From Craig Silverstein: better organization for TLS code.
[platform/upstream/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 //   http://people.redhat.com/drepper/tls.pdf
50 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54  public:
55   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57   Target_i386()
58     : Sized_target<32, false>(&i386_info),
59       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60       copy_relocs_(NULL), dynbss_(NULL)
61   { }
62
63   // Scan the relocations to look for symbol adjustments.
64   void
65   scan_relocs(const General_options& options,
66               Symbol_table* symtab,
67               Layout* layout,
68               Sized_relobj<32, false>* object,
69               unsigned int data_shndx,
70               unsigned int sh_type,
71               const unsigned char* prelocs,
72               size_t reloc_count,
73               size_t local_symbol_count,
74               const unsigned char* plocal_symbols,
75               Symbol** global_symbols);
76
77   // Finalize the sections.
78   void
79   do_finalize_sections(Layout*);
80
81   // Return the value to use for a dynamic which requires special
82   // treatment.
83   uint64_t
84   do_dynsym_value(const Symbol*) const;
85
86   // Relocate a section.
87   void
88   relocate_section(const Relocate_info<32, false>*,
89                    unsigned int sh_type,
90                    const unsigned char* prelocs,
91                    size_t reloc_count,
92                    unsigned char* view,
93                    elfcpp::Elf_types<32>::Elf_Addr view_address,
94                    off_t view_size);
95
96   // Return a string used to fill a code section with nops.
97   std::string
98   do_code_fill(off_t length);
99
100  private:
101   // The class which scans relocations.
102   struct Scan
103   {
104     inline void
105     local(const General_options& options, Symbol_table* symtab,
106           Layout* layout, Target_i386* target,
107           Sized_relobj<32, false>* object,
108           unsigned int data_shndx,
109           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
110           const elfcpp::Sym<32, false>& lsym);
111
112     inline void
113     global(const General_options& options, Symbol_table* symtab,
114            Layout* layout, Target_i386* target,
115            Sized_relobj<32, false>* object,
116            unsigned int data_shndx,
117            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
118            Symbol* gsym);
119
120     static void
121     unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
122
123     static void
124     unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
125                              Symbol*);
126   };
127
128   // The class which implements relocation.
129   class Relocate
130   {
131    public:
132     Relocate()
133       : skip_call_tls_get_addr_(false),
134         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
135     { }
136
137     ~Relocate()
138     {
139       if (this->skip_call_tls_get_addr_)
140         {
141           // FIXME: This needs to specify the location somehow.
142           gold_error(_("missing expected TLS relocation"));
143         }
144     }
145
146     // Do a relocation.  Return false if the caller should not issue
147     // any warnings about this relocation.
148     inline bool
149     relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
150              const elfcpp::Rel<32, false>&,
151              unsigned int r_type, const Sized_symbol<32>*,
152              const Symbol_value<32>*,
153              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
154              off_t);
155
156    private:
157     // Do a TLS relocation.
158     inline void
159     relocate_tls(const Relocate_info<32, false>*, size_t relnum,
160                  const elfcpp::Rel<32, false>&,
161                  unsigned int r_type, const Sized_symbol<32>*,
162                  const Symbol_value<32>*,
163                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
164
165     // Do a TLS General-Dynamic to Local-Exec transition.
166     inline void
167     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
168                  Output_segment* tls_segment,
169                  const elfcpp::Rel<32, false>&, unsigned int r_type,
170                  elfcpp::Elf_types<32>::Elf_Addr value,
171                  unsigned char* view,
172                  off_t view_size);
173
174     // Do a TLS Local-Dynamic to Local-Exec transition.
175     inline void
176     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
177                  Output_segment* tls_segment,
178                  const elfcpp::Rel<32, false>&, unsigned int r_type,
179                  elfcpp::Elf_types<32>::Elf_Addr value,
180                  unsigned char* view,
181                  off_t view_size);
182
183     // Do a TLS Initial-Exec to Local-Exec transition.
184     static inline void
185     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
186                  Output_segment* tls_segment,
187                  const elfcpp::Rel<32, false>&, unsigned int r_type,
188                  elfcpp::Elf_types<32>::Elf_Addr value,
189                  unsigned char* view,
190                  off_t view_size);
191
192     // We need to keep track of which type of local dynamic relocation
193     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
194     enum Local_dynamic_type
195     {
196       LOCAL_DYNAMIC_NONE,
197       LOCAL_DYNAMIC_SUN,
198       LOCAL_DYNAMIC_GNU
199     };
200
201     // This is set if we should skip the next reloc, which should be a
202     // PLT32 reloc against ___tls_get_addr.
203     bool skip_call_tls_get_addr_;
204     // The type of local dynamic relocation we have seen in the section
205     // being relocated, if any.
206     Local_dynamic_type local_dynamic_type_;
207   };
208
209   // Adjust TLS relocation type based on the options and whether this
210   // is a local symbol.
211   static tls::Tls_optimization
212   optimize_tls_reloc(bool is_final, int r_type);
213
214   // Get the GOT section, creating it if necessary.
215   Output_data_got<32, false>*
216   got_section(Symbol_table*, Layout*);
217
218   // Create a PLT entry for a global symbol.
219   void
220   make_plt_entry(Symbol_table*, Layout*, Symbol*);
221
222   // Get the PLT section.
223   const Output_data_plt_i386*
224   plt_section() const
225   {
226     gold_assert(this->plt_ != NULL);
227     return this->plt_;
228   }
229
230   // Get the dynamic reloc section, creating it if necessary.
231   Reloc_section*
232   rel_dyn_section(Layout*);
233
234   // Copy a relocation against a global symbol.
235   void
236   copy_reloc(const General_options*, Symbol_table*, Layout*,
237              Sized_relobj<32, false>*, unsigned int,
238              Symbol*, const elfcpp::Rel<32, false>&);
239
240   // Information about this specific target which we pass to the
241   // general Target structure.
242   static const Target::Target_info i386_info;
243
244   // The GOT section.
245   Output_data_got<32, false>* got_;
246   // The PLT section.
247   Output_data_plt_i386* plt_;
248   // The GOT PLT section.
249   Output_data_space* got_plt_;
250   // The dynamic reloc section.
251   Reloc_section* rel_dyn_;
252   // Relocs saved to avoid a COPY reloc.
253   Copy_relocs<32, false>* copy_relocs_;
254   // Space for variables copied with a COPY reloc.
255   Output_data_space* dynbss_;
256 };
257
258 const Target::Target_info Target_i386::i386_info =
259 {
260   32,                   // size
261   false,                // is_big_endian
262   elfcpp::EM_386,       // machine_code
263   false,                // has_make_symbol
264   false,                // has_resolve
265   true,                 // has_code_fill
266   true,                 // is_default_stack_executable
267   "/usr/lib/libc.so.1", // dynamic_linker
268   0x08048000,           // default_text_segment_address
269   0x1000,               // abi_pagesize
270   0x1000                // common_pagesize
271 };
272
273 // Get the GOT section, creating it if necessary.
274
275 Output_data_got<32, false>*
276 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
277 {
278   if (this->got_ == NULL)
279     {
280       gold_assert(symtab != NULL && layout != NULL);
281
282       this->got_ = new Output_data_got<32, false>();
283
284       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
285                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
286                                       this->got_);
287
288       // The old GNU linker creates a .got.plt section.  We just
289       // create another set of data in the .got section.  Note that we
290       // always create a PLT if we create a GOT, although the PLT
291       // might be empty.
292       this->got_plt_ = new Output_data_space(4);
293       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
294                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
295                                       this->got_plt_);
296
297       // The first three entries are reserved.
298       this->got_plt_->set_space_size(3 * 4);
299
300       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
301       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
302                                     this->got_plt_,
303                                     0, 0, elfcpp::STT_OBJECT,
304                                     elfcpp::STB_LOCAL,
305                                     elfcpp::STV_HIDDEN, 0,
306                                     false, false);
307     }
308
309   return this->got_;
310 }
311
312 // Get the dynamic reloc section, creating it if necessary.
313
314 Target_i386::Reloc_section*
315 Target_i386::rel_dyn_section(Layout* layout)
316 {
317   if (this->rel_dyn_ == NULL)
318     {
319       gold_assert(layout != NULL);
320       this->rel_dyn_ = new Reloc_section();
321       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
322                                       elfcpp::SHF_ALLOC, this->rel_dyn_);
323     }
324   return this->rel_dyn_;
325 }
326
327 // A class to handle the PLT data.
328
329 class Output_data_plt_i386 : public Output_section_data
330 {
331  public:
332   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
333
334   Output_data_plt_i386(Layout*, Output_data_space*);
335
336   // Add an entry to the PLT.
337   void
338   add_entry(Symbol* gsym);
339
340   // Return the .rel.plt section data.
341   const Reloc_section*
342   rel_plt() const
343   { return this->rel_; }
344
345  protected:
346   void
347   do_adjust_output_section(Output_section* os);
348
349  private:
350   // The size of an entry in the PLT.
351   static const int plt_entry_size = 16;
352
353   // The first entry in the PLT for an executable.
354   static unsigned char exec_first_plt_entry[plt_entry_size];
355
356   // The first entry in the PLT for a shared object.
357   static unsigned char dyn_first_plt_entry[plt_entry_size];
358
359   // Other entries in the PLT for an executable.
360   static unsigned char exec_plt_entry[plt_entry_size];
361
362   // Other entries in the PLT for a shared object.
363   static unsigned char dyn_plt_entry[plt_entry_size];
364
365   // Set the final size.
366   void
367   do_set_address(uint64_t, off_t)
368   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
369
370   // Write out the PLT data.
371   void
372   do_write(Output_file*);
373
374   // The reloc section.
375   Reloc_section* rel_;
376   // The .got.plt section.
377   Output_data_space* got_plt_;
378   // The number of PLT entries.
379   unsigned int count_;
380 };
381
382 // Create the PLT section.  The ordinary .got section is an argument,
383 // since we need to refer to the start.  We also create our own .got
384 // section just for PLT entries.
385
386 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
387                                            Output_data_space* got_plt)
388   : Output_section_data(4), got_plt_(got_plt), count_(0)
389 {
390   this->rel_ = new Reloc_section();
391   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
392                                   elfcpp::SHF_ALLOC, this->rel_);
393 }
394
395 void
396 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
397 {
398   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
399   // linker, and so do we.
400   os->set_entsize(4);
401 }
402
403 // Add an entry to the PLT.
404
405 void
406 Output_data_plt_i386::add_entry(Symbol* gsym)
407 {
408   gold_assert(!gsym->has_plt_offset());
409
410   // Note that when setting the PLT offset we skip the initial
411   // reserved PLT entry.
412   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
413
414   ++this->count_;
415
416   off_t got_offset = this->got_plt_->data_size();
417
418   // Every PLT entry needs a GOT entry which points back to the PLT
419   // entry (this will be changed by the dynamic linker, normally
420   // lazily when the function is called).
421   this->got_plt_->set_space_size(got_offset + 4);
422
423   // Every PLT entry needs a reloc.
424   gsym->set_needs_dynsym_entry();
425   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
426                          got_offset);
427
428   // Note that we don't need to save the symbol.  The contents of the
429   // PLT are independent of which symbols are used.  The symbols only
430   // appear in the relocations.
431 }
432
433 // The first entry in the PLT for an executable.
434
435 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
436 {
437   0xff, 0x35,   // pushl contents of memory address
438   0, 0, 0, 0,   // replaced with address of .got + 4
439   0xff, 0x25,   // jmp indirect
440   0, 0, 0, 0,   // replaced with address of .got + 8
441   0, 0, 0, 0    // unused
442 };
443
444 // The first entry in the PLT for a shared object.
445
446 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
447 {
448   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
449   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
450   0, 0, 0, 0                    // unused
451 };
452
453 // Subsequent entries in the PLT for an executable.
454
455 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
456 {
457   0xff, 0x25,   // jmp indirect
458   0, 0, 0, 0,   // replaced with address of symbol in .got
459   0x68,         // pushl immediate
460   0, 0, 0, 0,   // replaced with offset into relocation table
461   0xe9,         // jmp relative
462   0, 0, 0, 0    // replaced with offset to start of .plt
463 };
464
465 // Subsequent entries in the PLT for a shared object.
466
467 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
468 {
469   0xff, 0xa3,   // jmp *offset(%ebx)
470   0, 0, 0, 0,   // replaced with offset of symbol in .got
471   0x68,         // pushl immediate
472   0, 0, 0, 0,   // replaced with offset into relocation table
473   0xe9,         // jmp relative
474   0, 0, 0, 0    // replaced with offset to start of .plt
475 };
476
477 // Write out the PLT.  This uses the hand-coded instructions above,
478 // and adjusts them as needed.  This is all specified by the i386 ELF
479 // Processor Supplement.
480
481 void
482 Output_data_plt_i386::do_write(Output_file* of)
483 {
484   const off_t offset = this->offset();
485   const off_t oview_size = this->data_size();
486   unsigned char* const oview = of->get_output_view(offset, oview_size);
487
488   const off_t got_file_offset = this->got_plt_->offset();
489   const off_t got_size = this->got_plt_->data_size();
490   unsigned char* const got_view = of->get_output_view(got_file_offset,
491                                                       got_size);
492
493   unsigned char* pov = oview;
494
495   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
496   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
497
498   if (parameters->output_is_shared())
499     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
500   else
501     {
502       memcpy(pov, exec_first_plt_entry, plt_entry_size);
503       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
504       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
505     }
506   pov += plt_entry_size;
507
508   unsigned char* got_pov = got_view;
509
510   memset(got_pov, 0, 12);
511   got_pov += 12;
512
513   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
514
515   unsigned int plt_offset = plt_entry_size;
516   unsigned int plt_rel_offset = 0;
517   unsigned int got_offset = 12;
518   const unsigned int count = this->count_;
519   for (unsigned int i = 0;
520        i < count;
521        ++i,
522          pov += plt_entry_size,
523          got_pov += 4,
524          plt_offset += plt_entry_size,
525          plt_rel_offset += rel_size,
526          got_offset += 4)
527     {
528       // Set and adjust the PLT entry itself.
529
530       if (parameters->output_is_shared())
531         {
532           memcpy(pov, dyn_plt_entry, plt_entry_size);
533           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
534         }
535       else
536         {
537           memcpy(pov, exec_plt_entry, plt_entry_size);
538           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
539                                                       (got_address
540                                                        + got_offset));
541         }
542
543       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
544       elfcpp::Swap<32, false>::writeval(pov + 12,
545                                         - (plt_offset + plt_entry_size));
546
547       // Set the entry in the GOT.
548       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
549     }
550
551   gold_assert(pov - oview == oview_size);
552   gold_assert(got_pov - got_view == got_size);
553
554   of->write_output_view(offset, oview_size, oview);
555   of->write_output_view(got_file_offset, got_size, got_view);
556 }
557
558 // Create a PLT entry for a global symbol.
559
560 void
561 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
562 {
563   if (gsym->has_plt_offset())
564     return;
565
566   if (this->plt_ == NULL)
567     {
568       // Create the GOT sections first.
569       this->got_section(symtab, layout);
570
571       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
572       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
573                                       (elfcpp::SHF_ALLOC
574                                        | elfcpp::SHF_EXECINSTR),
575                                       this->plt_);
576     }
577
578   this->plt_->add_entry(gsym);
579 }
580
581 // Handle a relocation against a non-function symbol defined in a
582 // dynamic object.  The traditional way to handle this is to generate
583 // a COPY relocation to copy the variable at runtime from the shared
584 // object into the executable's data segment.  However, this is
585 // undesirable in general, as if the size of the object changes in the
586 // dynamic object, the executable will no longer work correctly.  If
587 // this relocation is in a writable section, then we can create a
588 // dynamic reloc and the dynamic linker will resolve it to the correct
589 // address at runtime.  However, we do not want do that if the
590 // relocation is in a read-only section, as it would prevent the
591 // readonly segment from being shared.  And if we have to eventually
592 // generate a COPY reloc, then any dynamic relocations will be
593 // useless.  So this means that if this is a writable section, we need
594 // to save the relocation until we see whether we have to create a
595 // COPY relocation for this symbol for any other relocation.
596
597 void
598 Target_i386::copy_reloc(const General_options* options,
599                         Symbol_table* symtab,
600                         Layout* layout,
601                         Sized_relobj<32, false>* object,
602                         unsigned int data_shndx, Symbol* gsym,
603                         const elfcpp::Rel<32, false>& rel)
604 {
605   Sized_symbol<32>* ssym;
606   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
607                                                         SELECT_SIZE(32));
608
609   if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
610                                                data_shndx, ssym))
611     {
612       // So far we do not need a COPY reloc.  Save this relocation.
613       // If it turns out that we never need a COPY reloc for this
614       // symbol, then we will emit the relocation.
615       if (this->copy_relocs_ == NULL)
616         this->copy_relocs_ = new Copy_relocs<32, false>();
617       this->copy_relocs_->save(ssym, object, data_shndx, rel);
618     }
619   else
620     {
621       // Allocate space for this symbol in the .bss section.
622
623       elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
624
625       // There is no defined way to determine the required alignment
626       // of the symbol.  We pick the alignment based on the size.  We
627       // set an arbitrary maximum of 256.
628       unsigned int align;
629       for (align = 1; align < 512; align <<= 1)
630         if ((symsize & align) != 0)
631           break;
632
633       if (this->dynbss_ == NULL)
634         {
635           this->dynbss_ = new Output_data_space(align);
636           layout->add_output_section_data(".bss",
637                                           elfcpp::SHT_NOBITS,
638                                           (elfcpp::SHF_ALLOC
639                                            | elfcpp::SHF_WRITE),
640                                           this->dynbss_);
641         }
642
643       Output_data_space* dynbss = this->dynbss_;
644
645       if (align > dynbss->addralign())
646         dynbss->set_space_alignment(align);
647
648       off_t dynbss_size = dynbss->data_size();
649       dynbss_size = align_address(dynbss_size, align);
650       off_t offset = dynbss_size;
651       dynbss->set_space_size(dynbss_size + symsize);
652
653       symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
654
655       // Add the COPY reloc.
656       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
657       rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
658     }
659 }
660
661 // Optimize the TLS relocation type based on what we know about the
662 // symbol.  IS_FINAL is true if the final address of this symbol is
663 // known at link time.
664
665 tls::Tls_optimization
666 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
667 {
668   // If we are generating a shared library, then we can't do anything
669   // in the linker.
670   if (parameters->output_is_shared())
671     return tls::TLSOPT_NONE;
672
673   switch (r_type)
674     {
675     case elfcpp::R_386_TLS_GD:
676     case elfcpp::R_386_TLS_GOTDESC:
677     case elfcpp::R_386_TLS_DESC_CALL:
678       // These are General-Dynamic which permits fully general TLS
679       // access.  Since we know that we are generating an executable,
680       // we can convert this to Initial-Exec.  If we also know that
681       // this is a local symbol, we can further switch to Local-Exec.
682       if (is_final)
683         return tls::TLSOPT_TO_LE;
684       return tls::TLSOPT_TO_IE;
685
686     case elfcpp::R_386_TLS_LDM:
687       // This is Local-Dynamic, which refers to a local symbol in the
688       // dynamic TLS block.  Since we know that we generating an
689       // executable, we can switch to Local-Exec.
690       return tls::TLSOPT_TO_LE;
691
692     case elfcpp::R_386_TLS_LDO_32:
693       // Another type of Local-Dynamic relocation.
694       return tls::TLSOPT_TO_LE;
695
696     case elfcpp::R_386_TLS_IE:
697     case elfcpp::R_386_TLS_GOTIE:
698     case elfcpp::R_386_TLS_IE_32:
699       // These are Initial-Exec relocs which get the thread offset
700       // from the GOT.  If we know that we are linking against the
701       // local symbol, we can switch to Local-Exec, which links the
702       // thread offset into the instruction.
703       if (is_final)
704         return tls::TLSOPT_TO_LE;
705       return tls::TLSOPT_NONE;
706
707     case elfcpp::R_386_TLS_LE:
708     case elfcpp::R_386_TLS_LE_32:
709       // When we already have Local-Exec, there is nothing further we
710       // can do.
711       return tls::TLSOPT_NONE;
712
713     default:
714       gold_unreachable();
715     }
716 }
717
718 // Report an unsupported relocation against a local symbol.
719
720 void
721 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
722                                            unsigned int r_type)
723 {
724   gold_error(_("%s: unsupported reloc %u against local symbol"),
725              object->name().c_str(), r_type);
726 }
727
728 // Scan a relocation for a local symbol.
729
730 inline void
731 Target_i386::Scan::local(const General_options&,
732                          Symbol_table* symtab,
733                          Layout* layout,
734                          Target_i386* target,
735                          Sized_relobj<32, false>* object,
736                          unsigned int data_shndx,
737                          const elfcpp::Rel<32, false>& reloc,
738                          unsigned int r_type,
739                          const elfcpp::Sym<32, false>&)
740 {
741   switch (r_type)
742     {
743     case elfcpp::R_386_NONE:
744     case elfcpp::R_386_GNU_VTINHERIT:
745     case elfcpp::R_386_GNU_VTENTRY:
746       break;
747
748     case elfcpp::R_386_32:
749     case elfcpp::R_386_16:
750     case elfcpp::R_386_8:
751       // If building a shared library (or a position-independent
752       // executable), we need to create a dynamic relocation for
753       // this location. The relocation applied at link time will
754       // apply the link-time value, so we flag the location with
755       // an R_386_RELATIVE relocation so the dynamic loader can
756       // relocate it easily.
757       if (parameters->output_is_position_independent())
758         {
759           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
760           rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE, data_shndx,
761                              reloc.get_r_offset());
762         }
763       break;
764
765     case elfcpp::R_386_PC32:
766     case elfcpp::R_386_PC16:
767     case elfcpp::R_386_PC8:
768       break;
769
770     case elfcpp::R_386_PLT32:
771       // Since we know this is a local symbol, we can handle this as a
772       // PC32 reloc.
773       break;
774
775     case elfcpp::R_386_GOTOFF:
776     case elfcpp::R_386_GOTPC:
777       // We need a GOT section.
778       target->got_section(symtab, layout);
779       break;
780
781     case elfcpp::R_386_GOT32:
782       {
783         // The symbol requires a GOT entry.
784         Output_data_got<32, false>* got = target->got_section(symtab, layout);
785         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
786         if (got->add_local(object, r_sym))
787           {
788             // If we are generating a shared object, we need to add a
789             // dynamic RELATIVE relocation for this symbol.
790             if (parameters->output_is_position_independent())
791               {
792                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
793                 rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE,
794                                    data_shndx, reloc.get_r_offset());
795               }
796           }
797       }
798       break;
799
800       // These are relocations which should only be seen by the
801       // dynamic linker, and should never be seen here.
802     case elfcpp::R_386_COPY:
803     case elfcpp::R_386_GLOB_DAT:
804     case elfcpp::R_386_JUMP_SLOT:
805     case elfcpp::R_386_RELATIVE:
806     case elfcpp::R_386_TLS_TPOFF:
807     case elfcpp::R_386_TLS_DTPMOD32:
808     case elfcpp::R_386_TLS_DTPOFF32:
809     case elfcpp::R_386_TLS_TPOFF32:
810     case elfcpp::R_386_TLS_DESC:
811       gold_error(_("%s: unexpected reloc %u in object file"),
812                  object->name().c_str(), r_type);
813       break;
814
815       // These are initial TLS relocs, which are expected when
816       // linking.
817     case elfcpp::R_386_TLS_GD:            // Global-dynamic
818     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
819     case elfcpp::R_386_TLS_DESC_CALL:
820     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
821     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
822     case elfcpp::R_386_TLS_IE:            // Initial-exec
823     case elfcpp::R_386_TLS_IE_32:
824     case elfcpp::R_386_TLS_GOTIE:
825     case elfcpp::R_386_TLS_LE:            // Local-exec
826     case elfcpp::R_386_TLS_LE_32:
827       {
828         bool output_is_shared = parameters->output_is_shared();
829         const tls::Tls_optimization optimized_type
830             = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
831         switch (r_type)
832           {
833           case elfcpp::R_386_TLS_GD:          // Global-dynamic
834           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
835           case elfcpp::R_386_TLS_DESC_CALL:
836             // FIXME: If not relaxing to LE, we need to generate
837             // DTPMOD32 and DTPOFF32 relocs.
838             if (optimized_type != tls::TLSOPT_TO_LE)
839               unsupported_reloc_local(object, r_type);
840             break;
841
842           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
843             // FIXME: If not relaxing to LE, we need to generate a
844             // DTPMOD32 reloc.
845             if (optimized_type != tls::TLSOPT_TO_LE)
846               unsupported_reloc_local(object, r_type);
847             break;
848
849           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
850             break;
851
852           case elfcpp::R_386_TLS_IE:          // Initial-exec
853           case elfcpp::R_386_TLS_IE_32:
854           case elfcpp::R_386_TLS_GOTIE:
855             // FIXME: If not relaxing to LE, we need to generate a
856             // TPOFF or TPOFF32 reloc.
857             if (optimized_type != tls::TLSOPT_TO_LE)
858               unsupported_reloc_local(object, r_type);
859             break;
860
861           case elfcpp::R_386_TLS_LE:          // Local-exec
862           case elfcpp::R_386_TLS_LE_32:
863             // FIXME: If generating a shared object, we need to copy
864             // this relocation into the object.
865             gold_assert(!output_is_shared);
866             break;
867
868           default:
869             gold_unreachable();
870           }
871       }
872       break;
873
874     case elfcpp::R_386_32PLT:
875     case elfcpp::R_386_TLS_GD_32:
876     case elfcpp::R_386_TLS_GD_PUSH:
877     case elfcpp::R_386_TLS_GD_CALL:
878     case elfcpp::R_386_TLS_GD_POP:
879     case elfcpp::R_386_TLS_LDM_32:
880     case elfcpp::R_386_TLS_LDM_PUSH:
881     case elfcpp::R_386_TLS_LDM_CALL:
882     case elfcpp::R_386_TLS_LDM_POP:
883     case elfcpp::R_386_USED_BY_INTEL_200:
884     default:
885       unsupported_reloc_local(object, r_type);
886       break;
887     }
888 }
889
890 // Report an unsupported relocation against a global symbol.
891
892 void
893 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
894                                             unsigned int r_type,
895                                             Symbol* gsym)
896 {
897   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
898              object->name().c_str(), r_type, gsym->name());
899 }
900
901 // Scan a relocation for a global symbol.
902
903 inline void
904 Target_i386::Scan::global(const General_options& options,
905                           Symbol_table* symtab,
906                           Layout* layout,
907                           Target_i386* target,
908                           Sized_relobj<32, false>* object,
909                           unsigned int data_shndx,
910                           const elfcpp::Rel<32, false>& reloc,
911                           unsigned int r_type,
912                           Symbol* gsym)
913 {
914   switch (r_type)
915     {
916     case elfcpp::R_386_NONE:
917     case elfcpp::R_386_GNU_VTINHERIT:
918     case elfcpp::R_386_GNU_VTENTRY:
919       break;
920
921     case elfcpp::R_386_32:
922     case elfcpp::R_386_PC32:
923     case elfcpp::R_386_16:
924     case elfcpp::R_386_PC16:
925     case elfcpp::R_386_8:
926     case elfcpp::R_386_PC8:
927       if (gsym->is_from_dynobj()
928           || (parameters->output_is_shared()
929               && gsym->is_preemptible()))
930         {
931           // (a) This symbol is defined in a dynamic object.  If it is a
932           // function, we make a PLT entry.  Otherwise we need to
933           // either generate a COPY reloc or copy this reloc.
934           // (b) We are building a shared object and this symbol is
935           // preemptible. If it is a function, we make a PLT entry.
936           // Otherwise, we copy the reloc. We do not make COPY relocs
937           // in shared objects.
938           if (gsym->type() == elfcpp::STT_FUNC)
939             {
940               target->make_plt_entry(symtab, layout, gsym);
941
942               // If this is not a PC relative reference, then we may
943               // be taking the address of the function.  In that case
944               // we need to set the entry in the dynamic symbol table
945               // to the address of the PLT entry.
946               if (r_type != elfcpp::R_386_PC32
947                   && r_type != elfcpp::R_386_PC16
948                   && r_type != elfcpp::R_386_PC8
949                   && gsym->is_from_dynobj())
950                 gsym->set_needs_dynsym_value();
951             }
952           else if (parameters->output_is_shared())
953             {
954               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
955               rel_dyn->add_global(gsym, r_type, object, data_shndx, 
956                                   reloc.get_r_offset());
957             }
958           else
959             target->copy_reloc(&options, symtab, layout, object, data_shndx,
960                                gsym, reloc);
961         }
962
963       break;
964
965     case elfcpp::R_386_GOT32:
966       {
967         // The symbol requires a GOT entry.
968         Output_data_got<32, false>* got = target->got_section(symtab, layout);
969         if (got->add_global(gsym))
970           {
971             // If this symbol is not fully resolved, we need to add a
972             // dynamic relocation for it.
973             if (!gsym->final_value_is_known())
974               {
975                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
976                 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
977                                     gsym->got_offset());
978               }
979           }
980       }
981       break;
982
983     case elfcpp::R_386_PLT32:
984       // If the symbol is fully resolved, this is just a PC32 reloc.
985       // Otherwise we need a PLT entry.
986       if (gsym->final_value_is_known())
987         break;
988       // If building a shared library, we can also skip the PLT entry
989       // if the symbol is defined in the output file and is protected
990       // or hidden.
991       if (gsym->is_defined()
992           && !gsym->is_from_dynobj()
993           && !gsym->is_preemptible())
994         break;
995       target->make_plt_entry(symtab, layout, gsym);
996       break;
997
998     case elfcpp::R_386_GOTOFF:
999     case elfcpp::R_386_GOTPC:
1000       // We need a GOT section.
1001       target->got_section(symtab, layout);
1002       break;
1003
1004       // These are relocations which should only be seen by the
1005       // dynamic linker, and should never be seen here.
1006     case elfcpp::R_386_COPY:
1007     case elfcpp::R_386_GLOB_DAT:
1008     case elfcpp::R_386_JUMP_SLOT:
1009     case elfcpp::R_386_RELATIVE:
1010     case elfcpp::R_386_TLS_TPOFF:
1011     case elfcpp::R_386_TLS_DTPMOD32:
1012     case elfcpp::R_386_TLS_DTPOFF32:
1013     case elfcpp::R_386_TLS_TPOFF32:
1014     case elfcpp::R_386_TLS_DESC:
1015       gold_error(_("%s: unexpected reloc %u in object file"),
1016                  object->name().c_str(), r_type);
1017       break;
1018
1019       // These are initial tls relocs, which are expected when
1020       // linking.
1021     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1022     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1023     case elfcpp::R_386_TLS_DESC_CALL:
1024     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1025     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1026     case elfcpp::R_386_TLS_IE:            // Initial-exec
1027     case elfcpp::R_386_TLS_IE_32:
1028     case elfcpp::R_386_TLS_GOTIE:
1029     case elfcpp::R_386_TLS_LE:            // Local-exec
1030     case elfcpp::R_386_TLS_LE_32:
1031       {
1032         const bool is_final = gsym->final_value_is_known();
1033         const tls::Tls_optimization optimized_type
1034             = Target_i386::optimize_tls_reloc(is_final, r_type);
1035         switch (r_type)
1036           {
1037           case elfcpp::R_386_TLS_GD:          // Global-dynamic
1038           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
1039           case elfcpp::R_386_TLS_DESC_CALL:
1040             // FIXME: If not relaxing to LE, we need to generate
1041             // DTPMOD32 and DTPOFF32 relocs.
1042             if (optimized_type != tls::TLSOPT_TO_LE)
1043               unsupported_reloc_global(object, r_type, gsym);
1044             break;
1045
1046           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1047             // FIXME: If not relaxing to LE, we need to generate a
1048             // DTPMOD32 reloc.
1049             if (optimized_type != tls::TLSOPT_TO_LE)
1050               unsupported_reloc_global(object, r_type, gsym);
1051             break;
1052
1053           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1054             break;
1055
1056           case elfcpp::R_386_TLS_IE:          // Initial-exec
1057           case elfcpp::R_386_TLS_IE_32:
1058           case elfcpp::R_386_TLS_GOTIE:
1059             // FIXME: If not relaxing to LE, we need to generate a
1060             // TPOFF or TPOFF32 reloc.
1061             if (optimized_type != tls::TLSOPT_TO_LE)
1062               unsupported_reloc_global(object, r_type, gsym);
1063             break;
1064
1065           case elfcpp::R_386_TLS_LE:          // Local-exec
1066           case elfcpp::R_386_TLS_LE_32:
1067             // FIXME: If generating a shared object, we need to copy
1068             // this relocation into the object.
1069             gold_assert(!parameters->output_is_shared());
1070             break;
1071
1072           default:
1073             gold_unreachable();
1074           }
1075       }
1076       break;
1077
1078     case elfcpp::R_386_32PLT:
1079     case elfcpp::R_386_TLS_GD_32:
1080     case elfcpp::R_386_TLS_GD_PUSH:
1081     case elfcpp::R_386_TLS_GD_CALL:
1082     case elfcpp::R_386_TLS_GD_POP:
1083     case elfcpp::R_386_TLS_LDM_32:
1084     case elfcpp::R_386_TLS_LDM_PUSH:
1085     case elfcpp::R_386_TLS_LDM_CALL:
1086     case elfcpp::R_386_TLS_LDM_POP:
1087     case elfcpp::R_386_USED_BY_INTEL_200:
1088     default:
1089       unsupported_reloc_global(object, r_type, gsym);
1090       break;
1091     }
1092 }
1093
1094 // Scan relocations for a section.
1095
1096 void
1097 Target_i386::scan_relocs(const General_options& options,
1098                          Symbol_table* symtab,
1099                          Layout* layout,
1100                          Sized_relobj<32, false>* object,
1101                          unsigned int data_shndx,
1102                          unsigned int sh_type,
1103                          const unsigned char* prelocs,
1104                          size_t reloc_count,
1105                          size_t local_symbol_count,
1106                          const unsigned char* plocal_symbols,
1107                          Symbol** global_symbols)
1108 {
1109   if (sh_type == elfcpp::SHT_RELA)
1110     {
1111       gold_error(_("%s: unsupported RELA reloc section"),
1112                  object->name().c_str());
1113       return;
1114     }
1115
1116   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1117                     Target_i386::Scan>(
1118     options,
1119     symtab,
1120     layout,
1121     this,
1122     object,
1123     data_shndx,
1124     prelocs,
1125     reloc_count,
1126     local_symbol_count,
1127     plocal_symbols,
1128     global_symbols);
1129 }
1130
1131 // Finalize the sections.
1132
1133 void
1134 Target_i386::do_finalize_sections(Layout* layout)
1135 {
1136   // Fill in some more dynamic tags.
1137   Output_data_dynamic* const odyn = layout->dynamic_data();
1138   if (odyn != NULL)
1139     {
1140       if (this->got_plt_ != NULL)
1141         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1142
1143       if (this->plt_ != NULL)
1144         {
1145           const Output_data* od = this->plt_->rel_plt();
1146           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1147           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1148           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1149         }
1150
1151       if (this->rel_dyn_ != NULL)
1152         {
1153           const Output_data* od = this->rel_dyn_;
1154           odyn->add_section_address(elfcpp::DT_REL, od);
1155           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1156           odyn->add_constant(elfcpp::DT_RELENT,
1157                              elfcpp::Elf_sizes<32>::rel_size);
1158         }
1159
1160       if (!parameters->output_is_shared())
1161         {
1162           // The value of the DT_DEBUG tag is filled in by the dynamic
1163           // linker at run time, and used by the debugger.
1164           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1165         }
1166     }
1167
1168   // Emit any relocs we saved in an attempt to avoid generating COPY
1169   // relocs.
1170   if (this->copy_relocs_ == NULL)
1171     return;
1172   if (this->copy_relocs_->any_to_emit())
1173     {
1174       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1175       this->copy_relocs_->emit(rel_dyn);
1176     }
1177   delete this->copy_relocs_;
1178   this->copy_relocs_ = NULL;
1179 }
1180
1181 // Perform a relocation.
1182
1183 inline bool
1184 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1185                                 Target_i386* target,
1186                                 size_t relnum,
1187                                 const elfcpp::Rel<32, false>& rel,
1188                                 unsigned int r_type,
1189                                 const Sized_symbol<32>* gsym,
1190                                 const Symbol_value<32>* psymval,
1191                                 unsigned char* view,
1192                                 elfcpp::Elf_types<32>::Elf_Addr address,
1193                                 off_t view_size)
1194 {
1195   if (this->skip_call_tls_get_addr_)
1196     {
1197       if (r_type != elfcpp::R_386_PLT32
1198           || gsym == NULL
1199           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1200         gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1201                                _("missing expected TLS relocation"));
1202       else
1203         {
1204           this->skip_call_tls_get_addr_ = false;
1205           return false;
1206         }
1207     }
1208
1209   // Pick the value to use for symbols defined in shared objects.
1210   Symbol_value<32> symval;
1211   if (gsym != NULL
1212       && (gsym->is_from_dynobj()
1213           || (parameters->output_is_shared()
1214               && gsym->is_preemptible()))
1215       && gsym->has_plt_offset())
1216     {
1217       symval.set_output_value(target->plt_section()->address()
1218                               + gsym->plt_offset());
1219       psymval = &symval;
1220     }
1221
1222   const Sized_relobj<32, false>* object = relinfo->object;
1223
1224   // Get the GOT offset if needed.
1225   bool have_got_offset = false;
1226   unsigned int got_offset = 0;
1227   switch (r_type)
1228     {
1229     case elfcpp::R_386_GOT32:
1230       if (gsym != NULL)
1231         {
1232           gold_assert(gsym->has_got_offset());
1233           got_offset = gsym->got_offset();
1234         }
1235       else
1236         {
1237           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1238           got_offset = object->local_got_offset(r_sym);
1239         }
1240       have_got_offset = true;
1241       break;
1242
1243     default:
1244       break;
1245     }
1246
1247   switch (r_type)
1248     {
1249     case elfcpp::R_386_NONE:
1250     case elfcpp::R_386_GNU_VTINHERIT:
1251     case elfcpp::R_386_GNU_VTENTRY:
1252       break;
1253
1254     case elfcpp::R_386_32:
1255       Relocate_functions<32, false>::rel32(view, object, psymval);
1256       break;
1257
1258     case elfcpp::R_386_PC32:
1259       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1260       break;
1261
1262     case elfcpp::R_386_16:
1263       Relocate_functions<32, false>::rel16(view, object, psymval);
1264       break;
1265
1266     case elfcpp::R_386_PC16:
1267       Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1268       break;
1269
1270     case elfcpp::R_386_8:
1271       Relocate_functions<32, false>::rel8(view, object, psymval);
1272       break;
1273
1274     case elfcpp::R_386_PC8:
1275       Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1276       break;
1277
1278     case elfcpp::R_386_PLT32:
1279       gold_assert(gsym == NULL
1280                   || gsym->has_plt_offset()
1281                   || gsym->final_value_is_known());
1282       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1283       break;
1284
1285     case elfcpp::R_386_GOT32:
1286       gold_assert(have_got_offset);
1287       Relocate_functions<32, false>::rel32(view, got_offset);
1288       break;
1289
1290     case elfcpp::R_386_GOTOFF:
1291       {
1292         elfcpp::Elf_types<32>::Elf_Addr value;
1293         value = (psymval->value(object, 0)
1294                  - target->got_section(NULL, NULL)->address());
1295         Relocate_functions<32, false>::rel32(view, value);
1296       }
1297       break;
1298
1299     case elfcpp::R_386_GOTPC:
1300       {
1301         elfcpp::Elf_types<32>::Elf_Addr value;
1302         value = target->got_section(NULL, NULL)->address();
1303         Relocate_functions<32, false>::pcrel32(view, value, address);
1304       }
1305       break;
1306
1307     case elfcpp::R_386_COPY:
1308     case elfcpp::R_386_GLOB_DAT:
1309     case elfcpp::R_386_JUMP_SLOT:
1310     case elfcpp::R_386_RELATIVE:
1311       // These are outstanding tls relocs, which are unexpected when
1312       // linking.
1313     case elfcpp::R_386_TLS_TPOFF:
1314     case elfcpp::R_386_TLS_DTPMOD32:
1315     case elfcpp::R_386_TLS_DTPOFF32:
1316     case elfcpp::R_386_TLS_TPOFF32:
1317     case elfcpp::R_386_TLS_DESC:
1318       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1319                              _("unexpected reloc %u in object file"),
1320                              r_type);
1321       break;
1322
1323       // These are initial tls relocs, which are expected when
1324       // linking.
1325     case elfcpp::R_386_TLS_GD:             // Global-dynamic
1326     case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
1327     case elfcpp::R_386_TLS_DESC_CALL:
1328     case elfcpp::R_386_TLS_LDM:            // Local-dynamic
1329     case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
1330     case elfcpp::R_386_TLS_IE:             // Initial-exec
1331     case elfcpp::R_386_TLS_IE_32:
1332     case elfcpp::R_386_TLS_GOTIE:
1333     case elfcpp::R_386_TLS_LE:             // Local-exec
1334     case elfcpp::R_386_TLS_LE_32:
1335       this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1336                          address, view_size);
1337       break;
1338
1339     case elfcpp::R_386_32PLT:
1340     case elfcpp::R_386_TLS_GD_32:
1341     case elfcpp::R_386_TLS_GD_PUSH:
1342     case elfcpp::R_386_TLS_GD_CALL:
1343     case elfcpp::R_386_TLS_GD_POP:
1344     case elfcpp::R_386_TLS_LDM_32:
1345     case elfcpp::R_386_TLS_LDM_PUSH:
1346     case elfcpp::R_386_TLS_LDM_CALL:
1347     case elfcpp::R_386_TLS_LDM_POP:
1348     case elfcpp::R_386_USED_BY_INTEL_200:
1349     default:
1350       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1351                              _("unsupported reloc %u"),
1352                              r_type);
1353       break;
1354     }
1355
1356   return true;
1357 }
1358
1359 // Perform a TLS relocation.
1360
1361 inline void
1362 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1363                                     size_t relnum,
1364                                     const elfcpp::Rel<32, false>& rel,
1365                                     unsigned int r_type,
1366                                     const Sized_symbol<32>* gsym,
1367                                     const Symbol_value<32>* psymval,
1368                                     unsigned char* view,
1369                                     elfcpp::Elf_types<32>::Elf_Addr,
1370                                     off_t view_size)
1371 {
1372   Output_segment* tls_segment = relinfo->layout->tls_segment();
1373   if (tls_segment == NULL)
1374     {
1375       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1376                              _("TLS reloc but no TLS segment"));
1377       return;
1378     }
1379
1380   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1381
1382   const bool is_final = (gsym == NULL
1383                          ? !parameters->output_is_position_independent()
1384                          : gsym->final_value_is_known());
1385   const tls::Tls_optimization optimized_type
1386       = Target_i386::optimize_tls_reloc(is_final, r_type);
1387   switch (r_type)
1388     {
1389     case elfcpp::R_386_TLS_GD:           // Global-dynamic
1390       if (optimized_type == tls::TLSOPT_TO_LE)
1391         {
1392           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1393                              rel, r_type, value, view,
1394                              view_size);
1395           break;
1396         }
1397       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1398                              _("unsupported reloc %u"),
1399                              r_type);
1400       break;
1401
1402     case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
1403     case elfcpp::R_386_TLS_DESC_CALL:
1404       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1405                              _("unsupported reloc %u"),
1406                              r_type);
1407       break;
1408
1409     case elfcpp::R_386_TLS_LDM:          // Local-dynamic
1410       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1411         {
1412           gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1413                                  _("both SUN and GNU model "
1414                                    "TLS relocations"));
1415           break;
1416         }
1417       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1418       if (optimized_type == tls::TLSOPT_TO_LE)
1419         {
1420           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1421                              value, view, view_size);
1422           break;
1423         }
1424       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1425                              _("unsupported reloc %u"),
1426                              r_type);
1427       break;
1428
1429     case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
1430       // This reloc can appear in debugging sections, in which case we
1431       // won't see the TLS_LDM reloc.  The local_dynamic_type field
1432       // tells us this.
1433       if (optimized_type != tls::TLSOPT_TO_LE
1434           || this->local_dynamic_type_ == LOCAL_DYNAMIC_NONE)
1435         value = value - tls_segment->vaddr();
1436       else if (this->local_dynamic_type_ == LOCAL_DYNAMIC_GNU)
1437         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1438       else
1439         value = tls_segment->vaddr() + tls_segment->memsz() - value;
1440       Relocate_functions<32, false>::rel32(view, value);
1441       break;
1442
1443     case elfcpp::R_386_TLS_IE:           // Initial-exec
1444     case elfcpp::R_386_TLS_GOTIE:
1445     case elfcpp::R_386_TLS_IE_32:
1446       if (optimized_type == tls::TLSOPT_TO_LE)
1447         {
1448           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1449                                               rel, r_type, value, view,
1450                                               view_size);
1451           break;
1452         }
1453       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1454                              _("unsupported reloc %u"),
1455                              r_type);
1456       break;
1457
1458     case elfcpp::R_386_TLS_LE:           // Local-exec
1459       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1460       Relocate_functions<32, false>::rel32(view, value);
1461       break;
1462
1463     case elfcpp::R_386_TLS_LE_32:
1464       value = tls_segment->vaddr() + tls_segment->memsz() - value;
1465       Relocate_functions<32, false>::rel32(view, value);
1466       break;
1467     }
1468 }
1469
1470 // Do a relocation in which we convert a TLS General-Dynamic to a
1471 // Local-Exec.
1472
1473 inline void
1474 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1475                                     size_t relnum,
1476                                     Output_segment* tls_segment,
1477                                     const elfcpp::Rel<32, false>& rel,
1478                                     unsigned int,
1479                                     elfcpp::Elf_types<32>::Elf_Addr value,
1480                                     unsigned char* view,
1481                                     off_t view_size)
1482 {
1483   // leal foo(,%reg,1),%eax; call ___tls_get_addr
1484   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1485   // leal foo(%reg),%eax; call ___tls_get_addr
1486   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1487
1488   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1489   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1490
1491   unsigned char op1 = view[-1];
1492   unsigned char op2 = view[-2];
1493
1494   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1495                  op2 == 0x8d || op2 == 0x04);
1496   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1497
1498   int roff = 5;
1499
1500   if (op2 == 0x04)
1501     {
1502       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1503       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1504       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1505                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1506       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1507     }
1508   else
1509     {
1510       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1511                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1512       if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1513           && view[9] == 0x90)
1514         {
1515           // There is a trailing nop.  Use the size byte subl.
1516           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1517           roff = 6;
1518         }
1519       else
1520         {
1521           // Use the five byte subl.
1522           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1523         }
1524     }
1525
1526   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1527   Relocate_functions<32, false>::rel32(view + roff, value);
1528
1529   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1530   // We can skip it.
1531   this->skip_call_tls_get_addr_ = true;
1532 }
1533
1534 // Do a relocation in which we convert a TLS Local-Dynamic to a
1535 // Local-Exec.
1536
1537 inline void
1538 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
1539                                     size_t relnum,
1540                                     Output_segment*,
1541                                     const elfcpp::Rel<32, false>& rel,
1542                                     unsigned int,
1543                                     elfcpp::Elf_types<32>::Elf_Addr,
1544                                     unsigned char* view,
1545                                     off_t view_size)
1546 {
1547   // leal foo(%reg), %eax; call ___tls_get_addr
1548   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
1549
1550   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1551   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1552
1553   // FIXME: Does this test really always pass?
1554   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1555                  view[-2] == 0x8d && view[-1] == 0x83);
1556
1557   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1558
1559   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
1560
1561   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1562   // We can skip it.
1563   this->skip_call_tls_get_addr_ = true;
1564 }
1565
1566 // Do a relocation in which we convert a TLS Initial-Exec to a
1567 // Local-Exec.
1568
1569 inline void
1570 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1571                                     size_t relnum,
1572                                     Output_segment* tls_segment,
1573                                     const elfcpp::Rel<32, false>& rel,
1574                                     unsigned int r_type,
1575                                     elfcpp::Elf_types<32>::Elf_Addr value,
1576                                     unsigned char* view,
1577                                     off_t view_size)
1578 {
1579   // We have to actually change the instructions, which means that we
1580   // need to examine the opcodes to figure out which instruction we
1581   // are looking at.
1582   if (r_type == elfcpp::R_386_TLS_IE)
1583     {
1584       // movl %gs:XX,%eax  ==>  movl $YY,%eax
1585       // movl %gs:XX,%reg  ==>  movl $YY,%reg
1586       // addl %gs:XX,%reg  ==>  addl $YY,%reg
1587       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
1588       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1589
1590       unsigned char op1 = view[-1];
1591       if (op1 == 0xa1)
1592         {
1593           // movl XX,%eax  ==>  movl $YY,%eax
1594           view[-1] = 0xb8;
1595         }
1596       else
1597         {
1598           tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1599
1600           unsigned char op2 = view[-2];
1601           if (op2 == 0x8b)
1602             {
1603               // movl XX,%reg  ==>  movl $YY,%reg
1604               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1605                              (op1 & 0xc7) == 0x05);
1606               view[-2] = 0xc7;
1607               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1608             }
1609           else if (op2 == 0x03)
1610             {
1611               // addl XX,%reg  ==>  addl $YY,%reg
1612               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1613                              (op1 & 0xc7) == 0x05);
1614               view[-2] = 0x81;
1615               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1616             }
1617           else
1618             tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1619         }
1620     }
1621   else
1622     {
1623       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1624       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1625       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1626       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1627       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1628
1629       unsigned char op1 = view[-1];
1630       unsigned char op2 = view[-2];
1631       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1632                      (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1633       if (op2 == 0x8b)
1634         {
1635           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1636           view[-2] = 0xc7;
1637           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1638         }
1639       else if (op2 == 0x2b)
1640         {
1641           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1642           view[-2] = 0x81;
1643           view[-1] = 0xe8 | ((op1 >> 3) & 7);
1644         }
1645       else if (op2 == 0x03)
1646         {
1647           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1648           view[-2] = 0x81;
1649           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1650         }
1651       else
1652         tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1653     }
1654
1655   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1656   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1657     value = - value;
1658
1659   Relocate_functions<32, false>::rel32(view, value);
1660 }
1661
1662 // Relocate section data.
1663
1664 void
1665 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1666                               unsigned int sh_type,
1667                               const unsigned char* prelocs,
1668                               size_t reloc_count,
1669                               unsigned char* view,
1670                               elfcpp::Elf_types<32>::Elf_Addr address,
1671                               off_t view_size)
1672 {
1673   gold_assert(sh_type == elfcpp::SHT_REL);
1674
1675   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1676                          Target_i386::Relocate>(
1677     relinfo,
1678     this,
1679     prelocs,
1680     reloc_count,
1681     view,
1682     address,
1683     view_size);
1684 }
1685
1686 // Return the value to use for a dynamic which requires special
1687 // treatment.  This is how we support equality comparisons of function
1688 // pointers across shared library boundaries, as described in the
1689 // processor specific ABI supplement.
1690
1691 uint64_t
1692 Target_i386::do_dynsym_value(const Symbol* gsym) const
1693 {
1694   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1695   return this->plt_section()->address() + gsym->plt_offset();
1696 }
1697
1698 // Return a string used to fill a code section with nops to take up
1699 // the specified length.
1700
1701 std::string
1702 Target_i386::do_code_fill(off_t length)
1703 {
1704   if (length >= 16)
1705     {
1706       // Build a jmp instruction to skip over the bytes.
1707       unsigned char jmp[5];
1708       jmp[0] = 0xe9;
1709       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1710       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1711               + std::string(length - 5, '\0'));
1712     }
1713
1714   // Nop sequences of various lengths.
1715   const char nop1[1] = { 0x90 };                   // nop
1716   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1717   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1718   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1719   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1720                          0x00 };                   // leal 0(%esi,1),%esi
1721   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1722                          0x00, 0x00 };
1723   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1724                          0x00, 0x00, 0x00 };
1725   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1726                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1727   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1728                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1729                          0x00 };
1730   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1731                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1732                            0x00, 0x00 };
1733   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1734                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1735                            0x00, 0x00, 0x00 };
1736   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1737                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1738                            0x00, 0x00, 0x00, 0x00 };
1739   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1740                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1741                            0x27, 0x00, 0x00, 0x00,
1742                            0x00 };
1743   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1744                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1745                            0xbc, 0x27, 0x00, 0x00,
1746                            0x00, 0x00 };
1747   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1748                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1749                            0x90, 0x90, 0x90, 0x90,
1750                            0x90, 0x90, 0x90 };
1751
1752   const char* nops[16] = {
1753     NULL,
1754     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1755     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1756   };
1757
1758   return std::string(nops[length], length);
1759 }
1760
1761 // The selector for i386 object files.
1762
1763 class Target_selector_i386 : public Target_selector
1764 {
1765 public:
1766   Target_selector_i386()
1767     : Target_selector(elfcpp::EM_386, 32, false)
1768   { }
1769
1770   Target*
1771   recognize(int machine, int osabi, int abiversion);
1772
1773  private:
1774   Target_i386* target_;
1775 };
1776
1777 // Recognize an i386 object file when we already know that the machine
1778 // number is EM_386.
1779
1780 Target*
1781 Target_selector_i386::recognize(int, int, int)
1782 {
1783   if (this->target_ == NULL)
1784     this->target_ = new Target_i386();
1785   return this->target_;
1786 }
1787
1788 Target_selector_i386 target_selector_i386;
1789
1790 } // End anonymous namespace.