1 // i386.cc -- i386 target support for gold.
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
36 #include "copy-relocs.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
49 // A class to handle the PLT data.
51 class Output_data_plt_i386 : public Output_section_data
54 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56 Output_data_plt_i386(Layout*, Output_data_space*, Output_data_space*);
58 // Add an entry to the PLT.
60 add_entry(Symbol_table*, Layout*, Symbol* gsym);
62 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
64 add_local_ifunc_entry(Symbol_table*, Layout*,
65 Sized_relobj_file<32, false>* relobj,
66 unsigned int local_sym_index);
68 // Return the .rel.plt section data.
71 { return this->rel_; }
73 // Return where the TLS_DESC relocations should go.
75 rel_tls_desc(Layout*);
77 // Return where the IRELATIVE relocations should go.
79 rel_irelative(Symbol_table*, Layout*);
81 // Return whether we created a section for IRELATIVE relocations.
83 has_irelative_section() const
84 { return this->irelative_rel_ != NULL; }
86 // Return the number of PLT entries.
89 { return this->count_ + this->irelative_count_; }
91 // Return the offset of the first non-reserved PLT entry.
93 first_plt_entry_offset()
94 { return plt_entry_size; }
96 // Return the size of a PLT entry.
99 { return plt_entry_size; }
101 // Return the PLT address to use for a global symbol.
103 address_for_global(const Symbol*);
105 // Return the PLT address to use for a local symbol.
107 address_for_local(const Relobj*, unsigned int symndx);
111 do_adjust_output_section(Output_section* os);
113 // Write to a map file.
115 do_print_to_mapfile(Mapfile* mapfile) const
116 { mapfile->print_output_data(this, _("** PLT")); }
119 // The size of an entry in the PLT.
120 static const int plt_entry_size = 16;
122 // The first entry in the PLT for an executable.
123 static const unsigned char exec_first_plt_entry[plt_entry_size];
125 // The first entry in the PLT for a shared object.
126 static const unsigned char dyn_first_plt_entry[plt_entry_size];
128 // Other entries in the PLT for an executable.
129 static const unsigned char exec_plt_entry[plt_entry_size];
131 // Other entries in the PLT for a shared object.
132 static const unsigned char dyn_plt_entry[plt_entry_size];
134 // The .eh_frame unwind information for the PLT.
135 static const int plt_eh_frame_cie_size = 16;
136 static const int plt_eh_frame_fde_size = 32;
137 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
138 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
140 // Set the final size.
142 set_final_data_size()
144 this->set_data_size((this->count_ + this->irelative_count_ + 1)
148 // Write out the PLT data.
150 do_write(Output_file*);
152 // We keep a list of global STT_GNU_IFUNC symbols, each with its
153 // offset in the GOT.
157 unsigned int got_offset;
160 // We keep a list of local STT_GNU_IFUNC symbols, each with its
161 // offset in the GOT.
164 Sized_relobj_file<32, false>* object;
165 unsigned int local_sym_index;
166 unsigned int got_offset;
169 // The reloc section.
171 // The TLS_DESC relocations, if necessary. These must follow the
172 // regular PLT relocs.
173 Reloc_section* tls_desc_rel_;
174 // The IRELATIVE relocations, if necessary. These must follow the
175 // regular relocatoins and the TLS_DESC relocations.
176 Reloc_section* irelative_rel_;
177 // The .got.plt section.
178 Output_data_space* got_plt_;
179 // The part of the .got.plt section used for IRELATIVE relocs.
180 Output_data_space* got_irelative_;
181 // The number of PLT entries.
183 // Number of PLT entries with R_386_IRELATIVE relocs. These follow
184 // the regular PLT entries.
185 unsigned int irelative_count_;
186 // Global STT_GNU_IFUNC symbols.
187 std::vector<Global_ifunc> global_ifuncs_;
188 // Local STT_GNU_IFUNC symbols.
189 std::vector<Local_ifunc> local_ifuncs_;
192 // The i386 target class.
193 // TLS info comes from
194 // http://people.redhat.com/drepper/tls.pdf
195 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
197 class Target_i386 : public Sized_target<32, false>
200 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
203 : Sized_target<32, false>(&i386_info),
204 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
205 got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
206 rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY), dynbss_(NULL),
207 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
210 // Process the relocations to determine unreferenced sections for
211 // garbage collection.
213 gc_process_relocs(Symbol_table* symtab,
215 Sized_relobj_file<32, false>* object,
216 unsigned int data_shndx,
217 unsigned int sh_type,
218 const unsigned char* prelocs,
220 Output_section* output_section,
221 bool needs_special_offset_handling,
222 size_t local_symbol_count,
223 const unsigned char* plocal_symbols);
225 // Scan the relocations to look for symbol adjustments.
227 scan_relocs(Symbol_table* symtab,
229 Sized_relobj_file<32, false>* object,
230 unsigned int data_shndx,
231 unsigned int sh_type,
232 const unsigned char* prelocs,
234 Output_section* output_section,
235 bool needs_special_offset_handling,
236 size_t local_symbol_count,
237 const unsigned char* plocal_symbols);
239 // Finalize the sections.
241 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
243 // Return the value to use for a dynamic which requires special
246 do_dynsym_value(const Symbol*) const;
248 // Relocate a section.
250 relocate_section(const Relocate_info<32, false>*,
251 unsigned int sh_type,
252 const unsigned char* prelocs,
254 Output_section* output_section,
255 bool needs_special_offset_handling,
257 elfcpp::Elf_types<32>::Elf_Addr view_address,
258 section_size_type view_size,
259 const Reloc_symbol_changes*);
261 // Scan the relocs during a relocatable link.
263 scan_relocatable_relocs(Symbol_table* symtab,
265 Sized_relobj_file<32, false>* object,
266 unsigned int data_shndx,
267 unsigned int sh_type,
268 const unsigned char* prelocs,
270 Output_section* output_section,
271 bool needs_special_offset_handling,
272 size_t local_symbol_count,
273 const unsigned char* plocal_symbols,
274 Relocatable_relocs*);
276 // Relocate a section during a relocatable link.
278 relocate_for_relocatable(const Relocate_info<32, false>*,
279 unsigned int sh_type,
280 const unsigned char* prelocs,
282 Output_section* output_section,
283 off_t offset_in_output_section,
284 const Relocatable_relocs*,
286 elfcpp::Elf_types<32>::Elf_Addr view_address,
287 section_size_type view_size,
288 unsigned char* reloc_view,
289 section_size_type reloc_view_size);
291 // Return a string used to fill a code section with nops.
293 do_code_fill(section_size_type length) const;
295 // Return whether SYM is defined by the ABI.
297 do_is_defined_by_abi(const Symbol* sym) const
298 { return strcmp(sym->name(), "___tls_get_addr") == 0; }
300 // Return whether a symbol name implies a local label. The UnixWare
301 // 2.1 cc generates temporary symbols that start with .X, so we
302 // recognize them here. FIXME: do other SVR4 compilers also use .X?.
303 // If so, we should move the .X recognition into
304 // Target::do_is_local_label_name.
306 do_is_local_label_name(const char* name) const
308 if (name[0] == '.' && name[1] == 'X')
310 return Target::do_is_local_label_name(name);
313 // Return the PLT address to use for a global symbol.
315 do_plt_address_for_global(const Symbol* gsym) const
316 { return this->plt_section()->address_for_global(gsym); }
319 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
320 { return this->plt_section()->address_for_local(relobj, symndx); }
322 // We can tell whether we take the address of a function.
324 do_can_check_for_function_pointers() const
327 // Return the base for a DW_EH_PE_datarel encoding.
329 do_ehframe_datarel_base() const;
331 // Return whether SYM is call to a non-split function.
333 do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
335 // Adjust -fsplit-stack code which calls non-split-stack code.
337 do_calls_non_split(Relobj* object, unsigned int shndx,
338 section_offset_type fnoffset, section_size_type fnsize,
339 unsigned char* view, section_size_type view_size,
340 std::string* from, std::string* to) const;
342 // Return the size of the GOT section.
346 gold_assert(this->got_ != NULL);
347 return this->got_->data_size();
350 // Return the number of entries in the GOT.
352 got_entry_count() const
354 if (this->got_ == NULL)
356 return this->got_size() / 4;
359 // Return the number of entries in the PLT.
361 plt_entry_count() const;
363 // Return the offset of the first non-reserved PLT entry.
365 first_plt_entry_offset() const;
367 // Return the size of each PLT entry.
369 plt_entry_size() const;
372 // The class which scans relocations.
377 get_reference_flags(unsigned int r_type);
380 local(Symbol_table* symtab, Layout* layout, Target_i386* target,
381 Sized_relobj_file<32, false>* object,
382 unsigned int data_shndx,
383 Output_section* output_section,
384 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
385 const elfcpp::Sym<32, false>& lsym);
388 global(Symbol_table* symtab, Layout* layout, Target_i386* target,
389 Sized_relobj_file<32, false>* object,
390 unsigned int data_shndx,
391 Output_section* output_section,
392 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
396 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
398 Sized_relobj_file<32, false>* object,
399 unsigned int data_shndx,
400 Output_section* output_section,
401 const elfcpp::Rel<32, false>& reloc,
403 const elfcpp::Sym<32, false>& lsym);
406 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
408 Sized_relobj_file<32, false>* object,
409 unsigned int data_shndx,
410 Output_section* output_section,
411 const elfcpp::Rel<32, false>& reloc,
416 possible_function_pointer_reloc(unsigned int r_type);
419 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
420 unsigned int r_type);
423 unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
426 unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
430 // The class which implements relocation.
435 : skip_call_tls_get_addr_(false),
436 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
441 if (this->skip_call_tls_get_addr_)
443 // FIXME: This needs to specify the location somehow.
444 gold_error(_("missing expected TLS relocation"));
448 // Return whether the static relocation needs to be applied.
450 should_apply_static_reloc(const Sized_symbol<32>* gsym,
453 Output_section* output_section);
455 // Do a relocation. Return false if the caller should not issue
456 // any warnings about this relocation.
458 relocate(const Relocate_info<32, false>*, Target_i386*, Output_section*,
459 size_t relnum, const elfcpp::Rel<32, false>&,
460 unsigned int r_type, const Sized_symbol<32>*,
461 const Symbol_value<32>*,
462 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
466 // Do a TLS relocation.
468 relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
469 size_t relnum, const elfcpp::Rel<32, false>&,
470 unsigned int r_type, const Sized_symbol<32>*,
471 const Symbol_value<32>*,
472 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
475 // Do a TLS General-Dynamic to Initial-Exec transition.
477 tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
478 Output_segment* tls_segment,
479 const elfcpp::Rel<32, false>&, unsigned int r_type,
480 elfcpp::Elf_types<32>::Elf_Addr value,
482 section_size_type view_size);
484 // Do a TLS General-Dynamic to Local-Exec transition.
486 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
487 Output_segment* tls_segment,
488 const elfcpp::Rel<32, false>&, unsigned int r_type,
489 elfcpp::Elf_types<32>::Elf_Addr value,
491 section_size_type view_size);
493 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
496 tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
497 Output_segment* tls_segment,
498 const elfcpp::Rel<32, false>&, unsigned int r_type,
499 elfcpp::Elf_types<32>::Elf_Addr value,
501 section_size_type view_size);
503 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
506 tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
507 Output_segment* tls_segment,
508 const elfcpp::Rel<32, false>&, unsigned int r_type,
509 elfcpp::Elf_types<32>::Elf_Addr value,
511 section_size_type view_size);
513 // Do a TLS Local-Dynamic to Local-Exec transition.
515 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
516 Output_segment* tls_segment,
517 const elfcpp::Rel<32, false>&, unsigned int r_type,
518 elfcpp::Elf_types<32>::Elf_Addr value,
520 section_size_type view_size);
522 // Do a TLS Initial-Exec to Local-Exec transition.
524 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
525 Output_segment* tls_segment,
526 const elfcpp::Rel<32, false>&, unsigned int r_type,
527 elfcpp::Elf_types<32>::Elf_Addr value,
529 section_size_type view_size);
531 // We need to keep track of which type of local dynamic relocation
532 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
533 enum Local_dynamic_type
540 // This is set if we should skip the next reloc, which should be a
541 // PLT32 reloc against ___tls_get_addr.
542 bool skip_call_tls_get_addr_;
543 // The type of local dynamic relocation we have seen in the section
544 // being relocated, if any.
545 Local_dynamic_type local_dynamic_type_;
548 // A class which returns the size required for a relocation type,
549 // used while scanning relocs during a relocatable link.
550 class Relocatable_size_for_reloc
554 get_size_for_reloc(unsigned int, Relobj*);
557 // Adjust TLS relocation type based on the options and whether this
558 // is a local symbol.
559 static tls::Tls_optimization
560 optimize_tls_reloc(bool is_final, int r_type);
562 // Get the GOT section, creating it if necessary.
563 Output_data_got<32, false>*
564 got_section(Symbol_table*, Layout*);
566 // Get the GOT PLT section.
568 got_plt_section() const
570 gold_assert(this->got_plt_ != NULL);
571 return this->got_plt_;
574 // Get the GOT section for TLSDESC entries.
575 Output_data_got<32, false>*
576 got_tlsdesc_section() const
578 gold_assert(this->got_tlsdesc_ != NULL);
579 return this->got_tlsdesc_;
582 // Create the PLT section.
584 make_plt_section(Symbol_table* symtab, Layout* layout);
586 // Create a PLT entry for a global symbol.
588 make_plt_entry(Symbol_table*, Layout*, Symbol*);
590 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
592 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
593 Sized_relobj_file<32, false>* relobj,
594 unsigned int local_sym_index);
596 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
598 define_tls_base_symbol(Symbol_table*, Layout*);
600 // Create a GOT entry for the TLS module index.
602 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
603 Sized_relobj_file<32, false>* object);
605 // Get the PLT section.
606 Output_data_plt_i386*
609 gold_assert(this->plt_ != NULL);
613 // Get the dynamic reloc section, creating it if necessary.
615 rel_dyn_section(Layout*);
617 // Get the section to use for TLS_DESC relocations.
619 rel_tls_desc_section(Layout*) const;
621 // Get the section to use for IRELATIVE relocations.
623 rel_irelative_section(Layout*);
625 // Add a potential copy relocation.
627 copy_reloc(Symbol_table* symtab, Layout* layout,
628 Sized_relobj_file<32, false>* object,
629 unsigned int shndx, Output_section* output_section,
630 Symbol* sym, const elfcpp::Rel<32, false>& reloc)
632 this->copy_relocs_.copy_reloc(symtab, layout,
633 symtab->get_sized_symbol<32>(sym),
634 object, shndx, output_section, reloc,
635 this->rel_dyn_section(layout));
638 // Information about this specific target which we pass to the
639 // general Target structure.
640 static const Target::Target_info i386_info;
642 // The types of GOT entries needed for this platform.
643 // These values are exposed to the ABI in an incremental link.
644 // Do not renumber existing values without changing the version
645 // number of the .gnu_incremental_inputs section.
648 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
649 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
650 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
651 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
652 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
656 Output_data_got<32, false>* got_;
658 Output_data_plt_i386* plt_;
659 // The GOT PLT section.
660 Output_data_space* got_plt_;
661 // The GOT section for IRELATIVE relocations.
662 Output_data_space* got_irelative_;
663 // The GOT section for TLSDESC relocations.
664 Output_data_got<32, false>* got_tlsdesc_;
665 // The _GLOBAL_OFFSET_TABLE_ symbol.
666 Symbol* global_offset_table_;
667 // The dynamic reloc section.
668 Reloc_section* rel_dyn_;
669 // The section to use for IRELATIVE relocs.
670 Reloc_section* rel_irelative_;
671 // Relocs saved to avoid a COPY reloc.
672 Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
673 // Space for variables copied with a COPY reloc.
674 Output_data_space* dynbss_;
675 // Offset of the GOT entry for the TLS module index.
676 unsigned int got_mod_index_offset_;
677 // True if the _TLS_MODULE_BASE_ symbol has been defined.
678 bool tls_base_symbol_defined_;
681 const Target::Target_info Target_i386::i386_info =
684 false, // is_big_endian
685 elfcpp::EM_386, // machine_code
686 false, // has_make_symbol
687 false, // has_resolve
688 true, // has_code_fill
689 true, // is_default_stack_executable
690 true, // can_icf_inline_merge_sections
692 "/usr/lib/libc.so.1", // dynamic_linker
693 0x08048000, // default_text_segment_address
694 0x1000, // abi_pagesize (overridable by -z max-page-size)
695 0x1000, // common_pagesize (overridable by -z common-page-size)
696 elfcpp::SHN_UNDEF, // small_common_shndx
697 elfcpp::SHN_UNDEF, // large_common_shndx
698 0, // small_common_section_flags
699 0, // large_common_section_flags
700 NULL, // attributes_section
701 NULL // attributes_vendor
704 // Get the GOT section, creating it if necessary.
706 Output_data_got<32, false>*
707 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
709 if (this->got_ == NULL)
711 gold_assert(symtab != NULL && layout != NULL);
713 this->got_ = new Output_data_got<32, false>();
715 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
717 | elfcpp::SHF_WRITE),
718 this->got_, ORDER_RELRO_LAST, true);
720 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
721 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
723 | elfcpp::SHF_WRITE),
724 this->got_plt_, ORDER_NON_RELRO_FIRST,
727 // The first three entries are reserved.
728 this->got_plt_->set_current_data_size(3 * 4);
730 // Those bytes can go into the relro segment.
731 layout->increase_relro(3 * 4);
733 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
734 this->global_offset_table_ =
735 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
736 Symbol_table::PREDEFINED,
738 0, 0, elfcpp::STT_OBJECT,
740 elfcpp::STV_HIDDEN, 0,
743 // If there are any IRELATIVE relocations, they get GOT entries
744 // in .got.plt after the jump slot relocations.
745 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
746 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
748 | elfcpp::SHF_WRITE),
749 this->got_irelative_,
750 ORDER_NON_RELRO_FIRST, false);
752 // If there are any TLSDESC relocations, they get GOT entries in
753 // .got.plt after the jump slot entries.
754 this->got_tlsdesc_ = new Output_data_got<32, false>();
755 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
757 | elfcpp::SHF_WRITE),
759 ORDER_NON_RELRO_FIRST, false);
765 // Get the dynamic reloc section, creating it if necessary.
767 Target_i386::Reloc_section*
768 Target_i386::rel_dyn_section(Layout* layout)
770 if (this->rel_dyn_ == NULL)
772 gold_assert(layout != NULL);
773 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
774 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
775 elfcpp::SHF_ALLOC, this->rel_dyn_,
776 ORDER_DYNAMIC_RELOCS, false);
778 return this->rel_dyn_;
781 // Get the section to use for IRELATIVE relocs, creating it if
782 // necessary. These go in .rel.dyn, but only after all other dynamic
783 // relocations. They need to follow the other dynamic relocations so
784 // that they can refer to global variables initialized by those
787 Target_i386::Reloc_section*
788 Target_i386::rel_irelative_section(Layout* layout)
790 if (this->rel_irelative_ == NULL)
792 // Make sure we have already create the dynamic reloc section.
793 this->rel_dyn_section(layout);
794 this->rel_irelative_ = new Reloc_section(false);
795 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
796 elfcpp::SHF_ALLOC, this->rel_irelative_,
797 ORDER_DYNAMIC_RELOCS, false);
798 gold_assert(this->rel_dyn_->output_section()
799 == this->rel_irelative_->output_section());
801 return this->rel_irelative_;
804 // Create the PLT section. The ordinary .got section is an argument,
805 // since we need to refer to the start. We also create our own .got
806 // section just for PLT entries.
808 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
809 Output_data_space* got_plt,
810 Output_data_space* got_irelative)
811 : Output_section_data(16), tls_desc_rel_(NULL), irelative_rel_(NULL),
812 got_plt_(got_plt), got_irelative_(got_irelative), count_(0),
813 irelative_count_(0), global_ifuncs_(), local_ifuncs_()
815 this->rel_ = new Reloc_section(false);
816 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
817 elfcpp::SHF_ALLOC, this->rel_,
818 ORDER_DYNAMIC_PLT_RELOCS, false);
820 // Add unwind information if requested.
821 if (parameters->options().ld_generated_unwind_info())
822 layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
823 plt_eh_frame_fde, plt_eh_frame_fde_size);
827 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
829 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
830 // linker, and so do we.
834 // Add an entry to the PLT.
837 Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
840 gold_assert(!gsym->has_plt_offset());
842 // Every PLT entry needs a reloc.
843 if (gsym->type() == elfcpp::STT_GNU_IFUNC
844 && gsym->can_use_relative_reloc(false))
846 gsym->set_plt_offset(this->irelative_count_ * plt_entry_size);
847 ++this->irelative_count_;
848 section_offset_type got_offset =
849 this->got_irelative_->current_data_size();
850 this->got_irelative_->set_current_data_size(got_offset + 4);
851 Reloc_section* rel = this->rel_irelative(symtab, layout);
852 rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
853 this->got_irelative_, got_offset);
854 struct Global_ifunc gi;
856 gi.got_offset = got_offset;
857 this->global_ifuncs_.push_back(gi);
861 // When setting the PLT offset we skip the initial reserved PLT
863 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
867 section_offset_type got_offset = this->got_plt_->current_data_size();
869 // Every PLT entry needs a GOT entry which points back to the
870 // PLT entry (this will be changed by the dynamic linker,
871 // normally lazily when the function is called).
872 this->got_plt_->set_current_data_size(got_offset + 4);
874 gsym->set_needs_dynsym_entry();
875 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
879 // Note that we don't need to save the symbol. The contents of the
880 // PLT are independent of which symbols are used. The symbols only
881 // appear in the relocations.
884 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
888 Output_data_plt_i386::add_local_ifunc_entry(
889 Symbol_table* symtab,
891 Sized_relobj_file<32, false>* relobj,
892 unsigned int local_sym_index)
894 unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
895 ++this->irelative_count_;
897 section_offset_type got_offset = this->got_irelative_->current_data_size();
899 // Every PLT entry needs a GOT entry which points back to the PLT
901 this->got_irelative_->set_current_data_size(got_offset + 4);
903 // Every PLT entry needs a reloc.
904 Reloc_section* rel = this->rel_irelative(symtab, layout);
905 rel->add_symbolless_local_addend(relobj, local_sym_index,
906 elfcpp::R_386_IRELATIVE,
907 this->got_irelative_, got_offset);
909 struct Local_ifunc li;
911 li.local_sym_index = local_sym_index;
912 li.got_offset = got_offset;
913 this->local_ifuncs_.push_back(li);
918 // Return where the TLS_DESC relocations should go, creating it if
919 // necessary. These follow the JUMP_SLOT relocations.
921 Output_data_plt_i386::Reloc_section*
922 Output_data_plt_i386::rel_tls_desc(Layout* layout)
924 if (this->tls_desc_rel_ == NULL)
926 this->tls_desc_rel_ = new Reloc_section(false);
927 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
928 elfcpp::SHF_ALLOC, this->tls_desc_rel_,
929 ORDER_DYNAMIC_PLT_RELOCS, false);
930 gold_assert(this->tls_desc_rel_->output_section()
931 == this->rel_->output_section());
933 return this->tls_desc_rel_;
936 // Return where the IRELATIVE relocations should go in the PLT. These
937 // follow the JUMP_SLOT and TLS_DESC relocations.
939 Output_data_plt_i386::Reloc_section*
940 Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
942 if (this->irelative_rel_ == NULL)
944 // Make sure we have a place for the TLS_DESC relocations, in
945 // case we see any later on.
946 this->rel_tls_desc(layout);
947 this->irelative_rel_ = new Reloc_section(false);
948 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
949 elfcpp::SHF_ALLOC, this->irelative_rel_,
950 ORDER_DYNAMIC_PLT_RELOCS, false);
951 gold_assert(this->irelative_rel_->output_section()
952 == this->rel_->output_section());
954 if (parameters->doing_static_link())
956 // A statically linked executable will only have a .rel.plt
957 // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
958 // symbols. The library will use these symbols to locate
959 // the IRELATIVE relocs at program startup time.
960 symtab->define_in_output_data("__rel_iplt_start", NULL,
961 Symbol_table::PREDEFINED,
962 this->irelative_rel_, 0, 0,
963 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
964 elfcpp::STV_HIDDEN, 0, false, true);
965 symtab->define_in_output_data("__rel_iplt_end", NULL,
966 Symbol_table::PREDEFINED,
967 this->irelative_rel_, 0, 0,
968 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
969 elfcpp::STV_HIDDEN, 0, true, true);
972 return this->irelative_rel_;
975 // Return the PLT address to use for a global symbol.
978 Output_data_plt_i386::address_for_global(const Symbol* gsym)
981 if (gsym->type() == elfcpp::STT_GNU_IFUNC
982 && gsym->can_use_relative_reloc(false))
983 offset = (this->count_ + 1) * plt_entry_size;
984 return this->address() + offset;
987 // Return the PLT address to use for a local symbol. These are always
991 Output_data_plt_i386::address_for_local(const Relobj*, unsigned int)
993 return this->address() + (this->count_ + 1) * plt_entry_size;
996 // The first entry in the PLT for an executable.
998 const unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
1000 0xff, 0x35, // pushl contents of memory address
1001 0, 0, 0, 0, // replaced with address of .got + 4
1002 0xff, 0x25, // jmp indirect
1003 0, 0, 0, 0, // replaced with address of .got + 8
1004 0, 0, 0, 0 // unused
1007 // The first entry in the PLT for a shared object.
1009 const unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
1011 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
1012 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
1013 0, 0, 0, 0 // unused
1016 // Subsequent entries in the PLT for an executable.
1018 const unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
1020 0xff, 0x25, // jmp indirect
1021 0, 0, 0, 0, // replaced with address of symbol in .got
1022 0x68, // pushl immediate
1023 0, 0, 0, 0, // replaced with offset into relocation table
1024 0xe9, // jmp relative
1025 0, 0, 0, 0 // replaced with offset to start of .plt
1028 // Subsequent entries in the PLT for a shared object.
1030 const unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
1032 0xff, 0xa3, // jmp *offset(%ebx)
1033 0, 0, 0, 0, // replaced with offset of symbol in .got
1034 0x68, // pushl immediate
1035 0, 0, 0, 0, // replaced with offset into relocation table
1036 0xe9, // jmp relative
1037 0, 0, 0, 0 // replaced with offset to start of .plt
1040 // The .eh_frame unwind information for the PLT.
1043 Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1046 'z', // Augmentation: augmentation size included.
1047 'R', // Augmentation: FDE encoding included.
1048 '\0', // End of augmentation string.
1049 1, // Code alignment factor.
1050 0x7c, // Data alignment factor.
1051 8, // Return address column.
1052 1, // Augmentation size.
1053 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1054 | elfcpp::DW_EH_PE_sdata4),
1055 elfcpp::DW_CFA_def_cfa, 4, 4, // DW_CFA_def_cfa: r4 (esp) ofs 4.
1056 elfcpp::DW_CFA_offset + 8, 1, // DW_CFA_offset: r8 (eip) at cfa-4.
1057 elfcpp::DW_CFA_nop, // Align to 16 bytes.
1062 Output_data_plt_i386::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1064 0, 0, 0, 0, // Replaced with offset to .plt.
1065 0, 0, 0, 0, // Replaced with size of .plt.
1066 0, // Augmentation size.
1067 elfcpp::DW_CFA_def_cfa_offset, 8, // DW_CFA_def_cfa_offset: 8.
1068 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
1069 elfcpp::DW_CFA_def_cfa_offset, 12, // DW_CFA_def_cfa_offset: 12.
1070 elfcpp::DW_CFA_advance_loc + 10, // Advance 10 to __PLT__ + 16.
1071 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
1072 11, // Block length.
1073 elfcpp::DW_OP_breg4, 4, // Push %esp + 4.
1074 elfcpp::DW_OP_breg8, 0, // Push %eip.
1075 elfcpp::DW_OP_lit15, // Push 0xf.
1076 elfcpp::DW_OP_and, // & (%eip & 0xf).
1077 elfcpp::DW_OP_lit11, // Push 0xb.
1078 elfcpp::DW_OP_ge, // >= ((%eip & 0xf) >= 0xb)
1079 elfcpp::DW_OP_lit2, // Push 2.
1080 elfcpp::DW_OP_shl, // << (((%eip & 0xf) >= 0xb) << 2)
1081 elfcpp::DW_OP_plus, // + ((((%eip&0xf)>=0xb)<<2)+%esp+4
1082 elfcpp::DW_CFA_nop, // Align to 32 bytes.
1088 // Write out the PLT. This uses the hand-coded instructions above,
1089 // and adjusts them as needed. This is all specified by the i386 ELF
1090 // Processor Supplement.
1093 Output_data_plt_i386::do_write(Output_file* of)
1095 const off_t offset = this->offset();
1096 const section_size_type oview_size =
1097 convert_to_section_size_type(this->data_size());
1098 unsigned char* const oview = of->get_output_view(offset, oview_size);
1100 const off_t got_file_offset = this->got_plt_->offset();
1101 gold_assert(parameters->incremental_update()
1102 || (got_file_offset + this->got_plt_->data_size()
1103 == this->got_irelative_->offset()));
1104 const section_size_type got_size =
1105 convert_to_section_size_type(this->got_plt_->data_size()
1106 + this->got_irelative_->data_size());
1107 unsigned char* const got_view = of->get_output_view(got_file_offset,
1110 unsigned char* pov = oview;
1112 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
1113 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
1115 if (parameters->options().output_is_position_independent())
1116 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
1119 memcpy(pov, exec_first_plt_entry, plt_entry_size);
1120 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
1121 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
1123 pov += plt_entry_size;
1125 unsigned char* got_pov = got_view;
1127 memset(got_pov, 0, 12);
1130 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
1132 unsigned int plt_offset = plt_entry_size;
1133 unsigned int plt_rel_offset = 0;
1134 unsigned int got_offset = 12;
1135 const unsigned int count = this->count_ + this->irelative_count_;
1136 for (unsigned int i = 0;
1139 pov += plt_entry_size,
1141 plt_offset += plt_entry_size,
1142 plt_rel_offset += rel_size,
1145 // Set and adjust the PLT entry itself.
1147 if (parameters->options().output_is_position_independent())
1149 memcpy(pov, dyn_plt_entry, plt_entry_size);
1150 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
1154 memcpy(pov, exec_plt_entry, plt_entry_size);
1155 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1160 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1161 elfcpp::Swap<32, false>::writeval(pov + 12,
1162 - (plt_offset + plt_entry_size));
1164 // Set the entry in the GOT.
1165 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
1168 // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
1169 // the GOT to point to the actual symbol value, rather than point to
1170 // the PLT entry. That will let the dynamic linker call the right
1171 // function when resolving IRELATIVE relocations.
1172 unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
1173 for (std::vector<Global_ifunc>::const_iterator p =
1174 this->global_ifuncs_.begin();
1175 p != this->global_ifuncs_.end();
1178 const Sized_symbol<32>* ssym =
1179 static_cast<const Sized_symbol<32>*>(p->sym);
1180 elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1184 for (std::vector<Local_ifunc>::const_iterator p =
1185 this->local_ifuncs_.begin();
1186 p != this->local_ifuncs_.end();
1189 const Symbol_value<32>* psymval =
1190 p->object->local_symbol(p->local_sym_index);
1191 elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1192 psymval->value(p->object, 0));
1195 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1196 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1198 of->write_output_view(offset, oview_size, oview);
1199 of->write_output_view(got_file_offset, got_size, got_view);
1202 // Create the PLT section.
1205 Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
1207 if (this->plt_ == NULL)
1209 // Create the GOT sections first.
1210 this->got_section(symtab, layout);
1212 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_,
1213 this->got_irelative_);
1214 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1216 | elfcpp::SHF_EXECINSTR),
1217 this->plt_, ORDER_PLT, false);
1219 // Make the sh_info field of .rel.plt point to .plt.
1220 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
1221 rel_plt_os->set_info_section(this->plt_->output_section());
1225 // Create a PLT entry for a global symbol.
1228 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
1230 if (gsym->has_plt_offset())
1232 if (this->plt_ == NULL)
1233 this->make_plt_section(symtab, layout);
1234 this->plt_->add_entry(symtab, layout, gsym);
1237 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1240 Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1241 Sized_relobj_file<32, false>* relobj,
1242 unsigned int local_sym_index)
1244 if (relobj->local_has_plt_offset(local_sym_index))
1246 if (this->plt_ == NULL)
1247 this->make_plt_section(symtab, layout);
1248 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1251 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1254 // Return the number of entries in the PLT.
1257 Target_i386::plt_entry_count() const
1259 if (this->plt_ == NULL)
1261 return this->plt_->entry_count();
1264 // Return the offset of the first non-reserved PLT entry.
1267 Target_i386::first_plt_entry_offset() const
1269 return Output_data_plt_i386::first_plt_entry_offset();
1272 // Return the size of each PLT entry.
1275 Target_i386::plt_entry_size() const
1277 return Output_data_plt_i386::get_plt_entry_size();
1280 // Get the section to use for TLS_DESC relocations.
1282 Target_i386::Reloc_section*
1283 Target_i386::rel_tls_desc_section(Layout* layout) const
1285 return this->plt_section()->rel_tls_desc(layout);
1288 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1291 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1293 if (this->tls_base_symbol_defined_)
1296 Output_segment* tls_segment = layout->tls_segment();
1297 if (tls_segment != NULL)
1299 bool is_exec = parameters->options().output_is_executable();
1300 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1301 Symbol_table::PREDEFINED,
1305 elfcpp::STV_HIDDEN, 0,
1307 ? Symbol::SEGMENT_END
1308 : Symbol::SEGMENT_START),
1311 this->tls_base_symbol_defined_ = true;
1314 // Create a GOT entry for the TLS module index.
1317 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1318 Sized_relobj_file<32, false>* object)
1320 if (this->got_mod_index_offset_ == -1U)
1322 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1323 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1324 Output_data_got<32, false>* got = this->got_section(symtab, layout);
1325 unsigned int got_offset = got->add_constant(0);
1326 rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
1328 got->add_constant(0);
1329 this->got_mod_index_offset_ = got_offset;
1331 return this->got_mod_index_offset_;
1334 // Optimize the TLS relocation type based on what we know about the
1335 // symbol. IS_FINAL is true if the final address of this symbol is
1336 // known at link time.
1338 tls::Tls_optimization
1339 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
1341 // If we are generating a shared library, then we can't do anything
1343 if (parameters->options().shared())
1344 return tls::TLSOPT_NONE;
1348 case elfcpp::R_386_TLS_GD:
1349 case elfcpp::R_386_TLS_GOTDESC:
1350 case elfcpp::R_386_TLS_DESC_CALL:
1351 // These are General-Dynamic which permits fully general TLS
1352 // access. Since we know that we are generating an executable,
1353 // we can convert this to Initial-Exec. If we also know that
1354 // this is a local symbol, we can further switch to Local-Exec.
1356 return tls::TLSOPT_TO_LE;
1357 return tls::TLSOPT_TO_IE;
1359 case elfcpp::R_386_TLS_LDM:
1360 // This is Local-Dynamic, which refers to a local symbol in the
1361 // dynamic TLS block. Since we know that we generating an
1362 // executable, we can switch to Local-Exec.
1363 return tls::TLSOPT_TO_LE;
1365 case elfcpp::R_386_TLS_LDO_32:
1366 // Another type of Local-Dynamic relocation.
1367 return tls::TLSOPT_TO_LE;
1369 case elfcpp::R_386_TLS_IE:
1370 case elfcpp::R_386_TLS_GOTIE:
1371 case elfcpp::R_386_TLS_IE_32:
1372 // These are Initial-Exec relocs which get the thread offset
1373 // from the GOT. If we know that we are linking against the
1374 // local symbol, we can switch to Local-Exec, which links the
1375 // thread offset into the instruction.
1377 return tls::TLSOPT_TO_LE;
1378 return tls::TLSOPT_NONE;
1380 case elfcpp::R_386_TLS_LE:
1381 case elfcpp::R_386_TLS_LE_32:
1382 // When we already have Local-Exec, there is nothing further we
1384 return tls::TLSOPT_NONE;
1391 // Get the Reference_flags for a particular relocation.
1394 Target_i386::Scan::get_reference_flags(unsigned int r_type)
1398 case elfcpp::R_386_NONE:
1399 case elfcpp::R_386_GNU_VTINHERIT:
1400 case elfcpp::R_386_GNU_VTENTRY:
1401 case elfcpp::R_386_GOTPC:
1402 // No symbol reference.
1405 case elfcpp::R_386_32:
1406 case elfcpp::R_386_16:
1407 case elfcpp::R_386_8:
1408 return Symbol::ABSOLUTE_REF;
1410 case elfcpp::R_386_PC32:
1411 case elfcpp::R_386_PC16:
1412 case elfcpp::R_386_PC8:
1413 case elfcpp::R_386_GOTOFF:
1414 return Symbol::RELATIVE_REF;
1416 case elfcpp::R_386_PLT32:
1417 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1419 case elfcpp::R_386_GOT32:
1421 return Symbol::ABSOLUTE_REF;
1423 case elfcpp::R_386_TLS_GD: // Global-dynamic
1424 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1425 case elfcpp::R_386_TLS_DESC_CALL:
1426 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1427 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1428 case elfcpp::R_386_TLS_IE: // Initial-exec
1429 case elfcpp::R_386_TLS_IE_32:
1430 case elfcpp::R_386_TLS_GOTIE:
1431 case elfcpp::R_386_TLS_LE: // Local-exec
1432 case elfcpp::R_386_TLS_LE_32:
1433 return Symbol::TLS_REF;
1435 case elfcpp::R_386_COPY:
1436 case elfcpp::R_386_GLOB_DAT:
1437 case elfcpp::R_386_JUMP_SLOT:
1438 case elfcpp::R_386_RELATIVE:
1439 case elfcpp::R_386_IRELATIVE:
1440 case elfcpp::R_386_TLS_TPOFF:
1441 case elfcpp::R_386_TLS_DTPMOD32:
1442 case elfcpp::R_386_TLS_DTPOFF32:
1443 case elfcpp::R_386_TLS_TPOFF32:
1444 case elfcpp::R_386_TLS_DESC:
1445 case elfcpp::R_386_32PLT:
1446 case elfcpp::R_386_TLS_GD_32:
1447 case elfcpp::R_386_TLS_GD_PUSH:
1448 case elfcpp::R_386_TLS_GD_CALL:
1449 case elfcpp::R_386_TLS_GD_POP:
1450 case elfcpp::R_386_TLS_LDM_32:
1451 case elfcpp::R_386_TLS_LDM_PUSH:
1452 case elfcpp::R_386_TLS_LDM_CALL:
1453 case elfcpp::R_386_TLS_LDM_POP:
1454 case elfcpp::R_386_USED_BY_INTEL_200:
1456 // Not expected. We will give an error later.
1461 // Report an unsupported relocation against a local symbol.
1464 Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
1465 unsigned int r_type)
1467 gold_error(_("%s: unsupported reloc %u against local symbol"),
1468 object->name().c_str(), r_type);
1471 // Return whether we need to make a PLT entry for a relocation of a
1472 // given type against a STT_GNU_IFUNC symbol.
1475 Target_i386::Scan::reloc_needs_plt_for_ifunc(
1476 Sized_relobj_file<32, false>* object,
1477 unsigned int r_type)
1479 int flags = Scan::get_reference_flags(r_type);
1480 if (flags & Symbol::TLS_REF)
1481 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1482 object->name().c_str(), r_type);
1486 // Scan a relocation for a local symbol.
1489 Target_i386::Scan::local(Symbol_table* symtab,
1491 Target_i386* target,
1492 Sized_relobj_file<32, false>* object,
1493 unsigned int data_shndx,
1494 Output_section* output_section,
1495 const elfcpp::Rel<32, false>& reloc,
1496 unsigned int r_type,
1497 const elfcpp::Sym<32, false>& lsym)
1499 // A local STT_GNU_IFUNC symbol may require a PLT entry.
1500 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1501 && this->reloc_needs_plt_for_ifunc(object, r_type))
1503 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1504 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1509 case elfcpp::R_386_NONE:
1510 case elfcpp::R_386_GNU_VTINHERIT:
1511 case elfcpp::R_386_GNU_VTENTRY:
1514 case elfcpp::R_386_32:
1515 // If building a shared library (or a position-independent
1516 // executable), we need to create a dynamic relocation for
1517 // this location. The relocation applied at link time will
1518 // apply the link-time value, so we flag the location with
1519 // an R_386_RELATIVE relocation so the dynamic loader can
1520 // relocate it easily.
1521 if (parameters->options().output_is_position_independent())
1523 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1524 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1525 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
1526 output_section, data_shndx,
1527 reloc.get_r_offset());
1531 case elfcpp::R_386_16:
1532 case elfcpp::R_386_8:
1533 // If building a shared library (or a position-independent
1534 // executable), we need to create a dynamic relocation for
1535 // this location. Because the addend needs to remain in the
1536 // data section, we need to be careful not to apply this
1537 // relocation statically.
1538 if (parameters->options().output_is_position_independent())
1540 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1541 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1542 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1543 rel_dyn->add_local(object, r_sym, r_type, output_section,
1544 data_shndx, reloc.get_r_offset());
1547 gold_assert(lsym.get_st_value() == 0);
1548 unsigned int shndx = lsym.get_st_shndx();
1550 shndx = object->adjust_sym_shndx(r_sym, shndx,
1553 object->error(_("section symbol %u has bad shndx %u"),
1556 rel_dyn->add_local_section(object, shndx,
1557 r_type, output_section,
1558 data_shndx, reloc.get_r_offset());
1563 case elfcpp::R_386_PC32:
1564 case elfcpp::R_386_PC16:
1565 case elfcpp::R_386_PC8:
1568 case elfcpp::R_386_PLT32:
1569 // Since we know this is a local symbol, we can handle this as a
1573 case elfcpp::R_386_GOTOFF:
1574 case elfcpp::R_386_GOTPC:
1575 // We need a GOT section.
1576 target->got_section(symtab, layout);
1579 case elfcpp::R_386_GOT32:
1581 // The symbol requires a GOT entry.
1582 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1583 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1585 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
1586 // lets function pointers compare correctly with shared
1587 // libraries. Otherwise we would need an IRELATIVE reloc.
1589 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1590 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1592 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1595 // If we are generating a shared object, we need to add a
1596 // dynamic RELATIVE relocation for this symbol's GOT entry.
1597 if (parameters->options().output_is_position_independent())
1599 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1600 unsigned int got_offset =
1601 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1602 rel_dyn->add_local_relative(object, r_sym,
1603 elfcpp::R_386_RELATIVE,
1610 // These are relocations which should only be seen by the
1611 // dynamic linker, and should never be seen here.
1612 case elfcpp::R_386_COPY:
1613 case elfcpp::R_386_GLOB_DAT:
1614 case elfcpp::R_386_JUMP_SLOT:
1615 case elfcpp::R_386_RELATIVE:
1616 case elfcpp::R_386_IRELATIVE:
1617 case elfcpp::R_386_TLS_TPOFF:
1618 case elfcpp::R_386_TLS_DTPMOD32:
1619 case elfcpp::R_386_TLS_DTPOFF32:
1620 case elfcpp::R_386_TLS_TPOFF32:
1621 case elfcpp::R_386_TLS_DESC:
1622 gold_error(_("%s: unexpected reloc %u in object file"),
1623 object->name().c_str(), r_type);
1626 // These are initial TLS relocs, which are expected when
1628 case elfcpp::R_386_TLS_GD: // Global-dynamic
1629 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1630 case elfcpp::R_386_TLS_DESC_CALL:
1631 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1632 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1633 case elfcpp::R_386_TLS_IE: // Initial-exec
1634 case elfcpp::R_386_TLS_IE_32:
1635 case elfcpp::R_386_TLS_GOTIE:
1636 case elfcpp::R_386_TLS_LE: // Local-exec
1637 case elfcpp::R_386_TLS_LE_32:
1639 bool output_is_shared = parameters->options().shared();
1640 const tls::Tls_optimization optimized_type
1641 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1644 case elfcpp::R_386_TLS_GD: // Global-dynamic
1645 if (optimized_type == tls::TLSOPT_NONE)
1647 // Create a pair of GOT entries for the module index and
1648 // dtv-relative offset.
1649 Output_data_got<32, false>* got
1650 = target->got_section(symtab, layout);
1651 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1652 unsigned int shndx = lsym.get_st_shndx();
1654 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1656 object->error(_("local symbol %u has bad shndx %u"),
1659 got->add_local_pair_with_rel(object, r_sym, shndx,
1661 target->rel_dyn_section(layout),
1662 elfcpp::R_386_TLS_DTPMOD32, 0);
1664 else if (optimized_type != tls::TLSOPT_TO_LE)
1665 unsupported_reloc_local(object, r_type);
1668 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva)
1669 target->define_tls_base_symbol(symtab, layout);
1670 if (optimized_type == tls::TLSOPT_NONE)
1672 // Create a double GOT entry with an R_386_TLS_DESC
1673 // reloc. The R_386_TLS_DESC reloc is resolved
1674 // lazily, so the GOT entry needs to be in an area in
1675 // .got.plt, not .got. Call got_section to make sure
1676 // the section has been created.
1677 target->got_section(symtab, layout);
1678 Output_data_got<32, false>* got = target->got_tlsdesc_section();
1679 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1680 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
1682 unsigned int got_offset = got->add_constant(0);
1683 // The local symbol value is stored in the second
1685 got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
1686 // That set the GOT offset of the local symbol to
1687 // point to the second entry, but we want it to
1688 // point to the first.
1689 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
1691 Reloc_section* rt = target->rel_tls_desc_section(layout);
1692 rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
1695 else if (optimized_type != tls::TLSOPT_TO_LE)
1696 unsupported_reloc_local(object, r_type);
1699 case elfcpp::R_386_TLS_DESC_CALL:
1702 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1703 if (optimized_type == tls::TLSOPT_NONE)
1705 // Create a GOT entry for the module index.
1706 target->got_mod_index_entry(symtab, layout, object);
1708 else if (optimized_type != tls::TLSOPT_TO_LE)
1709 unsupported_reloc_local(object, r_type);
1712 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1715 case elfcpp::R_386_TLS_IE: // Initial-exec
1716 case elfcpp::R_386_TLS_IE_32:
1717 case elfcpp::R_386_TLS_GOTIE:
1718 layout->set_has_static_tls();
1719 if (optimized_type == tls::TLSOPT_NONE)
1721 // For the R_386_TLS_IE relocation, we need to create a
1722 // dynamic relocation when building a shared library.
1723 if (r_type == elfcpp::R_386_TLS_IE
1724 && parameters->options().shared())
1726 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1728 = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1729 rel_dyn->add_local_relative(object, r_sym,
1730 elfcpp::R_386_RELATIVE,
1731 output_section, data_shndx,
1732 reloc.get_r_offset());
1734 // Create a GOT entry for the tp-relative offset.
1735 Output_data_got<32, false>* got
1736 = target->got_section(symtab, layout);
1737 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1738 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1739 ? elfcpp::R_386_TLS_TPOFF32
1740 : elfcpp::R_386_TLS_TPOFF);
1741 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1742 ? GOT_TYPE_TLS_OFFSET
1743 : GOT_TYPE_TLS_NOFFSET);
1744 got->add_local_with_rel(object, r_sym, got_type,
1745 target->rel_dyn_section(layout),
1748 else if (optimized_type != tls::TLSOPT_TO_LE)
1749 unsupported_reloc_local(object, r_type);
1752 case elfcpp::R_386_TLS_LE: // Local-exec
1753 case elfcpp::R_386_TLS_LE_32:
1754 layout->set_has_static_tls();
1755 if (output_is_shared)
1757 // We need to create a dynamic relocation.
1758 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1759 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1760 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1761 ? elfcpp::R_386_TLS_TPOFF32
1762 : elfcpp::R_386_TLS_TPOFF);
1763 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1764 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1765 data_shndx, reloc.get_r_offset());
1775 case elfcpp::R_386_32PLT:
1776 case elfcpp::R_386_TLS_GD_32:
1777 case elfcpp::R_386_TLS_GD_PUSH:
1778 case elfcpp::R_386_TLS_GD_CALL:
1779 case elfcpp::R_386_TLS_GD_POP:
1780 case elfcpp::R_386_TLS_LDM_32:
1781 case elfcpp::R_386_TLS_LDM_PUSH:
1782 case elfcpp::R_386_TLS_LDM_CALL:
1783 case elfcpp::R_386_TLS_LDM_POP:
1784 case elfcpp::R_386_USED_BY_INTEL_200:
1786 unsupported_reloc_local(object, r_type);
1791 // Report an unsupported relocation against a global symbol.
1794 Target_i386::Scan::unsupported_reloc_global(
1795 Sized_relobj_file<32, false>* object,
1796 unsigned int r_type,
1799 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1800 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1804 Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
1808 case elfcpp::R_386_32:
1809 case elfcpp::R_386_16:
1810 case elfcpp::R_386_8:
1811 case elfcpp::R_386_GOTOFF:
1812 case elfcpp::R_386_GOT32:
1823 Target_i386::Scan::local_reloc_may_be_function_pointer(
1827 Sized_relobj_file<32, false>* ,
1830 const elfcpp::Rel<32, false>& ,
1831 unsigned int r_type,
1832 const elfcpp::Sym<32, false>&)
1834 return possible_function_pointer_reloc(r_type);
1838 Target_i386::Scan::global_reloc_may_be_function_pointer(
1842 Sized_relobj_file<32, false>* ,
1845 const elfcpp::Rel<32, false>& ,
1846 unsigned int r_type,
1849 return possible_function_pointer_reloc(r_type);
1852 // Scan a relocation for a global symbol.
1855 Target_i386::Scan::global(Symbol_table* symtab,
1857 Target_i386* target,
1858 Sized_relobj_file<32, false>* object,
1859 unsigned int data_shndx,
1860 Output_section* output_section,
1861 const elfcpp::Rel<32, false>& reloc,
1862 unsigned int r_type,
1865 // A STT_GNU_IFUNC symbol may require a PLT entry.
1866 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1867 && this->reloc_needs_plt_for_ifunc(object, r_type))
1868 target->make_plt_entry(symtab, layout, gsym);
1872 case elfcpp::R_386_NONE:
1873 case elfcpp::R_386_GNU_VTINHERIT:
1874 case elfcpp::R_386_GNU_VTENTRY:
1877 case elfcpp::R_386_32:
1878 case elfcpp::R_386_16:
1879 case elfcpp::R_386_8:
1881 // Make a PLT entry if necessary.
1882 if (gsym->needs_plt_entry())
1884 target->make_plt_entry(symtab, layout, gsym);
1885 // Since this is not a PC-relative relocation, we may be
1886 // taking the address of a function. In that case we need to
1887 // set the entry in the dynamic symbol table to the address of
1889 if (gsym->is_from_dynobj() && !parameters->options().shared())
1890 gsym->set_needs_dynsym_value();
1892 // Make a dynamic relocation if necessary.
1893 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
1895 if (gsym->may_need_copy_reloc())
1897 target->copy_reloc(symtab, layout, object,
1898 data_shndx, output_section, gsym, reloc);
1900 else if (r_type == elfcpp::R_386_32
1901 && gsym->type() == elfcpp::STT_GNU_IFUNC
1902 && gsym->can_use_relative_reloc(false)
1903 && !gsym->is_from_dynobj()
1904 && !gsym->is_undefined()
1905 && !gsym->is_preemptible())
1907 // Use an IRELATIVE reloc for a locally defined
1908 // STT_GNU_IFUNC symbol. This makes a function
1909 // address in a PIE executable match the address in a
1910 // shared library that it links against.
1911 Reloc_section* rel_dyn = target->rel_irelative_section(layout);
1912 rel_dyn->add_symbolless_global_addend(gsym,
1913 elfcpp::R_386_IRELATIVE,
1916 reloc.get_r_offset());
1918 else if (r_type == elfcpp::R_386_32
1919 && gsym->can_use_relative_reloc(false))
1921 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1922 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1923 output_section, object,
1924 data_shndx, reloc.get_r_offset());
1928 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1929 rel_dyn->add_global(gsym, r_type, output_section, object,
1930 data_shndx, reloc.get_r_offset());
1936 case elfcpp::R_386_PC32:
1937 case elfcpp::R_386_PC16:
1938 case elfcpp::R_386_PC8:
1940 // Make a PLT entry if necessary.
1941 if (gsym->needs_plt_entry())
1943 // These relocations are used for function calls only in
1944 // non-PIC code. For a 32-bit relocation in a shared library,
1945 // we'll need a text relocation anyway, so we can skip the
1946 // PLT entry and let the dynamic linker bind the call directly
1947 // to the target. For smaller relocations, we should use a
1948 // PLT entry to ensure that the call can reach.
1949 if (!parameters->options().shared()
1950 || r_type != elfcpp::R_386_PC32)
1951 target->make_plt_entry(symtab, layout, gsym);
1953 // Make a dynamic relocation if necessary.
1954 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
1956 if (gsym->may_need_copy_reloc())
1958 target->copy_reloc(symtab, layout, object,
1959 data_shndx, output_section, gsym, reloc);
1963 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1964 rel_dyn->add_global(gsym, r_type, output_section, object,
1965 data_shndx, reloc.get_r_offset());
1971 case elfcpp::R_386_GOT32:
1973 // The symbol requires a GOT entry.
1974 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1975 if (gsym->final_value_is_known())
1977 // For a STT_GNU_IFUNC symbol we want the PLT address.
1978 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1979 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
1981 got->add_global(gsym, GOT_TYPE_STANDARD);
1985 // If this symbol is not fully resolved, we need to add a
1986 // GOT entry with a dynamic relocation.
1987 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1988 if (gsym->is_from_dynobj()
1989 || gsym->is_undefined()
1990 || gsym->is_preemptible()
1991 || (gsym->type() == elfcpp::STT_GNU_IFUNC
1992 && parameters->options().output_is_position_independent()))
1993 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
1994 rel_dyn, elfcpp::R_386_GLOB_DAT);
1997 // For a STT_GNU_IFUNC symbol we want to write the PLT
1998 // offset into the GOT, so that function pointer
1999 // comparisons work correctly.
2001 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2002 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2005 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2006 // Tell the dynamic linker to use the PLT address
2007 // when resolving relocations.
2008 if (gsym->is_from_dynobj()
2009 && !parameters->options().shared())
2010 gsym->set_needs_dynsym_value();
2014 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2015 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2023 case elfcpp::R_386_PLT32:
2024 // If the symbol is fully resolved, this is just a PC32 reloc.
2025 // Otherwise we need a PLT entry.
2026 if (gsym->final_value_is_known())
2028 // If building a shared library, we can also skip the PLT entry
2029 // if the symbol is defined in the output file and is protected
2031 if (gsym->is_defined()
2032 && !gsym->is_from_dynobj()
2033 && !gsym->is_preemptible())
2035 target->make_plt_entry(symtab, layout, gsym);
2038 case elfcpp::R_386_GOTOFF:
2039 case elfcpp::R_386_GOTPC:
2040 // We need a GOT section.
2041 target->got_section(symtab, layout);
2044 // These are relocations which should only be seen by the
2045 // dynamic linker, and should never be seen here.
2046 case elfcpp::R_386_COPY:
2047 case elfcpp::R_386_GLOB_DAT:
2048 case elfcpp::R_386_JUMP_SLOT:
2049 case elfcpp::R_386_RELATIVE:
2050 case elfcpp::R_386_IRELATIVE:
2051 case elfcpp::R_386_TLS_TPOFF:
2052 case elfcpp::R_386_TLS_DTPMOD32:
2053 case elfcpp::R_386_TLS_DTPOFF32:
2054 case elfcpp::R_386_TLS_TPOFF32:
2055 case elfcpp::R_386_TLS_DESC:
2056 gold_error(_("%s: unexpected reloc %u in object file"),
2057 object->name().c_str(), r_type);
2060 // These are initial tls relocs, which are expected when
2062 case elfcpp::R_386_TLS_GD: // Global-dynamic
2063 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2064 case elfcpp::R_386_TLS_DESC_CALL:
2065 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2066 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2067 case elfcpp::R_386_TLS_IE: // Initial-exec
2068 case elfcpp::R_386_TLS_IE_32:
2069 case elfcpp::R_386_TLS_GOTIE:
2070 case elfcpp::R_386_TLS_LE: // Local-exec
2071 case elfcpp::R_386_TLS_LE_32:
2073 const bool is_final = gsym->final_value_is_known();
2074 const tls::Tls_optimization optimized_type
2075 = Target_i386::optimize_tls_reloc(is_final, r_type);
2078 case elfcpp::R_386_TLS_GD: // Global-dynamic
2079 if (optimized_type == tls::TLSOPT_NONE)
2081 // Create a pair of GOT entries for the module index and
2082 // dtv-relative offset.
2083 Output_data_got<32, false>* got
2084 = target->got_section(symtab, layout);
2085 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2086 target->rel_dyn_section(layout),
2087 elfcpp::R_386_TLS_DTPMOD32,
2088 elfcpp::R_386_TLS_DTPOFF32);
2090 else if (optimized_type == tls::TLSOPT_TO_IE)
2092 // Create a GOT entry for the tp-relative offset.
2093 Output_data_got<32, false>* got
2094 = target->got_section(symtab, layout);
2095 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2096 target->rel_dyn_section(layout),
2097 elfcpp::R_386_TLS_TPOFF);
2099 else if (optimized_type != tls::TLSOPT_TO_LE)
2100 unsupported_reloc_global(object, r_type, gsym);
2103 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (~oliva url)
2104 target->define_tls_base_symbol(symtab, layout);
2105 if (optimized_type == tls::TLSOPT_NONE)
2107 // Create a double GOT entry with an R_386_TLS_DESC
2108 // reloc. The R_386_TLS_DESC reloc is resolved
2109 // lazily, so the GOT entry needs to be in an area in
2110 // .got.plt, not .got. Call got_section to make sure
2111 // the section has been created.
2112 target->got_section(symtab, layout);
2113 Output_data_got<32, false>* got = target->got_tlsdesc_section();
2114 Reloc_section* rt = target->rel_tls_desc_section(layout);
2115 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
2116 elfcpp::R_386_TLS_DESC, 0);
2118 else if (optimized_type == tls::TLSOPT_TO_IE)
2120 // Create a GOT entry for the tp-relative offset.
2121 Output_data_got<32, false>* got
2122 = target->got_section(symtab, layout);
2123 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2124 target->rel_dyn_section(layout),
2125 elfcpp::R_386_TLS_TPOFF);
2127 else if (optimized_type != tls::TLSOPT_TO_LE)
2128 unsupported_reloc_global(object, r_type, gsym);
2131 case elfcpp::R_386_TLS_DESC_CALL:
2134 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2135 if (optimized_type == tls::TLSOPT_NONE)
2137 // Create a GOT entry for the module index.
2138 target->got_mod_index_entry(symtab, layout, object);
2140 else if (optimized_type != tls::TLSOPT_TO_LE)
2141 unsupported_reloc_global(object, r_type, gsym);
2144 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2147 case elfcpp::R_386_TLS_IE: // Initial-exec
2148 case elfcpp::R_386_TLS_IE_32:
2149 case elfcpp::R_386_TLS_GOTIE:
2150 layout->set_has_static_tls();
2151 if (optimized_type == tls::TLSOPT_NONE)
2153 // For the R_386_TLS_IE relocation, we need to create a
2154 // dynamic relocation when building a shared library.
2155 if (r_type == elfcpp::R_386_TLS_IE
2156 && parameters->options().shared())
2158 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2159 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2160 output_section, object,
2162 reloc.get_r_offset());
2164 // Create a GOT entry for the tp-relative offset.
2165 Output_data_got<32, false>* got
2166 = target->got_section(symtab, layout);
2167 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2168 ? elfcpp::R_386_TLS_TPOFF32
2169 : elfcpp::R_386_TLS_TPOFF);
2170 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2171 ? GOT_TYPE_TLS_OFFSET
2172 : GOT_TYPE_TLS_NOFFSET);
2173 got->add_global_with_rel(gsym, got_type,
2174 target->rel_dyn_section(layout),
2177 else if (optimized_type != tls::TLSOPT_TO_LE)
2178 unsupported_reloc_global(object, r_type, gsym);
2181 case elfcpp::R_386_TLS_LE: // Local-exec
2182 case elfcpp::R_386_TLS_LE_32:
2183 layout->set_has_static_tls();
2184 if (parameters->options().shared())
2186 // We need to create a dynamic relocation.
2187 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2188 ? elfcpp::R_386_TLS_TPOFF32
2189 : elfcpp::R_386_TLS_TPOFF);
2190 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2191 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
2192 data_shndx, reloc.get_r_offset());
2202 case elfcpp::R_386_32PLT:
2203 case elfcpp::R_386_TLS_GD_32:
2204 case elfcpp::R_386_TLS_GD_PUSH:
2205 case elfcpp::R_386_TLS_GD_CALL:
2206 case elfcpp::R_386_TLS_GD_POP:
2207 case elfcpp::R_386_TLS_LDM_32:
2208 case elfcpp::R_386_TLS_LDM_PUSH:
2209 case elfcpp::R_386_TLS_LDM_CALL:
2210 case elfcpp::R_386_TLS_LDM_POP:
2211 case elfcpp::R_386_USED_BY_INTEL_200:
2213 unsupported_reloc_global(object, r_type, gsym);
2218 // Process relocations for gc.
2221 Target_i386::gc_process_relocs(Symbol_table* symtab,
2223 Sized_relobj_file<32, false>* object,
2224 unsigned int data_shndx,
2226 const unsigned char* prelocs,
2228 Output_section* output_section,
2229 bool needs_special_offset_handling,
2230 size_t local_symbol_count,
2231 const unsigned char* plocal_symbols)
2233 gold::gc_process_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2235 Target_i386::Relocatable_size_for_reloc>(
2244 needs_special_offset_handling,
2249 // Scan relocations for a section.
2252 Target_i386::scan_relocs(Symbol_table* symtab,
2254 Sized_relobj_file<32, false>* object,
2255 unsigned int data_shndx,
2256 unsigned int sh_type,
2257 const unsigned char* prelocs,
2259 Output_section* output_section,
2260 bool needs_special_offset_handling,
2261 size_t local_symbol_count,
2262 const unsigned char* plocal_symbols)
2264 if (sh_type == elfcpp::SHT_RELA)
2266 gold_error(_("%s: unsupported RELA reloc section"),
2267 object->name().c_str());
2271 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2281 needs_special_offset_handling,
2286 // Finalize the sections.
2289 Target_i386::do_finalize_sections(
2291 const Input_objects*,
2292 Symbol_table* symtab)
2294 const Reloc_section* rel_plt = (this->plt_ == NULL
2296 : this->plt_->rel_plt());
2297 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
2298 this->rel_dyn_, true, false);
2300 // Emit any relocs we saved in an attempt to avoid generating COPY
2302 if (this->copy_relocs_.any_saved_relocs())
2303 this->copy_relocs_.emit(this->rel_dyn_section(layout));
2305 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2306 // the .got.plt section.
2307 Symbol* sym = this->global_offset_table_;
2310 uint32_t data_size = this->got_plt_->current_data_size();
2311 symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
2314 if (parameters->doing_static_link()
2315 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
2317 // If linking statically, make sure that the __rel_iplt symbols
2318 // were defined if necessary, even if we didn't create a PLT.
2319 static const Define_symbol_in_segment syms[] =
2322 "__rel_iplt_start", // name
2323 elfcpp::PT_LOAD, // segment_type
2324 elfcpp::PF_W, // segment_flags_set
2325 elfcpp::PF(0), // segment_flags_clear
2328 elfcpp::STT_NOTYPE, // type
2329 elfcpp::STB_GLOBAL, // binding
2330 elfcpp::STV_HIDDEN, // visibility
2332 Symbol::SEGMENT_START, // offset_from_base
2336 "__rel_iplt_end", // name
2337 elfcpp::PT_LOAD, // segment_type
2338 elfcpp::PF_W, // segment_flags_set
2339 elfcpp::PF(0), // segment_flags_clear
2342 elfcpp::STT_NOTYPE, // type
2343 elfcpp::STB_GLOBAL, // binding
2344 elfcpp::STV_HIDDEN, // visibility
2346 Symbol::SEGMENT_START, // offset_from_base
2351 symtab->define_symbols(layout, 2, syms,
2352 layout->script_options()->saw_sections_clause());
2356 // Return whether a direct absolute static relocation needs to be applied.
2357 // In cases where Scan::local() or Scan::global() has created
2358 // a dynamic relocation other than R_386_RELATIVE, the addend
2359 // of the relocation is carried in the data, and we must not
2360 // apply the static relocation.
2363 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
2364 unsigned int r_type,
2366 Output_section* output_section)
2368 // If the output section is not allocated, then we didn't call
2369 // scan_relocs, we didn't create a dynamic reloc, and we must apply
2371 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
2374 int ref_flags = Scan::get_reference_flags(r_type);
2376 // For local symbols, we will have created a non-RELATIVE dynamic
2377 // relocation only if (a) the output is position independent,
2378 // (b) the relocation is absolute (not pc- or segment-relative), and
2379 // (c) the relocation is not 32 bits wide.
2381 return !(parameters->options().output_is_position_independent()
2382 && (ref_flags & Symbol::ABSOLUTE_REF)
2385 // For global symbols, we use the same helper routines used in the
2386 // scan pass. If we did not create a dynamic relocation, or if we
2387 // created a RELATIVE dynamic relocation, we should apply the static
2389 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
2390 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
2391 && gsym->can_use_relative_reloc(ref_flags
2392 & Symbol::FUNCTION_CALL);
2393 return !has_dyn || is_rel;
2396 // Perform a relocation.
2399 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
2400 Target_i386* target,
2401 Output_section* output_section,
2403 const elfcpp::Rel<32, false>& rel,
2404 unsigned int r_type,
2405 const Sized_symbol<32>* gsym,
2406 const Symbol_value<32>* psymval,
2407 unsigned char* view,
2408 elfcpp::Elf_types<32>::Elf_Addr address,
2409 section_size_type view_size)
2411 if (this->skip_call_tls_get_addr_)
2413 if ((r_type != elfcpp::R_386_PLT32
2414 && r_type != elfcpp::R_386_PC32)
2416 || strcmp(gsym->name(), "___tls_get_addr") != 0)
2417 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2418 _("missing expected TLS relocation"));
2421 this->skip_call_tls_get_addr_ = false;
2426 const Sized_relobj_file<32, false>* object = relinfo->object;
2428 // Pick the value to use for symbols defined in shared objects.
2429 Symbol_value<32> symval;
2431 && gsym->type() == elfcpp::STT_GNU_IFUNC
2432 && r_type == elfcpp::R_386_32
2433 && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
2434 && gsym->can_use_relative_reloc(false)
2435 && !gsym->is_from_dynobj()
2436 && !gsym->is_undefined()
2437 && !gsym->is_preemptible())
2439 // In this case we are generating a R_386_IRELATIVE reloc. We
2440 // want to use the real value of the symbol, not the PLT offset.
2442 else if (gsym != NULL
2443 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2445 symval.set_output_value(target->plt_address_for_global(gsym)
2446 + gsym->plt_offset());
2449 else if (gsym == NULL && psymval->is_ifunc_symbol())
2451 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2452 if (object->local_has_plt_offset(r_sym))
2454 symval.set_output_value(target->plt_address_for_local(object, r_sym)
2455 + object->local_plt_offset(r_sym));
2460 // Get the GOT offset if needed.
2461 // The GOT pointer points to the end of the GOT section.
2462 // We need to subtract the size of the GOT section to get
2463 // the actual offset to use in the relocation.
2464 bool have_got_offset = false;
2465 unsigned int got_offset = 0;
2468 case elfcpp::R_386_GOT32:
2471 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2472 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
2473 - target->got_size());
2477 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2478 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2479 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2480 - target->got_size());
2482 have_got_offset = true;
2491 case elfcpp::R_386_NONE:
2492 case elfcpp::R_386_GNU_VTINHERIT:
2493 case elfcpp::R_386_GNU_VTENTRY:
2496 case elfcpp::R_386_32:
2497 if (should_apply_static_reloc(gsym, r_type, true, output_section))
2498 Relocate_functions<32, false>::rel32(view, object, psymval);
2501 case elfcpp::R_386_PC32:
2502 if (should_apply_static_reloc(gsym, r_type, true, output_section))
2503 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2506 case elfcpp::R_386_16:
2507 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2508 Relocate_functions<32, false>::rel16(view, object, psymval);
2511 case elfcpp::R_386_PC16:
2512 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2513 Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
2516 case elfcpp::R_386_8:
2517 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2518 Relocate_functions<32, false>::rel8(view, object, psymval);
2521 case elfcpp::R_386_PC8:
2522 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2523 Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
2526 case elfcpp::R_386_PLT32:
2527 gold_assert(gsym == NULL
2528 || gsym->has_plt_offset()
2529 || gsym->final_value_is_known()
2530 || (gsym->is_defined()
2531 && !gsym->is_from_dynobj()
2532 && !gsym->is_preemptible()));
2533 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2536 case elfcpp::R_386_GOT32:
2537 gold_assert(have_got_offset);
2538 Relocate_functions<32, false>::rel32(view, got_offset);
2541 case elfcpp::R_386_GOTOFF:
2543 elfcpp::Elf_types<32>::Elf_Addr value;
2544 value = (psymval->value(object, 0)
2545 - target->got_plt_section()->address());
2546 Relocate_functions<32, false>::rel32(view, value);
2550 case elfcpp::R_386_GOTPC:
2552 elfcpp::Elf_types<32>::Elf_Addr value;
2553 value = target->got_plt_section()->address();
2554 Relocate_functions<32, false>::pcrel32(view, value, address);
2558 case elfcpp::R_386_COPY:
2559 case elfcpp::R_386_GLOB_DAT:
2560 case elfcpp::R_386_JUMP_SLOT:
2561 case elfcpp::R_386_RELATIVE:
2562 case elfcpp::R_386_IRELATIVE:
2563 // These are outstanding tls relocs, which are unexpected when
2565 case elfcpp::R_386_TLS_TPOFF:
2566 case elfcpp::R_386_TLS_DTPMOD32:
2567 case elfcpp::R_386_TLS_DTPOFF32:
2568 case elfcpp::R_386_TLS_TPOFF32:
2569 case elfcpp::R_386_TLS_DESC:
2570 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2571 _("unexpected reloc %u in object file"),
2575 // These are initial tls relocs, which are expected when
2577 case elfcpp::R_386_TLS_GD: // Global-dynamic
2578 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2579 case elfcpp::R_386_TLS_DESC_CALL:
2580 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2581 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2582 case elfcpp::R_386_TLS_IE: // Initial-exec
2583 case elfcpp::R_386_TLS_IE_32:
2584 case elfcpp::R_386_TLS_GOTIE:
2585 case elfcpp::R_386_TLS_LE: // Local-exec
2586 case elfcpp::R_386_TLS_LE_32:
2587 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
2588 view, address, view_size);
2591 case elfcpp::R_386_32PLT:
2592 case elfcpp::R_386_TLS_GD_32:
2593 case elfcpp::R_386_TLS_GD_PUSH:
2594 case elfcpp::R_386_TLS_GD_CALL:
2595 case elfcpp::R_386_TLS_GD_POP:
2596 case elfcpp::R_386_TLS_LDM_32:
2597 case elfcpp::R_386_TLS_LDM_PUSH:
2598 case elfcpp::R_386_TLS_LDM_CALL:
2599 case elfcpp::R_386_TLS_LDM_POP:
2600 case elfcpp::R_386_USED_BY_INTEL_200:
2602 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2603 _("unsupported reloc %u"),
2611 // Perform a TLS relocation.
2614 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
2615 Target_i386* target,
2617 const elfcpp::Rel<32, false>& rel,
2618 unsigned int r_type,
2619 const Sized_symbol<32>* gsym,
2620 const Symbol_value<32>* psymval,
2621 unsigned char* view,
2622 elfcpp::Elf_types<32>::Elf_Addr,
2623 section_size_type view_size)
2625 Output_segment* tls_segment = relinfo->layout->tls_segment();
2627 const Sized_relobj_file<32, false>* object = relinfo->object;
2629 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
2631 const bool is_final = (gsym == NULL
2632 ? !parameters->options().shared()
2633 : gsym->final_value_is_known());
2634 const tls::Tls_optimization optimized_type
2635 = Target_i386::optimize_tls_reloc(is_final, r_type);
2638 case elfcpp::R_386_TLS_GD: // Global-dynamic
2639 if (optimized_type == tls::TLSOPT_TO_LE)
2641 gold_assert(tls_segment != NULL);
2642 this->tls_gd_to_le(relinfo, relnum, tls_segment,
2643 rel, r_type, value, view,
2649 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2650 ? GOT_TYPE_TLS_NOFFSET
2651 : GOT_TYPE_TLS_PAIR);
2652 unsigned int got_offset;
2655 gold_assert(gsym->has_got_offset(got_type));
2656 got_offset = gsym->got_offset(got_type) - target->got_size();
2660 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2661 gold_assert(object->local_has_got_offset(r_sym, got_type));
2662 got_offset = (object->local_got_offset(r_sym, got_type)
2663 - target->got_size());
2665 if (optimized_type == tls::TLSOPT_TO_IE)
2667 gold_assert(tls_segment != NULL);
2668 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
2669 got_offset, view, view_size);
2672 else if (optimized_type == tls::TLSOPT_NONE)
2674 // Relocate the field with the offset of the pair of GOT
2676 Relocate_functions<32, false>::rel32(view, got_offset);
2680 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2681 _("unsupported reloc %u"),
2685 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2686 case elfcpp::R_386_TLS_DESC_CALL:
2687 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
2688 if (optimized_type == tls::TLSOPT_TO_LE)
2690 gold_assert(tls_segment != NULL);
2691 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2692 rel, r_type, value, view,
2698 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2699 ? GOT_TYPE_TLS_NOFFSET
2700 : GOT_TYPE_TLS_DESC);
2701 unsigned int got_offset = 0;
2702 if (r_type == elfcpp::R_386_TLS_GOTDESC
2703 && optimized_type == tls::TLSOPT_NONE)
2705 // We created GOT entries in the .got.tlsdesc portion of
2706 // the .got.plt section, but the offset stored in the
2707 // symbol is the offset within .got.tlsdesc.
2708 got_offset = (target->got_size()
2709 + target->got_plt_section()->data_size());
2713 gold_assert(gsym->has_got_offset(got_type));
2714 got_offset += gsym->got_offset(got_type) - target->got_size();
2718 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2719 gold_assert(object->local_has_got_offset(r_sym, got_type));
2720 got_offset += (object->local_got_offset(r_sym, got_type)
2721 - target->got_size());
2723 if (optimized_type == tls::TLSOPT_TO_IE)
2725 gold_assert(tls_segment != NULL);
2726 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
2727 got_offset, view, view_size);
2730 else if (optimized_type == tls::TLSOPT_NONE)
2732 if (r_type == elfcpp::R_386_TLS_GOTDESC)
2734 // Relocate the field with the offset of the pair of GOT
2736 Relocate_functions<32, false>::rel32(view, got_offset);
2741 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2742 _("unsupported reloc %u"),
2746 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2747 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
2749 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2750 _("both SUN and GNU model "
2751 "TLS relocations"));
2754 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
2755 if (optimized_type == tls::TLSOPT_TO_LE)
2757 gold_assert(tls_segment != NULL);
2758 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
2759 value, view, view_size);
2762 else if (optimized_type == tls::TLSOPT_NONE)
2764 // Relocate the field with the offset of the GOT entry for
2765 // the module index.
2766 unsigned int got_offset;
2767 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2768 - target->got_size());
2769 Relocate_functions<32, false>::rel32(view, got_offset);
2772 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2773 _("unsupported reloc %u"),
2777 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2778 if (optimized_type == tls::TLSOPT_TO_LE)
2780 // This reloc can appear in debugging sections, in which
2781 // case we must not convert to local-exec. We decide what
2782 // to do based on whether the section is marked as
2783 // containing executable code. That is what the GNU linker
2785 elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
2786 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
2788 gold_assert(tls_segment != NULL);
2789 value -= tls_segment->memsz();
2792 Relocate_functions<32, false>::rel32(view, value);
2795 case elfcpp::R_386_TLS_IE: // Initial-exec
2796 case elfcpp::R_386_TLS_GOTIE:
2797 case elfcpp::R_386_TLS_IE_32:
2798 if (optimized_type == tls::TLSOPT_TO_LE)
2800 gold_assert(tls_segment != NULL);
2801 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2802 rel, r_type, value, view,
2806 else if (optimized_type == tls::TLSOPT_NONE)
2808 // Relocate the field with the offset of the GOT entry for
2809 // the tp-relative offset of the symbol.
2810 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2811 ? GOT_TYPE_TLS_OFFSET
2812 : GOT_TYPE_TLS_NOFFSET);
2813 unsigned int got_offset;
2816 gold_assert(gsym->has_got_offset(got_type));
2817 got_offset = gsym->got_offset(got_type);
2821 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2822 gold_assert(object->local_has_got_offset(r_sym, got_type));
2823 got_offset = object->local_got_offset(r_sym, got_type);
2825 // For the R_386_TLS_IE relocation, we need to apply the
2826 // absolute address of the GOT entry.
2827 if (r_type == elfcpp::R_386_TLS_IE)
2828 got_offset += target->got_plt_section()->address();
2829 // All GOT offsets are relative to the end of the GOT.
2830 got_offset -= target->got_size();
2831 Relocate_functions<32, false>::rel32(view, got_offset);
2834 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2835 _("unsupported reloc %u"),
2839 case elfcpp::R_386_TLS_LE: // Local-exec
2840 // If we're creating a shared library, a dynamic relocation will
2841 // have been created for this location, so do not apply it now.
2842 if (!parameters->options().shared())
2844 gold_assert(tls_segment != NULL);
2845 value -= tls_segment->memsz();
2846 Relocate_functions<32, false>::rel32(view, value);
2850 case elfcpp::R_386_TLS_LE_32:
2851 // If we're creating a shared library, a dynamic relocation will
2852 // have been created for this location, so do not apply it now.
2853 if (!parameters->options().shared())
2855 gold_assert(tls_segment != NULL);
2856 value = tls_segment->memsz() - value;
2857 Relocate_functions<32, false>::rel32(view, value);
2863 // Do a relocation in which we convert a TLS General-Dynamic to a
2867 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
2869 Output_segment* tls_segment,
2870 const elfcpp::Rel<32, false>& rel,
2872 elfcpp::Elf_types<32>::Elf_Addr value,
2873 unsigned char* view,
2874 section_size_type view_size)
2876 // leal foo(,%reg,1),%eax; call ___tls_get_addr
2877 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2878 // leal foo(%reg),%eax; call ___tls_get_addr
2879 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2881 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2882 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2884 unsigned char op1 = view[-1];
2885 unsigned char op2 = view[-2];
2887 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2888 op2 == 0x8d || op2 == 0x04);
2889 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2895 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2896 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2897 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2898 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2899 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2903 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2904 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2905 if (rel.get_r_offset() + 9 < view_size
2908 // There is a trailing nop. Use the size byte subl.
2909 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2914 // Use the five byte subl.
2915 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2919 value = tls_segment->memsz() - value;
2920 Relocate_functions<32, false>::rel32(view + roff, value);
2922 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2924 this->skip_call_tls_get_addr_ = true;
2927 // Do a relocation in which we convert a TLS General-Dynamic to an
2931 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
2934 const elfcpp::Rel<32, false>& rel,
2936 elfcpp::Elf_types<32>::Elf_Addr value,
2937 unsigned char* view,
2938 section_size_type view_size)
2940 // leal foo(,%ebx,1),%eax; call ___tls_get_addr
2941 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
2943 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2944 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2946 unsigned char op1 = view[-1];
2947 unsigned char op2 = view[-2];
2949 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2950 op2 == 0x8d || op2 == 0x04);
2951 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2955 // FIXME: For now, support only the first (SIB) form.
2956 tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
2960 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2961 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2962 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2963 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2964 memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
2968 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2969 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2970 if (rel.get_r_offset() + 9 < view_size
2973 // FIXME: This is not the right instruction sequence.
2974 // There is a trailing nop. Use the size byte subl.
2975 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2980 // FIXME: This is not the right instruction sequence.
2981 // Use the five byte subl.
2982 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2986 Relocate_functions<32, false>::rel32(view + roff, value);
2988 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2990 this->skip_call_tls_get_addr_ = true;
2993 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
2994 // General-Dynamic to a Local-Exec.
2997 Target_i386::Relocate::tls_desc_gd_to_le(
2998 const Relocate_info<32, false>* relinfo,
3000 Output_segment* tls_segment,
3001 const elfcpp::Rel<32, false>& rel,
3002 unsigned int r_type,
3003 elfcpp::Elf_types<32>::Elf_Addr value,
3004 unsigned char* view,
3005 section_size_type view_size)
3007 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3009 // leal foo@TLSDESC(%ebx), %eax
3010 // ==> leal foo@NTPOFF, %eax
3011 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3012 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3013 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3014 view[-2] == 0x8d && view[-1] == 0x83);
3016 value -= tls_segment->memsz();
3017 Relocate_functions<32, false>::rel32(view, value);
3021 // call *foo@TLSCALL(%eax)
3023 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3024 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3025 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3026 view[0] == 0xff && view[1] == 0x10);
3032 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3033 // General-Dynamic to an Initial-Exec.
3036 Target_i386::Relocate::tls_desc_gd_to_ie(
3037 const Relocate_info<32, false>* relinfo,
3040 const elfcpp::Rel<32, false>& rel,
3041 unsigned int r_type,
3042 elfcpp::Elf_types<32>::Elf_Addr value,
3043 unsigned char* view,
3044 section_size_type view_size)
3046 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3048 // leal foo@TLSDESC(%ebx), %eax
3049 // ==> movl foo@GOTNTPOFF(%ebx), %eax
3050 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3051 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3052 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3053 view[-2] == 0x8d && view[-1] == 0x83);
3055 Relocate_functions<32, false>::rel32(view, value);
3059 // call *foo@TLSCALL(%eax)
3061 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3062 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3063 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3064 view[0] == 0xff && view[1] == 0x10);
3070 // Do a relocation in which we convert a TLS Local-Dynamic to a
3074 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
3077 const elfcpp::Rel<32, false>& rel,
3079 elfcpp::Elf_types<32>::Elf_Addr,
3080 unsigned char* view,
3081 section_size_type view_size)
3083 // leal foo(%reg), %eax; call ___tls_get_addr
3084 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
3086 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3087 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3089 // FIXME: Does this test really always pass?
3090 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3091 view[-2] == 0x8d && view[-1] == 0x83);
3093 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3095 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
3097 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3099 this->skip_call_tls_get_addr_ = true;
3102 // Do a relocation in which we convert a TLS Initial-Exec to a
3106 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
3108 Output_segment* tls_segment,
3109 const elfcpp::Rel<32, false>& rel,
3110 unsigned int r_type,
3111 elfcpp::Elf_types<32>::Elf_Addr value,
3112 unsigned char* view,
3113 section_size_type view_size)
3115 // We have to actually change the instructions, which means that we
3116 // need to examine the opcodes to figure out which instruction we
3118 if (r_type == elfcpp::R_386_TLS_IE)
3120 // movl %gs:XX,%eax ==> movl $YY,%eax
3121 // movl %gs:XX,%reg ==> movl $YY,%reg
3122 // addl %gs:XX,%reg ==> addl $YY,%reg
3123 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
3124 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3126 unsigned char op1 = view[-1];
3129 // movl XX,%eax ==> movl $YY,%eax
3134 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3136 unsigned char op2 = view[-2];
3139 // movl XX,%reg ==> movl $YY,%reg
3140 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3141 (op1 & 0xc7) == 0x05);
3143 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3145 else if (op2 == 0x03)
3147 // addl XX,%reg ==> addl $YY,%reg
3148 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3149 (op1 & 0xc7) == 0x05);
3151 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3154 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3159 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
3160 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
3161 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
3162 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3163 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3165 unsigned char op1 = view[-1];
3166 unsigned char op2 = view[-2];
3167 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3168 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
3171 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
3173 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3175 else if (op2 == 0x2b)
3177 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
3179 view[-1] = 0xe8 | ((op1 >> 3) & 7);
3181 else if (op2 == 0x03)
3183 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
3185 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3188 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3191 value = tls_segment->memsz() - value;
3192 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
3195 Relocate_functions<32, false>::rel32(view, value);
3198 // Relocate section data.
3201 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
3202 unsigned int sh_type,
3203 const unsigned char* prelocs,
3205 Output_section* output_section,
3206 bool needs_special_offset_handling,
3207 unsigned char* view,
3208 elfcpp::Elf_types<32>::Elf_Addr address,
3209 section_size_type view_size,
3210 const Reloc_symbol_changes* reloc_symbol_changes)
3212 gold_assert(sh_type == elfcpp::SHT_REL);
3214 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
3215 Target_i386::Relocate>(
3221 needs_special_offset_handling,
3225 reloc_symbol_changes);
3228 // Return the size of a relocation while scanning during a relocatable
3232 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
3233 unsigned int r_type,
3238 case elfcpp::R_386_NONE:
3239 case elfcpp::R_386_GNU_VTINHERIT:
3240 case elfcpp::R_386_GNU_VTENTRY:
3241 case elfcpp::R_386_TLS_GD: // Global-dynamic
3242 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
3243 case elfcpp::R_386_TLS_DESC_CALL:
3244 case elfcpp::R_386_TLS_LDM: // Local-dynamic
3245 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
3246 case elfcpp::R_386_TLS_IE: // Initial-exec
3247 case elfcpp::R_386_TLS_IE_32:
3248 case elfcpp::R_386_TLS_GOTIE:
3249 case elfcpp::R_386_TLS_LE: // Local-exec
3250 case elfcpp::R_386_TLS_LE_32:
3253 case elfcpp::R_386_32:
3254 case elfcpp::R_386_PC32:
3255 case elfcpp::R_386_GOT32:
3256 case elfcpp::R_386_PLT32:
3257 case elfcpp::R_386_GOTOFF:
3258 case elfcpp::R_386_GOTPC:
3261 case elfcpp::R_386_16:
3262 case elfcpp::R_386_PC16:
3265 case elfcpp::R_386_8:
3266 case elfcpp::R_386_PC8:
3269 // These are relocations which should only be seen by the
3270 // dynamic linker, and should never be seen here.
3271 case elfcpp::R_386_COPY:
3272 case elfcpp::R_386_GLOB_DAT:
3273 case elfcpp::R_386_JUMP_SLOT:
3274 case elfcpp::R_386_RELATIVE:
3275 case elfcpp::R_386_IRELATIVE:
3276 case elfcpp::R_386_TLS_TPOFF:
3277 case elfcpp::R_386_TLS_DTPMOD32:
3278 case elfcpp::R_386_TLS_DTPOFF32:
3279 case elfcpp::R_386_TLS_TPOFF32:
3280 case elfcpp::R_386_TLS_DESC:
3281 object->error(_("unexpected reloc %u in object file"), r_type);
3284 case elfcpp::R_386_32PLT:
3285 case elfcpp::R_386_TLS_GD_32:
3286 case elfcpp::R_386_TLS_GD_PUSH:
3287 case elfcpp::R_386_TLS_GD_CALL:
3288 case elfcpp::R_386_TLS_GD_POP:
3289 case elfcpp::R_386_TLS_LDM_32:
3290 case elfcpp::R_386_TLS_LDM_PUSH:
3291 case elfcpp::R_386_TLS_LDM_CALL:
3292 case elfcpp::R_386_TLS_LDM_POP:
3293 case elfcpp::R_386_USED_BY_INTEL_200:
3295 object->error(_("unsupported reloc %u in object file"), r_type);
3300 // Scan the relocs during a relocatable link.
3303 Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
3305 Sized_relobj_file<32, false>* object,
3306 unsigned int data_shndx,
3307 unsigned int sh_type,
3308 const unsigned char* prelocs,
3310 Output_section* output_section,
3311 bool needs_special_offset_handling,
3312 size_t local_symbol_count,
3313 const unsigned char* plocal_symbols,
3314 Relocatable_relocs* rr)
3316 gold_assert(sh_type == elfcpp::SHT_REL);
3318 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
3319 Relocatable_size_for_reloc> Scan_relocatable_relocs;
3321 gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
3322 Scan_relocatable_relocs>(
3330 needs_special_offset_handling,
3336 // Relocate a section during a relocatable link.
3339 Target_i386::relocate_for_relocatable(
3340 const Relocate_info<32, false>* relinfo,
3341 unsigned int sh_type,
3342 const unsigned char* prelocs,
3344 Output_section* output_section,
3345 off_t offset_in_output_section,
3346 const Relocatable_relocs* rr,
3347 unsigned char* view,
3348 elfcpp::Elf_types<32>::Elf_Addr view_address,
3349 section_size_type view_size,
3350 unsigned char* reloc_view,
3351 section_size_type reloc_view_size)
3353 gold_assert(sh_type == elfcpp::SHT_REL);
3355 gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
3360 offset_in_output_section,
3369 // Return the value to use for a dynamic which requires special
3370 // treatment. This is how we support equality comparisons of function
3371 // pointers across shared library boundaries, as described in the
3372 // processor specific ABI supplement.
3375 Target_i386::do_dynsym_value(const Symbol* gsym) const
3377 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3378 return this->plt_address_for_global(gsym) + gsym->plt_offset();
3381 // Return a string used to fill a code section with nops to take up
3382 // the specified length.
3385 Target_i386::do_code_fill(section_size_type length) const
3389 // Build a jmp instruction to skip over the bytes.
3390 unsigned char jmp[5];
3392 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3393 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3394 + std::string(length - 5, '\0'));
3397 // Nop sequences of various lengths.
3398 const char nop1[1] = { 0x90 }; // nop
3399 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
3400 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
3401 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
3402 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
3403 0x00 }; // leal 0(%esi,1),%esi
3404 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
3406 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
3408 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
3409 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
3410 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
3411 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
3413 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
3414 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
3416 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
3417 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
3419 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
3420 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
3421 0x00, 0x00, 0x00, 0x00 };
3422 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
3423 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
3424 0x27, 0x00, 0x00, 0x00,
3426 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
3427 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
3428 0xbc, 0x27, 0x00, 0x00,
3430 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
3431 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
3432 0x90, 0x90, 0x90, 0x90,
3435 const char* nops[16] = {
3437 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3438 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3441 return std::string(nops[length], length);
3444 // Return the value to use for the base of a DW_EH_PE_datarel offset
3445 // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
3446 // assembler can not write out the difference between two labels in
3447 // different sections, so instead of using a pc-relative value they
3448 // use an offset from the GOT.
3451 Target_i386::do_ehframe_datarel_base() const
3453 gold_assert(this->global_offset_table_ != NULL);
3454 Symbol* sym = this->global_offset_table_;
3455 Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
3456 return ssym->value();
3459 // Return whether SYM should be treated as a call to a non-split
3460 // function. We don't want that to be true of a call to a
3461 // get_pc_thunk function.
3464 Target_i386::do_is_call_to_non_split(const Symbol* sym, unsigned int) const
3466 return (sym->type() == elfcpp::STT_FUNC
3467 && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
3470 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3471 // compiled with -fsplit-stack. The function calls non-split-stack
3472 // code. We have to change the function so that it always ensures
3473 // that it has enough stack space to run some random function.
3476 Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
3477 section_offset_type fnoffset,
3478 section_size_type fnsize,
3479 unsigned char* view,
3480 section_size_type view_size,
3482 std::string* to) const
3484 // The function starts with a comparison of the stack pointer and a
3485 // field in the TCB. This is followed by a jump.
3488 if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
3491 // We will call __morestack if the carry flag is set after this
3492 // comparison. We turn the comparison into an stc instruction
3494 view[fnoffset] = '\xf9';
3495 this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
3497 // lea NN(%esp),%ecx
3498 // lea NN(%esp),%edx
3499 else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
3500 || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
3503 // This is loading an offset from the stack pointer for a
3504 // comparison. The offset is negative, so we decrease the
3505 // offset by the amount of space we need for the stack. This
3506 // means we will avoid calling __morestack if there happens to
3507 // be plenty of space on the stack already.
3508 unsigned char* pval = view + fnoffset + 3;
3509 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3510 val -= parameters->options().split_stack_adjust_size();
3511 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3515 if (!object->has_no_split_stack())
3516 object->error(_("failed to match split-stack sequence at "
3517 "section %u offset %0zx"),
3518 shndx, static_cast<size_t>(fnoffset));
3522 // We have to change the function so that it calls
3523 // __morestack_non_split instead of __morestack. The former will
3524 // allocate additional stack space.
3525 *from = "__morestack";
3526 *to = "__morestack_non_split";
3529 // The selector for i386 object files.
3531 class Target_selector_i386 : public Target_selector_freebsd
3534 Target_selector_i386()
3535 : Target_selector_freebsd(elfcpp::EM_386, 32, false,
3536 "elf32-i386", "elf32-i386-freebsd",
3541 do_instantiate_target()
3542 { return new Target_i386(); }
3545 Target_selector_i386 target_selector_i386;
3547 } // End anonymous namespace.