PR gold/12980
[external/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "i386.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "gc.h"
43
44 namespace
45 {
46
47 using namespace gold;
48
49 // A class to handle the PLT data.
50
51 class Output_data_plt_i386 : public Output_section_data
52 {
53  public:
54   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
55
56   Output_data_plt_i386(Layout*, Output_data_space*, Output_data_space*);
57
58   // Add an entry to the PLT.
59   void
60   add_entry(Symbol_table*, Layout*, Symbol* gsym);
61
62   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
63   unsigned int
64   add_local_ifunc_entry(Symbol_table*, Layout*,
65                         Sized_relobj_file<32, false>* relobj,
66                         unsigned int local_sym_index);
67
68   // Return the .rel.plt section data.
69   Reloc_section*
70   rel_plt() const
71   { return this->rel_; }
72
73   // Return where the TLS_DESC relocations should go.
74   Reloc_section*
75   rel_tls_desc(Layout*);
76
77   // Return where the IRELATIVE relocations should go.
78   Reloc_section*
79   rel_irelative(Symbol_table*, Layout*);
80
81   // Return whether we created a section for IRELATIVE relocations.
82   bool
83   has_irelative_section() const
84   { return this->irelative_rel_ != NULL; }
85
86   // Return the number of PLT entries.
87   unsigned int
88   entry_count() const
89   { return this->count_ + this->irelative_count_; }
90
91   // Return the offset of the first non-reserved PLT entry.
92   static unsigned int
93   first_plt_entry_offset()
94   { return plt_entry_size; }
95
96   // Return the size of a PLT entry.
97   static unsigned int
98   get_plt_entry_size()
99   { return plt_entry_size; }
100
101   // Return the PLT address to use for a global symbol.
102   uint64_t
103   address_for_global(const Symbol*);
104
105   // Return the PLT address to use for a local symbol.
106   uint64_t
107   address_for_local(const Relobj*, unsigned int symndx);
108
109  protected:
110   void
111   do_adjust_output_section(Output_section* os);
112
113   // Write to a map file.
114   void
115   do_print_to_mapfile(Mapfile* mapfile) const
116   { mapfile->print_output_data(this, _("** PLT")); }
117
118  private:
119   // The size of an entry in the PLT.
120   static const int plt_entry_size = 16;
121
122   // The first entry in the PLT for an executable.
123   static const unsigned char exec_first_plt_entry[plt_entry_size];
124
125   // The first entry in the PLT for a shared object.
126   static const unsigned char dyn_first_plt_entry[plt_entry_size];
127
128   // Other entries in the PLT for an executable.
129   static const unsigned char exec_plt_entry[plt_entry_size];
130
131   // Other entries in the PLT for a shared object.
132   static const unsigned char dyn_plt_entry[plt_entry_size];
133
134   // The .eh_frame unwind information for the PLT.
135   static const int plt_eh_frame_cie_size = 16;
136   static const int plt_eh_frame_fde_size = 32;
137   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
138   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
139
140   // Set the final size.
141   void
142   set_final_data_size()
143   {
144     this->set_data_size((this->count_ + this->irelative_count_ + 1)
145                         * plt_entry_size);
146   }
147
148   // Write out the PLT data.
149   void
150   do_write(Output_file*);
151
152   // We keep a list of global STT_GNU_IFUNC symbols, each with its
153   // offset in the GOT.
154   struct Global_ifunc
155   {
156     Symbol* sym;
157     unsigned int got_offset;
158   };
159
160   // We keep a list of local STT_GNU_IFUNC symbols, each with its
161   // offset in the GOT.
162   struct Local_ifunc
163   {
164     Sized_relobj_file<32, false>* object;
165     unsigned int local_sym_index;
166     unsigned int got_offset;
167   };
168
169   // The reloc section.
170   Reloc_section* rel_;
171   // The TLS_DESC relocations, if necessary.  These must follow the
172   // regular PLT relocs.
173   Reloc_section* tls_desc_rel_;
174   // The IRELATIVE relocations, if necessary.  These must follow the
175   // regular relocatoins and the TLS_DESC relocations.
176   Reloc_section* irelative_rel_;
177   // The .got.plt section.
178   Output_data_space* got_plt_;
179   // The part of the .got.plt section used for IRELATIVE relocs.
180   Output_data_space* got_irelative_;
181   // The number of PLT entries.
182   unsigned int count_;
183   // Number of PLT entries with R_386_IRELATIVE relocs.  These follow
184   // the regular PLT entries.
185   unsigned int irelative_count_;
186   // Global STT_GNU_IFUNC symbols.
187   std::vector<Global_ifunc> global_ifuncs_;
188   // Local STT_GNU_IFUNC symbols.
189   std::vector<Local_ifunc> local_ifuncs_;
190 };
191
192 // The i386 target class.
193 // TLS info comes from
194 //   http://people.redhat.com/drepper/tls.pdf
195 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
196
197 class Target_i386 : public Sized_target<32, false>
198 {
199  public:
200   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
201
202   Target_i386()
203     : Sized_target<32, false>(&i386_info),
204       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
205       got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
206       rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY), dynbss_(NULL),
207       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
208   { }
209
210   // Process the relocations to determine unreferenced sections for 
211   // garbage collection.
212   void
213   gc_process_relocs(Symbol_table* symtab,
214                     Layout* layout,
215                     Sized_relobj_file<32, false>* object,
216                     unsigned int data_shndx,
217                     unsigned int sh_type,
218                     const unsigned char* prelocs,
219                     size_t reloc_count,
220                     Output_section* output_section,
221                     bool needs_special_offset_handling,
222                     size_t local_symbol_count,
223                     const unsigned char* plocal_symbols);
224
225   // Scan the relocations to look for symbol adjustments.
226   void
227   scan_relocs(Symbol_table* symtab,
228               Layout* layout,
229               Sized_relobj_file<32, false>* object,
230               unsigned int data_shndx,
231               unsigned int sh_type,
232               const unsigned char* prelocs,
233               size_t reloc_count,
234               Output_section* output_section,
235               bool needs_special_offset_handling,
236               size_t local_symbol_count,
237               const unsigned char* plocal_symbols);
238
239   // Finalize the sections.
240   void
241   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
242
243   // Return the value to use for a dynamic which requires special
244   // treatment.
245   uint64_t
246   do_dynsym_value(const Symbol*) const;
247
248   // Relocate a section.
249   void
250   relocate_section(const Relocate_info<32, false>*,
251                    unsigned int sh_type,
252                    const unsigned char* prelocs,
253                    size_t reloc_count,
254                    Output_section* output_section,
255                    bool needs_special_offset_handling,
256                    unsigned char* view,
257                    elfcpp::Elf_types<32>::Elf_Addr view_address,
258                    section_size_type view_size,
259                    const Reloc_symbol_changes*);
260
261   // Scan the relocs during a relocatable link.
262   void
263   scan_relocatable_relocs(Symbol_table* symtab,
264                           Layout* layout,
265                           Sized_relobj_file<32, false>* object,
266                           unsigned int data_shndx,
267                           unsigned int sh_type,
268                           const unsigned char* prelocs,
269                           size_t reloc_count,
270                           Output_section* output_section,
271                           bool needs_special_offset_handling,
272                           size_t local_symbol_count,
273                           const unsigned char* plocal_symbols,
274                           Relocatable_relocs*);
275
276   // Relocate a section during a relocatable link.
277   void
278   relocate_for_relocatable(const Relocate_info<32, false>*,
279                            unsigned int sh_type,
280                            const unsigned char* prelocs,
281                            size_t reloc_count,
282                            Output_section* output_section,
283                            off_t offset_in_output_section,
284                            const Relocatable_relocs*,
285                            unsigned char* view,
286                            elfcpp::Elf_types<32>::Elf_Addr view_address,
287                            section_size_type view_size,
288                            unsigned char* reloc_view,
289                            section_size_type reloc_view_size);
290
291   // Return a string used to fill a code section with nops.
292   std::string
293   do_code_fill(section_size_type length) const;
294
295   // Return whether SYM is defined by the ABI.
296   bool
297   do_is_defined_by_abi(const Symbol* sym) const
298   { return strcmp(sym->name(), "___tls_get_addr") == 0; }
299
300   // Return whether a symbol name implies a local label.  The UnixWare
301   // 2.1 cc generates temporary symbols that start with .X, so we
302   // recognize them here.  FIXME: do other SVR4 compilers also use .X?.
303   // If so, we should move the .X recognition into
304   // Target::do_is_local_label_name.
305   bool
306   do_is_local_label_name(const char* name) const
307   {
308     if (name[0] == '.' && name[1] == 'X')
309       return true;
310     return Target::do_is_local_label_name(name);
311   }
312
313   // Return the PLT address to use for a global symbol.
314   uint64_t
315   do_plt_address_for_global(const Symbol* gsym) const
316   { return this->plt_section()->address_for_global(gsym); }
317
318   uint64_t
319   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
320   { return this->plt_section()->address_for_local(relobj, symndx); }
321
322   // We can tell whether we take the address of a function.
323   inline bool
324   do_can_check_for_function_pointers() const
325   { return true; }
326
327   // Return the base for a DW_EH_PE_datarel encoding.
328   uint64_t
329   do_ehframe_datarel_base() const;
330
331   // Return whether SYM is call to a non-split function.
332   bool
333   do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
334
335   // Adjust -fsplit-stack code which calls non-split-stack code.
336   void
337   do_calls_non_split(Relobj* object, unsigned int shndx,
338                      section_offset_type fnoffset, section_size_type fnsize,
339                      unsigned char* view, section_size_type view_size,
340                      std::string* from, std::string* to) const;
341
342   // Return the size of the GOT section.
343   section_size_type
344   got_size() const
345   {
346     gold_assert(this->got_ != NULL);
347     return this->got_->data_size();
348   }
349
350   // Return the number of entries in the GOT.
351   unsigned int
352   got_entry_count() const
353   {
354     if (this->got_ == NULL)
355       return 0;
356     return this->got_size() / 4;
357   }
358
359   // Return the number of entries in the PLT.
360   unsigned int
361   plt_entry_count() const;
362
363   // Return the offset of the first non-reserved PLT entry.
364   unsigned int
365   first_plt_entry_offset() const;
366
367   // Return the size of each PLT entry.
368   unsigned int
369   plt_entry_size() const;
370
371  private:
372   // The class which scans relocations.
373   struct Scan
374   {
375     static inline int
376
377     get_reference_flags(unsigned int r_type);
378
379     inline void
380     local(Symbol_table* symtab, Layout* layout, Target_i386* target,
381           Sized_relobj_file<32, false>* object,
382           unsigned int data_shndx,
383           Output_section* output_section,
384           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
385           const elfcpp::Sym<32, false>& lsym);
386
387     inline void
388     global(Symbol_table* symtab, Layout* layout, Target_i386* target,
389            Sized_relobj_file<32, false>* object,
390            unsigned int data_shndx,
391            Output_section* output_section,
392            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
393            Symbol* gsym);
394
395     inline bool
396     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
397                                         Target_i386* target,
398                                         Sized_relobj_file<32, false>* object,
399                                         unsigned int data_shndx,
400                                         Output_section* output_section,
401                                         const elfcpp::Rel<32, false>& reloc,
402                                         unsigned int r_type,
403                                         const elfcpp::Sym<32, false>& lsym);
404
405     inline bool
406     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
407                                          Target_i386* target,
408                                          Sized_relobj_file<32, false>* object,
409                                          unsigned int data_shndx,
410                                          Output_section* output_section,
411                                          const elfcpp::Rel<32, false>& reloc,
412                                          unsigned int r_type,
413                                          Symbol* gsym);
414
415     inline bool
416     possible_function_pointer_reloc(unsigned int r_type);
417
418     bool
419     reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
420                               unsigned int r_type);
421
422     static void
423     unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
424
425     static void
426     unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
427                              Symbol*);
428   };
429
430   // The class which implements relocation.
431   class Relocate
432   {
433    public:
434     Relocate()
435       : skip_call_tls_get_addr_(false),
436         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
437     { }
438
439     ~Relocate()
440     {
441       if (this->skip_call_tls_get_addr_)
442         {
443           // FIXME: This needs to specify the location somehow.
444           gold_error(_("missing expected TLS relocation"));
445         }
446     }
447
448     // Return whether the static relocation needs to be applied.
449     inline bool
450     should_apply_static_reloc(const Sized_symbol<32>* gsym,
451                               unsigned int r_type,
452                               bool is_32bit,
453                               Output_section* output_section);
454
455     // Do a relocation.  Return false if the caller should not issue
456     // any warnings about this relocation.
457     inline bool
458     relocate(const Relocate_info<32, false>*, Target_i386*, Output_section*,
459              size_t relnum, const elfcpp::Rel<32, false>&,
460              unsigned int r_type, const Sized_symbol<32>*,
461              const Symbol_value<32>*,
462              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
463              section_size_type);
464
465    private:
466     // Do a TLS relocation.
467     inline void
468     relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
469                  size_t relnum, const elfcpp::Rel<32, false>&,
470                  unsigned int r_type, const Sized_symbol<32>*,
471                  const Symbol_value<32>*,
472                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
473                  section_size_type);
474
475     // Do a TLS General-Dynamic to Initial-Exec transition.
476     inline void
477     tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
478                  Output_segment* tls_segment,
479                  const elfcpp::Rel<32, false>&, unsigned int r_type,
480                  elfcpp::Elf_types<32>::Elf_Addr value,
481                  unsigned char* view,
482                  section_size_type view_size);
483
484     // Do a TLS General-Dynamic to Local-Exec transition.
485     inline void
486     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
487                  Output_segment* tls_segment,
488                  const elfcpp::Rel<32, false>&, unsigned int r_type,
489                  elfcpp::Elf_types<32>::Elf_Addr value,
490                  unsigned char* view,
491                  section_size_type view_size);
492
493     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
494     // transition.
495     inline void
496     tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
497                       Output_segment* tls_segment,
498                       const elfcpp::Rel<32, false>&, unsigned int r_type,
499                       elfcpp::Elf_types<32>::Elf_Addr value,
500                       unsigned char* view,
501                       section_size_type view_size);
502
503     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
504     // transition.
505     inline void
506     tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
507                       Output_segment* tls_segment,
508                       const elfcpp::Rel<32, false>&, unsigned int r_type,
509                       elfcpp::Elf_types<32>::Elf_Addr value,
510                       unsigned char* view,
511                       section_size_type view_size);
512
513     // Do a TLS Local-Dynamic to Local-Exec transition.
514     inline void
515     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
516                  Output_segment* tls_segment,
517                  const elfcpp::Rel<32, false>&, unsigned int r_type,
518                  elfcpp::Elf_types<32>::Elf_Addr value,
519                  unsigned char* view,
520                  section_size_type view_size);
521
522     // Do a TLS Initial-Exec to Local-Exec transition.
523     static inline void
524     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
525                  Output_segment* tls_segment,
526                  const elfcpp::Rel<32, false>&, unsigned int r_type,
527                  elfcpp::Elf_types<32>::Elf_Addr value,
528                  unsigned char* view,
529                  section_size_type view_size);
530
531     // We need to keep track of which type of local dynamic relocation
532     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
533     enum Local_dynamic_type
534     {
535       LOCAL_DYNAMIC_NONE,
536       LOCAL_DYNAMIC_SUN,
537       LOCAL_DYNAMIC_GNU
538     };
539
540     // This is set if we should skip the next reloc, which should be a
541     // PLT32 reloc against ___tls_get_addr.
542     bool skip_call_tls_get_addr_;
543     // The type of local dynamic relocation we have seen in the section
544     // being relocated, if any.
545     Local_dynamic_type local_dynamic_type_;
546   };
547
548   // A class which returns the size required for a relocation type,
549   // used while scanning relocs during a relocatable link.
550   class Relocatable_size_for_reloc
551   {
552    public:
553     unsigned int
554     get_size_for_reloc(unsigned int, Relobj*);
555   };
556
557   // Adjust TLS relocation type based on the options and whether this
558   // is a local symbol.
559   static tls::Tls_optimization
560   optimize_tls_reloc(bool is_final, int r_type);
561
562   // Get the GOT section, creating it if necessary.
563   Output_data_got<32, false>*
564   got_section(Symbol_table*, Layout*);
565
566   // Get the GOT PLT section.
567   Output_data_space*
568   got_plt_section() const
569   {
570     gold_assert(this->got_plt_ != NULL);
571     return this->got_plt_;
572   }
573
574   // Get the GOT section for TLSDESC entries.
575   Output_data_got<32, false>*
576   got_tlsdesc_section() const
577   {
578     gold_assert(this->got_tlsdesc_ != NULL);
579     return this->got_tlsdesc_;
580   }
581
582   // Create the PLT section.
583   void
584   make_plt_section(Symbol_table* symtab, Layout* layout);
585
586   // Create a PLT entry for a global symbol.
587   void
588   make_plt_entry(Symbol_table*, Layout*, Symbol*);
589
590   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
591   void
592   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
593                              Sized_relobj_file<32, false>* relobj,
594                              unsigned int local_sym_index);
595
596   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
597   void
598   define_tls_base_symbol(Symbol_table*, Layout*);
599
600   // Create a GOT entry for the TLS module index.
601   unsigned int
602   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
603                       Sized_relobj_file<32, false>* object);
604
605   // Get the PLT section.
606   Output_data_plt_i386*
607   plt_section() const
608   {
609     gold_assert(this->plt_ != NULL);
610     return this->plt_;
611   }
612
613   // Get the dynamic reloc section, creating it if necessary.
614   Reloc_section*
615   rel_dyn_section(Layout*);
616
617   // Get the section to use for TLS_DESC relocations.
618   Reloc_section*
619   rel_tls_desc_section(Layout*) const;
620
621   // Get the section to use for IRELATIVE relocations.
622   Reloc_section*
623   rel_irelative_section(Layout*);
624
625   // Add a potential copy relocation.
626   void
627   copy_reloc(Symbol_table* symtab, Layout* layout,
628              Sized_relobj_file<32, false>* object,
629              unsigned int shndx, Output_section* output_section,
630              Symbol* sym, const elfcpp::Rel<32, false>& reloc)
631   {
632     this->copy_relocs_.copy_reloc(symtab, layout,
633                                   symtab->get_sized_symbol<32>(sym),
634                                   object, shndx, output_section, reloc,
635                                   this->rel_dyn_section(layout));
636   }
637
638   // Information about this specific target which we pass to the
639   // general Target structure.
640   static const Target::Target_info i386_info;
641
642   // The types of GOT entries needed for this platform.
643   // These values are exposed to the ABI in an incremental link.
644   // Do not renumber existing values without changing the version
645   // number of the .gnu_incremental_inputs section.
646   enum Got_type
647   {
648     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
649     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
650     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
651     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
652     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
653   };
654
655   // The GOT section.
656   Output_data_got<32, false>* got_;
657   // The PLT section.
658   Output_data_plt_i386* plt_;
659   // The GOT PLT section.
660   Output_data_space* got_plt_;
661   // The GOT section for IRELATIVE relocations.
662   Output_data_space* got_irelative_;
663   // The GOT section for TLSDESC relocations.
664   Output_data_got<32, false>* got_tlsdesc_;
665   // The _GLOBAL_OFFSET_TABLE_ symbol.
666   Symbol* global_offset_table_;
667   // The dynamic reloc section.
668   Reloc_section* rel_dyn_;
669   // The section to use for IRELATIVE relocs.
670   Reloc_section* rel_irelative_;
671   // Relocs saved to avoid a COPY reloc.
672   Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
673   // Space for variables copied with a COPY reloc.
674   Output_data_space* dynbss_;
675   // Offset of the GOT entry for the TLS module index.
676   unsigned int got_mod_index_offset_;
677   // True if the _TLS_MODULE_BASE_ symbol has been defined.
678   bool tls_base_symbol_defined_;
679 };
680
681 const Target::Target_info Target_i386::i386_info =
682 {
683   32,                   // size
684   false,                // is_big_endian
685   elfcpp::EM_386,       // machine_code
686   false,                // has_make_symbol
687   false,                // has_resolve
688   true,                 // has_code_fill
689   true,                 // is_default_stack_executable
690   true,                 // can_icf_inline_merge_sections
691   '\0',                 // wrap_char
692   "/usr/lib/libc.so.1", // dynamic_linker
693   0x08048000,           // default_text_segment_address
694   0x1000,               // abi_pagesize (overridable by -z max-page-size)
695   0x1000,               // common_pagesize (overridable by -z common-page-size)
696   elfcpp::SHN_UNDEF,    // small_common_shndx
697   elfcpp::SHN_UNDEF,    // large_common_shndx
698   0,                    // small_common_section_flags
699   0,                    // large_common_section_flags
700   NULL,                 // attributes_section
701   NULL                  // attributes_vendor
702 };
703
704 // Get the GOT section, creating it if necessary.
705
706 Output_data_got<32, false>*
707 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
708 {
709   if (this->got_ == NULL)
710     {
711       gold_assert(symtab != NULL && layout != NULL);
712
713       this->got_ = new Output_data_got<32, false>();
714
715       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
716                                       (elfcpp::SHF_ALLOC
717                                        | elfcpp::SHF_WRITE),
718                                       this->got_, ORDER_RELRO_LAST, true);
719
720       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
721       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
722                                       (elfcpp::SHF_ALLOC
723                                        | elfcpp::SHF_WRITE),
724                                       this->got_plt_, ORDER_NON_RELRO_FIRST,
725                                       false);
726
727       // The first three entries are reserved.
728       this->got_plt_->set_current_data_size(3 * 4);
729
730       // Those bytes can go into the relro segment.
731       layout->increase_relro(3 * 4);
732
733       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
734       this->global_offset_table_ =
735         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
736                                       Symbol_table::PREDEFINED,
737                                       this->got_plt_,
738                                       0, 0, elfcpp::STT_OBJECT,
739                                       elfcpp::STB_LOCAL,
740                                       elfcpp::STV_HIDDEN, 0,
741                                       false, false);
742
743       // If there are any IRELATIVE relocations, they get GOT entries
744       // in .got.plt after the jump slot relocations.
745       this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
746       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
747                                       (elfcpp::SHF_ALLOC
748                                        | elfcpp::SHF_WRITE),
749                                       this->got_irelative_,
750                                       ORDER_NON_RELRO_FIRST, false);
751
752       // If there are any TLSDESC relocations, they get GOT entries in
753       // .got.plt after the jump slot entries.
754       this->got_tlsdesc_ = new Output_data_got<32, false>();
755       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
756                                       (elfcpp::SHF_ALLOC
757                                        | elfcpp::SHF_WRITE),
758                                       this->got_tlsdesc_,
759                                       ORDER_NON_RELRO_FIRST, false);
760     }
761
762   return this->got_;
763 }
764
765 // Get the dynamic reloc section, creating it if necessary.
766
767 Target_i386::Reloc_section*
768 Target_i386::rel_dyn_section(Layout* layout)
769 {
770   if (this->rel_dyn_ == NULL)
771     {
772       gold_assert(layout != NULL);
773       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
774       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
775                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
776                                       ORDER_DYNAMIC_RELOCS, false);
777     }
778   return this->rel_dyn_;
779 }
780
781 // Get the section to use for IRELATIVE relocs, creating it if
782 // necessary.  These go in .rel.dyn, but only after all other dynamic
783 // relocations.  They need to follow the other dynamic relocations so
784 // that they can refer to global variables initialized by those
785 // relocs.
786
787 Target_i386::Reloc_section*
788 Target_i386::rel_irelative_section(Layout* layout)
789 {
790   if (this->rel_irelative_ == NULL)
791     {
792       // Make sure we have already create the dynamic reloc section.
793       this->rel_dyn_section(layout);
794       this->rel_irelative_ = new Reloc_section(false);
795       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
796                                       elfcpp::SHF_ALLOC, this->rel_irelative_,
797                                       ORDER_DYNAMIC_RELOCS, false);
798       gold_assert(this->rel_dyn_->output_section()
799                   == this->rel_irelative_->output_section());
800     }
801   return this->rel_irelative_;
802 }
803
804 // Create the PLT section.  The ordinary .got section is an argument,
805 // since we need to refer to the start.  We also create our own .got
806 // section just for PLT entries.
807
808 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
809                                            Output_data_space* got_plt,
810                                            Output_data_space* got_irelative)
811   : Output_section_data(16), tls_desc_rel_(NULL), irelative_rel_(NULL),
812     got_plt_(got_plt), got_irelative_(got_irelative), count_(0),
813     irelative_count_(0), global_ifuncs_(), local_ifuncs_()
814 {
815   this->rel_ = new Reloc_section(false);
816   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
817                                   elfcpp::SHF_ALLOC, this->rel_,
818                                   ORDER_DYNAMIC_PLT_RELOCS, false);
819
820   // Add unwind information if requested.
821   if (parameters->options().ld_generated_unwind_info())
822     layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
823                                  plt_eh_frame_fde, plt_eh_frame_fde_size);
824 }
825
826 void
827 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
828 {
829   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
830   // linker, and so do we.
831   os->set_entsize(4);
832 }
833
834 // Add an entry to the PLT.
835
836 void
837 Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
838                                 Symbol* gsym)
839 {
840   gold_assert(!gsym->has_plt_offset());
841
842   // Every PLT entry needs a reloc.
843   if (gsym->type() == elfcpp::STT_GNU_IFUNC
844       && gsym->can_use_relative_reloc(false))
845     {
846       gsym->set_plt_offset(this->irelative_count_ * plt_entry_size);
847       ++this->irelative_count_;
848       section_offset_type got_offset =
849         this->got_irelative_->current_data_size();
850       this->got_irelative_->set_current_data_size(got_offset + 4);
851       Reloc_section* rel = this->rel_irelative(symtab, layout);
852       rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
853                                         this->got_irelative_, got_offset);
854       struct Global_ifunc gi;
855       gi.sym = gsym;
856       gi.got_offset = got_offset;
857       this->global_ifuncs_.push_back(gi);
858     }
859   else
860     {
861       // When setting the PLT offset we skip the initial reserved PLT
862       // entry.
863       gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
864
865       ++this->count_;
866
867       section_offset_type got_offset = this->got_plt_->current_data_size();
868
869       // Every PLT entry needs a GOT entry which points back to the
870       // PLT entry (this will be changed by the dynamic linker,
871       // normally lazily when the function is called).
872       this->got_plt_->set_current_data_size(got_offset + 4);
873
874       gsym->set_needs_dynsym_entry();
875       this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
876                              got_offset);
877     }
878
879   // Note that we don't need to save the symbol.  The contents of the
880   // PLT are independent of which symbols are used.  The symbols only
881   // appear in the relocations.
882 }
883
884 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
885 // the PLT offset.
886
887 unsigned int
888 Output_data_plt_i386::add_local_ifunc_entry(
889     Symbol_table* symtab,
890     Layout* layout,
891     Sized_relobj_file<32, false>* relobj,
892     unsigned int local_sym_index)
893 {
894   unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
895   ++this->irelative_count_;
896
897   section_offset_type got_offset = this->got_irelative_->current_data_size();
898
899   // Every PLT entry needs a GOT entry which points back to the PLT
900   // entry.
901   this->got_irelative_->set_current_data_size(got_offset + 4);
902
903   // Every PLT entry needs a reloc.
904   Reloc_section* rel = this->rel_irelative(symtab, layout);
905   rel->add_symbolless_local_addend(relobj, local_sym_index,
906                                    elfcpp::R_386_IRELATIVE,
907                                    this->got_irelative_, got_offset);
908
909   struct Local_ifunc li;
910   li.object = relobj;
911   li.local_sym_index = local_sym_index;
912   li.got_offset = got_offset;
913   this->local_ifuncs_.push_back(li);
914
915   return plt_offset;
916 }
917
918 // Return where the TLS_DESC relocations should go, creating it if
919 // necessary. These follow the JUMP_SLOT relocations.
920
921 Output_data_plt_i386::Reloc_section*
922 Output_data_plt_i386::rel_tls_desc(Layout* layout)
923 {
924   if (this->tls_desc_rel_ == NULL)
925     {
926       this->tls_desc_rel_ = new Reloc_section(false);
927       layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
928                                       elfcpp::SHF_ALLOC, this->tls_desc_rel_,
929                                       ORDER_DYNAMIC_PLT_RELOCS, false);
930       gold_assert(this->tls_desc_rel_->output_section()
931                   == this->rel_->output_section());
932     }
933   return this->tls_desc_rel_;
934 }
935
936 // Return where the IRELATIVE relocations should go in the PLT.  These
937 // follow the JUMP_SLOT and TLS_DESC relocations.
938
939 Output_data_plt_i386::Reloc_section*
940 Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
941 {
942   if (this->irelative_rel_ == NULL)
943     {
944       // Make sure we have a place for the TLS_DESC relocations, in
945       // case we see any later on.
946       this->rel_tls_desc(layout);
947       this->irelative_rel_ = new Reloc_section(false);
948       layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
949                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
950                                       ORDER_DYNAMIC_PLT_RELOCS, false);
951       gold_assert(this->irelative_rel_->output_section()
952                   == this->rel_->output_section());
953
954       if (parameters->doing_static_link())
955         {
956           // A statically linked executable will only have a .rel.plt
957           // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
958           // symbols.  The library will use these symbols to locate
959           // the IRELATIVE relocs at program startup time.
960           symtab->define_in_output_data("__rel_iplt_start", NULL,
961                                         Symbol_table::PREDEFINED,
962                                         this->irelative_rel_, 0, 0,
963                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
964                                         elfcpp::STV_HIDDEN, 0, false, true);
965           symtab->define_in_output_data("__rel_iplt_end", NULL,
966                                         Symbol_table::PREDEFINED,
967                                         this->irelative_rel_, 0, 0,
968                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
969                                         elfcpp::STV_HIDDEN, 0, true, true);
970         }
971     }
972   return this->irelative_rel_;
973 }
974
975 // Return the PLT address to use for a global symbol.
976
977 uint64_t
978 Output_data_plt_i386::address_for_global(const Symbol* gsym)
979 {
980   uint64_t offset = 0;
981   if (gsym->type() == elfcpp::STT_GNU_IFUNC
982       && gsym->can_use_relative_reloc(false))
983     offset = (this->count_ + 1) * plt_entry_size;
984   return this->address() + offset;
985 }
986
987 // Return the PLT address to use for a local symbol.  These are always
988 // IRELATIVE relocs.
989
990 uint64_t
991 Output_data_plt_i386::address_for_local(const Relobj*, unsigned int)
992 {
993   return this->address() + (this->count_ + 1) * plt_entry_size;
994 }
995
996 // The first entry in the PLT for an executable.
997
998 const unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
999 {
1000   0xff, 0x35,   // pushl contents of memory address
1001   0, 0, 0, 0,   // replaced with address of .got + 4
1002   0xff, 0x25,   // jmp indirect
1003   0, 0, 0, 0,   // replaced with address of .got + 8
1004   0, 0, 0, 0    // unused
1005 };
1006
1007 // The first entry in the PLT for a shared object.
1008
1009 const unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
1010 {
1011   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
1012   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
1013   0, 0, 0, 0                    // unused
1014 };
1015
1016 // Subsequent entries in the PLT for an executable.
1017
1018 const unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
1019 {
1020   0xff, 0x25,   // jmp indirect
1021   0, 0, 0, 0,   // replaced with address of symbol in .got
1022   0x68,         // pushl immediate
1023   0, 0, 0, 0,   // replaced with offset into relocation table
1024   0xe9,         // jmp relative
1025   0, 0, 0, 0    // replaced with offset to start of .plt
1026 };
1027
1028 // Subsequent entries in the PLT for a shared object.
1029
1030 const unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
1031 {
1032   0xff, 0xa3,   // jmp *offset(%ebx)
1033   0, 0, 0, 0,   // replaced with offset of symbol in .got
1034   0x68,         // pushl immediate
1035   0, 0, 0, 0,   // replaced with offset into relocation table
1036   0xe9,         // jmp relative
1037   0, 0, 0, 0    // replaced with offset to start of .plt
1038 };
1039
1040 // The .eh_frame unwind information for the PLT.
1041
1042 const unsigned char
1043 Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1044 {
1045   1,                            // CIE version.
1046   'z',                          // Augmentation: augmentation size included.
1047   'R',                          // Augmentation: FDE encoding included.
1048   '\0',                         // End of augmentation string.
1049   1,                            // Code alignment factor.
1050   0x7c,                         // Data alignment factor.
1051   8,                            // Return address column.
1052   1,                            // Augmentation size.
1053   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1054    | elfcpp::DW_EH_PE_sdata4),
1055   elfcpp::DW_CFA_def_cfa, 4, 4, // DW_CFA_def_cfa: r4 (esp) ofs 4.
1056   elfcpp::DW_CFA_offset + 8, 1, // DW_CFA_offset: r8 (eip) at cfa-4.
1057   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1058   elfcpp::DW_CFA_nop
1059 };
1060
1061 const unsigned char
1062 Output_data_plt_i386::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1063 {
1064   0, 0, 0, 0,                           // Replaced with offset to .plt.
1065   0, 0, 0, 0,                           // Replaced with size of .plt.
1066   0,                                    // Augmentation size.
1067   elfcpp::DW_CFA_def_cfa_offset, 8,     // DW_CFA_def_cfa_offset: 8.
1068   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1069   elfcpp::DW_CFA_def_cfa_offset, 12,    // DW_CFA_def_cfa_offset: 12.
1070   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1071   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1072   11,                                   // Block length.
1073   elfcpp::DW_OP_breg4, 4,               // Push %esp + 4.
1074   elfcpp::DW_OP_breg8, 0,               // Push %eip.
1075   elfcpp::DW_OP_lit15,                  // Push 0xf.
1076   elfcpp::DW_OP_and,                    // & (%eip & 0xf).
1077   elfcpp::DW_OP_lit11,                  // Push 0xb.
1078   elfcpp::DW_OP_ge,                     // >= ((%eip & 0xf) >= 0xb)
1079   elfcpp::DW_OP_lit2,                   // Push 2.
1080   elfcpp::DW_OP_shl,                    // << (((%eip & 0xf) >= 0xb) << 2)
1081   elfcpp::DW_OP_plus,                   // + ((((%eip&0xf)>=0xb)<<2)+%esp+4
1082   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1083   elfcpp::DW_CFA_nop,
1084   elfcpp::DW_CFA_nop,
1085   elfcpp::DW_CFA_nop
1086 };
1087
1088 // Write out the PLT.  This uses the hand-coded instructions above,
1089 // and adjusts them as needed.  This is all specified by the i386 ELF
1090 // Processor Supplement.
1091
1092 void
1093 Output_data_plt_i386::do_write(Output_file* of)
1094 {
1095   const off_t offset = this->offset();
1096   const section_size_type oview_size =
1097     convert_to_section_size_type(this->data_size());
1098   unsigned char* const oview = of->get_output_view(offset, oview_size);
1099
1100   const off_t got_file_offset = this->got_plt_->offset();
1101   gold_assert(parameters->incremental_update()
1102               || (got_file_offset + this->got_plt_->data_size()
1103                   == this->got_irelative_->offset()));
1104   const section_size_type got_size =
1105     convert_to_section_size_type(this->got_plt_->data_size()
1106                                  + this->got_irelative_->data_size());
1107   unsigned char* const got_view = of->get_output_view(got_file_offset,
1108                                                       got_size);
1109
1110   unsigned char* pov = oview;
1111
1112   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
1113   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
1114
1115   if (parameters->options().output_is_position_independent())
1116     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
1117   else
1118     {
1119       memcpy(pov, exec_first_plt_entry, plt_entry_size);
1120       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
1121       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
1122     }
1123   pov += plt_entry_size;
1124
1125   unsigned char* got_pov = got_view;
1126
1127   memset(got_pov, 0, 12);
1128   got_pov += 12;
1129
1130   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
1131
1132   unsigned int plt_offset = plt_entry_size;
1133   unsigned int plt_rel_offset = 0;
1134   unsigned int got_offset = 12;
1135   const unsigned int count = this->count_ + this->irelative_count_;
1136   for (unsigned int i = 0;
1137        i < count;
1138        ++i,
1139          pov += plt_entry_size,
1140          got_pov += 4,
1141          plt_offset += plt_entry_size,
1142          plt_rel_offset += rel_size,
1143          got_offset += 4)
1144     {
1145       // Set and adjust the PLT entry itself.
1146
1147       if (parameters->options().output_is_position_independent())
1148         {
1149           memcpy(pov, dyn_plt_entry, plt_entry_size);
1150           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
1151         }
1152       else
1153         {
1154           memcpy(pov, exec_plt_entry, plt_entry_size);
1155           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1156                                                       (got_address
1157                                                        + got_offset));
1158         }
1159
1160       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1161       elfcpp::Swap<32, false>::writeval(pov + 12,
1162                                         - (plt_offset + plt_entry_size));
1163
1164       // Set the entry in the GOT.
1165       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
1166     }
1167
1168   // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
1169   // the GOT to point to the actual symbol value, rather than point to
1170   // the PLT entry.  That will let the dynamic linker call the right
1171   // function when resolving IRELATIVE relocations.
1172   unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
1173   for (std::vector<Global_ifunc>::const_iterator p =
1174          this->global_ifuncs_.begin();
1175        p != this->global_ifuncs_.end();
1176        ++p)
1177     {
1178       const Sized_symbol<32>* ssym =
1179         static_cast<const Sized_symbol<32>*>(p->sym);
1180       elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1181                                         ssym->value());
1182     }
1183
1184   for (std::vector<Local_ifunc>::const_iterator p =
1185          this->local_ifuncs_.begin();
1186        p != this->local_ifuncs_.end();
1187        ++p)
1188     {
1189       const Symbol_value<32>* psymval =
1190         p->object->local_symbol(p->local_sym_index);
1191       elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1192                                         psymval->value(p->object, 0));
1193     }
1194
1195   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1196   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1197
1198   of->write_output_view(offset, oview_size, oview);
1199   of->write_output_view(got_file_offset, got_size, got_view);
1200 }
1201
1202 // Create the PLT section.
1203
1204 void
1205 Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
1206 {
1207   if (this->plt_ == NULL)
1208     {
1209       // Create the GOT sections first.
1210       this->got_section(symtab, layout);
1211
1212       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_,
1213                                             this->got_irelative_);
1214       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1215                                       (elfcpp::SHF_ALLOC
1216                                        | elfcpp::SHF_EXECINSTR),
1217                                       this->plt_, ORDER_PLT, false);
1218
1219       // Make the sh_info field of .rel.plt point to .plt.
1220       Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
1221       rel_plt_os->set_info_section(this->plt_->output_section());
1222     }
1223 }
1224
1225 // Create a PLT entry for a global symbol.
1226
1227 void
1228 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
1229 {
1230   if (gsym->has_plt_offset())
1231     return;
1232   if (this->plt_ == NULL)
1233     this->make_plt_section(symtab, layout);
1234   this->plt_->add_entry(symtab, layout, gsym);
1235 }
1236
1237 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1238
1239 void
1240 Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1241                                         Sized_relobj_file<32, false>* relobj,
1242                                         unsigned int local_sym_index)
1243 {
1244   if (relobj->local_has_plt_offset(local_sym_index))
1245     return;
1246   if (this->plt_ == NULL)
1247     this->make_plt_section(symtab, layout);
1248   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1249                                                               relobj,
1250                                                               local_sym_index);
1251   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1252 }
1253
1254 // Return the number of entries in the PLT.
1255
1256 unsigned int
1257 Target_i386::plt_entry_count() const
1258 {
1259   if (this->plt_ == NULL)
1260     return 0;
1261   return this->plt_->entry_count();
1262 }
1263
1264 // Return the offset of the first non-reserved PLT entry.
1265
1266 unsigned int
1267 Target_i386::first_plt_entry_offset() const
1268 {
1269   return Output_data_plt_i386::first_plt_entry_offset();
1270 }
1271
1272 // Return the size of each PLT entry.
1273
1274 unsigned int
1275 Target_i386::plt_entry_size() const
1276 {
1277   return Output_data_plt_i386::get_plt_entry_size();
1278 }
1279
1280 // Get the section to use for TLS_DESC relocations.
1281
1282 Target_i386::Reloc_section*
1283 Target_i386::rel_tls_desc_section(Layout* layout) const
1284 {
1285   return this->plt_section()->rel_tls_desc(layout);
1286 }
1287
1288 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1289
1290 void
1291 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1292 {
1293   if (this->tls_base_symbol_defined_)
1294     return;
1295
1296   Output_segment* tls_segment = layout->tls_segment();
1297   if (tls_segment != NULL)
1298     {
1299       bool is_exec = parameters->options().output_is_executable();
1300       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1301                                        Symbol_table::PREDEFINED,
1302                                        tls_segment, 0, 0,
1303                                        elfcpp::STT_TLS,
1304                                        elfcpp::STB_LOCAL,
1305                                        elfcpp::STV_HIDDEN, 0,
1306                                        (is_exec
1307                                         ? Symbol::SEGMENT_END
1308                                         : Symbol::SEGMENT_START),
1309                                        true);
1310     }
1311   this->tls_base_symbol_defined_ = true;
1312 }
1313
1314 // Create a GOT entry for the TLS module index.
1315
1316 unsigned int
1317 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1318                                  Sized_relobj_file<32, false>* object)
1319 {
1320   if (this->got_mod_index_offset_ == -1U)
1321     {
1322       gold_assert(symtab != NULL && layout != NULL && object != NULL);
1323       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1324       Output_data_got<32, false>* got = this->got_section(symtab, layout);
1325       unsigned int got_offset = got->add_constant(0);
1326       rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
1327                          got_offset);
1328       got->add_constant(0);
1329       this->got_mod_index_offset_ = got_offset;
1330     }
1331   return this->got_mod_index_offset_;
1332 }
1333
1334 // Optimize the TLS relocation type based on what we know about the
1335 // symbol.  IS_FINAL is true if the final address of this symbol is
1336 // known at link time.
1337
1338 tls::Tls_optimization
1339 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
1340 {
1341   // If we are generating a shared library, then we can't do anything
1342   // in the linker.
1343   if (parameters->options().shared())
1344     return tls::TLSOPT_NONE;
1345
1346   switch (r_type)
1347     {
1348     case elfcpp::R_386_TLS_GD:
1349     case elfcpp::R_386_TLS_GOTDESC:
1350     case elfcpp::R_386_TLS_DESC_CALL:
1351       // These are General-Dynamic which permits fully general TLS
1352       // access.  Since we know that we are generating an executable,
1353       // we can convert this to Initial-Exec.  If we also know that
1354       // this is a local symbol, we can further switch to Local-Exec.
1355       if (is_final)
1356         return tls::TLSOPT_TO_LE;
1357       return tls::TLSOPT_TO_IE;
1358
1359     case elfcpp::R_386_TLS_LDM:
1360       // This is Local-Dynamic, which refers to a local symbol in the
1361       // dynamic TLS block.  Since we know that we generating an
1362       // executable, we can switch to Local-Exec.
1363       return tls::TLSOPT_TO_LE;
1364
1365     case elfcpp::R_386_TLS_LDO_32:
1366       // Another type of Local-Dynamic relocation.
1367       return tls::TLSOPT_TO_LE;
1368
1369     case elfcpp::R_386_TLS_IE:
1370     case elfcpp::R_386_TLS_GOTIE:
1371     case elfcpp::R_386_TLS_IE_32:
1372       // These are Initial-Exec relocs which get the thread offset
1373       // from the GOT.  If we know that we are linking against the
1374       // local symbol, we can switch to Local-Exec, which links the
1375       // thread offset into the instruction.
1376       if (is_final)
1377         return tls::TLSOPT_TO_LE;
1378       return tls::TLSOPT_NONE;
1379
1380     case elfcpp::R_386_TLS_LE:
1381     case elfcpp::R_386_TLS_LE_32:
1382       // When we already have Local-Exec, there is nothing further we
1383       // can do.
1384       return tls::TLSOPT_NONE;
1385
1386     default:
1387       gold_unreachable();
1388     }
1389 }
1390
1391 // Get the Reference_flags for a particular relocation.
1392
1393 int
1394 Target_i386::Scan::get_reference_flags(unsigned int r_type)
1395 {
1396   switch (r_type)
1397     {
1398     case elfcpp::R_386_NONE:
1399     case elfcpp::R_386_GNU_VTINHERIT:
1400     case elfcpp::R_386_GNU_VTENTRY:
1401     case elfcpp::R_386_GOTPC:
1402       // No symbol reference.
1403       return 0;
1404
1405     case elfcpp::R_386_32:
1406     case elfcpp::R_386_16:
1407     case elfcpp::R_386_8:
1408       return Symbol::ABSOLUTE_REF;
1409
1410     case elfcpp::R_386_PC32:
1411     case elfcpp::R_386_PC16:
1412     case elfcpp::R_386_PC8:
1413     case elfcpp::R_386_GOTOFF:
1414       return Symbol::RELATIVE_REF;
1415
1416     case elfcpp::R_386_PLT32:
1417       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1418
1419     case elfcpp::R_386_GOT32:
1420       // Absolute in GOT.
1421       return Symbol::ABSOLUTE_REF;
1422
1423     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1424     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1425     case elfcpp::R_386_TLS_DESC_CALL:
1426     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1427     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1428     case elfcpp::R_386_TLS_IE:            // Initial-exec
1429     case elfcpp::R_386_TLS_IE_32:
1430     case elfcpp::R_386_TLS_GOTIE:
1431     case elfcpp::R_386_TLS_LE:            // Local-exec
1432     case elfcpp::R_386_TLS_LE_32:
1433       return Symbol::TLS_REF;
1434
1435     case elfcpp::R_386_COPY:
1436     case elfcpp::R_386_GLOB_DAT:
1437     case elfcpp::R_386_JUMP_SLOT:
1438     case elfcpp::R_386_RELATIVE:
1439     case elfcpp::R_386_IRELATIVE:
1440     case elfcpp::R_386_TLS_TPOFF:
1441     case elfcpp::R_386_TLS_DTPMOD32:
1442     case elfcpp::R_386_TLS_DTPOFF32:
1443     case elfcpp::R_386_TLS_TPOFF32:
1444     case elfcpp::R_386_TLS_DESC:
1445     case elfcpp::R_386_32PLT:
1446     case elfcpp::R_386_TLS_GD_32:
1447     case elfcpp::R_386_TLS_GD_PUSH:
1448     case elfcpp::R_386_TLS_GD_CALL:
1449     case elfcpp::R_386_TLS_GD_POP:
1450     case elfcpp::R_386_TLS_LDM_32:
1451     case elfcpp::R_386_TLS_LDM_PUSH:
1452     case elfcpp::R_386_TLS_LDM_CALL:
1453     case elfcpp::R_386_TLS_LDM_POP:
1454     case elfcpp::R_386_USED_BY_INTEL_200:
1455     default:
1456       // Not expected.  We will give an error later.
1457       return 0;
1458     }
1459 }
1460
1461 // Report an unsupported relocation against a local symbol.
1462
1463 void
1464 Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
1465                                            unsigned int r_type)
1466 {
1467   gold_error(_("%s: unsupported reloc %u against local symbol"),
1468              object->name().c_str(), r_type);
1469 }
1470
1471 // Return whether we need to make a PLT entry for a relocation of a
1472 // given type against a STT_GNU_IFUNC symbol.
1473
1474 bool
1475 Target_i386::Scan::reloc_needs_plt_for_ifunc(
1476     Sized_relobj_file<32, false>* object,
1477     unsigned int r_type)
1478 {
1479   int flags = Scan::get_reference_flags(r_type);
1480   if (flags & Symbol::TLS_REF)
1481     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1482                object->name().c_str(), r_type);
1483   return flags != 0;
1484 }
1485
1486 // Scan a relocation for a local symbol.
1487
1488 inline void
1489 Target_i386::Scan::local(Symbol_table* symtab,
1490                          Layout* layout,
1491                          Target_i386* target,
1492                          Sized_relobj_file<32, false>* object,
1493                          unsigned int data_shndx,
1494                          Output_section* output_section,
1495                          const elfcpp::Rel<32, false>& reloc,
1496                          unsigned int r_type,
1497                          const elfcpp::Sym<32, false>& lsym)
1498 {
1499   // A local STT_GNU_IFUNC symbol may require a PLT entry.
1500   if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1501       && this->reloc_needs_plt_for_ifunc(object, r_type))
1502     {
1503       unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1504       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1505     }
1506
1507   switch (r_type)
1508     {
1509     case elfcpp::R_386_NONE:
1510     case elfcpp::R_386_GNU_VTINHERIT:
1511     case elfcpp::R_386_GNU_VTENTRY:
1512       break;
1513
1514     case elfcpp::R_386_32:
1515       // If building a shared library (or a position-independent
1516       // executable), we need to create a dynamic relocation for
1517       // this location. The relocation applied at link time will
1518       // apply the link-time value, so we flag the location with
1519       // an R_386_RELATIVE relocation so the dynamic loader can
1520       // relocate it easily.
1521       if (parameters->options().output_is_position_independent())
1522         {
1523           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1524           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1525           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
1526                                       output_section, data_shndx,
1527                                       reloc.get_r_offset());
1528         }
1529       break;
1530
1531     case elfcpp::R_386_16:
1532     case elfcpp::R_386_8:
1533       // If building a shared library (or a position-independent
1534       // executable), we need to create a dynamic relocation for
1535       // this location. Because the addend needs to remain in the
1536       // data section, we need to be careful not to apply this
1537       // relocation statically.
1538       if (parameters->options().output_is_position_independent())
1539         {
1540           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1541           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1542           if (lsym.get_st_type() != elfcpp::STT_SECTION)
1543             rel_dyn->add_local(object, r_sym, r_type, output_section,
1544                                data_shndx, reloc.get_r_offset());
1545           else
1546             {
1547               gold_assert(lsym.get_st_value() == 0);
1548               unsigned int shndx = lsym.get_st_shndx();
1549               bool is_ordinary;
1550               shndx = object->adjust_sym_shndx(r_sym, shndx,
1551                                                &is_ordinary);
1552               if (!is_ordinary)
1553                 object->error(_("section symbol %u has bad shndx %u"),
1554                               r_sym, shndx);
1555               else
1556                 rel_dyn->add_local_section(object, shndx,
1557                                            r_type, output_section,
1558                                            data_shndx, reloc.get_r_offset());
1559             }
1560         }
1561       break;
1562
1563     case elfcpp::R_386_PC32:
1564     case elfcpp::R_386_PC16:
1565     case elfcpp::R_386_PC8:
1566       break;
1567
1568     case elfcpp::R_386_PLT32:
1569       // Since we know this is a local symbol, we can handle this as a
1570       // PC32 reloc.
1571       break;
1572
1573     case elfcpp::R_386_GOTOFF:
1574     case elfcpp::R_386_GOTPC:
1575       // We need a GOT section.
1576       target->got_section(symtab, layout);
1577       break;
1578
1579     case elfcpp::R_386_GOT32:
1580       {
1581         // The symbol requires a GOT entry.
1582         Output_data_got<32, false>* got = target->got_section(symtab, layout);
1583         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1584
1585         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
1586         // lets function pointers compare correctly with shared
1587         // libraries.  Otherwise we would need an IRELATIVE reloc.
1588         bool is_new;
1589         if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1590           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1591         else
1592           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1593         if (is_new)
1594           {
1595             // If we are generating a shared object, we need to add a
1596             // dynamic RELATIVE relocation for this symbol's GOT entry.
1597             if (parameters->options().output_is_position_independent())
1598               {
1599                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1600                 unsigned int got_offset =
1601                   object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1602                 rel_dyn->add_local_relative(object, r_sym,
1603                                             elfcpp::R_386_RELATIVE,
1604                                             got, got_offset);
1605               }
1606           }
1607       }
1608       break;
1609
1610       // These are relocations which should only be seen by the
1611       // dynamic linker, and should never be seen here.
1612     case elfcpp::R_386_COPY:
1613     case elfcpp::R_386_GLOB_DAT:
1614     case elfcpp::R_386_JUMP_SLOT:
1615     case elfcpp::R_386_RELATIVE:
1616     case elfcpp::R_386_IRELATIVE:
1617     case elfcpp::R_386_TLS_TPOFF:
1618     case elfcpp::R_386_TLS_DTPMOD32:
1619     case elfcpp::R_386_TLS_DTPOFF32:
1620     case elfcpp::R_386_TLS_TPOFF32:
1621     case elfcpp::R_386_TLS_DESC:
1622       gold_error(_("%s: unexpected reloc %u in object file"),
1623                  object->name().c_str(), r_type);
1624       break;
1625
1626       // These are initial TLS relocs, which are expected when
1627       // linking.
1628     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1629     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1630     case elfcpp::R_386_TLS_DESC_CALL:
1631     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1632     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1633     case elfcpp::R_386_TLS_IE:            // Initial-exec
1634     case elfcpp::R_386_TLS_IE_32:
1635     case elfcpp::R_386_TLS_GOTIE:
1636     case elfcpp::R_386_TLS_LE:            // Local-exec
1637     case elfcpp::R_386_TLS_LE_32:
1638       {
1639         bool output_is_shared = parameters->options().shared();
1640         const tls::Tls_optimization optimized_type
1641             = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1642         switch (r_type)
1643           {
1644           case elfcpp::R_386_TLS_GD:          // Global-dynamic
1645             if (optimized_type == tls::TLSOPT_NONE)
1646               {
1647                 // Create a pair of GOT entries for the module index and
1648                 // dtv-relative offset.
1649                 Output_data_got<32, false>* got
1650                     = target->got_section(symtab, layout);
1651                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1652                 unsigned int shndx = lsym.get_st_shndx();
1653                 bool is_ordinary;
1654                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1655                 if (!is_ordinary)
1656                   object->error(_("local symbol %u has bad shndx %u"),
1657                               r_sym, shndx);
1658                 else
1659                   got->add_local_pair_with_rel(object, r_sym, shndx,
1660                                                GOT_TYPE_TLS_PAIR,
1661                                                target->rel_dyn_section(layout),
1662                                                elfcpp::R_386_TLS_DTPMOD32, 0);
1663               }
1664             else if (optimized_type != tls::TLSOPT_TO_LE)
1665               unsupported_reloc_local(object, r_type);
1666             break;
1667
1668           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
1669             target->define_tls_base_symbol(symtab, layout);
1670             if (optimized_type == tls::TLSOPT_NONE)
1671               {
1672                 // Create a double GOT entry with an R_386_TLS_DESC
1673                 // reloc.  The R_386_TLS_DESC reloc is resolved
1674                 // lazily, so the GOT entry needs to be in an area in
1675                 // .got.plt, not .got.  Call got_section to make sure
1676                 // the section has been created.
1677                 target->got_section(symtab, layout);
1678                 Output_data_got<32, false>* got = target->got_tlsdesc_section();
1679                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1680                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
1681                   {
1682                     unsigned int got_offset = got->add_constant(0);
1683                     // The local symbol value is stored in the second
1684                     // GOT entry.
1685                     got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
1686                     // That set the GOT offset of the local symbol to
1687                     // point to the second entry, but we want it to
1688                     // point to the first.
1689                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
1690                                                  got_offset);
1691                     Reloc_section* rt = target->rel_tls_desc_section(layout);
1692                     rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
1693                   }
1694               }
1695             else if (optimized_type != tls::TLSOPT_TO_LE)
1696               unsupported_reloc_local(object, r_type);
1697             break;
1698
1699           case elfcpp::R_386_TLS_DESC_CALL:
1700             break;
1701
1702           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1703             if (optimized_type == tls::TLSOPT_NONE)
1704               {
1705                 // Create a GOT entry for the module index.
1706                 target->got_mod_index_entry(symtab, layout, object);
1707               }
1708             else if (optimized_type != tls::TLSOPT_TO_LE)
1709               unsupported_reloc_local(object, r_type);
1710             break;
1711
1712           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1713             break;
1714
1715           case elfcpp::R_386_TLS_IE:          // Initial-exec
1716           case elfcpp::R_386_TLS_IE_32:
1717           case elfcpp::R_386_TLS_GOTIE:
1718             layout->set_has_static_tls();
1719             if (optimized_type == tls::TLSOPT_NONE)
1720               {
1721                 // For the R_386_TLS_IE relocation, we need to create a
1722                 // dynamic relocation when building a shared library.
1723                 if (r_type == elfcpp::R_386_TLS_IE
1724                     && parameters->options().shared())
1725                   {
1726                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1727                     unsigned int r_sym
1728                         = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1729                     rel_dyn->add_local_relative(object, r_sym,
1730                                                 elfcpp::R_386_RELATIVE,
1731                                                 output_section, data_shndx,
1732                                                 reloc.get_r_offset());
1733                   }
1734                 // Create a GOT entry for the tp-relative offset.
1735                 Output_data_got<32, false>* got
1736                     = target->got_section(symtab, layout);
1737                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1738                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1739                                            ? elfcpp::R_386_TLS_TPOFF32
1740                                            : elfcpp::R_386_TLS_TPOFF);
1741                 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1742                                          ? GOT_TYPE_TLS_OFFSET
1743                                          : GOT_TYPE_TLS_NOFFSET);
1744                 got->add_local_with_rel(object, r_sym, got_type,
1745                                         target->rel_dyn_section(layout),
1746                                         dyn_r_type);
1747               }
1748             else if (optimized_type != tls::TLSOPT_TO_LE)
1749               unsupported_reloc_local(object, r_type);
1750             break;
1751
1752           case elfcpp::R_386_TLS_LE:          // Local-exec
1753           case elfcpp::R_386_TLS_LE_32:
1754             layout->set_has_static_tls();
1755             if (output_is_shared)
1756               {
1757                 // We need to create a dynamic relocation.
1758                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1759                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1760                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1761                                            ? elfcpp::R_386_TLS_TPOFF32
1762                                            : elfcpp::R_386_TLS_TPOFF);
1763                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1764                 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1765                                    data_shndx, reloc.get_r_offset());
1766               }
1767             break;
1768
1769           default:
1770             gold_unreachable();
1771           }
1772       }
1773       break;
1774
1775     case elfcpp::R_386_32PLT:
1776     case elfcpp::R_386_TLS_GD_32:
1777     case elfcpp::R_386_TLS_GD_PUSH:
1778     case elfcpp::R_386_TLS_GD_CALL:
1779     case elfcpp::R_386_TLS_GD_POP:
1780     case elfcpp::R_386_TLS_LDM_32:
1781     case elfcpp::R_386_TLS_LDM_PUSH:
1782     case elfcpp::R_386_TLS_LDM_CALL:
1783     case elfcpp::R_386_TLS_LDM_POP:
1784     case elfcpp::R_386_USED_BY_INTEL_200:
1785     default:
1786       unsupported_reloc_local(object, r_type);
1787       break;
1788     }
1789 }
1790
1791 // Report an unsupported relocation against a global symbol.
1792
1793 void
1794 Target_i386::Scan::unsupported_reloc_global(
1795     Sized_relobj_file<32, false>* object,
1796     unsigned int r_type,
1797     Symbol* gsym)
1798 {
1799   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1800              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1801 }
1802
1803 inline bool
1804 Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
1805 {
1806   switch (r_type)
1807     {
1808     case elfcpp::R_386_32:
1809     case elfcpp::R_386_16:
1810     case elfcpp::R_386_8:
1811     case elfcpp::R_386_GOTOFF:
1812     case elfcpp::R_386_GOT32:
1813       {
1814         return true;
1815       }
1816     default:
1817       return false;
1818     }
1819   return false;
1820 }
1821
1822 inline bool
1823 Target_i386::Scan::local_reloc_may_be_function_pointer(
1824   Symbol_table* ,
1825   Layout* ,
1826   Target_i386* ,
1827   Sized_relobj_file<32, false>* ,
1828   unsigned int ,
1829   Output_section* ,
1830   const elfcpp::Rel<32, false>& ,
1831   unsigned int r_type,
1832   const elfcpp::Sym<32, false>&)
1833 {
1834   return possible_function_pointer_reloc(r_type);
1835 }
1836
1837 inline bool
1838 Target_i386::Scan::global_reloc_may_be_function_pointer(
1839   Symbol_table* ,
1840   Layout* ,
1841   Target_i386* ,
1842   Sized_relobj_file<32, false>* ,
1843   unsigned int ,
1844   Output_section* ,
1845   const elfcpp::Rel<32, false>& ,
1846   unsigned int r_type,
1847   Symbol*)
1848 {
1849   return possible_function_pointer_reloc(r_type);
1850 }
1851
1852 // Scan a relocation for a global symbol.
1853
1854 inline void
1855 Target_i386::Scan::global(Symbol_table* symtab,
1856                           Layout* layout,
1857                           Target_i386* target,
1858                           Sized_relobj_file<32, false>* object,
1859                           unsigned int data_shndx,
1860                           Output_section* output_section,
1861                           const elfcpp::Rel<32, false>& reloc,
1862                           unsigned int r_type,
1863                           Symbol* gsym)
1864 {
1865   // A STT_GNU_IFUNC symbol may require a PLT entry.
1866   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1867       && this->reloc_needs_plt_for_ifunc(object, r_type))
1868     target->make_plt_entry(symtab, layout, gsym);
1869
1870   switch (r_type)
1871     {
1872     case elfcpp::R_386_NONE:
1873     case elfcpp::R_386_GNU_VTINHERIT:
1874     case elfcpp::R_386_GNU_VTENTRY:
1875       break;
1876
1877     case elfcpp::R_386_32:
1878     case elfcpp::R_386_16:
1879     case elfcpp::R_386_8:
1880       {
1881         // Make a PLT entry if necessary.
1882         if (gsym->needs_plt_entry())
1883           {
1884             target->make_plt_entry(symtab, layout, gsym);
1885             // Since this is not a PC-relative relocation, we may be
1886             // taking the address of a function. In that case we need to
1887             // set the entry in the dynamic symbol table to the address of
1888             // the PLT entry.
1889             if (gsym->is_from_dynobj() && !parameters->options().shared())
1890               gsym->set_needs_dynsym_value();
1891           }
1892         // Make a dynamic relocation if necessary.
1893         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
1894           {
1895             if (gsym->may_need_copy_reloc())
1896               {
1897                 target->copy_reloc(symtab, layout, object,
1898                                    data_shndx, output_section, gsym, reloc);
1899               }
1900             else if (r_type == elfcpp::R_386_32
1901                      && gsym->type() == elfcpp::STT_GNU_IFUNC
1902                      && gsym->can_use_relative_reloc(false)
1903                      && !gsym->is_from_dynobj()
1904                      && !gsym->is_undefined()
1905                      && !gsym->is_preemptible())
1906               {
1907                 // Use an IRELATIVE reloc for a locally defined
1908                 // STT_GNU_IFUNC symbol.  This makes a function
1909                 // address in a PIE executable match the address in a
1910                 // shared library that it links against.
1911                 Reloc_section* rel_dyn = target->rel_irelative_section(layout);
1912                 rel_dyn->add_symbolless_global_addend(gsym,
1913                                                       elfcpp::R_386_IRELATIVE,
1914                                                       output_section,
1915                                                       object, data_shndx,
1916                                                       reloc.get_r_offset());
1917               }
1918             else if (r_type == elfcpp::R_386_32
1919                      && gsym->can_use_relative_reloc(false))
1920               {
1921                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1922                 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1923                                              output_section, object,
1924                                              data_shndx, reloc.get_r_offset());
1925               }
1926             else
1927               {
1928                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1929                 rel_dyn->add_global(gsym, r_type, output_section, object,
1930                                     data_shndx, reloc.get_r_offset());
1931               }
1932           }
1933       }
1934       break;
1935
1936     case elfcpp::R_386_PC32:
1937     case elfcpp::R_386_PC16:
1938     case elfcpp::R_386_PC8:
1939       {
1940         // Make a PLT entry if necessary.
1941         if (gsym->needs_plt_entry())
1942           {
1943             // These relocations are used for function calls only in
1944             // non-PIC code.  For a 32-bit relocation in a shared library,
1945             // we'll need a text relocation anyway, so we can skip the
1946             // PLT entry and let the dynamic linker bind the call directly
1947             // to the target.  For smaller relocations, we should use a
1948             // PLT entry to ensure that the call can reach.
1949             if (!parameters->options().shared()
1950                 || r_type != elfcpp::R_386_PC32)
1951               target->make_plt_entry(symtab, layout, gsym);
1952           }
1953         // Make a dynamic relocation if necessary.
1954         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
1955           {
1956             if (gsym->may_need_copy_reloc())
1957               {
1958                 target->copy_reloc(symtab, layout, object,
1959                                    data_shndx, output_section, gsym, reloc);
1960               }
1961             else
1962               {
1963                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1964                 rel_dyn->add_global(gsym, r_type, output_section, object,
1965                                     data_shndx, reloc.get_r_offset());
1966               }
1967           }
1968       }
1969       break;
1970
1971     case elfcpp::R_386_GOT32:
1972       {
1973         // The symbol requires a GOT entry.
1974         Output_data_got<32, false>* got = target->got_section(symtab, layout);
1975         if (gsym->final_value_is_known())
1976           {
1977             // For a STT_GNU_IFUNC symbol we want the PLT address.
1978             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1979               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
1980             else
1981               got->add_global(gsym, GOT_TYPE_STANDARD);
1982           }
1983         else
1984           {
1985             // If this symbol is not fully resolved, we need to add a
1986             // GOT entry with a dynamic relocation.
1987             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1988
1989             // Use a GLOB_DAT rather than a RELATIVE reloc if:
1990             //
1991             // 1) The symbol may be defined in some other module.
1992             //
1993             // 2) We are building a shared library and this is a
1994             // protected symbol; using GLOB_DAT means that the dynamic
1995             // linker can use the address of the PLT in the main
1996             // executable when appropriate so that function address
1997             // comparisons work.
1998             //
1999             // 3) This is a STT_GNU_IFUNC symbol in position dependent
2000             // code, again so that function address comparisons work.
2001             if (gsym->is_from_dynobj()
2002                 || gsym->is_undefined()
2003                 || gsym->is_preemptible()
2004                 || (gsym->visibility() == elfcpp::STV_PROTECTED
2005                     && parameters->options().shared())
2006                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2007                     && parameters->options().output_is_position_independent()))
2008               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
2009                                        rel_dyn, elfcpp::R_386_GLOB_DAT);
2010             else
2011               {
2012                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2013                 // offset into the GOT, so that function pointer
2014                 // comparisons work correctly.
2015                 bool is_new;
2016                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2017                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2018                 else
2019                   {
2020                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2021                     // Tell the dynamic linker to use the PLT address
2022                     // when resolving relocations.
2023                     if (gsym->is_from_dynobj()
2024                         && !parameters->options().shared())
2025                       gsym->set_needs_dynsym_value();
2026                   }
2027                 if (is_new)
2028                   {
2029                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2030                     rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2031                                                  got, got_off);
2032                   }
2033               }
2034           }
2035       }
2036       break;
2037
2038     case elfcpp::R_386_PLT32:
2039       // If the symbol is fully resolved, this is just a PC32 reloc.
2040       // Otherwise we need a PLT entry.
2041       if (gsym->final_value_is_known())
2042         break;
2043       // If building a shared library, we can also skip the PLT entry
2044       // if the symbol is defined in the output file and is protected
2045       // or hidden.
2046       if (gsym->is_defined()
2047           && !gsym->is_from_dynobj()
2048           && !gsym->is_preemptible())
2049         break;
2050       target->make_plt_entry(symtab, layout, gsym);
2051       break;
2052
2053     case elfcpp::R_386_GOTOFF:
2054     case elfcpp::R_386_GOTPC:
2055       // We need a GOT section.
2056       target->got_section(symtab, layout);
2057       break;
2058
2059       // These are relocations which should only be seen by the
2060       // dynamic linker, and should never be seen here.
2061     case elfcpp::R_386_COPY:
2062     case elfcpp::R_386_GLOB_DAT:
2063     case elfcpp::R_386_JUMP_SLOT:
2064     case elfcpp::R_386_RELATIVE:
2065     case elfcpp::R_386_IRELATIVE:
2066     case elfcpp::R_386_TLS_TPOFF:
2067     case elfcpp::R_386_TLS_DTPMOD32:
2068     case elfcpp::R_386_TLS_DTPOFF32:
2069     case elfcpp::R_386_TLS_TPOFF32:
2070     case elfcpp::R_386_TLS_DESC:
2071       gold_error(_("%s: unexpected reloc %u in object file"),
2072                  object->name().c_str(), r_type);
2073       break;
2074
2075       // These are initial tls relocs, which are expected when
2076       // linking.
2077     case elfcpp::R_386_TLS_GD:            // Global-dynamic
2078     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
2079     case elfcpp::R_386_TLS_DESC_CALL:
2080     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
2081     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
2082     case elfcpp::R_386_TLS_IE:            // Initial-exec
2083     case elfcpp::R_386_TLS_IE_32:
2084     case elfcpp::R_386_TLS_GOTIE:
2085     case elfcpp::R_386_TLS_LE:            // Local-exec
2086     case elfcpp::R_386_TLS_LE_32:
2087       {
2088         const bool is_final = gsym->final_value_is_known();
2089         const tls::Tls_optimization optimized_type
2090             = Target_i386::optimize_tls_reloc(is_final, r_type);
2091         switch (r_type)
2092           {
2093           case elfcpp::R_386_TLS_GD:          // Global-dynamic
2094             if (optimized_type == tls::TLSOPT_NONE)
2095               {
2096                 // Create a pair of GOT entries for the module index and
2097                 // dtv-relative offset.
2098                 Output_data_got<32, false>* got
2099                     = target->got_section(symtab, layout);
2100                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2101                                              target->rel_dyn_section(layout),
2102                                              elfcpp::R_386_TLS_DTPMOD32,
2103                                              elfcpp::R_386_TLS_DTPOFF32);
2104               }
2105             else if (optimized_type == tls::TLSOPT_TO_IE)
2106               {
2107                 // Create a GOT entry for the tp-relative offset.
2108                 Output_data_got<32, false>* got
2109                     = target->got_section(symtab, layout);
2110                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2111                                          target->rel_dyn_section(layout),
2112                                          elfcpp::R_386_TLS_TPOFF);
2113               }
2114             else if (optimized_type != tls::TLSOPT_TO_LE)
2115               unsupported_reloc_global(object, r_type, gsym);
2116             break;
2117
2118           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
2119             target->define_tls_base_symbol(symtab, layout);
2120             if (optimized_type == tls::TLSOPT_NONE)
2121               {
2122                 // Create a double GOT entry with an R_386_TLS_DESC
2123                 // reloc.  The R_386_TLS_DESC reloc is resolved
2124                 // lazily, so the GOT entry needs to be in an area in
2125                 // .got.plt, not .got.  Call got_section to make sure
2126                 // the section has been created.
2127                 target->got_section(symtab, layout);
2128                 Output_data_got<32, false>* got = target->got_tlsdesc_section();
2129                 Reloc_section* rt = target->rel_tls_desc_section(layout);
2130                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
2131                                              elfcpp::R_386_TLS_DESC, 0);
2132               }
2133             else if (optimized_type == tls::TLSOPT_TO_IE)
2134               {
2135                 // Create a GOT entry for the tp-relative offset.
2136                 Output_data_got<32, false>* got
2137                     = target->got_section(symtab, layout);
2138                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2139                                          target->rel_dyn_section(layout),
2140                                          elfcpp::R_386_TLS_TPOFF);
2141               }
2142             else if (optimized_type != tls::TLSOPT_TO_LE)
2143               unsupported_reloc_global(object, r_type, gsym);
2144             break;
2145
2146           case elfcpp::R_386_TLS_DESC_CALL:
2147             break;
2148
2149           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
2150             if (optimized_type == tls::TLSOPT_NONE)
2151               {
2152                 // Create a GOT entry for the module index.
2153                 target->got_mod_index_entry(symtab, layout, object);
2154               }
2155             else if (optimized_type != tls::TLSOPT_TO_LE)
2156               unsupported_reloc_global(object, r_type, gsym);
2157             break;
2158
2159           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
2160             break;
2161
2162           case elfcpp::R_386_TLS_IE:          // Initial-exec
2163           case elfcpp::R_386_TLS_IE_32:
2164           case elfcpp::R_386_TLS_GOTIE:
2165             layout->set_has_static_tls();
2166             if (optimized_type == tls::TLSOPT_NONE)
2167               {
2168                 // For the R_386_TLS_IE relocation, we need to create a
2169                 // dynamic relocation when building a shared library.
2170                 if (r_type == elfcpp::R_386_TLS_IE
2171                     && parameters->options().shared())
2172                   {
2173                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2174                     rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2175                                                  output_section, object,
2176                                                  data_shndx,
2177                                                  reloc.get_r_offset());
2178                   }
2179                 // Create a GOT entry for the tp-relative offset.
2180                 Output_data_got<32, false>* got
2181                     = target->got_section(symtab, layout);
2182                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2183                                            ? elfcpp::R_386_TLS_TPOFF32
2184                                            : elfcpp::R_386_TLS_TPOFF);
2185                 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2186                                          ? GOT_TYPE_TLS_OFFSET
2187                                          : GOT_TYPE_TLS_NOFFSET);
2188                 got->add_global_with_rel(gsym, got_type,
2189                                          target->rel_dyn_section(layout),
2190                                          dyn_r_type);
2191               }
2192             else if (optimized_type != tls::TLSOPT_TO_LE)
2193               unsupported_reloc_global(object, r_type, gsym);
2194             break;
2195
2196           case elfcpp::R_386_TLS_LE:          // Local-exec
2197           case elfcpp::R_386_TLS_LE_32:
2198             layout->set_has_static_tls();
2199             if (parameters->options().shared())
2200               {
2201                 // We need to create a dynamic relocation.
2202                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2203                                            ? elfcpp::R_386_TLS_TPOFF32
2204                                            : elfcpp::R_386_TLS_TPOFF);
2205                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2206                 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
2207                                     data_shndx, reloc.get_r_offset());
2208               }
2209             break;
2210
2211           default:
2212             gold_unreachable();
2213           }
2214       }
2215       break;
2216
2217     case elfcpp::R_386_32PLT:
2218     case elfcpp::R_386_TLS_GD_32:
2219     case elfcpp::R_386_TLS_GD_PUSH:
2220     case elfcpp::R_386_TLS_GD_CALL:
2221     case elfcpp::R_386_TLS_GD_POP:
2222     case elfcpp::R_386_TLS_LDM_32:
2223     case elfcpp::R_386_TLS_LDM_PUSH:
2224     case elfcpp::R_386_TLS_LDM_CALL:
2225     case elfcpp::R_386_TLS_LDM_POP:
2226     case elfcpp::R_386_USED_BY_INTEL_200:
2227     default:
2228       unsupported_reloc_global(object, r_type, gsym);
2229       break;
2230     }
2231 }
2232
2233 // Process relocations for gc.
2234
2235 void
2236 Target_i386::gc_process_relocs(Symbol_table* symtab,
2237                                Layout* layout,
2238                                Sized_relobj_file<32, false>* object,
2239                                unsigned int data_shndx,
2240                                unsigned int,
2241                                const unsigned char* prelocs,
2242                                size_t reloc_count,
2243                                Output_section* output_section,
2244                                bool needs_special_offset_handling,
2245                                size_t local_symbol_count,
2246                                const unsigned char* plocal_symbols)
2247 {
2248   gold::gc_process_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2249                           Target_i386::Scan,
2250                           Target_i386::Relocatable_size_for_reloc>(
2251     symtab,
2252     layout,
2253     this,
2254     object,
2255     data_shndx,
2256     prelocs,
2257     reloc_count,
2258     output_section,
2259     needs_special_offset_handling,
2260     local_symbol_count,
2261     plocal_symbols);
2262 }
2263
2264 // Scan relocations for a section.
2265
2266 void
2267 Target_i386::scan_relocs(Symbol_table* symtab,
2268                          Layout* layout,
2269                          Sized_relobj_file<32, false>* object,
2270                          unsigned int data_shndx,
2271                          unsigned int sh_type,
2272                          const unsigned char* prelocs,
2273                          size_t reloc_count,
2274                          Output_section* output_section,
2275                          bool needs_special_offset_handling,
2276                          size_t local_symbol_count,
2277                          const unsigned char* plocal_symbols)
2278 {
2279   if (sh_type == elfcpp::SHT_RELA)
2280     {
2281       gold_error(_("%s: unsupported RELA reloc section"),
2282                  object->name().c_str());
2283       return;
2284     }
2285
2286   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2287                     Target_i386::Scan>(
2288     symtab,
2289     layout,
2290     this,
2291     object,
2292     data_shndx,
2293     prelocs,
2294     reloc_count,
2295     output_section,
2296     needs_special_offset_handling,
2297     local_symbol_count,
2298     plocal_symbols);
2299 }
2300
2301 // Finalize the sections.
2302
2303 void
2304 Target_i386::do_finalize_sections(
2305     Layout* layout,
2306     const Input_objects*,
2307     Symbol_table* symtab)
2308 {
2309   const Reloc_section* rel_plt = (this->plt_ == NULL
2310                                   ? NULL
2311                                   : this->plt_->rel_plt());
2312   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
2313                                   this->rel_dyn_, true, false);
2314
2315   // Emit any relocs we saved in an attempt to avoid generating COPY
2316   // relocs.
2317   if (this->copy_relocs_.any_saved_relocs())
2318     this->copy_relocs_.emit(this->rel_dyn_section(layout));
2319
2320   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2321   // the .got.plt section.
2322   Symbol* sym = this->global_offset_table_;
2323   if (sym != NULL)
2324     {
2325       uint32_t data_size = this->got_plt_->current_data_size();
2326       symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
2327     }
2328
2329   if (parameters->doing_static_link()
2330       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
2331     {
2332       // If linking statically, make sure that the __rel_iplt symbols
2333       // were defined if necessary, even if we didn't create a PLT.
2334       static const Define_symbol_in_segment syms[] =
2335         {
2336           {
2337             "__rel_iplt_start",         // name
2338             elfcpp::PT_LOAD,            // segment_type
2339             elfcpp::PF_W,               // segment_flags_set
2340             elfcpp::PF(0),              // segment_flags_clear
2341             0,                          // value
2342             0,                          // size
2343             elfcpp::STT_NOTYPE,         // type
2344             elfcpp::STB_GLOBAL,         // binding
2345             elfcpp::STV_HIDDEN,         // visibility
2346             0,                          // nonvis
2347             Symbol::SEGMENT_START,      // offset_from_base
2348             true                        // only_if_ref
2349           },
2350           {
2351             "__rel_iplt_end",           // name
2352             elfcpp::PT_LOAD,            // segment_type
2353             elfcpp::PF_W,               // segment_flags_set
2354             elfcpp::PF(0),              // segment_flags_clear
2355             0,                          // value
2356             0,                          // size
2357             elfcpp::STT_NOTYPE,         // type
2358             elfcpp::STB_GLOBAL,         // binding
2359             elfcpp::STV_HIDDEN,         // visibility
2360             0,                          // nonvis
2361             Symbol::SEGMENT_START,      // offset_from_base
2362             true                        // only_if_ref
2363           }
2364         };
2365
2366       symtab->define_symbols(layout, 2, syms,
2367                              layout->script_options()->saw_sections_clause());
2368     }
2369 }
2370
2371 // Return whether a direct absolute static relocation needs to be applied.
2372 // In cases where Scan::local() or Scan::global() has created
2373 // a dynamic relocation other than R_386_RELATIVE, the addend
2374 // of the relocation is carried in the data, and we must not
2375 // apply the static relocation.
2376
2377 inline bool
2378 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
2379                                                  unsigned int r_type,
2380                                                  bool is_32bit,
2381                                                  Output_section* output_section)
2382 {
2383   // If the output section is not allocated, then we didn't call
2384   // scan_relocs, we didn't create a dynamic reloc, and we must apply
2385   // the reloc here.
2386   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
2387     return true;
2388
2389   int ref_flags = Scan::get_reference_flags(r_type);
2390
2391   // For local symbols, we will have created a non-RELATIVE dynamic
2392   // relocation only if (a) the output is position independent,
2393   // (b) the relocation is absolute (not pc- or segment-relative), and
2394   // (c) the relocation is not 32 bits wide.
2395   if (gsym == NULL)
2396     return !(parameters->options().output_is_position_independent()
2397              && (ref_flags & Symbol::ABSOLUTE_REF)
2398              && !is_32bit);
2399
2400   // For global symbols, we use the same helper routines used in the
2401   // scan pass.  If we did not create a dynamic relocation, or if we
2402   // created a RELATIVE dynamic relocation, we should apply the static
2403   // relocation.
2404   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
2405   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
2406                 && gsym->can_use_relative_reloc(ref_flags
2407                                                 & Symbol::FUNCTION_CALL);
2408   return !has_dyn || is_rel;
2409 }
2410
2411 // Perform a relocation.
2412
2413 inline bool
2414 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
2415                                 Target_i386* target,
2416                                 Output_section* output_section,
2417                                 size_t relnum,
2418                                 const elfcpp::Rel<32, false>& rel,
2419                                 unsigned int r_type,
2420                                 const Sized_symbol<32>* gsym,
2421                                 const Symbol_value<32>* psymval,
2422                                 unsigned char* view,
2423                                 elfcpp::Elf_types<32>::Elf_Addr address,
2424                                 section_size_type view_size)
2425 {
2426   if (this->skip_call_tls_get_addr_)
2427     {
2428       if ((r_type != elfcpp::R_386_PLT32
2429            && r_type != elfcpp::R_386_PC32)
2430           || gsym == NULL
2431           || strcmp(gsym->name(), "___tls_get_addr") != 0)
2432         gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2433                                _("missing expected TLS relocation"));
2434       else
2435         {
2436           this->skip_call_tls_get_addr_ = false;
2437           return false;
2438         }
2439     }
2440
2441   const Sized_relobj_file<32, false>* object = relinfo->object;
2442
2443   // Pick the value to use for symbols defined in shared objects.
2444   Symbol_value<32> symval;
2445   if (gsym != NULL
2446       && gsym->type() == elfcpp::STT_GNU_IFUNC
2447       && r_type == elfcpp::R_386_32
2448       && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
2449       && gsym->can_use_relative_reloc(false)
2450       && !gsym->is_from_dynobj()
2451       && !gsym->is_undefined()
2452       && !gsym->is_preemptible())
2453     {
2454       // In this case we are generating a R_386_IRELATIVE reloc.  We
2455       // want to use the real value of the symbol, not the PLT offset.
2456     }
2457   else if (gsym != NULL
2458            && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2459     {
2460       symval.set_output_value(target->plt_address_for_global(gsym)
2461                               + gsym->plt_offset());
2462       psymval = &symval;
2463     }
2464   else if (gsym == NULL && psymval->is_ifunc_symbol())
2465     {
2466       unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2467       if (object->local_has_plt_offset(r_sym))
2468         {
2469           symval.set_output_value(target->plt_address_for_local(object, r_sym)
2470                                   + object->local_plt_offset(r_sym));
2471           psymval = &symval;
2472         }
2473     }
2474
2475   // Get the GOT offset if needed.
2476   // The GOT pointer points to the end of the GOT section.
2477   // We need to subtract the size of the GOT section to get
2478   // the actual offset to use in the relocation.
2479   bool have_got_offset = false;
2480   unsigned int got_offset = 0;
2481   switch (r_type)
2482     {
2483     case elfcpp::R_386_GOT32:
2484       if (gsym != NULL)
2485         {
2486           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2487           got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
2488                         - target->got_size());
2489         }
2490       else
2491         {
2492           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2493           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2494           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2495                         - target->got_size());
2496         }
2497       have_got_offset = true;
2498       break;
2499
2500     default:
2501       break;
2502     }
2503
2504   switch (r_type)
2505     {
2506     case elfcpp::R_386_NONE:
2507     case elfcpp::R_386_GNU_VTINHERIT:
2508     case elfcpp::R_386_GNU_VTENTRY:
2509       break;
2510
2511     case elfcpp::R_386_32:
2512       if (should_apply_static_reloc(gsym, r_type, true, output_section))
2513         Relocate_functions<32, false>::rel32(view, object, psymval);
2514       break;
2515
2516     case elfcpp::R_386_PC32:
2517       if (should_apply_static_reloc(gsym, r_type, true, output_section))
2518         Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2519       break;
2520
2521     case elfcpp::R_386_16:
2522       if (should_apply_static_reloc(gsym, r_type, false, output_section))
2523         Relocate_functions<32, false>::rel16(view, object, psymval);
2524       break;
2525
2526     case elfcpp::R_386_PC16:
2527       if (should_apply_static_reloc(gsym, r_type, false, output_section))
2528         Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
2529       break;
2530
2531     case elfcpp::R_386_8:
2532       if (should_apply_static_reloc(gsym, r_type, false, output_section))
2533         Relocate_functions<32, false>::rel8(view, object, psymval);
2534       break;
2535
2536     case elfcpp::R_386_PC8:
2537       if (should_apply_static_reloc(gsym, r_type, false, output_section))
2538         Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
2539       break;
2540
2541     case elfcpp::R_386_PLT32:
2542       gold_assert(gsym == NULL
2543                   || gsym->has_plt_offset()
2544                   || gsym->final_value_is_known()
2545                   || (gsym->is_defined()
2546                       && !gsym->is_from_dynobj()
2547                       && !gsym->is_preemptible()));
2548       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2549       break;
2550
2551     case elfcpp::R_386_GOT32:
2552       gold_assert(have_got_offset);
2553       Relocate_functions<32, false>::rel32(view, got_offset);
2554       break;
2555
2556     case elfcpp::R_386_GOTOFF:
2557       {
2558         elfcpp::Elf_types<32>::Elf_Addr value;
2559         value = (psymval->value(object, 0)
2560                  - target->got_plt_section()->address());
2561         Relocate_functions<32, false>::rel32(view, value);
2562       }
2563       break;
2564
2565     case elfcpp::R_386_GOTPC:
2566       {
2567         elfcpp::Elf_types<32>::Elf_Addr value;
2568         value = target->got_plt_section()->address();
2569         Relocate_functions<32, false>::pcrel32(view, value, address);
2570       }
2571       break;
2572
2573     case elfcpp::R_386_COPY:
2574     case elfcpp::R_386_GLOB_DAT:
2575     case elfcpp::R_386_JUMP_SLOT:
2576     case elfcpp::R_386_RELATIVE:
2577     case elfcpp::R_386_IRELATIVE:
2578       // These are outstanding tls relocs, which are unexpected when
2579       // linking.
2580     case elfcpp::R_386_TLS_TPOFF:
2581     case elfcpp::R_386_TLS_DTPMOD32:
2582     case elfcpp::R_386_TLS_DTPOFF32:
2583     case elfcpp::R_386_TLS_TPOFF32:
2584     case elfcpp::R_386_TLS_DESC:
2585       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2586                              _("unexpected reloc %u in object file"),
2587                              r_type);
2588       break;
2589
2590       // These are initial tls relocs, which are expected when
2591       // linking.
2592     case elfcpp::R_386_TLS_GD:             // Global-dynamic
2593     case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
2594     case elfcpp::R_386_TLS_DESC_CALL:
2595     case elfcpp::R_386_TLS_LDM:            // Local-dynamic
2596     case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
2597     case elfcpp::R_386_TLS_IE:             // Initial-exec
2598     case elfcpp::R_386_TLS_IE_32:
2599     case elfcpp::R_386_TLS_GOTIE:
2600     case elfcpp::R_386_TLS_LE:             // Local-exec
2601     case elfcpp::R_386_TLS_LE_32:
2602       this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
2603                          view, address, view_size);
2604       break;
2605
2606     case elfcpp::R_386_32PLT:
2607     case elfcpp::R_386_TLS_GD_32:
2608     case elfcpp::R_386_TLS_GD_PUSH:
2609     case elfcpp::R_386_TLS_GD_CALL:
2610     case elfcpp::R_386_TLS_GD_POP:
2611     case elfcpp::R_386_TLS_LDM_32:
2612     case elfcpp::R_386_TLS_LDM_PUSH:
2613     case elfcpp::R_386_TLS_LDM_CALL:
2614     case elfcpp::R_386_TLS_LDM_POP:
2615     case elfcpp::R_386_USED_BY_INTEL_200:
2616     default:
2617       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2618                              _("unsupported reloc %u"),
2619                              r_type);
2620       break;
2621     }
2622
2623   return true;
2624 }
2625
2626 // Perform a TLS relocation.
2627
2628 inline void
2629 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
2630                                     Target_i386* target,
2631                                     size_t relnum,
2632                                     const elfcpp::Rel<32, false>& rel,
2633                                     unsigned int r_type,
2634                                     const Sized_symbol<32>* gsym,
2635                                     const Symbol_value<32>* psymval,
2636                                     unsigned char* view,
2637                                     elfcpp::Elf_types<32>::Elf_Addr,
2638                                     section_size_type view_size)
2639 {
2640   Output_segment* tls_segment = relinfo->layout->tls_segment();
2641
2642   const Sized_relobj_file<32, false>* object = relinfo->object;
2643
2644   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
2645
2646   const bool is_final = (gsym == NULL
2647                          ? !parameters->options().shared()
2648                          : gsym->final_value_is_known());
2649   const tls::Tls_optimization optimized_type
2650       = Target_i386::optimize_tls_reloc(is_final, r_type);
2651   switch (r_type)
2652     {
2653     case elfcpp::R_386_TLS_GD:           // Global-dynamic
2654       if (optimized_type == tls::TLSOPT_TO_LE)
2655         {
2656           if (tls_segment == NULL)
2657             {
2658               gold_assert(parameters->errors()->error_count() > 0
2659                           || issue_undefined_symbol_error(gsym));
2660               return;
2661             }
2662           this->tls_gd_to_le(relinfo, relnum, tls_segment,
2663                              rel, r_type, value, view,
2664                              view_size);
2665           break;
2666         }
2667       else
2668         {
2669           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2670                                    ? GOT_TYPE_TLS_NOFFSET
2671                                    : GOT_TYPE_TLS_PAIR);
2672           unsigned int got_offset;
2673           if (gsym != NULL)
2674             {
2675               gold_assert(gsym->has_got_offset(got_type));
2676               got_offset = gsym->got_offset(got_type) - target->got_size();
2677             }
2678           else
2679             {
2680               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2681               gold_assert(object->local_has_got_offset(r_sym, got_type));
2682               got_offset = (object->local_got_offset(r_sym, got_type)
2683                             - target->got_size());
2684             }
2685           if (optimized_type == tls::TLSOPT_TO_IE)
2686             {
2687               if (tls_segment == NULL)
2688                 {
2689                   gold_assert(parameters->errors()->error_count() > 0
2690                               || issue_undefined_symbol_error(gsym));
2691                   return;
2692                 }
2693               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
2694                                  got_offset, view, view_size);
2695               break;
2696             }
2697           else if (optimized_type == tls::TLSOPT_NONE)
2698             {
2699               // Relocate the field with the offset of the pair of GOT
2700               // entries.
2701               Relocate_functions<32, false>::rel32(view, got_offset);
2702               break;
2703             }
2704         }
2705       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2706                              _("unsupported reloc %u"),
2707                              r_type);
2708       break;
2709
2710     case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
2711     case elfcpp::R_386_TLS_DESC_CALL:
2712       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
2713       if (optimized_type == tls::TLSOPT_TO_LE)
2714         {
2715           if (tls_segment == NULL)
2716             {
2717               gold_assert(parameters->errors()->error_count() > 0
2718                           || issue_undefined_symbol_error(gsym));
2719               return;
2720             }
2721           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2722                                   rel, r_type, value, view,
2723                                   view_size);
2724           break;
2725         }
2726       else
2727         {
2728           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2729                                    ? GOT_TYPE_TLS_NOFFSET
2730                                    : GOT_TYPE_TLS_DESC);
2731           unsigned int got_offset = 0;
2732           if (r_type == elfcpp::R_386_TLS_GOTDESC
2733               && optimized_type == tls::TLSOPT_NONE)
2734             {
2735               // We created GOT entries in the .got.tlsdesc portion of
2736               // the .got.plt section, but the offset stored in the
2737               // symbol is the offset within .got.tlsdesc.
2738               got_offset = (target->got_size()
2739                             + target->got_plt_section()->data_size());
2740             }
2741           if (gsym != NULL)
2742             {
2743               gold_assert(gsym->has_got_offset(got_type));
2744               got_offset += gsym->got_offset(got_type) - target->got_size();
2745             }
2746           else
2747             {
2748               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2749               gold_assert(object->local_has_got_offset(r_sym, got_type));
2750               got_offset += (object->local_got_offset(r_sym, got_type)
2751                              - target->got_size());
2752             }
2753           if (optimized_type == tls::TLSOPT_TO_IE)
2754             {
2755               if (tls_segment == NULL)
2756                 {
2757                   gold_assert(parameters->errors()->error_count() > 0
2758                               || issue_undefined_symbol_error(gsym));
2759                   return;
2760                 }
2761               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
2762                                       got_offset, view, view_size);
2763               break;
2764             }
2765           else if (optimized_type == tls::TLSOPT_NONE)
2766             {
2767               if (r_type == elfcpp::R_386_TLS_GOTDESC)
2768                 {
2769                   // Relocate the field with the offset of the pair of GOT
2770                   // entries.
2771                   Relocate_functions<32, false>::rel32(view, got_offset);
2772                 }
2773               break;
2774             }
2775         }
2776       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2777                              _("unsupported reloc %u"),
2778                              r_type);
2779       break;
2780
2781     case elfcpp::R_386_TLS_LDM:          // Local-dynamic
2782       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
2783         {
2784           gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2785                                  _("both SUN and GNU model "
2786                                    "TLS relocations"));
2787           break;
2788         }
2789       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
2790       if (optimized_type == tls::TLSOPT_TO_LE)
2791         {
2792           if (tls_segment == NULL)
2793             {
2794               gold_assert(parameters->errors()->error_count() > 0
2795                           || issue_undefined_symbol_error(gsym));
2796               return;
2797             }
2798           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
2799                              value, view, view_size);
2800           break;
2801         }
2802       else if (optimized_type == tls::TLSOPT_NONE)
2803         {
2804           // Relocate the field with the offset of the GOT entry for
2805           // the module index.
2806           unsigned int got_offset;
2807           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2808                         - target->got_size());
2809           Relocate_functions<32, false>::rel32(view, got_offset);
2810           break;
2811         }
2812       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2813                              _("unsupported reloc %u"),
2814                              r_type);
2815       break;
2816
2817     case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
2818       if (optimized_type == tls::TLSOPT_TO_LE)
2819         {
2820           // This reloc can appear in debugging sections, in which
2821           // case we must not convert to local-exec.  We decide what
2822           // to do based on whether the section is marked as
2823           // containing executable code.  That is what the GNU linker
2824           // does as well.
2825           elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
2826           if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
2827             {
2828               if (tls_segment == NULL)
2829                 {
2830                   gold_assert(parameters->errors()->error_count() > 0
2831                               || issue_undefined_symbol_error(gsym));
2832                   return;
2833                 }
2834               value -= tls_segment->memsz();
2835             }
2836         }
2837       Relocate_functions<32, false>::rel32(view, value);
2838       break;
2839
2840     case elfcpp::R_386_TLS_IE:           // Initial-exec
2841     case elfcpp::R_386_TLS_GOTIE:
2842     case elfcpp::R_386_TLS_IE_32:
2843       if (optimized_type == tls::TLSOPT_TO_LE)
2844         {
2845           if (tls_segment == NULL)
2846             {
2847               gold_assert(parameters->errors()->error_count() > 0
2848                           || issue_undefined_symbol_error(gsym));
2849               return;
2850             }
2851           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2852                                               rel, r_type, value, view,
2853                                               view_size);
2854           break;
2855         }
2856       else if (optimized_type == tls::TLSOPT_NONE)
2857         {
2858           // Relocate the field with the offset of the GOT entry for
2859           // the tp-relative offset of the symbol.
2860           unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2861                                    ? GOT_TYPE_TLS_OFFSET
2862                                    : GOT_TYPE_TLS_NOFFSET);
2863           unsigned int got_offset;
2864           if (gsym != NULL)
2865             {
2866               gold_assert(gsym->has_got_offset(got_type));
2867               got_offset = gsym->got_offset(got_type);
2868             }
2869           else
2870             {
2871               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2872               gold_assert(object->local_has_got_offset(r_sym, got_type));
2873               got_offset = object->local_got_offset(r_sym, got_type);
2874             }
2875           // For the R_386_TLS_IE relocation, we need to apply the
2876           // absolute address of the GOT entry.
2877           if (r_type == elfcpp::R_386_TLS_IE)
2878             got_offset += target->got_plt_section()->address();
2879           // All GOT offsets are relative to the end of the GOT.
2880           got_offset -= target->got_size();
2881           Relocate_functions<32, false>::rel32(view, got_offset);
2882           break;
2883         }
2884       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2885                              _("unsupported reloc %u"),
2886                              r_type);
2887       break;
2888
2889     case elfcpp::R_386_TLS_LE:           // Local-exec
2890       // If we're creating a shared library, a dynamic relocation will
2891       // have been created for this location, so do not apply it now.
2892       if (!parameters->options().shared())
2893         {
2894           if (tls_segment == NULL)
2895             {
2896               gold_assert(parameters->errors()->error_count() > 0
2897                           || issue_undefined_symbol_error(gsym));
2898               return;
2899             }
2900           value -= tls_segment->memsz();
2901           Relocate_functions<32, false>::rel32(view, value);
2902         }
2903       break;
2904
2905     case elfcpp::R_386_TLS_LE_32:
2906       // If we're creating a shared library, a dynamic relocation will
2907       // have been created for this location, so do not apply it now.
2908       if (!parameters->options().shared())
2909         {
2910           if (tls_segment == NULL)
2911             {
2912               gold_assert(parameters->errors()->error_count() > 0
2913                           || issue_undefined_symbol_error(gsym));
2914               return;
2915             }
2916           value = tls_segment->memsz() - value;
2917           Relocate_functions<32, false>::rel32(view, value);
2918         }
2919       break;
2920     }
2921 }
2922
2923 // Do a relocation in which we convert a TLS General-Dynamic to a
2924 // Local-Exec.
2925
2926 inline void
2927 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
2928                                     size_t relnum,
2929                                     Output_segment* tls_segment,
2930                                     const elfcpp::Rel<32, false>& rel,
2931                                     unsigned int,
2932                                     elfcpp::Elf_types<32>::Elf_Addr value,
2933                                     unsigned char* view,
2934                                     section_size_type view_size)
2935 {
2936   // leal foo(,%reg,1),%eax; call ___tls_get_addr
2937   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2938   // leal foo(%reg),%eax; call ___tls_get_addr
2939   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2940
2941   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2942   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2943
2944   unsigned char op1 = view[-1];
2945   unsigned char op2 = view[-2];
2946
2947   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2948                  op2 == 0x8d || op2 == 0x04);
2949   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2950
2951   int roff = 5;
2952
2953   if (op2 == 0x04)
2954     {
2955       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2956       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2957       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2958                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2959       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2960     }
2961   else
2962     {
2963       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2964                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2965       if (rel.get_r_offset() + 9 < view_size
2966           && view[9] == 0x90)
2967         {
2968           // There is a trailing nop.  Use the size byte subl.
2969           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2970           roff = 6;
2971         }
2972       else
2973         {
2974           // Use the five byte subl.
2975           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2976         }
2977     }
2978
2979   value = tls_segment->memsz() - value;
2980   Relocate_functions<32, false>::rel32(view + roff, value);
2981
2982   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2983   // We can skip it.
2984   this->skip_call_tls_get_addr_ = true;
2985 }
2986
2987 // Do a relocation in which we convert a TLS General-Dynamic to an
2988 // Initial-Exec.
2989
2990 inline void
2991 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
2992                                     size_t relnum,
2993                                     Output_segment*,
2994                                     const elfcpp::Rel<32, false>& rel,
2995                                     unsigned int,
2996                                     elfcpp::Elf_types<32>::Elf_Addr value,
2997                                     unsigned char* view,
2998                                     section_size_type view_size)
2999 {
3000   // leal foo(,%ebx,1),%eax; call ___tls_get_addr
3001   //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
3002
3003   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3004   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3005
3006   unsigned char op1 = view[-1];
3007   unsigned char op2 = view[-2];
3008
3009   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3010                  op2 == 0x8d || op2 == 0x04);
3011   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3012
3013   int roff = 5;
3014
3015   // FIXME: For now, support only the first (SIB) form.
3016   tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
3017
3018   if (op2 == 0x04)
3019     {
3020       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3021       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3022       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3023                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3024       memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
3025     }
3026   else
3027     {
3028       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3029                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
3030       if (rel.get_r_offset() + 9 < view_size
3031           && view[9] == 0x90)
3032         {
3033           // FIXME: This is not the right instruction sequence.
3034           // There is a trailing nop.  Use the size byte subl.
3035           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3036           roff = 6;
3037         }
3038       else
3039         {
3040           // FIXME: This is not the right instruction sequence.
3041           // Use the five byte subl.
3042           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
3043         }
3044     }
3045
3046   Relocate_functions<32, false>::rel32(view + roff, value);
3047
3048   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3049   // We can skip it.
3050   this->skip_call_tls_get_addr_ = true;
3051 }
3052
3053 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3054 // General-Dynamic to a Local-Exec.
3055
3056 inline void
3057 Target_i386::Relocate::tls_desc_gd_to_le(
3058     const Relocate_info<32, false>* relinfo,
3059     size_t relnum,
3060     Output_segment* tls_segment,
3061     const elfcpp::Rel<32, false>& rel,
3062     unsigned int r_type,
3063     elfcpp::Elf_types<32>::Elf_Addr value,
3064     unsigned char* view,
3065     section_size_type view_size)
3066 {
3067   if (r_type == elfcpp::R_386_TLS_GOTDESC)
3068     {
3069       // leal foo@TLSDESC(%ebx), %eax
3070       // ==> leal foo@NTPOFF, %eax
3071       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3072       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3073       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3074                      view[-2] == 0x8d && view[-1] == 0x83);
3075       view[-1] = 0x05;
3076       value -= tls_segment->memsz();
3077       Relocate_functions<32, false>::rel32(view, value);
3078     }
3079   else
3080     {
3081       // call *foo@TLSCALL(%eax)
3082       // ==> nop; nop
3083       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3084       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3085       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3086                      view[0] == 0xff && view[1] == 0x10);
3087       view[0] = 0x66;
3088       view[1] = 0x90;
3089     }
3090 }
3091
3092 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3093 // General-Dynamic to an Initial-Exec.
3094
3095 inline void
3096 Target_i386::Relocate::tls_desc_gd_to_ie(
3097     const Relocate_info<32, false>* relinfo,
3098     size_t relnum,
3099     Output_segment*,
3100     const elfcpp::Rel<32, false>& rel,
3101     unsigned int r_type,
3102     elfcpp::Elf_types<32>::Elf_Addr value,
3103     unsigned char* view,
3104     section_size_type view_size)
3105 {
3106   if (r_type == elfcpp::R_386_TLS_GOTDESC)
3107     {
3108       // leal foo@TLSDESC(%ebx), %eax
3109       // ==> movl foo@GOTNTPOFF(%ebx), %eax
3110       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3111       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3112       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3113                      view[-2] == 0x8d && view[-1] == 0x83);
3114       view[-2] = 0x8b;
3115       Relocate_functions<32, false>::rel32(view, value);
3116     }
3117   else
3118     {
3119       // call *foo@TLSCALL(%eax)
3120       // ==> nop; nop
3121       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3122       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3123       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3124                      view[0] == 0xff && view[1] == 0x10);
3125       view[0] = 0x66;
3126       view[1] = 0x90;
3127     }
3128 }
3129
3130 // Do a relocation in which we convert a TLS Local-Dynamic to a
3131 // Local-Exec.
3132
3133 inline void
3134 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
3135                                     size_t relnum,
3136                                     Output_segment*,
3137                                     const elfcpp::Rel<32, false>& rel,
3138                                     unsigned int,
3139                                     elfcpp::Elf_types<32>::Elf_Addr,
3140                                     unsigned char* view,
3141                                     section_size_type view_size)
3142 {
3143   // leal foo(%reg), %eax; call ___tls_get_addr
3144   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
3145
3146   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3147   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3148
3149   // FIXME: Does this test really always pass?
3150   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3151                  view[-2] == 0x8d && view[-1] == 0x83);
3152
3153   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3154
3155   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
3156
3157   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3158   // We can skip it.
3159   this->skip_call_tls_get_addr_ = true;
3160 }
3161
3162 // Do a relocation in which we convert a TLS Initial-Exec to a
3163 // Local-Exec.
3164
3165 inline void
3166 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
3167                                     size_t relnum,
3168                                     Output_segment* tls_segment,
3169                                     const elfcpp::Rel<32, false>& rel,
3170                                     unsigned int r_type,
3171                                     elfcpp::Elf_types<32>::Elf_Addr value,
3172                                     unsigned char* view,
3173                                     section_size_type view_size)
3174 {
3175   // We have to actually change the instructions, which means that we
3176   // need to examine the opcodes to figure out which instruction we
3177   // are looking at.
3178   if (r_type == elfcpp::R_386_TLS_IE)
3179     {
3180       // movl %gs:XX,%eax  ==>  movl $YY,%eax
3181       // movl %gs:XX,%reg  ==>  movl $YY,%reg
3182       // addl %gs:XX,%reg  ==>  addl $YY,%reg
3183       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
3184       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3185
3186       unsigned char op1 = view[-1];
3187       if (op1 == 0xa1)
3188         {
3189           // movl XX,%eax  ==>  movl $YY,%eax
3190           view[-1] = 0xb8;
3191         }
3192       else
3193         {
3194           tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3195
3196           unsigned char op2 = view[-2];
3197           if (op2 == 0x8b)
3198             {
3199               // movl XX,%reg  ==>  movl $YY,%reg
3200               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3201                              (op1 & 0xc7) == 0x05);
3202               view[-2] = 0xc7;
3203               view[-1] = 0xc0 | ((op1 >> 3) & 7);
3204             }
3205           else if (op2 == 0x03)
3206             {
3207               // addl XX,%reg  ==>  addl $YY,%reg
3208               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3209                              (op1 & 0xc7) == 0x05);
3210               view[-2] = 0x81;
3211               view[-1] = 0xc0 | ((op1 >> 3) & 7);
3212             }
3213           else
3214             tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3215         }
3216     }
3217   else
3218     {
3219       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
3220       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
3221       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
3222       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3223       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3224
3225       unsigned char op1 = view[-1];
3226       unsigned char op2 = view[-2];
3227       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3228                      (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
3229       if (op2 == 0x8b)
3230         {
3231           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
3232           view[-2] = 0xc7;
3233           view[-1] = 0xc0 | ((op1 >> 3) & 7);
3234         }
3235       else if (op2 == 0x2b)
3236         {
3237           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
3238           view[-2] = 0x81;
3239           view[-1] = 0xe8 | ((op1 >> 3) & 7);
3240         }
3241       else if (op2 == 0x03)
3242         {
3243           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
3244           view[-2] = 0x81;
3245           view[-1] = 0xc0 | ((op1 >> 3) & 7);
3246         }
3247       else
3248         tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3249     }
3250
3251   value = tls_segment->memsz() - value;
3252   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
3253     value = - value;
3254
3255   Relocate_functions<32, false>::rel32(view, value);
3256 }
3257
3258 // Relocate section data.
3259
3260 void
3261 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
3262                               unsigned int sh_type,
3263                               const unsigned char* prelocs,
3264                               size_t reloc_count,
3265                               Output_section* output_section,
3266                               bool needs_special_offset_handling,
3267                               unsigned char* view,
3268                               elfcpp::Elf_types<32>::Elf_Addr address,
3269                               section_size_type view_size,
3270                               const Reloc_symbol_changes* reloc_symbol_changes)
3271 {
3272   gold_assert(sh_type == elfcpp::SHT_REL);
3273
3274   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
3275                          Target_i386::Relocate>(
3276     relinfo,
3277     this,
3278     prelocs,
3279     reloc_count,
3280     output_section,
3281     needs_special_offset_handling,
3282     view,
3283     address,
3284     view_size,
3285     reloc_symbol_changes);
3286 }
3287
3288 // Return the size of a relocation while scanning during a relocatable
3289 // link.
3290
3291 unsigned int
3292 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
3293     unsigned int r_type,
3294     Relobj* object)
3295 {
3296   switch (r_type)
3297     {
3298     case elfcpp::R_386_NONE:
3299     case elfcpp::R_386_GNU_VTINHERIT:
3300     case elfcpp::R_386_GNU_VTENTRY:
3301     case elfcpp::R_386_TLS_GD:            // Global-dynamic
3302     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
3303     case elfcpp::R_386_TLS_DESC_CALL:
3304     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
3305     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
3306     case elfcpp::R_386_TLS_IE:            // Initial-exec
3307     case elfcpp::R_386_TLS_IE_32:
3308     case elfcpp::R_386_TLS_GOTIE:
3309     case elfcpp::R_386_TLS_LE:            // Local-exec
3310     case elfcpp::R_386_TLS_LE_32:
3311       return 0;
3312
3313     case elfcpp::R_386_32:
3314     case elfcpp::R_386_PC32:
3315     case elfcpp::R_386_GOT32:
3316     case elfcpp::R_386_PLT32:
3317     case elfcpp::R_386_GOTOFF:
3318     case elfcpp::R_386_GOTPC:
3319      return 4;
3320
3321     case elfcpp::R_386_16:
3322     case elfcpp::R_386_PC16:
3323       return 2;
3324
3325     case elfcpp::R_386_8:
3326     case elfcpp::R_386_PC8:
3327       return 1;
3328
3329       // These are relocations which should only be seen by the
3330       // dynamic linker, and should never be seen here.
3331     case elfcpp::R_386_COPY:
3332     case elfcpp::R_386_GLOB_DAT:
3333     case elfcpp::R_386_JUMP_SLOT:
3334     case elfcpp::R_386_RELATIVE:
3335     case elfcpp::R_386_IRELATIVE:
3336     case elfcpp::R_386_TLS_TPOFF:
3337     case elfcpp::R_386_TLS_DTPMOD32:
3338     case elfcpp::R_386_TLS_DTPOFF32:
3339     case elfcpp::R_386_TLS_TPOFF32:
3340     case elfcpp::R_386_TLS_DESC:
3341       object->error(_("unexpected reloc %u in object file"), r_type);
3342       return 0;
3343
3344     case elfcpp::R_386_32PLT:
3345     case elfcpp::R_386_TLS_GD_32:
3346     case elfcpp::R_386_TLS_GD_PUSH:
3347     case elfcpp::R_386_TLS_GD_CALL:
3348     case elfcpp::R_386_TLS_GD_POP:
3349     case elfcpp::R_386_TLS_LDM_32:
3350     case elfcpp::R_386_TLS_LDM_PUSH:
3351     case elfcpp::R_386_TLS_LDM_CALL:
3352     case elfcpp::R_386_TLS_LDM_POP:
3353     case elfcpp::R_386_USED_BY_INTEL_200:
3354     default:
3355       object->error(_("unsupported reloc %u in object file"), r_type);
3356       return 0;
3357     }
3358 }
3359
3360 // Scan the relocs during a relocatable link.
3361
3362 void
3363 Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
3364                                      Layout* layout,
3365                                      Sized_relobj_file<32, false>* object,
3366                                      unsigned int data_shndx,
3367                                      unsigned int sh_type,
3368                                      const unsigned char* prelocs,
3369                                      size_t reloc_count,
3370                                      Output_section* output_section,
3371                                      bool needs_special_offset_handling,
3372                                      size_t local_symbol_count,
3373                                      const unsigned char* plocal_symbols,
3374                                      Relocatable_relocs* rr)
3375 {
3376   gold_assert(sh_type == elfcpp::SHT_REL);
3377
3378   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
3379     Relocatable_size_for_reloc> Scan_relocatable_relocs;
3380
3381   gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
3382       Scan_relocatable_relocs>(
3383     symtab,
3384     layout,
3385     object,
3386     data_shndx,
3387     prelocs,
3388     reloc_count,
3389     output_section,
3390     needs_special_offset_handling,
3391     local_symbol_count,
3392     plocal_symbols,
3393     rr);
3394 }
3395
3396 // Relocate a section during a relocatable link.
3397
3398 void
3399 Target_i386::relocate_for_relocatable(
3400     const Relocate_info<32, false>* relinfo,
3401     unsigned int sh_type,
3402     const unsigned char* prelocs,
3403     size_t reloc_count,
3404     Output_section* output_section,
3405     off_t offset_in_output_section,
3406     const Relocatable_relocs* rr,
3407     unsigned char* view,
3408     elfcpp::Elf_types<32>::Elf_Addr view_address,
3409     section_size_type view_size,
3410     unsigned char* reloc_view,
3411     section_size_type reloc_view_size)
3412 {
3413   gold_assert(sh_type == elfcpp::SHT_REL);
3414
3415   gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
3416     relinfo,
3417     prelocs,
3418     reloc_count,
3419     output_section,
3420     offset_in_output_section,
3421     rr,
3422     view,
3423     view_address,
3424     view_size,
3425     reloc_view,
3426     reloc_view_size);
3427 }
3428
3429 // Return the value to use for a dynamic which requires special
3430 // treatment.  This is how we support equality comparisons of function
3431 // pointers across shared library boundaries, as described in the
3432 // processor specific ABI supplement.
3433
3434 uint64_t
3435 Target_i386::do_dynsym_value(const Symbol* gsym) const
3436 {
3437   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3438   return this->plt_address_for_global(gsym) + gsym->plt_offset();
3439 }
3440
3441 // Return a string used to fill a code section with nops to take up
3442 // the specified length.
3443
3444 std::string
3445 Target_i386::do_code_fill(section_size_type length) const
3446 {
3447   if (length >= 16)
3448     {
3449       // Build a jmp instruction to skip over the bytes.
3450       unsigned char jmp[5];
3451       jmp[0] = 0xe9;
3452       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3453       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3454               + std::string(length - 5, '\0'));
3455     }
3456
3457   // Nop sequences of various lengths.
3458   const char nop1[1] = { 0x90 };                   // nop
3459   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
3460   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
3461   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
3462   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
3463                          0x00 };                   // leal 0(%esi,1),%esi
3464   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
3465                          0x00, 0x00 };
3466   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
3467                          0x00, 0x00, 0x00 };
3468   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
3469                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
3470   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
3471                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
3472                          0x00 };
3473   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
3474                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
3475                            0x00, 0x00 };
3476   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
3477                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
3478                            0x00, 0x00, 0x00 };
3479   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
3480                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
3481                            0x00, 0x00, 0x00, 0x00 };
3482   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
3483                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
3484                            0x27, 0x00, 0x00, 0x00,
3485                            0x00 };
3486   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
3487                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
3488                            0xbc, 0x27, 0x00, 0x00,
3489                            0x00, 0x00 };
3490   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
3491                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
3492                            0x90, 0x90, 0x90, 0x90,
3493                            0x90, 0x90, 0x90 };
3494
3495   const char* nops[16] = {
3496     NULL,
3497     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3498     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3499   };
3500
3501   return std::string(nops[length], length);
3502 }
3503
3504 // Return the value to use for the base of a DW_EH_PE_datarel offset
3505 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
3506 // assembler can not write out the difference between two labels in
3507 // different sections, so instead of using a pc-relative value they
3508 // use an offset from the GOT.
3509
3510 uint64_t
3511 Target_i386::do_ehframe_datarel_base() const
3512 {
3513   gold_assert(this->global_offset_table_ != NULL);
3514   Symbol* sym = this->global_offset_table_;
3515   Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
3516   return ssym->value();
3517 }
3518
3519 // Return whether SYM should be treated as a call to a non-split
3520 // function.  We don't want that to be true of a call to a
3521 // get_pc_thunk function.
3522
3523 bool
3524 Target_i386::do_is_call_to_non_split(const Symbol* sym, unsigned int) const
3525 {
3526   return (sym->type() == elfcpp::STT_FUNC
3527           && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
3528 }
3529
3530 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3531 // compiled with -fsplit-stack.  The function calls non-split-stack
3532 // code.  We have to change the function so that it always ensures
3533 // that it has enough stack space to run some random function.
3534
3535 void
3536 Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
3537                                 section_offset_type fnoffset,
3538                                 section_size_type fnsize,
3539                                 unsigned char* view,
3540                                 section_size_type view_size,
3541                                 std::string* from,
3542                                 std::string* to) const
3543 {
3544   // The function starts with a comparison of the stack pointer and a
3545   // field in the TCB.  This is followed by a jump.
3546
3547   // cmp %gs:NN,%esp
3548   if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
3549       && fnsize > 7)
3550     {
3551       // We will call __morestack if the carry flag is set after this
3552       // comparison.  We turn the comparison into an stc instruction
3553       // and some nops.
3554       view[fnoffset] = '\xf9';
3555       this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
3556     }
3557   // lea NN(%esp),%ecx
3558   // lea NN(%esp),%edx
3559   else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
3560             || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
3561            && fnsize > 7)
3562     {
3563       // This is loading an offset from the stack pointer for a
3564       // comparison.  The offset is negative, so we decrease the
3565       // offset by the amount of space we need for the stack.  This
3566       // means we will avoid calling __morestack if there happens to
3567       // be plenty of space on the stack already.
3568       unsigned char* pval = view + fnoffset + 3;
3569       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3570       val -= parameters->options().split_stack_adjust_size();
3571       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3572     }
3573   else
3574     {
3575       if (!object->has_no_split_stack())
3576         object->error(_("failed to match split-stack sequence at "
3577                         "section %u offset %0zx"),
3578                       shndx, static_cast<size_t>(fnoffset));
3579       return;
3580     }
3581
3582   // We have to change the function so that it calls
3583   // __morestack_non_split instead of __morestack.  The former will
3584   // allocate additional stack space.
3585   *from = "__morestack";
3586   *to = "__morestack_non_split";
3587 }
3588
3589 // The selector for i386 object files.
3590
3591 class Target_selector_i386 : public Target_selector_freebsd
3592 {
3593 public:
3594   Target_selector_i386()
3595     : Target_selector_freebsd(elfcpp::EM_386, 32, false,
3596                               "elf32-i386", "elf32-i386-freebsd",
3597                               "elf_i386")
3598   { }
3599
3600   Target*
3601   do_instantiate_target()
3602   { return new Target_i386(); }
3603 };
3604
3605 Target_selector_i386 target_selector_i386;
3606
3607 } // End anonymous namespace.