Run all error handling through an Errors object. Delete output file
[platform/upstream/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 //   http://people.redhat.com/drepper/tls.pdf
50 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54  public:
55   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57   Target_i386()
58     : Sized_target<32, false>(&i386_info),
59       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60       copy_relocs_(NULL), dynbss_(NULL)
61   { }
62
63   // Scan the relocations to look for symbol adjustments.
64   void
65   scan_relocs(const General_options& options,
66               Symbol_table* symtab,
67               Layout* layout,
68               Sized_relobj<32, false>* object,
69               unsigned int data_shndx,
70               unsigned int sh_type,
71               const unsigned char* prelocs,
72               size_t reloc_count,
73               size_t local_symbol_count,
74               const unsigned char* plocal_symbols,
75               Symbol** global_symbols);
76
77   // Finalize the sections.
78   void
79   do_finalize_sections(Layout*);
80
81   // Return the value to use for a dynamic which requires special
82   // treatment.
83   uint64_t
84   do_dynsym_value(const Symbol*) const;
85
86   // Relocate a section.
87   void
88   relocate_section(const Relocate_info<32, false>*,
89                    unsigned int sh_type,
90                    const unsigned char* prelocs,
91                    size_t reloc_count,
92                    unsigned char* view,
93                    elfcpp::Elf_types<32>::Elf_Addr view_address,
94                    off_t view_size);
95
96   // Return a string used to fill a code section with nops.
97   std::string
98   do_code_fill(off_t length);
99
100  private:
101   // The class which scans relocations.
102   struct Scan
103   {
104     inline void
105     local(const General_options& options, Symbol_table* symtab,
106           Layout* layout, Target_i386* target,
107           Sized_relobj<32, false>* object,
108           unsigned int data_shndx,
109           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
110           const elfcpp::Sym<32, false>& lsym);
111
112     inline void
113     global(const General_options& options, Symbol_table* symtab,
114            Layout* layout, Target_i386* target,
115            Sized_relobj<32, false>* object,
116            unsigned int data_shndx,
117            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
118            Symbol* gsym);
119
120     static void
121     unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
122
123     static void
124     unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
125                              Symbol*);
126   };
127
128   // The class which implements relocation.
129   class Relocate
130   {
131    public:
132     Relocate()
133       : skip_call_tls_get_addr_(false),
134         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
135     { }
136
137     ~Relocate()
138     {
139       if (this->skip_call_tls_get_addr_)
140         {
141           // FIXME: This needs to specify the location somehow.
142           gold_error(_("missing expected TLS relocation"));
143         }
144     }
145
146     // Do a relocation.  Return false if the caller should not issue
147     // any warnings about this relocation.
148     inline bool
149     relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
150              const elfcpp::Rel<32, false>&,
151              unsigned int r_type, const Sized_symbol<32>*,
152              const Symbol_value<32>*,
153              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
154              off_t);
155
156    private:
157     // Do a TLS relocation.
158     inline void
159     relocate_tls(const Relocate_info<32, false>*, size_t relnum,
160                  const elfcpp::Rel<32, false>&,
161                  unsigned int r_type, const Sized_symbol<32>*,
162                  const Symbol_value<32>*,
163                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
164
165     // Do a TLS Initial-Exec to Local-Exec transition.
166     static inline void
167     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
168                  Output_segment* tls_segment,
169                  const elfcpp::Rel<32, false>&, unsigned int r_type,
170                  elfcpp::Elf_types<32>::Elf_Addr value,
171                  unsigned char* view,
172                  off_t view_size);
173
174     // Do a TLS General-Dynamic to Local-Exec transition.
175     inline void
176     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
177                  Output_segment* tls_segment,
178                  const elfcpp::Rel<32, false>&, unsigned int r_type,
179                  elfcpp::Elf_types<32>::Elf_Addr value,
180                  unsigned char* view,
181                  off_t view_size);
182
183     // Do a TLS Local-Dynamic to Local-Exec transition.
184     inline void
185     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
186                  Output_segment* tls_segment,
187                  const elfcpp::Rel<32, false>&, unsigned int r_type,
188                  elfcpp::Elf_types<32>::Elf_Addr value,
189                  unsigned char* view,
190                  off_t view_size);
191
192     // We need to keep track of which type of local dynamic relocation
193     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
194     enum Local_dynamic_type
195     {
196       LOCAL_DYNAMIC_NONE,
197       LOCAL_DYNAMIC_SUN,
198       LOCAL_DYNAMIC_GNU
199     };
200
201     // This is set if we should skip the next reloc, which should be a
202     // PLT32 reloc against ___tls_get_addr.
203     bool skip_call_tls_get_addr_;
204     // The type of local dynamic relocation we have seen in the section
205     // being relocated, if any.
206     Local_dynamic_type local_dynamic_type_;
207   };
208
209   // Adjust TLS relocation type based on the options and whether this
210   // is a local symbol.
211   static tls::Tls_optimization
212   optimize_tls_reloc(bool is_final, int r_type);
213
214   // Get the GOT section, creating it if necessary.
215   Output_data_got<32, false>*
216   got_section(Symbol_table*, Layout*);
217
218   // Create a PLT entry for a global symbol.
219   void
220   make_plt_entry(Symbol_table*, Layout*, Symbol*);
221
222   // Get the PLT section.
223   const Output_data_plt_i386*
224   plt_section() const
225   {
226     gold_assert(this->plt_ != NULL);
227     return this->plt_;
228   }
229
230   // Get the dynamic reloc section, creating it if necessary.
231   Reloc_section*
232   rel_dyn_section(Layout*);
233
234   // Copy a relocation against a global symbol.
235   void
236   copy_reloc(const General_options*, Symbol_table*, Layout*,
237              Sized_relobj<32, false>*, unsigned int,
238              Symbol*, const elfcpp::Rel<32, false>&);
239
240   // Information about this specific target which we pass to the
241   // general Target structure.
242   static const Target::Target_info i386_info;
243
244   // The GOT section.
245   Output_data_got<32, false>* got_;
246   // The PLT section.
247   Output_data_plt_i386* plt_;
248   // The GOT PLT section.
249   Output_data_space* got_plt_;
250   // The dynamic reloc section.
251   Reloc_section* rel_dyn_;
252   // Relocs saved to avoid a COPY reloc.
253   Copy_relocs<32, false>* copy_relocs_;
254   // Space for variables copied with a COPY reloc.
255   Output_data_space* dynbss_;
256 };
257
258 const Target::Target_info Target_i386::i386_info =
259 {
260   32,                   // size
261   false,                // is_big_endian
262   elfcpp::EM_386,       // machine_code
263   false,                // has_make_symbol
264   false,                // has_resolve
265   true,                 // has_code_fill
266   "/usr/lib/libc.so.1", // dynamic_linker
267   0x08048000,           // text_segment_address
268   0x1000,               // abi_pagesize
269   0x1000                // common_pagesize
270 };
271
272 // Get the GOT section, creating it if necessary.
273
274 Output_data_got<32, false>*
275 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
276 {
277   if (this->got_ == NULL)
278     {
279       gold_assert(symtab != NULL && layout != NULL);
280
281       this->got_ = new Output_data_got<32, false>();
282
283       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
284                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
285                                       this->got_);
286
287       // The old GNU linker creates a .got.plt section.  We just
288       // create another set of data in the .got section.  Note that we
289       // always create a PLT if we create a GOT, although the PLT
290       // might be empty.
291       this->got_plt_ = new Output_data_space(4);
292       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
293                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
294                                       this->got_plt_);
295
296       // The first three entries are reserved.
297       this->got_plt_->set_space_size(3 * 4);
298
299       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
300       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
301                                     this->got_plt_,
302                                     0, 0, elfcpp::STT_OBJECT,
303                                     elfcpp::STB_LOCAL,
304                                     elfcpp::STV_HIDDEN, 0,
305                                     false, false);
306     }
307
308   return this->got_;
309 }
310
311 // Get the dynamic reloc section, creating it if necessary.
312
313 Target_i386::Reloc_section*
314 Target_i386::rel_dyn_section(Layout* layout)
315 {
316   if (this->rel_dyn_ == NULL)
317     {
318       gold_assert(layout != NULL);
319       this->rel_dyn_ = new Reloc_section();
320       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
321                                       elfcpp::SHF_ALLOC, this->rel_dyn_);
322     }
323   return this->rel_dyn_;
324 }
325
326 // A class to handle the PLT data.
327
328 class Output_data_plt_i386 : public Output_section_data
329 {
330  public:
331   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
332
333   Output_data_plt_i386(Layout*, Output_data_space*);
334
335   // Add an entry to the PLT.
336   void
337   add_entry(Symbol* gsym);
338
339   // Return the .rel.plt section data.
340   const Reloc_section*
341   rel_plt() const
342   { return this->rel_; }
343
344  protected:
345   void
346   do_adjust_output_section(Output_section* os);
347
348  private:
349   // The size of an entry in the PLT.
350   static const int plt_entry_size = 16;
351
352   // The first entry in the PLT for an executable.
353   static unsigned char exec_first_plt_entry[plt_entry_size];
354
355   // The first entry in the PLT for a shared object.
356   static unsigned char dyn_first_plt_entry[plt_entry_size];
357
358   // Other entries in the PLT for an executable.
359   static unsigned char exec_plt_entry[plt_entry_size];
360
361   // Other entries in the PLT for a shared object.
362   static unsigned char dyn_plt_entry[plt_entry_size];
363
364   // Set the final size.
365   void
366   do_set_address(uint64_t, off_t)
367   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
368
369   // Write out the PLT data.
370   void
371   do_write(Output_file*);
372
373   // The reloc section.
374   Reloc_section* rel_;
375   // The .got.plt section.
376   Output_data_space* got_plt_;
377   // The number of PLT entries.
378   unsigned int count_;
379 };
380
381 // Create the PLT section.  The ordinary .got section is an argument,
382 // since we need to refer to the start.  We also create our own .got
383 // section just for PLT entries.
384
385 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
386                                            Output_data_space* got_plt)
387   : Output_section_data(4), got_plt_(got_plt), count_(0)
388 {
389   this->rel_ = new Reloc_section();
390   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
391                                   elfcpp::SHF_ALLOC, this->rel_);
392 }
393
394 void
395 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
396 {
397   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
398   // linker, and so do we.
399   os->set_entsize(4);
400 }
401
402 // Add an entry to the PLT.
403
404 void
405 Output_data_plt_i386::add_entry(Symbol* gsym)
406 {
407   gold_assert(!gsym->has_plt_offset());
408
409   // Note that when setting the PLT offset we skip the initial
410   // reserved PLT entry.
411   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
412
413   ++this->count_;
414
415   off_t got_offset = this->got_plt_->data_size();
416
417   // Every PLT entry needs a GOT entry which points back to the PLT
418   // entry (this will be changed by the dynamic linker, normally
419   // lazily when the function is called).
420   this->got_plt_->set_space_size(got_offset + 4);
421
422   // Every PLT entry needs a reloc.
423   gsym->set_needs_dynsym_entry();
424   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
425                          got_offset);
426
427   // Note that we don't need to save the symbol.  The contents of the
428   // PLT are independent of which symbols are used.  The symbols only
429   // appear in the relocations.
430 }
431
432 // The first entry in the PLT for an executable.
433
434 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
435 {
436   0xff, 0x35,   // pushl contents of memory address
437   0, 0, 0, 0,   // replaced with address of .got + 4
438   0xff, 0x25,   // jmp indirect
439   0, 0, 0, 0,   // replaced with address of .got + 8
440   0, 0, 0, 0    // unused
441 };
442
443 // The first entry in the PLT for a shared object.
444
445 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
446 {
447   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
448   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
449   0, 0, 0, 0                    // unused
450 };
451
452 // Subsequent entries in the PLT for an executable.
453
454 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
455 {
456   0xff, 0x25,   // jmp indirect
457   0, 0, 0, 0,   // replaced with address of symbol in .got
458   0x68,         // pushl immediate
459   0, 0, 0, 0,   // replaced with offset into relocation table
460   0xe9,         // jmp relative
461   0, 0, 0, 0    // replaced with offset to start of .plt
462 };
463
464 // Subsequent entries in the PLT for a shared object.
465
466 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
467 {
468   0xff, 0xa3,   // jmp *offset(%ebx)
469   0, 0, 0, 0,   // replaced with offset of symbol in .got
470   0x68,         // pushl immediate
471   0, 0, 0, 0,   // replaced with offset into relocation table
472   0xe9,         // jmp relative
473   0, 0, 0, 0    // replaced with offset to start of .plt
474 };
475
476 // Write out the PLT.  This uses the hand-coded instructions above,
477 // and adjusts them as needed.  This is all specified by the i386 ELF
478 // Processor Supplement.
479
480 void
481 Output_data_plt_i386::do_write(Output_file* of)
482 {
483   const off_t offset = this->offset();
484   const off_t oview_size = this->data_size();
485   unsigned char* const oview = of->get_output_view(offset, oview_size);
486
487   const off_t got_file_offset = this->got_plt_->offset();
488   const off_t got_size = this->got_plt_->data_size();
489   unsigned char* const got_view = of->get_output_view(got_file_offset,
490                                                       got_size);
491
492   unsigned char* pov = oview;
493
494   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
495   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
496
497   if (parameters->output_is_shared())
498     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
499   else
500     {
501       memcpy(pov, exec_first_plt_entry, plt_entry_size);
502       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
503       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
504     }
505   pov += plt_entry_size;
506
507   unsigned char* got_pov = got_view;
508
509   memset(got_pov, 0, 12);
510   got_pov += 12;
511
512   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
513
514   unsigned int plt_offset = plt_entry_size;
515   unsigned int plt_rel_offset = 0;
516   unsigned int got_offset = 12;
517   const unsigned int count = this->count_;
518   for (unsigned int i = 0;
519        i < count;
520        ++i,
521          pov += plt_entry_size,
522          got_pov += 4,
523          plt_offset += plt_entry_size,
524          plt_rel_offset += rel_size,
525          got_offset += 4)
526     {
527       // Set and adjust the PLT entry itself.
528
529       if (parameters->output_is_shared())
530         {
531           memcpy(pov, dyn_plt_entry, plt_entry_size);
532           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
533         }
534       else
535         {
536           memcpy(pov, exec_plt_entry, plt_entry_size);
537           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
538                                                       (got_address
539                                                        + got_offset));
540         }
541
542       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
543       elfcpp::Swap<32, false>::writeval(pov + 12,
544                                         - (plt_offset + plt_entry_size));
545
546       // Set the entry in the GOT.
547       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
548     }
549
550   gold_assert(pov - oview == oview_size);
551   gold_assert(got_pov - got_view == got_size);
552
553   of->write_output_view(offset, oview_size, oview);
554   of->write_output_view(got_file_offset, got_size, got_view);
555 }
556
557 // Create a PLT entry for a global symbol.
558
559 void
560 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
561 {
562   if (gsym->has_plt_offset())
563     return;
564
565   if (this->plt_ == NULL)
566     {
567       // Create the GOT sections first.
568       this->got_section(symtab, layout);
569
570       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
571       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
572                                       (elfcpp::SHF_ALLOC
573                                        | elfcpp::SHF_EXECINSTR),
574                                       this->plt_);
575     }
576
577   this->plt_->add_entry(gsym);
578 }
579
580 // Handle a relocation against a non-function symbol defined in a
581 // dynamic object.  The traditional way to handle this is to generate
582 // a COPY relocation to copy the variable at runtime from the shared
583 // object into the executable's data segment.  However, this is
584 // undesirable in general, as if the size of the object changes in the
585 // dynamic object, the executable will no longer work correctly.  If
586 // this relocation is in a writable section, then we can create a
587 // dynamic reloc and the dynamic linker will resolve it to the correct
588 // address at runtime.  However, we do not want do that if the
589 // relocation is in a read-only section, as it would prevent the
590 // readonly segment from being shared.  And if we have to eventually
591 // generate a COPY reloc, then any dynamic relocations will be
592 // useless.  So this means that if this is a writable section, we need
593 // to save the relocation until we see whether we have to create a
594 // COPY relocation for this symbol for any other relocation.
595
596 void
597 Target_i386::copy_reloc(const General_options* options,
598                         Symbol_table* symtab,
599                         Layout* layout,
600                         Sized_relobj<32, false>* object,
601                         unsigned int data_shndx, Symbol* gsym,
602                         const elfcpp::Rel<32, false>& rel)
603 {
604   Sized_symbol<32>* ssym;
605   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
606                                                         SELECT_SIZE(32));
607
608   if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
609                                                data_shndx, ssym))
610     {
611       // So far we do not need a COPY reloc.  Save this relocation.
612       // If it turns out that we never need a COPY reloc for this
613       // symbol, then we will emit the relocation.
614       if (this->copy_relocs_ == NULL)
615         this->copy_relocs_ = new Copy_relocs<32, false>();
616       this->copy_relocs_->save(ssym, object, data_shndx, rel);
617     }
618   else
619     {
620       // Allocate space for this symbol in the .bss section.
621
622       elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
623
624       // There is no defined way to determine the required alignment
625       // of the symbol.  We pick the alignment based on the size.  We
626       // set an arbitrary maximum of 256.
627       unsigned int align;
628       for (align = 1; align < 512; align <<= 1)
629         if ((symsize & align) != 0)
630           break;
631
632       if (this->dynbss_ == NULL)
633         {
634           this->dynbss_ = new Output_data_space(align);
635           layout->add_output_section_data(".bss",
636                                           elfcpp::SHT_NOBITS,
637                                           (elfcpp::SHF_ALLOC
638                                            | elfcpp::SHF_WRITE),
639                                           this->dynbss_);
640         }
641
642       Output_data_space* dynbss = this->dynbss_;
643
644       if (align > dynbss->addralign())
645         dynbss->set_space_alignment(align);
646
647       off_t dynbss_size = dynbss->data_size();
648       dynbss_size = align_address(dynbss_size, align);
649       off_t offset = dynbss_size;
650       dynbss->set_space_size(dynbss_size + symsize);
651
652       // Define the symbol in the .dynbss section.
653       symtab->define_in_output_data(this, ssym->name(), ssym->version(),
654                                     dynbss, offset, symsize, ssym->type(),
655                                     ssym->binding(), ssym->visibility(),
656                                     ssym->nonvis(), false, false);
657
658       // Add the COPY reloc.
659       ssym->set_needs_dynsym_entry();
660       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
661       rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
662     }
663 }
664
665 // Optimize the TLS relocation type based on what we know about the
666 // symbol.  IS_FINAL is true if the final address of this symbol is
667 // known at link time.
668
669 tls::Tls_optimization
670 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
671 {
672   // If we are generating a shared library, then we can't do anything
673   // in the linker.
674   if (parameters->output_is_shared())
675     return tls::TLSOPT_NONE;
676
677   switch (r_type)
678     {
679     case elfcpp::R_386_TLS_GD:
680     case elfcpp::R_386_TLS_GOTDESC:
681     case elfcpp::R_386_TLS_DESC_CALL:
682       // These are General-Dynamic which permits fully general TLS
683       // access.  Since we know that we are generating an executable,
684       // we can convert this to Initial-Exec.  If we also know that
685       // this is a local symbol, we can further switch to Local-Exec.
686       if (is_final)
687         return tls::TLSOPT_TO_LE;
688       return tls::TLSOPT_TO_IE;
689
690     case elfcpp::R_386_TLS_LDM:
691       // This is Local-Dynamic, which refers to a local symbol in the
692       // dynamic TLS block.  Since we know that we generating an
693       // executable, we can switch to Local-Exec.
694       return tls::TLSOPT_TO_LE;
695
696     case elfcpp::R_386_TLS_LDO_32:
697       // Another type of Local-Dynamic relocation.
698       return tls::TLSOPT_TO_LE;
699
700     case elfcpp::R_386_TLS_IE:
701     case elfcpp::R_386_TLS_GOTIE:
702     case elfcpp::R_386_TLS_IE_32:
703       // These are Initial-Exec relocs which get the thread offset
704       // from the GOT.  If we know that we are linking against the
705       // local symbol, we can switch to Local-Exec, which links the
706       // thread offset into the instruction.
707       if (is_final)
708         return tls::TLSOPT_TO_LE;
709       return tls::TLSOPT_NONE;
710
711     case elfcpp::R_386_TLS_LE:
712     case elfcpp::R_386_TLS_LE_32:
713       // When we already have Local-Exec, there is nothing further we
714       // can do.
715       return tls::TLSOPT_NONE;
716
717     default:
718       gold_unreachable();
719     }
720 }
721
722 // Report an unsupported relocation against a local symbol.
723
724 void
725 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
726                                            unsigned int r_type)
727 {
728   gold_error(_("%s: unsupported reloc %u against local symbol"),
729              object->name().c_str(), r_type);
730 }
731
732 // Scan a relocation for a local symbol.
733
734 inline void
735 Target_i386::Scan::local(const General_options&,
736                          Symbol_table* symtab,
737                          Layout* layout,
738                          Target_i386* target,
739                          Sized_relobj<32, false>* object,
740                          unsigned int,
741                          const elfcpp::Rel<32, false>&,
742                          unsigned int r_type,
743                          const elfcpp::Sym<32, false>&)
744 {
745   switch (r_type)
746     {
747     case elfcpp::R_386_NONE:
748     case elfcpp::R_386_GNU_VTINHERIT:
749     case elfcpp::R_386_GNU_VTENTRY:
750       break;
751
752     case elfcpp::R_386_32:
753     case elfcpp::R_386_16:
754     case elfcpp::R_386_8:
755       // FIXME: If we are generating a shared object we need to copy
756       // this relocation into the object.
757       gold_assert(!parameters->output_is_shared());
758       break;
759
760     case elfcpp::R_386_PC32:
761     case elfcpp::R_386_PC16:
762     case elfcpp::R_386_PC8:
763       break;
764
765     case elfcpp::R_386_GOTOFF:
766     case elfcpp::R_386_GOTPC:
767       // We need a GOT section.
768       target->got_section(symtab, layout);
769       break;
770
771       // These are relocations which should only be seen by the
772       // dynamic linker, and should never be seen here.
773     case elfcpp::R_386_COPY:
774     case elfcpp::R_386_GLOB_DAT:
775     case elfcpp::R_386_JUMP_SLOT:
776     case elfcpp::R_386_RELATIVE:
777     case elfcpp::R_386_TLS_TPOFF:
778     case elfcpp::R_386_TLS_DTPMOD32:
779     case elfcpp::R_386_TLS_DTPOFF32:
780     case elfcpp::R_386_TLS_TPOFF32:
781     case elfcpp::R_386_TLS_DESC:
782       gold_error(_("%s: unexpected reloc %u in object file\n"),
783                  object->name().c_str(), r_type);
784       break;
785
786       // These are initial TLS relocs, which are expected when
787       // linking.
788     case elfcpp::R_386_TLS_IE:
789     case elfcpp::R_386_TLS_GOTIE:
790     case elfcpp::R_386_TLS_LE:
791     case elfcpp::R_386_TLS_GD:
792     case elfcpp::R_386_TLS_LDM:
793     case elfcpp::R_386_TLS_LDO_32:
794     case elfcpp::R_386_TLS_IE_32:
795     case elfcpp::R_386_TLS_LE_32:
796     case elfcpp::R_386_TLS_GOTDESC:
797     case elfcpp::R_386_TLS_DESC_CALL:
798       {
799         bool output_is_shared = parameters->output_is_shared();
800         const tls::Tls_optimization optimized_type
801             = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
802         switch (r_type)
803           {
804           case elfcpp::R_386_TLS_LE:
805           case elfcpp::R_386_TLS_LE_32:
806             // FIXME: If generating a shared object, we need to copy
807             // this relocation into the object.
808             gold_assert(!output_is_shared);
809             break;
810
811           case elfcpp::R_386_TLS_IE:
812           case elfcpp::R_386_TLS_IE_32:
813           case elfcpp::R_386_TLS_GOTIE:
814             // FIXME: If not relaxing to LE, we need to generate a
815             // TPOFF or TPOFF32 reloc.
816             if (optimized_type != tls::TLSOPT_TO_LE)
817               unsupported_reloc_local(object, r_type);
818             break;
819
820           case elfcpp::R_386_TLS_LDM:
821             // FIXME: If not relaxing to LE, we need to generate a
822             // DTPMOD32 reloc.
823             if (optimized_type != tls::TLSOPT_TO_LE)
824               unsupported_reloc_local(object, r_type);
825             break;
826
827           case elfcpp::R_386_TLS_LDO_32:
828             break;
829
830           case elfcpp::R_386_TLS_GD:
831           case elfcpp::R_386_TLS_GOTDESC:
832           case elfcpp::R_386_TLS_DESC_CALL:
833             // FIXME: If not relaxing to LE, we need to generate
834             // DTPMOD32 and DTPOFF32 relocs.
835             if (optimized_type != tls::TLSOPT_TO_LE)
836               unsupported_reloc_local(object, r_type);
837             break;
838
839           default:
840             gold_unreachable();
841           }
842       }
843       break;
844
845     case elfcpp::R_386_GOT32:
846     case elfcpp::R_386_PLT32:
847     case elfcpp::R_386_32PLT:
848     case elfcpp::R_386_TLS_GD_32:
849     case elfcpp::R_386_TLS_GD_PUSH:
850     case elfcpp::R_386_TLS_GD_CALL:
851     case elfcpp::R_386_TLS_GD_POP:
852     case elfcpp::R_386_TLS_LDM_32:
853     case elfcpp::R_386_TLS_LDM_PUSH:
854     case elfcpp::R_386_TLS_LDM_CALL:
855     case elfcpp::R_386_TLS_LDM_POP:
856     case elfcpp::R_386_USED_BY_INTEL_200:
857     default:
858       unsupported_reloc_local(object, r_type);
859       break;
860     }
861 }
862
863 // Report an unsupported relocation against a global symbol.
864
865 void
866 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
867                                             unsigned int r_type,
868                                             Symbol* gsym)
869 {
870   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
871              object->name().c_str(), r_type, gsym->name());
872 }
873
874 // Scan a relocation for a global symbol.
875
876 inline void
877 Target_i386::Scan::global(const General_options& options,
878                           Symbol_table* symtab,
879                           Layout* layout,
880                           Target_i386* target,
881                           Sized_relobj<32, false>* object,
882                           unsigned int data_shndx,
883                           const elfcpp::Rel<32, false>& reloc,
884                           unsigned int r_type,
885                           Symbol* gsym)
886 {
887   switch (r_type)
888     {
889     case elfcpp::R_386_NONE:
890     case elfcpp::R_386_GNU_VTINHERIT:
891     case elfcpp::R_386_GNU_VTENTRY:
892       break;
893
894     case elfcpp::R_386_32:
895     case elfcpp::R_386_PC32:
896     case elfcpp::R_386_16:
897     case elfcpp::R_386_PC16:
898     case elfcpp::R_386_8:
899     case elfcpp::R_386_PC8:
900       // FIXME: If we are generating a shared object we may need to
901       // copy this relocation into the object.  If this symbol is
902       // defined in a shared object, we may need to copy this
903       // relocation in order to avoid a COPY relocation.
904       gold_assert(!parameters->output_is_shared());
905
906       if (gsym->is_from_dynobj())
907         {
908           // This symbol is defined in a dynamic object.  If it is a
909           // function, we make a PLT entry.  Otherwise we need to
910           // either generate a COPY reloc or copy this reloc.
911           if (gsym->type() == elfcpp::STT_FUNC)
912             {
913               target->make_plt_entry(symtab, layout, gsym);
914
915               // If this is not a PC relative reference, then we may
916               // be taking the address of the function.  In that case
917               // we need to set the entry in the dynamic symbol table
918               // to the address of the PLT entry.
919               if (r_type != elfcpp::R_386_PC32
920                   && r_type != elfcpp::R_386_PC16
921                   && r_type != elfcpp::R_386_PC8)
922                 gsym->set_needs_dynsym_value();
923             }
924           else
925             target->copy_reloc(&options, symtab, layout, object, data_shndx,
926                                gsym, reloc);
927         }
928
929       break;
930
931     case elfcpp::R_386_GOT32:
932       {
933         // The symbol requires a GOT entry.
934         Output_data_got<32, false>* got = target->got_section(symtab, layout);
935         if (got->add_global(gsym))
936           {
937             // If this symbol is not fully resolved, we need to add a
938             // dynamic relocation for it.
939             if (!gsym->final_value_is_known())
940               {
941                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
942                 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
943                                     gsym->got_offset());
944               }
945           }
946       }
947       break;
948
949     case elfcpp::R_386_PLT32:
950       // If the symbol is fully resolved, this is just a PC32 reloc.
951       // Otherwise we need a PLT entry.
952       if (gsym->final_value_is_known())
953         break;
954       target->make_plt_entry(symtab, layout, gsym);
955       break;
956
957     case elfcpp::R_386_GOTOFF:
958     case elfcpp::R_386_GOTPC:
959       // We need a GOT section.
960       target->got_section(symtab, layout);
961       break;
962
963       // These are relocations which should only be seen by the
964       // dynamic linker, and should never be seen here.
965     case elfcpp::R_386_COPY:
966     case elfcpp::R_386_GLOB_DAT:
967     case elfcpp::R_386_JUMP_SLOT:
968     case elfcpp::R_386_RELATIVE:
969     case elfcpp::R_386_TLS_TPOFF:
970     case elfcpp::R_386_TLS_DTPMOD32:
971     case elfcpp::R_386_TLS_DTPOFF32:
972     case elfcpp::R_386_TLS_TPOFF32:
973     case elfcpp::R_386_TLS_DESC:
974       gold_error(_("%s: unexpected reloc %u in object file"),
975                  object->name().c_str(), r_type);
976       break;
977
978       // These are initial tls relocs, which are expected when
979       // linking.
980     case elfcpp::R_386_TLS_IE:
981     case elfcpp::R_386_TLS_GOTIE:
982     case elfcpp::R_386_TLS_LE:
983     case elfcpp::R_386_TLS_GD:
984     case elfcpp::R_386_TLS_LDM:
985     case elfcpp::R_386_TLS_LDO_32:
986     case elfcpp::R_386_TLS_IE_32:
987     case elfcpp::R_386_TLS_LE_32:
988     case elfcpp::R_386_TLS_GOTDESC:
989     case elfcpp::R_386_TLS_DESC_CALL:
990       {
991         const bool is_final = gsym->final_value_is_known();
992         const tls::Tls_optimization optimized_type
993             = Target_i386::optimize_tls_reloc(is_final, r_type);
994         switch (r_type)
995           {
996           case elfcpp::R_386_TLS_LE:
997           case elfcpp::R_386_TLS_LE_32:
998             // FIXME: If generating a shared object, we need to copy
999             // this relocation into the object.
1000             gold_assert(!parameters->output_is_shared());
1001             break;
1002
1003           case elfcpp::R_386_TLS_IE:
1004           case elfcpp::R_386_TLS_IE_32:
1005           case elfcpp::R_386_TLS_GOTIE:
1006             // FIXME: If not relaxing to LE, we need to generate a
1007             // TPOFF or TPOFF32 reloc.
1008             if (optimized_type != tls::TLSOPT_TO_LE)
1009               unsupported_reloc_global(object, r_type, gsym);
1010             break;
1011
1012           case elfcpp::R_386_TLS_LDM:
1013             // FIXME: If not relaxing to LE, we need to generate a
1014             // DTPMOD32 reloc.
1015             if (optimized_type != tls::TLSOPT_TO_LE)
1016               unsupported_reloc_global(object, r_type, gsym);
1017             break;
1018
1019           case elfcpp::R_386_TLS_LDO_32:
1020             break;
1021
1022           case elfcpp::R_386_TLS_GD:
1023           case elfcpp::R_386_TLS_GOTDESC:
1024           case elfcpp::R_386_TLS_DESC_CALL:
1025             // FIXME: If not relaxing to LE, we need to generate
1026             // DTPMOD32 and DTPOFF32 relocs.
1027             if (optimized_type != tls::TLSOPT_TO_LE)
1028               unsupported_reloc_global(object, r_type, gsym);
1029             break;
1030
1031           default:
1032             gold_unreachable();
1033           }
1034       }
1035       break;
1036
1037     case elfcpp::R_386_32PLT:
1038     case elfcpp::R_386_TLS_GD_32:
1039     case elfcpp::R_386_TLS_GD_PUSH:
1040     case elfcpp::R_386_TLS_GD_CALL:
1041     case elfcpp::R_386_TLS_GD_POP:
1042     case elfcpp::R_386_TLS_LDM_32:
1043     case elfcpp::R_386_TLS_LDM_PUSH:
1044     case elfcpp::R_386_TLS_LDM_CALL:
1045     case elfcpp::R_386_TLS_LDM_POP:
1046     case elfcpp::R_386_USED_BY_INTEL_200:
1047     default:
1048       unsupported_reloc_global(object, r_type, gsym);
1049       break;
1050     }
1051 }
1052
1053 // Scan relocations for a section.
1054
1055 void
1056 Target_i386::scan_relocs(const General_options& options,
1057                          Symbol_table* symtab,
1058                          Layout* layout,
1059                          Sized_relobj<32, false>* object,
1060                          unsigned int data_shndx,
1061                          unsigned int sh_type,
1062                          const unsigned char* prelocs,
1063                          size_t reloc_count,
1064                          size_t local_symbol_count,
1065                          const unsigned char* plocal_symbols,
1066                          Symbol** global_symbols)
1067 {
1068   if (sh_type == elfcpp::SHT_RELA)
1069     {
1070       gold_error(_("%s: unsupported RELA reloc section"),
1071                  object->name().c_str());
1072       return;
1073     }
1074
1075   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1076                     Target_i386::Scan>(
1077     options,
1078     symtab,
1079     layout,
1080     this,
1081     object,
1082     data_shndx,
1083     prelocs,
1084     reloc_count,
1085     local_symbol_count,
1086     plocal_symbols,
1087     global_symbols);
1088 }
1089
1090 // Finalize the sections.
1091
1092 void
1093 Target_i386::do_finalize_sections(Layout* layout)
1094 {
1095   // Fill in some more dynamic tags.
1096   Output_data_dynamic* const odyn = layout->dynamic_data();
1097   if (odyn != NULL)
1098     {
1099       if (this->got_plt_ != NULL)
1100         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1101
1102       if (this->plt_ != NULL)
1103         {
1104           const Output_data* od = this->plt_->rel_plt();
1105           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1106           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1107           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1108         }
1109
1110       if (this->rel_dyn_ != NULL)
1111         {
1112           const Output_data* od = this->rel_dyn_;
1113           odyn->add_section_address(elfcpp::DT_REL, od);
1114           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1115           odyn->add_constant(elfcpp::DT_RELENT,
1116                              elfcpp::Elf_sizes<32>::rel_size);
1117         }
1118
1119       if (!parameters->output_is_shared())
1120         {
1121           // The value of the DT_DEBUG tag is filled in by the dynamic
1122           // linker at run time, and used by the debugger.
1123           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1124         }
1125     }
1126
1127   // Emit any relocs we saved in an attempt to avoid generating COPY
1128   // relocs.
1129   if (this->copy_relocs_ == NULL)
1130     return;
1131   if (this->copy_relocs_->any_to_emit())
1132     {
1133       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1134       this->copy_relocs_->emit(rel_dyn);
1135     }
1136   delete this->copy_relocs_;
1137   this->copy_relocs_ = NULL;
1138 }
1139
1140 // Perform a relocation.
1141
1142 inline bool
1143 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1144                                 Target_i386* target,
1145                                 size_t relnum,
1146                                 const elfcpp::Rel<32, false>& rel,
1147                                 unsigned int r_type,
1148                                 const Sized_symbol<32>* gsym,
1149                                 const Symbol_value<32>* psymval,
1150                                 unsigned char* view,
1151                                 elfcpp::Elf_types<32>::Elf_Addr address,
1152                                 off_t view_size)
1153 {
1154   if (this->skip_call_tls_get_addr_)
1155     {
1156       if (r_type != elfcpp::R_386_PLT32
1157           || gsym == NULL
1158           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1159         gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1160                                _("missing expected TLS relocation"));
1161       else
1162         {
1163           this->skip_call_tls_get_addr_ = false;
1164           return false;
1165         }
1166     }
1167
1168   // Pick the value to use for symbols defined in shared objects.
1169   Symbol_value<32> symval;
1170   if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1171     {
1172       symval.set_output_value(target->plt_section()->address()
1173                               + gsym->plt_offset());
1174       psymval = &symval;
1175     }
1176
1177   const Sized_relobj<32, false>* object = relinfo->object;
1178
1179   switch (r_type)
1180     {
1181     case elfcpp::R_386_NONE:
1182     case elfcpp::R_386_GNU_VTINHERIT:
1183     case elfcpp::R_386_GNU_VTENTRY:
1184       break;
1185
1186     case elfcpp::R_386_32:
1187       Relocate_functions<32, false>::rel32(view, object, psymval);
1188       break;
1189
1190     case elfcpp::R_386_PC32:
1191       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1192       break;
1193
1194     case elfcpp::R_386_16:
1195       Relocate_functions<32, false>::rel16(view, object, psymval);
1196       break;
1197
1198     case elfcpp::R_386_PC16:
1199       Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1200       break;
1201
1202     case elfcpp::R_386_8:
1203       Relocate_functions<32, false>::rel8(view, object, psymval);
1204       break;
1205
1206     case elfcpp::R_386_PC8:
1207       Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1208       break;
1209
1210     case elfcpp::R_386_PLT32:
1211       gold_assert(gsym->has_plt_offset()
1212                   || gsym->final_value_is_known());
1213       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1214       break;
1215
1216     case elfcpp::R_386_GOT32:
1217       // Local GOT offsets not yet supported.
1218       gold_assert(gsym);
1219       gold_assert(gsym->has_got_offset());
1220       Relocate_functions<32, false>::rel32(view, gsym->got_offset());
1221       break;
1222
1223     case elfcpp::R_386_GOTOFF:
1224       {
1225         elfcpp::Elf_types<32>::Elf_Addr value;
1226         value = (psymval->value(object, 0)
1227                  - target->got_section(NULL, NULL)->address());
1228         Relocate_functions<32, false>::rel32(view, value);
1229       }
1230       break;
1231
1232     case elfcpp::R_386_GOTPC:
1233       {
1234         elfcpp::Elf_types<32>::Elf_Addr value;
1235         value = target->got_section(NULL, NULL)->address();
1236         Relocate_functions<32, false>::pcrel32(view, value, address);
1237       }
1238       break;
1239
1240     case elfcpp::R_386_COPY:
1241     case elfcpp::R_386_GLOB_DAT:
1242     case elfcpp::R_386_JUMP_SLOT:
1243     case elfcpp::R_386_RELATIVE:
1244       // These are outstanding tls relocs, which are unexpected when
1245       // linking.
1246     case elfcpp::R_386_TLS_TPOFF:
1247     case elfcpp::R_386_TLS_DTPMOD32:
1248     case elfcpp::R_386_TLS_DTPOFF32:
1249     case elfcpp::R_386_TLS_TPOFF32:
1250     case elfcpp::R_386_TLS_DESC:
1251       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1252                              _("unexpected reloc %u in object file"),
1253                              r_type);
1254       break;
1255
1256       // These are initial tls relocs, which are expected when
1257       // linking.
1258     case elfcpp::R_386_TLS_IE:
1259     case elfcpp::R_386_TLS_GOTIE:
1260     case elfcpp::R_386_TLS_LE:
1261     case elfcpp::R_386_TLS_GD:
1262     case elfcpp::R_386_TLS_LDM:
1263     case elfcpp::R_386_TLS_LDO_32:
1264     case elfcpp::R_386_TLS_IE_32:
1265     case elfcpp::R_386_TLS_LE_32:
1266     case elfcpp::R_386_TLS_GOTDESC:
1267     case elfcpp::R_386_TLS_DESC_CALL:
1268       this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1269                          address, view_size);
1270       break;
1271
1272     case elfcpp::R_386_32PLT:
1273     case elfcpp::R_386_TLS_GD_32:
1274     case elfcpp::R_386_TLS_GD_PUSH:
1275     case elfcpp::R_386_TLS_GD_CALL:
1276     case elfcpp::R_386_TLS_GD_POP:
1277     case elfcpp::R_386_TLS_LDM_32:
1278     case elfcpp::R_386_TLS_LDM_PUSH:
1279     case elfcpp::R_386_TLS_LDM_CALL:
1280     case elfcpp::R_386_TLS_LDM_POP:
1281     case elfcpp::R_386_USED_BY_INTEL_200:
1282     default:
1283       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1284                              _("unsupported reloc %u"),
1285                              r_type);
1286       break;
1287     }
1288
1289   return true;
1290 }
1291
1292 // Perform a TLS relocation.
1293
1294 inline void
1295 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1296                                     size_t relnum,
1297                                     const elfcpp::Rel<32, false>& rel,
1298                                     unsigned int r_type,
1299                                     const Sized_symbol<32>* gsym,
1300                                     const Symbol_value<32>* psymval,
1301                                     unsigned char* view,
1302                                     elfcpp::Elf_types<32>::Elf_Addr,
1303                                     off_t view_size)
1304 {
1305   Output_segment* tls_segment = relinfo->layout->tls_segment();
1306   if (tls_segment == NULL)
1307     {
1308       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1309                              _("TLS reloc but no TLS segment"));
1310       return;
1311     }
1312
1313   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1314
1315   const bool is_final = (gsym == NULL
1316                          ? !parameters->output_is_shared()
1317                          : gsym->final_value_is_known());
1318   const tls::Tls_optimization optimized_type
1319       = Target_i386::optimize_tls_reloc(is_final, r_type);
1320   switch (r_type)
1321     {
1322     case elfcpp::R_386_TLS_LE_32:
1323       value = tls_segment->vaddr() + tls_segment->memsz() - value;
1324       Relocate_functions<32, false>::rel32(view, value);
1325       break;
1326
1327     case elfcpp::R_386_TLS_LE:
1328       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1329       Relocate_functions<32, false>::rel32(view, value);
1330       break;
1331
1332     case elfcpp::R_386_TLS_IE:
1333     case elfcpp::R_386_TLS_GOTIE:
1334     case elfcpp::R_386_TLS_IE_32:
1335       if (optimized_type == tls::TLSOPT_TO_LE)
1336         {
1337           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1338                                               rel, r_type, value, view,
1339                                               view_size);
1340           break;
1341         }
1342       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1343                              _("unsupported reloc %u"),
1344                              r_type);
1345       break;
1346
1347     case elfcpp::R_386_TLS_GD:
1348       if (optimized_type == tls::TLSOPT_TO_LE)
1349         {
1350           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1351                              rel, r_type, value, view,
1352                              view_size);
1353           break;
1354         }
1355       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1356                              _("unsupported reloc %u"),
1357                              r_type);
1358       break;
1359
1360     case elfcpp::R_386_TLS_LDM:
1361       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1362         {
1363           gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1364                                  _("both SUN and GNU model "
1365                                    "TLS relocations"));
1366           break;
1367         }
1368       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1369       if (optimized_type == tls::TLSOPT_TO_LE)
1370         {
1371           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1372                              value, view, view_size);
1373           break;
1374         }
1375       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1376                              _("unsupported reloc %u"),
1377                              r_type);
1378       break;
1379
1380     case elfcpp::R_386_TLS_LDO_32:
1381       // This reloc can appear in debugging sections, in which case we
1382       // won't see the TLS_LDM reloc.  The local_dynamic_type field
1383       // tells us this.
1384       if (optimized_type != tls::TLSOPT_TO_LE
1385           || this->local_dynamic_type_ == LOCAL_DYNAMIC_NONE)
1386         value = value - tls_segment->vaddr();
1387       else if (this->local_dynamic_type_ == LOCAL_DYNAMIC_GNU)
1388         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1389       else
1390         value = tls_segment->vaddr() + tls_segment->memsz() - value;
1391       Relocate_functions<32, false>::rel32(view, value);
1392       break;
1393
1394     case elfcpp::R_386_TLS_GOTDESC:
1395     case elfcpp::R_386_TLS_DESC_CALL:
1396       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1397                              _("unsupported reloc %u"),
1398                              r_type);
1399       break;
1400     }
1401 }
1402
1403 // Do a relocation in which we convert a TLS Initial-Exec to a
1404 // Local-Exec.
1405
1406 inline void
1407 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1408                                     size_t relnum,
1409                                     Output_segment* tls_segment,
1410                                     const elfcpp::Rel<32, false>& rel,
1411                                     unsigned int r_type,
1412                                     elfcpp::Elf_types<32>::Elf_Addr value,
1413                                     unsigned char* view,
1414                                     off_t view_size)
1415 {
1416   // We have to actually change the instructions, which means that we
1417   // need to examine the opcodes to figure out which instruction we
1418   // are looking at.
1419   if (r_type == elfcpp::R_386_TLS_IE)
1420     {
1421       // movl %gs:XX,%eax  ==>  movl $YY,%eax
1422       // movl %gs:XX,%reg  ==>  movl $YY,%reg
1423       // addl %gs:XX,%reg  ==>  addl $YY,%reg
1424       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
1425       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1426
1427       unsigned char op1 = view[-1];
1428       if (op1 == 0xa1)
1429         {
1430           // movl XX,%eax  ==>  movl $YY,%eax
1431           view[-1] = 0xb8;
1432         }
1433       else
1434         {
1435           tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1436
1437           unsigned char op2 = view[-2];
1438           if (op2 == 0x8b)
1439             {
1440               // movl XX,%reg  ==>  movl $YY,%reg
1441               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1442                              (op1 & 0xc7) == 0x05);
1443               view[-2] = 0xc7;
1444               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1445             }
1446           else if (op2 == 0x03)
1447             {
1448               // addl XX,%reg  ==>  addl $YY,%reg
1449               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1450                              (op1 & 0xc7) == 0x05);
1451               view[-2] = 0x81;
1452               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1453             }
1454           else
1455             tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1456         }
1457     }
1458   else
1459     {
1460       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1461       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1462       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1463       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1464       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1465
1466       unsigned char op1 = view[-1];
1467       unsigned char op2 = view[-2];
1468       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1469                      (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1470       if (op2 == 0x8b)
1471         {
1472           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1473           view[-2] = 0xc7;
1474           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1475         }
1476       else if (op2 == 0x2b)
1477         {
1478           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1479           view[-2] = 0x81;
1480           view[-1] = 0xe8 | ((op1 >> 3) & 7);
1481         }
1482       else if (op2 == 0x03)
1483         {
1484           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1485           view[-2] = 0x81;
1486           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1487         }
1488       else
1489         tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1490     }
1491
1492   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1493   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1494     value = - value;
1495
1496   Relocate_functions<32, false>::rel32(view, value);
1497 }
1498
1499 // Do a relocation in which we convert a TLS General-Dynamic to a
1500 // Local-Exec.
1501
1502 inline void
1503 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1504                                     size_t relnum,
1505                                     Output_segment* tls_segment,
1506                                     const elfcpp::Rel<32, false>& rel,
1507                                     unsigned int,
1508                                     elfcpp::Elf_types<32>::Elf_Addr value,
1509                                     unsigned char* view,
1510                                     off_t view_size)
1511 {
1512   // leal foo(,%reg,1),%eax; call ___tls_get_addr
1513   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1514   // leal foo(%reg),%eax; call ___tls_get_addr
1515   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1516
1517   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1518   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1519
1520   unsigned char op1 = view[-1];
1521   unsigned char op2 = view[-2];
1522
1523   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1524                  op2 == 0x8d || op2 == 0x04);
1525   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1526
1527   int roff = 5;
1528
1529   if (op2 == 0x04)
1530     {
1531       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1532       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1533       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1534                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1535       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1536     }
1537   else
1538     {
1539       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1540                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1541       if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1542           && view[9] == 0x90)
1543         {
1544           // There is a trailing nop.  Use the size byte subl.
1545           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1546           roff = 6;
1547         }
1548       else
1549         {
1550           // Use the five byte subl.
1551           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1552         }
1553     }
1554
1555   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1556   Relocate_functions<32, false>::rel32(view + roff, value);
1557
1558   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1559   // We can skip it.
1560   this->skip_call_tls_get_addr_ = true;
1561 }
1562
1563 // Do a relocation in which we convert a TLS Local-Dynamic to a
1564 // Local-Exec.
1565
1566 inline void
1567 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
1568                                     size_t relnum,
1569                                     Output_segment*,
1570                                     const elfcpp::Rel<32, false>& rel,
1571                                     unsigned int,
1572                                     elfcpp::Elf_types<32>::Elf_Addr,
1573                                     unsigned char* view,
1574                                     off_t view_size)
1575 {
1576   // leal foo(%reg), %eax; call ___tls_get_addr
1577   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
1578
1579   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1580   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1581
1582   // FIXME: Does this test really always pass?
1583   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1584                  view[-2] == 0x8d && view[-1] == 0x83);
1585
1586   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1587
1588   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
1589
1590   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1591   // We can skip it.
1592   this->skip_call_tls_get_addr_ = true;
1593 }
1594
1595 // Relocate section data.
1596
1597 void
1598 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1599                               unsigned int sh_type,
1600                               const unsigned char* prelocs,
1601                               size_t reloc_count,
1602                               unsigned char* view,
1603                               elfcpp::Elf_types<32>::Elf_Addr address,
1604                               off_t view_size)
1605 {
1606   gold_assert(sh_type == elfcpp::SHT_REL);
1607
1608   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1609                          Target_i386::Relocate>(
1610     relinfo,
1611     this,
1612     prelocs,
1613     reloc_count,
1614     view,
1615     address,
1616     view_size);
1617 }
1618
1619 // Return the value to use for a dynamic which requires special
1620 // treatment.  This is how we support equality comparisons of function
1621 // pointers across shared library boundaries, as described in the
1622 // processor specific ABI supplement.
1623
1624 uint64_t
1625 Target_i386::do_dynsym_value(const Symbol* gsym) const
1626 {
1627   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1628   return this->plt_section()->address() + gsym->plt_offset();
1629 }
1630
1631 // Return a string used to fill a code section with nops to take up
1632 // the specified length.
1633
1634 std::string
1635 Target_i386::do_code_fill(off_t length)
1636 {
1637   if (length >= 16)
1638     {
1639       // Build a jmp instruction to skip over the bytes.
1640       unsigned char jmp[5];
1641       jmp[0] = 0xe9;
1642       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1643       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1644               + std::string(length - 5, '\0'));
1645     }
1646
1647   // Nop sequences of various lengths.
1648   const char nop1[1] = { 0x90 };                   // nop
1649   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1650   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1651   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1652   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1653                          0x00 };                   // leal 0(%esi,1),%esi
1654   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1655                          0x00, 0x00 };
1656   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1657                          0x00, 0x00, 0x00 };
1658   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1659                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1660   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1661                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1662                          0x00 };
1663   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1664                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1665                            0x00, 0x00 };
1666   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1667                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1668                            0x00, 0x00, 0x00 };
1669   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1670                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1671                            0x00, 0x00, 0x00, 0x00 };
1672   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1673                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1674                            0x27, 0x00, 0x00, 0x00,
1675                            0x00 };
1676   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1677                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1678                            0xbc, 0x27, 0x00, 0x00,
1679                            0x00, 0x00 };
1680   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1681                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1682                            0x90, 0x90, 0x90, 0x90,
1683                            0x90, 0x90, 0x90 };
1684
1685   const char* nops[16] = {
1686     NULL,
1687     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1688     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1689   };
1690
1691   return std::string(nops[length], length);
1692 }
1693
1694 // The selector for i386 object files.
1695
1696 class Target_selector_i386 : public Target_selector
1697 {
1698 public:
1699   Target_selector_i386()
1700     : Target_selector(elfcpp::EM_386, 32, false)
1701   { }
1702
1703   Target*
1704   recognize(int machine, int osabi, int abiversion);
1705
1706  private:
1707   Target_i386* target_;
1708 };
1709
1710 // Recognize an i386 object file when we already know that the machine
1711 // number is EM_386.
1712
1713 Target*
1714 Target_selector_i386::recognize(int, int, int)
1715 {
1716   if (this->target_ == NULL)
1717     this->target_ = new Target_i386();
1718   return this->target_;
1719 }
1720
1721 Target_selector_i386 target_selector_i386;
1722
1723 } // End anonymous namespace.