1 // i386.cc -- i386 target support for gold.
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
36 #include "copy-relocs.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
50 // A class to handle the .got.plt section.
52 class Output_data_got_plt_i386 : public Output_section_data_build
55 Output_data_got_plt_i386(Layout* layout)
56 : Output_section_data_build(4),
61 // Write out the PLT data.
63 do_write(Output_file*);
65 // Write to a map file.
67 do_print_to_mapfile(Mapfile* mapfile) const
68 { mapfile->print_output_data(this, "** GOT PLT"); }
71 // A pointer to the Layout class, so that we can find the .dynamic
72 // section when we write out the GOT PLT section.
76 // A class to handle the PLT data.
77 // This is an abstract base class that handles most of the linker details
78 // but does not know the actual contents of PLT entries. The derived
79 // classes below fill in those details.
81 class Output_data_plt_i386 : public Output_section_data
84 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
86 Output_data_plt_i386(Layout*, uint64_t addralign,
87 Output_data_got_plt_i386*, Output_data_space*);
89 // Add an entry to the PLT.
91 add_entry(Symbol_table*, Layout*, Symbol* gsym);
93 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
95 add_local_ifunc_entry(Symbol_table*, Layout*,
96 Sized_relobj_file<32, false>* relobj,
97 unsigned int local_sym_index);
99 // Return the .rel.plt section data.
102 { return this->rel_; }
104 // Return where the TLS_DESC relocations should go.
106 rel_tls_desc(Layout*);
108 // Return where the IRELATIVE relocations should go.
110 rel_irelative(Symbol_table*, Layout*);
112 // Return whether we created a section for IRELATIVE relocations.
114 has_irelative_section() const
115 { return this->irelative_rel_ != NULL; }
117 // Return the number of PLT entries.
120 { return this->count_ + this->irelative_count_; }
122 // Return the offset of the first non-reserved PLT entry.
124 first_plt_entry_offset()
125 { return this->get_plt_entry_size(); }
127 // Return the size of a PLT entry.
129 get_plt_entry_size() const
130 { return this->do_get_plt_entry_size(); }
132 // Return the PLT address to use for a global symbol.
134 address_for_global(const Symbol*);
136 // Return the PLT address to use for a local symbol.
138 address_for_local(const Relobj*, unsigned int symndx);
140 // Add .eh_frame information for the PLT.
142 add_eh_frame(Layout* layout)
143 { this->do_add_eh_frame(layout); }
146 // Fill the first PLT entry, given the pointer to the PLT section data
147 // and the runtime address of the GOT.
149 fill_first_plt_entry(unsigned char* pov,
150 elfcpp::Elf_types<32>::Elf_Addr got_address)
151 { this->do_fill_first_plt_entry(pov, got_address); }
153 // Fill a normal PLT entry, given the pointer to the entry's data in the
154 // section, the runtime address of the GOT, the offset into the GOT of
155 // the corresponding slot, the offset into the relocation section of the
156 // corresponding reloc, and the offset of this entry within the whole
157 // PLT. Return the offset from this PLT entry's runtime address that
158 // should be used to compute the initial value of the GOT slot.
160 fill_plt_entry(unsigned char* pov,
161 elfcpp::Elf_types<32>::Elf_Addr got_address,
162 unsigned int got_offset,
163 unsigned int plt_offset,
164 unsigned int plt_rel_offset)
166 return this->do_fill_plt_entry(pov, got_address, got_offset,
167 plt_offset, plt_rel_offset);
171 do_get_plt_entry_size() const = 0;
174 do_fill_first_plt_entry(unsigned char* pov,
175 elfcpp::Elf_types<32>::Elf_Addr got_address) = 0;
178 do_fill_plt_entry(unsigned char* pov,
179 elfcpp::Elf_types<32>::Elf_Addr got_address,
180 unsigned int got_offset,
181 unsigned int plt_offset,
182 unsigned int plt_rel_offset) = 0;
185 do_add_eh_frame(Layout*) = 0;
188 do_adjust_output_section(Output_section* os);
190 // Write to a map file.
192 do_print_to_mapfile(Mapfile* mapfile) const
193 { mapfile->print_output_data(this, _("** PLT")); }
195 // The .eh_frame unwind information for the PLT.
196 // The CIE is common across variants of the PLT format.
197 static const int plt_eh_frame_cie_size = 16;
198 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
201 // Set the final size.
203 set_final_data_size()
205 this->set_data_size((this->count_ + this->irelative_count_ + 1)
206 * this->get_plt_entry_size());
209 // Write out the PLT data.
211 do_write(Output_file*);
213 // We keep a list of global STT_GNU_IFUNC symbols, each with its
214 // offset in the GOT.
218 unsigned int got_offset;
221 // We keep a list of local STT_GNU_IFUNC symbols, each with its
222 // offset in the GOT.
225 Sized_relobj_file<32, false>* object;
226 unsigned int local_sym_index;
227 unsigned int got_offset;
230 // The reloc section.
232 // The TLS_DESC relocations, if necessary. These must follow the
233 // regular PLT relocs.
234 Reloc_section* tls_desc_rel_;
235 // The IRELATIVE relocations, if necessary. These must follow the
236 // regular relocatoins and the TLS_DESC relocations.
237 Reloc_section* irelative_rel_;
238 // The .got.plt section.
239 Output_data_got_plt_i386* got_plt_;
240 // The part of the .got.plt section used for IRELATIVE relocs.
241 Output_data_space* got_irelative_;
242 // The number of PLT entries.
244 // Number of PLT entries with R_386_IRELATIVE relocs. These follow
245 // the regular PLT entries.
246 unsigned int irelative_count_;
247 // Global STT_GNU_IFUNC symbols.
248 std::vector<Global_ifunc> global_ifuncs_;
249 // Local STT_GNU_IFUNC symbols.
250 std::vector<Local_ifunc> local_ifuncs_;
253 // This is an abstract class for the standard PLT layout.
254 // The derived classes below handle the actual PLT contents
255 // for the executable (non-PIC) and shared-library (PIC) cases.
256 // The unwind information is uniform across those two, so it's here.
258 class Output_data_plt_i386_standard : public Output_data_plt_i386
261 Output_data_plt_i386_standard(Layout* layout,
262 Output_data_got_plt_i386* got_plt,
263 Output_data_space* got_irelative)
264 : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
269 do_get_plt_entry_size() const
270 { return plt_entry_size; }
273 do_add_eh_frame(Layout* layout)
275 layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
276 plt_eh_frame_fde, plt_eh_frame_fde_size);
279 // The size of an entry in the PLT.
280 static const int plt_entry_size = 16;
282 // The .eh_frame unwind information for the PLT.
283 static const int plt_eh_frame_fde_size = 32;
284 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
287 // Actually fill the PLT contents for an executable (non-PIC).
289 class Output_data_plt_i386_exec : public Output_data_plt_i386_standard
292 Output_data_plt_i386_exec(Layout* layout,
293 Output_data_got_plt_i386* got_plt,
294 Output_data_space* got_irelative)
295 : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
300 do_fill_first_plt_entry(unsigned char* pov,
301 elfcpp::Elf_types<32>::Elf_Addr got_address);
304 do_fill_plt_entry(unsigned char* pov,
305 elfcpp::Elf_types<32>::Elf_Addr got_address,
306 unsigned int got_offset,
307 unsigned int plt_offset,
308 unsigned int plt_rel_offset);
311 // The first entry in the PLT for an executable.
312 static const unsigned char first_plt_entry[plt_entry_size];
314 // Other entries in the PLT for an executable.
315 static const unsigned char plt_entry[plt_entry_size];
318 // Actually fill the PLT contents for a shared library (PIC).
320 class Output_data_plt_i386_dyn : public Output_data_plt_i386_standard
323 Output_data_plt_i386_dyn(Layout* layout,
324 Output_data_got_plt_i386* got_plt,
325 Output_data_space* got_irelative)
326 : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
331 do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
334 do_fill_plt_entry(unsigned char* pov,
335 elfcpp::Elf_types<32>::Elf_Addr,
336 unsigned int got_offset,
337 unsigned int plt_offset,
338 unsigned int plt_rel_offset);
341 // The first entry in the PLT for a shared object.
342 static const unsigned char first_plt_entry[plt_entry_size];
344 // Other entries in the PLT for a shared object.
345 static const unsigned char plt_entry[plt_entry_size];
348 // The i386 target class.
349 // TLS info comes from
350 // http://people.redhat.com/drepper/tls.pdf
351 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
353 class Target_i386 : public Sized_target<32, false>
356 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
358 Target_i386(const Target::Target_info* info = &i386_info)
359 : Sized_target<32, false>(info),
360 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
361 got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
362 rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY),
363 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
366 // Process the relocations to determine unreferenced sections for
367 // garbage collection.
369 gc_process_relocs(Symbol_table* symtab,
371 Sized_relobj_file<32, false>* object,
372 unsigned int data_shndx,
373 unsigned int sh_type,
374 const unsigned char* prelocs,
376 Output_section* output_section,
377 bool needs_special_offset_handling,
378 size_t local_symbol_count,
379 const unsigned char* plocal_symbols);
381 // Scan the relocations to look for symbol adjustments.
383 scan_relocs(Symbol_table* symtab,
385 Sized_relobj_file<32, false>* object,
386 unsigned int data_shndx,
387 unsigned int sh_type,
388 const unsigned char* prelocs,
390 Output_section* output_section,
391 bool needs_special_offset_handling,
392 size_t local_symbol_count,
393 const unsigned char* plocal_symbols);
395 // Finalize the sections.
397 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
399 // Return the value to use for a dynamic which requires special
402 do_dynsym_value(const Symbol*) const;
404 // Relocate a section.
406 relocate_section(const Relocate_info<32, false>*,
407 unsigned int sh_type,
408 const unsigned char* prelocs,
410 Output_section* output_section,
411 bool needs_special_offset_handling,
413 elfcpp::Elf_types<32>::Elf_Addr view_address,
414 section_size_type view_size,
415 const Reloc_symbol_changes*);
417 // Scan the relocs during a relocatable link.
419 scan_relocatable_relocs(Symbol_table* symtab,
421 Sized_relobj_file<32, false>* object,
422 unsigned int data_shndx,
423 unsigned int sh_type,
424 const unsigned char* prelocs,
426 Output_section* output_section,
427 bool needs_special_offset_handling,
428 size_t local_symbol_count,
429 const unsigned char* plocal_symbols,
430 Relocatable_relocs*);
432 // Emit relocations for a section.
434 relocate_relocs(const Relocate_info<32, false>*,
435 unsigned int sh_type,
436 const unsigned char* prelocs,
438 Output_section* output_section,
439 elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
440 const Relocatable_relocs*,
442 elfcpp::Elf_types<32>::Elf_Addr view_address,
443 section_size_type view_size,
444 unsigned char* reloc_view,
445 section_size_type reloc_view_size);
447 // Return a string used to fill a code section with nops.
449 do_code_fill(section_size_type length) const;
451 // Return whether SYM is defined by the ABI.
453 do_is_defined_by_abi(const Symbol* sym) const
454 { return strcmp(sym->name(), "___tls_get_addr") == 0; }
456 // Return whether a symbol name implies a local label. The UnixWare
457 // 2.1 cc generates temporary symbols that start with .X, so we
458 // recognize them here. FIXME: do other SVR4 compilers also use .X?.
459 // If so, we should move the .X recognition into
460 // Target::do_is_local_label_name.
462 do_is_local_label_name(const char* name) const
464 if (name[0] == '.' && name[1] == 'X')
466 return Target::do_is_local_label_name(name);
469 // Return the PLT address to use for a global symbol.
471 do_plt_address_for_global(const Symbol* gsym) const
472 { return this->plt_section()->address_for_global(gsym); }
475 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
476 { return this->plt_section()->address_for_local(relobj, symndx); }
478 // We can tell whether we take the address of a function.
480 do_can_check_for_function_pointers() const
483 // Return the base for a DW_EH_PE_datarel encoding.
485 do_ehframe_datarel_base() const;
487 // Return whether SYM is call to a non-split function.
489 do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
491 // Adjust -fsplit-stack code which calls non-split-stack code.
493 do_calls_non_split(Relobj* object, unsigned int shndx,
494 section_offset_type fnoffset, section_size_type fnsize,
495 unsigned char* view, section_size_type view_size,
496 std::string* from, std::string* to) const;
498 // Return the size of the GOT section.
502 gold_assert(this->got_ != NULL);
503 return this->got_->data_size();
506 // Return the number of entries in the GOT.
508 got_entry_count() const
510 if (this->got_ == NULL)
512 return this->got_size() / 4;
515 // Return the number of entries in the PLT.
517 plt_entry_count() const;
519 // Return the offset of the first non-reserved PLT entry.
521 first_plt_entry_offset() const;
523 // Return the size of each PLT entry.
525 plt_entry_size() const;
528 // Instantiate the plt_ member.
529 // This chooses the right PLT flavor for an executable or a shared object.
530 Output_data_plt_i386*
531 make_data_plt(Layout* layout,
532 Output_data_got_plt_i386* got_plt,
533 Output_data_space* got_irelative,
535 { return this->do_make_data_plt(layout, got_plt, got_irelative, dyn); }
537 virtual Output_data_plt_i386*
538 do_make_data_plt(Layout* layout,
539 Output_data_got_plt_i386* got_plt,
540 Output_data_space* got_irelative,
544 return new Output_data_plt_i386_dyn(layout, got_plt, got_irelative);
546 return new Output_data_plt_i386_exec(layout, got_plt, got_irelative);
550 // The class which scans relocations.
555 get_reference_flags(unsigned int r_type);
558 local(Symbol_table* symtab, Layout* layout, Target_i386* target,
559 Sized_relobj_file<32, false>* object,
560 unsigned int data_shndx,
561 Output_section* output_section,
562 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
563 const elfcpp::Sym<32, false>& lsym,
567 global(Symbol_table* symtab, Layout* layout, Target_i386* target,
568 Sized_relobj_file<32, false>* object,
569 unsigned int data_shndx,
570 Output_section* output_section,
571 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
575 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
577 Sized_relobj_file<32, false>* object,
578 unsigned int data_shndx,
579 Output_section* output_section,
580 const elfcpp::Rel<32, false>& reloc,
582 const elfcpp::Sym<32, false>& lsym);
585 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
587 Sized_relobj_file<32, false>* object,
588 unsigned int data_shndx,
589 Output_section* output_section,
590 const elfcpp::Rel<32, false>& reloc,
595 possible_function_pointer_reloc(unsigned int r_type);
598 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
599 unsigned int r_type);
602 unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
605 unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
609 // The class which implements relocation.
614 : skip_call_tls_get_addr_(false),
615 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
620 if (this->skip_call_tls_get_addr_)
622 // FIXME: This needs to specify the location somehow.
623 gold_error(_("missing expected TLS relocation"));
627 // Return whether the static relocation needs to be applied.
629 should_apply_static_reloc(const Sized_symbol<32>* gsym,
632 Output_section* output_section);
634 // Do a relocation. Return false if the caller should not issue
635 // any warnings about this relocation.
637 relocate(const Relocate_info<32, false>*, Target_i386*, Output_section*,
638 size_t relnum, const elfcpp::Rel<32, false>&,
639 unsigned int r_type, const Sized_symbol<32>*,
640 const Symbol_value<32>*,
641 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
645 // Do a TLS relocation.
647 relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
648 size_t relnum, const elfcpp::Rel<32, false>&,
649 unsigned int r_type, const Sized_symbol<32>*,
650 const Symbol_value<32>*,
651 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
654 // Do a TLS General-Dynamic to Initial-Exec transition.
656 tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
657 Output_segment* tls_segment,
658 const elfcpp::Rel<32, false>&, unsigned int r_type,
659 elfcpp::Elf_types<32>::Elf_Addr value,
661 section_size_type view_size);
663 // Do a TLS General-Dynamic to Local-Exec transition.
665 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
666 Output_segment* tls_segment,
667 const elfcpp::Rel<32, false>&, unsigned int r_type,
668 elfcpp::Elf_types<32>::Elf_Addr value,
670 section_size_type view_size);
672 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
675 tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
676 Output_segment* tls_segment,
677 const elfcpp::Rel<32, false>&, unsigned int r_type,
678 elfcpp::Elf_types<32>::Elf_Addr value,
680 section_size_type view_size);
682 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
685 tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
686 Output_segment* tls_segment,
687 const elfcpp::Rel<32, false>&, unsigned int r_type,
688 elfcpp::Elf_types<32>::Elf_Addr value,
690 section_size_type view_size);
692 // Do a TLS Local-Dynamic to Local-Exec transition.
694 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
695 Output_segment* tls_segment,
696 const elfcpp::Rel<32, false>&, unsigned int r_type,
697 elfcpp::Elf_types<32>::Elf_Addr value,
699 section_size_type view_size);
701 // Do a TLS Initial-Exec to Local-Exec transition.
703 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
704 Output_segment* tls_segment,
705 const elfcpp::Rel<32, false>&, unsigned int r_type,
706 elfcpp::Elf_types<32>::Elf_Addr value,
708 section_size_type view_size);
710 // We need to keep track of which type of local dynamic relocation
711 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
712 enum Local_dynamic_type
719 // This is set if we should skip the next reloc, which should be a
720 // PLT32 reloc against ___tls_get_addr.
721 bool skip_call_tls_get_addr_;
722 // The type of local dynamic relocation we have seen in the section
723 // being relocated, if any.
724 Local_dynamic_type local_dynamic_type_;
727 // A class which returns the size required for a relocation type,
728 // used while scanning relocs during a relocatable link.
729 class Relocatable_size_for_reloc
733 get_size_for_reloc(unsigned int, Relobj*);
736 // Adjust TLS relocation type based on the options and whether this
737 // is a local symbol.
738 static tls::Tls_optimization
739 optimize_tls_reloc(bool is_final, int r_type);
741 // Get the GOT section, creating it if necessary.
742 Output_data_got<32, false>*
743 got_section(Symbol_table*, Layout*);
745 // Get the GOT PLT section.
746 Output_data_got_plt_i386*
747 got_plt_section() const
749 gold_assert(this->got_plt_ != NULL);
750 return this->got_plt_;
753 // Get the GOT section for TLSDESC entries.
754 Output_data_got<32, false>*
755 got_tlsdesc_section() const
757 gold_assert(this->got_tlsdesc_ != NULL);
758 return this->got_tlsdesc_;
761 // Create the PLT section.
763 make_plt_section(Symbol_table* symtab, Layout* layout);
765 // Create a PLT entry for a global symbol.
767 make_plt_entry(Symbol_table*, Layout*, Symbol*);
769 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
771 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
772 Sized_relobj_file<32, false>* relobj,
773 unsigned int local_sym_index);
775 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
777 define_tls_base_symbol(Symbol_table*, Layout*);
779 // Create a GOT entry for the TLS module index.
781 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
782 Sized_relobj_file<32, false>* object);
784 // Get the PLT section.
785 Output_data_plt_i386*
788 gold_assert(this->plt_ != NULL);
792 // Get the dynamic reloc section, creating it if necessary.
794 rel_dyn_section(Layout*);
796 // Get the section to use for TLS_DESC relocations.
798 rel_tls_desc_section(Layout*) const;
800 // Get the section to use for IRELATIVE relocations.
802 rel_irelative_section(Layout*);
804 // Add a potential copy relocation.
806 copy_reloc(Symbol_table* symtab, Layout* layout,
807 Sized_relobj_file<32, false>* object,
808 unsigned int shndx, Output_section* output_section,
809 Symbol* sym, const elfcpp::Rel<32, false>& reloc)
811 this->copy_relocs_.copy_reloc(symtab, layout,
812 symtab->get_sized_symbol<32>(sym),
813 object, shndx, output_section, reloc,
814 this->rel_dyn_section(layout));
817 // Information about this specific target which we pass to the
818 // general Target structure.
819 static const Target::Target_info i386_info;
821 // The types of GOT entries needed for this platform.
822 // These values are exposed to the ABI in an incremental link.
823 // Do not renumber existing values without changing the version
824 // number of the .gnu_incremental_inputs section.
827 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
828 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
829 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
830 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
831 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
835 Output_data_got<32, false>* got_;
837 Output_data_plt_i386* plt_;
838 // The GOT PLT section.
839 Output_data_got_plt_i386* got_plt_;
840 // The GOT section for IRELATIVE relocations.
841 Output_data_space* got_irelative_;
842 // The GOT section for TLSDESC relocations.
843 Output_data_got<32, false>* got_tlsdesc_;
844 // The _GLOBAL_OFFSET_TABLE_ symbol.
845 Symbol* global_offset_table_;
846 // The dynamic reloc section.
847 Reloc_section* rel_dyn_;
848 // The section to use for IRELATIVE relocs.
849 Reloc_section* rel_irelative_;
850 // Relocs saved to avoid a COPY reloc.
851 Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
852 // Offset of the GOT entry for the TLS module index.
853 unsigned int got_mod_index_offset_;
854 // True if the _TLS_MODULE_BASE_ symbol has been defined.
855 bool tls_base_symbol_defined_;
858 const Target::Target_info Target_i386::i386_info =
861 false, // is_big_endian
862 elfcpp::EM_386, // machine_code
863 false, // has_make_symbol
864 false, // has_resolve
865 true, // has_code_fill
866 true, // is_default_stack_executable
867 true, // can_icf_inline_merge_sections
869 "/usr/lib/libc.so.1", // dynamic_linker
870 0x08048000, // default_text_segment_address
871 0x1000, // abi_pagesize (overridable by -z max-page-size)
872 0x1000, // common_pagesize (overridable by -z common-page-size)
873 false, // isolate_execinstr
875 elfcpp::SHN_UNDEF, // small_common_shndx
876 elfcpp::SHN_UNDEF, // large_common_shndx
877 0, // small_common_section_flags
878 0, // large_common_section_flags
879 NULL, // attributes_section
880 NULL, // attributes_vendor
881 "_start" // entry_symbol_name
884 // Get the GOT section, creating it if necessary.
886 Output_data_got<32, false>*
887 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
889 if (this->got_ == NULL)
891 gold_assert(symtab != NULL && layout != NULL);
893 this->got_ = new Output_data_got<32, false>();
895 // When using -z now, we can treat .got.plt as a relro section.
896 // Without -z now, it is modified after program startup by lazy
898 bool is_got_plt_relro = parameters->options().now();
899 Output_section_order got_order = (is_got_plt_relro
902 Output_section_order got_plt_order = (is_got_plt_relro
904 : ORDER_NON_RELRO_FIRST);
906 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
908 | elfcpp::SHF_WRITE),
909 this->got_, got_order, true);
911 this->got_plt_ = new Output_data_got_plt_i386(layout);
912 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
914 | elfcpp::SHF_WRITE),
915 this->got_plt_, got_plt_order,
918 // The first three entries are reserved.
919 this->got_plt_->set_current_data_size(3 * 4);
921 if (!is_got_plt_relro)
923 // Those bytes can go into the relro segment.
924 layout->increase_relro(3 * 4);
927 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
928 this->global_offset_table_ =
929 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
930 Symbol_table::PREDEFINED,
932 0, 0, elfcpp::STT_OBJECT,
934 elfcpp::STV_HIDDEN, 0,
937 // If there are any IRELATIVE relocations, they get GOT entries
938 // in .got.plt after the jump slot relocations.
939 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
940 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
942 | elfcpp::SHF_WRITE),
943 this->got_irelative_,
944 got_plt_order, is_got_plt_relro);
946 // If there are any TLSDESC relocations, they get GOT entries in
947 // .got.plt after the jump slot entries.
948 this->got_tlsdesc_ = new Output_data_got<32, false>();
949 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
951 | elfcpp::SHF_WRITE),
953 got_plt_order, is_got_plt_relro);
959 // Get the dynamic reloc section, creating it if necessary.
961 Target_i386::Reloc_section*
962 Target_i386::rel_dyn_section(Layout* layout)
964 if (this->rel_dyn_ == NULL)
966 gold_assert(layout != NULL);
967 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
968 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
969 elfcpp::SHF_ALLOC, this->rel_dyn_,
970 ORDER_DYNAMIC_RELOCS, false);
972 return this->rel_dyn_;
975 // Get the section to use for IRELATIVE relocs, creating it if
976 // necessary. These go in .rel.dyn, but only after all other dynamic
977 // relocations. They need to follow the other dynamic relocations so
978 // that they can refer to global variables initialized by those
981 Target_i386::Reloc_section*
982 Target_i386::rel_irelative_section(Layout* layout)
984 if (this->rel_irelative_ == NULL)
986 // Make sure we have already create the dynamic reloc section.
987 this->rel_dyn_section(layout);
988 this->rel_irelative_ = new Reloc_section(false);
989 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
990 elfcpp::SHF_ALLOC, this->rel_irelative_,
991 ORDER_DYNAMIC_RELOCS, false);
992 gold_assert(this->rel_dyn_->output_section()
993 == this->rel_irelative_->output_section());
995 return this->rel_irelative_;
998 // Write the first three reserved words of the .got.plt section.
999 // The remainder of the section is written while writing the PLT
1000 // in Output_data_plt_i386::do_write.
1003 Output_data_got_plt_i386::do_write(Output_file* of)
1005 // The first entry in the GOT is the address of the .dynamic section
1006 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1007 // We saved space for them when we created the section in
1008 // Target_i386::got_section.
1009 const off_t got_file_offset = this->offset();
1010 gold_assert(this->data_size() >= 12);
1011 unsigned char* const got_view = of->get_output_view(got_file_offset, 12);
1012 Output_section* dynamic = this->layout_->dynamic_section();
1013 uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1014 elfcpp::Swap<32, false>::writeval(got_view, dynamic_addr);
1015 memset(got_view + 4, 0, 8);
1016 of->write_output_view(got_file_offset, 12, got_view);
1019 // Create the PLT section. The ordinary .got section is an argument,
1020 // since we need to refer to the start. We also create our own .got
1021 // section just for PLT entries.
1023 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
1025 Output_data_got_plt_i386* got_plt,
1026 Output_data_space* got_irelative)
1027 : Output_section_data(addralign),
1028 tls_desc_rel_(NULL), irelative_rel_(NULL), got_plt_(got_plt),
1029 got_irelative_(got_irelative), count_(0), irelative_count_(0),
1030 global_ifuncs_(), local_ifuncs_()
1032 this->rel_ = new Reloc_section(false);
1033 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1034 elfcpp::SHF_ALLOC, this->rel_,
1035 ORDER_DYNAMIC_PLT_RELOCS, false);
1039 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
1041 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
1042 // linker, and so do we.
1046 // Add an entry to the PLT.
1049 Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
1052 gold_assert(!gsym->has_plt_offset());
1054 // Every PLT entry needs a reloc.
1055 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1056 && gsym->can_use_relative_reloc(false))
1058 gsym->set_plt_offset(this->irelative_count_ * this->get_plt_entry_size());
1059 ++this->irelative_count_;
1060 section_offset_type got_offset =
1061 this->got_irelative_->current_data_size();
1062 this->got_irelative_->set_current_data_size(got_offset + 4);
1063 Reloc_section* rel = this->rel_irelative(symtab, layout);
1064 rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
1065 this->got_irelative_, got_offset);
1066 struct Global_ifunc gi;
1068 gi.got_offset = got_offset;
1069 this->global_ifuncs_.push_back(gi);
1073 // When setting the PLT offset we skip the initial reserved PLT
1075 gsym->set_plt_offset((this->count_ + 1) * this->get_plt_entry_size());
1079 section_offset_type got_offset = this->got_plt_->current_data_size();
1081 // Every PLT entry needs a GOT entry which points back to the
1082 // PLT entry (this will be changed by the dynamic linker,
1083 // normally lazily when the function is called).
1084 this->got_plt_->set_current_data_size(got_offset + 4);
1086 gsym->set_needs_dynsym_entry();
1087 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
1091 // Note that we don't need to save the symbol. The contents of the
1092 // PLT are independent of which symbols are used. The symbols only
1093 // appear in the relocations.
1096 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1100 Output_data_plt_i386::add_local_ifunc_entry(
1101 Symbol_table* symtab,
1103 Sized_relobj_file<32, false>* relobj,
1104 unsigned int local_sym_index)
1106 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1107 ++this->irelative_count_;
1109 section_offset_type got_offset = this->got_irelative_->current_data_size();
1111 // Every PLT entry needs a GOT entry which points back to the PLT
1113 this->got_irelative_->set_current_data_size(got_offset + 4);
1115 // Every PLT entry needs a reloc.
1116 Reloc_section* rel = this->rel_irelative(symtab, layout);
1117 rel->add_symbolless_local_addend(relobj, local_sym_index,
1118 elfcpp::R_386_IRELATIVE,
1119 this->got_irelative_, got_offset);
1121 struct Local_ifunc li;
1123 li.local_sym_index = local_sym_index;
1124 li.got_offset = got_offset;
1125 this->local_ifuncs_.push_back(li);
1130 // Return where the TLS_DESC relocations should go, creating it if
1131 // necessary. These follow the JUMP_SLOT relocations.
1133 Output_data_plt_i386::Reloc_section*
1134 Output_data_plt_i386::rel_tls_desc(Layout* layout)
1136 if (this->tls_desc_rel_ == NULL)
1138 this->tls_desc_rel_ = new Reloc_section(false);
1139 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1140 elfcpp::SHF_ALLOC, this->tls_desc_rel_,
1141 ORDER_DYNAMIC_PLT_RELOCS, false);
1142 gold_assert(this->tls_desc_rel_->output_section()
1143 == this->rel_->output_section());
1145 return this->tls_desc_rel_;
1148 // Return where the IRELATIVE relocations should go in the PLT. These
1149 // follow the JUMP_SLOT and TLS_DESC relocations.
1151 Output_data_plt_i386::Reloc_section*
1152 Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
1154 if (this->irelative_rel_ == NULL)
1156 // Make sure we have a place for the TLS_DESC relocations, in
1157 // case we see any later on.
1158 this->rel_tls_desc(layout);
1159 this->irelative_rel_ = new Reloc_section(false);
1160 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1161 elfcpp::SHF_ALLOC, this->irelative_rel_,
1162 ORDER_DYNAMIC_PLT_RELOCS, false);
1163 gold_assert(this->irelative_rel_->output_section()
1164 == this->rel_->output_section());
1166 if (parameters->doing_static_link())
1168 // A statically linked executable will only have a .rel.plt
1169 // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
1170 // symbols. The library will use these symbols to locate
1171 // the IRELATIVE relocs at program startup time.
1172 symtab->define_in_output_data("__rel_iplt_start", NULL,
1173 Symbol_table::PREDEFINED,
1174 this->irelative_rel_, 0, 0,
1175 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1176 elfcpp::STV_HIDDEN, 0, false, true);
1177 symtab->define_in_output_data("__rel_iplt_end", NULL,
1178 Symbol_table::PREDEFINED,
1179 this->irelative_rel_, 0, 0,
1180 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1181 elfcpp::STV_HIDDEN, 0, true, true);
1184 return this->irelative_rel_;
1187 // Return the PLT address to use for a global symbol.
1190 Output_data_plt_i386::address_for_global(const Symbol* gsym)
1192 uint64_t offset = 0;
1193 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1194 && gsym->can_use_relative_reloc(false))
1195 offset = (this->count_ + 1) * this->get_plt_entry_size();
1196 return this->address() + offset + gsym->plt_offset();
1199 // Return the PLT address to use for a local symbol. These are always
1200 // IRELATIVE relocs.
1203 Output_data_plt_i386::address_for_local(const Relobj* object,
1206 return (this->address()
1207 + (this->count_ + 1) * this->get_plt_entry_size()
1208 + object->local_plt_offset(r_sym));
1211 // The first entry in the PLT for an executable.
1213 const unsigned char Output_data_plt_i386_exec::first_plt_entry[plt_entry_size] =
1215 0xff, 0x35, // pushl contents of memory address
1216 0, 0, 0, 0, // replaced with address of .got + 4
1217 0xff, 0x25, // jmp indirect
1218 0, 0, 0, 0, // replaced with address of .got + 8
1219 0, 0, 0, 0 // unused
1223 Output_data_plt_i386_exec::do_fill_first_plt_entry(
1225 elfcpp::Elf_types<32>::Elf_Addr got_address)
1227 memcpy(pov, first_plt_entry, plt_entry_size);
1228 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
1229 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
1232 // The first entry in the PLT for a shared object.
1234 const unsigned char Output_data_plt_i386_dyn::first_plt_entry[plt_entry_size] =
1236 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
1237 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
1238 0, 0, 0, 0 // unused
1242 Output_data_plt_i386_dyn::do_fill_first_plt_entry(
1244 elfcpp::Elf_types<32>::Elf_Addr)
1246 memcpy(pov, first_plt_entry, plt_entry_size);
1249 // Subsequent entries in the PLT for an executable.
1251 const unsigned char Output_data_plt_i386_exec::plt_entry[plt_entry_size] =
1253 0xff, 0x25, // jmp indirect
1254 0, 0, 0, 0, // replaced with address of symbol in .got
1255 0x68, // pushl immediate
1256 0, 0, 0, 0, // replaced with offset into relocation table
1257 0xe9, // jmp relative
1258 0, 0, 0, 0 // replaced with offset to start of .plt
1262 Output_data_plt_i386_exec::do_fill_plt_entry(
1264 elfcpp::Elf_types<32>::Elf_Addr got_address,
1265 unsigned int got_offset,
1266 unsigned int plt_offset,
1267 unsigned int plt_rel_offset)
1269 memcpy(pov, plt_entry, plt_entry_size);
1270 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1271 got_address + got_offset);
1272 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1273 elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
1277 // Subsequent entries in the PLT for a shared object.
1279 const unsigned char Output_data_plt_i386_dyn::plt_entry[plt_entry_size] =
1281 0xff, 0xa3, // jmp *offset(%ebx)
1282 0, 0, 0, 0, // replaced with offset of symbol in .got
1283 0x68, // pushl immediate
1284 0, 0, 0, 0, // replaced with offset into relocation table
1285 0xe9, // jmp relative
1286 0, 0, 0, 0 // replaced with offset to start of .plt
1290 Output_data_plt_i386_dyn::do_fill_plt_entry(unsigned char* pov,
1291 elfcpp::Elf_types<32>::Elf_Addr,
1292 unsigned int got_offset,
1293 unsigned int plt_offset,
1294 unsigned int plt_rel_offset)
1296 memcpy(pov, plt_entry, plt_entry_size);
1297 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
1298 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1299 elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
1303 // The .eh_frame unwind information for the PLT.
1306 Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1309 'z', // Augmentation: augmentation size included.
1310 'R', // Augmentation: FDE encoding included.
1311 '\0', // End of augmentation string.
1312 1, // Code alignment factor.
1313 0x7c, // Data alignment factor.
1314 8, // Return address column.
1315 1, // Augmentation size.
1316 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1317 | elfcpp::DW_EH_PE_sdata4),
1318 elfcpp::DW_CFA_def_cfa, 4, 4, // DW_CFA_def_cfa: r4 (esp) ofs 4.
1319 elfcpp::DW_CFA_offset + 8, 1, // DW_CFA_offset: r8 (eip) at cfa-4.
1320 elfcpp::DW_CFA_nop, // Align to 16 bytes.
1325 Output_data_plt_i386_standard::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1327 0, 0, 0, 0, // Replaced with offset to .plt.
1328 0, 0, 0, 0, // Replaced with size of .plt.
1329 0, // Augmentation size.
1330 elfcpp::DW_CFA_def_cfa_offset, 8, // DW_CFA_def_cfa_offset: 8.
1331 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
1332 elfcpp::DW_CFA_def_cfa_offset, 12, // DW_CFA_def_cfa_offset: 12.
1333 elfcpp::DW_CFA_advance_loc + 10, // Advance 10 to __PLT__ + 16.
1334 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
1335 11, // Block length.
1336 elfcpp::DW_OP_breg4, 4, // Push %esp + 4.
1337 elfcpp::DW_OP_breg8, 0, // Push %eip.
1338 elfcpp::DW_OP_lit15, // Push 0xf.
1339 elfcpp::DW_OP_and, // & (%eip & 0xf).
1340 elfcpp::DW_OP_lit11, // Push 0xb.
1341 elfcpp::DW_OP_ge, // >= ((%eip & 0xf) >= 0xb)
1342 elfcpp::DW_OP_lit2, // Push 2.
1343 elfcpp::DW_OP_shl, // << (((%eip & 0xf) >= 0xb) << 2)
1344 elfcpp::DW_OP_plus, // + ((((%eip&0xf)>=0xb)<<2)+%esp+4
1345 elfcpp::DW_CFA_nop, // Align to 32 bytes.
1351 // Write out the PLT. This uses the hand-coded instructions above,
1352 // and adjusts them as needed. This is all specified by the i386 ELF
1353 // Processor Supplement.
1356 Output_data_plt_i386::do_write(Output_file* of)
1358 const off_t offset = this->offset();
1359 const section_size_type oview_size =
1360 convert_to_section_size_type(this->data_size());
1361 unsigned char* const oview = of->get_output_view(offset, oview_size);
1363 const off_t got_file_offset = this->got_plt_->offset();
1364 gold_assert(parameters->incremental_update()
1365 || (got_file_offset + this->got_plt_->data_size()
1366 == this->got_irelative_->offset()));
1367 const section_size_type got_size =
1368 convert_to_section_size_type(this->got_plt_->data_size()
1369 + this->got_irelative_->data_size());
1371 unsigned char* const got_view = of->get_output_view(got_file_offset,
1374 unsigned char* pov = oview;
1376 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
1377 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
1379 this->fill_first_plt_entry(pov, got_address);
1380 pov += this->get_plt_entry_size();
1382 // The first three entries in the GOT are reserved, and are written
1383 // by Output_data_got_plt_i386::do_write.
1384 unsigned char* got_pov = got_view + 12;
1386 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
1388 unsigned int plt_offset = this->get_plt_entry_size();
1389 unsigned int plt_rel_offset = 0;
1390 unsigned int got_offset = 12;
1391 const unsigned int count = this->count_ + this->irelative_count_;
1392 for (unsigned int i = 0;
1395 pov += this->get_plt_entry_size(),
1397 plt_offset += this->get_plt_entry_size(),
1398 plt_rel_offset += rel_size,
1401 // Set and adjust the PLT entry itself.
1402 unsigned int lazy_offset = this->fill_plt_entry(pov,
1408 // Set the entry in the GOT.
1409 elfcpp::Swap<32, false>::writeval(got_pov,
1410 plt_address + plt_offset + lazy_offset);
1413 // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
1414 // the GOT to point to the actual symbol value, rather than point to
1415 // the PLT entry. That will let the dynamic linker call the right
1416 // function when resolving IRELATIVE relocations.
1417 unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
1418 for (std::vector<Global_ifunc>::const_iterator p =
1419 this->global_ifuncs_.begin();
1420 p != this->global_ifuncs_.end();
1423 const Sized_symbol<32>* ssym =
1424 static_cast<const Sized_symbol<32>*>(p->sym);
1425 elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1429 for (std::vector<Local_ifunc>::const_iterator p =
1430 this->local_ifuncs_.begin();
1431 p != this->local_ifuncs_.end();
1434 const Symbol_value<32>* psymval =
1435 p->object->local_symbol(p->local_sym_index);
1436 elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1437 psymval->value(p->object, 0));
1440 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1441 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1443 of->write_output_view(offset, oview_size, oview);
1444 of->write_output_view(got_file_offset, got_size, got_view);
1447 // Create the PLT section.
1450 Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
1452 if (this->plt_ == NULL)
1454 // Create the GOT sections first.
1455 this->got_section(symtab, layout);
1457 const bool dyn = parameters->options().output_is_position_independent();
1458 this->plt_ = this->make_data_plt(layout,
1460 this->got_irelative_,
1463 // Add unwind information if requested.
1464 if (parameters->options().ld_generated_unwind_info())
1465 this->plt_->add_eh_frame(layout);
1467 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1469 | elfcpp::SHF_EXECINSTR),
1470 this->plt_, ORDER_PLT, false);
1472 // Make the sh_info field of .rel.plt point to .plt.
1473 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
1474 rel_plt_os->set_info_section(this->plt_->output_section());
1478 // Create a PLT entry for a global symbol.
1481 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
1483 if (gsym->has_plt_offset())
1485 if (this->plt_ == NULL)
1486 this->make_plt_section(symtab, layout);
1487 this->plt_->add_entry(symtab, layout, gsym);
1490 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1493 Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1494 Sized_relobj_file<32, false>* relobj,
1495 unsigned int local_sym_index)
1497 if (relobj->local_has_plt_offset(local_sym_index))
1499 if (this->plt_ == NULL)
1500 this->make_plt_section(symtab, layout);
1501 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1504 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1507 // Return the number of entries in the PLT.
1510 Target_i386::plt_entry_count() const
1512 if (this->plt_ == NULL)
1514 return this->plt_->entry_count();
1517 // Return the offset of the first non-reserved PLT entry.
1520 Target_i386::first_plt_entry_offset() const
1522 return this->plt_->first_plt_entry_offset();
1525 // Return the size of each PLT entry.
1528 Target_i386::plt_entry_size() const
1530 return this->plt_->get_plt_entry_size();
1533 // Get the section to use for TLS_DESC relocations.
1535 Target_i386::Reloc_section*
1536 Target_i386::rel_tls_desc_section(Layout* layout) const
1538 return this->plt_section()->rel_tls_desc(layout);
1541 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1544 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1546 if (this->tls_base_symbol_defined_)
1549 Output_segment* tls_segment = layout->tls_segment();
1550 if (tls_segment != NULL)
1552 bool is_exec = parameters->options().output_is_executable();
1553 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1554 Symbol_table::PREDEFINED,
1558 elfcpp::STV_HIDDEN, 0,
1560 ? Symbol::SEGMENT_END
1561 : Symbol::SEGMENT_START),
1564 this->tls_base_symbol_defined_ = true;
1567 // Create a GOT entry for the TLS module index.
1570 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1571 Sized_relobj_file<32, false>* object)
1573 if (this->got_mod_index_offset_ == -1U)
1575 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1576 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1577 Output_data_got<32, false>* got = this->got_section(symtab, layout);
1578 unsigned int got_offset = got->add_constant(0);
1579 rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
1581 got->add_constant(0);
1582 this->got_mod_index_offset_ = got_offset;
1584 return this->got_mod_index_offset_;
1587 // Optimize the TLS relocation type based on what we know about the
1588 // symbol. IS_FINAL is true if the final address of this symbol is
1589 // known at link time.
1591 tls::Tls_optimization
1592 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
1594 // If we are generating a shared library, then we can't do anything
1596 if (parameters->options().shared())
1597 return tls::TLSOPT_NONE;
1601 case elfcpp::R_386_TLS_GD:
1602 case elfcpp::R_386_TLS_GOTDESC:
1603 case elfcpp::R_386_TLS_DESC_CALL:
1604 // These are General-Dynamic which permits fully general TLS
1605 // access. Since we know that we are generating an executable,
1606 // we can convert this to Initial-Exec. If we also know that
1607 // this is a local symbol, we can further switch to Local-Exec.
1609 return tls::TLSOPT_TO_LE;
1610 return tls::TLSOPT_TO_IE;
1612 case elfcpp::R_386_TLS_LDM:
1613 // This is Local-Dynamic, which refers to a local symbol in the
1614 // dynamic TLS block. Since we know that we generating an
1615 // executable, we can switch to Local-Exec.
1616 return tls::TLSOPT_TO_LE;
1618 case elfcpp::R_386_TLS_LDO_32:
1619 // Another type of Local-Dynamic relocation.
1620 return tls::TLSOPT_TO_LE;
1622 case elfcpp::R_386_TLS_IE:
1623 case elfcpp::R_386_TLS_GOTIE:
1624 case elfcpp::R_386_TLS_IE_32:
1625 // These are Initial-Exec relocs which get the thread offset
1626 // from the GOT. If we know that we are linking against the
1627 // local symbol, we can switch to Local-Exec, which links the
1628 // thread offset into the instruction.
1630 return tls::TLSOPT_TO_LE;
1631 return tls::TLSOPT_NONE;
1633 case elfcpp::R_386_TLS_LE:
1634 case elfcpp::R_386_TLS_LE_32:
1635 // When we already have Local-Exec, there is nothing further we
1637 return tls::TLSOPT_NONE;
1644 // Get the Reference_flags for a particular relocation.
1647 Target_i386::Scan::get_reference_flags(unsigned int r_type)
1651 case elfcpp::R_386_NONE:
1652 case elfcpp::R_386_GNU_VTINHERIT:
1653 case elfcpp::R_386_GNU_VTENTRY:
1654 case elfcpp::R_386_GOTPC:
1655 // No symbol reference.
1658 case elfcpp::R_386_32:
1659 case elfcpp::R_386_16:
1660 case elfcpp::R_386_8:
1661 return Symbol::ABSOLUTE_REF;
1663 case elfcpp::R_386_PC32:
1664 case elfcpp::R_386_PC16:
1665 case elfcpp::R_386_PC8:
1666 case elfcpp::R_386_GOTOFF:
1667 return Symbol::RELATIVE_REF;
1669 case elfcpp::R_386_PLT32:
1670 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1672 case elfcpp::R_386_GOT32:
1674 return Symbol::ABSOLUTE_REF;
1676 case elfcpp::R_386_TLS_GD: // Global-dynamic
1677 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1678 case elfcpp::R_386_TLS_DESC_CALL:
1679 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1680 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1681 case elfcpp::R_386_TLS_IE: // Initial-exec
1682 case elfcpp::R_386_TLS_IE_32:
1683 case elfcpp::R_386_TLS_GOTIE:
1684 case elfcpp::R_386_TLS_LE: // Local-exec
1685 case elfcpp::R_386_TLS_LE_32:
1686 return Symbol::TLS_REF;
1688 case elfcpp::R_386_COPY:
1689 case elfcpp::R_386_GLOB_DAT:
1690 case elfcpp::R_386_JUMP_SLOT:
1691 case elfcpp::R_386_RELATIVE:
1692 case elfcpp::R_386_IRELATIVE:
1693 case elfcpp::R_386_TLS_TPOFF:
1694 case elfcpp::R_386_TLS_DTPMOD32:
1695 case elfcpp::R_386_TLS_DTPOFF32:
1696 case elfcpp::R_386_TLS_TPOFF32:
1697 case elfcpp::R_386_TLS_DESC:
1698 case elfcpp::R_386_32PLT:
1699 case elfcpp::R_386_TLS_GD_32:
1700 case elfcpp::R_386_TLS_GD_PUSH:
1701 case elfcpp::R_386_TLS_GD_CALL:
1702 case elfcpp::R_386_TLS_GD_POP:
1703 case elfcpp::R_386_TLS_LDM_32:
1704 case elfcpp::R_386_TLS_LDM_PUSH:
1705 case elfcpp::R_386_TLS_LDM_CALL:
1706 case elfcpp::R_386_TLS_LDM_POP:
1707 case elfcpp::R_386_USED_BY_INTEL_200:
1709 // Not expected. We will give an error later.
1714 // Report an unsupported relocation against a local symbol.
1717 Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
1718 unsigned int r_type)
1720 gold_error(_("%s: unsupported reloc %u against local symbol"),
1721 object->name().c_str(), r_type);
1724 // Return whether we need to make a PLT entry for a relocation of a
1725 // given type against a STT_GNU_IFUNC symbol.
1728 Target_i386::Scan::reloc_needs_plt_for_ifunc(
1729 Sized_relobj_file<32, false>* object,
1730 unsigned int r_type)
1732 int flags = Scan::get_reference_flags(r_type);
1733 if (flags & Symbol::TLS_REF)
1734 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1735 object->name().c_str(), r_type);
1739 // Scan a relocation for a local symbol.
1742 Target_i386::Scan::local(Symbol_table* symtab,
1744 Target_i386* target,
1745 Sized_relobj_file<32, false>* object,
1746 unsigned int data_shndx,
1747 Output_section* output_section,
1748 const elfcpp::Rel<32, false>& reloc,
1749 unsigned int r_type,
1750 const elfcpp::Sym<32, false>& lsym,
1756 // A local STT_GNU_IFUNC symbol may require a PLT entry.
1757 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1758 && this->reloc_needs_plt_for_ifunc(object, r_type))
1760 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1761 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1766 case elfcpp::R_386_NONE:
1767 case elfcpp::R_386_GNU_VTINHERIT:
1768 case elfcpp::R_386_GNU_VTENTRY:
1771 case elfcpp::R_386_32:
1772 // If building a shared library (or a position-independent
1773 // executable), we need to create a dynamic relocation for
1774 // this location. The relocation applied at link time will
1775 // apply the link-time value, so we flag the location with
1776 // an R_386_RELATIVE relocation so the dynamic loader can
1777 // relocate it easily.
1778 if (parameters->options().output_is_position_independent())
1780 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1781 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1782 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
1783 output_section, data_shndx,
1784 reloc.get_r_offset());
1788 case elfcpp::R_386_16:
1789 case elfcpp::R_386_8:
1790 // If building a shared library (or a position-independent
1791 // executable), we need to create a dynamic relocation for
1792 // this location. Because the addend needs to remain in the
1793 // data section, we need to be careful not to apply this
1794 // relocation statically.
1795 if (parameters->options().output_is_position_independent())
1797 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1798 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1799 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1800 rel_dyn->add_local(object, r_sym, r_type, output_section,
1801 data_shndx, reloc.get_r_offset());
1804 gold_assert(lsym.get_st_value() == 0);
1805 unsigned int shndx = lsym.get_st_shndx();
1807 shndx = object->adjust_sym_shndx(r_sym, shndx,
1810 object->error(_("section symbol %u has bad shndx %u"),
1813 rel_dyn->add_local_section(object, shndx,
1814 r_type, output_section,
1815 data_shndx, reloc.get_r_offset());
1820 case elfcpp::R_386_PC32:
1821 case elfcpp::R_386_PC16:
1822 case elfcpp::R_386_PC8:
1825 case elfcpp::R_386_PLT32:
1826 // Since we know this is a local symbol, we can handle this as a
1830 case elfcpp::R_386_GOTOFF:
1831 case elfcpp::R_386_GOTPC:
1832 // We need a GOT section.
1833 target->got_section(symtab, layout);
1836 case elfcpp::R_386_GOT32:
1838 // The symbol requires a GOT entry.
1839 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1840 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1842 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
1843 // lets function pointers compare correctly with shared
1844 // libraries. Otherwise we would need an IRELATIVE reloc.
1846 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1847 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1849 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1852 // If we are generating a shared object, we need to add a
1853 // dynamic RELATIVE relocation for this symbol's GOT entry.
1854 if (parameters->options().output_is_position_independent())
1856 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1857 unsigned int got_offset =
1858 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1859 rel_dyn->add_local_relative(object, r_sym,
1860 elfcpp::R_386_RELATIVE,
1867 // These are relocations which should only be seen by the
1868 // dynamic linker, and should never be seen here.
1869 case elfcpp::R_386_COPY:
1870 case elfcpp::R_386_GLOB_DAT:
1871 case elfcpp::R_386_JUMP_SLOT:
1872 case elfcpp::R_386_RELATIVE:
1873 case elfcpp::R_386_IRELATIVE:
1874 case elfcpp::R_386_TLS_TPOFF:
1875 case elfcpp::R_386_TLS_DTPMOD32:
1876 case elfcpp::R_386_TLS_DTPOFF32:
1877 case elfcpp::R_386_TLS_TPOFF32:
1878 case elfcpp::R_386_TLS_DESC:
1879 gold_error(_("%s: unexpected reloc %u in object file"),
1880 object->name().c_str(), r_type);
1883 // These are initial TLS relocs, which are expected when
1885 case elfcpp::R_386_TLS_GD: // Global-dynamic
1886 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1887 case elfcpp::R_386_TLS_DESC_CALL:
1888 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1889 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1890 case elfcpp::R_386_TLS_IE: // Initial-exec
1891 case elfcpp::R_386_TLS_IE_32:
1892 case elfcpp::R_386_TLS_GOTIE:
1893 case elfcpp::R_386_TLS_LE: // Local-exec
1894 case elfcpp::R_386_TLS_LE_32:
1896 bool output_is_shared = parameters->options().shared();
1897 const tls::Tls_optimization optimized_type
1898 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1901 case elfcpp::R_386_TLS_GD: // Global-dynamic
1902 if (optimized_type == tls::TLSOPT_NONE)
1904 // Create a pair of GOT entries for the module index and
1905 // dtv-relative offset.
1906 Output_data_got<32, false>* got
1907 = target->got_section(symtab, layout);
1908 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1909 unsigned int shndx = lsym.get_st_shndx();
1911 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1913 object->error(_("local symbol %u has bad shndx %u"),
1916 got->add_local_pair_with_rel(object, r_sym, shndx,
1918 target->rel_dyn_section(layout),
1919 elfcpp::R_386_TLS_DTPMOD32);
1921 else if (optimized_type != tls::TLSOPT_TO_LE)
1922 unsupported_reloc_local(object, r_type);
1925 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva)
1926 target->define_tls_base_symbol(symtab, layout);
1927 if (optimized_type == tls::TLSOPT_NONE)
1929 // Create a double GOT entry with an R_386_TLS_DESC
1930 // reloc. The R_386_TLS_DESC reloc is resolved
1931 // lazily, so the GOT entry needs to be in an area in
1932 // .got.plt, not .got. Call got_section to make sure
1933 // the section has been created.
1934 target->got_section(symtab, layout);
1935 Output_data_got<32, false>* got = target->got_tlsdesc_section();
1936 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1937 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
1939 unsigned int got_offset = got->add_constant(0);
1940 // The local symbol value is stored in the second
1942 got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
1943 // That set the GOT offset of the local symbol to
1944 // point to the second entry, but we want it to
1945 // point to the first.
1946 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
1948 Reloc_section* rt = target->rel_tls_desc_section(layout);
1949 rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
1952 else if (optimized_type != tls::TLSOPT_TO_LE)
1953 unsupported_reloc_local(object, r_type);
1956 case elfcpp::R_386_TLS_DESC_CALL:
1959 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1960 if (optimized_type == tls::TLSOPT_NONE)
1962 // Create a GOT entry for the module index.
1963 target->got_mod_index_entry(symtab, layout, object);
1965 else if (optimized_type != tls::TLSOPT_TO_LE)
1966 unsupported_reloc_local(object, r_type);
1969 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1972 case elfcpp::R_386_TLS_IE: // Initial-exec
1973 case elfcpp::R_386_TLS_IE_32:
1974 case elfcpp::R_386_TLS_GOTIE:
1975 layout->set_has_static_tls();
1976 if (optimized_type == tls::TLSOPT_NONE)
1978 // For the R_386_TLS_IE relocation, we need to create a
1979 // dynamic relocation when building a shared library.
1980 if (r_type == elfcpp::R_386_TLS_IE
1981 && parameters->options().shared())
1983 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1985 = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1986 rel_dyn->add_local_relative(object, r_sym,
1987 elfcpp::R_386_RELATIVE,
1988 output_section, data_shndx,
1989 reloc.get_r_offset());
1991 // Create a GOT entry for the tp-relative offset.
1992 Output_data_got<32, false>* got
1993 = target->got_section(symtab, layout);
1994 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1995 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1996 ? elfcpp::R_386_TLS_TPOFF32
1997 : elfcpp::R_386_TLS_TPOFF);
1998 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1999 ? GOT_TYPE_TLS_OFFSET
2000 : GOT_TYPE_TLS_NOFFSET);
2001 got->add_local_with_rel(object, r_sym, got_type,
2002 target->rel_dyn_section(layout),
2005 else if (optimized_type != tls::TLSOPT_TO_LE)
2006 unsupported_reloc_local(object, r_type);
2009 case elfcpp::R_386_TLS_LE: // Local-exec
2010 case elfcpp::R_386_TLS_LE_32:
2011 layout->set_has_static_tls();
2012 if (output_is_shared)
2014 // We need to create a dynamic relocation.
2015 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2016 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2017 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2018 ? elfcpp::R_386_TLS_TPOFF32
2019 : elfcpp::R_386_TLS_TPOFF);
2020 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2021 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
2022 data_shndx, reloc.get_r_offset());
2032 case elfcpp::R_386_32PLT:
2033 case elfcpp::R_386_TLS_GD_32:
2034 case elfcpp::R_386_TLS_GD_PUSH:
2035 case elfcpp::R_386_TLS_GD_CALL:
2036 case elfcpp::R_386_TLS_GD_POP:
2037 case elfcpp::R_386_TLS_LDM_32:
2038 case elfcpp::R_386_TLS_LDM_PUSH:
2039 case elfcpp::R_386_TLS_LDM_CALL:
2040 case elfcpp::R_386_TLS_LDM_POP:
2041 case elfcpp::R_386_USED_BY_INTEL_200:
2043 unsupported_reloc_local(object, r_type);
2048 // Report an unsupported relocation against a global symbol.
2051 Target_i386::Scan::unsupported_reloc_global(
2052 Sized_relobj_file<32, false>* object,
2053 unsigned int r_type,
2056 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2057 object->name().c_str(), r_type, gsym->demangled_name().c_str());
2061 Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
2065 case elfcpp::R_386_32:
2066 case elfcpp::R_386_16:
2067 case elfcpp::R_386_8:
2068 case elfcpp::R_386_GOTOFF:
2069 case elfcpp::R_386_GOT32:
2080 Target_i386::Scan::local_reloc_may_be_function_pointer(
2084 Sized_relobj_file<32, false>* ,
2087 const elfcpp::Rel<32, false>& ,
2088 unsigned int r_type,
2089 const elfcpp::Sym<32, false>&)
2091 return possible_function_pointer_reloc(r_type);
2095 Target_i386::Scan::global_reloc_may_be_function_pointer(
2099 Sized_relobj_file<32, false>* ,
2102 const elfcpp::Rel<32, false>& ,
2103 unsigned int r_type,
2106 return possible_function_pointer_reloc(r_type);
2109 // Scan a relocation for a global symbol.
2112 Target_i386::Scan::global(Symbol_table* symtab,
2114 Target_i386* target,
2115 Sized_relobj_file<32, false>* object,
2116 unsigned int data_shndx,
2117 Output_section* output_section,
2118 const elfcpp::Rel<32, false>& reloc,
2119 unsigned int r_type,
2122 // A STT_GNU_IFUNC symbol may require a PLT entry.
2123 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2124 && this->reloc_needs_plt_for_ifunc(object, r_type))
2125 target->make_plt_entry(symtab, layout, gsym);
2129 case elfcpp::R_386_NONE:
2130 case elfcpp::R_386_GNU_VTINHERIT:
2131 case elfcpp::R_386_GNU_VTENTRY:
2134 case elfcpp::R_386_32:
2135 case elfcpp::R_386_16:
2136 case elfcpp::R_386_8:
2138 // Make a PLT entry if necessary.
2139 if (gsym->needs_plt_entry())
2141 target->make_plt_entry(symtab, layout, gsym);
2142 // Since this is not a PC-relative relocation, we may be
2143 // taking the address of a function. In that case we need to
2144 // set the entry in the dynamic symbol table to the address of
2146 if (gsym->is_from_dynobj() && !parameters->options().shared())
2147 gsym->set_needs_dynsym_value();
2149 // Make a dynamic relocation if necessary.
2150 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2152 if (!parameters->options().output_is_position_independent()
2153 && gsym->may_need_copy_reloc())
2155 target->copy_reloc(symtab, layout, object,
2156 data_shndx, output_section, gsym, reloc);
2158 else if (r_type == elfcpp::R_386_32
2159 && gsym->type() == elfcpp::STT_GNU_IFUNC
2160 && gsym->can_use_relative_reloc(false)
2161 && !gsym->is_from_dynobj()
2162 && !gsym->is_undefined()
2163 && !gsym->is_preemptible())
2165 // Use an IRELATIVE reloc for a locally defined
2166 // STT_GNU_IFUNC symbol. This makes a function
2167 // address in a PIE executable match the address in a
2168 // shared library that it links against.
2169 Reloc_section* rel_dyn = target->rel_irelative_section(layout);
2170 rel_dyn->add_symbolless_global_addend(gsym,
2171 elfcpp::R_386_IRELATIVE,
2174 reloc.get_r_offset());
2176 else if (r_type == elfcpp::R_386_32
2177 && gsym->can_use_relative_reloc(false))
2179 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2180 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2181 output_section, object,
2182 data_shndx, reloc.get_r_offset());
2186 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2187 rel_dyn->add_global(gsym, r_type, output_section, object,
2188 data_shndx, reloc.get_r_offset());
2194 case elfcpp::R_386_PC32:
2195 case elfcpp::R_386_PC16:
2196 case elfcpp::R_386_PC8:
2198 // Make a PLT entry if necessary.
2199 if (gsym->needs_plt_entry())
2201 // These relocations are used for function calls only in
2202 // non-PIC code. For a 32-bit relocation in a shared library,
2203 // we'll need a text relocation anyway, so we can skip the
2204 // PLT entry and let the dynamic linker bind the call directly
2205 // to the target. For smaller relocations, we should use a
2206 // PLT entry to ensure that the call can reach.
2207 if (!parameters->options().shared()
2208 || r_type != elfcpp::R_386_PC32)
2209 target->make_plt_entry(symtab, layout, gsym);
2211 // Make a dynamic relocation if necessary.
2212 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2214 if (parameters->options().output_is_executable()
2215 && gsym->may_need_copy_reloc())
2217 target->copy_reloc(symtab, layout, object,
2218 data_shndx, output_section, gsym, reloc);
2222 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2223 rel_dyn->add_global(gsym, r_type, output_section, object,
2224 data_shndx, reloc.get_r_offset());
2230 case elfcpp::R_386_GOT32:
2232 // The symbol requires a GOT entry.
2233 Output_data_got<32, false>* got = target->got_section(symtab, layout);
2234 if (gsym->final_value_is_known())
2236 // For a STT_GNU_IFUNC symbol we want the PLT address.
2237 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2238 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2240 got->add_global(gsym, GOT_TYPE_STANDARD);
2244 // If this symbol is not fully resolved, we need to add a
2245 // GOT entry with a dynamic relocation.
2246 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2248 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2250 // 1) The symbol may be defined in some other module.
2252 // 2) We are building a shared library and this is a
2253 // protected symbol; using GLOB_DAT means that the dynamic
2254 // linker can use the address of the PLT in the main
2255 // executable when appropriate so that function address
2256 // comparisons work.
2258 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2259 // code, again so that function address comparisons work.
2260 if (gsym->is_from_dynobj()
2261 || gsym->is_undefined()
2262 || gsym->is_preemptible()
2263 || (gsym->visibility() == elfcpp::STV_PROTECTED
2264 && parameters->options().shared())
2265 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2266 && parameters->options().output_is_position_independent()))
2267 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
2268 rel_dyn, elfcpp::R_386_GLOB_DAT);
2271 // For a STT_GNU_IFUNC symbol we want to write the PLT
2272 // offset into the GOT, so that function pointer
2273 // comparisons work correctly.
2275 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2276 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2279 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2280 // Tell the dynamic linker to use the PLT address
2281 // when resolving relocations.
2282 if (gsym->is_from_dynobj()
2283 && !parameters->options().shared())
2284 gsym->set_needs_dynsym_value();
2288 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2289 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2297 case elfcpp::R_386_PLT32:
2298 // If the symbol is fully resolved, this is just a PC32 reloc.
2299 // Otherwise we need a PLT entry.
2300 if (gsym->final_value_is_known())
2302 // If building a shared library, we can also skip the PLT entry
2303 // if the symbol is defined in the output file and is protected
2305 if (gsym->is_defined()
2306 && !gsym->is_from_dynobj()
2307 && !gsym->is_preemptible())
2309 target->make_plt_entry(symtab, layout, gsym);
2312 case elfcpp::R_386_GOTOFF:
2313 case elfcpp::R_386_GOTPC:
2314 // We need a GOT section.
2315 target->got_section(symtab, layout);
2318 // These are relocations which should only be seen by the
2319 // dynamic linker, and should never be seen here.
2320 case elfcpp::R_386_COPY:
2321 case elfcpp::R_386_GLOB_DAT:
2322 case elfcpp::R_386_JUMP_SLOT:
2323 case elfcpp::R_386_RELATIVE:
2324 case elfcpp::R_386_IRELATIVE:
2325 case elfcpp::R_386_TLS_TPOFF:
2326 case elfcpp::R_386_TLS_DTPMOD32:
2327 case elfcpp::R_386_TLS_DTPOFF32:
2328 case elfcpp::R_386_TLS_TPOFF32:
2329 case elfcpp::R_386_TLS_DESC:
2330 gold_error(_("%s: unexpected reloc %u in object file"),
2331 object->name().c_str(), r_type);
2334 // These are initial tls relocs, which are expected when
2336 case elfcpp::R_386_TLS_GD: // Global-dynamic
2337 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2338 case elfcpp::R_386_TLS_DESC_CALL:
2339 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2340 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2341 case elfcpp::R_386_TLS_IE: // Initial-exec
2342 case elfcpp::R_386_TLS_IE_32:
2343 case elfcpp::R_386_TLS_GOTIE:
2344 case elfcpp::R_386_TLS_LE: // Local-exec
2345 case elfcpp::R_386_TLS_LE_32:
2347 const bool is_final = gsym->final_value_is_known();
2348 const tls::Tls_optimization optimized_type
2349 = Target_i386::optimize_tls_reloc(is_final, r_type);
2352 case elfcpp::R_386_TLS_GD: // Global-dynamic
2353 if (optimized_type == tls::TLSOPT_NONE)
2355 // Create a pair of GOT entries for the module index and
2356 // dtv-relative offset.
2357 Output_data_got<32, false>* got
2358 = target->got_section(symtab, layout);
2359 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2360 target->rel_dyn_section(layout),
2361 elfcpp::R_386_TLS_DTPMOD32,
2362 elfcpp::R_386_TLS_DTPOFF32);
2364 else if (optimized_type == tls::TLSOPT_TO_IE)
2366 // Create a GOT entry for the tp-relative offset.
2367 Output_data_got<32, false>* got
2368 = target->got_section(symtab, layout);
2369 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2370 target->rel_dyn_section(layout),
2371 elfcpp::R_386_TLS_TPOFF);
2373 else if (optimized_type != tls::TLSOPT_TO_LE)
2374 unsupported_reloc_global(object, r_type, gsym);
2377 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (~oliva url)
2378 target->define_tls_base_symbol(symtab, layout);
2379 if (optimized_type == tls::TLSOPT_NONE)
2381 // Create a double GOT entry with an R_386_TLS_DESC
2382 // reloc. The R_386_TLS_DESC reloc is resolved
2383 // lazily, so the GOT entry needs to be in an area in
2384 // .got.plt, not .got. Call got_section to make sure
2385 // the section has been created.
2386 target->got_section(symtab, layout);
2387 Output_data_got<32, false>* got = target->got_tlsdesc_section();
2388 Reloc_section* rt = target->rel_tls_desc_section(layout);
2389 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
2390 elfcpp::R_386_TLS_DESC, 0);
2392 else if (optimized_type == tls::TLSOPT_TO_IE)
2394 // Create a GOT entry for the tp-relative offset.
2395 Output_data_got<32, false>* got
2396 = target->got_section(symtab, layout);
2397 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2398 target->rel_dyn_section(layout),
2399 elfcpp::R_386_TLS_TPOFF);
2401 else if (optimized_type != tls::TLSOPT_TO_LE)
2402 unsupported_reloc_global(object, r_type, gsym);
2405 case elfcpp::R_386_TLS_DESC_CALL:
2408 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2409 if (optimized_type == tls::TLSOPT_NONE)
2411 // Create a GOT entry for the module index.
2412 target->got_mod_index_entry(symtab, layout, object);
2414 else if (optimized_type != tls::TLSOPT_TO_LE)
2415 unsupported_reloc_global(object, r_type, gsym);
2418 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2421 case elfcpp::R_386_TLS_IE: // Initial-exec
2422 case elfcpp::R_386_TLS_IE_32:
2423 case elfcpp::R_386_TLS_GOTIE:
2424 layout->set_has_static_tls();
2425 if (optimized_type == tls::TLSOPT_NONE)
2427 // For the R_386_TLS_IE relocation, we need to create a
2428 // dynamic relocation when building a shared library.
2429 if (r_type == elfcpp::R_386_TLS_IE
2430 && parameters->options().shared())
2432 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2433 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2434 output_section, object,
2436 reloc.get_r_offset());
2438 // Create a GOT entry for the tp-relative offset.
2439 Output_data_got<32, false>* got
2440 = target->got_section(symtab, layout);
2441 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2442 ? elfcpp::R_386_TLS_TPOFF32
2443 : elfcpp::R_386_TLS_TPOFF);
2444 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2445 ? GOT_TYPE_TLS_OFFSET
2446 : GOT_TYPE_TLS_NOFFSET);
2447 got->add_global_with_rel(gsym, got_type,
2448 target->rel_dyn_section(layout),
2451 else if (optimized_type != tls::TLSOPT_TO_LE)
2452 unsupported_reloc_global(object, r_type, gsym);
2455 case elfcpp::R_386_TLS_LE: // Local-exec
2456 case elfcpp::R_386_TLS_LE_32:
2457 layout->set_has_static_tls();
2458 if (parameters->options().shared())
2460 // We need to create a dynamic relocation.
2461 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2462 ? elfcpp::R_386_TLS_TPOFF32
2463 : elfcpp::R_386_TLS_TPOFF);
2464 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2465 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
2466 data_shndx, reloc.get_r_offset());
2476 case elfcpp::R_386_32PLT:
2477 case elfcpp::R_386_TLS_GD_32:
2478 case elfcpp::R_386_TLS_GD_PUSH:
2479 case elfcpp::R_386_TLS_GD_CALL:
2480 case elfcpp::R_386_TLS_GD_POP:
2481 case elfcpp::R_386_TLS_LDM_32:
2482 case elfcpp::R_386_TLS_LDM_PUSH:
2483 case elfcpp::R_386_TLS_LDM_CALL:
2484 case elfcpp::R_386_TLS_LDM_POP:
2485 case elfcpp::R_386_USED_BY_INTEL_200:
2487 unsupported_reloc_global(object, r_type, gsym);
2492 // Process relocations for gc.
2495 Target_i386::gc_process_relocs(Symbol_table* symtab,
2497 Sized_relobj_file<32, false>* object,
2498 unsigned int data_shndx,
2500 const unsigned char* prelocs,
2502 Output_section* output_section,
2503 bool needs_special_offset_handling,
2504 size_t local_symbol_count,
2505 const unsigned char* plocal_symbols)
2507 gold::gc_process_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2509 Target_i386::Relocatable_size_for_reloc>(
2518 needs_special_offset_handling,
2523 // Scan relocations for a section.
2526 Target_i386::scan_relocs(Symbol_table* symtab,
2528 Sized_relobj_file<32, false>* object,
2529 unsigned int data_shndx,
2530 unsigned int sh_type,
2531 const unsigned char* prelocs,
2533 Output_section* output_section,
2534 bool needs_special_offset_handling,
2535 size_t local_symbol_count,
2536 const unsigned char* plocal_symbols)
2538 if (sh_type == elfcpp::SHT_RELA)
2540 gold_error(_("%s: unsupported RELA reloc section"),
2541 object->name().c_str());
2545 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2555 needs_special_offset_handling,
2560 // Finalize the sections.
2563 Target_i386::do_finalize_sections(
2565 const Input_objects*,
2566 Symbol_table* symtab)
2568 const Reloc_section* rel_plt = (this->plt_ == NULL
2570 : this->plt_->rel_plt());
2571 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
2572 this->rel_dyn_, true, false);
2574 // Emit any relocs we saved in an attempt to avoid generating COPY
2576 if (this->copy_relocs_.any_saved_relocs())
2577 this->copy_relocs_.emit(this->rel_dyn_section(layout));
2579 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2580 // the .got.plt section.
2581 Symbol* sym = this->global_offset_table_;
2584 uint32_t data_size = this->got_plt_->current_data_size();
2585 symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
2588 if (parameters->doing_static_link()
2589 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
2591 // If linking statically, make sure that the __rel_iplt symbols
2592 // were defined if necessary, even if we didn't create a PLT.
2593 static const Define_symbol_in_segment syms[] =
2596 "__rel_iplt_start", // name
2597 elfcpp::PT_LOAD, // segment_type
2598 elfcpp::PF_W, // segment_flags_set
2599 elfcpp::PF(0), // segment_flags_clear
2602 elfcpp::STT_NOTYPE, // type
2603 elfcpp::STB_GLOBAL, // binding
2604 elfcpp::STV_HIDDEN, // visibility
2606 Symbol::SEGMENT_START, // offset_from_base
2610 "__rel_iplt_end", // name
2611 elfcpp::PT_LOAD, // segment_type
2612 elfcpp::PF_W, // segment_flags_set
2613 elfcpp::PF(0), // segment_flags_clear
2616 elfcpp::STT_NOTYPE, // type
2617 elfcpp::STB_GLOBAL, // binding
2618 elfcpp::STV_HIDDEN, // visibility
2620 Symbol::SEGMENT_START, // offset_from_base
2625 symtab->define_symbols(layout, 2, syms,
2626 layout->script_options()->saw_sections_clause());
2630 // Return whether a direct absolute static relocation needs to be applied.
2631 // In cases where Scan::local() or Scan::global() has created
2632 // a dynamic relocation other than R_386_RELATIVE, the addend
2633 // of the relocation is carried in the data, and we must not
2634 // apply the static relocation.
2637 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
2638 unsigned int r_type,
2640 Output_section* output_section)
2642 // If the output section is not allocated, then we didn't call
2643 // scan_relocs, we didn't create a dynamic reloc, and we must apply
2645 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
2648 int ref_flags = Scan::get_reference_flags(r_type);
2650 // For local symbols, we will have created a non-RELATIVE dynamic
2651 // relocation only if (a) the output is position independent,
2652 // (b) the relocation is absolute (not pc- or segment-relative), and
2653 // (c) the relocation is not 32 bits wide.
2655 return !(parameters->options().output_is_position_independent()
2656 && (ref_flags & Symbol::ABSOLUTE_REF)
2659 // For global symbols, we use the same helper routines used in the
2660 // scan pass. If we did not create a dynamic relocation, or if we
2661 // created a RELATIVE dynamic relocation, we should apply the static
2663 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
2664 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
2665 && gsym->can_use_relative_reloc(ref_flags
2666 & Symbol::FUNCTION_CALL);
2667 return !has_dyn || is_rel;
2670 // Perform a relocation.
2673 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
2674 Target_i386* target,
2675 Output_section* output_section,
2677 const elfcpp::Rel<32, false>& rel,
2678 unsigned int r_type,
2679 const Sized_symbol<32>* gsym,
2680 const Symbol_value<32>* psymval,
2681 unsigned char* view,
2682 elfcpp::Elf_types<32>::Elf_Addr address,
2683 section_size_type view_size)
2685 if (this->skip_call_tls_get_addr_)
2687 if ((r_type != elfcpp::R_386_PLT32
2688 && r_type != elfcpp::R_386_PC32)
2690 || strcmp(gsym->name(), "___tls_get_addr") != 0)
2691 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2692 _("missing expected TLS relocation"));
2695 this->skip_call_tls_get_addr_ = false;
2703 const Sized_relobj_file<32, false>* object = relinfo->object;
2705 // Pick the value to use for symbols defined in shared objects.
2706 Symbol_value<32> symval;
2708 && gsym->type() == elfcpp::STT_GNU_IFUNC
2709 && r_type == elfcpp::R_386_32
2710 && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
2711 && gsym->can_use_relative_reloc(false)
2712 && !gsym->is_from_dynobj()
2713 && !gsym->is_undefined()
2714 && !gsym->is_preemptible())
2716 // In this case we are generating a R_386_IRELATIVE reloc. We
2717 // want to use the real value of the symbol, not the PLT offset.
2719 else if (gsym != NULL
2720 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2722 symval.set_output_value(target->plt_address_for_global(gsym));
2725 else if (gsym == NULL && psymval->is_ifunc_symbol())
2727 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2728 if (object->local_has_plt_offset(r_sym))
2730 symval.set_output_value(target->plt_address_for_local(object, r_sym));
2735 // Get the GOT offset if needed.
2736 // The GOT pointer points to the end of the GOT section.
2737 // We need to subtract the size of the GOT section to get
2738 // the actual offset to use in the relocation.
2739 bool have_got_offset = false;
2740 unsigned int got_offset = 0;
2743 case elfcpp::R_386_GOT32:
2746 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2747 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
2748 - target->got_size());
2752 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2753 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2754 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2755 - target->got_size());
2757 have_got_offset = true;
2766 case elfcpp::R_386_NONE:
2767 case elfcpp::R_386_GNU_VTINHERIT:
2768 case elfcpp::R_386_GNU_VTENTRY:
2771 case elfcpp::R_386_32:
2772 if (should_apply_static_reloc(gsym, r_type, true, output_section))
2773 Relocate_functions<32, false>::rel32(view, object, psymval);
2776 case elfcpp::R_386_PC32:
2777 if (should_apply_static_reloc(gsym, r_type, true, output_section))
2778 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2781 case elfcpp::R_386_16:
2782 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2783 Relocate_functions<32, false>::rel16(view, object, psymval);
2786 case elfcpp::R_386_PC16:
2787 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2788 Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
2791 case elfcpp::R_386_8:
2792 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2793 Relocate_functions<32, false>::rel8(view, object, psymval);
2796 case elfcpp::R_386_PC8:
2797 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2798 Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
2801 case elfcpp::R_386_PLT32:
2802 gold_assert(gsym == NULL
2803 || gsym->has_plt_offset()
2804 || gsym->final_value_is_known()
2805 || (gsym->is_defined()
2806 && !gsym->is_from_dynobj()
2807 && !gsym->is_preemptible()));
2808 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2811 case elfcpp::R_386_GOT32:
2812 gold_assert(have_got_offset);
2813 Relocate_functions<32, false>::rel32(view, got_offset);
2816 case elfcpp::R_386_GOTOFF:
2818 elfcpp::Elf_types<32>::Elf_Addr value;
2819 value = (psymval->value(object, 0)
2820 - target->got_plt_section()->address());
2821 Relocate_functions<32, false>::rel32(view, value);
2825 case elfcpp::R_386_GOTPC:
2827 elfcpp::Elf_types<32>::Elf_Addr value;
2828 value = target->got_plt_section()->address();
2829 Relocate_functions<32, false>::pcrel32(view, value, address);
2833 case elfcpp::R_386_COPY:
2834 case elfcpp::R_386_GLOB_DAT:
2835 case elfcpp::R_386_JUMP_SLOT:
2836 case elfcpp::R_386_RELATIVE:
2837 case elfcpp::R_386_IRELATIVE:
2838 // These are outstanding tls relocs, which are unexpected when
2840 case elfcpp::R_386_TLS_TPOFF:
2841 case elfcpp::R_386_TLS_DTPMOD32:
2842 case elfcpp::R_386_TLS_DTPOFF32:
2843 case elfcpp::R_386_TLS_TPOFF32:
2844 case elfcpp::R_386_TLS_DESC:
2845 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2846 _("unexpected reloc %u in object file"),
2850 // These are initial tls relocs, which are expected when
2852 case elfcpp::R_386_TLS_GD: // Global-dynamic
2853 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2854 case elfcpp::R_386_TLS_DESC_CALL:
2855 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2856 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2857 case elfcpp::R_386_TLS_IE: // Initial-exec
2858 case elfcpp::R_386_TLS_IE_32:
2859 case elfcpp::R_386_TLS_GOTIE:
2860 case elfcpp::R_386_TLS_LE: // Local-exec
2861 case elfcpp::R_386_TLS_LE_32:
2862 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
2863 view, address, view_size);
2866 case elfcpp::R_386_32PLT:
2867 case elfcpp::R_386_TLS_GD_32:
2868 case elfcpp::R_386_TLS_GD_PUSH:
2869 case elfcpp::R_386_TLS_GD_CALL:
2870 case elfcpp::R_386_TLS_GD_POP:
2871 case elfcpp::R_386_TLS_LDM_32:
2872 case elfcpp::R_386_TLS_LDM_PUSH:
2873 case elfcpp::R_386_TLS_LDM_CALL:
2874 case elfcpp::R_386_TLS_LDM_POP:
2875 case elfcpp::R_386_USED_BY_INTEL_200:
2877 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2878 _("unsupported reloc %u"),
2886 // Perform a TLS relocation.
2889 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
2890 Target_i386* target,
2892 const elfcpp::Rel<32, false>& rel,
2893 unsigned int r_type,
2894 const Sized_symbol<32>* gsym,
2895 const Symbol_value<32>* psymval,
2896 unsigned char* view,
2897 elfcpp::Elf_types<32>::Elf_Addr,
2898 section_size_type view_size)
2900 Output_segment* tls_segment = relinfo->layout->tls_segment();
2902 const Sized_relobj_file<32, false>* object = relinfo->object;
2904 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
2906 const bool is_final = (gsym == NULL
2907 ? !parameters->options().shared()
2908 : gsym->final_value_is_known());
2909 const tls::Tls_optimization optimized_type
2910 = Target_i386::optimize_tls_reloc(is_final, r_type);
2913 case elfcpp::R_386_TLS_GD: // Global-dynamic
2914 if (optimized_type == tls::TLSOPT_TO_LE)
2916 if (tls_segment == NULL)
2918 gold_assert(parameters->errors()->error_count() > 0
2919 || issue_undefined_symbol_error(gsym));
2922 this->tls_gd_to_le(relinfo, relnum, tls_segment,
2923 rel, r_type, value, view,
2929 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2930 ? GOT_TYPE_TLS_NOFFSET
2931 : GOT_TYPE_TLS_PAIR);
2932 unsigned int got_offset;
2935 gold_assert(gsym->has_got_offset(got_type));
2936 got_offset = gsym->got_offset(got_type) - target->got_size();
2940 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2941 gold_assert(object->local_has_got_offset(r_sym, got_type));
2942 got_offset = (object->local_got_offset(r_sym, got_type)
2943 - target->got_size());
2945 if (optimized_type == tls::TLSOPT_TO_IE)
2947 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
2948 got_offset, view, view_size);
2951 else if (optimized_type == tls::TLSOPT_NONE)
2953 // Relocate the field with the offset of the pair of GOT
2955 Relocate_functions<32, false>::rel32(view, got_offset);
2959 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2960 _("unsupported reloc %u"),
2964 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2965 case elfcpp::R_386_TLS_DESC_CALL:
2966 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
2967 if (optimized_type == tls::TLSOPT_TO_LE)
2969 if (tls_segment == NULL)
2971 gold_assert(parameters->errors()->error_count() > 0
2972 || issue_undefined_symbol_error(gsym));
2975 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2976 rel, r_type, value, view,
2982 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2983 ? GOT_TYPE_TLS_NOFFSET
2984 : GOT_TYPE_TLS_DESC);
2985 unsigned int got_offset = 0;
2986 if (r_type == elfcpp::R_386_TLS_GOTDESC
2987 && optimized_type == tls::TLSOPT_NONE)
2989 // We created GOT entries in the .got.tlsdesc portion of
2990 // the .got.plt section, but the offset stored in the
2991 // symbol is the offset within .got.tlsdesc.
2992 got_offset = (target->got_size()
2993 + target->got_plt_section()->data_size());
2997 gold_assert(gsym->has_got_offset(got_type));
2998 got_offset += gsym->got_offset(got_type) - target->got_size();
3002 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3003 gold_assert(object->local_has_got_offset(r_sym, got_type));
3004 got_offset += (object->local_got_offset(r_sym, got_type)
3005 - target->got_size());
3007 if (optimized_type == tls::TLSOPT_TO_IE)
3009 if (tls_segment == NULL)
3011 gold_assert(parameters->errors()->error_count() > 0
3012 || issue_undefined_symbol_error(gsym));
3015 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
3016 got_offset, view, view_size);
3019 else if (optimized_type == tls::TLSOPT_NONE)
3021 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3023 // Relocate the field with the offset of the pair of GOT
3025 Relocate_functions<32, false>::rel32(view, got_offset);
3030 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3031 _("unsupported reloc %u"),
3035 case elfcpp::R_386_TLS_LDM: // Local-dynamic
3036 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
3038 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3039 _("both SUN and GNU model "
3040 "TLS relocations"));
3043 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
3044 if (optimized_type == tls::TLSOPT_TO_LE)
3046 if (tls_segment == NULL)
3048 gold_assert(parameters->errors()->error_count() > 0
3049 || issue_undefined_symbol_error(gsym));
3052 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
3053 value, view, view_size);
3056 else if (optimized_type == tls::TLSOPT_NONE)
3058 // Relocate the field with the offset of the GOT entry for
3059 // the module index.
3060 unsigned int got_offset;
3061 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3062 - target->got_size());
3063 Relocate_functions<32, false>::rel32(view, got_offset);
3066 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3067 _("unsupported reloc %u"),
3071 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
3072 if (optimized_type == tls::TLSOPT_TO_LE)
3074 // This reloc can appear in debugging sections, in which
3075 // case we must not convert to local-exec. We decide what
3076 // to do based on whether the section is marked as
3077 // containing executable code. That is what the GNU linker
3079 elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
3080 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
3082 if (tls_segment == NULL)
3084 gold_assert(parameters->errors()->error_count() > 0
3085 || issue_undefined_symbol_error(gsym));
3088 value -= tls_segment->memsz();
3091 Relocate_functions<32, false>::rel32(view, value);
3094 case elfcpp::R_386_TLS_IE: // Initial-exec
3095 case elfcpp::R_386_TLS_GOTIE:
3096 case elfcpp::R_386_TLS_IE_32:
3097 if (optimized_type == tls::TLSOPT_TO_LE)
3099 if (tls_segment == NULL)
3101 gold_assert(parameters->errors()->error_count() > 0
3102 || issue_undefined_symbol_error(gsym));
3105 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
3106 rel, r_type, value, view,
3110 else if (optimized_type == tls::TLSOPT_NONE)
3112 // Relocate the field with the offset of the GOT entry for
3113 // the tp-relative offset of the symbol.
3114 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
3115 ? GOT_TYPE_TLS_OFFSET
3116 : GOT_TYPE_TLS_NOFFSET);
3117 unsigned int got_offset;
3120 gold_assert(gsym->has_got_offset(got_type));
3121 got_offset = gsym->got_offset(got_type);
3125 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3126 gold_assert(object->local_has_got_offset(r_sym, got_type));
3127 got_offset = object->local_got_offset(r_sym, got_type);
3129 // For the R_386_TLS_IE relocation, we need to apply the
3130 // absolute address of the GOT entry.
3131 if (r_type == elfcpp::R_386_TLS_IE)
3132 got_offset += target->got_plt_section()->address();
3133 // All GOT offsets are relative to the end of the GOT.
3134 got_offset -= target->got_size();
3135 Relocate_functions<32, false>::rel32(view, got_offset);
3138 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3139 _("unsupported reloc %u"),
3143 case elfcpp::R_386_TLS_LE: // Local-exec
3144 // If we're creating a shared library, a dynamic relocation will
3145 // have been created for this location, so do not apply it now.
3146 if (!parameters->options().shared())
3148 if (tls_segment == NULL)
3150 gold_assert(parameters->errors()->error_count() > 0
3151 || issue_undefined_symbol_error(gsym));
3154 value -= tls_segment->memsz();
3155 Relocate_functions<32, false>::rel32(view, value);
3159 case elfcpp::R_386_TLS_LE_32:
3160 // If we're creating a shared library, a dynamic relocation will
3161 // have been created for this location, so do not apply it now.
3162 if (!parameters->options().shared())
3164 if (tls_segment == NULL)
3166 gold_assert(parameters->errors()->error_count() > 0
3167 || issue_undefined_symbol_error(gsym));
3170 value = tls_segment->memsz() - value;
3171 Relocate_functions<32, false>::rel32(view, value);
3177 // Do a relocation in which we convert a TLS General-Dynamic to a
3181 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
3183 Output_segment* tls_segment,
3184 const elfcpp::Rel<32, false>& rel,
3186 elfcpp::Elf_types<32>::Elf_Addr value,
3187 unsigned char* view,
3188 section_size_type view_size)
3190 // leal foo(,%reg,1),%eax; call ___tls_get_addr
3191 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
3192 // leal foo(%reg),%eax; call ___tls_get_addr
3193 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
3195 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3196 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3198 unsigned char op1 = view[-1];
3199 unsigned char op2 = view[-2];
3201 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3202 op2 == 0x8d || op2 == 0x04);
3203 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3209 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3210 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3211 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3212 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3213 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3217 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3218 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
3219 if (rel.get_r_offset() + 9 < view_size
3222 // There is a trailing nop. Use the size byte subl.
3223 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3228 // Use the five byte subl.
3229 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
3233 value = tls_segment->memsz() - value;
3234 Relocate_functions<32, false>::rel32(view + roff, value);
3236 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3238 this->skip_call_tls_get_addr_ = true;
3241 // Do a relocation in which we convert a TLS General-Dynamic to an
3245 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
3248 const elfcpp::Rel<32, false>& rel,
3250 elfcpp::Elf_types<32>::Elf_Addr value,
3251 unsigned char* view,
3252 section_size_type view_size)
3254 // leal foo(,%ebx,1),%eax; call ___tls_get_addr
3255 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
3257 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3258 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3260 unsigned char op1 = view[-1];
3261 unsigned char op2 = view[-2];
3263 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3264 op2 == 0x8d || op2 == 0x04);
3265 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3269 // FIXME: For now, support only the first (SIB) form.
3270 tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
3274 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3275 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3276 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3277 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3278 memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
3282 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3283 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
3284 if (rel.get_r_offset() + 9 < view_size
3287 // FIXME: This is not the right instruction sequence.
3288 // There is a trailing nop. Use the size byte subl.
3289 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3294 // FIXME: This is not the right instruction sequence.
3295 // Use the five byte subl.
3296 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
3300 Relocate_functions<32, false>::rel32(view + roff, value);
3302 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3304 this->skip_call_tls_get_addr_ = true;
3307 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3308 // General-Dynamic to a Local-Exec.
3311 Target_i386::Relocate::tls_desc_gd_to_le(
3312 const Relocate_info<32, false>* relinfo,
3314 Output_segment* tls_segment,
3315 const elfcpp::Rel<32, false>& rel,
3316 unsigned int r_type,
3317 elfcpp::Elf_types<32>::Elf_Addr value,
3318 unsigned char* view,
3319 section_size_type view_size)
3321 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3323 // leal foo@TLSDESC(%ebx), %eax
3324 // ==> leal foo@NTPOFF, %eax
3325 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3326 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3327 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3328 view[-2] == 0x8d && view[-1] == 0x83);
3330 value -= tls_segment->memsz();
3331 Relocate_functions<32, false>::rel32(view, value);
3335 // call *foo@TLSCALL(%eax)
3337 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3338 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3339 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3340 view[0] == 0xff && view[1] == 0x10);
3346 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3347 // General-Dynamic to an Initial-Exec.
3350 Target_i386::Relocate::tls_desc_gd_to_ie(
3351 const Relocate_info<32, false>* relinfo,
3354 const elfcpp::Rel<32, false>& rel,
3355 unsigned int r_type,
3356 elfcpp::Elf_types<32>::Elf_Addr value,
3357 unsigned char* view,
3358 section_size_type view_size)
3360 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3362 // leal foo@TLSDESC(%ebx), %eax
3363 // ==> movl foo@GOTNTPOFF(%ebx), %eax
3364 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3365 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3366 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3367 view[-2] == 0x8d && view[-1] == 0x83);
3369 Relocate_functions<32, false>::rel32(view, value);
3373 // call *foo@TLSCALL(%eax)
3375 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3376 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3377 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3378 view[0] == 0xff && view[1] == 0x10);
3384 // Do a relocation in which we convert a TLS Local-Dynamic to a
3388 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
3391 const elfcpp::Rel<32, false>& rel,
3393 elfcpp::Elf_types<32>::Elf_Addr,
3394 unsigned char* view,
3395 section_size_type view_size)
3397 // leal foo(%reg), %eax; call ___tls_get_addr
3398 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
3400 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3401 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3403 // FIXME: Does this test really always pass?
3404 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3405 view[-2] == 0x8d && view[-1] == 0x83);
3407 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3409 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
3411 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3413 this->skip_call_tls_get_addr_ = true;
3416 // Do a relocation in which we convert a TLS Initial-Exec to a
3420 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
3422 Output_segment* tls_segment,
3423 const elfcpp::Rel<32, false>& rel,
3424 unsigned int r_type,
3425 elfcpp::Elf_types<32>::Elf_Addr value,
3426 unsigned char* view,
3427 section_size_type view_size)
3429 // We have to actually change the instructions, which means that we
3430 // need to examine the opcodes to figure out which instruction we
3432 if (r_type == elfcpp::R_386_TLS_IE)
3434 // movl %gs:XX,%eax ==> movl $YY,%eax
3435 // movl %gs:XX,%reg ==> movl $YY,%reg
3436 // addl %gs:XX,%reg ==> addl $YY,%reg
3437 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
3438 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3440 unsigned char op1 = view[-1];
3443 // movl XX,%eax ==> movl $YY,%eax
3448 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3450 unsigned char op2 = view[-2];
3453 // movl XX,%reg ==> movl $YY,%reg
3454 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3455 (op1 & 0xc7) == 0x05);
3457 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3459 else if (op2 == 0x03)
3461 // addl XX,%reg ==> addl $YY,%reg
3462 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3463 (op1 & 0xc7) == 0x05);
3465 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3468 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3473 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
3474 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
3475 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
3476 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3477 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3479 unsigned char op1 = view[-1];
3480 unsigned char op2 = view[-2];
3481 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3482 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
3485 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
3487 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3489 else if (op2 == 0x2b)
3491 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
3493 view[-1] = 0xe8 | ((op1 >> 3) & 7);
3495 else if (op2 == 0x03)
3497 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
3499 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3502 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3505 value = tls_segment->memsz() - value;
3506 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
3509 Relocate_functions<32, false>::rel32(view, value);
3512 // Relocate section data.
3515 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
3516 unsigned int sh_type,
3517 const unsigned char* prelocs,
3519 Output_section* output_section,
3520 bool needs_special_offset_handling,
3521 unsigned char* view,
3522 elfcpp::Elf_types<32>::Elf_Addr address,
3523 section_size_type view_size,
3524 const Reloc_symbol_changes* reloc_symbol_changes)
3526 gold_assert(sh_type == elfcpp::SHT_REL);
3528 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
3529 Target_i386::Relocate, gold::Default_comdat_behavior>(
3535 needs_special_offset_handling,
3539 reloc_symbol_changes);
3542 // Return the size of a relocation while scanning during a relocatable
3546 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
3547 unsigned int r_type,
3552 case elfcpp::R_386_NONE:
3553 case elfcpp::R_386_GNU_VTINHERIT:
3554 case elfcpp::R_386_GNU_VTENTRY:
3555 case elfcpp::R_386_TLS_GD: // Global-dynamic
3556 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
3557 case elfcpp::R_386_TLS_DESC_CALL:
3558 case elfcpp::R_386_TLS_LDM: // Local-dynamic
3559 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
3560 case elfcpp::R_386_TLS_IE: // Initial-exec
3561 case elfcpp::R_386_TLS_IE_32:
3562 case elfcpp::R_386_TLS_GOTIE:
3563 case elfcpp::R_386_TLS_LE: // Local-exec
3564 case elfcpp::R_386_TLS_LE_32:
3567 case elfcpp::R_386_32:
3568 case elfcpp::R_386_PC32:
3569 case elfcpp::R_386_GOT32:
3570 case elfcpp::R_386_PLT32:
3571 case elfcpp::R_386_GOTOFF:
3572 case elfcpp::R_386_GOTPC:
3575 case elfcpp::R_386_16:
3576 case elfcpp::R_386_PC16:
3579 case elfcpp::R_386_8:
3580 case elfcpp::R_386_PC8:
3583 // These are relocations which should only be seen by the
3584 // dynamic linker, and should never be seen here.
3585 case elfcpp::R_386_COPY:
3586 case elfcpp::R_386_GLOB_DAT:
3587 case elfcpp::R_386_JUMP_SLOT:
3588 case elfcpp::R_386_RELATIVE:
3589 case elfcpp::R_386_IRELATIVE:
3590 case elfcpp::R_386_TLS_TPOFF:
3591 case elfcpp::R_386_TLS_DTPMOD32:
3592 case elfcpp::R_386_TLS_DTPOFF32:
3593 case elfcpp::R_386_TLS_TPOFF32:
3594 case elfcpp::R_386_TLS_DESC:
3595 object->error(_("unexpected reloc %u in object file"), r_type);
3598 case elfcpp::R_386_32PLT:
3599 case elfcpp::R_386_TLS_GD_32:
3600 case elfcpp::R_386_TLS_GD_PUSH:
3601 case elfcpp::R_386_TLS_GD_CALL:
3602 case elfcpp::R_386_TLS_GD_POP:
3603 case elfcpp::R_386_TLS_LDM_32:
3604 case elfcpp::R_386_TLS_LDM_PUSH:
3605 case elfcpp::R_386_TLS_LDM_CALL:
3606 case elfcpp::R_386_TLS_LDM_POP:
3607 case elfcpp::R_386_USED_BY_INTEL_200:
3609 object->error(_("unsupported reloc %u in object file"), r_type);
3614 // Scan the relocs during a relocatable link.
3617 Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
3619 Sized_relobj_file<32, false>* object,
3620 unsigned int data_shndx,
3621 unsigned int sh_type,
3622 const unsigned char* prelocs,
3624 Output_section* output_section,
3625 bool needs_special_offset_handling,
3626 size_t local_symbol_count,
3627 const unsigned char* plocal_symbols,
3628 Relocatable_relocs* rr)
3630 gold_assert(sh_type == elfcpp::SHT_REL);
3632 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
3633 Relocatable_size_for_reloc> Scan_relocatable_relocs;
3635 gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
3636 Scan_relocatable_relocs>(
3644 needs_special_offset_handling,
3650 // Emit relocations for a section.
3653 Target_i386::relocate_relocs(
3654 const Relocate_info<32, false>* relinfo,
3655 unsigned int sh_type,
3656 const unsigned char* prelocs,
3658 Output_section* output_section,
3659 elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
3660 const Relocatable_relocs* rr,
3661 unsigned char* view,
3662 elfcpp::Elf_types<32>::Elf_Addr view_address,
3663 section_size_type view_size,
3664 unsigned char* reloc_view,
3665 section_size_type reloc_view_size)
3667 gold_assert(sh_type == elfcpp::SHT_REL);
3669 gold::relocate_relocs<32, false, elfcpp::SHT_REL>(
3674 offset_in_output_section,
3683 // Return the value to use for a dynamic which requires special
3684 // treatment. This is how we support equality comparisons of function
3685 // pointers across shared library boundaries, as described in the
3686 // processor specific ABI supplement.
3689 Target_i386::do_dynsym_value(const Symbol* gsym) const
3691 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3692 return this->plt_address_for_global(gsym);
3695 // Return a string used to fill a code section with nops to take up
3696 // the specified length.
3699 Target_i386::do_code_fill(section_size_type length) const
3703 // Build a jmp instruction to skip over the bytes.
3704 unsigned char jmp[5];
3706 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3707 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3708 + std::string(length - 5, static_cast<char>(0x90)));
3711 // Nop sequences of various lengths.
3712 const char nop1[1] = { '\x90' }; // nop
3713 const char nop2[2] = { '\x66', '\x90' }; // xchg %ax %ax
3714 const char nop3[3] = { '\x8d', '\x76', '\x00' }; // leal 0(%esi),%esi
3715 const char nop4[4] = { '\x8d', '\x74', '\x26', // leal 0(%esi,1),%esi
3717 const char nop5[5] = { '\x90', '\x8d', '\x74', // nop
3718 '\x26', '\x00' }; // leal 0(%esi,1),%esi
3719 const char nop6[6] = { '\x8d', '\xb6', '\x00', // leal 0L(%esi),%esi
3720 '\x00', '\x00', '\x00' };
3721 const char nop7[7] = { '\x8d', '\xb4', '\x26', // leal 0L(%esi,1),%esi
3722 '\x00', '\x00', '\x00',
3724 const char nop8[8] = { '\x90', '\x8d', '\xb4', // nop
3725 '\x26', '\x00', '\x00', // leal 0L(%esi,1),%esi
3727 const char nop9[9] = { '\x89', '\xf6', '\x8d', // movl %esi,%esi
3728 '\xbc', '\x27', '\x00', // leal 0L(%edi,1),%edi
3729 '\x00', '\x00', '\x00' };
3730 const char nop10[10] = { '\x8d', '\x76', '\x00', // leal 0(%esi),%esi
3731 '\x8d', '\xbc', '\x27', // leal 0L(%edi,1),%edi
3732 '\x00', '\x00', '\x00',
3734 const char nop11[11] = { '\x8d', '\x74', '\x26', // leal 0(%esi,1),%esi
3735 '\x00', '\x8d', '\xbc', // leal 0L(%edi,1),%edi
3736 '\x27', '\x00', '\x00',
3738 const char nop12[12] = { '\x8d', '\xb6', '\x00', // leal 0L(%esi),%esi
3739 '\x00', '\x00', '\x00', // leal 0L(%edi),%edi
3740 '\x8d', '\xbf', '\x00',
3741 '\x00', '\x00', '\x00' };
3742 const char nop13[13] = { '\x8d', '\xb6', '\x00', // leal 0L(%esi),%esi
3743 '\x00', '\x00', '\x00', // leal 0L(%edi,1),%edi
3744 '\x8d', '\xbc', '\x27',
3745 '\x00', '\x00', '\x00',
3747 const char nop14[14] = { '\x8d', '\xb4', '\x26', // leal 0L(%esi,1),%esi
3748 '\x00', '\x00', '\x00', // leal 0L(%edi,1),%edi
3749 '\x00', '\x8d', '\xbc',
3750 '\x27', '\x00', '\x00',
3752 const char nop15[15] = { '\xeb', '\x0d', '\x90', // jmp .+15
3753 '\x90', '\x90', '\x90', // nop,nop,nop,...
3754 '\x90', '\x90', '\x90',
3755 '\x90', '\x90', '\x90',
3756 '\x90', '\x90', '\x90' };
3758 const char* nops[16] = {
3760 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3761 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3764 return std::string(nops[length], length);
3767 // Return the value to use for the base of a DW_EH_PE_datarel offset
3768 // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
3769 // assembler can not write out the difference between two labels in
3770 // different sections, so instead of using a pc-relative value they
3771 // use an offset from the GOT.
3774 Target_i386::do_ehframe_datarel_base() const
3776 gold_assert(this->global_offset_table_ != NULL);
3777 Symbol* sym = this->global_offset_table_;
3778 Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
3779 return ssym->value();
3782 // Return whether SYM should be treated as a call to a non-split
3783 // function. We don't want that to be true of a call to a
3784 // get_pc_thunk function.
3787 Target_i386::do_is_call_to_non_split(const Symbol* sym, unsigned int) const
3789 return (sym->type() == elfcpp::STT_FUNC
3790 && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
3793 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3794 // compiled with -fsplit-stack. The function calls non-split-stack
3795 // code. We have to change the function so that it always ensures
3796 // that it has enough stack space to run some random function.
3799 Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
3800 section_offset_type fnoffset,
3801 section_size_type fnsize,
3802 unsigned char* view,
3803 section_size_type view_size,
3805 std::string* to) const
3807 // The function starts with a comparison of the stack pointer and a
3808 // field in the TCB. This is followed by a jump.
3811 if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
3814 // We will call __morestack if the carry flag is set after this
3815 // comparison. We turn the comparison into an stc instruction
3817 view[fnoffset] = '\xf9';
3818 this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
3820 // lea NN(%esp),%ecx
3821 // lea NN(%esp),%edx
3822 else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
3823 || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
3826 // This is loading an offset from the stack pointer for a
3827 // comparison. The offset is negative, so we decrease the
3828 // offset by the amount of space we need for the stack. This
3829 // means we will avoid calling __morestack if there happens to
3830 // be plenty of space on the stack already.
3831 unsigned char* pval = view + fnoffset + 3;
3832 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3833 val -= parameters->options().split_stack_adjust_size();
3834 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3838 if (!object->has_no_split_stack())
3839 object->error(_("failed to match split-stack sequence at "
3840 "section %u offset %0zx"),
3841 shndx, static_cast<size_t>(fnoffset));
3845 // We have to change the function so that it calls
3846 // __morestack_non_split instead of __morestack. The former will
3847 // allocate additional stack space.
3848 *from = "__morestack";
3849 *to = "__morestack_non_split";
3852 // The selector for i386 object files. Note this is never instantiated
3853 // directly. It's only used in Target_selector_i386_nacl, below.
3855 class Target_selector_i386 : public Target_selector_freebsd
3858 Target_selector_i386()
3859 : Target_selector_freebsd(elfcpp::EM_386, 32, false,
3860 "elf32-i386", "elf32-i386-freebsd",
3865 do_instantiate_target()
3866 { return new Target_i386(); }
3869 // NaCl variant. It uses different PLT contents.
3871 class Output_data_plt_i386_nacl : public Output_data_plt_i386
3874 Output_data_plt_i386_nacl(Layout* layout,
3875 Output_data_got_plt_i386* got_plt,
3876 Output_data_space* got_irelative)
3877 : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
3881 virtual unsigned int
3882 do_get_plt_entry_size() const
3883 { return plt_entry_size; }
3886 do_add_eh_frame(Layout* layout)
3888 layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
3889 plt_eh_frame_fde, plt_eh_frame_fde_size);
3892 // The size of an entry in the PLT.
3893 static const int plt_entry_size = 64;
3895 // The .eh_frame unwind information for the PLT.
3896 static const int plt_eh_frame_fde_size = 32;
3897 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
3900 class Output_data_plt_i386_nacl_exec : public Output_data_plt_i386_nacl
3903 Output_data_plt_i386_nacl_exec(Layout* layout,
3904 Output_data_got_plt_i386* got_plt,
3905 Output_data_space* got_irelative)
3906 : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
3911 do_fill_first_plt_entry(unsigned char* pov,
3912 elfcpp::Elf_types<32>::Elf_Addr got_address);
3914 virtual unsigned int
3915 do_fill_plt_entry(unsigned char* pov,
3916 elfcpp::Elf_types<32>::Elf_Addr got_address,
3917 unsigned int got_offset,
3918 unsigned int plt_offset,
3919 unsigned int plt_rel_offset);
3922 // The first entry in the PLT for an executable.
3923 static const unsigned char first_plt_entry[plt_entry_size];
3925 // Other entries in the PLT for an executable.
3926 static const unsigned char plt_entry[plt_entry_size];
3929 class Output_data_plt_i386_nacl_dyn : public Output_data_plt_i386_nacl
3932 Output_data_plt_i386_nacl_dyn(Layout* layout,
3933 Output_data_got_plt_i386* got_plt,
3934 Output_data_space* got_irelative)
3935 : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
3940 do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
3942 virtual unsigned int
3943 do_fill_plt_entry(unsigned char* pov,
3944 elfcpp::Elf_types<32>::Elf_Addr,
3945 unsigned int got_offset,
3946 unsigned int plt_offset,
3947 unsigned int plt_rel_offset);
3950 // The first entry in the PLT for a shared object.
3951 static const unsigned char first_plt_entry[plt_entry_size];
3953 // Other entries in the PLT for a shared object.
3954 static const unsigned char plt_entry[plt_entry_size];
3957 class Target_i386_nacl : public Target_i386
3961 : Target_i386(&i386_nacl_info)
3965 virtual Output_data_plt_i386*
3966 do_make_data_plt(Layout* layout,
3967 Output_data_got_plt_i386* got_plt,
3968 Output_data_space* got_irelative,
3972 return new Output_data_plt_i386_nacl_dyn(layout, got_plt, got_irelative);
3974 return new Output_data_plt_i386_nacl_exec(layout, got_plt, got_irelative);
3978 do_code_fill(section_size_type length) const;
3981 static const Target::Target_info i386_nacl_info;
3984 const Target::Target_info Target_i386_nacl::i386_nacl_info =
3987 false, // is_big_endian
3988 elfcpp::EM_386, // machine_code
3989 false, // has_make_symbol
3990 false, // has_resolve
3991 true, // has_code_fill
3992 true, // is_default_stack_executable
3993 true, // can_icf_inline_merge_sections
3995 "/lib/ld-nacl-x86-32.so.1", // dynamic_linker
3996 0x20000, // default_text_segment_address
3997 0x10000, // abi_pagesize (overridable by -z max-page-size)
3998 0x10000, // common_pagesize (overridable by -z common-page-size)
3999 true, // isolate_execinstr
4000 0x10000000, // rosegment_gap
4001 elfcpp::SHN_UNDEF, // small_common_shndx
4002 elfcpp::SHN_UNDEF, // large_common_shndx
4003 0, // small_common_section_flags
4004 0, // large_common_section_flags
4005 NULL, // attributes_section
4006 NULL, // attributes_vendor
4007 "_start" // entry_symbol_name
4010 #define NACLMASK 0xe0 // 32-byte alignment mask
4013 Output_data_plt_i386_nacl_exec::first_plt_entry[plt_entry_size] =
4015 0xff, 0x35, // pushl contents of memory address
4016 0, 0, 0, 0, // replaced with address of .got + 4
4017 0x8b, 0x0d, // movl contents of address, %ecx
4018 0, 0, 0, 0, // replaced with address of .got + 8
4019 0x83, 0xe1, NACLMASK, // andl $NACLMASK, %ecx
4020 0xff, 0xe1, // jmp *%ecx
4021 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4022 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4023 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4024 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4025 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4026 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4027 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4028 0x90, 0x90, 0x90, 0x90, 0x90
4032 Output_data_plt_i386_nacl_exec::do_fill_first_plt_entry(
4034 elfcpp::Elf_types<32>::Elf_Addr got_address)
4036 memcpy(pov, first_plt_entry, plt_entry_size);
4037 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
4038 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
4041 // The first entry in the PLT for a shared object.
4044 Output_data_plt_i386_nacl_dyn::first_plt_entry[plt_entry_size] =
4046 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
4047 0x8b, 0x4b, 0x08, // mov 0x8(%ebx), %ecx
4048 0x83, 0xe1, NACLMASK, // andl $NACLMASK, %ecx
4049 0xff, 0xe1, // jmp *%ecx
4050 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4051 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4052 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4053 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4054 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4055 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4056 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4057 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4058 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4059 0x90, 0x90, 0x90, 0x90, 0x90 // nops
4063 Output_data_plt_i386_nacl_dyn::do_fill_first_plt_entry(
4065 elfcpp::Elf_types<32>::Elf_Addr)
4067 memcpy(pov, first_plt_entry, plt_entry_size);
4070 // Subsequent entries in the PLT for an executable.
4073 Output_data_plt_i386_nacl_exec::plt_entry[plt_entry_size] =
4075 0x8b, 0x0d, // movl contents of address, %ecx */
4076 0, 0, 0, 0, // replaced with address of symbol in .got
4077 0x83, 0xe1, NACLMASK, // andl $NACLMASK, %ecx
4078 0xff, 0xe1, // jmp *%ecx
4080 // Pad to the next 32-byte boundary with nop instructions.
4082 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4083 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4085 // Lazy GOT entries point here (32-byte aligned).
4086 0x68, // pushl immediate
4087 0, 0, 0, 0, // replaced with offset into relocation table
4088 0xe9, // jmp relative
4089 0, 0, 0, 0, // replaced with offset to start of .plt
4091 // Pad to the next 32-byte boundary with nop instructions.
4092 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4093 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4098 Output_data_plt_i386_nacl_exec::do_fill_plt_entry(
4100 elfcpp::Elf_types<32>::Elf_Addr got_address,
4101 unsigned int got_offset,
4102 unsigned int plt_offset,
4103 unsigned int plt_rel_offset)
4105 memcpy(pov, plt_entry, plt_entry_size);
4106 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4107 got_address + got_offset);
4108 elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
4109 elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
4113 // Subsequent entries in the PLT for a shared object.
4116 Output_data_plt_i386_nacl_dyn::plt_entry[plt_entry_size] =
4118 0x8b, 0x8b, // movl offset(%ebx), %ecx
4119 0, 0, 0, 0, // replaced with offset of symbol in .got
4120 0x83, 0xe1, 0xe0, // andl $NACLMASK, %ecx
4121 0xff, 0xe1, // jmp *%ecx
4123 // Pad to the next 32-byte boundary with nop instructions.
4125 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4126 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4128 // Lazy GOT entries point here (32-byte aligned).
4129 0x68, // pushl immediate
4130 0, 0, 0, 0, // replaced with offset into relocation table.
4131 0xe9, // jmp relative
4132 0, 0, 0, 0, // replaced with offset to start of .plt.
4134 // Pad to the next 32-byte boundary with nop instructions.
4135 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4136 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4141 Output_data_plt_i386_nacl_dyn::do_fill_plt_entry(
4143 elfcpp::Elf_types<32>::Elf_Addr,
4144 unsigned int got_offset,
4145 unsigned int plt_offset,
4146 unsigned int plt_rel_offset)
4148 memcpy(pov, plt_entry, plt_entry_size);
4149 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
4150 elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
4151 elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
4156 Output_data_plt_i386_nacl::plt_eh_frame_fde[plt_eh_frame_fde_size] =
4158 0, 0, 0, 0, // Replaced with offset to .plt.
4159 0, 0, 0, 0, // Replaced with size of .plt.
4160 0, // Augmentation size.
4161 elfcpp::DW_CFA_def_cfa_offset, 8, // DW_CFA_def_cfa_offset: 8.
4162 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
4163 elfcpp::DW_CFA_def_cfa_offset, 12, // DW_CFA_def_cfa_offset: 12.
4164 elfcpp::DW_CFA_advance_loc + 58, // Advance 58 to __PLT__ + 64.
4165 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
4166 13, // Block length.
4167 elfcpp::DW_OP_breg4, 4, // Push %esp + 4.
4168 elfcpp::DW_OP_breg8, 0, // Push %eip.
4169 elfcpp::DW_OP_const1u, 63, // Push 0x3f.
4170 elfcpp::DW_OP_and, // & (%eip & 0x3f).
4171 elfcpp::DW_OP_const1u, 37, // Push 0x25.
4172 elfcpp::DW_OP_ge, // >= ((%eip & 0x3f) >= 0x25)
4173 elfcpp::DW_OP_lit2, // Push 2.
4174 elfcpp::DW_OP_shl, // << (((%eip & 0x3f) >= 0x25) << 2)
4175 elfcpp::DW_OP_plus, // + ((((%eip&0x3f)>=0x25)<<2)+%esp+4
4176 elfcpp::DW_CFA_nop, // Align to 32 bytes.
4180 // Return a string used to fill a code section with nops.
4181 // For NaCl, long NOPs are only valid if they do not cross
4182 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
4184 Target_i386_nacl::do_code_fill(section_size_type length) const
4186 return std::string(length, static_cast<char>(0x90));
4189 // The selector for i386-nacl object files.
4191 class Target_selector_i386_nacl
4192 : public Target_selector_nacl<Target_selector_i386, Target_i386_nacl>
4195 Target_selector_i386_nacl()
4196 : Target_selector_nacl<Target_selector_i386,
4197 Target_i386_nacl>("x86-32",
4203 Target_selector_i386_nacl target_selector_i386;
4205 } // End anonymous namespace.