if (align > dynbss->addralign())
770         dynbss->set_space_alignment(align);
771
772       section_size_type dynbss_size =
773         convert_to_section_size_type(dynbss->current_data_size());
774       dynbss_size = align_address(dynbss_size, align);
775       section_size_type offset = dynbss_size;
776       dynbss->set_current_data_size(dynbss_size + symsize);
777
778       symtab->define_with_copy_reloc(ssym, dynbss, offset);
779
780       // Add the COPY reloc.
781       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
782       rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
783     }
784 }
785
786 // Optimize the TLS relocation type based on what we know about the
787 // symbol.  IS_FINAL is true if the final address of this symbol is
788 // known at link time.
789
790 tls::Tls_optimization
791 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
792 {
793   // If we are generating a shared library, then we can't do anything
794   // in the linker.
795   if (parameters->output_is_shared())
796     return tls::TLSOPT_NONE;
797
798   switch (r_type)
799     {
800     case elfcpp::R_386_TLS_GD:
801     case elfcpp::R_386_TLS_GOTDESC:
802     case elfcpp::R_386_TLS_DESC_CALL:
803       // These are General-Dynamic which permits fully general TLS
804       // access.  Since we know that we are generating an executable,
805       // we can convert this to Initial-Exec.  If we also know that
806       // this is a local symbol, we can further switch to Local-Exec.
807       if (is_final)
808         return tls::TLSOPT_TO_LE;
809       return tls::TLSOPT_TO_IE;
810
811     case elfcpp::R_386_TLS_LDM:
812       // This is Local-Dynamic, which refers to a local symbol in the
813       // dynamic TLS block.  Since we know that we generating an
814       // executable, we can switch to Local-Exec.
815       return tls::TLSOPT_TO_LE;
816
817     case elfcpp::R_386_TLS_LDO_32:
818       // Another type of Local-Dynamic relocation.
819       return tls::TLSOPT_TO_LE;
820
821     case elfcpp::R_386_TLS_IE:
822     case elfcpp::R_386_TLS_GOTIE:
823     case elfcpp::R_386_TLS_IE_32:
824       // These are Initial-Exec relocs which get the thread offset
825       // from the GOT.  If we know that we are linking against the
826       // local symbol, we can switch to Local-Exec, which links the
827       // thread offset into the instruction.
828       if (is_final)
829         return tls::TLSOPT_TO_LE;
830       return tls::TLSOPT_NONE;
831
832     case elfcpp::R_386_TLS_LE:
833     case elfcpp::R_386_TLS_LE_32:
834       // When we already have Local-Exec, there is nothing further we
835       // can do.
836       return tls::TLSOPT_NONE;
837
838     default:
839       gold_unreachable();
840     }
841 }
842
843 // Report an unsupported relocation against a local symbol.
844
845 void
846 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
847                                            unsigned int r_type)
848 {
849   gold_error(_("%s: unsupported reloc %u against local symbol"),
850              object->name().c_str(), r_type);
851 }
852
853 // Scan a relocation for a local symbol.
854
855 inline void
856 Target_i386::Scan::local(const General_options&,
857                          Symbol_table* symtab,
858                          Layout* layout,
859                          Target_i386* target,
860                          Sized_relobj<32, false>* object,
861                          unsigned int data_shndx,
862                          Output_section* output_section,
863                          const elfcpp::Rel<32, false>& reloc,
864                          unsigned int r_type,
865                          const elfcpp::Sym<32, false>& lsym)
866 {
867   switch (r_type)
868     {
869     case elfcpp::R_386_NONE:
870     case elfcpp::R_386_GNU_VTINHERIT:
871     case elfcpp::R_386_GNU_VTENTRY:
872       break;
873
874     case elfcpp::R_386_32:
875       // If building a shared library (or a position-independent
876       // executable), we need to create a dynamic relocation for
877       // this location. The relocation applied at link time will
878       // apply the link-time value, so we flag the location with
879       // an R_386_RELATIVE relocation so the dynamic loader can
880       // relocate it easily.
881       if (parameters->output_is_position_independent())
882         {
883           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
884           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
885           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
886                                       output_section, data_shndx,
887                                       reloc.get_r_offset());
888         }
889       break;
890
891     case elfcpp::R_386_16:
892     case elfcpp::R_386_8:
893       // If building a shared library (or a position-independent
894       // executable), we need to create a dynamic relocation for
895       // this location. Because the addend needs to remain in the
896       // data section, we need to be careful not to apply this
897       // relocation statically.
898       if (parameters->output_is_position_independent())
899         {
900           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
901           if (lsym.get_st_type() != elfcpp::STT_SECTION)
902             {
903               unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
904               rel_dyn->add_local(object, r_sym, r_type, output_section,
905                                  data_shndx, reloc.get_r_offset());
906             }
907           else
908             {
909               gold_assert(lsym.get_st_value() == 0);
910               rel_dyn->add_local_section(object, lsym.get_st_shndx(),
911                                          r_type, output_section,
912                                          data_shndx, reloc.get_r_offset());
913             }
914         }
915       break;
916
917     case elfcpp::R_386_PC32:
918     case elfcpp::R_386_PC16:
919     case elfcpp::R_386_PC8:
920       break;
921
922     case elfcpp::R_386_PLT32:
923       // Since we know this is a local symbol, we can handle this as a
924       // PC32 reloc.
925       break;
926
927     case elfcpp::R_386_GOTOFF:
928     case elfcpp::R_386_GOTPC:
929       // We need a GOT section.
930       target->got_section(symtab, layout);
931       break;
932
933     case elfcpp::R_386_GOT32:
934       {
935         // The symbol requires a GOT entry.
936         Output_data_got<32, false>* got = target->got_section(symtab, layout);
937         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
938         if (got->add_local(object, r_sym))
939           {
940             // If we are generating a shared object, we need to add a
941             // dynamic RELATIVE relocation for this symbol's GOT entry.
942             if (parameters->output_is_position_independent())
943               {
944                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
945                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
946                 rel_dyn->add_local_relative(object, r_sym,
947                                             elfcpp::R_386_RELATIVE,
948                                             got,
949                                             object->local_got_offset(r_sym));
950               }
951           }
952       }
953       break;
954
955       // These are relocations which should only be seen by the
956       // dynamic linker, and should never be seen here.
957     case elfcpp::R_386_COPY:
958     case elfcpp::R_386_GLOB_DAT:
959     case elfcpp::R_386_JUMP_SLOT:
960     case elfcpp::R_386_RELATIVE:
961     case elfcpp::R_386_TLS_TPOFF:
962     case elfcpp::R_386_TLS_DTPMOD32:
963     case elfcpp::R_386_TLS_DTPOFF32:
964     case elfcpp::R_386_TLS_TPOFF32:
965     case elfcpp::R_386_TLS_DESC:
966       gold_error(_("%s: unexpected reloc %u in object file"),
967                  object->name().c_str(), r_type);
968       break;
969
970       // These are initial TLS relocs, which are expected when
971       // linking.
972     case elfcpp::R_386_TLS_GD:            // Global-dynamic
973     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
974     case elfcpp::R_386_TLS_DESC_CALL:
975     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
976     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
977     case elfcpp::R_386_TLS_IE:            // Initial-exec
978     case elfcpp::R_386_TLS_IE_32:
979     case elfcpp::R_386_TLS_GOTIE:
980     case elfcpp::R_386_TLS_LE:            // Local-exec
981     case elfcpp::R_386_TLS_LE_32:
982       {
983         bool output_is_shared = parameters->output_is_shared();
984         const tls::Tls_optimization optimized_type
985             = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
986         switch (r_type)
987           {
988           case elfcpp::R_386_TLS_GD:          // Global-dynamic
989             if (optimized_type == tls::TLSOPT_NONE)
990               {
991                 // Create a pair of GOT entries for the module index and
992                 // dtv-relative offset.
993                 Output_data_got<32, false>* got
994                     = target->got_section(symtab, layout);
995                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
996                 got->add_local_tls_with_rel(object, r_sym, 
997                                             lsym.get_st_shndx(), true,
998                                             target->rel_dyn_section(layout),
999                                             elfcpp::R_386_TLS_DTPMOD32);
1000               }
1001             else if (optimized_type != tls::TLSOPT_TO_LE)
1002               unsupported_reloc_local(object, r_type);
1003             break;
1004
1005           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
1006           case elfcpp::R_386_TLS_DESC_CALL:
1007             // FIXME: If not relaxing to LE, we need to generate
1008             // a GOT entry with an R_386_TLS_DESC reloc.
1009             if (optimized_type != tls::TLSOPT_TO_LE)
1010               unsupported_reloc_local(object, r_type);
1011             break;
1012
1013           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1014             if (optimized_type == tls::TLSOPT_NONE)
1015               {
1016                 // Create a GOT entry for the module index.
1017                 target->got_mod_index_entry(symtab, layout, object);
1018               }
1019             else if (optimized_type != tls::TLSOPT_TO_LE)
1020               unsupported_reloc_local(object, r_type);
1021             break;
1022
1023           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1024             break;
1025
1026           case elfcpp::R_386_TLS_IE:          // Initial-exec
1027           case elfcpp::R_386_TLS_IE_32:
1028           case elfcpp::R_386_TLS_GOTIE:
1029             layout->set_has_static_tls();
1030             if (optimized_type == tls::TLSOPT_NONE)
1031               {
1032                 // For the R_386_TLS_IE relocation, we need to create a
1033                 // dynamic relocation when building a shared library.
1034                 if (r_type == elfcpp::R_386_TLS_IE
1035                     && parameters->output_is_shared())
1036                   {
1037                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1038                     unsigned int r_sym
1039                         = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1040                     rel_dyn->add_local_relative(object, r_sym,
1041                                                 elfcpp::R_386_RELATIVE,
1042                                                 output_section, data_shndx,
1043                                                 reloc.get_r_offset());
1044                   }
1045                 // Create a GOT entry for the tp-relative offset.
1046                 Output_data_got<32, false>* got
1047                     = target->got_section(symtab, layout);
1048                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1049                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1050                                            ? elfcpp::R_386_TLS_TPOFF32
1051                                            : elfcpp::R_386_TLS_TPOFF);
1052                 got->add_local_with_rel(object, r_sym,
1053                                         target->rel_dyn_section(layout),
1054                                         dyn_r_type);
1055               }
1056             else if (optimized_type != tls::TLSOPT_TO_LE)
1057               unsupported_reloc_local(object, r_type);
1058             break;
1059
1060           case elfcpp::R_386_TLS_LE:          // Local-exec
1061           case elfcpp::R_386_TLS_LE_32:
1062             layout->set_has_static_tls();
1063             if (output_is_shared)
1064               {
1065                 // We need to create a dynamic relocation.
1066                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1067                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1068                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1069                                            ? elfcpp::R_386_TLS_TPOFF32
1070                                            : elfcpp::R_386_TLS_TPOFF);
1071                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1072                 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1073                                    data_shndx, reloc.get_r_offset());
1074               }
1075             break;
1076
1077           default:
1078             gold_unreachable();
1079           }
1080       }
1081       break;
1082
1083     case elfcpp::R_386_32PLT:
1084     case elfcpp::R_386_TLS_GD_32:
1085     case elfcpp::R_386_TLS_GD_PUSH:
1086     case elfcpp::R_386_TLS_GD_CALL:
1087     case elfcpp::R_386_TLS_GD_POP:
1088     case elfcpp::R_386_TLS_LDM_32:
1089     case elfcpp::R_386_TLS_LDM_PUSH:
1090     case elfcpp::R_386_TLS_LDM_CALL:
1091     case elfcpp::R_386_TLS_LDM_POP:
1092     case elfcpp::R_386_USED_BY_INTEL_200:
1093     default:
1094       unsupported_reloc_local(object, r_type);
1095       break;
1096     }
1097 }
1098
1099 // Report an unsupported relocation against a global symbol.
1100
1101 void
1102 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
1103                                             unsigned int r_type,
1104                                             Symbol* gsym)
1105 {
1106   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1107              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1108 }
1109
1110 // Scan a relocation for a global symbol.
1111
1112 inline void
1113 Target_i386::Scan::global(const General_options& options,
1114                           Symbol_table* symtab,
1115                           Layout* layout,
1116                           Target_i386* target,
1117                           Sized_relobj<32, false>* object,
1118                           unsigned int data_shndx,
1119                           Output_section* output_section,
1120                           const elfcpp::Rel<32, false>& reloc,
1121                           unsigned int r_type,
1122                           Symbol* gsym)
1123 {
1124   switch (r_type)
1125     {
1126     case elfcpp::R_386_NONE:
1127     case elfcpp::R_386_GNU_VTINHERIT:
1128     case elfcpp::R_386_GNU_VTENTRY:
1129       break;
1130
1131     case elfcpp::R_386_32:
1132     case elfcpp::R_386_16:
1133     case elfcpp::R_386_8:
1134       {
1135         // Make a PLT entry if necessary.
1136         if (gsym->needs_plt_entry())
1137           {
1138             target->make_plt_entry(symtab, layout, gsym);
1139             // Since this is not a PC-relative relocation, we may be
1140             // taking the address of a function. In that case we need to
1141             // set the entry in the dynamic symbol table to the address of
1142             // the PLT entry.
1143             if (gsym->is_from_dynobj() && !parameters->output_is_shared())
1144               gsym->set_needs_dynsym_value();
1145           }
1146         // Make a dynamic relocation if necessary.
1147         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1148           {
1149             if (target->may_need_copy_reloc(gsym))
1150               {
1151                 target->copy_reloc(&options, symtab, layout, object,
1152                                    data_shndx, output_section, gsym, reloc);
1153               }
1154             else if (r_type == elfcpp::R_386_32
1155                      && gsym->can_use_relative_reloc(false))
1156               {
1157                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1158                 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1159                                              output_section, object,
1160                                              data_shndx, reloc.get_r_offset());
1161               }
1162             else
1163               {
1164                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1165                 rel_dyn->add_global(gsym, r_type, output_section, object,
1166                                     data_shndx, reloc.get_r_offset());
1167               }
1168           }
1169       }
1170       break;
1171
1172     case elfcpp::R_386_PC32:
1173     case elfcpp::R_386_PC16:
1174     case elfcpp::R_386_PC8:
1175       {
1176         // Make a PLT entry if necessary.
1177         if (gsym->needs_plt_entry())
1178           {
1179             // These relocations are used for function calls only in
1180             // non-PIC code.  For a 32-bit relocation in a shared library,
1181             // we'll need a text relocation anyway, so we can skip the
1182             // PLT entry and let the dynamic linker bind the call directly
1183             // to the target.  For smaller relocations, we should use a
1184             // PLT entry to ensure that the call can reach.
1185             if (!parameters->output_is_shared()
1186                 || r_type != elfcpp::R_386_PC32)
1187               target->make_plt_entry(symtab, layout, gsym);
1188           }
1189         // Make a dynamic relocation if necessary.
1190         int flags = Symbol::NON_PIC_REF;
1191         if (gsym->type() == elfcpp::STT_FUNC)
1192           flags |= Symbol::FUNCTION_CALL;
1193         if (gsym->needs_dynamic_reloc(flags))
1194           {
1195             if (target->may_need_copy_reloc(gsym))
1196               {
1197                 target->copy_reloc(&options, symtab, layout, object,
1198                                    data_shndx, output_section, gsym, reloc);
1199               }
1200             else
1201               {
1202                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1203                 rel_dyn->add_global(gsym, r_type, output_section, object,
1204                                     data_shndx, reloc.get_r_offset());
1205               }
1206           }
1207       }
1208       break;
1209
1210     case elfcpp::R_386_GOT32:
1211       {
1212         // The symbol requires a GOT entry.
1213         Output_data_got<32, false>* got = target->got_section(symtab, layout);
1214         if (gsym->final_value_is_known())
1215           got->add_global(gsym);
1216         else
1217           {
1218             // If this symbol is not fully resolved, we need to add a
1219             // GOT entry with a dynamic relocation.
1220             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1221             if (gsym->is_from_dynobj()
1222                 || gsym->is_undefined()
1223                 || gsym->is_preemptible())
1224               got->add_global_with_rel(gsym, rel_dyn, elfcpp::R_386_GLOB_DAT);
1225             else
1226               {
1227                 if (got->add_global(gsym))
1228                   rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1229                                                got, gsym->got_offset());
1230               }
1231           }
1232       }
1233       break;
1234
1235     case elfcpp::R_386_PLT32:
1236       // If the symbol is fully resolved, this is just a PC32 reloc.
1237       // Otherwise we need a PLT entry.
1238       if (gsym->final_value_is_known())
1239         break;
1240       // If building a shared library, we can also skip the PLT entry
1241       // if the symbol is defined in the output file and is protected
1242       // or hidden.
1243       if (gsym->is_defined()
1244           && !gsym->is_from_dynobj()
1245           && !gsym->is_preemptible())
1246         break;
1247       target->make_plt_entry(symtab, layout, gsym);
1248       break;
1249
1250     case elfcpp::R_386_GOTOFF:
1251     case elfcpp::R_386_GOTPC:
1252       // We need a GOT section.
1253       target->got_section(symtab, layout);
1254       break;
1255
1256       // These are relocations which should only be seen by the
1257       // dynamic linker, and should never be seen here.
1258     case elfcpp::R_386_COPY:
1259     case elfcpp::R_386_GLOB_DAT:
1260     case elfcpp::R_386_JUMP_SLOT:
1261     case elfcpp::R_386_RELATIVE:
1262     case elfcpp::R_386_TLS_TPOFF:
1263     case elfcpp::R_386_TLS_DTPMOD32:
1264     case elfcpp::R_386_TLS_DTPOFF32:
1265     case elfcpp::R_386_TLS_TPOFF32:
1266     case elfcpp::R_386_TLS_DESC:
1267       gold_error(_("%s: unexpected reloc %u in object file"),
1268                  object->name().c_str(), r_type);
1269       break;
1270
1271       // These are initial tls relocs, which are expected when
1272       // linking.
1273     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1274     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1275     case elfcpp::R_386_TLS_DESC_CALL:
1276     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1277     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1278     case elfcpp::R_386_TLS_IE:            // Initial-exec
1279     case elfcpp::R_386_TLS_IE_32:
1280     case elfcpp::R_386_TLS_GOTIE:
1281     case elfcpp::R_386_TLS_LE:            // Local-exec
1282     case elfcpp::R_386_TLS_LE_32:
1283       {
1284         const bool is_final = gsym->final_value_is_known();
1285         const tls::Tls_optimization optimized_type
1286             = Target_i386::optimize_tls_reloc(is_final, r_type);
1287         switch (r_type)
1288           {
1289           case elfcpp::R_386_TLS_GD:          // Global-dynamic
1290             if (optimized_type == tls::TLSOPT_NONE)
1291               {
1292                 // Create a pair of GOT entries for the module index and
1293                 // dtv-relative offset.
1294                 Output_data_got<32, false>* got
1295                     = target->got_section(symtab, layout);
1296                 got->add_global_tls_with_rel(gsym,
1297                                              target->rel_dyn_section(layout),
1298                                              elfcpp::R_386_TLS_DTPMOD32,
1299                                              elfcpp::R_386_TLS_DTPOFF32);
1300               }
1301             else if (optimized_type == tls::TLSOPT_TO_IE)
1302               {
1303                 // Create a GOT entry for the tp-relative offset.
1304                 Output_data_got<32, false>* got
1305                     = target->got_section(symtab, layout);
1306                 got->add_global_with_rel(gsym, target->rel_dyn_section(layout),
1307                                          elfcpp::R_386_TLS_TPOFF32);
1308               }
1309             else if (optimized_type != tls::TLSOPT_TO_LE)
1310               unsupported_reloc_global(object, r_type, gsym);
1311             break;
1312
1313           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
1314           case elfcpp::R_386_TLS_DESC_CALL:
1315             // FIXME: If not relaxing to LE, we need to generate
1316             // a GOT entry with an R_386_TLS_DESC reloc.
1317             if (optimized_type != tls::TLSOPT_TO_LE)
1318               unsupported_reloc_global(object, r_type, gsym);
1319             unsupported_reloc_global(object, r_type, gsym);
1320             break;
1321
1322           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1323             if (optimized_type == tls::TLSOPT_NONE)
1324               {
1325                 // Create a GOT entry for the module index.
1326                 target->got_mod_index_entry(symtab, layout, object);
1327               }
1328             else if (optimized_type != tls::TLSOPT_TO_LE)
1329               unsupported_reloc_global(object, r_type, gsym);
1330             break;
1331
1332           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1333             break;
1334
1335           case elfcpp::R_386_TLS_IE:          // Initial-exec
1336           case elfcpp::R_386_TLS_IE_32:
1337           case elfcpp::R_386_TLS_GOTIE:
1338             layout->set_has_static_tls();
1339             if (optimized_type == tls::TLSOPT_NONE)
1340               {
1341                 // For the R_386_TLS_IE relocation, we need to create a
1342                 // dynamic relocation when building a shared library.
1343                 if (r_type == elfcpp::R_386_TLS_IE
1344                     && parameters->output_is_shared())
1345                   {
1346                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1347                     rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1348                                                  output_section, object,
1349                                                  data_shndx,
1350                                                  reloc.get_r_offset());
1351                   }
1352                 // Create a GOT entry for the tp-relative offset.
1353                 Output_data_got<32, false>* got
1354                     = target->got_section(symtab, layout);
1355                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1356                                            ? elfcpp::R_386_TLS_TPOFF32
1357                                            : elfcpp::R_386_TLS_TPOFF);
1358                 got->add_global_with_rel(gsym,
1359                                          target->rel_dyn_section(layout),
1360                                          dyn_r_type);
1361               }
1362             else if (optimized_type != tls::TLSOPT_TO_LE)
1363               unsupported_reloc_global(object, r_type, gsym);
1364             break;
1365
1366           case elfcpp::R_386_TLS_LE:          // Local-exec
1367           case elfcpp::R_386_TLS_LE_32:
1368             layout->set_has_static_tls();
1369             if (parameters->output_is_shared())
1370               {
1371                 // We need to create a dynamic relocation.
1372                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1373                                            ? elfcpp::R_386_TLS_TPOFF32
1374                                            : elfcpp::R_386_TLS_TPOFF);
1375                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1376                 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
1377                                     data_shndx, reloc.get_r_offset());
1378               }
1379             break;
1380
1381           default:
1382             gold_unreachable();
1383           }
1384       }
1385       break;
1386
1387     case elfcpp::R_386_32PLT:
1388     case elfcpp::R_386_TLS_GD_32:
1389     case elfcpp::R_386_TLS_GD_PUSH:
1390     case elfcpp::R_386_TLS_GD_CALL:
1391     case elfcpp::R_386_TLS_GD_POP:
1392     case elfcpp::R_386_TLS_LDM_32:
1393     case elfcpp::R_386_TLS_LDM_PUSH:
1394     case elfcpp::R_386_TLS_LDM_CALL:
1395     case elfcpp::R_386_TLS_LDM_POP:
1396     case elfcpp::R_386_USED_BY_INTEL_200:
1397     default:
1398       unsupported_reloc_global(object, r_type, gsym);
1399       break;
1400     }
1401 }
1402
1403 // Scan relocations for a section.
1404
1405 void
1406 Target_i386::scan_relocs(const General_options& options,
1407                          Symbol_table* symtab,
1408                          Layout* layout,
1409                          Sized_relobj<32, false>* object,
1410                          unsigned int data_shndx,
1411                          unsigned int sh_type,
1412                          const unsigned char* prelocs,
1413                          size_t reloc_count,
1414                          Output_section* output_section,
1415                          bool needs_special_offset_handling,
1416                          size_t local_symbol_count,
1417                          const unsigned char* plocal_symbols)
1418 {
1419   if (sh_type == elfcpp::SHT_RELA)
1420     {
1421       gold_error(_("%s: unsupported RELA reloc section"),
1422                  object->name().c_str());
1423       return;
1424     }
1425
1426   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1427                     Target_i386::Scan>(
1428     options,
1429     symtab,
1430     layout,
1431     this,
1432     object,
1433     data_shndx,
1434     prelocs,
1435     reloc_count,
1436     output_section,
1437     needs_special_offset_handling,
1438     local_symbol_count,
1439     plocal_symbols);
1440 }
1441
1442 // Finalize the sections.
1443
1444 void
1445 Target_i386::do_finalize_sections(Layout* layout)
1446 {
1447   // Fill in some more dynamic tags.
1448   Output_data_dynamic* const odyn = layout->dynamic_data();
1449   if (odyn != NULL)
1450     {
1451       if (this->got_plt_ != NULL)
1452         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1453
1454       if (this->plt_ != NULL)
1455         {
1456           const Output_data* od = this->plt_->rel_plt();
1457           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1458           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1459           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1460         }
1461
1462       if (this->rel_dyn_ != NULL)
1463         {
1464           const Output_data* od = this->rel_dyn_;
1465           odyn->add_section_address(elfcpp::DT_REL, od);
1466           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1467           odyn->add_constant(elfcpp::DT_RELENT,
1468                              elfcpp::Elf_sizes<32>::rel_size);
1469         }
1470
1471       if (!parameters->output_is_shared())
1472         {
1473           // The value of the DT_DEBUG tag is filled in by the dynamic
1474           // linker at run time, and used by the debugger.
1475           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1476         }
1477     }
1478
1479   // Emit any relocs we saved in an attempt to avoid generating COPY
1480   // relocs.
1481   if (this->copy_relocs_ == NULL)
1482     return;
1483   if (this->copy_relocs_->any_to_emit())
1484     {
1485       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1486       this->copy_relocs_->emit(rel_dyn);
1487     }
1488   delete this->copy_relocs_;
1489   this->copy_relocs_ = NULL;
1490 }
1491
1492 // Return whether a direct absolute static relocation needs to be applied.
1493 // In cases where Scan::local() or Scan::global() has created
1494 // a dynamic relocation other than R_386_RELATIVE, the addend
1495 // of the relocation is carried in the data, and we must not
1496 // apply the static relocation.
1497
1498 inline bool
1499 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
1500                                                  int ref_flags,
1501                                                  bool is_32bit)
1502 {
1503   // For local symbols, we will have created a non-RELATIVE dynamic
1504   // relocation only if (a) the output is position independent,
1505   // (b) the relocation is absolute (not pc- or segment-relative), and
1506   // (c) the relocation is not 32 bits wide.
1507   if (gsym == NULL)
1508     return !(parameters->output_is_position_independent()
1509              && (ref_flags & Symbol::ABSOLUTE_REF)
1510              && !is_32bit);
1511
1512   // For global symbols, we use the same helper routines used in the
1513   // scan pass.  If we did not create a dynamic relocation, or if we
1514   // created a RELATIVE dynamic relocation, we should apply the static
1515   // relocation.
1516   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
1517   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
1518                 && gsym->can_use_relative_reloc(ref_flags
1519                                                 & Symbol::FUNCTION_CALL);
1520   return !has_dyn || is_rel;
1521 }
1522
1523 // Perform a relocation.
1524
1525 inline bool
1526 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1527                                 Target_i386* target,
1528                                 size_t relnum,
1529                                 const elfcpp::Rel<32, false>& rel,
1530                                 unsigned int r_type,
1531                                 const Sized_symbol<32>* gsym,
1532                                 const Symbol_value<32>* psymval,
1533                                 unsigned char* view,
1534                                 elfcpp::Elf_types<32>::Elf_Addr address,
1535                                 section_size_type view_size)
1536 {
1537   if (this->skip_call_tls_get_addr_)
1538     {
1539       if (r_type != elfcpp::R_386_PLT32
1540           || gsym == NULL
1541           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1542         gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1543                                _("missing expected TLS relocation"));
1544       else
1545         {
1546           this->skip_call_tls_get_addr_ = false;
1547           return false;
1548         }
1549     }
1550
1551   // Pick the value to use for symbols defined in shared objects.
1552   Symbol_value<32> symval;
1553   bool is_nonpic = (r_type == elfcpp::R_386_PC8
1554                     || r_type == elfcpp::R_386_PC16
1555                     || r_type == elfcpp::R_386_PC32);
1556   if (gsym != NULL
1557       && (gsym->is_from_dynobj()
1558           || (parameters->output_is_shared()
1559               && (gsym->is_undefined() || gsym->is_preemptible())))
1560       && gsym->has_plt_offset()
1561       && (!is_nonpic || !parameters->output_is_shared()))
1562     {
1563       symval.set_output_value(target->plt_section()->address()
1564                               + gsym->plt_offset());
1565       psymval = &symval;
1566     }
1567
1568   const Sized_relobj<32, false>* object = relinfo->object;
1569
1570   // Get the GOT offset if needed.
1571   // The GOT pointer points to the end of the GOT section.
1572   // We need to subtract the size of the GOT section to get
1573   // the actual offset to use in the relocation.
1574   bool have_got_offset = false;
1575   unsigned int got_offset = 0;
1576   switch (r_type)
1577     {
1578     case elfcpp::R_386_GOT32:
1579       if (gsym != NULL)
1580         {
1581           gold_assert(gsym->has_got_offset());
1582           got_offset = gsym->got_offset() - target->got_size();
1583         }
1584       else
1585         {
1586           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1587           gold_assert(object->local_has_got_offset(r_sym));
1588           got_offset = object->local_got_offset(r_sym) - target->got_size();
1589         }
1590       have_got_offset = true;
1591       break;
1592
1593     default:
1594       break;
1595     }
1596
1597   switch (r_type)
1598     {
1599     case elfcpp::R_386_NONE:
1600     case elfcpp::R_386_GNU_VTINHERIT:
1601     case elfcpp::R_386_GNU_VTENTRY:
1602       break;
1603
1604     case elfcpp::R_386_32:
1605       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true))
1606         Relocate_functions<32, false>::rel32(view, object, psymval);
1607       break;
1608
1609     case elfcpp::R_386_PC32:
1610       {
1611         int ref_flags = Symbol::NON_PIC_REF;
1612         if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1613           ref_flags |= Symbol::FUNCTION_CALL;
1614         if (should_apply_static_reloc(gsym, ref_flags, true))
1615           Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1616       }
1617       break;
1618
1619     case elfcpp::R_386_16:
1620       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1621         Relocate_functions<32, false>::rel16(view, object, psymval);
1622       break;
1623
1624     case elfcpp::R_386_PC16:
1625       {
1626         int ref_flags = Symbol::NON_PIC_REF;
1627         if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1628           ref_flags |= Symbol::FUNCTION_CALL;
1629         if (should_apply_static_reloc(gsym, ref_flags, false))
1630           Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1631       }
1632       break;
1633
1634     case elfcpp::R_386_8:
1635       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1636         Relocate_functions<32, false>::rel8(view, object, psymval);
1637       break;
1638
1639     case elfcpp::R_386_PC8:
1640       {
1641         int ref_flags = Symbol::NON_PIC_REF;
1642         if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1643           ref_flags |= Symbol::FUNCTION_CALL;
1644         if (should_apply_static_reloc(gsym, ref_flags, false))
1645           Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1646       }
1647       break;
1648
1649     case elfcpp::R_386_PLT32:
1650       gold_assert(gsym == NULL
1651                   || gsym->has_plt_offset()
1652                   || gsym->final_value_is_known()
1653                   || (gsym->is_defined()
1654                       && !gsym->is_from_dynobj()
1655                       && !gsym->is_preemptible()));
1656       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1657       break;
1658
1659     case elfcpp::R_386_GOT32:
1660       gold_assert(have_got_offset);
1661       Relocate_functions<32, false>::rel32(view, got_offset);
1662       break;
1663
1664     case elfcpp::R_386_GOTOFF:
1665       {
1666         elfcpp::Elf_types<32>::Elf_Addr value;
1667         value = (psymval->value(object, 0)
1668                  - target->got_plt_section()->address());
1669         Relocate_functions<32, false>::rel32(view, value);
1670       }
1671       break;
1672
1673     case elfcpp::R_386_GOTPC:
1674       {
1675         elfcpp::Elf_types<32>::Elf_Addr value;
1676         value = target->got_plt_section()->address();
1677         Relocate_functions<32, false>::pcrel32(view, value, address);
1678       }
1679       break;
1680
1681     case elfcpp::R_386_COPY:
1682     case elfcpp::R_386_GLOB_DAT:
1683     case elfcpp::R_386_JUMP_SLOT:
1684     case elfcpp::R_386_RELATIVE:
1685       // These are outstanding tls relocs, which are unexpected when
1686       // linking.
1687     case elfcpp::R_386_TLS_TPOFF:
1688     case elfcpp::R_386_TLS_DTPMOD32:
1689     case elfcpp::R_386_TLS_DTPOFF32:
1690     case elfcpp::R_386_TLS_TPOFF32:
1691     case elfcpp::R_386_TLS_DESC:
1692       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1693                              _("unexpected reloc %u in object file"),
1694                              r_type);
1695       break;
1696
1697       // These are initial tls relocs, which are expected when
1698       // linking.
1699     case elfcpp::R_386_TLS_GD:             // Global-dynamic
1700     case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
1701     case elfcpp::R_386_TLS_DESC_CALL:
1702     case elfcpp::R_386_TLS_LDM:            // Local-dynamic
1703     case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
1704     case elfcpp::R_386_TLS_IE:             // Initial-exec
1705     case elfcpp::R_386_TLS_IE_32:
1706     case elfcpp::R_386_TLS_GOTIE:
1707     case elfcpp::R_386_TLS_LE:             // Local-exec
1708     case elfcpp::R_386_TLS_LE_32:
1709       this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
1710                          view, address, view_size);
1711       break;
1712
1713     case elfcpp::R_386_32PLT:
1714     case elfcpp::R_386_TLS_GD_32:
1715     case elfcpp::R_386_TLS_GD_PUSH:
1716     case elfcpp::R_386_TLS_GD_CALL:
1717     case elfcpp::R_386_TLS_GD_POP:
1718     case elfcpp::R_386_TLS_LDM_32:
1719     case elfcpp::R_386_TLS_LDM_PUSH:
1720     case elfcpp::R_386_TLS_LDM_CALL:
1721     case elfcpp::R_386_TLS_LDM_POP:
1722     case elfcpp::R_386_USED_BY_INTEL_200:
1723     default:
1724       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1725                              _("unsupported reloc %u"),
1726                              r_type);
1727       break;
1728     }
1729
1730   return true;
1731 }
1732
1733 // Perform a TLS relocation.
1734
1735 inline void
1736 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1737                                     Target_i386* target,
1738                                     size_t relnum,
1739                                     const elfcpp::Rel<32, false>& rel,
1740                                     unsigned int r_type,
1741                                     const Sized_symbol<32>* gsym,
1742                                     const Symbol_value<32>* psymval,
1743                                     unsigned char* view,
1744                                     elfcpp::Elf_types<32>::Elf_Addr,
1745                                     section_size_type view_size)
1746 {
1747   Output_segment* tls_segment = relinfo->layout->tls_segment();
1748
1749   const Sized_relobj<32, false>* object = relinfo->object;
1750
1751   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
1752
1753   const bool is_final = (gsym == NULL
1754                          ? !parameters->output_is_position_independent()
1755                          : gsym->final_value_is_known());
1756   const tls::Tls_optimization optimized_type
1757       = Target_i386::optimize_tls_reloc(is_final, r_type);
1758   switch (r_type)
1759     {
1760     case elfcpp::R_386_TLS_GD:           // Global-dynamic
1761       if (optimized_type == tls::TLSOPT_TO_LE)
1762         {
1763           gold_assert(tls_segment != NULL);
1764           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1765                              rel, r_type, value, view,
1766                              view_size);
1767           break;
1768         }
1769       else
1770         {
1771           unsigned int got_offset;
1772           if (gsym != NULL)
1773             {
1774               gold_assert(gsym->has_tls_got_offset(true));
1775               got_offset = gsym->tls_got_offset(true) - target->got_size();
1776             }
1777           else
1778             {
1779               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1780               gold_assert(object->local_has_tls_got_offset(r_sym, true));
1781               got_offset = (object->local_tls_got_offset(r_sym, true)
1782                             - target->got_size());
1783             }
1784           if (optimized_type == tls::TLSOPT_TO_IE)
1785             {
1786               gold_assert(tls_segment != NULL);
1787               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1788                                  got_offset, view, view_size);
1789               break;
1790             }
1791           else if (optimized_type == tls::TLSOPT_NONE)
1792             {
1793               // Relocate the field with the offset of the pair of GOT
1794               // entries.
1795               Relocate_functions<32, false>::rel32(view, got_offset);
1796               break;
1797             }
1798         }
1799       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1800                              _("unsupported reloc %u"),
1801                              r_type);
1802       break;
1803
1804     case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
1805     case elfcpp::R_386_TLS_DESC_CALL:
1806       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1807                              _("unsupported reloc %u"),
1808                              r_type);
1809       break;
1810
1811     case elfcpp::R_386_TLS_LDM:          // Local-dynamic
1812       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1813         {
1814           gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1815                                  _("both SUN and GNU model "
1816                                    "TLS relocations"));
1817           break;
1818         }
1819       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1820       if (optimized_type == tls::TLSOPT_TO_LE)
1821         {
1822           gold_assert(tls_segment != NULL);
1823           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1824                              value, view, view_size);
1825           break;
1826         }
1827       else if (optimized_type == tls::TLSOPT_NONE)
1828         {
1829           // Relocate the field with the offset of the GOT entry for
1830           // the module index.
1831           unsigned int got_offset;
1832           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1833                         - target->got_size());
1834           Relocate_functions<32, false>::rel32(view, got_offset);
1835           break;
1836         }
1837       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1838                              _("unsupported reloc %u"),
1839                              r_type);
1840       break;
1841
1842     case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
1843       // This reloc can appear in debugging sections, in which case we
1844       // won't see the TLS_LDM reloc.  The local_dynamic_type field
1845       // tells us this.
1846       if (optimized_type == tls::TLSOPT_TO_LE)
1847         {
1848           gold_assert(tls_segment != NULL);
1849           value -= tls_segment->memsz();
1850         }
1851       Relocate_functions<32, false>::rel32(view, value);
1852       break;
1853
1854     case elfcpp::R_386_TLS_IE:           // Initial-exec
1855     case elfcpp::R_386_TLS_GOTIE:
1856     case elfcpp::R_386_TLS_IE_32:
1857       if (optimized_type == tls::TLSOPT_TO_LE)
1858         {
1859           gold_assert(tls_segment != NULL);
1860           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1861                                               rel, r_type, value, view,
1862                                               view_size);
1863           break;
1864         }
1865       else if (optimized_type == tls::TLSOPT_NONE)
1866         {
1867           // Relocate the field with the offset of the GOT entry for
1868           // the tp-relative offset of the symbol.
1869           unsigned int got_offset;
1870           if (gsym != NULL)
1871             {
1872               gold_assert(gsym->has_got_offset());
1873               got_offset = gsym->got_offset();
1874             }
1875           else
1876             {
1877               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1878               gold_assert(object->local_has_got_offset(r_sym));
1879               got_offset = object->local_got_offset(r_sym);
1880             }
1881           // For the R_386_TLS_IE relocation, we need to apply the
1882           // absolute address of the GOT entry.
1883           if (r_type == elfcpp::R_386_TLS_IE)
1884             got_offset += target->got_plt_section()->address();
1885           // All GOT offsets are relative to the end of the GOT.
1886           got_offset -= target->got_size();
1887           Relocate_functions<32, false>::rel32(view, got_offset);
1888           break;
1889         }
1890       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1891                              _("unsupported reloc %u"),
1892                              r_type);
1893       break;
1894
1895     case elfcpp::R_386_TLS_LE:           // Local-exec
1896       // If we're creating a shared library, a dynamic relocation will
1897       // have been created for this location, so do not apply it now.
1898       if (!parameters->output_is_shared())
1899         {
1900           gold_assert(tls_segment != NULL);
1901           value -= tls_segment->memsz();
1902           Relocate_functions<32, false>::rel32(view, value);
1903         }
1904       break;
1905
1906     case elfcpp::R_386_TLS_LE_32:
1907       // If we're creating a shared library, a dynamic relocation will
1908       // have been created for this location, so do not apply it now.
1909       if (!parameters->output_is_shared())
1910         {
1911           gold_assert(tls_segment != NULL);
1912           value = tls_segment->memsz() - value;
1913           Relocate_functions<32, false>::rel32(view, value);
1914         }
1915       break;
1916     }
1917 }
1918
1919 // Do a relocation in which we convert a TLS General-Dynamic to a
1920 // Local-Exec.
1921
1922 inline void
1923 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1924                                     size_t relnum,
1925                                     Output_segment* tls_segment,
1926                                     const elfcpp::Rel<32, false>& rel,
1927                                     unsigned int,
1928                                     elfcpp::Elf_types<32>::Elf_Addr value,
1929                                     unsigned char* view,
1930                                     section_size_type view_size)
1931 {
1932   // leal foo(,%reg,1),%eax; call ___tls_get_addr
1933   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1934   // leal foo(%reg),%eax; call ___tls_get_addr
1935   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1936
1937   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1938   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1939
1940   unsigned char op1 = view[-1];
1941   unsigned char op2 = view[-2];
1942
1943   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1944                  op2 == 0x8d || op2 == 0x04);
1945   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1946
1947   int roff = 5;
1948
1949   if (op2 == 0x04)
1950     {
1951       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1952       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1953       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1954                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1955       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1956     }
1957   else
1958     {
1959       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1960                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1961       if (rel.get_r_offset() + 9 < view_size
1962           && view[9] == 0x90)
1963         {
1964           // There is a trailing nop.  Use the size byte subl.
1965           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1966           roff = 6;
1967         }
1968       else
1969         {
1970           // Use the five byte subl.
1971           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1972         }
1973     }
1974
1975   value = tls_segment->memsz() - value;
1976   Relocate_functions<32, false>::rel32(view + roff, value);
1977
1978   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1979   // We can skip it.
1980   this->skip_call_tls_get_addr_ = true;
1981 }
1982
1983 // Do a relocation in which we convert a TLS General-Dynamic to an
1984 // Initial-Exec.
1985
1986 inline void
1987 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
1988                                     size_t relnum,
1989                                     Output_segment* tls_segment,
1990                                     const elfcpp::Rel<32, false>& rel,
1991                                     unsigned int,
1992                                     elfcpp::Elf_types<32>::Elf_Addr value,
1993                                     unsigned char* view,
1994                                     section_size_type view_size)
1995 {
1996   // leal foo(,%ebx,1),%eax; call ___tls_get_addr
1997   //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
1998
1999   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2000   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2001
2002   unsigned char op1 = view[-1];
2003   unsigned char op2 = view[-2];
2004
2005   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2006                  op2 == 0x8d || op2 == 0x04);
2007   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2008
2009   int roff = 5;
2010
2011   // FIXME: For now, support only one form.
2012   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2013                  op1 == 0x8d && op2 == 0x04);
2014
2015   if (op2 == 0x04)
2016     {
2017       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2018       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2019       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2020                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2021       memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
2022     }
2023   else
2024     {
2025       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2026                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2027       if (rel.get_r_offset() + 9 < view_size
2028           && view[9] == 0x90)
2029         {
2030           // FIXME: This is not the right instruction sequence.
2031           // There is a trailing nop.  Use the size byte subl.
2032           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2033           roff = 6;
2034         }
2035       else
2036         {
2037           // FIXME: This is not the right instruction sequence.
2038           // Use the five byte subl.
2039           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2040         }
2041     }
2042
2043   value = tls_segment->memsz() - value;
2044   Relocate_functions<32, false>::rel32(view + roff, value);
2045
2046   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2047   // We can skip it.
2048   this->skip_call_tls_get_addr_ = true;
2049 }
2050
2051 // Do a relocation in which we convert a TLS Local-Dynamic to a
2052 // Local-Exec.
2053
2054 inline void
2055 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
2056                                     size_t relnum,
2057                                     Output_segment*,
2058                                     const elfcpp::Rel<32, false>& rel,
2059                                     unsigned int,
2060                                     elfcpp::Elf_types<32>::Elf_Addr,
2061                                     unsigned char* view,
2062                                     section_size_type view_size)
2063 {
2064   // leal foo(%reg), %eax; call ___tls_get_addr
2065   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
2066
2067   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2068   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2069
2070   // FIXME: Does this test really always pass?
2071   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2072                  view[-2] == 0x8d && view[-1] == 0x83);
2073
2074   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2075
2076   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
2077
2078   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2079   // We can skip it.
2080   this->skip_call_tls_get_addr_ = true;
2081 }
2082
2083 // Do a relocation in which we convert a TLS Initial-Exec to a
2084 // Local-Exec.
2085
2086 inline void
2087 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
2088                                     size_t relnum,
2089                                     Output_segment* tls_segment,
2090                                     const elfcpp::Rel<32, false>& rel,
2091                                     unsigned int r_type,
2092                                     elfcpp::Elf_types<32>::Elf_Addr value,
2093                                     unsigned char* view,
2094                                     section_size_type view_size)
2095 {
2096   // We have to actually change the instructions, which means that we
2097   // need to examine the opcodes to figure out which instruction we
2098   // are looking at.
2099   if (r_type == elfcpp::R_386_TLS_IE)
2100     {
2101       // movl %gs:XX,%eax  ==>  movl $YY,%eax
2102       // movl %gs:XX,%reg  ==>  movl $YY,%reg
2103       // addl %gs:XX,%reg  ==>  addl $YY,%reg
2104       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
2105       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2106
2107       unsigned char op1 = view[-1];
2108       if (op1 == 0xa1)
2109         {
2110           // movl XX,%eax  ==>  movl $YY,%eax
2111           view[-1] = 0xb8;
2112         }
2113       else
2114         {
2115           tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2116
2117           unsigned char op2 = view[-2];
2118           if (op2 == 0x8b)
2119             {
2120               // movl XX,%reg  ==>  movl $YY,%reg
2121               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2122                              (op1 & 0xc7) == 0x05);
2123               view[-2] = 0xc7;
2124               view[-1] = 0xc0 | ((op1 >> 3) & 7);
2125             }
2126           else if (op2 == 0x03)
2127             {
2128               // addl XX,%reg  ==>  addl $YY,%reg
2129               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2130                              (op1 & 0xc7) == 0x05);
2131               view[-2] = 0x81;
2132               view[-1] = 0xc0 | ((op1 >> 3) & 7);
2133             }
2134           else
2135             tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2136         }
2137     }
2138   else
2139     {
2140       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
2141       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
2142       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
2143       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2144       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2145
2146       unsigned char op1 = view[-1];
2147       unsigned char op2 = view[-2];
2148       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2149                      (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
2150       if (op2 == 0x8b)
2151         {
2152           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
2153           view[-2] = 0xc7;
2154           view[-1] = 0xc0 | ((op1 >> 3) & 7);
2155         }
2156       else if (op2 == 0x2b)
2157         {
2158           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
2159           view[-2] = 0x81;
2160           view[-1] = 0xe8 | ((op1 >> 3) & 7);
2161         }
2162       else if (op2 == 0x03)
2163         {
2164           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
2165           view[-2] = 0x81;
2166           view[-1] = 0xc0 | ((op1 >> 3) & 7);
2167         }
2168       else
2169         tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2170     }
2171
2172   value = tls_segment->memsz() - value;
2173   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
2174     value = - value;
2175
2176   Relocate_functions<32, false>::rel32(view, value);
2177 }
2178
2179 // Relocate section data.
2180
2181 void
2182 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
2183                               unsigned int sh_type,
2184                               const unsigned char* prelocs,
2185                               size_t reloc_count,
2186                               Output_section* output_section,
2187                               bool needs_special_offset_handling,
2188                               unsigned char* view,
2189                               elfcpp::Elf_types<32>::Elf_Addr address,
2190                               section_size_type view_size)
2191 {
2192   gold_assert(sh_type == elfcpp::SHT_REL);
2193
2194   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
2195                          Target_i386::Relocate>(
2196     relinfo,
2197     this,
2198     prelocs,
2199     reloc_count,
2200     output_section,
2201     needs_special_offset_handling,
2202     view,
2203     address,
2204     view_size);
2205 }
2206
2207 // Return the size of a relocation while scanning during a relocatable
2208 // link.
2209
2210 unsigned int
2211 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
2212     unsigned int r_type,
2213     Relobj* object)
2214 {
2215   switch (r_type)
2216     {
2217     case elfcpp::R_386_NONE:
2218     case elfcpp::R_386_GNU_VTINHERIT:
2219     case elfcpp::R_386_GNU_VTENTRY:
2220     case elfcpp::R_386_TLS_GD:            // Global-dynamic
2221     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
2222     case elfcpp::R_386_TLS_DESC_CALL:
2223     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
2224     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
2225     case elfcpp::R_386_TLS_IE:            // Initial-exec
2226     case elfcpp::R_386_TLS_IE_32:
2227     case elfcpp::R_386_TLS_GOTIE:
2228     case elfcpp::R_386_TLS_LE:            // Local-exec
2229     case elfcpp::R_386_TLS_LE_32:
2230       return 0;
2231
2232     case elfcpp::R_386_32:
2233     case elfcpp::R_386_PC32:
2234     case elfcpp::R_386_GOT32:
2235     case elfcpp::R_386_PLT32:
2236     case elfcpp::R_386_GOTOFF:
2237     case elfcpp::R_386_GOTPC:
2238      return 4;
2239
2240     case elfcpp::R_386_16:
2241     case elfcpp::R_386_PC16:
2242       return 2;
2243
2244     case elfcpp::R_386_8:
2245     case elfcpp::R_386_PC8:
2246       return 1;
2247
2248       // These are relocations which should only be seen by the
2249       // dynamic linker, and should never be seen here.
2250     case elfcpp::R_386_COPY:
2251     case elfcpp::R_386_GLOB_DAT:
2252     case elfcpp::R_386_JUMP_SLOT:
2253     case elfcpp::R_386_RELATIVE:
2254     case elfcpp::R_386_TLS_TPOFF:
2255     case elfcpp::R_386_TLS_DTPMOD32:
2256     case elfcpp::R_386_TLS_DTPOFF32:
2257     case elfcpp::R_386_TLS_TPOFF32:
2258     case elfcpp::R_386_TLS_DESC:
2259       object->error(_("unexpected reloc %u in object file"), r_type);
2260       return 0;
2261
2262     case elfcpp::R_386_32PLT:
2263     case elfcpp::R_386_TLS_GD_32:
2264     case elfcpp::R_386_TLS_GD_PUSH:
2265     case elfcpp::R_386_TLS_GD_CALL:
2266     case elfcpp::R_386_TLS_GD_POP:
2267     case elfcpp::R_386_TLS_LDM_32:
2268     case elfcpp::R_386_TLS_LDM_PUSH:
2269     case elfcpp::R_386_TLS_LDM_CALL:
2270     case elfcpp::R_386_TLS_LDM_POP:
2271     case elfcpp::R_386_USED_BY_INTEL_200:
2272     default:
2273       object->error(_("unsupported reloc %u in object file"), r_type);
2274       return 0;
2275     }
2276 }
2277
2278 // Scan the relocs during a relocatable link.
2279
2280 void
2281 Target_i386::scan_relocatable_relocs(const General_options& options,
2282                                      Symbol_table* symtab,
2283                                      Layout* layout,
2284                                      Sized_relobj<32, false>* object,
2285                                      unsigned int data_shndx,
2286                                      unsigned int sh_type,
2287                                      const unsigned char* prelocs,
2288                                      size_t reloc_count,
2289                                      Output_section* output_section,
2290                                      bool needs_special_offset_handling,
2291                                      size_t local_symbol_count,
2292                                      const unsigned char* plocal_symbols,
2293                                      Relocatable_relocs* rr)
2294 {
2295   gold_assert(sh_type == elfcpp::SHT_REL);
2296
2297   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
2298     Relocatable_size_for_reloc> Scan_relocatable_relocs;
2299
2300   gold::scan_relocatable_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2301       Scan_relocatable_relocs>(
2302     options,
2303     symtab,
2304     layout,
2305     object,
2306     data_shndx,
2307     prelocs,
2308     reloc_count,
2309     output_section,
2310     needs_special_offset_handling,
2311     local_symbol_count,
2312     plocal_symbols,
2313     rr);
2314 }
2315
2316 // Relocate a section during a relocatable link.
2317
2318 void
2319 Target_i386::relocate_for_relocatable(
2320     const Relocate_info<32, false>* relinfo,
2321     unsigned int sh_type,
2322     const unsigned char* prelocs,
2323     size_t reloc_count,
2324     Output_section* output_section,
2325     off_t offset_in_output_section,
2326     const Relocatable_relocs* rr,
2327     unsigned char* view,
2328     elfcpp::Elf_types<32>::Elf_Addr view_address,
2329     section_size_type view_size,
2330     unsigned char* reloc_view,
2331     section_size_type reloc_view_size)
2332 {
2333   gold_assert(sh_type == elfcpp::SHT_REL);
2334
2335   gold::relocate_for_relocatable<32, false, Target_i386, elfcpp::SHT_REL>(
2336     relinfo,
2337     prelocs,
2338     reloc_count,
2339     output_section,
2340     offset_in_output_section,
2341     rr,
2342     view,
2343     view_address,
2344     view_size,
2345     reloc_view,
2346     reloc_view_size);
2347 }
2348
2349 // Return the value to use for a dynamic which requires special
2350 // treatment.  This is how we support equality comparisons of function
2351 // pointers across shared library boundaries, as described in the
2352 // processor specific ABI supplement.
2353
2354 uint64_t
2355 Target_i386::do_dynsym_value(const Symbol* gsym) const
2356 {
2357   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2358   return this->plt_section()->address() + gsym->plt_offset();
2359 }
2360
2361 // Return a string used to fill a code section with nops to take up
2362 // the specified length.
2363
2364 std::string
2365 Target_i386::do_code_fill(section_size_type length)
2366 {
2367   if (length >= 16)
2368     {
2369       // Build a jmp instruction to skip over the bytes.
2370       unsigned char jmp[5];
2371       jmp[0] = 0xe9;
2372       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2373       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2374               + std::string(length - 5, '\0'));
2375     }
2376
2377   // Nop sequences of various lengths.
2378   const char nop1[1] = { 0x90 };                   // nop
2379   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
2380   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
2381   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
2382   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
2383                          0x00 };                   // leal 0(%esi,1),%esi
2384   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
2385                          0x00, 0x00 };
2386   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
2387                          0x00, 0x00, 0x00 };
2388   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
2389                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2390   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
2391                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
2392                          0x00 };
2393   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2394                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2395                            0x00, 0x00 };
2396   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2397                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2398                            0x00, 0x00, 0x00 };
2399   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2400                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2401                            0x00, 0x00, 0x00, 0x00 };
2402   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2403                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2404                            0x27, 0x00, 0x00, 0x00,
2405                            0x00 };
2406   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2407                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2408                            0xbc, 0x27, 0x00, 0x00,
2409                            0x00, 0x00 };
2410   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2411                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2412                            0x90, 0x90, 0x90, 0x90,
2413                            0x90, 0x90, 0x90 };
2414
2415   const char* nops[16] = {
2416     NULL,
2417     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2418     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2419   };
2420
2421   return std::string(nops[length], length);
2422 }
2423
2424 // The selector for i386 object files.
2425
2426 class Target_selector_i386 : public Target_selector
2427 {
2428 public:
2429   Target_selector_i386()
2430     : Target_selector(elfcpp::EM_386, 32, false)
2431   { }
2432
2433   Target*
2434   recognize(int machine, int osabi, int abiversion);
2435
2436  private:
2437   Target_i386* target_;
2438 };
2439
2440 // Recognize an i386 object file when we already know that the machine
2441 // number is EM_386.
2442
2443 Target*
2444 Target_selector_i386::recognize(int, int, int)
2445 {
2446   if (this->target_ == NULL)
2447     this->target_ = new Target_i386();
2448   return this->target_;
2449 }
2450
2451 Target_selector_i386 target_selector_i386;
2452
2453 } // End anonymous namespace.