eae6b7fa3397bf9efc1e1b369f81d0e712ccf401
[external/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 //   http://people.redhat.com/drepper/tls.pdf
50 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54  public:
55   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57   Target_i386()
58     : Sized_target<32, false>(&i386_info),
59       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60       copy_relocs_(NULL), dynbss_(NULL)
61   { }
62
63   // Scan the relocations to look for symbol adjustments.
64   void
65   scan_relocs(const General_options& options,
66               Symbol_table* symtab,
67               Layout* layout,
68               Sized_relobj<32, false>* object,
69               unsigned int data_shndx,
70               unsigned int sh_type,
71               const unsigned char* prelocs,
72               size_t reloc_count,
73               Output_section* output_section,
74               bool needs_special_offset_handling,
75               size_t local_symbol_count,
76               const unsigned char* plocal_symbols);
77
78   // Finalize the sections.
79   void
80   do_finalize_sections(Layout*);
81
82   // Return the value to use for a dynamic which requires special
83   // treatment.
84   uint64_t
85   do_dynsym_value(const Symbol*) const;
86
87   // Relocate a section.
88   void
89   relocate_section(const Relocate_info<32, false>*,
90                    unsigned int sh_type,
91                    const unsigned char* prelocs,
92                    size_t reloc_count,
93                    Output_section* output_section,
94                    bool needs_special_offset_handling,
95                    unsigned char* view,
96                    elfcpp::Elf_types<32>::Elf_Addr view_address,
97                    off_t view_size);
98
99   // Return a string used to fill a code section with nops.
100   std::string
101   do_code_fill(off_t length);
102
103   // Return the size of the GOT section.
104   off_t
105   got_size()
106   {
107     gold_assert(this->got_ != NULL);
108     return this->got_->data_size();
109   }
110
111  private:
112   // The class which scans relocations.
113   struct Scan
114   {
115     inline void
116     local(const General_options& options, Symbol_table* symtab,
117           Layout* layout, Target_i386* target,
118           Sized_relobj<32, false>* object,
119           unsigned int data_shndx,
120           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
121           const elfcpp::Sym<32, false>& lsym);
122
123     inline void
124     global(const General_options& options, Symbol_table* symtab,
125            Layout* layout, Target_i386* target,
126            Sized_relobj<32, false>* object,
127            unsigned int data_shndx,
128            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
129            Symbol* gsym);
130
131     static void
132     unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
133
134     static void
135     unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
136                              Symbol*);
137   };
138
139   // The class which implements relocation.
140   class Relocate
141   {
142    public:
143     Relocate()
144       : skip_call_tls_get_addr_(false),
145         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
146     { }
147
148     ~Relocate()
149     {
150       if (this->skip_call_tls_get_addr_)
151         {
152           // FIXME: This needs to specify the location somehow.
153           gold_error(_("missing expected TLS relocation"));
154         }
155     }
156
157     // Return whether the static relocation needs to be applied.
158     inline bool
159     should_apply_static_reloc(const Sized_symbol<32>* gsym,
160                               bool is_absolute_ref,
161                               bool is_function_call,
162                               bool is_32bit);
163
164     // Do a relocation.  Return false if the caller should not issue
165     // any warnings about this relocation.
166     inline bool
167     relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
168              const elfcpp::Rel<32, false>&,
169              unsigned int r_type, const Sized_symbol<32>*,
170              const Symbol_value<32>*,
171              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
172              off_t);
173
174    private:
175     // Do a TLS relocation.
176     inline void
177     relocate_tls(const Relocate_info<32, false>*, size_t relnum,
178                  const elfcpp::Rel<32, false>&,
179                  unsigned int r_type, const Sized_symbol<32>*,
180                  const Symbol_value<32>*,
181                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
182
183     // Do a TLS General-Dynamic to Local-Exec transition.
184     inline void
185     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
186                  Output_segment* tls_segment,
187                  const elfcpp::Rel<32, false>&, unsigned int r_type,
188                  elfcpp::Elf_types<32>::Elf_Addr value,
189                  unsigned char* view,
190                  off_t view_size);
191
192     // Do a TLS Local-Dynamic to Local-Exec transition.
193     inline void
194     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
195                  Output_segment* tls_segment,
196                  const elfcpp::Rel<32, false>&, unsigned int r_type,
197                  elfcpp::Elf_types<32>::Elf_Addr value,
198                  unsigned char* view,
199                  off_t view_size);
200
201     // Do a TLS Initial-Exec to Local-Exec transition.
202     static inline void
203     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
204                  Output_segment* tls_segment,
205                  const elfcpp::Rel<32, false>&, unsigned int r_type,
206                  elfcpp::Elf_types<32>::Elf_Addr value,
207                  unsigned char* view,
208                  off_t view_size);
209
210     // We need to keep track of which type of local dynamic relocation
211     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
212     enum Local_dynamic_type
213     {
214       LOCAL_DYNAMIC_NONE,
215       LOCAL_DYNAMIC_SUN,
216       LOCAL_DYNAMIC_GNU
217     };
218
219     // This is set if we should skip the next reloc, which should be a
220     // PLT32 reloc against ___tls_get_addr.
221     bool skip_call_tls_get_addr_;
222     // The type of local dynamic relocation we have seen in the section
223     // being relocated, if any.
224     Local_dynamic_type local_dynamic_type_;
225   };
226
227   // Adjust TLS relocation type based on the options and whether this
228   // is a local symbol.
229   static tls::Tls_optimization
230   optimize_tls_reloc(bool is_final, int r_type);
231
232   // Get the GOT section, creating it if necessary.
233   Output_data_got<32, false>*
234   got_section(Symbol_table*, Layout*);
235
236   // Get the GOT PLT section.
237   Output_data_space*
238   got_plt_section() const
239   {
240     gold_assert(this->got_plt_ != NULL);
241     return this->got_plt_;
242   }
243
244   // Create a PLT entry for a global symbol.
245   void
246   make_plt_entry(Symbol_table*, Layout*, Symbol*);
247
248   // Get the PLT section.
249   const Output_data_plt_i386*
250   plt_section() const
251   {
252     gold_assert(this->plt_ != NULL);
253     return this->plt_;
254   }
255
256   // Get the dynamic reloc section, creating it if necessary.
257   Reloc_section*
258   rel_dyn_section(Layout*);
259
260   // Return true if the symbol may need a COPY relocation.
261   // References from an executable object to non-function symbols
262   // defined in a dynamic object may need a COPY relocation.
263   bool
264   may_need_copy_reloc(Symbol* gsym)
265   {
266     return (!parameters->output_is_shared()
267             && gsym->is_from_dynobj()
268             && gsym->type() != elfcpp::STT_FUNC);
269   }
270
271   // Copy a relocation against a global symbol.
272   void
273   copy_reloc(const General_options*, Symbol_table*, Layout*,
274              Sized_relobj<32, false>*, unsigned int,
275              Symbol*, const elfcpp::Rel<32, false>&);
276
277   // Information about this specific target which we pass to the
278   // general Target structure.
279   static const Target::Target_info i386_info;
280
281   // The GOT section.
282   Output_data_got<32, false>* got_;
283   // The PLT section.
284   Output_data_plt_i386* plt_;
285   // The GOT PLT section.
286   Output_data_space* got_plt_;
287   // The dynamic reloc section.
288   Reloc_section* rel_dyn_;
289   // Relocs saved to avoid a COPY reloc.
290   Copy_relocs<32, false>* copy_relocs_;
291   // Space for variables copied with a COPY reloc.
292   Output_data_space* dynbss_;
293 };
294
295 const Target::Target_info Target_i386::i386_info =
296 {
297   32,                   // size
298   false,                // is_big_endian
299   elfcpp::EM_386,       // machine_code
300   false,                // has_make_symbol
301   false,                // has_resolve
302   true,                 // has_code_fill
303   true,                 // is_default_stack_executable
304   "/usr/lib/libc.so.1", // dynamic_linker
305   0x08048000,           // default_text_segment_address
306   0x1000,               // abi_pagesize
307   0x1000                // common_pagesize
308 };
309
310 // Get the GOT section, creating it if necessary.
311
312 Output_data_got<32, false>*
313 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
314 {
315   if (this->got_ == NULL)
316     {
317       gold_assert(symtab != NULL && layout != NULL);
318
319       this->got_ = new Output_data_got<32, false>();
320
321       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
322                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
323                                       this->got_);
324
325       // The old GNU linker creates a .got.plt section.  We just
326       // create another set of data in the .got section.  Note that we
327       // always create a PLT if we create a GOT, although the PLT
328       // might be empty.
329       this->got_plt_ = new Output_data_space(4);
330       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
331                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
332                                       this->got_plt_);
333
334       // The first three entries are reserved.
335       this->got_plt_->set_space_size(3 * 4);
336
337       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
338       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
339                                     this->got_plt_,
340                                     0, 0, elfcpp::STT_OBJECT,
341                                     elfcpp::STB_LOCAL,
342                                     elfcpp::STV_HIDDEN, 0,
343                                     false, false);
344     }
345
346   return this->got_;
347 }
348
349 // Get the dynamic reloc section, creating it if necessary.
350
351 Target_i386::Reloc_section*
352 Target_i386::rel_dyn_section(Layout* layout)
353 {
354   if (this->rel_dyn_ == NULL)
355     {
356       gold_assert(layout != NULL);
357       this->rel_dyn_ = new Reloc_section();
358       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
359                                       elfcpp::SHF_ALLOC, this->rel_dyn_);
360     }
361   return this->rel_dyn_;
362 }
363
364 // A class to handle the PLT data.
365
366 class Output_data_plt_i386 : public Output_section_data
367 {
368  public:
369   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
370
371   Output_data_plt_i386(Layout*, Output_data_space*);
372
373   // Add an entry to the PLT.
374   void
375   add_entry(Symbol* gsym);
376
377   // Return the .rel.plt section data.
378   const Reloc_section*
379   rel_plt() const
380   { return this->rel_; }
381
382  protected:
383   void
384   do_adjust_output_section(Output_section* os);
385
386  private:
387   // The size of an entry in the PLT.
388   static const int plt_entry_size = 16;
389
390   // The first entry in the PLT for an executable.
391   static unsigned char exec_first_plt_entry[plt_entry_size];
392
393   // The first entry in the PLT for a shared object.
394   static unsigned char dyn_first_plt_entry[plt_entry_size];
395
396   // Other entries in the PLT for an executable.
397   static unsigned char exec_plt_entry[plt_entry_size];
398
399   // Other entries in the PLT for a shared object.
400   static unsigned char dyn_plt_entry[plt_entry_size];
401
402   // Set the final size.
403   void
404   do_set_address(uint64_t, off_t)
405   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
406
407   // Write out the PLT data.
408   void
409   do_write(Output_file*);
410
411   // The reloc section.
412   Reloc_section* rel_;
413   // The .got.plt section.
414   Output_data_space* got_plt_;
415   // The number of PLT entries.
416   unsigned int count_;
417 };
418
419 // Create the PLT section.  The ordinary .got section is an argument,
420 // since we need to refer to the start.  We also create our own .got
421 // section just for PLT entries.
422
423 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
424                                            Output_data_space* got_plt)
425   : Output_section_data(4), got_plt_(got_plt), count_(0)
426 {
427   this->rel_ = new Reloc_section();
428   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
429                                   elfcpp::SHF_ALLOC, this->rel_);
430 }
431
432 void
433 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
434 {
435   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
436   // linker, and so do we.
437   os->set_entsize(4);
438 }
439
440 // Add an entry to the PLT.
441
442 void
443 Output_data_plt_i386::add_entry(Symbol* gsym)
444 {
445   gold_assert(!gsym->has_plt_offset());
446
447   // Note that when setting the PLT offset we skip the initial
448   // reserved PLT entry.
449   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
450
451   ++this->count_;
452
453   off_t got_offset = this->got_plt_->data_size();
454
455   // Every PLT entry needs a GOT entry which points back to the PLT
456   // entry (this will be changed by the dynamic linker, normally
457   // lazily when the function is called).
458   this->got_plt_->set_space_size(got_offset + 4);
459
460   // Every PLT entry needs a reloc.
461   gsym->set_needs_dynsym_entry();
462   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
463                          got_offset);
464
465   // Note that we don't need to save the symbol.  The contents of the
466   // PLT are independent of which symbols are used.  The symbols only
467   // appear in the relocations.
468 }
469
470 // The first entry in the PLT for an executable.
471
472 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
473 {
474   0xff, 0x35,   // pushl contents of memory address
475   0, 0, 0, 0,   // replaced with address of .got + 4
476   0xff, 0x25,   // jmp indirect
477   0, 0, 0, 0,   // replaced with address of .got + 8
478   0, 0, 0, 0    // unused
479 };
480
481 // The first entry in the PLT for a shared object.
482
483 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
484 {
485   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
486   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
487   0, 0, 0, 0                    // unused
488 };
489
490 // Subsequent entries in the PLT for an executable.
491
492 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
493 {
494   0xff, 0x25,   // jmp indirect
495   0, 0, 0, 0,   // replaced with address of symbol in .got
496   0x68,         // pushl immediate
497   0, 0, 0, 0,   // replaced with offset into relocation table
498   0xe9,         // jmp relative
499   0, 0, 0, 0    // replaced with offset to start of .plt
500 };
501
502 // Subsequent entries in the PLT for a shared object.
503
504 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
505 {
506   0xff, 0xa3,   // jmp *offset(%ebx)
507   0, 0, 0, 0,   // replaced with offset of symbol in .got
508   0x68,         // pushl immediate
509   0, 0, 0, 0,   // replaced with offset into relocation table
510   0xe9,         // jmp relative
511   0, 0, 0, 0    // replaced with offset to start of .plt
512 };
513
514 // Write out the PLT.  This uses the hand-coded instructions above,
515 // and adjusts them as needed.  This is all specified by the i386 ELF
516 // Processor Supplement.
517
518 void
519 Output_data_plt_i386::do_write(Output_file* of)
520 {
521   const off_t offset = this->offset();
522   const off_t oview_size = this->data_size();
523   unsigned char* const oview = of->get_output_view(offset, oview_size);
524
525   const off_t got_file_offset = this->got_plt_->offset();
526   const off_t got_size = this->got_plt_->data_size();
527   unsigned char* const got_view = of->get_output_view(got_file_offset,
528                                                       got_size);
529
530   unsigned char* pov = oview;
531
532   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
533   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
534
535   if (parameters->output_is_shared())
536     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
537   else
538     {
539       memcpy(pov, exec_first_plt_entry, plt_entry_size);
540       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
541       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
542     }
543   pov += plt_entry_size;
544
545   unsigned char* got_pov = got_view;
546
547   memset(got_pov, 0, 12);
548   got_pov += 12;
549
550   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
551
552   unsigned int plt_offset = plt_entry_size;
553   unsigned int plt_rel_offset = 0;
554   unsigned int got_offset = 12;
555   const unsigned int count = this->count_;
556   for (unsigned int i = 0;
557        i < count;
558        ++i,
559          pov += plt_entry_size,
560          got_pov += 4,
561          plt_offset += plt_entry_size,
562          plt_rel_offset += rel_size,
563          got_offset += 4)
564     {
565       // Set and adjust the PLT entry itself.
566
567       if (parameters->output_is_shared())
568         {
569           memcpy(pov, dyn_plt_entry, plt_entry_size);
570           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
571         }
572       else
573         {
574           memcpy(pov, exec_plt_entry, plt_entry_size);
575           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
576                                                       (got_address
577                                                        + got_offset));
578         }
579
580       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
581       elfcpp::Swap<32, false>::writeval(pov + 12,
582                                         - (plt_offset + plt_entry_size));
583
584       // Set the entry in the GOT.
585       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
586     }
587
588   gold_assert(pov - oview == oview_size);
589   gold_assert(got_pov - got_view == got_size);
590
591   of->write_output_view(offset, oview_size, oview);
592   of->write_output_view(got_file_offset, got_size, got_view);
593 }
594
595 // Create a PLT entry for a global symbol.
596
597 void
598 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
599 {
600   if (gsym->has_plt_offset())
601     return;
602
603   if (this->plt_ == NULL)
604     {
605       // Create the GOT sections first.
606       this->got_section(symtab, layout);
607
608       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
609       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
610                                       (elfcpp::SHF_ALLOC
611                                        | elfcpp::SHF_EXECINSTR),
612                                       this->plt_);
613     }
614
615   this->plt_->add_entry(gsym);
616 }
617
618 // Handle a relocation against a non-function symbol defined in a
619 // dynamic object.  The traditional way to handle this is to generate
620 // a COPY relocation to copy the variable at runtime from the shared
621 // object into the executable's data segment.  However, this is
622 // undesirable in general, as if the size of the object changes in the
623 // dynamic object, the executable will no longer work correctly.  If
624 // this relocation is in a writable section, then we can create a
625 // dynamic reloc and the dynamic linker will resolve it to the correct
626 // address at runtime.  However, we do not want do that if the
627 // relocation is in a read-only section, as it would prevent the
628 // readonly segment from being shared.  And if we have to eventually
629 // generate a COPY reloc, then any dynamic relocations will be
630 // useless.  So this means that if this is a writable section, we need
631 // to save the relocation until we see whether we have to create a
632 // COPY relocation for this symbol for any other relocation.
633
634 void
635 Target_i386::copy_reloc(const General_options* options,
636                         Symbol_table* symtab,
637                         Layout* layout,
638                         Sized_relobj<32, false>* object,
639                         unsigned int data_shndx, Symbol* gsym,
640                         const elfcpp::Rel<32, false>& rel)
641 {
642   Sized_symbol<32>* ssym;
643   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
644                                                         SELECT_SIZE(32));
645
646   if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
647                                                data_shndx, ssym))
648     {
649       // So far we do not need a COPY reloc.  Save this relocation.
650       // If it turns out that we never need a COPY reloc for this
651       // symbol, then we will emit the relocation.
652       if (this->copy_relocs_ == NULL)
653         this->copy_relocs_ = new Copy_relocs<32, false>();
654       this->copy_relocs_->save(ssym, object, data_shndx, rel);
655     }
656   else
657     {
658       // Allocate space for this symbol in the .bss section.
659
660       elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
661
662       // There is no defined way to determine the required alignment
663       // of the symbol.  We pick the alignment based on the size.  We
664       // set an arbitrary maximum of 256.
665       unsigned int align;
666       for (align = 1; align < 512; align <<= 1)
667         if ((symsize & align) != 0)
668           break;
669
670       if (this->dynbss_ == NULL)
671         {
672           this->dynbss_ = new Output_data_space(align);
673           layout->add_output_section_data(".bss",
674                                           elfcpp::SHT_NOBITS,
675                                           (elfcpp::SHF_ALLOC
676                                            | elfcpp::SHF_WRITE),
677                                           this->dynbss_);
678         }
679
680       Output_data_space* dynbss = this->dynbss_;
681
682       if (align > dynbss->addralign())
683         dynbss->set_space_alignment(align);
684
685       off_t dynbss_size = dynbss->data_size();
686       dynbss_size = align_address(dynbss_size, align);
687       off_t offset = dynbss_size;
688       dynbss->set_space_size(dynbss_size + symsize);
689
690       symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
691
692       // Add the COPY reloc.
693       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
694       rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
695     }
696 }
697
698 // Optimize the TLS relocation type based on what we know about the
699 // symbol.  IS_FINAL is true if the final address of this symbol is
700 // known at link time.
701
702 tls::Tls_optimization
703 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
704 {
705   // If we are generating a shared library, then we can't do anything
706   // in the linker.
707   if (parameters->output_is_shared())
708     return tls::TLSOPT_NONE;
709
710   switch (r_type)
711     {
712     case elfcpp::R_386_TLS_GD:
713     case elfcpp::R_386_TLS_GOTDESC:
714     case elfcpp::R_386_TLS_DESC_CALL:
715       // These are General-Dynamic which permits fully general TLS
716       // access.  Since we know that we are generating an executable,
717       // we can convert this to Initial-Exec.  If we also know that
718       // this is a local symbol, we can further switch to Local-Exec.
719       if (is_final)
720         return tls::TLSOPT_TO_LE;
721       return tls::TLSOPT_TO_IE;
722
723     case elfcpp::R_386_TLS_LDM:
724       // This is Local-Dynamic, which refers to a local symbol in the
725       // dynamic TLS block.  Since we know that we generating an
726       // executable, we can switch to Local-Exec.
727       return tls::TLSOPT_TO_LE;
728
729     case elfcpp::R_386_TLS_LDO_32:
730       // Another type of Local-Dynamic relocation.
731       return tls::TLSOPT_TO_LE;
732
733     case elfcpp::R_386_TLS_IE:
734     case elfcpp::R_386_TLS_GOTIE:
735     case elfcpp::R_386_TLS_IE_32:
736       // These are Initial-Exec relocs which get the thread offset
737       // from the GOT.  If we know that we are linking against the
738       // local symbol, we can switch to Local-Exec, which links the
739       // thread offset into the instruction.
740       if (is_final)
741         return tls::TLSOPT_TO_LE;
742       return tls::TLSOPT_NONE;
743
744     case elfcpp::R_386_TLS_LE:
745     case elfcpp::R_386_TLS_LE_32:
746       // When we already have Local-Exec, there is nothing further we
747       // can do.
748       return tls::TLSOPT_NONE;
749
750     default:
751       gold_unreachable();
752     }
753 }
754
755 // Report an unsupported relocation against a local symbol.
756
757 void
758 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
759                                            unsigned int r_type)
760 {
761   gold_error(_("%s: unsupported reloc %u against local symbol"),
762              object->name().c_str(), r_type);
763 }
764
765 // Scan a relocation for a local symbol.
766
767 inline void
768 Target_i386::Scan::local(const General_options&,
769                          Symbol_table* symtab,
770                          Layout* layout,
771                          Target_i386* target,
772                          Sized_relobj<32, false>* object,
773                          unsigned int data_shndx,
774                          const elfcpp::Rel<32, false>& reloc,
775                          unsigned int r_type,
776                          const elfcpp::Sym<32, false>&)
777 {
778   switch (r_type)
779     {
780     case elfcpp::R_386_NONE:
781     case elfcpp::R_386_GNU_VTINHERIT:
782     case elfcpp::R_386_GNU_VTENTRY:
783       break;
784
785     case elfcpp::R_386_32:
786       // If building a shared library (or a position-independent
787       // executable), we need to create a dynamic relocation for
788       // this location. The relocation applied at link time will
789       // apply the link-time value, so we flag the location with
790       // an R_386_RELATIVE relocation so the dynamic loader can
791       // relocate it easily.
792       if (parameters->output_is_position_independent())
793         {
794           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
795           rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE, data_shndx,
796                              reloc.get_r_offset());
797         }
798       break;
799
800     case elfcpp::R_386_16:
801     case elfcpp::R_386_8:
802       // If building a shared library (or a position-independent
803       // executable), we need to create a dynamic relocation for
804       // this location. Because the addend needs to remain in the
805       // data section, we need to be careful not to apply this
806       // relocation statically.
807       if (parameters->output_is_position_independent())
808         {
809           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
810           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
811           rel_dyn->add_local(object, r_sym, r_type, data_shndx,
812                              reloc.get_r_offset());
813         }
814       break;
815
816     case elfcpp::R_386_PC32:
817     case elfcpp::R_386_PC16:
818     case elfcpp::R_386_PC8:
819       break;
820
821     case elfcpp::R_386_PLT32:
822       // Since we know this is a local symbol, we can handle this as a
823       // PC32 reloc.
824       break;
825
826     case elfcpp::R_386_GOTOFF:
827     case elfcpp::R_386_GOTPC:
828       // We need a GOT section.
829       target->got_section(symtab, layout);
830       break;
831
832     case elfcpp::R_386_GOT32:
833       {
834         // The symbol requires a GOT entry.
835         Output_data_got<32, false>* got = target->got_section(symtab, layout);
836         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
837         if (got->add_local(object, r_sym))
838           {
839             // If we are generating a shared object, we need to add a
840             // dynamic RELATIVE relocation for this symbol.
841             if (parameters->output_is_position_independent())
842               {
843                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
844                 rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE,
845                                    data_shndx, reloc.get_r_offset());
846               }
847           }
848       }
849       break;
850
851       // These are relocations which should only be seen by the
852       // dynamic linker, and should never be seen here.
853     case elfcpp::R_386_COPY:
854     case elfcpp::R_386_GLOB_DAT:
855     case elfcpp::R_386_JUMP_SLOT:
856     case elfcpp::R_386_RELATIVE:
857     case elfcpp::R_386_TLS_TPOFF:
858     case elfcpp::R_386_TLS_DTPMOD32:
859     case elfcpp::R_386_TLS_DTPOFF32:
860     case elfcpp::R_386_TLS_TPOFF32:
861     case elfcpp::R_386_TLS_DESC:
862       gold_error(_("%s: unexpected reloc %u in object file"),
863                  object->name().c_str(), r_type);
864       break;
865
866       // These are initial TLS relocs, which are expected when
867       // linking.
868     case elfcpp::R_386_TLS_GD:            // Global-dynamic
869     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
870     case elfcpp::R_386_TLS_DESC_CALL:
871     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
872     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
873     case elfcpp::R_386_TLS_IE:            // Initial-exec
874     case elfcpp::R_386_TLS_IE_32:
875     case elfcpp::R_386_TLS_GOTIE:
876     case elfcpp::R_386_TLS_LE:            // Local-exec
877     case elfcpp::R_386_TLS_LE_32:
878       {
879         bool output_is_shared = parameters->output_is_shared();
880         const tls::Tls_optimization optimized_type
881             = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
882         switch (r_type)
883           {
884           case elfcpp::R_386_TLS_GD:          // Global-dynamic
885           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
886           case elfcpp::R_386_TLS_DESC_CALL:
887             // FIXME: If not relaxing to LE, we need to generate
888             // DTPMOD32 and DTPOFF32 relocs.
889             if (optimized_type != tls::TLSOPT_TO_LE)
890               unsupported_reloc_local(object, r_type);
891             break;
892
893           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
894             // FIXME: If not relaxing to LE, we need to generate a
895             // DTPMOD32 reloc.
896             if (optimized_type != tls::TLSOPT_TO_LE)
897               unsupported_reloc_local(object, r_type);
898             break;
899
900           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
901             break;
902
903           case elfcpp::R_386_TLS_IE:          // Initial-exec
904           case elfcpp::R_386_TLS_IE_32:
905           case elfcpp::R_386_TLS_GOTIE:
906             // FIXME: If not relaxing to LE, we need to generate a
907             // TPOFF or TPOFF32 reloc.
908             if (optimized_type != tls::TLSOPT_TO_LE)
909               unsupported_reloc_local(object, r_type);
910             break;
911
912           case elfcpp::R_386_TLS_LE:          // Local-exec
913           case elfcpp::R_386_TLS_LE_32:
914             // FIXME: If generating a shared object, we need to copy
915             // this relocation into the object.
916             gold_assert(!output_is_shared);
917             break;
918
919           default:
920             gold_unreachable();
921           }
922       }
923       break;
924
925     case elfcpp::R_386_32PLT:
926     case elfcpp::R_386_TLS_GD_32:
927     case elfcpp::R_386_TLS_GD_PUSH:
928     case elfcpp::R_386_TLS_GD_CALL:
929     case elfcpp::R_386_TLS_GD_POP:
930     case elfcpp::R_386_TLS_LDM_32:
931     case elfcpp::R_386_TLS_LDM_PUSH:
932     case elfcpp::R_386_TLS_LDM_CALL:
933     case elfcpp::R_386_TLS_LDM_POP:
934     case elfcpp::R_386_USED_BY_INTEL_200:
935     default:
936       unsupported_reloc_local(object, r_type);
937       break;
938     }
939 }
940
941 // Report an unsupported relocation against a global symbol.
942
943 void
944 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
945                                             unsigned int r_type,
946                                             Symbol* gsym)
947 {
948   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
949              object->name().c_str(), r_type, gsym->name());
950 }
951
952 // Scan a relocation for a global symbol.
953
954 inline void
955 Target_i386::Scan::global(const General_options& options,
956                           Symbol_table* symtab,
957                           Layout* layout,
958                           Target_i386* target,
959                           Sized_relobj<32, false>* object,
960                           unsigned int data_shndx,
961                           const elfcpp::Rel<32, false>& reloc,
962                           unsigned int r_type,
963                           Symbol* gsym)
964 {
965   switch (r_type)
966     {
967     case elfcpp::R_386_NONE:
968     case elfcpp::R_386_GNU_VTINHERIT:
969     case elfcpp::R_386_GNU_VTENTRY:
970       break;
971
972     case elfcpp::R_386_32:
973     case elfcpp::R_386_16:
974     case elfcpp::R_386_8:
975       {
976         // Make a PLT entry if necessary.
977         if (gsym->needs_plt_entry())
978           {
979             target->make_plt_entry(symtab, layout, gsym);
980             // Since this is not a PC-relative relocation, we may be
981             // taking the address of a function. In that case we need to
982             // set the entry in the dynamic symbol table to the address of
983             // the PLT entry.
984             if (gsym->is_from_dynobj())
985               gsym->set_needs_dynsym_value();
986           }
987         // Make a dynamic relocation if necessary.
988         if (gsym->needs_dynamic_reloc(true, false))
989           {
990             if (target->may_need_copy_reloc(gsym))
991               {
992                 target->copy_reloc(&options, symtab, layout, object, data_shndx,
993                                    gsym, reloc);
994               }
995             else if (r_type == elfcpp::R_386_32
996                      && gsym->can_use_relative_reloc(false))
997               {
998                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
999                 rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE, data_shndx,
1000                                    reloc.get_r_offset());
1001               }
1002             else
1003               {
1004                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1005                 rel_dyn->add_global(gsym, r_type, object, data_shndx, 
1006                                     reloc.get_r_offset());
1007               }
1008           }
1009       }
1010       break;
1011
1012     case elfcpp::R_386_PC32:
1013     case elfcpp::R_386_PC16:
1014     case elfcpp::R_386_PC8:
1015       {
1016         // Make a PLT entry if necessary.
1017         if (gsym->needs_plt_entry())
1018           target->make_plt_entry(symtab, layout, gsym);
1019         // Make a dynamic relocation if necessary.
1020         bool is_function_call = (gsym->type() == elfcpp::STT_FUNC);
1021         if (gsym->needs_dynamic_reloc(false, is_function_call))
1022           {
1023             if (target->may_need_copy_reloc(gsym))
1024               {
1025                 target->copy_reloc(&options, symtab, layout, object, data_shndx,
1026                                    gsym, reloc);
1027               }
1028             else
1029               {
1030                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1031                 rel_dyn->add_global(gsym, r_type, object, data_shndx, 
1032                                     reloc.get_r_offset());
1033               }
1034           }
1035       }
1036       break;
1037
1038     case elfcpp::R_386_GOT32:
1039       {
1040         // The symbol requires a GOT entry.
1041         Output_data_got<32, false>* got = target->got_section(symtab, layout);
1042         if (got->add_global(gsym))
1043           {
1044             // If this symbol is not fully resolved, we need to add a
1045             // dynamic relocation for it.
1046             if (!gsym->final_value_is_known())
1047               {
1048                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1049                 if (gsym->is_from_dynobj()
1050                     || gsym->is_preemptible())
1051                   rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
1052                                       gsym->got_offset());
1053                 else
1054                   {
1055                     rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE,
1056                                        got, gsym->got_offset());
1057                     // Make sure we write the link-time value to the GOT.
1058                     gsym->set_needs_value_in_got();
1059                   }
1060               }
1061           }
1062       }
1063       break;
1064
1065     case elfcpp::R_386_PLT32:
1066       // If the symbol is fully resolved, this is just a PC32 reloc.
1067       // Otherwise we need a PLT entry.
1068       if (gsym->final_value_is_known())
1069         break;
1070       // If building a shared library, we can also skip the PLT entry
1071       // if the symbol is defined in the output file and is protected
1072       // or hidden.
1073       if (gsym->is_defined()
1074           && !gsym->is_from_dynobj()
1075           && !gsym->is_preemptible())
1076         break;
1077       target->make_plt_entry(symtab, layout, gsym);
1078       break;
1079
1080     case elfcpp::R_386_GOTOFF:
1081     case elfcpp::R_386_GOTPC:
1082       // We need a GOT section.
1083       target->got_section(symtab, layout);
1084       break;
1085
1086       // These are relocations which should only be seen by the
1087       // dynamic linker, and should never be seen here.
1088     case elfcpp::R_386_COPY:
1089     case elfcpp::R_386_GLOB_DAT:
1090     case elfcpp::R_386_JUMP_SLOT:
1091     case elfcpp::R_386_RELATIVE:
1092     case elfcpp::R_386_TLS_TPOFF:
1093     case elfcpp::R_386_TLS_DTPMOD32:
1094     case elfcpp::R_386_TLS_DTPOFF32:
1095     case elfcpp::R_386_TLS_TPOFF32:
1096     case elfcpp::R_386_TLS_DESC:
1097       gold_error(_("%s: unexpected reloc %u in object file"),
1098                  object->name().c_str(), r_type);
1099       break;
1100
1101       // These are initial tls relocs, which are expected when
1102       // linking.
1103     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1104     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1105     case elfcpp::R_386_TLS_DESC_CALL:
1106     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1107     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1108     case elfcpp::R_386_TLS_IE:            // Initial-exec
1109     case elfcpp::R_386_TLS_IE_32:
1110     case elfcpp::R_386_TLS_GOTIE:
1111     case elfcpp::R_386_TLS_LE:            // Local-exec
1112     case elfcpp::R_386_TLS_LE_32:
1113       {
1114         const bool is_final = gsym->final_value_is_known();
1115         const tls::Tls_optimization optimized_type
1116             = Target_i386::optimize_tls_reloc(is_final, r_type);
1117         switch (r_type)
1118           {
1119           case elfcpp::R_386_TLS_GD:          // Global-dynamic
1120           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
1121           case elfcpp::R_386_TLS_DESC_CALL:
1122             // FIXME: If not relaxing to LE, we need to generate
1123             // DTPMOD32 and DTPOFF32 relocs.
1124             if (optimized_type != tls::TLSOPT_TO_LE)
1125               unsupported_reloc_global(object, r_type, gsym);
1126             break;
1127
1128           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1129             // FIXME: If not relaxing to LE, we need to generate a
1130             // DTPMOD32 reloc.
1131             if (optimized_type != tls::TLSOPT_TO_LE)
1132               unsupported_reloc_global(object, r_type, gsym);
1133             break;
1134
1135           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1136             break;
1137
1138           case elfcpp::R_386_TLS_IE:          // Initial-exec
1139           case elfcpp::R_386_TLS_IE_32:
1140           case elfcpp::R_386_TLS_GOTIE:
1141             // FIXME: If not relaxing to LE, we need to generate a
1142             // TPOFF or TPOFF32 reloc.
1143             if (optimized_type != tls::TLSOPT_TO_LE)
1144               unsupported_reloc_global(object, r_type, gsym);
1145             break;
1146
1147           case elfcpp::R_386_TLS_LE:          // Local-exec
1148           case elfcpp::R_386_TLS_LE_32:
1149             // FIXME: If generating a shared object, we need to copy
1150             // this relocation into the object.
1151             gold_assert(!parameters->output_is_shared());
1152             break;
1153
1154           default:
1155             gold_unreachable();
1156           }
1157       }
1158       break;
1159
1160     case elfcpp::R_386_32PLT:
1161     case elfcpp::R_386_TLS_GD_32:
1162     case elfcpp::R_386_TLS_GD_PUSH:
1163     case elfcpp::R_386_TLS_GD_CALL:
1164     case elfcpp::R_386_TLS_GD_POP:
1165     case elfcpp::R_386_TLS_LDM_32:
1166     case elfcpp::R_386_TLS_LDM_PUSH:
1167     case elfcpp::R_386_TLS_LDM_CALL:
1168     case elfcpp::R_386_TLS_LDM_POP:
1169     case elfcpp::R_386_USED_BY_INTEL_200:
1170     default:
1171       unsupported_reloc_global(object, r_type, gsym);
1172       break;
1173     }
1174 }
1175
1176 // Scan relocations for a section.
1177
1178 void
1179 Target_i386::scan_relocs(const General_options& options,
1180                          Symbol_table* symtab,
1181                          Layout* layout,
1182                          Sized_relobj<32, false>* object,
1183                          unsigned int data_shndx,
1184                          unsigned int sh_type,
1185                          const unsigned char* prelocs,
1186                          size_t reloc_count,
1187                          Output_section* output_section,
1188                          bool needs_special_offset_handling,
1189                          size_t local_symbol_count,
1190                          const unsigned char* plocal_symbols)
1191 {
1192   if (sh_type == elfcpp::SHT_RELA)
1193     {
1194       gold_error(_("%s: unsupported RELA reloc section"),
1195                  object->name().c_str());
1196       return;
1197     }
1198
1199   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1200                     Target_i386::Scan>(
1201     options,
1202     symtab,
1203     layout,
1204     this,
1205     object,
1206     data_shndx,
1207     prelocs,
1208     reloc_count,
1209     output_section,
1210     needs_special_offset_handling,
1211     local_symbol_count,
1212     plocal_symbols);
1213 }
1214
1215 // Finalize the sections.
1216
1217 void
1218 Target_i386::do_finalize_sections(Layout* layout)
1219 {
1220   // Fill in some more dynamic tags.
1221   Output_data_dynamic* const odyn = layout->dynamic_data();
1222   if (odyn != NULL)
1223     {
1224       if (this->got_plt_ != NULL)
1225         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1226
1227       if (this->plt_ != NULL)
1228         {
1229           const Output_data* od = this->plt_->rel_plt();
1230           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1231           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1232           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1233         }
1234
1235       if (this->rel_dyn_ != NULL)
1236         {
1237           const Output_data* od = this->rel_dyn_;
1238           odyn->add_section_address(elfcpp::DT_REL, od);
1239           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1240           odyn->add_constant(elfcpp::DT_RELENT,
1241                              elfcpp::Elf_sizes<32>::rel_size);
1242         }
1243
1244       if (!parameters->output_is_shared())
1245         {
1246           // The value of the DT_DEBUG tag is filled in by the dynamic
1247           // linker at run time, and used by the debugger.
1248           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1249         }
1250     }
1251
1252   // Emit any relocs we saved in an attempt to avoid generating COPY
1253   // relocs.
1254   if (this->copy_relocs_ == NULL)
1255     return;
1256   if (this->copy_relocs_->any_to_emit())
1257     {
1258       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1259       this->copy_relocs_->emit(rel_dyn);
1260     }
1261   delete this->copy_relocs_;
1262   this->copy_relocs_ = NULL;
1263 }
1264
1265 // Return whether a direct absolute static relocation needs to be applied.
1266 // In cases where Scan::local() or Scan::global() has created
1267 // a dynamic relocation other than R_386_RELATIVE, the addend
1268 // of the relocation is carried in the data, and we must not
1269 // apply the static relocation.
1270
1271 inline bool
1272 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
1273                                                  bool is_absolute_ref,
1274                                                  bool is_function_call,
1275                                                  bool is_32bit)
1276 {
1277   // For local symbols, we will have created a non-RELATIVE dynamic
1278   // relocation only if (a) the output is position independent,
1279   // (b) the relocation is absolute (not pc- or segment-relative), and
1280   // (c) the relocation is not 32 bits wide.
1281   if (gsym == NULL)
1282     return !(parameters->output_is_position_independent()
1283              && is_absolute_ref
1284              && !is_32bit);
1285
1286   // For global symbols, we use the same helper routines used in the scan pass.
1287   return !(gsym->needs_dynamic_reloc(is_absolute_ref, is_function_call)
1288            && !gsym->can_use_relative_reloc(is_function_call));
1289 }
1290
1291 // Perform a relocation.
1292
1293 inline bool
1294 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1295                                 Target_i386* target,
1296                                 size_t relnum,
1297                                 const elfcpp::Rel<32, false>& rel,
1298                                 unsigned int r_type,
1299                                 const Sized_symbol<32>* gsym,
1300                                 const Symbol_value<32>* psymval,
1301                                 unsigned char* view,
1302                                 elfcpp::Elf_types<32>::Elf_Addr address,
1303                                 off_t view_size)
1304 {
1305   if (this->skip_call_tls_get_addr_)
1306     {
1307       if (r_type != elfcpp::R_386_PLT32
1308           || gsym == NULL
1309           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1310         gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1311                                _("missing expected TLS relocation"));
1312       else
1313         {
1314           this->skip_call_tls_get_addr_ = false;
1315           return false;
1316         }
1317     }
1318
1319   // Pick the value to use for symbols defined in shared objects.
1320   Symbol_value<32> symval;
1321   if (gsym != NULL
1322       && (gsym->is_from_dynobj()
1323           || (parameters->output_is_shared()
1324               && gsym->is_preemptible()))
1325       && gsym->has_plt_offset())
1326     {
1327       symval.set_output_value(target->plt_section()->address()
1328                               + gsym->plt_offset());
1329       psymval = &symval;
1330     }
1331
1332   const Sized_relobj<32, false>* object = relinfo->object;
1333
1334   // Get the GOT offset if needed.
1335   // The GOT pointer points to the end of the GOT section.
1336   // We need to subtract the size of the GOT section to get
1337   // the actual offset to use in the relocation.
1338   bool have_got_offset = false;
1339   unsigned int got_offset = 0;
1340   switch (r_type)
1341     {
1342     case elfcpp::R_386_GOT32:
1343       if (gsym != NULL)
1344         {
1345           gold_assert(gsym->has_got_offset());
1346           got_offset = gsym->got_offset() - target->got_size();
1347         }
1348       else
1349         {
1350           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1351           got_offset = object->local_got_offset(r_sym) - target->got_size();
1352         }
1353       have_got_offset = true;
1354       break;
1355
1356     default:
1357       break;
1358     }
1359
1360   switch (r_type)
1361     {
1362     case elfcpp::R_386_NONE:
1363     case elfcpp::R_386_GNU_VTINHERIT:
1364     case elfcpp::R_386_GNU_VTENTRY:
1365       break;
1366
1367     case elfcpp::R_386_32:
1368       if (should_apply_static_reloc(gsym, true, false, true))
1369         Relocate_functions<32, false>::rel32(view, object, psymval);
1370       break;
1371
1372     case elfcpp::R_386_PC32:
1373       {
1374         bool is_function_call = (gsym != NULL
1375                                  && gsym->type() == elfcpp::STT_FUNC);
1376         if (should_apply_static_reloc(gsym, false, is_function_call, true))
1377           Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1378       }
1379       break;
1380
1381     case elfcpp::R_386_16:
1382       if (should_apply_static_reloc(gsym, true, false, false))
1383         Relocate_functions<32, false>::rel16(view, object, psymval);
1384       break;
1385
1386     case elfcpp::R_386_PC16:
1387       {
1388         bool is_function_call = (gsym != NULL
1389                                  && gsym->type() == elfcpp::STT_FUNC);
1390         if (should_apply_static_reloc(gsym, false, is_function_call, false))
1391           Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1392       }
1393       break;
1394
1395     case elfcpp::R_386_8:
1396       if (should_apply_static_reloc(gsym, true, false, false))
1397         Relocate_functions<32, false>::rel8(view, object, psymval);
1398       break;
1399
1400     case elfcpp::R_386_PC8:
1401       {
1402         bool is_function_call = (gsym != NULL
1403                                  && gsym->type() == elfcpp::STT_FUNC);
1404         if (should_apply_static_reloc(gsym, false, is_function_call, false))
1405           Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1406       }
1407       break;
1408
1409     case elfcpp::R_386_PLT32:
1410       gold_assert(gsym == NULL
1411                   || gsym->has_plt_offset()
1412                   || gsym->final_value_is_known());
1413       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1414       break;
1415
1416     case elfcpp::R_386_GOT32:
1417       gold_assert(have_got_offset);
1418       Relocate_functions<32, false>::rel32(view, got_offset);
1419       break;
1420
1421     case elfcpp::R_386_GOTOFF:
1422       {
1423         elfcpp::Elf_types<32>::Elf_Addr value;
1424         value = (psymval->value(object, 0)
1425                  - target->got_plt_section()->address());
1426         Relocate_functions<32, false>::rel32(view, value);
1427       }
1428       break;
1429
1430     case elfcpp::R_386_GOTPC:
1431       {
1432         elfcpp::Elf_types<32>::Elf_Addr value;
1433         value = target->got_plt_section()->address();
1434         Relocate_functions<32, false>::pcrel32(view, value, address);
1435       }
1436       break;
1437
1438     case elfcpp::R_386_COPY:
1439     case elfcpp::R_386_GLOB_DAT:
1440     case elfcpp::R_386_JUMP_SLOT:
1441     case elfcpp::R_386_RELATIVE:
1442       // These are outstanding tls relocs, which are unexpected when
1443       // linking.
1444     case elfcpp::R_386_TLS_TPOFF:
1445     case elfcpp::R_386_TLS_DTPMOD32:
1446     case elfcpp::R_386_TLS_DTPOFF32:
1447     case elfcpp::R_386_TLS_TPOFF32:
1448     case elfcpp::R_386_TLS_DESC:
1449       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1450                              _("unexpected reloc %u in object file"),
1451                              r_type);
1452       break;
1453
1454       // These are initial tls relocs, which are expected when
1455       // linking.
1456     case elfcpp::R_386_TLS_GD:             // Global-dynamic
1457     case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
1458     case elfcpp::R_386_TLS_DESC_CALL:
1459     case elfcpp::R_386_TLS_LDM:            // Local-dynamic
1460     case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
1461     case elfcpp::R_386_TLS_IE:             // Initial-exec
1462     case elfcpp::R_386_TLS_IE_32:
1463     case elfcpp::R_386_TLS_GOTIE:
1464     case elfcpp::R_386_TLS_LE:             // Local-exec
1465     case elfcpp::R_386_TLS_LE_32:
1466       this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1467                          address, view_size);
1468       break;
1469
1470     case elfcpp::R_386_32PLT:
1471     case elfcpp::R_386_TLS_GD_32:
1472     case elfcpp::R_386_TLS_GD_PUSH:
1473     case elfcpp::R_386_TLS_GD_CALL:
1474     case elfcpp::R_386_TLS_GD_POP:
1475     case elfcpp::R_386_TLS_LDM_32:
1476     case elfcpp::R_386_TLS_LDM_PUSH:
1477     case elfcpp::R_386_TLS_LDM_CALL:
1478     case elfcpp::R_386_TLS_LDM_POP:
1479     case elfcpp::R_386_USED_BY_INTEL_200:
1480     default:
1481       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1482                              _("unsupported reloc %u"),
1483                              r_type);
1484       break;
1485     }
1486
1487   return true;
1488 }
1489
1490 // Perform a TLS relocation.
1491
1492 inline void
1493 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1494                                     size_t relnum,
1495                                     const elfcpp::Rel<32, false>& rel,
1496                                     unsigned int r_type,
1497                                     const Sized_symbol<32>* gsym,
1498                                     const Symbol_value<32>* psymval,
1499                                     unsigned char* view,
1500                                     elfcpp::Elf_types<32>::Elf_Addr,
1501                                     off_t view_size)
1502 {
1503   Output_segment* tls_segment = relinfo->layout->tls_segment();
1504   if (tls_segment == NULL)
1505     {
1506       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1507                              _("TLS reloc but no TLS segment"));
1508       return;
1509     }
1510
1511   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1512
1513   const bool is_final = (gsym == NULL
1514                          ? !parameters->output_is_position_independent()
1515                          : gsym->final_value_is_known());
1516   const tls::Tls_optimization optimized_type
1517       = Target_i386::optimize_tls_reloc(is_final, r_type);
1518   switch (r_type)
1519     {
1520     case elfcpp::R_386_TLS_GD:           // Global-dynamic
1521       if (optimized_type == tls::TLSOPT_TO_LE)
1522         {
1523           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1524                              rel, r_type, value, view,
1525                              view_size);
1526           break;
1527         }
1528       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1529                              _("unsupported reloc %u"),
1530                              r_type);
1531       break;
1532
1533     case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
1534     case elfcpp::R_386_TLS_DESC_CALL:
1535       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1536                              _("unsupported reloc %u"),
1537                              r_type);
1538       break;
1539
1540     case elfcpp::R_386_TLS_LDM:          // Local-dynamic
1541       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1542         {
1543           gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1544                                  _("both SUN and GNU model "
1545                                    "TLS relocations"));
1546           break;
1547         }
1548       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1549       if (optimized_type == tls::TLSOPT_TO_LE)
1550         {
1551           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1552                              value, view, view_size);
1553           break;
1554         }
1555       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1556                              _("unsupported reloc %u"),
1557                              r_type);
1558       break;
1559
1560     case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
1561       // This reloc can appear in debugging sections, in which case we
1562       // won't see the TLS_LDM reloc.  The local_dynamic_type field
1563       // tells us this.
1564       if (optimized_type != tls::TLSOPT_TO_LE
1565           || this->local_dynamic_type_ == LOCAL_DYNAMIC_NONE)
1566         value = value - tls_segment->vaddr();
1567       else if (this->local_dynamic_type_ == LOCAL_DYNAMIC_GNU)
1568         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1569       else
1570         value = tls_segment->vaddr() + tls_segment->memsz() - value;
1571       Relocate_functions<32, false>::rel32(view, value);
1572       break;
1573
1574     case elfcpp::R_386_TLS_IE:           // Initial-exec
1575     case elfcpp::R_386_TLS_GOTIE:
1576     case elfcpp::R_386_TLS_IE_32:
1577       if (optimized_type == tls::TLSOPT_TO_LE)
1578         {
1579           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1580                                               rel, r_type, value, view,
1581                                               view_size);
1582           break;
1583         }
1584       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1585                              _("unsupported reloc %u"),
1586                              r_type);
1587       break;
1588
1589     case elfcpp::R_386_TLS_LE:           // Local-exec
1590       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1591       Relocate_functions<32, false>::rel32(view, value);
1592       break;
1593
1594     case elfcpp::R_386_TLS_LE_32:
1595       value = tls_segment->vaddr() + tls_segment->memsz() - value;
1596       Relocate_functions<32, false>::rel32(view, value);
1597       break;
1598     }
1599 }
1600
1601 // Do a relocation in which we convert a TLS General-Dynamic to a
1602 // Local-Exec.
1603
1604 inline void
1605 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1606                                     size_t relnum,
1607                                     Output_segment* tls_segment,
1608                                     const elfcpp::Rel<32, false>& rel,
1609                                     unsigned int,
1610                                     elfcpp::Elf_types<32>::Elf_Addr value,
1611                                     unsigned char* view,
1612                                     off_t view_size)
1613 {
1614   // leal foo(,%reg,1),%eax; call ___tls_get_addr
1615   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1616   // leal foo(%reg),%eax; call ___tls_get_addr
1617   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1618
1619   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1620   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1621
1622   unsigned char op1 = view[-1];
1623   unsigned char op2 = view[-2];
1624
1625   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1626                  op2 == 0x8d || op2 == 0x04);
1627   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1628
1629   int roff = 5;
1630
1631   if (op2 == 0x04)
1632     {
1633       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1634       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1635       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1636                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1637       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1638     }
1639   else
1640     {
1641       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1642                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1643       if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1644           && view[9] == 0x90)
1645         {
1646           // There is a trailing nop.  Use the size byte subl.
1647           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1648           roff = 6;
1649         }
1650       else
1651         {
1652           // Use the five byte subl.
1653           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1654         }
1655     }
1656
1657   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1658   Relocate_functions<32, false>::rel32(view + roff, value);
1659
1660   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1661   // We can skip it.
1662   this->skip_call_tls_get_addr_ = true;
1663 }
1664
1665 // Do a relocation in which we convert a TLS Local-Dynamic to a
1666 // Local-Exec.
1667
1668 inline void
1669 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
1670                                     size_t relnum,
1671                                     Output_segment*,
1672                                     const elfcpp::Rel<32, false>& rel,
1673                                     unsigned int,
1674                                     elfcpp::Elf_types<32>::Elf_Addr,
1675                                     unsigned char* view,
1676                                     off_t view_size)
1677 {
1678   // leal foo(%reg), %eax; call ___tls_get_addr
1679   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
1680
1681   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1682   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1683
1684   // FIXME: Does this test really always pass?
1685   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1686                  view[-2] == 0x8d && view[-1] == 0x83);
1687
1688   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1689
1690   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
1691
1692   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1693   // We can skip it.
1694   this->skip_call_tls_get_addr_ = true;
1695 }
1696
1697 // Do a relocation in which we convert a TLS Initial-Exec to a
1698 // Local-Exec.
1699
1700 inline void
1701 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1702                                     size_t relnum,
1703                                     Output_segment* tls_segment,
1704                                     const elfcpp::Rel<32, false>& rel,
1705                                     unsigned int r_type,
1706                                     elfcpp::Elf_types<32>::Elf_Addr value,
1707                                     unsigned char* view,
1708                                     off_t view_size)
1709 {
1710   // We have to actually change the instructions, which means that we
1711   // need to examine the opcodes to figure out which instruction we
1712   // are looking at.
1713   if (r_type == elfcpp::R_386_TLS_IE)
1714     {
1715       // movl %gs:XX,%eax  ==>  movl $YY,%eax
1716       // movl %gs:XX,%reg  ==>  movl $YY,%reg
1717       // addl %gs:XX,%reg  ==>  addl $YY,%reg
1718       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
1719       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1720
1721       unsigned char op1 = view[-1];
1722       if (op1 == 0xa1)
1723         {
1724           // movl XX,%eax  ==>  movl $YY,%eax
1725           view[-1] = 0xb8;
1726         }
1727       else
1728         {
1729           tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1730
1731           unsigned char op2 = view[-2];
1732           if (op2 == 0x8b)
1733             {
1734               // movl XX,%reg  ==>  movl $YY,%reg
1735               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1736                              (op1 & 0xc7) == 0x05);
1737               view[-2] = 0xc7;
1738               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1739             }
1740           else if (op2 == 0x03)
1741             {
1742               // addl XX,%reg  ==>  addl $YY,%reg
1743               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1744                              (op1 & 0xc7) == 0x05);
1745               view[-2] = 0x81;
1746               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1747             }
1748           else
1749             tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1750         }
1751     }
1752   else
1753     {
1754       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1755       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1756       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1757       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1758       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1759
1760       unsigned char op1 = view[-1];
1761       unsigned char op2 = view[-2];
1762       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1763                      (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1764       if (op2 == 0x8b)
1765         {
1766           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1767           view[-2] = 0xc7;
1768           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1769         }
1770       else if (op2 == 0x2b)
1771         {
1772           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1773           view[-2] = 0x81;
1774           view[-1] = 0xe8 | ((op1 >> 3) & 7);
1775         }
1776       else if (op2 == 0x03)
1777         {
1778           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1779           view[-2] = 0x81;
1780           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1781         }
1782       else
1783         tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1784     }
1785
1786   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1787   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1788     value = - value;
1789
1790   Relocate_functions<32, false>::rel32(view, value);
1791 }
1792
1793 // Relocate section data.
1794
1795 void
1796 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1797                               unsigned int sh_type,
1798                               const unsigned char* prelocs,
1799                               size_t reloc_count,
1800                               Output_section* output_section,
1801                               bool needs_special_offset_handling,
1802                               unsigned char* view,
1803                               elfcpp::Elf_types<32>::Elf_Addr address,
1804                               off_t view_size)
1805 {
1806   gold_assert(sh_type == elfcpp::SHT_REL);
1807
1808   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1809                          Target_i386::Relocate>(
1810     relinfo,
1811     this,
1812     prelocs,
1813     reloc_count,
1814     output_section,
1815     needs_special_offset_handling,
1816     view,
1817     address,
1818     view_size);
1819 }
1820
1821 // Return the value to use for a dynamic which requires special
1822 // treatment.  This is how we support equality comparisons of function
1823 // pointers across shared library boundaries, as described in the
1824 // processor specific ABI supplement.
1825
1826 uint64_t
1827 Target_i386::do_dynsym_value(const Symbol* gsym) const
1828 {
1829   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1830   return this->plt_section()->address() + gsym->plt_offset();
1831 }
1832
1833 // Return a string used to fill a code section with nops to take up
1834 // the specified length.
1835
1836 std::string
1837 Target_i386::do_code_fill(off_t length)
1838 {
1839   if (length >= 16)
1840     {
1841       // Build a jmp instruction to skip over the bytes.
1842       unsigned char jmp[5];
1843       jmp[0] = 0xe9;
1844       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1845       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1846               + std::string(length - 5, '\0'));
1847     }
1848
1849   // Nop sequences of various lengths.
1850   const char nop1[1] = { 0x90 };                   // nop
1851   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1852   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1853   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1854   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1855                          0x00 };                   // leal 0(%esi,1),%esi
1856   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1857                          0x00, 0x00 };
1858   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1859                          0x00, 0x00, 0x00 };
1860   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1861                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1862   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1863                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1864                          0x00 };
1865   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1866                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1867                            0x00, 0x00 };
1868   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1869                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1870                            0x00, 0x00, 0x00 };
1871   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1872                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1873                            0x00, 0x00, 0x00, 0x00 };
1874   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1875                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1876                            0x27, 0x00, 0x00, 0x00,
1877                            0x00 };
1878   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1879                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1880                            0xbc, 0x27, 0x00, 0x00,
1881                            0x00, 0x00 };
1882   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1883                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1884                            0x90, 0x90, 0x90, 0x90,
1885                            0x90, 0x90, 0x90 };
1886
1887   const char* nops[16] = {
1888     NULL,
1889     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1890     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1891   };
1892
1893   return std::string(nops[length], length);
1894 }
1895
1896 // The selector for i386 object files.
1897
1898 class Target_selector_i386 : public Target_selector
1899 {
1900 public:
1901   Target_selector_i386()
1902     : Target_selector(elfcpp::EM_386, 32, false)
1903   { }
1904
1905   Target*
1906   recognize(int machine, int osabi, int abiversion);
1907
1908  private:
1909   Target_i386* target_;
1910 };
1911
1912 // Recognize an i386 object file when we already know that the machine
1913 // number is EM_386.
1914
1915 Target*
1916 Target_selector_i386::recognize(int, int, int)
1917 {
1918   if (this->target_ == NULL)
1919     this->target_ = new Target_i386();
1920   return this->target_;
1921 }
1922
1923 Target_selector_i386 target_selector_i386;
1924
1925 } // End anonymous namespace.