Add support for local dynamic relocations.
[platform/upstream/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38
39 namespace
40 {
41
42 using namespace gold;
43
44 class Output_data_plt_i386;
45
46 // The i386 target class.
47
48 class Target_i386 : public Sized_target<32, false>
49 {
50  public:
51   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
52
53   Target_i386()
54     : Sized_target<32, false>(&i386_info),
55       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
56       copy_relocs_(NULL), dynbss_(NULL)
57   { }
58
59   // Scan the relocations to look for symbol adjustments.
60   void
61   scan_relocs(const General_options& options,
62               Symbol_table* symtab,
63               Layout* layout,
64               Sized_relobj<32, false>* object,
65               unsigned int data_shndx,
66               unsigned int sh_type,
67               const unsigned char* prelocs,
68               size_t reloc_count,
69               size_t local_symbol_count,
70               const unsigned char* plocal_symbols,
71               Symbol** global_symbols);
72
73   // Finalize the sections.
74   void
75   do_finalize_sections(Layout*);
76
77   // Return the value to use for a dynamic which requires special
78   // treatment.
79   uint64_t
80   do_dynsym_value(const Symbol*) const;
81
82   // Relocate a section.
83   void
84   relocate_section(const Relocate_info<32, false>*,
85                    unsigned int sh_type,
86                    const unsigned char* prelocs,
87                    size_t reloc_count,
88                    unsigned char* view,
89                    elfcpp::Elf_types<32>::Elf_Addr view_address,
90                    off_t view_size);
91
92   // Return a string used to fill a code section with nops.
93   std::string
94   do_code_fill(off_t length);
95
96  private:
97   // The class which scans relocations.
98   struct Scan
99   {
100     inline void
101     local(const General_options& options, Symbol_table* symtab,
102           Layout* layout, Target_i386* target,
103           Sized_relobj<32, false>* object,
104           unsigned int data_shndx,
105           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
106           const elfcpp::Sym<32, false>& lsym);
107
108     inline void
109     global(const General_options& options, Symbol_table* symtab,
110            Layout* layout, Target_i386* target,
111            Sized_relobj<32, false>* object,
112            unsigned int data_shndx,
113            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
114            Symbol* gsym);
115   };
116
117   // The class which implements relocation.
118   class Relocate
119   {
120    public:
121     Relocate()
122       : skip_call_tls_get_addr_(false),
123         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
124     { }
125
126     ~Relocate()
127     {
128       if (this->skip_call_tls_get_addr_)
129         {
130           // FIXME: This needs to specify the location somehow.
131           fprintf(stderr, _("%s: missing expected TLS relocation\n"),
132                   program_name);
133           gold_exit(false);
134         }
135     }
136
137     // Do a relocation.  Return false if the caller should not issue
138     // any warnings about this relocation.
139     inline bool
140     relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
141              const elfcpp::Rel<32, false>&,
142              unsigned int r_type, const Sized_symbol<32>*,
143              const Symbol_value<32>*,
144              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
145              off_t);
146
147    private:
148     // Do a TLS relocation.
149     inline void
150     relocate_tls(const Relocate_info<32, false>*, size_t relnum,
151                  const elfcpp::Rel<32, false>&,
152                  unsigned int r_type, const Sized_symbol<32>*,
153                  const Symbol_value<32>*,
154                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
155
156     // Do a TLS Initial-Exec to Local-Exec transition.
157     static inline void
158     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
159                  Output_segment* tls_segment,
160                  const elfcpp::Rel<32, false>&, unsigned int r_type,
161                  elfcpp::Elf_types<32>::Elf_Addr value,
162                  unsigned char* view,
163                  off_t view_size);
164
165     // Do a TLS Global-Dynamic to Local-Exec transition.
166     inline void
167     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
168                  Output_segment* tls_segment,
169                  const elfcpp::Rel<32, false>&, unsigned int r_type,
170                  elfcpp::Elf_types<32>::Elf_Addr value,
171                  unsigned char* view,
172                  off_t view_size);
173
174     // Do a TLS Local-Dynamic to Local-Exec transition.
175     inline void
176     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
177                  Output_segment* tls_segment,
178                  const elfcpp::Rel<32, false>&, unsigned int r_type,
179                  elfcpp::Elf_types<32>::Elf_Addr value,
180                  unsigned char* view,
181                  off_t view_size);
182
183     // Check the range for a TLS relocation.
184     static inline void
185     check_range(const Relocate_info<32, false>*, size_t relnum,
186                 const elfcpp::Rel<32, false>&, off_t, off_t);
187
188     // Check the validity of a TLS relocation.  This is like assert.
189     static inline void
190     check_tls(const Relocate_info<32, false>*, size_t relnum,
191               const elfcpp::Rel<32, false>&, bool);
192
193     // We need to keep track of which type of local dynamic relocation
194     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
195     enum Local_dynamic_type
196     {
197       LOCAL_DYNAMIC_NONE,
198       LOCAL_DYNAMIC_SUN,
199       LOCAL_DYNAMIC_GNU
200     };
201
202     // This is set if we should skip the next reloc, which should be a
203     // PLT32 reloc against ___tls_get_addr.
204     bool skip_call_tls_get_addr_;
205     // The type of local dynamic relocation we have seen in the section
206     // being relocated, if any.
207     Local_dynamic_type local_dynamic_type_;
208   };
209
210   // Adjust TLS relocation type based on the options and whether this
211   // is a local symbol.
212   static unsigned int
213   optimize_tls_reloc(bool is_final, int r_type);
214
215   // Get the GOT section, creating it if necessary.
216   Output_data_got<32, false>*
217   got_section(Symbol_table*, Layout*);
218
219   // Create a PLT entry for a global symbol.
220   void
221   make_plt_entry(Symbol_table*, Layout*, Symbol*);
222
223   // Get the PLT section.
224   const Output_data_plt_i386*
225   plt_section() const
226   {
227     gold_assert(this->plt_ != NULL);
228     return this->plt_;
229   }
230
231   // Get the dynamic reloc section, creating it if necessary.
232   Reloc_section*
233   rel_dyn_section(Layout*);
234
235   // Copy a relocation against a global symbol.
236   void
237   copy_reloc(const General_options*, Symbol_table*, Layout*,
238              Sized_relobj<32, false>*, unsigned int,
239              Symbol*, const elfcpp::Rel<32, false>&);
240
241   // Information about this specific target which we pass to the
242   // general Target structure.
243   static const Target::Target_info i386_info;
244
245   // The GOT section.
246   Output_data_got<32, false>* got_;
247   // The PLT section.
248   Output_data_plt_i386* plt_;
249   // The GOT PLT section.
250   Output_data_space* got_plt_;
251   // The dynamic reloc section.
252   Reloc_section* rel_dyn_;
253   // Relocs saved to avoid a COPY reloc.
254   Copy_relocs<32, false>* copy_relocs_;
255   // Space for variables copied with a COPY reloc.
256   Output_data_space* dynbss_;
257 };
258
259 const Target::Target_info Target_i386::i386_info =
260 {
261   32,                   // size
262   false,                // is_big_endian
263   elfcpp::EM_386,       // machine_code
264   false,                // has_make_symbol
265   false,                // has_resolve
266   true,                 // has_code_fill
267   "/usr/lib/libc.so.1", // dynamic_linker
268   0x08048000,           // text_segment_address
269   0x1000,               // abi_pagesize
270   0x1000                // common_pagesize
271 };
272
273 // Get the GOT section, creating it if necessary.
274
275 Output_data_got<32, false>*
276 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
277 {
278   if (this->got_ == NULL)
279     {
280       gold_assert(symtab != NULL && layout != NULL);
281
282       this->got_ = new Output_data_got<32, false>();
283
284       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
285                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
286                                       this->got_);
287
288       // The old GNU linker creates a .got.plt section.  We just
289       // create another set of data in the .got section.  Note that we
290       // always create a PLT if we create a GOT, although the PLT
291       // might be empty.
292       this->got_plt_ = new Output_data_space(4);
293       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
294                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
295                                       this->got_plt_);
296
297       // The first three entries are reserved.
298       this->got_plt_->set_space_size(3 * 4);
299
300       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
301       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
302                                     this->got_plt_,
303                                     0, 0, elfcpp::STT_OBJECT,
304                                     elfcpp::STB_LOCAL,
305                                     elfcpp::STV_HIDDEN, 0,
306                                     false, false);
307     }
308
309   return this->got_;
310 }
311
312 // Get the dynamic reloc section, creating it if necessary.
313
314 Target_i386::Reloc_section*
315 Target_i386::rel_dyn_section(Layout* layout)
316 {
317   if (this->rel_dyn_ == NULL)
318     {
319       gold_assert(layout != NULL);
320       this->rel_dyn_ = new Reloc_section();
321       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
322                                       elfcpp::SHF_ALLOC, this->rel_dyn_);
323     }
324   return this->rel_dyn_;
325 }
326
327 // A class to handle the PLT data.
328
329 class Output_data_plt_i386 : public Output_section_data
330 {
331  public:
332   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
333
334   Output_data_plt_i386(Layout*, Output_data_space*);
335
336   // Add an entry to the PLT.
337   void
338   add_entry(Symbol* gsym);
339
340   // Return the .rel.plt section data.
341   const Reloc_section*
342   rel_plt() const
343   { return this->rel_; }
344
345  protected:
346   void
347   do_adjust_output_section(Output_section* os);
348
349  private:
350   // The size of an entry in the PLT.
351   static const int plt_entry_size = 16;
352
353   // The first entry in the PLT for an executable.
354   static unsigned char exec_first_plt_entry[plt_entry_size];
355
356   // The first entry in the PLT for a shared object.
357   static unsigned char dyn_first_plt_entry[plt_entry_size];
358
359   // Other entries in the PLT for an executable.
360   static unsigned char exec_plt_entry[plt_entry_size];
361
362   // Other entries in the PLT for a shared object.
363   static unsigned char dyn_plt_entry[plt_entry_size];
364
365   // Set the final size.
366   void
367   do_set_address(uint64_t, off_t)
368   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
369
370   // Write out the PLT data.
371   void
372   do_write(Output_file*);
373
374   // The reloc section.
375   Reloc_section* rel_;
376   // The .got.plt section.
377   Output_data_space* got_plt_;
378   // The number of PLT entries.
379   unsigned int count_;
380 };
381
382 // Create the PLT section.  The ordinary .got section is an argument,
383 // since we need to refer to the start.  We also create our own .got
384 // section just for PLT entries.
385
386 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
387                                            Output_data_space* got_plt)
388   : Output_section_data(4), got_plt_(got_plt), count_(0)
389 {
390   this->rel_ = new Reloc_section();
391   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
392                                   elfcpp::SHF_ALLOC, this->rel_);
393 }
394
395 void
396 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
397 {
398   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
399   // linker, and so do we.
400   os->set_entsize(4);
401 }
402
403 // Add an entry to the PLT.
404
405 void
406 Output_data_plt_i386::add_entry(Symbol* gsym)
407 {
408   gold_assert(!gsym->has_plt_offset());
409
410   // Note that when setting the PLT offset we skip the initial
411   // reserved PLT entry.
412   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
413
414   ++this->count_;
415
416   off_t got_offset = this->got_plt_->data_size();
417
418   // Every PLT entry needs a GOT entry which points back to the PLT
419   // entry (this will be changed by the dynamic linker, normally
420   // lazily when the function is called).
421   this->got_plt_->set_space_size(got_offset + 4);
422
423   // Every PLT entry needs a reloc.
424   gsym->set_needs_dynsym_entry();
425   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
426                          got_offset);
427
428   // Note that we don't need to save the symbol.  The contents of the
429   // PLT are independent of which symbols are used.  The symbols only
430   // appear in the relocations.
431 }
432
433 // The first entry in the PLT for an executable.
434
435 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
436 {
437   0xff, 0x35,   // pushl contents of memory address
438   0, 0, 0, 0,   // replaced with address of .got + 4
439   0xff, 0x25,   // jmp indirect
440   0, 0, 0, 0,   // replaced with address of .got + 8
441   0, 0, 0, 0    // unused
442 };
443
444 // The first entry in the PLT for a shared object.
445
446 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
447 {
448   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
449   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
450   0, 0, 0, 0                    // unused
451 };
452
453 // Subsequent entries in the PLT for an executable.
454
455 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
456 {
457   0xff, 0x25,   // jmp indirect
458   0, 0, 0, 0,   // replaced with address of symbol in .got
459   0x68,         // pushl immediate
460   0, 0, 0, 0,   // replaced with offset into relocation table
461   0xe9,         // jmp relative
462   0, 0, 0, 0    // replaced with offset to start of .plt
463 };
464
465 // Subsequent entries in the PLT for a shared object.
466
467 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
468 {
469   0xff, 0xa3,   // jmp *offset(%ebx)
470   0, 0, 0, 0,   // replaced with offset of symbol in .got
471   0x68,         // pushl immediate
472   0, 0, 0, 0,   // replaced with offset into relocation table
473   0xe9,         // jmp relative
474   0, 0, 0, 0    // replaced with offset to start of .plt
475 };
476
477 // Write out the PLT.  This uses the hand-coded instructions above,
478 // and adjusts them as needed.  This is all specified by the i386 ELF
479 // Processor Supplement.
480
481 void
482 Output_data_plt_i386::do_write(Output_file* of)
483 {
484   const off_t offset = this->offset();
485   const off_t oview_size = this->data_size();
486   unsigned char* const oview = of->get_output_view(offset, oview_size);
487
488   const off_t got_file_offset = this->got_plt_->offset();
489   const off_t got_size = this->got_plt_->data_size();
490   unsigned char* const got_view = of->get_output_view(got_file_offset,
491                                                       got_size);
492
493   unsigned char* pov = oview;
494
495   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
496   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
497
498   if (parameters->output_is_shared())
499     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
500   else
501     {
502       memcpy(pov, exec_first_plt_entry, plt_entry_size);
503       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
504       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
505     }
506   pov += plt_entry_size;
507
508   unsigned char* got_pov = got_view;
509
510   memset(got_pov, 0, 12);
511   got_pov += 12;
512
513   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
514
515   unsigned int plt_offset = plt_entry_size;
516   unsigned int plt_rel_offset = 0;
517   unsigned int got_offset = 12;
518   const unsigned int count = this->count_;
519   for (unsigned int i = 0;
520        i < count;
521        ++i,
522          pov += plt_entry_size,
523          got_pov += 4,
524          plt_offset += plt_entry_size,
525          plt_rel_offset += rel_size,
526          got_offset += 4)
527     {
528       // Set and adjust the PLT entry itself.
529
530       if (parameters->output_is_shared())
531         {
532           memcpy(pov, dyn_plt_entry, plt_entry_size);
533           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
534         }
535       else
536         {
537           memcpy(pov, exec_plt_entry, plt_entry_size);
538           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
539                                                       (got_address
540                                                        + got_offset));
541         }
542
543       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
544       elfcpp::Swap<32, false>::writeval(pov + 12,
545                                         - (plt_offset + plt_entry_size));
546
547       // Set the entry in the GOT.
548       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
549     }
550
551   gold_assert(pov - oview == oview_size);
552   gold_assert(got_pov - got_view == got_size);
553
554   of->write_output_view(offset, oview_size, oview);
555   of->write_output_view(got_file_offset, got_size, got_view);
556 }
557
558 // Create a PLT entry for a global symbol.
559
560 void
561 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
562 {
563   if (gsym->has_plt_offset())
564     return;
565
566   if (this->plt_ == NULL)
567     {
568       // Create the GOT sections first.
569       this->got_section(symtab, layout);
570
571       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
572       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
573                                       (elfcpp::SHF_ALLOC
574                                        | elfcpp::SHF_EXECINSTR),
575                                       this->plt_);
576     }
577
578   this->plt_->add_entry(gsym);
579 }
580
581 // Handle a relocation against a non-function symbol defined in a
582 // dynamic object.  The traditional way to handle this is to generate
583 // a COPY relocation to copy the variable at runtime from the shared
584 // object into the executable's data segment.  However, this is
585 // undesirable in general, as if the size of the object changes in the
586 // dynamic object, the executable will no longer work correctly.  If
587 // this relocation is in a writable section, then we can create a
588 // dynamic reloc and the dynamic linker will resolve it to the correct
589 // address at runtime.  However, we do not want do that if the
590 // relocation is in a read-only section, as it would prevent the
591 // readonly segment from being shared.  And if we have to eventually
592 // generate a COPY reloc, then any dynamic relocations will be
593 // useless.  So this means that if this is a writable section, we need
594 // to save the relocation until we see whether we have to create a
595 // COPY relocation for this symbol for any other relocation.
596
597 void
598 Target_i386::copy_reloc(const General_options* options,
599                         Symbol_table* symtab,
600                         Layout* layout,
601                         Sized_relobj<32, false>* object,
602                         unsigned int data_shndx, Symbol* gsym,
603                         const elfcpp::Rel<32, false>& rel)
604 {
605   Sized_symbol<32>* ssym;
606   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
607                                                         SELECT_SIZE(32));
608
609   if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
610                                                data_shndx, ssym))
611     {
612       // So far we do not need a COPY reloc.  Save this relocation.
613       // If it turns out that we never need a COPY reloc for this
614       // symbol, then we will emit the relocation.
615       if (this->copy_relocs_ == NULL)
616         this->copy_relocs_ = new Copy_relocs<32, false>();
617       this->copy_relocs_->save(ssym, object, data_shndx, rel);
618     }
619   else
620     {
621       // Allocate space for this symbol in the .bss section.
622
623       elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
624
625       // There is no defined way to determine the required alignment
626       // of the symbol.  We pick the alignment based on the size.  We
627       // set an arbitrary maximum of 256.
628       unsigned int align;
629       for (align = 1; align < 512; align <<= 1)
630         if ((symsize & align) != 0)
631           break;
632
633       if (this->dynbss_ == NULL)
634         {
635           this->dynbss_ = new Output_data_space(align);
636           layout->add_output_section_data(".bss",
637                                           elfcpp::SHT_NOBITS,
638                                           (elfcpp::SHF_ALLOC
639                                            | elfcpp::SHF_WRITE),
640                                           this->dynbss_);
641         }
642
643       Output_data_space* dynbss = this->dynbss_;
644
645       if (align > dynbss->addralign())
646         dynbss->set_space_alignment(align);
647
648       off_t dynbss_size = dynbss->data_size();
649       dynbss_size = align_address(dynbss_size, align);
650       off_t offset = dynbss_size;
651       dynbss->set_space_size(dynbss_size + symsize);
652
653       // Define the symbol in the .dynbss section.
654       symtab->define_in_output_data(this, ssym->name(), ssym->version(),
655                                     dynbss, offset, symsize, ssym->type(),
656                                     ssym->binding(), ssym->visibility(),
657                                     ssym->nonvis(), false, false);
658
659       // Add the COPY reloc.
660       ssym->set_needs_dynsym_entry();
661       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
662       rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
663     }
664 }
665
666 // Optimize the TLS relocation type based on what we know about the
667 // symbol.  IS_FINAL is true if the final address of this symbol is
668 // known at link time.
669
670 unsigned int
671 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
672 {
673   // If we are generating a shared library, then we can't do anything
674   // in the linker.
675   if (parameters->output_is_shared())
676     return r_type;
677
678   switch (r_type)
679     {
680     case elfcpp::R_386_TLS_GD:
681     case elfcpp::R_386_TLS_GOTDESC:
682     case elfcpp::R_386_TLS_DESC_CALL:
683       // These are Global-Dynamic which permits fully general TLS
684       // access.  Since we know that we are generating an executable,
685       // we can convert this to Initial-Exec.  If we also know that
686       // this is a local symbol, we can further switch to Local-Exec.
687       if (is_final)
688         return elfcpp::R_386_TLS_LE_32;
689       return elfcpp::R_386_TLS_IE_32;
690
691     case elfcpp::R_386_TLS_LDM:
692       // This is Local-Dynamic, which refers to a local symbol in the
693       // dynamic TLS block.  Since we know that we generating an
694       // executable, we can switch to Local-Exec.
695       return elfcpp::R_386_TLS_LE_32;
696
697     case elfcpp::R_386_TLS_LDO_32:
698       // Another type of Local-Dynamic relocation.  We return a
699       // different value as we need to negate the thread segment
700       // offset.  FIXME: Returning reloc types makes no sense.
701       return elfcpp::R_386_TLS_LE;
702
703     case elfcpp::R_386_TLS_IE:
704     case elfcpp::R_386_TLS_GOTIE:
705     case elfcpp::R_386_TLS_IE_32:
706       // These are Initial-Exec relocs which get the thread offset
707       // from the GOT.  If we know that we are linking against the
708       // local symbol, we can switch to Local-Exec, which links the
709       // thread offset into the instruction.
710       if (is_final)
711         return elfcpp::R_386_TLS_LE_32;
712       return r_type;
713
714     case elfcpp::R_386_TLS_LE:
715     case elfcpp::R_386_TLS_LE_32:
716       // When we already have Local-Exec, there is nothing further we
717       // can do.
718       return r_type;
719
720     default:
721       gold_unreachable();
722     }
723 }
724
725 // Scan a relocation for a local symbol.
726
727 inline void
728 Target_i386::Scan::local(const General_options&,
729                          Symbol_table* symtab,
730                          Layout* layout,
731                          Target_i386* target,
732                          Sized_relobj<32, false>* object,
733                          unsigned int,
734                          const elfcpp::Rel<32, false>&,
735                          unsigned int r_type,
736                          const elfcpp::Sym<32, false>&)
737 {
738   switch (r_type)
739     {
740     case elfcpp::R_386_NONE:
741     case elfcpp::R_386_GNU_VTINHERIT:
742     case elfcpp::R_386_GNU_VTENTRY:
743       break;
744
745     case elfcpp::R_386_32:
746     case elfcpp::R_386_16:
747     case elfcpp::R_386_8:
748       // FIXME: If we are generating a shared object we need to copy
749       // this relocation into the object.
750       gold_assert(!parameters->output_is_shared());
751       break;
752
753     case elfcpp::R_386_PC32:
754     case elfcpp::R_386_PC16:
755     case elfcpp::R_386_PC8:
756       break;
757
758     case elfcpp::R_386_GOTOFF:
759     case elfcpp::R_386_GOTPC:
760       // We need a GOT section.
761       target->got_section(symtab, layout);
762       break;
763
764     case elfcpp::R_386_COPY:
765     case elfcpp::R_386_GLOB_DAT:
766     case elfcpp::R_386_JUMP_SLOT:
767     case elfcpp::R_386_RELATIVE:
768       // These are outstanding tls relocs, which are unexpected when
769       // linking.
770     case elfcpp::R_386_TLS_TPOFF:
771     case elfcpp::R_386_TLS_DTPMOD32:
772     case elfcpp::R_386_TLS_DTPOFF32:
773     case elfcpp::R_386_TLS_TPOFF32:
774     case elfcpp::R_386_TLS_DESC:
775       fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
776               program_name, object->name().c_str(), r_type);
777       gold_exit(false);
778       break;
779
780       // These are initial tls relocs, which are expected when
781       // linking.
782     case elfcpp::R_386_TLS_IE:
783     case elfcpp::R_386_TLS_GOTIE:
784     case elfcpp::R_386_TLS_LE:
785     case elfcpp::R_386_TLS_GD:
786     case elfcpp::R_386_TLS_LDM:
787     case elfcpp::R_386_TLS_LDO_32:
788     case elfcpp::R_386_TLS_IE_32:
789     case elfcpp::R_386_TLS_LE_32:
790     case elfcpp::R_386_TLS_GOTDESC:
791     case elfcpp::R_386_TLS_DESC_CALL:
792       {
793         bool output_is_shared = parameters->output_is_shared();
794         r_type = Target_i386::optimize_tls_reloc(!output_is_shared,
795                                                  r_type);
796         switch (r_type)
797           {
798           case elfcpp::R_386_TLS_LE:
799           case elfcpp::R_386_TLS_LE_32:
800             // FIXME: If generating a shared object, we need to copy
801             // this relocation into the object.
802             gold_assert(!output_is_shared);
803             break;
804
805           case elfcpp::R_386_TLS_LDM:
806           case elfcpp::R_386_TLS_LDO_32:
807             break;
808
809           case elfcpp::R_386_TLS_IE:
810           case elfcpp::R_386_TLS_GOTIE:
811           case elfcpp::R_386_TLS_GD:
812           case elfcpp::R_386_TLS_IE_32:
813           case elfcpp::R_386_TLS_GOTDESC:
814           case elfcpp::R_386_TLS_DESC_CALL:
815             fprintf(stderr,
816                     _("%s: %s: unsupported reloc %u against local symbol\n"),
817                     program_name, object->name().c_str(), r_type);
818             break;
819           }
820       }
821       break;
822
823     case elfcpp::R_386_GOT32:
824     case elfcpp::R_386_PLT32:
825     case elfcpp::R_386_32PLT:
826     case elfcpp::R_386_TLS_GD_32:
827     case elfcpp::R_386_TLS_GD_PUSH:
828     case elfcpp::R_386_TLS_GD_CALL:
829     case elfcpp::R_386_TLS_GD_POP:
830     case elfcpp::R_386_TLS_LDM_32:
831     case elfcpp::R_386_TLS_LDM_PUSH:
832     case elfcpp::R_386_TLS_LDM_CALL:
833     case elfcpp::R_386_TLS_LDM_POP:
834     case elfcpp::R_386_USED_BY_INTEL_200:
835     default:
836       fprintf(stderr, _("%s: %s: unsupported reloc %u against local symbol\n"),
837               program_name, object->name().c_str(), r_type);
838       break;
839     }
840 }
841
842 // Scan a relocation for a global symbol.
843
844 inline void
845 Target_i386::Scan::global(const General_options& options,
846                           Symbol_table* symtab,
847                           Layout* layout,
848                           Target_i386* target,
849                           Sized_relobj<32, false>* object,
850                           unsigned int data_shndx,
851                           const elfcpp::Rel<32, false>& reloc,
852                           unsigned int r_type,
853                           Symbol* gsym)
854 {
855   switch (r_type)
856     {
857     case elfcpp::R_386_NONE:
858     case elfcpp::R_386_GNU_VTINHERIT:
859     case elfcpp::R_386_GNU_VTENTRY:
860       break;
861
862     case elfcpp::R_386_32:
863     case elfcpp::R_386_PC32:
864     case elfcpp::R_386_16:
865     case elfcpp::R_386_PC16:
866     case elfcpp::R_386_8:
867     case elfcpp::R_386_PC8:
868       // FIXME: If we are generating a shared object we may need to
869       // copy this relocation into the object.  If this symbol is
870       // defined in a shared object, we may need to copy this
871       // relocation in order to avoid a COPY relocation.
872       gold_assert(!parameters->output_is_shared());
873
874       if (gsym->is_from_dynobj())
875         {
876           // This symbol is defined in a dynamic object.  If it is a
877           // function, we make a PLT entry.  Otherwise we need to
878           // either generate a COPY reloc or copy this reloc.
879           if (gsym->type() == elfcpp::STT_FUNC)
880             {
881               target->make_plt_entry(symtab, layout, gsym);
882
883               // If this is not a PC relative reference, then we may
884               // be taking the address of the function.  In that case
885               // we need to set the entry in the dynamic symbol table
886               // to the address of the PLT entry.
887               if (r_type != elfcpp::R_386_PC32
888                   && r_type != elfcpp::R_386_PC16
889                   && r_type != elfcpp::R_386_PC8)
890                 gsym->set_needs_dynsym_value();
891             }
892           else
893             target->copy_reloc(&options, symtab, layout, object, data_shndx,
894                                gsym, reloc);
895         }
896
897       break;
898
899     case elfcpp::R_386_GOT32:
900       {
901         // The symbol requires a GOT entry.
902         Output_data_got<32, false>* got = target->got_section(symtab, layout);
903         if (got->add_global(gsym))
904           {
905             // If this symbol is not fully resolved, we need to add a
906             // dynamic relocation for it.
907             if (!gsym->final_value_is_known())
908               {
909                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
910                 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
911                                     gsym->got_offset());
912               }
913           }
914       }
915       break;
916
917     case elfcpp::R_386_PLT32:
918       // If the symbol is fully resolved, this is just a PC32 reloc.
919       // Otherwise we need a PLT entry.
920       if (gsym->final_value_is_known())
921         break;
922       target->make_plt_entry(symtab, layout, gsym);
923       break;
924
925     case elfcpp::R_386_GOTOFF:
926     case elfcpp::R_386_GOTPC:
927       // We need a GOT section.
928       target->got_section(symtab, layout);
929       break;
930
931     case elfcpp::R_386_COPY:
932     case elfcpp::R_386_GLOB_DAT:
933     case elfcpp::R_386_JUMP_SLOT:
934     case elfcpp::R_386_RELATIVE:
935       // These are outstanding tls relocs, which are unexpected when
936       // linking.
937     case elfcpp::R_386_TLS_TPOFF:
938     case elfcpp::R_386_TLS_DTPMOD32:
939     case elfcpp::R_386_TLS_DTPOFF32:
940     case elfcpp::R_386_TLS_TPOFF32:
941     case elfcpp::R_386_TLS_DESC:
942       fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
943               program_name, object->name().c_str(), r_type);
944       gold_exit(false);
945       break;
946
947       // These are initial tls relocs, which are expected when
948       // linking.
949     case elfcpp::R_386_TLS_IE:
950     case elfcpp::R_386_TLS_GOTIE:
951     case elfcpp::R_386_TLS_LE:
952     case elfcpp::R_386_TLS_GD:
953     case elfcpp::R_386_TLS_LDM:
954     case elfcpp::R_386_TLS_LDO_32:
955     case elfcpp::R_386_TLS_IE_32:
956     case elfcpp::R_386_TLS_LE_32:
957     case elfcpp::R_386_TLS_GOTDESC:
958     case elfcpp::R_386_TLS_DESC_CALL:
959       {
960         const bool is_final = gsym->final_value_is_known();
961         r_type = Target_i386::optimize_tls_reloc(is_final, r_type);
962         switch (r_type)
963           {
964           case elfcpp::R_386_TLS_LE:
965           case elfcpp::R_386_TLS_LE_32:
966             // FIXME: If generating a shared object, we need to copy
967             // this relocation into the object.
968             gold_assert(!parameters->output_is_shared());
969             break;
970
971           case elfcpp::R_386_TLS_LDM:
972           case elfcpp::R_386_TLS_LDO_32:
973             break;
974
975           case elfcpp::R_386_TLS_IE:
976           case elfcpp::R_386_TLS_GOTIE:
977           case elfcpp::R_386_TLS_GD:
978           case elfcpp::R_386_TLS_IE_32:
979           case elfcpp::R_386_TLS_GOTDESC:
980           case elfcpp::R_386_TLS_DESC_CALL:
981             fprintf(stderr,
982                     _("%s: %s: unsupported reloc %u "
983                       "against global symbol %s\n"),
984                     program_name, object->name().c_str(), r_type,
985                     gsym->name());
986             break;
987           }
988       }
989       break;
990
991     case elfcpp::R_386_32PLT:
992     case elfcpp::R_386_TLS_GD_32:
993     case elfcpp::R_386_TLS_GD_PUSH:
994     case elfcpp::R_386_TLS_GD_CALL:
995     case elfcpp::R_386_TLS_GD_POP:
996     case elfcpp::R_386_TLS_LDM_32:
997     case elfcpp::R_386_TLS_LDM_PUSH:
998     case elfcpp::R_386_TLS_LDM_CALL:
999     case elfcpp::R_386_TLS_LDM_POP:
1000     case elfcpp::R_386_USED_BY_INTEL_200:
1001     default:
1002       fprintf(stderr,
1003               _("%s: %s: unsupported reloc %u against global symbol %s\n"),
1004               program_name, object->name().c_str(), r_type, gsym->name());
1005       break;
1006     }
1007 }
1008
1009 // Scan relocations for a section.
1010
1011 void
1012 Target_i386::scan_relocs(const General_options& options,
1013                          Symbol_table* symtab,
1014                          Layout* layout,
1015                          Sized_relobj<32, false>* object,
1016                          unsigned int data_shndx,
1017                          unsigned int sh_type,
1018                          const unsigned char* prelocs,
1019                          size_t reloc_count,
1020                          size_t local_symbol_count,
1021                          const unsigned char* plocal_symbols,
1022                          Symbol** global_symbols)
1023 {
1024   if (sh_type == elfcpp::SHT_RELA)
1025     {
1026       fprintf(stderr, _("%s: %s: unsupported RELA reloc section\n"),
1027               program_name, object->name().c_str());
1028       gold_exit(false);
1029     }
1030
1031   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1032                     Target_i386::Scan>(
1033     options,
1034     symtab,
1035     layout,
1036     this,
1037     object,
1038     data_shndx,
1039     prelocs,
1040     reloc_count,
1041     local_symbol_count,
1042     plocal_symbols,
1043     global_symbols);
1044 }
1045
1046 // Finalize the sections.
1047
1048 void
1049 Target_i386::do_finalize_sections(Layout* layout)
1050 {
1051   // Fill in some more dynamic tags.
1052   Output_data_dynamic* const odyn = layout->dynamic_data();
1053   if (odyn != NULL)
1054     {
1055       if (this->got_plt_ != NULL)
1056         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1057
1058       if (this->plt_ != NULL)
1059         {
1060           const Output_data* od = this->plt_->rel_plt();
1061           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1062           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1063           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1064         }
1065
1066       if (this->rel_dyn_ != NULL)
1067         {
1068           const Output_data* od = this->rel_dyn_;
1069           odyn->add_section_address(elfcpp::DT_REL, od);
1070           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1071           odyn->add_constant(elfcpp::DT_RELENT,
1072                              elfcpp::Elf_sizes<32>::rel_size);
1073         }
1074
1075       if (!parameters->output_is_shared())
1076         {
1077           // The value of the DT_DEBUG tag is filled in by the dynamic
1078           // linker at run time, and used by the debugger.
1079           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1080         }
1081     }
1082
1083   // Emit any relocs we saved in an attempt to avoid generating COPY
1084   // relocs.
1085   if (this->copy_relocs_ == NULL)
1086     return;
1087   if (this->copy_relocs_->any_to_emit())
1088     {
1089       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1090       this->copy_relocs_->emit(rel_dyn);
1091     }
1092   delete this->copy_relocs_;
1093   this->copy_relocs_ = NULL;
1094 }
1095
1096 // Perform a relocation.
1097
1098 inline bool
1099 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1100                                 Target_i386* target,
1101                                 size_t relnum,
1102                                 const elfcpp::Rel<32, false>& rel,
1103                                 unsigned int r_type,
1104                                 const Sized_symbol<32>* gsym,
1105                                 const Symbol_value<32>* psymval,
1106                                 unsigned char* view,
1107                                 elfcpp::Elf_types<32>::Elf_Addr address,
1108                                 off_t view_size)
1109 {
1110   if (this->skip_call_tls_get_addr_)
1111     {
1112       if (r_type != elfcpp::R_386_PLT32
1113           || gsym == NULL
1114           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1115         {
1116           fprintf(stderr, _("%s: %s: missing expected TLS relocation\n"),
1117                   program_name,
1118                   relinfo->location(relnum, rel.get_r_offset()).c_str());
1119           gold_exit(false);
1120         }
1121
1122       this->skip_call_tls_get_addr_ = false;
1123
1124       return false;
1125     }
1126
1127   // Pick the value to use for symbols defined in shared objects.
1128   Symbol_value<32> symval;
1129   if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1130     {
1131       symval.set_output_value(target->plt_section()->address()
1132                               + gsym->plt_offset());
1133       psymval = &symval;
1134     }
1135
1136   const Sized_relobj<32, false>* object = relinfo->object;
1137
1138   switch (r_type)
1139     {
1140     case elfcpp::R_386_NONE:
1141     case elfcpp::R_386_GNU_VTINHERIT:
1142     case elfcpp::R_386_GNU_VTENTRY:
1143       break;
1144
1145     case elfcpp::R_386_32:
1146       Relocate_functions<32, false>::rel32(view, object, psymval);
1147       break;
1148
1149     case elfcpp::R_386_PC32:
1150       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1151       break;
1152
1153     case elfcpp::R_386_16:
1154       Relocate_functions<32, false>::rel16(view, object, psymval);
1155       break;
1156
1157     case elfcpp::R_386_PC16:
1158       Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1159       break;
1160
1161     case elfcpp::R_386_8:
1162       Relocate_functions<32, false>::rel8(view, object, psymval);
1163       break;
1164
1165     case elfcpp::R_386_PC8:
1166       Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1167       break;
1168
1169     case elfcpp::R_386_PLT32:
1170       gold_assert(gsym->has_plt_offset()
1171                   || gsym->final_value_is_known());
1172       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1173       break;
1174
1175     case elfcpp::R_386_GOT32:
1176       // Local GOT offsets not yet supported.
1177       gold_assert(gsym);
1178       gold_assert(gsym->has_got_offset());
1179       Relocate_functions<32, false>::rel32(view, gsym->got_offset());
1180       break;
1181
1182     case elfcpp::R_386_GOTOFF:
1183       {
1184         elfcpp::Elf_types<32>::Elf_Addr value;
1185         value = (psymval->value(object, 0)
1186                  - target->got_section(NULL, NULL)->address());
1187         Relocate_functions<32, false>::rel32(view, value);
1188       }
1189       break;
1190
1191     case elfcpp::R_386_GOTPC:
1192       {
1193         elfcpp::Elf_types<32>::Elf_Addr value;
1194         value = target->got_section(NULL, NULL)->address();
1195         Relocate_functions<32, false>::pcrel32(view, value, address);
1196       }
1197       break;
1198
1199     case elfcpp::R_386_COPY:
1200     case elfcpp::R_386_GLOB_DAT:
1201     case elfcpp::R_386_JUMP_SLOT:
1202     case elfcpp::R_386_RELATIVE:
1203       // These are outstanding tls relocs, which are unexpected when
1204       // linking.
1205     case elfcpp::R_386_TLS_TPOFF:
1206     case elfcpp::R_386_TLS_DTPMOD32:
1207     case elfcpp::R_386_TLS_DTPOFF32:
1208     case elfcpp::R_386_TLS_TPOFF32:
1209     case elfcpp::R_386_TLS_DESC:
1210       fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
1211               program_name,
1212               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1213               r_type);
1214       gold_exit(false);
1215       break;
1216
1217       // These are initial tls relocs, which are expected when
1218       // linking.
1219     case elfcpp::R_386_TLS_IE:
1220     case elfcpp::R_386_TLS_GOTIE:
1221     case elfcpp::R_386_TLS_LE:
1222     case elfcpp::R_386_TLS_GD:
1223     case elfcpp::R_386_TLS_LDM:
1224     case elfcpp::R_386_TLS_LDO_32:
1225     case elfcpp::R_386_TLS_IE_32:
1226     case elfcpp::R_386_TLS_LE_32:
1227     case elfcpp::R_386_TLS_GOTDESC:
1228     case elfcpp::R_386_TLS_DESC_CALL:
1229       this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1230                          address, view_size);
1231       break;
1232
1233     case elfcpp::R_386_32PLT:
1234     case elfcpp::R_386_TLS_GD_32:
1235     case elfcpp::R_386_TLS_GD_PUSH:
1236     case elfcpp::R_386_TLS_GD_CALL:
1237     case elfcpp::R_386_TLS_GD_POP:
1238     case elfcpp::R_386_TLS_LDM_32:
1239     case elfcpp::R_386_TLS_LDM_PUSH:
1240     case elfcpp::R_386_TLS_LDM_CALL:
1241     case elfcpp::R_386_TLS_LDM_POP:
1242     case elfcpp::R_386_USED_BY_INTEL_200:
1243     default:
1244       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1245               program_name,
1246               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1247               r_type);
1248       // gold_exit(false);
1249       break;
1250     }
1251
1252   return true;
1253 }
1254
1255 // Perform a TLS relocation.
1256
1257 inline void
1258 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1259                                     size_t relnum,
1260                                     const elfcpp::Rel<32, false>& rel,
1261                                     unsigned int r_type,
1262                                     const Sized_symbol<32>* gsym,
1263                                     const Symbol_value<32>* psymval,
1264                                     unsigned char* view,
1265                                     elfcpp::Elf_types<32>::Elf_Addr,
1266                                     off_t view_size)
1267 {
1268   Output_segment* tls_segment = relinfo->layout->tls_segment();
1269   if (tls_segment == NULL)
1270     {
1271       fprintf(stderr, _("%s: %s: TLS reloc but no TLS segment\n"),
1272               program_name,
1273               relinfo->location(relnum, rel.get_r_offset()).c_str());
1274       gold_exit(false);
1275     }
1276
1277   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1278
1279   const bool is_final = (gsym == NULL
1280                          ? !parameters->output_is_shared()
1281                          : gsym->final_value_is_known());
1282   const unsigned int opt_r_type =
1283     Target_i386::optimize_tls_reloc(is_final, r_type);
1284   switch (r_type)
1285     {
1286     case elfcpp::R_386_TLS_LE_32:
1287       value = tls_segment->vaddr() + tls_segment->memsz() - value;
1288       Relocate_functions<32, false>::rel32(view, value);
1289       break;
1290
1291     case elfcpp::R_386_TLS_LE:
1292       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1293       Relocate_functions<32, false>::rel32(view, value);
1294       break;
1295
1296     case elfcpp::R_386_TLS_IE:
1297     case elfcpp::R_386_TLS_GOTIE:
1298     case elfcpp::R_386_TLS_IE_32:
1299       if (opt_r_type == elfcpp::R_386_TLS_LE_32)
1300         {
1301           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1302                                               rel, r_type, value, view,
1303                                               view_size);
1304           break;
1305         }
1306       fprintf(stderr, _("%s: %s: unsupported reloc type %u\n"),
1307               program_name,
1308               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1309               r_type);
1310       // gold_exit(false);
1311       break;
1312
1313     case elfcpp::R_386_TLS_GD:
1314       if (opt_r_type == elfcpp::R_386_TLS_LE_32)
1315         {
1316           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1317                              rel, r_type, value, view,
1318                              view_size);
1319           break;
1320         }
1321       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1322               program_name,
1323               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1324               r_type);
1325       // gold_exit(false);
1326       break;
1327
1328     case elfcpp::R_386_TLS_LDM:
1329       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1330         {
1331           fprintf(stderr,
1332                   _("%s: %s: both SUN and GNU model TLS relocations\n"),
1333                   program_name,
1334                   relinfo->location(relnum, rel.get_r_offset()).c_str());
1335           gold_exit(false);
1336         }
1337       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1338       if (opt_r_type == elfcpp::R_386_TLS_LE_32)
1339         {
1340           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1341                              value, view, view_size);
1342           break;
1343         }
1344       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1345               program_name,
1346               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1347               r_type);
1348       // gold_exit(false);
1349       break;
1350
1351     case elfcpp::R_386_TLS_LDO_32:
1352       // This reloc can appear in debugging sections, in which case we
1353       // won't see the TLS_LDM reloc.  The local_dynamic_type field
1354       // tells us this.
1355       if (opt_r_type == elfcpp::R_386_TLS_LDO_32
1356           || this->local_dynamic_type_ == LOCAL_DYNAMIC_NONE)
1357         value = value - tls_segment->vaddr();
1358       else if (this->local_dynamic_type_ == LOCAL_DYNAMIC_GNU)
1359         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1360       else
1361         value = tls_segment->vaddr() + tls_segment->memsz() - value;
1362       Relocate_functions<32, false>::rel32(view, value);
1363       break;
1364
1365     case elfcpp::R_386_TLS_GOTDESC:
1366     case elfcpp::R_386_TLS_DESC_CALL:
1367       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1368               program_name,
1369               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1370               r_type);
1371       // gold_exit(false);
1372       break;
1373     }
1374 }
1375
1376 // Do a relocation in which we convert a TLS Initial-Exec to a
1377 // Local-Exec.
1378
1379 inline void
1380 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1381                                     size_t relnum,
1382                                     Output_segment* tls_segment,
1383                                     const elfcpp::Rel<32, false>& rel,
1384                                     unsigned int r_type,
1385                                     elfcpp::Elf_types<32>::Elf_Addr value,
1386                                     unsigned char* view,
1387                                     off_t view_size)
1388 {
1389   // We have to actually change the instructions, which means that we
1390   // need to examine the opcodes to figure out which instruction we
1391   // are looking at.
1392   if (r_type == elfcpp::R_386_TLS_IE)
1393     {
1394       // movl %gs:XX,%eax  ==>  movl $YY,%eax
1395       // movl %gs:XX,%reg  ==>  movl $YY,%reg
1396       // addl %gs:XX,%reg  ==>  addl $YY,%reg
1397       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -1);
1398       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1399
1400       unsigned char op1 = view[-1];
1401       if (op1 == 0xa1)
1402         {
1403           // movl XX,%eax  ==>  movl $YY,%eax
1404           view[-1] = 0xb8;
1405         }
1406       else
1407         {
1408           Target_i386::Relocate::check_range(relinfo, relnum, rel,
1409                                              view_size, -2);
1410
1411           unsigned char op2 = view[-2];
1412           if (op2 == 0x8b)
1413             {
1414               // movl XX,%reg  ==>  movl $YY,%reg
1415               Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1416                                                (op1 & 0xc7) == 0x05);
1417               view[-2] = 0xc7;
1418               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1419             }
1420           else if (op2 == 0x03)
1421             {
1422               // addl XX,%reg  ==>  addl $YY,%reg
1423               Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1424                                                (op1 & 0xc7) == 0x05);
1425               view[-2] = 0x81;
1426               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1427             }
1428           else
1429             Target_i386::Relocate::check_tls(relinfo, relnum, rel, 0);
1430         }
1431     }
1432   else
1433     {
1434       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1435       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1436       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1437       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1438       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1439
1440       unsigned char op1 = view[-1];
1441       unsigned char op2 = view[-2];
1442       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1443                                        (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1444       if (op2 == 0x8b)
1445         {
1446           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1447           view[-2] = 0xc7;
1448           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1449         }
1450       else if (op2 == 0x2b)
1451         {
1452           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1453           view[-2] = 0x81;
1454           view[-1] = 0xe8 | ((op1 >> 3) & 7);
1455         }
1456       else if (op2 == 0x03)
1457         {
1458           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1459           view[-2] = 0x81;
1460           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1461         }
1462       else
1463         Target_i386::Relocate::check_tls(relinfo, relnum, rel, 0);
1464     }
1465
1466   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1467   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1468     value = - value;
1469
1470   Relocate_functions<32, false>::rel32(view, value);
1471 }
1472
1473 // Do a relocation in which we convert a TLS Global-Dynamic to a
1474 // Local-Exec.
1475
1476 inline void
1477 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1478                                     size_t relnum,
1479                                     Output_segment* tls_segment,
1480                                     const elfcpp::Rel<32, false>& rel,
1481                                     unsigned int,
1482                                     elfcpp::Elf_types<32>::Elf_Addr value,
1483                                     unsigned char* view,
1484                                     off_t view_size)
1485 {
1486   // leal foo(,%reg,1),%eax; call ___tls_get_addr
1487   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1488   // leal foo(%reg),%eax; call ___tls_get_addr
1489   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1490
1491   Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1492   Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 9);
1493
1494   unsigned char op1 = view[-1];
1495   unsigned char op2 = view[-2];
1496
1497   Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1498                                    op2 == 0x8d || op2 == 0x04);
1499   Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1500                                    view[4] == 0xe8);
1501
1502   int roff = 5;
1503
1504   if (op2 == 0x04)
1505     {
1506       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -3);
1507       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1508                                        view[-3] == 0x8d);
1509       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1510                                        ((op1 & 0xc7) == 0x05
1511                                         && op1 != (4 << 3)));
1512       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1513     }
1514   else
1515     {
1516       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1517                                        (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1518       if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1519           && view[9] == 0x90)
1520         {
1521           // There is a trailing nop.  Use the size byte subl.
1522           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1523           roff = 6;
1524         }
1525       else
1526         {
1527           // Use the five byte subl.
1528           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1529         }
1530     }
1531
1532   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1533   Relocate_functions<32, false>::rel32(view + roff, value);
1534
1535   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1536   // We can skip it.
1537   this->skip_call_tls_get_addr_ = true;
1538 }
1539
1540 // Do a relocation in which we convert a TLS Local-Dynamic to a
1541 // Local-Exec.
1542
1543 inline void
1544 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
1545                                     size_t relnum,
1546                                     Output_segment*,
1547                                     const elfcpp::Rel<32, false>& rel,
1548                                     unsigned int,
1549                                     elfcpp::Elf_types<32>::Elf_Addr,
1550                                     unsigned char* view,
1551                                     off_t view_size)
1552 {
1553   // leal foo(%reg), %eax; call ___tls_get_addr
1554   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
1555
1556   Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1557   Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 9);
1558
1559   // FIXME: Does this test really always pass?
1560   Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1561                                    view[-2] == 0x8d && view[-1] == 0x83);
1562
1563   Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1564                                    view[4] == 0xe8);
1565
1566   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
1567
1568   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1569   // We can skip it.
1570   this->skip_call_tls_get_addr_ = true;
1571 }
1572
1573 // Check the range for a TLS relocation.
1574
1575 inline void
1576 Target_i386::Relocate::check_range(const Relocate_info<32, false>* relinfo,
1577                                    size_t relnum,
1578                                    const elfcpp::Rel<32, false>& rel,
1579                                    off_t view_size, off_t off)
1580 {
1581   off_t offset = rel.get_r_offset() + off;
1582   if (offset < 0 || offset > view_size)
1583     {
1584       fprintf(stderr, _("%s: %s: TLS relocation out of range\n"),
1585               program_name,
1586               relinfo->location(relnum, rel.get_r_offset()).c_str());
1587       gold_exit(false);
1588     }
1589 }
1590
1591 // Check the validity of a TLS relocation.  This is like assert.
1592
1593 inline void
1594 Target_i386::Relocate::check_tls(const Relocate_info<32, false>* relinfo,
1595                                  size_t relnum,
1596                                  const elfcpp::Rel<32, false>& rel,
1597                                  bool valid)
1598 {
1599   if (!valid)
1600     {
1601       fprintf(stderr,
1602               _("%s: %s: TLS relocation against invalid instruction\n"),
1603               program_name,
1604               relinfo->location(relnum, rel.get_r_offset()).c_str());
1605       gold_exit(false);
1606     }
1607 }
1608
1609 // Relocate section data.
1610
1611 void
1612 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1613                               unsigned int sh_type,
1614                               const unsigned char* prelocs,
1615                               size_t reloc_count,
1616                               unsigned char* view,
1617                               elfcpp::Elf_types<32>::Elf_Addr address,
1618                               off_t view_size)
1619 {
1620   gold_assert(sh_type == elfcpp::SHT_REL);
1621
1622   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1623                          Target_i386::Relocate>(
1624     relinfo,
1625     this,
1626     prelocs,
1627     reloc_count,
1628     view,
1629     address,
1630     view_size);
1631 }
1632
1633 // Return the value to use for a dynamic which requires special
1634 // treatment.  This is how we support equality comparisons of function
1635 // pointers across shared library boundaries, as described in the
1636 // processor specific ABI supplement.
1637
1638 uint64_t
1639 Target_i386::do_dynsym_value(const Symbol* gsym) const
1640 {
1641   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1642   return this->plt_section()->address() + gsym->plt_offset();
1643 }
1644
1645 // Return a string used to fill a code section with nops to take up
1646 // the specified length.
1647
1648 std::string
1649 Target_i386::do_code_fill(off_t length)
1650 {
1651   if (length >= 16)
1652     {
1653       // Build a jmp instruction to skip over the bytes.
1654       unsigned char jmp[5];
1655       jmp[0] = 0xe9;
1656       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1657       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1658               + std::string(length - 5, '\0'));
1659     }
1660
1661   // Nop sequences of various lengths.
1662   const char nop1[1] = { 0x90 };                   // nop
1663   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1664   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1665   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1666   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1667                          0x00 };                   // leal 0(%esi,1),%esi
1668   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1669                          0x00, 0x00 };
1670   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1671                          0x00, 0x00, 0x00 };
1672   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1673                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1674   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1675                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1676                          0x00 };
1677   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1678                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1679                            0x00, 0x00 };
1680   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1681                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1682                            0x00, 0x00, 0x00 };
1683   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1684                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1685                            0x00, 0x00, 0x00, 0x00 };
1686   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1687                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1688                            0x27, 0x00, 0x00, 0x00,
1689                            0x00 };
1690   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1691                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1692                            0xbc, 0x27, 0x00, 0x00,
1693                            0x00, 0x00 };
1694   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1695                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1696                            0x90, 0x90, 0x90, 0x90,
1697                            0x90, 0x90, 0x90 };
1698
1699   const char* nops[16] = {
1700     NULL,
1701     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1702     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1703   };
1704
1705   return std::string(nops[length], length);
1706 }
1707
1708 // The selector for i386 object files.
1709
1710 class Target_selector_i386 : public Target_selector
1711 {
1712 public:
1713   Target_selector_i386()
1714     : Target_selector(elfcpp::EM_386, 32, false)
1715   { }
1716
1717   Target*
1718   recognize(int machine, int osabi, int abiversion);
1719
1720  private:
1721   Target_i386* target_;
1722 };
1723
1724 // Recognize an i386 object file when we already know that the machine
1725 // number is EM_386.
1726
1727 Target*
1728 Target_selector_i386::recognize(int, int, int)
1729 {
1730   if (this->target_ == NULL)
1731     this->target_ = new Target_i386();
1732   return this->target_;
1733 }
1734
1735 Target_selector_i386 target_selector_i386;
1736
1737 } // End anonymous namespace.