From Craig Silverstein: x86_64 TLS support.
[platform/upstream/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38
39 namespace
40 {
41
42 using namespace gold;
43
44 class Output_data_plt_i386;
45
46 // The i386 target class.
47
48 class Target_i386 : public Sized_target<32, false>
49 {
50  public:
51   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
52
53   Target_i386()
54     : Sized_target<32, false>(&i386_info),
55       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
56       copy_relocs_(NULL), dynbss_(NULL)
57   { }
58
59   // Scan the relocations to look for symbol adjustments.
60   void
61   scan_relocs(const General_options& options,
62               Symbol_table* symtab,
63               Layout* layout,
64               Sized_relobj<32, false>* object,
65               unsigned int data_shndx,
66               unsigned int sh_type,
67               const unsigned char* prelocs,
68               size_t reloc_count,
69               size_t local_symbol_count,
70               const unsigned char* plocal_symbols,
71               Symbol** global_symbols);
72
73   // Finalize the sections.
74   void
75   do_finalize_sections(Layout*);
76
77   // Return the value to use for a dynamic which requires special
78   // treatment.
79   uint64_t
80   do_dynsym_value(const Symbol*) const;
81
82   // Relocate a section.
83   void
84   relocate_section(const Relocate_info<32, false>*,
85                    unsigned int sh_type,
86                    const unsigned char* prelocs,
87                    size_t reloc_count,
88                    unsigned char* view,
89                    elfcpp::Elf_types<32>::Elf_Addr view_address,
90                    off_t view_size);
91
92   // Return a string used to fill a code section with nops.
93   std::string
94   do_code_fill(off_t length);
95
96  private:
97   // The class which scans relocations.
98   struct Scan
99   {
100     inline void
101     local(const General_options& options, Symbol_table* symtab,
102           Layout* layout, Target_i386* target,
103           Sized_relobj<32, false>* object,
104           unsigned int data_shndx,
105           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
106           const elfcpp::Sym<32, false>& lsym);
107
108     inline void
109     global(const General_options& options, Symbol_table* symtab,
110            Layout* layout, Target_i386* target,
111            Sized_relobj<32, false>* object,
112            unsigned int data_shndx,
113            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
114            Symbol* gsym);
115   };
116
117   // The class which implements relocation.
118   class Relocate
119   {
120    public:
121     Relocate()
122       : skip_call_tls_get_addr_(false)
123     { }
124
125     ~Relocate()
126     {
127       if (this->skip_call_tls_get_addr_)
128         {
129           // FIXME: This needs to specify the location somehow.
130           fprintf(stderr, _("%s: missing expected TLS relocation\n"),
131                   program_name);
132           gold_exit(false);
133         }
134     }
135
136     // Do a relocation.  Return false if the caller should not issue
137     // any warnings about this relocation.
138     inline bool
139     relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
140              const elfcpp::Rel<32, false>&,
141              unsigned int r_type, const Sized_symbol<32>*,
142              const Symbol_value<32>*,
143              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
144              off_t);
145
146    private:
147     // Do a TLS relocation.
148     inline void
149     relocate_tls(const Relocate_info<32, false>*, size_t relnum,
150                  const elfcpp::Rel<32, false>&,
151                  unsigned int r_type, const Sized_symbol<32>*,
152                  const Symbol_value<32>*,
153                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
154
155     // Do a TLS Initial-Exec to Local-Exec transition.
156     static inline void
157     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
158                  Output_segment* tls_segment,
159                  const elfcpp::Rel<32, false>&, unsigned int r_type,
160                  elfcpp::Elf_types<32>::Elf_Addr value,
161                  unsigned char* view,
162                  off_t view_size);
163
164     // Do a TLS Global-Dynamic to Local-Exec transition.
165     inline void
166     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
167                  Output_segment* tls_segment,
168                  const elfcpp::Rel<32, false>&, unsigned int r_type,
169                  elfcpp::Elf_types<32>::Elf_Addr value,
170                  unsigned char* view,
171                  off_t view_size);
172
173     // Check the range for a TLS relocation.
174     static inline void
175     check_range(const Relocate_info<32, false>*, size_t relnum,
176                 const elfcpp::Rel<32, false>&, off_t, off_t);
177
178     // Check the validity of a TLS relocation.  This is like assert.
179     static inline void
180     check_tls(const Relocate_info<32, false>*, size_t relnum,
181               const elfcpp::Rel<32, false>&, bool);
182
183     // This is set if we should skip the next reloc, which should be a
184     // PLT32 reloc against ___tls_get_addr.
185     bool skip_call_tls_get_addr_;
186   };
187
188   // Adjust TLS relocation type based on the options and whether this
189   // is a local symbol.
190   static unsigned int
191   optimize_tls_reloc(bool is_final, int r_type);
192
193   // Get the GOT section, creating it if necessary.
194   Output_data_got<32, false>*
195   got_section(Symbol_table*, Layout*);
196
197   // Create a PLT entry for a global symbol.
198   void
199   make_plt_entry(Symbol_table*, Layout*, Symbol*);
200
201   // Get the PLT section.
202   const Output_data_plt_i386*
203   plt_section() const
204   {
205     gold_assert(this->plt_ != NULL);
206     return this->plt_;
207   }
208
209   // Get the dynamic reloc section, creating it if necessary.
210   Reloc_section*
211   rel_dyn_section(Layout*);
212
213   // Copy a relocation against a global symbol.
214   void
215   copy_reloc(const General_options*, Symbol_table*, Layout*,
216              Sized_relobj<32, false>*, unsigned int,
217              Symbol*, const elfcpp::Rel<32, false>&);
218
219   // Information about this specific target which we pass to the
220   // general Target structure.
221   static const Target::Target_info i386_info;
222
223   // The GOT section.
224   Output_data_got<32, false>* got_;
225   // The PLT section.
226   Output_data_plt_i386* plt_;
227   // The GOT PLT section.
228   Output_data_space* got_plt_;
229   // The dynamic reloc section.
230   Reloc_section* rel_dyn_;
231   // Relocs saved to avoid a COPY reloc.
232   Copy_relocs<32, false>* copy_relocs_;
233   // Space for variables copied with a COPY reloc.
234   Output_data_space* dynbss_;
235 };
236
237 const Target::Target_info Target_i386::i386_info =
238 {
239   32,                   // size
240   false,                // is_big_endian
241   elfcpp::EM_386,       // machine_code
242   false,                // has_make_symbol
243   false,                // has_resolve
244   true,                 // has_code_fill
245   "/usr/lib/libc.so.1", // dynamic_linker
246   0x08048000,           // text_segment_address
247   0x1000,               // abi_pagesize
248   0x1000                // common_pagesize
249 };
250
251 // Get the GOT section, creating it if necessary.
252
253 Output_data_got<32, false>*
254 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
255 {
256   if (this->got_ == NULL)
257     {
258       gold_assert(symtab != NULL && layout != NULL);
259
260       this->got_ = new Output_data_got<32, false>();
261
262       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
263                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
264                                       this->got_);
265
266       // The old GNU linker creates a .got.plt section.  We just
267       // create another set of data in the .got section.  Note that we
268       // always create a PLT if we create a GOT, although the PLT
269       // might be empty.
270       this->got_plt_ = new Output_data_space(4);
271       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
272                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
273                                       this->got_plt_);
274
275       // The first three entries are reserved.
276       this->got_plt_->set_space_size(3 * 4);
277
278       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
279       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
280                                     this->got_plt_,
281                                     0, 0, elfcpp::STT_OBJECT,
282                                     elfcpp::STB_LOCAL,
283                                     elfcpp::STV_HIDDEN, 0,
284                                     false, false);
285     }
286
287   return this->got_;
288 }
289
290 // Get the dynamic reloc section, creating it if necessary.
291
292 Target_i386::Reloc_section*
293 Target_i386::rel_dyn_section(Layout* layout)
294 {
295   if (this->rel_dyn_ == NULL)
296     {
297       gold_assert(layout != NULL);
298       this->rel_dyn_ = new Reloc_section();
299       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
300                                       elfcpp::SHF_ALLOC, this->rel_dyn_);
301     }
302   return this->rel_dyn_;
303 }
304
305 // A class to handle the PLT data.
306
307 class Output_data_plt_i386 : public Output_section_data
308 {
309  public:
310   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
311
312   Output_data_plt_i386(Layout*, Output_data_space*);
313
314   // Add an entry to the PLT.
315   void
316   add_entry(Symbol* gsym);
317
318   // Return the .rel.plt section data.
319   const Reloc_section*
320   rel_plt() const
321   { return this->rel_; }
322
323  protected:
324   void
325   do_adjust_output_section(Output_section* os);
326
327  private:
328   // The size of an entry in the PLT.
329   static const int plt_entry_size = 16;
330
331   // The first entry in the PLT for an executable.
332   static unsigned char exec_first_plt_entry[plt_entry_size];
333
334   // The first entry in the PLT for a shared object.
335   static unsigned char dyn_first_plt_entry[plt_entry_size];
336
337   // Other entries in the PLT for an executable.
338   static unsigned char exec_plt_entry[plt_entry_size];
339
340   // Other entries in the PLT for a shared object.
341   static unsigned char dyn_plt_entry[plt_entry_size];
342
343   // Set the final size.
344   void
345   do_set_address(uint64_t, off_t)
346   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
347
348   // Write out the PLT data.
349   void
350   do_write(Output_file*);
351
352   // The reloc section.
353   Reloc_section* rel_;
354   // The .got.plt section.
355   Output_data_space* got_plt_;
356   // The number of PLT entries.
357   unsigned int count_;
358 };
359
360 // Create the PLT section.  The ordinary .got section is an argument,
361 // since we need to refer to the start.  We also create our own .got
362 // section just for PLT entries.
363
364 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
365                                            Output_data_space* got_plt)
366   : Output_section_data(4), got_plt_(got_plt), count_(0)
367 {
368   this->rel_ = new Reloc_section();
369   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
370                                   elfcpp::SHF_ALLOC, this->rel_);
371 }
372
373 void
374 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
375 {
376   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
377   // linker, and so do we.
378   os->set_entsize(4);
379 }
380
381 // Add an entry to the PLT.
382
383 void
384 Output_data_plt_i386::add_entry(Symbol* gsym)
385 {
386   gold_assert(!gsym->has_plt_offset());
387
388   // Note that when setting the PLT offset we skip the initial
389   // reserved PLT entry.
390   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
391
392   ++this->count_;
393
394   off_t got_offset = this->got_plt_->data_size();
395
396   // Every PLT entry needs a GOT entry which points back to the PLT
397   // entry (this will be changed by the dynamic linker, normally
398   // lazily when the function is called).
399   this->got_plt_->set_space_size(got_offset + 4);
400
401   // Every PLT entry needs a reloc.
402   gsym->set_needs_dynsym_entry();
403   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
404                          got_offset);
405
406   // Note that we don't need to save the symbol.  The contents of the
407   // PLT are independent of which symbols are used.  The symbols only
408   // appear in the relocations.
409 }
410
411 // The first entry in the PLT for an executable.
412
413 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
414 {
415   0xff, 0x35,   // pushl contents of memory address
416   0, 0, 0, 0,   // replaced with address of .got + 4
417   0xff, 0x25,   // jmp indirect
418   0, 0, 0, 0,   // replaced with address of .got + 8
419   0, 0, 0, 0    // unused
420 };
421
422 // The first entry in the PLT for a shared object.
423
424 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
425 {
426   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
427   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
428   0, 0, 0, 0                    // unused
429 };
430
431 // Subsequent entries in the PLT for an executable.
432
433 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
434 {
435   0xff, 0x25,   // jmp indirect
436   0, 0, 0, 0,   // replaced with address of symbol in .got
437   0x68,         // pushl immediate
438   0, 0, 0, 0,   // replaced with offset into relocation table
439   0xe9,         // jmp relative
440   0, 0, 0, 0    // replaced with offset to start of .plt
441 };
442
443 // Subsequent entries in the PLT for a shared object.
444
445 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
446 {
447   0xff, 0xa3,   // jmp *offset(%ebx)
448   0, 0, 0, 0,   // replaced with offset of symbol in .got
449   0x68,         // pushl immediate
450   0, 0, 0, 0,   // replaced with offset into relocation table
451   0xe9,         // jmp relative
452   0, 0, 0, 0    // replaced with offset to start of .plt
453 };
454
455 // Write out the PLT.  This uses the hand-coded instructions above,
456 // and adjusts them as needed.  This is all specified by the i386 ELF
457 // Processor Supplement.
458
459 void
460 Output_data_plt_i386::do_write(Output_file* of)
461 {
462   const off_t offset = this->offset();
463   const off_t oview_size = this->data_size();
464   unsigned char* const oview = of->get_output_view(offset, oview_size);
465
466   const off_t got_file_offset = this->got_plt_->offset();
467   const off_t got_size = this->got_plt_->data_size();
468   unsigned char* const got_view = of->get_output_view(got_file_offset,
469                                                       got_size);
470
471   unsigned char* pov = oview;
472
473   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
474   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
475
476   if (parameters->output_is_shared())
477     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
478   else
479     {
480       memcpy(pov, exec_first_plt_entry, plt_entry_size);
481       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
482       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
483     }
484   pov += plt_entry_size;
485
486   unsigned char* got_pov = got_view;
487
488   memset(got_pov, 0, 12);
489   got_pov += 12;
490
491   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
492
493   unsigned int plt_offset = plt_entry_size;
494   unsigned int plt_rel_offset = 0;
495   unsigned int got_offset = 12;
496   const unsigned int count = this->count_;
497   for (unsigned int i = 0;
498        i < count;
499        ++i,
500          pov += plt_entry_size,
501          got_pov += 4,
502          plt_offset += plt_entry_size,
503          plt_rel_offset += rel_size,
504          got_offset += 4)
505     {
506       // Set and adjust the PLT entry itself.
507
508       if (parameters->output_is_shared())
509         {
510           memcpy(pov, dyn_plt_entry, plt_entry_size);
511           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
512         }
513       else
514         {
515           memcpy(pov, exec_plt_entry, plt_entry_size);
516           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
517                                                       (got_address
518                                                        + got_offset));
519         }
520
521       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
522       elfcpp::Swap<32, false>::writeval(pov + 12,
523                                         - (plt_offset + plt_entry_size));
524
525       // Set the entry in the GOT.
526       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
527     }
528
529   gold_assert(pov - oview == oview_size);
530   gold_assert(got_pov - got_view == got_size);
531
532   of->write_output_view(offset, oview_size, oview);
533   of->write_output_view(got_file_offset, got_size, got_view);
534 }
535
536 // Create a PLT entry for a global symbol.
537
538 void
539 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
540 {
541   if (gsym->has_plt_offset())
542     return;
543
544   if (this->plt_ == NULL)
545     {
546       // Create the GOT sections first.
547       this->got_section(symtab, layout);
548
549       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
550       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
551                                       (elfcpp::SHF_ALLOC
552                                        | elfcpp::SHF_EXECINSTR),
553                                       this->plt_);
554     }
555
556   this->plt_->add_entry(gsym);
557 }
558
559 // Handle a relocation against a non-function symbol defined in a
560 // dynamic object.  The traditional way to handle this is to generate
561 // a COPY relocation to copy the variable at runtime from the shared
562 // object into the executable's data segment.  However, this is
563 // undesirable in general, as if the size of the object changes in the
564 // dynamic object, the executable will no longer work correctly.  If
565 // this relocation is in a writable section, then we can create a
566 // dynamic reloc and the dynamic linker will resolve it to the correct
567 // address at runtime.  However, we do not want do that if the
568 // relocation is in a read-only section, as it would prevent the
569 // readonly segment from being shared.  And if we have to eventually
570 // generate a COPY reloc, then any dynamic relocations will be
571 // useless.  So this means that if this is a writable section, we need
572 // to save the relocation until we see whether we have to create a
573 // COPY relocation for this symbol for any other relocation.
574
575 void
576 Target_i386::copy_reloc(const General_options* options,
577                         Symbol_table* symtab,
578                         Layout* layout,
579                         Sized_relobj<32, false>* object,
580                         unsigned int data_shndx, Symbol* gsym,
581                         const elfcpp::Rel<32, false>& rel)
582 {
583   Sized_symbol<32>* ssym;
584   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
585                                                         SELECT_SIZE(32));
586
587   if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
588                                                data_shndx, ssym))
589     {
590       // So far we do not need a COPY reloc.  Save this relocation.
591       // If it turns out that we never need a COPY reloc for this
592       // symbol, then we will emit the relocation.
593       if (this->copy_relocs_ == NULL)
594         this->copy_relocs_ = new Copy_relocs<32, false>();
595       this->copy_relocs_->save(ssym, object, data_shndx, rel);
596     }
597   else
598     {
599       // Allocate space for this symbol in the .bss section.
600
601       elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
602
603       // There is no defined way to determine the required alignment
604       // of the symbol.  We pick the alignment based on the size.  We
605       // set an arbitrary maximum of 256.
606       unsigned int align;
607       for (align = 1; align < 512; align <<= 1)
608         if ((symsize & align) != 0)
609           break;
610
611       if (this->dynbss_ == NULL)
612         {
613           this->dynbss_ = new Output_data_space(align);
614           layout->add_output_section_data(".bss",
615                                           elfcpp::SHT_NOBITS,
616                                           (elfcpp::SHF_ALLOC
617                                            | elfcpp::SHF_WRITE),
618                                           this->dynbss_);
619         }
620
621       Output_data_space* dynbss = this->dynbss_;
622
623       if (align > dynbss->addralign())
624         dynbss->set_space_alignment(align);
625
626       off_t dynbss_size = dynbss->data_size();
627       dynbss_size = align_address(dynbss_size, align);
628       off_t offset = dynbss_size;
629       dynbss->set_space_size(dynbss_size + symsize);
630
631       // Define the symbol in the .dynbss section.
632       symtab->define_in_output_data(this, ssym->name(), ssym->version(),
633                                     dynbss, offset, symsize, ssym->type(),
634                                     ssym->binding(), ssym->visibility(),
635                                     ssym->nonvis(), false, false);
636
637       // Add the COPY reloc.
638       ssym->set_needs_dynsym_entry();
639       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
640       rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
641     }
642 }
643
644 // Optimize the TLS relocation type based on what we know about the
645 // symbol.  IS_FINAL is true if the final address of this symbol is
646 // known at link time.
647
648 unsigned int
649 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
650 {
651   // If we are generating a shared library, then we can't do anything
652   // in the linker.
653   if (parameters->output_is_shared())
654     return r_type;
655
656   switch (r_type)
657     {
658     case elfcpp::R_386_TLS_GD:
659     case elfcpp::R_386_TLS_GOTDESC:
660     case elfcpp::R_386_TLS_DESC_CALL:
661       // These are Global-Dynamic which permits fully general TLS
662       // access.  Since we know that we are generating an executable,
663       // we can convert this to Initial-Exec.  If we also know that
664       // this is a local symbol, we can further switch to Local-Exec.
665       if (is_final)
666         return elfcpp::R_386_TLS_LE_32;
667       return elfcpp::R_386_TLS_IE_32;
668
669     case elfcpp::R_386_TLS_LDM:
670       // This is Local-Dynamic, which refers to a local symbol in the
671       // dynamic TLS block.  Since we know that we generating an
672       // executable, we can switch to Local-Exec.
673       return elfcpp::R_386_TLS_LE_32;
674
675     case elfcpp::R_386_TLS_LDO_32:
676       // Another type of Local-Dynamic relocation.
677       return elfcpp::R_386_TLS_LE;
678
679     case elfcpp::R_386_TLS_IE:
680     case elfcpp::R_386_TLS_GOTIE:
681     case elfcpp::R_386_TLS_IE_32:
682       // These are Initial-Exec relocs which get the thread offset
683       // from the GOT.  If we know that we are linking against the
684       // local symbol, we can switch to Local-Exec, which links the
685       // thread offset into the instruction.
686       if (is_final)
687         return elfcpp::R_386_TLS_LE_32;
688       return r_type;
689
690     case elfcpp::R_386_TLS_LE:
691     case elfcpp::R_386_TLS_LE_32:
692       // When we already have Local-Exec, there is nothing further we
693       // can do.
694       return r_type;
695
696     default:
697       gold_unreachable();
698     }
699 }
700
701 // Scan a relocation for a local symbol.
702
703 inline void
704 Target_i386::Scan::local(const General_options&,
705                          Symbol_table* symtab,
706                          Layout* layout,
707                          Target_i386* target,
708                          Sized_relobj<32, false>* object,
709                          unsigned int,
710                          const elfcpp::Rel<32, false>&,
711                          unsigned int r_type,
712                          const elfcpp::Sym<32, false>&)
713 {
714   switch (r_type)
715     {
716     case elfcpp::R_386_NONE:
717     case elfcpp::R_386_GNU_VTINHERIT:
718     case elfcpp::R_386_GNU_VTENTRY:
719       break;
720
721     case elfcpp::R_386_32:
722     case elfcpp::R_386_16:
723     case elfcpp::R_386_8:
724       // FIXME: If we are generating a shared object we need to copy
725       // this relocation into the object.
726       gold_assert(!parameters->output_is_shared());
727       break;
728
729     case elfcpp::R_386_PC32:
730     case elfcpp::R_386_PC16:
731     case elfcpp::R_386_PC8:
732       break;
733
734     case elfcpp::R_386_GOTOFF:
735     case elfcpp::R_386_GOTPC:
736       // We need a GOT section.
737       target->got_section(symtab, layout);
738       break;
739
740     case elfcpp::R_386_COPY:
741     case elfcpp::R_386_GLOB_DAT:
742     case elfcpp::R_386_JUMP_SLOT:
743     case elfcpp::R_386_RELATIVE:
744       // These are outstanding tls relocs, which are unexpected when
745       // linking.
746     case elfcpp::R_386_TLS_TPOFF:
747     case elfcpp::R_386_TLS_DTPMOD32:
748     case elfcpp::R_386_TLS_DTPOFF32:
749     case elfcpp::R_386_TLS_TPOFF32:
750     case elfcpp::R_386_TLS_DESC:
751       fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
752               program_name, object->name().c_str(), r_type);
753       gold_exit(false);
754       break;
755
756       // These are initial tls relocs, which are expected when
757       // linking.
758     case elfcpp::R_386_TLS_IE:
759     case elfcpp::R_386_TLS_GOTIE:
760     case elfcpp::R_386_TLS_LE:
761     case elfcpp::R_386_TLS_GD:
762     case elfcpp::R_386_TLS_LDM:
763     case elfcpp::R_386_TLS_LDO_32:
764     case elfcpp::R_386_TLS_IE_32:
765     case elfcpp::R_386_TLS_LE_32:
766     case elfcpp::R_386_TLS_GOTDESC:
767     case elfcpp::R_386_TLS_DESC_CALL:
768       {
769         bool output_is_shared = parameters->output_is_shared();
770         r_type = Target_i386::optimize_tls_reloc(!output_is_shared,
771                                                  r_type);
772         switch (r_type)
773           {
774           case elfcpp::R_386_TLS_LE:
775           case elfcpp::R_386_TLS_LE_32:
776             // FIXME: If generating a shared object, we need to copy
777             // this relocation into the object.
778             gold_assert(!output_is_shared);
779             break;
780
781           case elfcpp::R_386_TLS_IE:
782           case elfcpp::R_386_TLS_GOTIE:
783           case elfcpp::R_386_TLS_GD:
784           case elfcpp::R_386_TLS_LDM:
785           case elfcpp::R_386_TLS_LDO_32:
786           case elfcpp::R_386_TLS_IE_32:
787           case elfcpp::R_386_TLS_GOTDESC:
788           case elfcpp::R_386_TLS_DESC_CALL:
789             fprintf(stderr,
790                     _("%s: %s: unsupported reloc %u against local symbol\n"),
791                     program_name, object->name().c_str(), r_type);
792             break;
793           }
794       }
795       break;
796
797     case elfcpp::R_386_GOT32:
798     case elfcpp::R_386_PLT32:
799     case elfcpp::R_386_32PLT:
800     case elfcpp::R_386_TLS_GD_32:
801     case elfcpp::R_386_TLS_GD_PUSH:
802     case elfcpp::R_386_TLS_GD_CALL:
803     case elfcpp::R_386_TLS_GD_POP:
804     case elfcpp::R_386_TLS_LDM_32:
805     case elfcpp::R_386_TLS_LDM_PUSH:
806     case elfcpp::R_386_TLS_LDM_CALL:
807     case elfcpp::R_386_TLS_LDM_POP:
808     case elfcpp::R_386_USED_BY_INTEL_200:
809     default:
810       fprintf(stderr, _("%s: %s: unsupported reloc %u against local symbol\n"),
811               program_name, object->name().c_str(), r_type);
812       break;
813     }
814 }
815
816 // Scan a relocation for a global symbol.
817
818 inline void
819 Target_i386::Scan::global(const General_options& options,
820                           Symbol_table* symtab,
821                           Layout* layout,
822                           Target_i386* target,
823                           Sized_relobj<32, false>* object,
824                           unsigned int data_shndx,
825                           const elfcpp::Rel<32, false>& reloc,
826                           unsigned int r_type,
827                           Symbol* gsym)
828 {
829   switch (r_type)
830     {
831     case elfcpp::R_386_NONE:
832     case elfcpp::R_386_GNU_VTINHERIT:
833     case elfcpp::R_386_GNU_VTENTRY:
834       break;
835
836     case elfcpp::R_386_32:
837     case elfcpp::R_386_PC32:
838     case elfcpp::R_386_16:
839     case elfcpp::R_386_PC16:
840     case elfcpp::R_386_8:
841     case elfcpp::R_386_PC8:
842       // FIXME: If we are generating a shared object we may need to
843       // copy this relocation into the object.  If this symbol is
844       // defined in a shared object, we may need to copy this
845       // relocation in order to avoid a COPY relocation.
846       gold_assert(!parameters->output_is_shared());
847
848       if (gsym->is_from_dynobj())
849         {
850           // This symbol is defined in a dynamic object.  If it is a
851           // function, we make a PLT entry.  Otherwise we need to
852           // either generate a COPY reloc or copy this reloc.
853           if (gsym->type() == elfcpp::STT_FUNC)
854             {
855               target->make_plt_entry(symtab, layout, gsym);
856
857               // If this is not a PC relative reference, then we may
858               // be taking the address of the function.  In that case
859               // we need to set the entry in the dynamic symbol table
860               // to the address of the PLT entry.
861               if (r_type != elfcpp::R_386_PC32
862                   && r_type != elfcpp::R_386_PC16
863                   && r_type != elfcpp::R_386_PC8)
864                 gsym->set_needs_dynsym_value();
865             }
866           else
867             target->copy_reloc(&options, symtab, layout, object, data_shndx,
868                                gsym, reloc);
869         }
870
871       break;
872
873     case elfcpp::R_386_GOT32:
874       {
875         // The symbol requires a GOT entry.
876         Output_data_got<32, false>* got = target->got_section(symtab, layout);
877         if (got->add_global(gsym))
878           {
879             // If this symbol is not fully resolved, we need to add a
880             // dynamic relocation for it.
881             if (!gsym->final_value_is_known())
882               {
883                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
884                 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
885                                     gsym->got_offset());
886               }
887           }
888       }
889       break;
890
891     case elfcpp::R_386_PLT32:
892       // If the symbol is fully resolved, this is just a PC32 reloc.
893       // Otherwise we need a PLT entry.
894       if (gsym->final_value_is_known())
895         break;
896       target->make_plt_entry(symtab, layout, gsym);
897       break;
898
899     case elfcpp::R_386_GOTOFF:
900     case elfcpp::R_386_GOTPC:
901       // We need a GOT section.
902       target->got_section(symtab, layout);
903       break;
904
905     case elfcpp::R_386_COPY:
906     case elfcpp::R_386_GLOB_DAT:
907     case elfcpp::R_386_JUMP_SLOT:
908     case elfcpp::R_386_RELATIVE:
909       // These are outstanding tls relocs, which are unexpected when
910       // linking.
911     case elfcpp::R_386_TLS_TPOFF:
912     case elfcpp::R_386_TLS_DTPMOD32:
913     case elfcpp::R_386_TLS_DTPOFF32:
914     case elfcpp::R_386_TLS_TPOFF32:
915     case elfcpp::R_386_TLS_DESC:
916       fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
917               program_name, object->name().c_str(), r_type);
918       gold_exit(false);
919       break;
920
921       // These are initial tls relocs, which are expected when
922       // linking.
923     case elfcpp::R_386_TLS_IE:
924     case elfcpp::R_386_TLS_GOTIE:
925     case elfcpp::R_386_TLS_LE:
926     case elfcpp::R_386_TLS_GD:
927     case elfcpp::R_386_TLS_LDM:
928     case elfcpp::R_386_TLS_LDO_32:
929     case elfcpp::R_386_TLS_IE_32:
930     case elfcpp::R_386_TLS_LE_32:
931     case elfcpp::R_386_TLS_GOTDESC:
932     case elfcpp::R_386_TLS_DESC_CALL:
933       {
934         const bool is_final = gsym->final_value_is_known();
935         r_type = Target_i386::optimize_tls_reloc(is_final, r_type);
936         switch (r_type)
937           {
938           case elfcpp::R_386_TLS_LE:
939           case elfcpp::R_386_TLS_LE_32:
940             // FIXME: If generating a shared object, we need to copy
941             // this relocation into the object.
942             gold_assert(!parameters->output_is_shared());
943             break;
944
945           case elfcpp::R_386_TLS_IE:
946           case elfcpp::R_386_TLS_GOTIE:
947           case elfcpp::R_386_TLS_GD:
948           case elfcpp::R_386_TLS_LDM:
949           case elfcpp::R_386_TLS_LDO_32:
950           case elfcpp::R_386_TLS_IE_32:
951           case elfcpp::R_386_TLS_GOTDESC:
952           case elfcpp::R_386_TLS_DESC_CALL:
953             fprintf(stderr,
954                     _("%s: %s: unsupported reloc %u "
955                       "against global symbol %s\n"),
956                     program_name, object->name().c_str(), r_type,
957                     gsym->name());
958             break;
959           }
960       }
961       break;
962
963     case elfcpp::R_386_32PLT:
964     case elfcpp::R_386_TLS_GD_32:
965     case elfcpp::R_386_TLS_GD_PUSH:
966     case elfcpp::R_386_TLS_GD_CALL:
967     case elfcpp::R_386_TLS_GD_POP:
968     case elfcpp::R_386_TLS_LDM_32:
969     case elfcpp::R_386_TLS_LDM_PUSH:
970     case elfcpp::R_386_TLS_LDM_CALL:
971     case elfcpp::R_386_TLS_LDM_POP:
972     case elfcpp::R_386_USED_BY_INTEL_200:
973     default:
974       fprintf(stderr,
975               _("%s: %s: unsupported reloc %u against global symbol %s\n"),
976               program_name, object->name().c_str(), r_type, gsym->name());
977       break;
978     }
979 }
980
981 // Scan relocations for a section.
982
983 void
984 Target_i386::scan_relocs(const General_options& options,
985                          Symbol_table* symtab,
986                          Layout* layout,
987                          Sized_relobj<32, false>* object,
988                          unsigned int data_shndx,
989                          unsigned int sh_type,
990                          const unsigned char* prelocs,
991                          size_t reloc_count,
992                          size_t local_symbol_count,
993                          const unsigned char* plocal_symbols,
994                          Symbol** global_symbols)
995 {
996   if (sh_type == elfcpp::SHT_RELA)
997     {
998       fprintf(stderr, _("%s: %s: unsupported RELA reloc section\n"),
999               program_name, object->name().c_str());
1000       gold_exit(false);
1001     }
1002
1003   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1004                     Target_i386::Scan>(
1005     options,
1006     symtab,
1007     layout,
1008     this,
1009     object,
1010     data_shndx,
1011     prelocs,
1012     reloc_count,
1013     local_symbol_count,
1014     plocal_symbols,
1015     global_symbols);
1016 }
1017
1018 // Finalize the sections.
1019
1020 void
1021 Target_i386::do_finalize_sections(Layout* layout)
1022 {
1023   // Fill in some more dynamic tags.
1024   Output_data_dynamic* const odyn = layout->dynamic_data();
1025   if (odyn != NULL)
1026     {
1027       if (this->got_plt_ != NULL)
1028         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1029
1030       if (this->plt_ != NULL)
1031         {
1032           const Output_data* od = this->plt_->rel_plt();
1033           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1034           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1035           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1036         }
1037
1038       if (this->rel_dyn_ != NULL)
1039         {
1040           const Output_data* od = this->rel_dyn_;
1041           odyn->add_section_address(elfcpp::DT_REL, od);
1042           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1043           odyn->add_constant(elfcpp::DT_RELENT,
1044                              elfcpp::Elf_sizes<32>::rel_size);
1045         }
1046
1047       if (!parameters->output_is_shared())
1048         {
1049           // The value of the DT_DEBUG tag is filled in by the dynamic
1050           // linker at run time, and used by the debugger.
1051           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1052         }
1053     }
1054
1055   // Emit any relocs we saved in an attempt to avoid generating COPY
1056   // relocs.
1057   if (this->copy_relocs_ == NULL)
1058     return;
1059   if (this->copy_relocs_->any_to_emit())
1060     {
1061       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1062       this->copy_relocs_->emit(rel_dyn);
1063     }
1064   delete this->copy_relocs_;
1065   this->copy_relocs_ = NULL;
1066 }
1067
1068 // Perform a relocation.
1069
1070 inline bool
1071 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1072                                 Target_i386* target,
1073                                 size_t relnum,
1074                                 const elfcpp::Rel<32, false>& rel,
1075                                 unsigned int r_type,
1076                                 const Sized_symbol<32>* gsym,
1077                                 const Symbol_value<32>* psymval,
1078                                 unsigned char* view,
1079                                 elfcpp::Elf_types<32>::Elf_Addr address,
1080                                 off_t view_size)
1081 {
1082   if (this->skip_call_tls_get_addr_)
1083     {
1084       if (r_type != elfcpp::R_386_PLT32
1085           || gsym == NULL
1086           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1087         {
1088           fprintf(stderr, _("%s: %s: missing expected TLS relocation\n"),
1089                   program_name,
1090                   relinfo->location(relnum, rel.get_r_offset()).c_str());
1091           gold_exit(false);
1092         }
1093
1094       this->skip_call_tls_get_addr_ = false;
1095
1096       return false;
1097     }
1098
1099   // Pick the value to use for symbols defined in shared objects.
1100   Symbol_value<32> symval;
1101   if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1102     {
1103       symval.set_output_value(target->plt_section()->address()
1104                               + gsym->plt_offset());
1105       psymval = &symval;
1106     }
1107
1108   const Sized_relobj<32, false>* object = relinfo->object;
1109
1110   switch (r_type)
1111     {
1112     case elfcpp::R_386_NONE:
1113     case elfcpp::R_386_GNU_VTINHERIT:
1114     case elfcpp::R_386_GNU_VTENTRY:
1115       break;
1116
1117     case elfcpp::R_386_32:
1118       Relocate_functions<32, false>::rel32(view, object, psymval);
1119       break;
1120
1121     case elfcpp::R_386_PC32:
1122       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1123       break;
1124
1125     case elfcpp::R_386_16:
1126       Relocate_functions<32, false>::rel16(view, object, psymval);
1127       break;
1128
1129     case elfcpp::R_386_PC16:
1130       Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1131       break;
1132
1133     case elfcpp::R_386_8:
1134       Relocate_functions<32, false>::rel8(view, object, psymval);
1135       break;
1136
1137     case elfcpp::R_386_PC8:
1138       Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1139       break;
1140
1141     case elfcpp::R_386_PLT32:
1142       gold_assert(gsym->has_plt_offset()
1143                   || gsym->final_value_is_known());
1144       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1145       break;
1146
1147     case elfcpp::R_386_GOT32:
1148       // Local GOT offsets not yet supported.
1149       gold_assert(gsym);
1150       gold_assert(gsym->has_got_offset());
1151       Relocate_functions<32, false>::rel32(view, gsym->got_offset());
1152       break;
1153
1154     case elfcpp::R_386_GOTOFF:
1155       {
1156         elfcpp::Elf_types<32>::Elf_Addr value;
1157         value = (psymval->value(object, 0)
1158                  - target->got_section(NULL, NULL)->address());
1159         Relocate_functions<32, false>::rel32(view, value);
1160       }
1161       break;
1162
1163     case elfcpp::R_386_GOTPC:
1164       {
1165         elfcpp::Elf_types<32>::Elf_Addr value;
1166         value = target->got_section(NULL, NULL)->address();
1167         Relocate_functions<32, false>::pcrel32(view, value, address);
1168       }
1169       break;
1170
1171     case elfcpp::R_386_COPY:
1172     case elfcpp::R_386_GLOB_DAT:
1173     case elfcpp::R_386_JUMP_SLOT:
1174     case elfcpp::R_386_RELATIVE:
1175       // These are outstanding tls relocs, which are unexpected when
1176       // linking.
1177     case elfcpp::R_386_TLS_TPOFF:
1178     case elfcpp::R_386_TLS_DTPMOD32:
1179     case elfcpp::R_386_TLS_DTPOFF32:
1180     case elfcpp::R_386_TLS_TPOFF32:
1181     case elfcpp::R_386_TLS_DESC:
1182       fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
1183               program_name,
1184               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1185               r_type);
1186       gold_exit(false);
1187       break;
1188
1189       // These are initial tls relocs, which are expected when
1190       // linking.
1191     case elfcpp::R_386_TLS_IE:
1192     case elfcpp::R_386_TLS_GOTIE:
1193     case elfcpp::R_386_TLS_LE:
1194     case elfcpp::R_386_TLS_GD:
1195     case elfcpp::R_386_TLS_LDM:
1196     case elfcpp::R_386_TLS_LDO_32:
1197     case elfcpp::R_386_TLS_IE_32:
1198     case elfcpp::R_386_TLS_LE_32:
1199     case elfcpp::R_386_TLS_GOTDESC:
1200     case elfcpp::R_386_TLS_DESC_CALL:
1201       this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1202                          address, view_size);
1203       break;
1204
1205     case elfcpp::R_386_32PLT:
1206     case elfcpp::R_386_TLS_GD_32:
1207     case elfcpp::R_386_TLS_GD_PUSH:
1208     case elfcpp::R_386_TLS_GD_CALL:
1209     case elfcpp::R_386_TLS_GD_POP:
1210     case elfcpp::R_386_TLS_LDM_32:
1211     case elfcpp::R_386_TLS_LDM_PUSH:
1212     case elfcpp::R_386_TLS_LDM_CALL:
1213     case elfcpp::R_386_TLS_LDM_POP:
1214     case elfcpp::R_386_USED_BY_INTEL_200:
1215     default:
1216       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1217               program_name,
1218               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1219               r_type);
1220       // gold_exit(false);
1221       break;
1222     }
1223
1224   return true;
1225 }
1226
1227 // Perform a TLS relocation.
1228
1229 inline void
1230 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1231                                     size_t relnum,
1232                                     const elfcpp::Rel<32, false>& rel,
1233                                     unsigned int r_type,
1234                                     const Sized_symbol<32>* gsym,
1235                                     const Symbol_value<32>* psymval,
1236                                     unsigned char* view,
1237                                     elfcpp::Elf_types<32>::Elf_Addr,
1238                                     off_t view_size)
1239 {
1240   Output_segment* tls_segment = relinfo->layout->tls_segment();
1241   if (tls_segment == NULL)
1242     {
1243       fprintf(stderr, _("%s: %s: TLS reloc but no TLS segment\n"),
1244               program_name,
1245               relinfo->location(relnum, rel.get_r_offset()).c_str());
1246       gold_exit(false);
1247     }
1248
1249   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1250
1251   const bool is_final = (gsym == NULL
1252                          ? !parameters->output_is_shared()
1253                          : gsym->final_value_is_known());
1254   const unsigned int opt_r_type =
1255     Target_i386::optimize_tls_reloc(is_final, r_type);
1256   switch (r_type)
1257     {
1258     case elfcpp::R_386_TLS_LE_32:
1259       value = tls_segment->vaddr() + tls_segment->memsz() - value;
1260       Relocate_functions<32, false>::rel32(view, value);
1261       break;
1262
1263     case elfcpp::R_386_TLS_LE:
1264       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1265       Relocate_functions<32, false>::rel32(view, value);
1266       break;
1267
1268     case elfcpp::R_386_TLS_IE:
1269     case elfcpp::R_386_TLS_GOTIE:
1270     case elfcpp::R_386_TLS_IE_32:
1271       if (opt_r_type == elfcpp::R_386_TLS_LE_32)
1272         {
1273           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1274                                               rel, r_type, value, view,
1275                                               view_size);
1276           break;
1277         }
1278       fprintf(stderr, _("%s: %s: unsupported reloc type %u\n"),
1279               program_name,
1280               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1281               r_type);
1282       // gold_exit(false);
1283       break;
1284
1285     case elfcpp::R_386_TLS_GD:
1286       if (opt_r_type == elfcpp::R_386_TLS_LE_32)
1287         {
1288           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1289                              rel, r_type, value, view,
1290                              view_size);
1291           break;
1292         }
1293       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1294               program_name,
1295               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1296               r_type);
1297       // gold_exit(false);
1298       break;
1299
1300     case elfcpp::R_386_TLS_LDM:
1301     case elfcpp::R_386_TLS_LDO_32:
1302     case elfcpp::R_386_TLS_GOTDESC:
1303     case elfcpp::R_386_TLS_DESC_CALL:
1304       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1305               program_name,
1306               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1307               r_type);
1308       // gold_exit(false);
1309       break;
1310     }
1311 }
1312
1313 // Do a relocation in which we convert a TLS Initial-Exec to a
1314 // Local-Exec.
1315
1316 inline void
1317 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1318                                     size_t relnum,
1319                                     Output_segment* tls_segment,
1320                                     const elfcpp::Rel<32, false>& rel,
1321                                     unsigned int r_type,
1322                                     elfcpp::Elf_types<32>::Elf_Addr value,
1323                                     unsigned char* view,
1324                                     off_t view_size)
1325 {
1326   // We have to actually change the instructions, which means that we
1327   // need to examine the opcodes to figure out which instruction we
1328   // are looking at.
1329   if (r_type == elfcpp::R_386_TLS_IE)
1330     {
1331       // movl %gs:XX,%eax  ==>  movl $YY,%eax
1332       // movl %gs:XX,%reg  ==>  movl $YY,%reg
1333       // addl %gs:XX,%reg  ==>  addl $YY,%reg
1334       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -1);
1335       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1336
1337       unsigned char op1 = view[-1];
1338       if (op1 == 0xa1)
1339         {
1340           // movl XX,%eax  ==>  movl $YY,%eax
1341           view[-1] = 0xb8;
1342         }
1343       else
1344         {
1345           Target_i386::Relocate::check_range(relinfo, relnum, rel,
1346                                              view_size, -2);
1347
1348           unsigned char op2 = view[-2];
1349           if (op2 == 0x8b)
1350             {
1351               // movl XX,%reg  ==>  movl $YY,%reg
1352               Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1353                                                (op1 & 0xc7) == 0x05);
1354               view[-2] = 0xc7;
1355               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1356             }
1357           else if (op2 == 0x03)
1358             {
1359               // addl XX,%reg  ==>  addl $YY,%reg
1360               Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1361                                                (op1 & 0xc7) == 0x05);
1362               view[-2] = 0x81;
1363               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1364             }
1365           else
1366             Target_i386::Relocate::check_tls(relinfo, relnum, rel, 0);
1367         }
1368     }
1369   else
1370     {
1371       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1372       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1373       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1374       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1375       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1376
1377       unsigned char op1 = view[-1];
1378       unsigned char op2 = view[-2];
1379       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1380                                        (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1381       if (op2 == 0x8b)
1382         {
1383           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1384           view[-2] = 0xc7;
1385           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1386         }
1387       else if (op2 == 0x2b)
1388         {
1389           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1390           view[-2] = 0x81;
1391           view[-1] = 0xe8 | ((op1 >> 3) & 7);
1392         }
1393       else if (op2 == 0x03)
1394         {
1395           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1396           view[-2] = 0x81;
1397           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1398         }
1399       else
1400         Target_i386::Relocate::check_tls(relinfo, relnum, rel, 0);
1401     }
1402
1403   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1404   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1405     value = - value;
1406
1407   Relocate_functions<32, false>::rel32(view, value);
1408 }
1409
1410 // Do a relocation in which we convert a TLS Global-Dynamic to a
1411 // Local-Exec.
1412
1413 inline void
1414 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1415                                     size_t relnum,
1416                                     Output_segment* tls_segment,
1417                                     const elfcpp::Rel<32, false>& rel,
1418                                     unsigned int,
1419                                     elfcpp::Elf_types<32>::Elf_Addr value,
1420                                     unsigned char* view,
1421                                     off_t view_size)
1422 {
1423   // leal foo(,%reg,1),%eax; call ___tls_get_addr
1424   //  ==> movl %gs,0,%eax; subl $foo@tpoff,%eax
1425   // leal foo(%reg),%eax; call ___tls_get_addr
1426   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1427
1428   Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1429   Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 9);
1430
1431   unsigned char op1 = view[-1];
1432   unsigned char op2 = view[-2];
1433
1434   Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1435                                    op2 == 0x8d || op2 == 0x04);
1436   Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1437                                    view[4] == 0xe8);
1438
1439   int roff = 5;
1440
1441   if (op2 == 0x04)
1442     {
1443       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -3);
1444       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1445                                        view[-3] == 0x8d);
1446       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1447                                        ((op1 & 0xc7) == 0x05
1448                                         && op1 != (4 << 3)));
1449       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1450     }
1451   else
1452     {
1453       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1454                                        (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1455       if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1456           && view[9] == 0x90)
1457         {
1458           // There is a trailing nop.  Use the size byte subl.
1459           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1460           roff = 6;
1461         }
1462       else
1463         {
1464           // Use the five byte subl.
1465           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1466         }
1467     }
1468
1469   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1470   Relocate_functions<32, false>::rel32(view + roff, value);
1471
1472   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1473   // We can skip it.
1474   this->skip_call_tls_get_addr_ = true;
1475 }
1476
1477 // Check the range for a TLS relocation.
1478
1479 inline void
1480 Target_i386::Relocate::check_range(const Relocate_info<32, false>* relinfo,
1481                                    size_t relnum,
1482                                    const elfcpp::Rel<32, false>& rel,
1483                                    off_t view_size, off_t off)
1484 {
1485   off_t offset = rel.get_r_offset() + off;
1486   if (offset < 0 || offset > view_size)
1487     {
1488       fprintf(stderr, _("%s: %s: TLS relocation out of range\n"),
1489               program_name,
1490               relinfo->location(relnum, rel.get_r_offset()).c_str());
1491       gold_exit(false);
1492     }
1493 }
1494
1495 // Check the validity of a TLS relocation.  This is like assert.
1496
1497 inline void
1498 Target_i386::Relocate::check_tls(const Relocate_info<32, false>* relinfo,
1499                                  size_t relnum,
1500                                  const elfcpp::Rel<32, false>& rel,
1501                                  bool valid)
1502 {
1503   if (!valid)
1504     {
1505       fprintf(stderr,
1506               _("%s: %s: TLS relocation against invalid instruction\n"),
1507               program_name,
1508               relinfo->location(relnum, rel.get_r_offset()).c_str());
1509       gold_exit(false);
1510     }
1511 }
1512
1513 // Relocate section data.
1514
1515 void
1516 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1517                               unsigned int sh_type,
1518                               const unsigned char* prelocs,
1519                               size_t reloc_count,
1520                               unsigned char* view,
1521                               elfcpp::Elf_types<32>::Elf_Addr address,
1522                               off_t view_size)
1523 {
1524   gold_assert(sh_type == elfcpp::SHT_REL);
1525
1526   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1527                          Target_i386::Relocate>(
1528     relinfo,
1529     this,
1530     prelocs,
1531     reloc_count,
1532     view,
1533     address,
1534     view_size);
1535 }
1536
1537 // Return the value to use for a dynamic which requires special
1538 // treatment.  This is how we support equality comparisons of function
1539 // pointers across shared library boundaries, as described in the
1540 // processor specific ABI supplement.
1541
1542 uint64_t
1543 Target_i386::do_dynsym_value(const Symbol* gsym) const
1544 {
1545   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1546   return this->plt_section()->address() + gsym->plt_offset();
1547 }
1548
1549 // Return a string used to fill a code section with nops to take up
1550 // the specified length.
1551
1552 std::string
1553 Target_i386::do_code_fill(off_t length)
1554 {
1555   if (length >= 16)
1556     {
1557       // Build a jmp instruction to skip over the bytes.
1558       unsigned char jmp[5];
1559       jmp[0] = 0xe9;
1560       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1561       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1562               + std::string(length - 5, '\0'));
1563     }
1564
1565   // Nop sequences of various lengths.
1566   const char nop1[1] = { 0x90 };                   // nop
1567   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1568   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1569   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1570   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1571                          0x00 };                   // leal 0(%esi,1),%esi
1572   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1573                          0x00, 0x00 };
1574   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1575                          0x00, 0x00, 0x00 };
1576   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1577                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1578   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1579                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1580                          0x00 };
1581   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1582                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1583                            0x00, 0x00 };
1584   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1585                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1586                            0x00, 0x00, 0x00 };
1587   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1588                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1589                            0x00, 0x00, 0x00, 0x00 };
1590   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1591                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1592                            0x27, 0x00, 0x00, 0x00,
1593                            0x00 };
1594   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1595                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1596                            0xbc, 0x27, 0x00, 0x00,
1597                            0x00, 0x00 };
1598   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1599                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1600                            0x90, 0x90, 0x90, 0x90,
1601                            0x90, 0x90, 0x90 };
1602
1603   const char* nops[16] = {
1604     NULL,
1605     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1606     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1607   };
1608
1609   return std::string(nops[length], length);
1610 }
1611
1612 // The selector for i386 object files.
1613
1614 class Target_selector_i386 : public Target_selector
1615 {
1616 public:
1617   Target_selector_i386()
1618     : Target_selector(elfcpp::EM_386, 32, false)
1619   { }
1620
1621   Target*
1622   recognize(int machine, int osabi, int abiversion);
1623
1624  private:
1625   Target_i386* target_;
1626 };
1627
1628 // Recognize an i386 object file when we already know that the machine
1629 // number is EM_386.
1630
1631 Target*
1632 Target_selector_i386::recognize(int, int, int)
1633 {
1634   if (this->target_ == NULL)
1635     this->target_ = new Target_i386();
1636   return this->target_;
1637 }
1638
1639 Target_selector_i386 target_selector_i386;
1640
1641 } // End anonymous namespace.