Remove info message for every erratum 843419 found and fixed.
[external/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "i386.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 // A class to handle the .got.plt section.
51
52 class Output_data_got_plt_i386 : public Output_section_data_build
53 {
54  public:
55   Output_data_got_plt_i386(Layout* layout)
56     : Output_section_data_build(4),
57       layout_(layout)
58   { }
59
60  protected:
61   // Write out the PLT data.
62   void
63   do_write(Output_file*);
64
65   // Write to a map file.
66   void
67   do_print_to_mapfile(Mapfile* mapfile) const
68   { mapfile->print_output_data(this, "** GOT PLT"); }
69
70  private:
71   // A pointer to the Layout class, so that we can find the .dynamic
72   // section when we write out the GOT PLT section.
73   Layout* layout_;
74 };
75
76 // A class to handle the PLT data.
77 // This is an abstract base class that handles most of the linker details
78 // but does not know the actual contents of PLT entries.  The derived
79 // classes below fill in those details.
80
81 class Output_data_plt_i386 : public Output_section_data
82 {
83  public:
84   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
85
86   Output_data_plt_i386(Layout*, uint64_t addralign,
87                        Output_data_got_plt_i386*, Output_data_space*);
88
89   // Add an entry to the PLT.
90   void
91   add_entry(Symbol_table*, Layout*, Symbol* gsym);
92
93   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
94   unsigned int
95   add_local_ifunc_entry(Symbol_table*, Layout*,
96                         Sized_relobj_file<32, false>* relobj,
97                         unsigned int local_sym_index);
98
99   // Return the .rel.plt section data.
100   Reloc_section*
101   rel_plt() const
102   { return this->rel_; }
103
104   // Return where the TLS_DESC relocations should go.
105   Reloc_section*
106   rel_tls_desc(Layout*);
107
108   // Return where the IRELATIVE relocations should go.
109   Reloc_section*
110   rel_irelative(Symbol_table*, Layout*);
111
112   // Return whether we created a section for IRELATIVE relocations.
113   bool
114   has_irelative_section() const
115   { return this->irelative_rel_ != NULL; }
116
117   // Return the number of PLT entries.
118   unsigned int
119   entry_count() const
120   { return this->count_ + this->irelative_count_; }
121
122   // Return the offset of the first non-reserved PLT entry.
123   unsigned int
124   first_plt_entry_offset()
125   { return this->get_plt_entry_size(); }
126
127   // Return the size of a PLT entry.
128   unsigned int
129   get_plt_entry_size() const
130   { return this->do_get_plt_entry_size(); }
131
132   // Return the PLT address to use for a global symbol.
133   uint64_t
134   address_for_global(const Symbol*);
135
136   // Return the PLT address to use for a local symbol.
137   uint64_t
138   address_for_local(const Relobj*, unsigned int symndx);
139
140   // Add .eh_frame information for the PLT.
141   void
142   add_eh_frame(Layout* layout)
143   { this->do_add_eh_frame(layout); }
144
145  protected:
146   // Fill the first PLT entry, given the pointer to the PLT section data
147   // and the runtime address of the GOT.
148   void
149   fill_first_plt_entry(unsigned char* pov,
150                        elfcpp::Elf_types<32>::Elf_Addr got_address)
151   { this->do_fill_first_plt_entry(pov, got_address); }
152
153   // Fill a normal PLT entry, given the pointer to the entry's data in the
154   // section, the runtime address of the GOT, the offset into the GOT of
155   // the corresponding slot, the offset into the relocation section of the
156   // corresponding reloc, and the offset of this entry within the whole
157   // PLT.  Return the offset from this PLT entry's runtime address that
158   // should be used to compute the initial value of the GOT slot.
159   unsigned int
160   fill_plt_entry(unsigned char* pov,
161                  elfcpp::Elf_types<32>::Elf_Addr got_address,
162                  unsigned int got_offset,
163                  unsigned int plt_offset,
164                  unsigned int plt_rel_offset)
165   {
166     return this->do_fill_plt_entry(pov, got_address, got_offset,
167                                    plt_offset, plt_rel_offset);
168   }
169
170   virtual unsigned int
171   do_get_plt_entry_size() const = 0;
172
173   virtual void
174   do_fill_first_plt_entry(unsigned char* pov,
175                           elfcpp::Elf_types<32>::Elf_Addr got_address) = 0;
176
177   virtual unsigned int
178   do_fill_plt_entry(unsigned char* pov,
179                     elfcpp::Elf_types<32>::Elf_Addr got_address,
180                     unsigned int got_offset,
181                     unsigned int plt_offset,
182                     unsigned int plt_rel_offset) = 0;
183
184   virtual void
185   do_add_eh_frame(Layout*) = 0;
186
187   void
188   do_adjust_output_section(Output_section* os);
189
190   // Write to a map file.
191   void
192   do_print_to_mapfile(Mapfile* mapfile) const
193   { mapfile->print_output_data(this, _("** PLT")); }
194
195   // The .eh_frame unwind information for the PLT.
196   // The CIE is common across variants of the PLT format.
197   static const int plt_eh_frame_cie_size = 16;
198   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
199
200  private:
201   // Set the final size.
202   void
203   set_final_data_size()
204   {
205     this->set_data_size((this->count_ + this->irelative_count_ + 1)
206                         * this->get_plt_entry_size());
207   }
208
209   // Write out the PLT data.
210   void
211   do_write(Output_file*);
212
213   // We keep a list of global STT_GNU_IFUNC symbols, each with its
214   // offset in the GOT.
215   struct Global_ifunc
216   {
217     Symbol* sym;
218     unsigned int got_offset;
219   };
220
221   // We keep a list of local STT_GNU_IFUNC symbols, each with its
222   // offset in the GOT.
223   struct Local_ifunc
224   {
225     Sized_relobj_file<32, false>* object;
226     unsigned int local_sym_index;
227     unsigned int got_offset;
228   };
229
230   // The reloc section.
231   Reloc_section* rel_;
232   // The TLS_DESC relocations, if necessary.  These must follow the
233   // regular PLT relocs.
234   Reloc_section* tls_desc_rel_;
235   // The IRELATIVE relocations, if necessary.  These must follow the
236   // regular relocatoins and the TLS_DESC relocations.
237   Reloc_section* irelative_rel_;
238   // The .got.plt section.
239   Output_data_got_plt_i386* got_plt_;
240   // The part of the .got.plt section used for IRELATIVE relocs.
241   Output_data_space* got_irelative_;
242   // The number of PLT entries.
243   unsigned int count_;
244   // Number of PLT entries with R_386_IRELATIVE relocs.  These follow
245   // the regular PLT entries.
246   unsigned int irelative_count_;
247   // Global STT_GNU_IFUNC symbols.
248   std::vector<Global_ifunc> global_ifuncs_;
249   // Local STT_GNU_IFUNC symbols.
250   std::vector<Local_ifunc> local_ifuncs_;
251 };
252
253 // This is an abstract class for the standard PLT layout.
254 // The derived classes below handle the actual PLT contents
255 // for the executable (non-PIC) and shared-library (PIC) cases.
256 // The unwind information is uniform across those two, so it's here.
257
258 class Output_data_plt_i386_standard : public Output_data_plt_i386
259 {
260  public:
261   Output_data_plt_i386_standard(Layout* layout,
262                                 Output_data_got_plt_i386* got_plt,
263                                 Output_data_space* got_irelative)
264     : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
265   { }
266
267  protected:
268   virtual unsigned int
269   do_get_plt_entry_size() const
270   { return plt_entry_size; }
271
272   virtual void
273   do_add_eh_frame(Layout* layout)
274   {
275     layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
276                                  plt_eh_frame_fde, plt_eh_frame_fde_size);
277   }
278
279   // The size of an entry in the PLT.
280   static const int plt_entry_size = 16;
281
282   // The .eh_frame unwind information for the PLT.
283   static const int plt_eh_frame_fde_size = 32;
284   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
285 };
286
287 // Actually fill the PLT contents for an executable (non-PIC).
288
289 class Output_data_plt_i386_exec : public Output_data_plt_i386_standard
290 {
291 public:
292   Output_data_plt_i386_exec(Layout* layout,
293                             Output_data_got_plt_i386* got_plt,
294                             Output_data_space* got_irelative)
295     : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
296   { }
297
298  protected:
299   virtual void
300   do_fill_first_plt_entry(unsigned char* pov,
301                           elfcpp::Elf_types<32>::Elf_Addr got_address);
302
303   virtual unsigned int
304   do_fill_plt_entry(unsigned char* pov,
305                     elfcpp::Elf_types<32>::Elf_Addr got_address,
306                     unsigned int got_offset,
307                     unsigned int plt_offset,
308                     unsigned int plt_rel_offset);
309
310  private:
311   // The first entry in the PLT for an executable.
312   static const unsigned char first_plt_entry[plt_entry_size];
313
314   // Other entries in the PLT for an executable.
315   static const unsigned char plt_entry[plt_entry_size];
316 };
317
318 // Actually fill the PLT contents for a shared library (PIC).
319
320 class Output_data_plt_i386_dyn : public Output_data_plt_i386_standard
321 {
322  public:
323   Output_data_plt_i386_dyn(Layout* layout,
324                            Output_data_got_plt_i386* got_plt,
325                            Output_data_space* got_irelative)
326     : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
327   { }
328
329  protected:
330   virtual void
331   do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
332
333   virtual unsigned int
334   do_fill_plt_entry(unsigned char* pov,
335                     elfcpp::Elf_types<32>::Elf_Addr,
336                     unsigned int got_offset,
337                     unsigned int plt_offset,
338                     unsigned int plt_rel_offset);
339
340  private:
341   // The first entry in the PLT for a shared object.
342   static const unsigned char first_plt_entry[plt_entry_size];
343
344   // Other entries in the PLT for a shared object.
345   static const unsigned char plt_entry[plt_entry_size];
346 };
347
348 // The i386 target class.
349 // TLS info comes from
350 //   http://people.redhat.com/drepper/tls.pdf
351 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
352
353 class Target_i386 : public Sized_target<32, false>
354 {
355  public:
356   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
357
358   Target_i386(const Target::Target_info* info = &i386_info)
359     : Sized_target<32, false>(info),
360       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
361       got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
362       rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY),
363       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
364   { }
365
366   // Process the relocations to determine unreferenced sections for
367   // garbage collection.
368   void
369   gc_process_relocs(Symbol_table* symtab,
370                     Layout* layout,
371                     Sized_relobj_file<32, false>* object,
372                     unsigned int data_shndx,
373                     unsigned int sh_type,
374                     const unsigned char* prelocs,
375                     size_t reloc_count,
376                     Output_section* output_section,
377                     bool needs_special_offset_handling,
378                     size_t local_symbol_count,
379                     const unsigned char* plocal_symbols);
380
381   // Scan the relocations to look for symbol adjustments.
382   void
383   scan_relocs(Symbol_table* symtab,
384               Layout* layout,
385               Sized_relobj_file<32, false>* object,
386               unsigned int data_shndx,
387               unsigned int sh_type,
388               const unsigned char* prelocs,
389               size_t reloc_count,
390               Output_section* output_section,
391               bool needs_special_offset_handling,
392               size_t local_symbol_count,
393               const unsigned char* plocal_symbols);
394
395   // Finalize the sections.
396   void
397   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
398
399   // Return the value to use for a dynamic which requires special
400   // treatment.
401   uint64_t
402   do_dynsym_value(const Symbol*) const;
403
404   // Relocate a section.
405   void
406   relocate_section(const Relocate_info<32, false>*,
407                    unsigned int sh_type,
408                    const unsigned char* prelocs,
409                    size_t reloc_count,
410                    Output_section* output_section,
411                    bool needs_special_offset_handling,
412                    unsigned char* view,
413                    elfcpp::Elf_types<32>::Elf_Addr view_address,
414                    section_size_type view_size,
415                    const Reloc_symbol_changes*);
416
417   // Scan the relocs during a relocatable link.
418   void
419   scan_relocatable_relocs(Symbol_table* symtab,
420                           Layout* layout,
421                           Sized_relobj_file<32, false>* object,
422                           unsigned int data_shndx,
423                           unsigned int sh_type,
424                           const unsigned char* prelocs,
425                           size_t reloc_count,
426                           Output_section* output_section,
427                           bool needs_special_offset_handling,
428                           size_t local_symbol_count,
429                           const unsigned char* plocal_symbols,
430                           Relocatable_relocs*);
431
432   // Scan the relocs for --emit-relocs.
433   void
434   emit_relocs_scan(Symbol_table* symtab,
435                    Layout* layout,
436                    Sized_relobj_file<32, false>* object,
437                    unsigned int data_shndx,
438                    unsigned int sh_type,
439                    const unsigned char* prelocs,
440                    size_t reloc_count,
441                    Output_section* output_section,
442                    bool needs_special_offset_handling,
443                    size_t local_symbol_count,
444                    const unsigned char* plocal_syms,
445                    Relocatable_relocs* rr);
446
447   // Emit relocations for a section.
448   void
449   relocate_relocs(const Relocate_info<32, false>*,
450                   unsigned int sh_type,
451                   const unsigned char* prelocs,
452                   size_t reloc_count,
453                   Output_section* output_section,
454                   elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
455                   unsigned char* view,
456                   elfcpp::Elf_types<32>::Elf_Addr view_address,
457                   section_size_type view_size,
458                   unsigned char* reloc_view,
459                   section_size_type reloc_view_size);
460
461   // Return a string used to fill a code section with nops.
462   std::string
463   do_code_fill(section_size_type length) const;
464
465   // Return whether SYM is defined by the ABI.
466   bool
467   do_is_defined_by_abi(const Symbol* sym) const
468   { return strcmp(sym->name(), "___tls_get_addr") == 0; }
469
470   // Return whether a symbol name implies a local label.  The UnixWare
471   // 2.1 cc generates temporary symbols that start with .X, so we
472   // recognize them here.  FIXME: do other SVR4 compilers also use .X?.
473   // If so, we should move the .X recognition into
474   // Target::do_is_local_label_name.
475   bool
476   do_is_local_label_name(const char* name) const
477   {
478     if (name[0] == '.' && name[1] == 'X')
479       return true;
480     return Target::do_is_local_label_name(name);
481   }
482
483   // Return the PLT address to use for a global symbol.
484   uint64_t
485   do_plt_address_for_global(const Symbol* gsym) const
486   { return this->plt_section()->address_for_global(gsym); }
487
488   uint64_t
489   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
490   { return this->plt_section()->address_for_local(relobj, symndx); }
491
492   // We can tell whether we take the address of a function.
493   inline bool
494   do_can_check_for_function_pointers() const
495   { return true; }
496
497   // Return the base for a DW_EH_PE_datarel encoding.
498   uint64_t
499   do_ehframe_datarel_base() const;
500
501   // Return whether SYM is call to a non-split function.
502   bool
503   do_is_call_to_non_split(const Symbol* sym, const unsigned char*,
504                           const unsigned char*, section_size_type) const;
505
506   // Adjust -fsplit-stack code which calls non-split-stack code.
507   void
508   do_calls_non_split(Relobj* object, unsigned int shndx,
509                      section_offset_type fnoffset, section_size_type fnsize,
510                      const unsigned char* prelocs, size_t reloc_count,
511                      unsigned char* view, section_size_type view_size,
512                      std::string* from, std::string* to) const;
513
514   // Return the size of the GOT section.
515   section_size_type
516   got_size() const
517   {
518     gold_assert(this->got_ != NULL);
519     return this->got_->data_size();
520   }
521
522   // Return the number of entries in the GOT.
523   unsigned int
524   got_entry_count() const
525   {
526     if (this->got_ == NULL)
527       return 0;
528     return this->got_size() / 4;
529   }
530
531   // Return the number of entries in the PLT.
532   unsigned int
533   plt_entry_count() const;
534
535   // Return the offset of the first non-reserved PLT entry.
536   unsigned int
537   first_plt_entry_offset() const;
538
539   // Return the size of each PLT entry.
540   unsigned int
541   plt_entry_size() const;
542
543  protected:
544   // Instantiate the plt_ member.
545   // This chooses the right PLT flavor for an executable or a shared object.
546   Output_data_plt_i386*
547   make_data_plt(Layout* layout,
548                 Output_data_got_plt_i386* got_plt,
549                 Output_data_space* got_irelative,
550                 bool dyn)
551   { return this->do_make_data_plt(layout, got_plt, got_irelative, dyn); }
552
553   virtual Output_data_plt_i386*
554   do_make_data_plt(Layout* layout,
555                    Output_data_got_plt_i386* got_plt,
556                    Output_data_space* got_irelative,
557                    bool dyn)
558   {
559     if (dyn)
560       return new Output_data_plt_i386_dyn(layout, got_plt, got_irelative);
561     else
562       return new Output_data_plt_i386_exec(layout, got_plt, got_irelative);
563   }
564
565  private:
566   // The class which scans relocations.
567   struct Scan
568   {
569     static inline int
570
571     get_reference_flags(unsigned int r_type);
572
573     inline void
574     local(Symbol_table* symtab, Layout* layout, Target_i386* target,
575           Sized_relobj_file<32, false>* object,
576           unsigned int data_shndx,
577           Output_section* output_section,
578           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
579           const elfcpp::Sym<32, false>& lsym,
580           bool is_discarded);
581
582     inline void
583     global(Symbol_table* symtab, Layout* layout, Target_i386* target,
584            Sized_relobj_file<32, false>* object,
585            unsigned int data_shndx,
586            Output_section* output_section,
587            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
588            Symbol* gsym);
589
590     inline bool
591     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
592                                         Target_i386* target,
593                                         Sized_relobj_file<32, false>* object,
594                                         unsigned int data_shndx,
595                                         Output_section* output_section,
596                                         const elfcpp::Rel<32, false>& reloc,
597                                         unsigned int r_type,
598                                         const elfcpp::Sym<32, false>& lsym);
599
600     inline bool
601     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
602                                          Target_i386* target,
603                                          Sized_relobj_file<32, false>* object,
604                                          unsigned int data_shndx,
605                                          Output_section* output_section,
606                                          const elfcpp::Rel<32, false>& reloc,
607                                          unsigned int r_type,
608                                          Symbol* gsym);
609
610     inline bool
611     possible_function_pointer_reloc(unsigned int r_type);
612
613     bool
614     reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
615                               unsigned int r_type);
616
617     static void
618     unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
619
620     static void
621     unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
622                              Symbol*);
623   };
624
625   // The class which implements relocation.
626   class Relocate
627   {
628    public:
629     Relocate()
630       : skip_call_tls_get_addr_(false),
631         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
632     { }
633
634     ~Relocate()
635     {
636       if (this->skip_call_tls_get_addr_)
637         {
638           // FIXME: This needs to specify the location somehow.
639           gold_error(_("missing expected TLS relocation"));
640         }
641     }
642
643     // Return whether the static relocation needs to be applied.
644     inline bool
645     should_apply_static_reloc(const Sized_symbol<32>* gsym,
646                               unsigned int r_type,
647                               bool is_32bit,
648                               Output_section* output_section);
649
650     // Do a relocation.  Return false if the caller should not issue
651     // any warnings about this relocation.
652     inline bool
653     relocate(const Relocate_info<32, false>*, unsigned int,
654              Target_i386*, Output_section*, size_t, const unsigned char*,
655              const Sized_symbol<32>*, const Symbol_value<32>*,
656              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
657              section_size_type);
658
659    private:
660     // Do a TLS relocation.
661     inline void
662     relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
663                  size_t relnum, const elfcpp::Rel<32, false>&,
664                  unsigned int r_type, const Sized_symbol<32>*,
665                  const Symbol_value<32>*,
666                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
667                  section_size_type);
668
669     // Do a TLS General-Dynamic to Initial-Exec transition.
670     inline void
671     tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
672                  const elfcpp::Rel<32, false>&, unsigned int r_type,
673                  elfcpp::Elf_types<32>::Elf_Addr value,
674                  unsigned char* view,
675                  section_size_type view_size);
676
677     // Do a TLS General-Dynamic to Local-Exec transition.
678     inline void
679     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
680                  Output_segment* tls_segment,
681                  const elfcpp::Rel<32, false>&, unsigned int r_type,
682                  elfcpp::Elf_types<32>::Elf_Addr value,
683                  unsigned char* view,
684                  section_size_type view_size);
685
686     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
687     // transition.
688     inline void
689     tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
690                       const elfcpp::Rel<32, false>&, unsigned int r_type,
691                       elfcpp::Elf_types<32>::Elf_Addr value,
692                       unsigned char* view,
693                       section_size_type view_size);
694
695     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
696     // transition.
697     inline void
698     tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
699                       Output_segment* tls_segment,
700                       const elfcpp::Rel<32, false>&, unsigned int r_type,
701                       elfcpp::Elf_types<32>::Elf_Addr value,
702                       unsigned char* view,
703                       section_size_type view_size);
704
705     // Do a TLS Local-Dynamic to Local-Exec transition.
706     inline void
707     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
708                  Output_segment* tls_segment,
709                  const elfcpp::Rel<32, false>&, unsigned int r_type,
710                  elfcpp::Elf_types<32>::Elf_Addr value,
711                  unsigned char* view,
712                  section_size_type view_size);
713
714     // Do a TLS Initial-Exec to Local-Exec transition.
715     static inline void
716     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
717                  Output_segment* tls_segment,
718                  const elfcpp::Rel<32, false>&, unsigned int r_type,
719                  elfcpp::Elf_types<32>::Elf_Addr value,
720                  unsigned char* view,
721                  section_size_type view_size);
722
723     // We need to keep track of which type of local dynamic relocation
724     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
725     enum Local_dynamic_type
726     {
727       LOCAL_DYNAMIC_NONE,
728       LOCAL_DYNAMIC_SUN,
729       LOCAL_DYNAMIC_GNU
730     };
731
732     // This is set if we should skip the next reloc, which should be a
733     // PLT32 reloc against ___tls_get_addr.
734     bool skip_call_tls_get_addr_;
735     // The type of local dynamic relocation we have seen in the section
736     // being relocated, if any.
737     Local_dynamic_type local_dynamic_type_;
738   };
739
740   // A class for inquiring about properties of a relocation,
741   // used while scanning relocs during a relocatable link and
742   // garbage collection.
743   class Classify_reloc :
744       public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, false>
745   {
746    public:
747     typedef Reloc_types<elfcpp::SHT_REL, 32, false>::Reloc Reltype;
748
749     // Return the explicit addend of the relocation (return 0 for SHT_REL).
750     static elfcpp::Elf_types<32>::Elf_Swxword
751     get_r_addend(const Reltype*)
752     { return 0; }
753
754     // Return the size of the addend of the relocation (only used for SHT_REL).
755     static unsigned int
756     get_size_for_reloc(unsigned int, Relobj*);
757   };
758
759   // Adjust TLS relocation type based on the options and whether this
760   // is a local symbol.
761   static tls::Tls_optimization
762   optimize_tls_reloc(bool is_final, int r_type);
763
764   // Check if relocation against this symbol is a candidate for
765   // conversion from
766   // mov foo@GOT(%reg), %reg
767   // to
768   // lea foo@GOTOFF(%reg), %reg.
769   static bool
770   can_convert_mov_to_lea(const Symbol* gsym)
771   {
772     gold_assert(gsym != NULL);
773     return (gsym->type() != elfcpp::STT_GNU_IFUNC
774             && !gsym->is_undefined ()
775             && !gsym->is_from_dynobj()
776             && !gsym->is_preemptible()
777             && (!parameters->options().shared()
778                 || (gsym->visibility() != elfcpp::STV_DEFAULT
779                     && gsym->visibility() != elfcpp::STV_PROTECTED)
780                 || parameters->options().Bsymbolic())
781             && strcmp(gsym->name(), "_DYNAMIC") != 0);
782   }
783
784   // Get the GOT section, creating it if necessary.
785   Output_data_got<32, false>*
786   got_section(Symbol_table*, Layout*);
787
788   // Get the GOT PLT section.
789   Output_data_got_plt_i386*
790   got_plt_section() const
791   {
792     gold_assert(this->got_plt_ != NULL);
793     return this->got_plt_;
794   }
795
796   // Get the GOT section for TLSDESC entries.
797   Output_data_got<32, false>*
798   got_tlsdesc_section() const
799   {
800     gold_assert(this->got_tlsdesc_ != NULL);
801     return this->got_tlsdesc_;
802   }
803
804   // Create the PLT section.
805   void
806   make_plt_section(Symbol_table* symtab, Layout* layout);
807
808   // Create a PLT entry for a global symbol.
809   void
810   make_plt_entry(Symbol_table*, Layout*, Symbol*);
811
812   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
813   void
814   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
815                              Sized_relobj_file<32, false>* relobj,
816                              unsigned int local_sym_index);
817
818   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
819   void
820   define_tls_base_symbol(Symbol_table*, Layout*);
821
822   // Create a GOT entry for the TLS module index.
823   unsigned int
824   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
825                       Sized_relobj_file<32, false>* object);
826
827   // Get the PLT section.
828   Output_data_plt_i386*
829   plt_section() const
830   {
831     gold_assert(this->plt_ != NULL);
832     return this->plt_;
833   }
834
835   // Get the dynamic reloc section, creating it if necessary.
836   Reloc_section*
837   rel_dyn_section(Layout*);
838
839   // Get the section to use for TLS_DESC relocations.
840   Reloc_section*
841   rel_tls_desc_section(Layout*) const;
842
843   // Get the section to use for IRELATIVE relocations.
844   Reloc_section*
845   rel_irelative_section(Layout*);
846
847   // Add a potential copy relocation.
848   void
849   copy_reloc(Symbol_table* symtab, Layout* layout,
850              Sized_relobj_file<32, false>* object,
851              unsigned int shndx, Output_section* output_section,
852              Symbol* sym, const elfcpp::Rel<32, false>& reloc)
853   {
854     unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
855     this->copy_relocs_.copy_reloc(symtab, layout,
856                                   symtab->get_sized_symbol<32>(sym),
857                                   object, shndx, output_section,
858                                   r_type, reloc.get_r_offset(), 0,
859                                   this->rel_dyn_section(layout));
860   }
861
862   // Information about this specific target which we pass to the
863   // general Target structure.
864   static const Target::Target_info i386_info;
865
866   // The types of GOT entries needed for this platform.
867   // These values are exposed to the ABI in an incremental link.
868   // Do not renumber existing values without changing the version
869   // number of the .gnu_incremental_inputs section.
870   enum Got_type
871   {
872     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
873     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
874     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
875     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
876     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
877   };
878
879   // The GOT section.
880   Output_data_got<32, false>* got_;
881   // The PLT section.
882   Output_data_plt_i386* plt_;
883   // The GOT PLT section.
884   Output_data_got_plt_i386* got_plt_;
885   // The GOT section for IRELATIVE relocations.
886   Output_data_space* got_irelative_;
887   // The GOT section for TLSDESC relocations.
888   Output_data_got<32, false>* got_tlsdesc_;
889   // The _GLOBAL_OFFSET_TABLE_ symbol.
890   Symbol* global_offset_table_;
891   // The dynamic reloc section.
892   Reloc_section* rel_dyn_;
893   // The section to use for IRELATIVE relocs.
894   Reloc_section* rel_irelative_;
895   // Relocs saved to avoid a COPY reloc.
896   Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
897   // Offset of the GOT entry for the TLS module index.
898   unsigned int got_mod_index_offset_;
899   // True if the _TLS_MODULE_BASE_ symbol has been defined.
900   bool tls_base_symbol_defined_;
901 };
902
903 const Target::Target_info Target_i386::i386_info =
904 {
905   32,                   // size
906   false,                // is_big_endian
907   elfcpp::EM_386,       // machine_code
908   false,                // has_make_symbol
909   false,                // has_resolve
910   true,                 // has_code_fill
911   true,                 // is_default_stack_executable
912   true,                 // can_icf_inline_merge_sections
913   '\0',                 // wrap_char
914   "/usr/lib/libc.so.1", // dynamic_linker
915   0x08048000,           // default_text_segment_address
916   0x1000,               // abi_pagesize (overridable by -z max-page-size)
917   0x1000,               // common_pagesize (overridable by -z common-page-size)
918   false,                // isolate_execinstr
919   0,                    // rosegment_gap
920   elfcpp::SHN_UNDEF,    // small_common_shndx
921   elfcpp::SHN_UNDEF,    // large_common_shndx
922   0,                    // small_common_section_flags
923   0,                    // large_common_section_flags
924   NULL,                 // attributes_section
925   NULL,                 // attributes_vendor
926   "_start",             // entry_symbol_name
927   32,                   // hash_entry_size
928 };
929
930 // Get the GOT section, creating it if necessary.
931
932 Output_data_got<32, false>*
933 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
934 {
935   if (this->got_ == NULL)
936     {
937       gold_assert(symtab != NULL && layout != NULL);
938
939       this->got_ = new Output_data_got<32, false>();
940
941       // When using -z now, we can treat .got.plt as a relro section.
942       // Without -z now, it is modified after program startup by lazy
943       // PLT relocations.
944       bool is_got_plt_relro = parameters->options().now();
945       Output_section_order got_order = (is_got_plt_relro
946                                         ? ORDER_RELRO
947                                         : ORDER_RELRO_LAST);
948       Output_section_order got_plt_order = (is_got_plt_relro
949                                             ? ORDER_RELRO
950                                             : ORDER_NON_RELRO_FIRST);
951
952       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
953                                       (elfcpp::SHF_ALLOC
954                                        | elfcpp::SHF_WRITE),
955                                       this->got_, got_order, true);
956
957       this->got_plt_ = new Output_data_got_plt_i386(layout);
958       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
959                                       (elfcpp::SHF_ALLOC
960                                        | elfcpp::SHF_WRITE),
961                                       this->got_plt_, got_plt_order,
962                                       is_got_plt_relro);
963
964       // The first three entries are reserved.
965       this->got_plt_->set_current_data_size(3 * 4);
966
967       if (!is_got_plt_relro)
968         {
969           // Those bytes can go into the relro segment.
970           layout->increase_relro(3 * 4);
971         }
972
973       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
974       this->global_offset_table_ =
975         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
976                                       Symbol_table::PREDEFINED,
977                                       this->got_plt_,
978                                       0, 0, elfcpp::STT_OBJECT,
979                                       elfcpp::STB_LOCAL,
980                                       elfcpp::STV_HIDDEN, 0,
981                                       false, false);
982
983       // If there are any IRELATIVE relocations, they get GOT entries
984       // in .got.plt after the jump slot relocations.
985       this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
986       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
987                                       (elfcpp::SHF_ALLOC
988                                        | elfcpp::SHF_WRITE),
989                                       this->got_irelative_,
990                                       got_plt_order, is_got_plt_relro);
991
992       // If there are any TLSDESC relocations, they get GOT entries in
993       // .got.plt after the jump slot entries.
994       this->got_tlsdesc_ = new Output_data_got<32, false>();
995       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
996                                       (elfcpp::SHF_ALLOC
997                                        | elfcpp::SHF_WRITE),
998                                       this->got_tlsdesc_,
999                                       got_plt_order, is_got_plt_relro);
1000     }
1001
1002   return this->got_;
1003 }
1004
1005 // Get the dynamic reloc section, creating it if necessary.
1006
1007 Target_i386::Reloc_section*
1008 Target_i386::rel_dyn_section(Layout* layout)
1009 {
1010   if (this->rel_dyn_ == NULL)
1011     {
1012       gold_assert(layout != NULL);
1013       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
1014       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
1015                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
1016                                       ORDER_DYNAMIC_RELOCS, false);
1017     }
1018   return this->rel_dyn_;
1019 }
1020
1021 // Get the section to use for IRELATIVE relocs, creating it if
1022 // necessary.  These go in .rel.dyn, but only after all other dynamic
1023 // relocations.  They need to follow the other dynamic relocations so
1024 // that they can refer to global variables initialized by those
1025 // relocs.
1026
1027 Target_i386::Reloc_section*
1028 Target_i386::rel_irelative_section(Layout* layout)
1029 {
1030   if (this->rel_irelative_ == NULL)
1031     {
1032       // Make sure we have already create the dynamic reloc section.
1033       this->rel_dyn_section(layout);
1034       this->rel_irelative_ = new Reloc_section(false);
1035       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
1036                                       elfcpp::SHF_ALLOC, this->rel_irelative_,
1037                                       ORDER_DYNAMIC_RELOCS, false);
1038       gold_assert(this->rel_dyn_->output_section()
1039                   == this->rel_irelative_->output_section());
1040     }
1041   return this->rel_irelative_;
1042 }
1043
1044 // Write the first three reserved words of the .got.plt section.
1045 // The remainder of the section is written while writing the PLT
1046 // in Output_data_plt_i386::do_write.
1047
1048 void
1049 Output_data_got_plt_i386::do_write(Output_file* of)
1050 {
1051   // The first entry in the GOT is the address of the .dynamic section
1052   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1053   // We saved space for them when we created the section in
1054   // Target_i386::got_section.
1055   const off_t got_file_offset = this->offset();
1056   gold_assert(this->data_size() >= 12);
1057   unsigned char* const got_view = of->get_output_view(got_file_offset, 12);
1058   Output_section* dynamic = this->layout_->dynamic_section();
1059   uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1060   elfcpp::Swap<32, false>::writeval(got_view, dynamic_addr);
1061   memset(got_view + 4, 0, 8);
1062   of->write_output_view(got_file_offset, 12, got_view);
1063 }
1064
1065 // Create the PLT section.  The ordinary .got section is an argument,
1066 // since we need to refer to the start.  We also create our own .got
1067 // section just for PLT entries.
1068
1069 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
1070                                            uint64_t addralign,
1071                                            Output_data_got_plt_i386* got_plt,
1072                                            Output_data_space* got_irelative)
1073   : Output_section_data(addralign),
1074     tls_desc_rel_(NULL), irelative_rel_(NULL), got_plt_(got_plt),
1075     got_irelative_(got_irelative), count_(0), irelative_count_(0),
1076     global_ifuncs_(), local_ifuncs_()
1077 {
1078   this->rel_ = new Reloc_section(false);
1079   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1080                                   elfcpp::SHF_ALLOC, this->rel_,
1081                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1082 }
1083
1084 void
1085 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
1086 {
1087   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
1088   // linker, and so do we.
1089   os->set_entsize(4);
1090 }
1091
1092 // Add an entry to the PLT.
1093
1094 void
1095 Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
1096                                 Symbol* gsym)
1097 {
1098   gold_assert(!gsym->has_plt_offset());
1099
1100   // Every PLT entry needs a reloc.
1101   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1102       && gsym->can_use_relative_reloc(false))
1103     {
1104       gsym->set_plt_offset(this->irelative_count_ * this->get_plt_entry_size());
1105       ++this->irelative_count_;
1106       section_offset_type got_offset =
1107         this->got_irelative_->current_data_size();
1108       this->got_irelative_->set_current_data_size(got_offset + 4);
1109       Reloc_section* rel = this->rel_irelative(symtab, layout);
1110       rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
1111                                         this->got_irelative_, got_offset);
1112       struct Global_ifunc gi;
1113       gi.sym = gsym;
1114       gi.got_offset = got_offset;
1115       this->global_ifuncs_.push_back(gi);
1116     }
1117   else
1118     {
1119       // When setting the PLT offset we skip the initial reserved PLT
1120       // entry.
1121       gsym->set_plt_offset((this->count_ + 1) * this->get_plt_entry_size());
1122
1123       ++this->count_;
1124
1125       section_offset_type got_offset = this->got_plt_->current_data_size();
1126
1127       // Every PLT entry needs a GOT entry which points back to the
1128       // PLT entry (this will be changed by the dynamic linker,
1129       // normally lazily when the function is called).
1130       this->got_plt_->set_current_data_size(got_offset + 4);
1131
1132       gsym->set_needs_dynsym_entry();
1133       this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
1134                              got_offset);
1135     }
1136
1137   // Note that we don't need to save the symbol.  The contents of the
1138   // PLT are independent of which symbols are used.  The symbols only
1139   // appear in the relocations.
1140 }
1141
1142 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1143 // the PLT offset.
1144
1145 unsigned int
1146 Output_data_plt_i386::add_local_ifunc_entry(
1147     Symbol_table* symtab,
1148     Layout* layout,
1149     Sized_relobj_file<32, false>* relobj,
1150     unsigned int local_sym_index)
1151 {
1152   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1153   ++this->irelative_count_;
1154
1155   section_offset_type got_offset = this->got_irelative_->current_data_size();
1156
1157   // Every PLT entry needs a GOT entry which points back to the PLT
1158   // entry.
1159   this->got_irelative_->set_current_data_size(got_offset + 4);
1160
1161   // Every PLT entry needs a reloc.
1162   Reloc_section* rel = this->rel_irelative(symtab, layout);
1163   rel->add_symbolless_local_addend(relobj, local_sym_index,
1164                                    elfcpp::R_386_IRELATIVE,
1165                                    this->got_irelative_, got_offset);
1166
1167   struct Local_ifunc li;
1168   li.object = relobj;
1169   li.local_sym_index = local_sym_index;
1170   li.got_offset = got_offset;
1171   this->local_ifuncs_.push_back(li);
1172
1173   return plt_offset;
1174 }
1175
1176 // Return where the TLS_DESC relocations should go, creating it if
1177 // necessary. These follow the JUMP_SLOT relocations.
1178
1179 Output_data_plt_i386::Reloc_section*
1180 Output_data_plt_i386::rel_tls_desc(Layout* layout)
1181 {
1182   if (this->tls_desc_rel_ == NULL)
1183     {
1184       this->tls_desc_rel_ = new Reloc_section(false);
1185       layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1186                                       elfcpp::SHF_ALLOC, this->tls_desc_rel_,
1187                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1188       gold_assert(this->tls_desc_rel_->output_section()
1189                   == this->rel_->output_section());
1190     }
1191   return this->tls_desc_rel_;
1192 }
1193
1194 // Return where the IRELATIVE relocations should go in the PLT.  These
1195 // follow the JUMP_SLOT and TLS_DESC relocations.
1196
1197 Output_data_plt_i386::Reloc_section*
1198 Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
1199 {
1200   if (this->irelative_rel_ == NULL)
1201     {
1202       // Make sure we have a place for the TLS_DESC relocations, in
1203       // case we see any later on.
1204       this->rel_tls_desc(layout);
1205       this->irelative_rel_ = new Reloc_section(false);
1206       layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1207                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1208                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1209       gold_assert(this->irelative_rel_->output_section()
1210                   == this->rel_->output_section());
1211
1212       if (parameters->doing_static_link())
1213         {
1214           // A statically linked executable will only have a .rel.plt
1215           // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
1216           // symbols.  The library will use these symbols to locate
1217           // the IRELATIVE relocs at program startup time.
1218           symtab->define_in_output_data("__rel_iplt_start", NULL,
1219                                         Symbol_table::PREDEFINED,
1220                                         this->irelative_rel_, 0, 0,
1221                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1222                                         elfcpp::STV_HIDDEN, 0, false, true);
1223           symtab->define_in_output_data("__rel_iplt_end", NULL,
1224                                         Symbol_table::PREDEFINED,
1225                                         this->irelative_rel_, 0, 0,
1226                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1227                                         elfcpp::STV_HIDDEN, 0, true, true);
1228         }
1229     }
1230   return this->irelative_rel_;
1231 }
1232
1233 // Return the PLT address to use for a global symbol.
1234
1235 uint64_t
1236 Output_data_plt_i386::address_for_global(const Symbol* gsym)
1237 {
1238   uint64_t offset = 0;
1239   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1240       && gsym->can_use_relative_reloc(false))
1241     offset = (this->count_ + 1) * this->get_plt_entry_size();
1242   return this->address() + offset + gsym->plt_offset();
1243 }
1244
1245 // Return the PLT address to use for a local symbol.  These are always
1246 // IRELATIVE relocs.
1247
1248 uint64_t
1249 Output_data_plt_i386::address_for_local(const Relobj* object,
1250                                         unsigned int r_sym)
1251 {
1252   return (this->address()
1253           + (this->count_ + 1) * this->get_plt_entry_size()
1254           + object->local_plt_offset(r_sym));
1255 }
1256
1257 // The first entry in the PLT for an executable.
1258
1259 const unsigned char Output_data_plt_i386_exec::first_plt_entry[plt_entry_size] =
1260 {
1261   0xff, 0x35,   // pushl contents of memory address
1262   0, 0, 0, 0,   // replaced with address of .got + 4
1263   0xff, 0x25,   // jmp indirect
1264   0, 0, 0, 0,   // replaced with address of .got + 8
1265   0, 0, 0, 0    // unused
1266 };
1267
1268 void
1269 Output_data_plt_i386_exec::do_fill_first_plt_entry(
1270     unsigned char* pov,
1271     elfcpp::Elf_types<32>::Elf_Addr got_address)
1272 {
1273   memcpy(pov, first_plt_entry, plt_entry_size);
1274   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
1275   elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
1276 }
1277
1278 // The first entry in the PLT for a shared object.
1279
1280 const unsigned char Output_data_plt_i386_dyn::first_plt_entry[plt_entry_size] =
1281 {
1282   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
1283   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
1284   0, 0, 0, 0                    // unused
1285 };
1286
1287 void
1288 Output_data_plt_i386_dyn::do_fill_first_plt_entry(
1289     unsigned char* pov,
1290     elfcpp::Elf_types<32>::Elf_Addr)
1291 {
1292   memcpy(pov, first_plt_entry, plt_entry_size);
1293 }
1294
1295 // Subsequent entries in the PLT for an executable.
1296
1297 const unsigned char Output_data_plt_i386_exec::plt_entry[plt_entry_size] =
1298 {
1299   0xff, 0x25,   // jmp indirect
1300   0, 0, 0, 0,   // replaced with address of symbol in .got
1301   0x68,         // pushl immediate
1302   0, 0, 0, 0,   // replaced with offset into relocation table
1303   0xe9,         // jmp relative
1304   0, 0, 0, 0    // replaced with offset to start of .plt
1305 };
1306
1307 unsigned int
1308 Output_data_plt_i386_exec::do_fill_plt_entry(
1309     unsigned char* pov,
1310     elfcpp::Elf_types<32>::Elf_Addr got_address,
1311     unsigned int got_offset,
1312     unsigned int plt_offset,
1313     unsigned int plt_rel_offset)
1314 {
1315   memcpy(pov, plt_entry, plt_entry_size);
1316   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1317                                               got_address + got_offset);
1318   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1319   elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
1320   return 6;
1321 }
1322
1323 // Subsequent entries in the PLT for a shared object.
1324
1325 const unsigned char Output_data_plt_i386_dyn::plt_entry[plt_entry_size] =
1326 {
1327   0xff, 0xa3,   // jmp *offset(%ebx)
1328   0, 0, 0, 0,   // replaced with offset of symbol in .got
1329   0x68,         // pushl immediate
1330   0, 0, 0, 0,   // replaced with offset into relocation table
1331   0xe9,         // jmp relative
1332   0, 0, 0, 0    // replaced with offset to start of .plt
1333 };
1334
1335 unsigned int
1336 Output_data_plt_i386_dyn::do_fill_plt_entry(unsigned char* pov,
1337                                             elfcpp::Elf_types<32>::Elf_Addr,
1338                                             unsigned int got_offset,
1339                                             unsigned int plt_offset,
1340                                             unsigned int plt_rel_offset)
1341 {
1342   memcpy(pov, plt_entry, plt_entry_size);
1343   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
1344   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1345   elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
1346   return 6;
1347 }
1348
1349 // The .eh_frame unwind information for the PLT.
1350
1351 const unsigned char
1352 Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1353 {
1354   1,                            // CIE version.
1355   'z',                          // Augmentation: augmentation size included.
1356   'R',                          // Augmentation: FDE encoding included.
1357   '\0',                         // End of augmentation string.
1358   1,                            // Code alignment factor.
1359   0x7c,                         // Data alignment factor.
1360   8,                            // Return address column.
1361   1,                            // Augmentation size.
1362   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1363    | elfcpp::DW_EH_PE_sdata4),
1364   elfcpp::DW_CFA_def_cfa, 4, 4, // DW_CFA_def_cfa: r4 (esp) ofs 4.
1365   elfcpp::DW_CFA_offset + 8, 1, // DW_CFA_offset: r8 (eip) at cfa-4.
1366   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1367   elfcpp::DW_CFA_nop
1368 };
1369
1370 const unsigned char
1371 Output_data_plt_i386_standard::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1372 {
1373   0, 0, 0, 0,                           // Replaced with offset to .plt.
1374   0, 0, 0, 0,                           // Replaced with size of .plt.
1375   0,                                    // Augmentation size.
1376   elfcpp::DW_CFA_def_cfa_offset, 8,     // DW_CFA_def_cfa_offset: 8.
1377   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1378   elfcpp::DW_CFA_def_cfa_offset, 12,    // DW_CFA_def_cfa_offset: 12.
1379   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1380   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1381   11,                                   // Block length.
1382   elfcpp::DW_OP_breg4, 4,               // Push %esp + 4.
1383   elfcpp::DW_OP_breg8, 0,               // Push %eip.
1384   elfcpp::DW_OP_lit15,                  // Push 0xf.
1385   elfcpp::DW_OP_and,                    // & (%eip & 0xf).
1386   elfcpp::DW_OP_lit11,                  // Push 0xb.
1387   elfcpp::DW_OP_ge,                     // >= ((%eip & 0xf) >= 0xb)
1388   elfcpp::DW_OP_lit2,                   // Push 2.
1389   elfcpp::DW_OP_shl,                    // << (((%eip & 0xf) >= 0xb) << 2)
1390   elfcpp::DW_OP_plus,                   // + ((((%eip&0xf)>=0xb)<<2)+%esp+4
1391   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1392   elfcpp::DW_CFA_nop,
1393   elfcpp::DW_CFA_nop,
1394   elfcpp::DW_CFA_nop
1395 };
1396
1397 // Write out the PLT.  This uses the hand-coded instructions above,
1398 // and adjusts them as needed.  This is all specified by the i386 ELF
1399 // Processor Supplement.
1400
1401 void
1402 Output_data_plt_i386::do_write(Output_file* of)
1403 {
1404   const off_t offset = this->offset();
1405   const section_size_type oview_size =
1406     convert_to_section_size_type(this->data_size());
1407   unsigned char* const oview = of->get_output_view(offset, oview_size);
1408
1409   const off_t got_file_offset = this->got_plt_->offset();
1410   gold_assert(parameters->incremental_update()
1411               || (got_file_offset + this->got_plt_->data_size()
1412                   == this->got_irelative_->offset()));
1413   const section_size_type got_size =
1414     convert_to_section_size_type(this->got_plt_->data_size()
1415                                  + this->got_irelative_->data_size());
1416
1417   unsigned char* const got_view = of->get_output_view(got_file_offset,
1418                                                       got_size);
1419
1420   unsigned char* pov = oview;
1421
1422   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
1423   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
1424
1425   this->fill_first_plt_entry(pov, got_address);
1426   pov += this->get_plt_entry_size();
1427
1428   // The first three entries in the GOT are reserved, and are written
1429   // by Output_data_got_plt_i386::do_write.
1430   unsigned char* got_pov = got_view + 12;
1431
1432   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
1433
1434   unsigned int plt_offset = this->get_plt_entry_size();
1435   unsigned int plt_rel_offset = 0;
1436   unsigned int got_offset = 12;
1437   const unsigned int count = this->count_ + this->irelative_count_;
1438   for (unsigned int i = 0;
1439        i < count;
1440        ++i,
1441          pov += this->get_plt_entry_size(),
1442          got_pov += 4,
1443          plt_offset += this->get_plt_entry_size(),
1444          plt_rel_offset += rel_size,
1445          got_offset += 4)
1446     {
1447       // Set and adjust the PLT entry itself.
1448       unsigned int lazy_offset = this->fill_plt_entry(pov,
1449                                                       got_address,
1450                                                       got_offset,
1451                                                       plt_offset,
1452                                                       plt_rel_offset);
1453
1454       // Set the entry in the GOT.
1455       elfcpp::Swap<32, false>::writeval(got_pov,
1456                                         plt_address + plt_offset + lazy_offset);
1457     }
1458
1459   // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
1460   // the GOT to point to the actual symbol value, rather than point to
1461   // the PLT entry.  That will let the dynamic linker call the right
1462   // function when resolving IRELATIVE relocations.
1463   unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
1464   for (std::vector<Global_ifunc>::const_iterator p =
1465          this->global_ifuncs_.begin();
1466        p != this->global_ifuncs_.end();
1467        ++p)
1468     {
1469       const Sized_symbol<32>* ssym =
1470         static_cast<const Sized_symbol<32>*>(p->sym);
1471       elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1472                                         ssym->value());
1473     }
1474
1475   for (std::vector<Local_ifunc>::const_iterator p =
1476          this->local_ifuncs_.begin();
1477        p != this->local_ifuncs_.end();
1478        ++p)
1479     {
1480       const Symbol_value<32>* psymval =
1481         p->object->local_symbol(p->local_sym_index);
1482       elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1483                                         psymval->value(p->object, 0));
1484     }
1485
1486   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1487   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1488
1489   of->write_output_view(offset, oview_size, oview);
1490   of->write_output_view(got_file_offset, got_size, got_view);
1491 }
1492
1493 // Create the PLT section.
1494
1495 void
1496 Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
1497 {
1498   if (this->plt_ == NULL)
1499     {
1500       // Create the GOT sections first.
1501       this->got_section(symtab, layout);
1502
1503       const bool dyn = parameters->options().output_is_position_independent();
1504       this->plt_ = this->make_data_plt(layout,
1505                                        this->got_plt_,
1506                                        this->got_irelative_,
1507                                        dyn);
1508
1509       // Add unwind information if requested.
1510       if (parameters->options().ld_generated_unwind_info())
1511         this->plt_->add_eh_frame(layout);
1512
1513       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1514                                       (elfcpp::SHF_ALLOC
1515                                        | elfcpp::SHF_EXECINSTR),
1516                                       this->plt_, ORDER_PLT, false);
1517
1518       // Make the sh_info field of .rel.plt point to .plt.
1519       Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
1520       rel_plt_os->set_info_section(this->plt_->output_section());
1521     }
1522 }
1523
1524 // Create a PLT entry for a global symbol.
1525
1526 void
1527 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
1528 {
1529   if (gsym->has_plt_offset())
1530     return;
1531   if (this->plt_ == NULL)
1532     this->make_plt_section(symtab, layout);
1533   this->plt_->add_entry(symtab, layout, gsym);
1534 }
1535
1536 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1537
1538 void
1539 Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1540                                         Sized_relobj_file<32, false>* relobj,
1541                                         unsigned int local_sym_index)
1542 {
1543   if (relobj->local_has_plt_offset(local_sym_index))
1544     return;
1545   if (this->plt_ == NULL)
1546     this->make_plt_section(symtab, layout);
1547   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1548                                                               relobj,
1549                                                               local_sym_index);
1550   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1551 }
1552
1553 // Return the number of entries in the PLT.
1554
1555 unsigned int
1556 Target_i386::plt_entry_count() const
1557 {
1558   if (this->plt_ == NULL)
1559     return 0;
1560   return this->plt_->entry_count();
1561 }
1562
1563 // Return the offset of the first non-reserved PLT entry.
1564
1565 unsigned int
1566 Target_i386::first_plt_entry_offset() const
1567 {
1568   return this->plt_->first_plt_entry_offset();
1569 }
1570
1571 // Return the size of each PLT entry.
1572
1573 unsigned int
1574 Target_i386::plt_entry_size() const
1575 {
1576   return this->plt_->get_plt_entry_size();
1577 }
1578
1579 // Get the section to use for TLS_DESC relocations.
1580
1581 Target_i386::Reloc_section*
1582 Target_i386::rel_tls_desc_section(Layout* layout) const
1583 {
1584   return this->plt_section()->rel_tls_desc(layout);
1585 }
1586
1587 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1588
1589 void
1590 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1591 {
1592   if (this->tls_base_symbol_defined_)
1593     return;
1594
1595   Output_segment* tls_segment = layout->tls_segment();
1596   if (tls_segment != NULL)
1597     {
1598       bool is_exec = parameters->options().output_is_executable();
1599       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1600                                        Symbol_table::PREDEFINED,
1601                                        tls_segment, 0, 0,
1602                                        elfcpp::STT_TLS,
1603                                        elfcpp::STB_LOCAL,
1604                                        elfcpp::STV_HIDDEN, 0,
1605                                        (is_exec
1606                                         ? Symbol::SEGMENT_END
1607                                         : Symbol::SEGMENT_START),
1608                                        true);
1609     }
1610   this->tls_base_symbol_defined_ = true;
1611 }
1612
1613 // Create a GOT entry for the TLS module index.
1614
1615 unsigned int
1616 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1617                                  Sized_relobj_file<32, false>* object)
1618 {
1619   if (this->got_mod_index_offset_ == -1U)
1620     {
1621       gold_assert(symtab != NULL && layout != NULL && object != NULL);
1622       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1623       Output_data_got<32, false>* got = this->got_section(symtab, layout);
1624       unsigned int got_offset = got->add_constant(0);
1625       rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
1626                          got_offset);
1627       got->add_constant(0);
1628       this->got_mod_index_offset_ = got_offset;
1629     }
1630   return this->got_mod_index_offset_;
1631 }
1632
1633 // Optimize the TLS relocation type based on what we know about the
1634 // symbol.  IS_FINAL is true if the final address of this symbol is
1635 // known at link time.
1636
1637 tls::Tls_optimization
1638 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
1639 {
1640   // If we are generating a shared library, then we can't do anything
1641   // in the linker.
1642   if (parameters->options().shared())
1643     return tls::TLSOPT_NONE;
1644
1645   switch (r_type)
1646     {
1647     case elfcpp::R_386_TLS_GD:
1648     case elfcpp::R_386_TLS_GOTDESC:
1649     case elfcpp::R_386_TLS_DESC_CALL:
1650       // These are General-Dynamic which permits fully general TLS
1651       // access.  Since we know that we are generating an executable,
1652       // we can convert this to Initial-Exec.  If we also know that
1653       // this is a local symbol, we can further switch to Local-Exec.
1654       if (is_final)
1655         return tls::TLSOPT_TO_LE;
1656       return tls::TLSOPT_TO_IE;
1657
1658     case elfcpp::R_386_TLS_LDM:
1659       // This is Local-Dynamic, which refers to a local symbol in the
1660       // dynamic TLS block.  Since we know that we generating an
1661       // executable, we can switch to Local-Exec.
1662       return tls::TLSOPT_TO_LE;
1663
1664     case elfcpp::R_386_TLS_LDO_32:
1665       // Another type of Local-Dynamic relocation.
1666       return tls::TLSOPT_TO_LE;
1667
1668     case elfcpp::R_386_TLS_IE:
1669     case elfcpp::R_386_TLS_GOTIE:
1670     case elfcpp::R_386_TLS_IE_32:
1671       // These are Initial-Exec relocs which get the thread offset
1672       // from the GOT.  If we know that we are linking against the
1673       // local symbol, we can switch to Local-Exec, which links the
1674       // thread offset into the instruction.
1675       if (is_final)
1676         return tls::TLSOPT_TO_LE;
1677       return tls::TLSOPT_NONE;
1678
1679     case elfcpp::R_386_TLS_LE:
1680     case elfcpp::R_386_TLS_LE_32:
1681       // When we already have Local-Exec, there is nothing further we
1682       // can do.
1683       return tls::TLSOPT_NONE;
1684
1685     default:
1686       gold_unreachable();
1687     }
1688 }
1689
1690 // Get the Reference_flags for a particular relocation.
1691
1692 int
1693 Target_i386::Scan::get_reference_flags(unsigned int r_type)
1694 {
1695   switch (r_type)
1696     {
1697     case elfcpp::R_386_NONE:
1698     case elfcpp::R_386_GNU_VTINHERIT:
1699     case elfcpp::R_386_GNU_VTENTRY:
1700     case elfcpp::R_386_GOTPC:
1701       // No symbol reference.
1702       return 0;
1703
1704     case elfcpp::R_386_32:
1705     case elfcpp::R_386_16:
1706     case elfcpp::R_386_8:
1707       return Symbol::ABSOLUTE_REF;
1708
1709     case elfcpp::R_386_PC32:
1710     case elfcpp::R_386_PC16:
1711     case elfcpp::R_386_PC8:
1712     case elfcpp::R_386_GOTOFF:
1713       return Symbol::RELATIVE_REF;
1714
1715     case elfcpp::R_386_PLT32:
1716       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1717
1718     case elfcpp::R_386_GOT32:
1719     case elfcpp::R_386_GOT32X:
1720       // Absolute in GOT.
1721       return Symbol::ABSOLUTE_REF;
1722
1723     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1724     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1725     case elfcpp::R_386_TLS_DESC_CALL:
1726     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1727     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1728     case elfcpp::R_386_TLS_IE:            // Initial-exec
1729     case elfcpp::R_386_TLS_IE_32:
1730     case elfcpp::R_386_TLS_GOTIE:
1731     case elfcpp::R_386_TLS_LE:            // Local-exec
1732     case elfcpp::R_386_TLS_LE_32:
1733       return Symbol::TLS_REF;
1734
1735     case elfcpp::R_386_COPY:
1736     case elfcpp::R_386_GLOB_DAT:
1737     case elfcpp::R_386_JUMP_SLOT:
1738     case elfcpp::R_386_RELATIVE:
1739     case elfcpp::R_386_IRELATIVE:
1740     case elfcpp::R_386_TLS_TPOFF:
1741     case elfcpp::R_386_TLS_DTPMOD32:
1742     case elfcpp::R_386_TLS_DTPOFF32:
1743     case elfcpp::R_386_TLS_TPOFF32:
1744     case elfcpp::R_386_TLS_DESC:
1745     case elfcpp::R_386_32PLT:
1746     case elfcpp::R_386_TLS_GD_32:
1747     case elfcpp::R_386_TLS_GD_PUSH:
1748     case elfcpp::R_386_TLS_GD_CALL:
1749     case elfcpp::R_386_TLS_GD_POP:
1750     case elfcpp::R_386_TLS_LDM_32:
1751     case elfcpp::R_386_TLS_LDM_PUSH:
1752     case elfcpp::R_386_TLS_LDM_CALL:
1753     case elfcpp::R_386_TLS_LDM_POP:
1754     case elfcpp::R_386_USED_BY_INTEL_200:
1755     default:
1756       // Not expected.  We will give an error later.
1757       return 0;
1758     }
1759 }
1760
1761 // Report an unsupported relocation against a local symbol.
1762
1763 void
1764 Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
1765                                            unsigned int r_type)
1766 {
1767   gold_error(_("%s: unsupported reloc %u against local symbol"),
1768              object->name().c_str(), r_type);
1769 }
1770
1771 // Return whether we need to make a PLT entry for a relocation of a
1772 // given type against a STT_GNU_IFUNC symbol.
1773
1774 bool
1775 Target_i386::Scan::reloc_needs_plt_for_ifunc(
1776     Sized_relobj_file<32, false>* object,
1777     unsigned int r_type)
1778 {
1779   int flags = Scan::get_reference_flags(r_type);
1780   if (flags & Symbol::TLS_REF)
1781     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1782                object->name().c_str(), r_type);
1783   return flags != 0;
1784 }
1785
1786 // Scan a relocation for a local symbol.
1787
1788 inline void
1789 Target_i386::Scan::local(Symbol_table* symtab,
1790                          Layout* layout,
1791                          Target_i386* target,
1792                          Sized_relobj_file<32, false>* object,
1793                          unsigned int data_shndx,
1794                          Output_section* output_section,
1795                          const elfcpp::Rel<32, false>& reloc,
1796                          unsigned int r_type,
1797                          const elfcpp::Sym<32, false>& lsym,
1798                          bool is_discarded)
1799 {
1800   if (is_discarded)
1801     return;
1802
1803   // A local STT_GNU_IFUNC symbol may require a PLT entry.
1804   if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1805       && this->reloc_needs_plt_for_ifunc(object, r_type))
1806     {
1807       unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1808       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1809     }
1810
1811   switch (r_type)
1812     {
1813     case elfcpp::R_386_NONE:
1814     case elfcpp::R_386_GNU_VTINHERIT:
1815     case elfcpp::R_386_GNU_VTENTRY:
1816       break;
1817
1818     case elfcpp::R_386_32:
1819       // If building a shared library (or a position-independent
1820       // executable), we need to create a dynamic relocation for
1821       // this location. The relocation applied at link time will
1822       // apply the link-time value, so we flag the location with
1823       // an R_386_RELATIVE relocation so the dynamic loader can
1824       // relocate it easily.
1825       if (parameters->options().output_is_position_independent())
1826         {
1827           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1828           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1829           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
1830                                       output_section, data_shndx,
1831                                       reloc.get_r_offset());
1832         }
1833       break;
1834
1835     case elfcpp::R_386_16:
1836     case elfcpp::R_386_8:
1837       // If building a shared library (or a position-independent
1838       // executable), we need to create a dynamic relocation for
1839       // this location. Because the addend needs to remain in the
1840       // data section, we need to be careful not to apply this
1841       // relocation statically.
1842       if (parameters->options().output_is_position_independent())
1843         {
1844           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1845           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1846           if (lsym.get_st_type() != elfcpp::STT_SECTION)
1847             rel_dyn->add_local(object, r_sym, r_type, output_section,
1848                                data_shndx, reloc.get_r_offset());
1849           else
1850             {
1851               gold_assert(lsym.get_st_value() == 0);
1852               unsigned int shndx = lsym.get_st_shndx();
1853               bool is_ordinary;
1854               shndx = object->adjust_sym_shndx(r_sym, shndx,
1855                                                &is_ordinary);
1856               if (!is_ordinary)
1857                 object->error(_("section symbol %u has bad shndx %u"),
1858                               r_sym, shndx);
1859               else
1860                 rel_dyn->add_local_section(object, shndx,
1861                                            r_type, output_section,
1862                                            data_shndx, reloc.get_r_offset());
1863             }
1864         }
1865       break;
1866
1867     case elfcpp::R_386_PC32:
1868     case elfcpp::R_386_PC16:
1869     case elfcpp::R_386_PC8:
1870       break;
1871
1872     case elfcpp::R_386_PLT32:
1873       // Since we know this is a local symbol, we can handle this as a
1874       // PC32 reloc.
1875       break;
1876
1877     case elfcpp::R_386_GOTOFF:
1878     case elfcpp::R_386_GOTPC:
1879       // We need a GOT section.
1880       target->got_section(symtab, layout);
1881       break;
1882
1883     case elfcpp::R_386_GOT32:
1884     case elfcpp::R_386_GOT32X:
1885       {
1886         // We need GOT section.
1887         Output_data_got<32, false>* got = target->got_section(symtab, layout);
1888
1889         // If the relocation symbol isn't IFUNC,
1890         // and is local, then we will convert
1891         // mov foo@GOT(%reg), %reg
1892         // to
1893         // lea foo@GOTOFF(%reg), %reg
1894         // in Relocate::relocate.
1895         if (reloc.get_r_offset() >= 2
1896             && lsym.get_st_type() != elfcpp::STT_GNU_IFUNC)
1897           {
1898             section_size_type stype;
1899             const unsigned char* view = object->section_contents(data_shndx,
1900                                                                  &stype, true);
1901             if (view[reloc.get_r_offset() - 2] == 0x8b)
1902               break;
1903           }
1904
1905         // Otherwise, the symbol requires a GOT entry.
1906         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1907
1908         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
1909         // lets function pointers compare correctly with shared
1910         // libraries.  Otherwise we would need an IRELATIVE reloc.
1911         bool is_new;
1912         if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1913           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1914         else
1915           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1916         if (is_new)
1917           {
1918             // If we are generating a shared object, we need to add a
1919             // dynamic RELATIVE relocation for this symbol's GOT entry.
1920             if (parameters->options().output_is_position_independent())
1921               {
1922                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1923                 unsigned int got_offset =
1924                   object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1925                 rel_dyn->add_local_relative(object, r_sym,
1926                                             elfcpp::R_386_RELATIVE,
1927                                             got, got_offset);
1928               }
1929           }
1930       }
1931       break;
1932
1933       // These are relocations which should only be seen by the
1934       // dynamic linker, and should never be seen here.
1935     case elfcpp::R_386_COPY:
1936     case elfcpp::R_386_GLOB_DAT:
1937     case elfcpp::R_386_JUMP_SLOT:
1938     case elfcpp::R_386_RELATIVE:
1939     case elfcpp::R_386_IRELATIVE:
1940     case elfcpp::R_386_TLS_TPOFF:
1941     case elfcpp::R_386_TLS_DTPMOD32:
1942     case elfcpp::R_386_TLS_DTPOFF32:
1943     case elfcpp::R_386_TLS_TPOFF32:
1944     case elfcpp::R_386_TLS_DESC:
1945       gold_error(_("%s: unexpected reloc %u in object file"),
1946                  object->name().c_str(), r_type);
1947       break;
1948
1949       // These are initial TLS relocs, which are expected when
1950       // linking.
1951     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1952     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1953     case elfcpp::R_386_TLS_DESC_CALL:
1954     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1955     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1956     case elfcpp::R_386_TLS_IE:            // Initial-exec
1957     case elfcpp::R_386_TLS_IE_32:
1958     case elfcpp::R_386_TLS_GOTIE:
1959     case elfcpp::R_386_TLS_LE:            // Local-exec
1960     case elfcpp::R_386_TLS_LE_32:
1961       {
1962         bool output_is_shared = parameters->options().shared();
1963         const tls::Tls_optimization optimized_type
1964             = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1965         switch (r_type)
1966           {
1967           case elfcpp::R_386_TLS_GD:          // Global-dynamic
1968             if (optimized_type == tls::TLSOPT_NONE)
1969               {
1970                 // Create a pair of GOT entries for the module index and
1971                 // dtv-relative offset.
1972                 Output_data_got<32, false>* got
1973                     = target->got_section(symtab, layout);
1974                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1975                 unsigned int shndx = lsym.get_st_shndx();
1976                 bool is_ordinary;
1977                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1978                 if (!is_ordinary)
1979                   object->error(_("local symbol %u has bad shndx %u"),
1980                               r_sym, shndx);
1981                 else
1982                   got->add_local_pair_with_rel(object, r_sym, shndx,
1983                                                GOT_TYPE_TLS_PAIR,
1984                                                target->rel_dyn_section(layout),
1985                                                elfcpp::R_386_TLS_DTPMOD32);
1986               }
1987             else if (optimized_type != tls::TLSOPT_TO_LE)
1988               unsupported_reloc_local(object, r_type);
1989             break;
1990
1991           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
1992             target->define_tls_base_symbol(symtab, layout);
1993             if (optimized_type == tls::TLSOPT_NONE)
1994               {
1995                 // Create a double GOT entry with an R_386_TLS_DESC
1996                 // reloc.  The R_386_TLS_DESC reloc is resolved
1997                 // lazily, so the GOT entry needs to be in an area in
1998                 // .got.plt, not .got.  Call got_section to make sure
1999                 // the section has been created.
2000                 target->got_section(symtab, layout);
2001                 Output_data_got<32, false>* got = target->got_tlsdesc_section();
2002                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2003                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2004                   {
2005                     unsigned int got_offset = got->add_constant(0);
2006                     // The local symbol value is stored in the second
2007                     // GOT entry.
2008                     got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
2009                     // That set the GOT offset of the local symbol to
2010                     // point to the second entry, but we want it to
2011                     // point to the first.
2012                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2013                                                  got_offset);
2014                     Reloc_section* rt = target->rel_tls_desc_section(layout);
2015                     rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
2016                   }
2017               }
2018             else if (optimized_type != tls::TLSOPT_TO_LE)
2019               unsupported_reloc_local(object, r_type);
2020             break;
2021
2022           case elfcpp::R_386_TLS_DESC_CALL:
2023             break;
2024
2025           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
2026             if (optimized_type == tls::TLSOPT_NONE)
2027               {
2028                 // Create a GOT entry for the module index.
2029                 target->got_mod_index_entry(symtab, layout, object);
2030               }
2031             else if (optimized_type != tls::TLSOPT_TO_LE)
2032               unsupported_reloc_local(object, r_type);
2033             break;
2034
2035           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
2036             break;
2037
2038           case elfcpp::R_386_TLS_IE:          // Initial-exec
2039           case elfcpp::R_386_TLS_IE_32:
2040           case elfcpp::R_386_TLS_GOTIE:
2041             layout->set_has_static_tls();
2042             if (optimized_type == tls::TLSOPT_NONE)
2043               {
2044                 // For the R_386_TLS_IE relocation, we need to create a
2045                 // dynamic relocation when building a shared library.
2046                 if (r_type == elfcpp::R_386_TLS_IE
2047                     && parameters->options().shared())
2048                   {
2049                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2050                     unsigned int r_sym
2051                         = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2052                     rel_dyn->add_local_relative(object, r_sym,
2053                                                 elfcpp::R_386_RELATIVE,
2054                                                 output_section, data_shndx,
2055                                                 reloc.get_r_offset());
2056                   }
2057                 // Create a GOT entry for the tp-relative offset.
2058                 Output_data_got<32, false>* got
2059                     = target->got_section(symtab, layout);
2060                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2061                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2062                                            ? elfcpp::R_386_TLS_TPOFF32
2063                                            : elfcpp::R_386_TLS_TPOFF);
2064                 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2065                                          ? GOT_TYPE_TLS_OFFSET
2066                                          : GOT_TYPE_TLS_NOFFSET);
2067                 got->add_local_with_rel(object, r_sym, got_type,
2068                                         target->rel_dyn_section(layout),
2069                                         dyn_r_type);
2070               }
2071             else if (optimized_type != tls::TLSOPT_TO_LE)
2072               unsupported_reloc_local(object, r_type);
2073             break;
2074
2075           case elfcpp::R_386_TLS_LE:          // Local-exec
2076           case elfcpp::R_386_TLS_LE_32:
2077             layout->set_has_static_tls();
2078             if (output_is_shared)
2079               {
2080                 // We need to create a dynamic relocation.
2081                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2082                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2083                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2084                                            ? elfcpp::R_386_TLS_TPOFF32
2085                                            : elfcpp::R_386_TLS_TPOFF);
2086                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2087                 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
2088                                    data_shndx, reloc.get_r_offset());
2089               }
2090             break;
2091
2092           default:
2093             gold_unreachable();
2094           }
2095       }
2096       break;
2097
2098     case elfcpp::R_386_32PLT:
2099     case elfcpp::R_386_TLS_GD_32:
2100     case elfcpp::R_386_TLS_GD_PUSH:
2101     case elfcpp::R_386_TLS_GD_CALL:
2102     case elfcpp::R_386_TLS_GD_POP:
2103     case elfcpp::R_386_TLS_LDM_32:
2104     case elfcpp::R_386_TLS_LDM_PUSH:
2105     case elfcpp::R_386_TLS_LDM_CALL:
2106     case elfcpp::R_386_TLS_LDM_POP:
2107     case elfcpp::R_386_USED_BY_INTEL_200:
2108     default:
2109       unsupported_reloc_local(object, r_type);
2110       break;
2111     }
2112 }
2113
2114 // Report an unsupported relocation against a global symbol.
2115
2116 void
2117 Target_i386::Scan::unsupported_reloc_global(
2118     Sized_relobj_file<32, false>* object,
2119     unsigned int r_type,
2120     Symbol* gsym)
2121 {
2122   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2123              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2124 }
2125
2126 inline bool
2127 Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
2128 {
2129   switch (r_type)
2130     {
2131     case elfcpp::R_386_32:
2132     case elfcpp::R_386_16:
2133     case elfcpp::R_386_8:
2134     case elfcpp::R_386_GOTOFF:
2135     case elfcpp::R_386_GOT32:
2136     case elfcpp::R_386_GOT32X:
2137       {
2138         return true;
2139       }
2140     default:
2141       return false;
2142     }
2143   return false;
2144 }
2145
2146 inline bool
2147 Target_i386::Scan::local_reloc_may_be_function_pointer(
2148   Symbol_table* ,
2149   Layout* ,
2150   Target_i386* ,
2151   Sized_relobj_file<32, false>* ,
2152   unsigned int ,
2153   Output_section* ,
2154   const elfcpp::Rel<32, false>& ,
2155   unsigned int r_type,
2156   const elfcpp::Sym<32, false>&)
2157 {
2158   return possible_function_pointer_reloc(r_type);
2159 }
2160
2161 inline bool
2162 Target_i386::Scan::global_reloc_may_be_function_pointer(
2163   Symbol_table* ,
2164   Layout* ,
2165   Target_i386* ,
2166   Sized_relobj_file<32, false>* ,
2167   unsigned int ,
2168   Output_section* ,
2169   const elfcpp::Rel<32, false>& ,
2170   unsigned int r_type,
2171   Symbol*)
2172 {
2173   return possible_function_pointer_reloc(r_type);
2174 }
2175
2176 // Scan a relocation for a global symbol.
2177
2178 inline void
2179 Target_i386::Scan::global(Symbol_table* symtab,
2180                                  Layout* layout,
2181                                  Target_i386* target,
2182                                  Sized_relobj_file<32, false>* object,
2183                                  unsigned int data_shndx,
2184                                  Output_section* output_section,
2185                                  const elfcpp::Rel<32, false>& reloc,
2186                                  unsigned int r_type,
2187                                  Symbol* gsym)
2188 {
2189   // A STT_GNU_IFUNC symbol may require a PLT entry.
2190   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2191       && this->reloc_needs_plt_for_ifunc(object, r_type))
2192     target->make_plt_entry(symtab, layout, gsym);
2193
2194   switch (r_type)
2195     {
2196     case elfcpp::R_386_NONE:
2197     case elfcpp::R_386_GNU_VTINHERIT:
2198     case elfcpp::R_386_GNU_VTENTRY:
2199       break;
2200
2201     case elfcpp::R_386_32:
2202     case elfcpp::R_386_16:
2203     case elfcpp::R_386_8:
2204       {
2205         // Make a PLT entry if necessary.
2206         if (gsym->needs_plt_entry())
2207           {
2208             target->make_plt_entry(symtab, layout, gsym);
2209             // Since this is not a PC-relative relocation, we may be
2210             // taking the address of a function. In that case we need to
2211             // set the entry in the dynamic symbol table to the address of
2212             // the PLT entry.
2213             if (gsym->is_from_dynobj() && !parameters->options().shared())
2214               gsym->set_needs_dynsym_value();
2215           }
2216         // Make a dynamic relocation if necessary.
2217         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2218           {
2219             if (!parameters->options().output_is_position_independent()
2220                 && gsym->may_need_copy_reloc())
2221               {
2222                 target->copy_reloc(symtab, layout, object,
2223                                    data_shndx, output_section, gsym, reloc);
2224               }
2225             else if (r_type == elfcpp::R_386_32
2226                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2227                      && gsym->can_use_relative_reloc(false)
2228                      && !gsym->is_from_dynobj()
2229                      && !gsym->is_undefined()
2230                      && !gsym->is_preemptible())
2231               {
2232                 // Use an IRELATIVE reloc for a locally defined
2233                 // STT_GNU_IFUNC symbol.  This makes a function
2234                 // address in a PIE executable match the address in a
2235                 // shared library that it links against.
2236                 Reloc_section* rel_dyn = target->rel_irelative_section(layout);
2237                 rel_dyn->add_symbolless_global_addend(gsym,
2238                                                       elfcpp::R_386_IRELATIVE,
2239                                                       output_section,
2240                                                       object, data_shndx,
2241                                                       reloc.get_r_offset());
2242               }
2243             else if (r_type == elfcpp::R_386_32
2244                      && gsym->can_use_relative_reloc(false))
2245               {
2246                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2247                 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2248                                              output_section, object,
2249                                              data_shndx, reloc.get_r_offset());
2250               }
2251             else
2252               {
2253                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2254                 rel_dyn->add_global(gsym, r_type, output_section, object,
2255                                     data_shndx, reloc.get_r_offset());
2256               }
2257           }
2258       }
2259       break;
2260
2261     case elfcpp::R_386_PC32:
2262     case elfcpp::R_386_PC16:
2263     case elfcpp::R_386_PC8:
2264       {
2265         // Make a PLT entry if necessary.
2266         if (gsym->needs_plt_entry())
2267           {
2268             // These relocations are used for function calls only in
2269             // non-PIC code.  For a 32-bit relocation in a shared library,
2270             // we'll need a text relocation anyway, so we can skip the
2271             // PLT entry and let the dynamic linker bind the call directly
2272             // to the target.  For smaller relocations, we should use a
2273             // PLT entry to ensure that the call can reach.
2274             if (!parameters->options().shared()
2275                 || r_type != elfcpp::R_386_PC32)
2276               target->make_plt_entry(symtab, layout, gsym);
2277           }
2278         // Make a dynamic relocation if necessary.
2279         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2280           {
2281             if (parameters->options().output_is_executable()
2282                 && gsym->may_need_copy_reloc())
2283               {
2284                 target->copy_reloc(symtab, layout, object,
2285                                    data_shndx, output_section, gsym, reloc);
2286               }
2287             else
2288               {
2289                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2290                 rel_dyn->add_global(gsym, r_type, output_section, object,
2291                                     data_shndx, reloc.get_r_offset());
2292               }
2293           }
2294       }
2295       break;
2296
2297     case elfcpp::R_386_GOT32:
2298     case elfcpp::R_386_GOT32X:
2299       {
2300         // The symbol requires a GOT section.
2301         Output_data_got<32, false>* got = target->got_section(symtab, layout);
2302
2303         // If we convert this from
2304         // mov foo@GOT(%reg), %reg
2305         // to
2306         // lea foo@GOTOFF(%reg), %reg
2307         // in Relocate::relocate, then there is nothing to do here.
2308         if (reloc.get_r_offset() >= 2
2309             && Target_i386::can_convert_mov_to_lea(gsym))
2310           {
2311             section_size_type stype;
2312             const unsigned char* view = object->section_contents(data_shndx,
2313                                                                  &stype, true);
2314             if (view[reloc.get_r_offset() - 2] == 0x8b)
2315               break;
2316           }
2317
2318         if (gsym->final_value_is_known())
2319           {
2320             // For a STT_GNU_IFUNC symbol we want the PLT address.
2321             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2322               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2323             else
2324               got->add_global(gsym, GOT_TYPE_STANDARD);
2325           }
2326         else
2327           {
2328             // If this symbol is not fully resolved, we need to add a
2329             // GOT entry with a dynamic relocation.
2330             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2331
2332             // Use a GLOB_DAT rather than a RELATIVE reloc if:
2333             //
2334             // 1) The symbol may be defined in some other module.
2335             //
2336             // 2) We are building a shared library and this is a
2337             // protected symbol; using GLOB_DAT means that the dynamic
2338             // linker can use the address of the PLT in the main
2339             // executable when appropriate so that function address
2340             // comparisons work.
2341             //
2342             // 3) This is a STT_GNU_IFUNC symbol in position dependent
2343             // code, again so that function address comparisons work.
2344             if (gsym->is_from_dynobj()
2345                 || gsym->is_undefined()
2346                 || gsym->is_preemptible()
2347                 || (gsym->visibility() == elfcpp::STV_PROTECTED
2348                     && parameters->options().shared())
2349                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2350                     && parameters->options().output_is_position_independent()))
2351               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
2352                                        rel_dyn, elfcpp::R_386_GLOB_DAT);
2353             else
2354               {
2355                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2356                 // offset into the GOT, so that function pointer
2357                 // comparisons work correctly.
2358                 bool is_new;
2359                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2360                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2361                 else
2362                   {
2363                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2364                     // Tell the dynamic linker to use the PLT address
2365                     // when resolving relocations.
2366                     if (gsym->is_from_dynobj()
2367                         && !parameters->options().shared())
2368                       gsym->set_needs_dynsym_value();
2369                   }
2370                 if (is_new)
2371                   {
2372                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2373                     rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2374                                                  got, got_off);
2375                   }
2376               }
2377           }
2378       }
2379       break;
2380
2381     case elfcpp::R_386_PLT32:
2382       // If the symbol is fully resolved, this is just a PC32 reloc.
2383       // Otherwise we need a PLT entry.
2384       if (gsym->final_value_is_known())
2385         break;
2386       // If building a shared library, we can also skip the PLT entry
2387       // if the symbol is defined in the output file and is protected
2388       // or hidden.
2389       if (gsym->is_defined()
2390           && !gsym->is_from_dynobj()
2391           && !gsym->is_preemptible())
2392         break;
2393       target->make_plt_entry(symtab, layout, gsym);
2394       break;
2395
2396     case elfcpp::R_386_GOTOFF:
2397     case elfcpp::R_386_GOTPC:
2398       // We need a GOT section.
2399       target->got_section(symtab, layout);
2400       break;
2401
2402       // These are relocations which should only be seen by the
2403       // dynamic linker, and should never be seen here.
2404     case elfcpp::R_386_COPY:
2405     case elfcpp::R_386_GLOB_DAT:
2406     case elfcpp::R_386_JUMP_SLOT:
2407     case elfcpp::R_386_RELATIVE:
2408     case elfcpp::R_386_IRELATIVE:
2409     case elfcpp::R_386_TLS_TPOFF:
2410     case elfcpp::R_386_TLS_DTPMOD32:
2411     case elfcpp::R_386_TLS_DTPOFF32:
2412     case elfcpp::R_386_TLS_TPOFF32:
2413     case elfcpp::R_386_TLS_DESC:
2414       gold_error(_("%s: unexpected reloc %u in object file"),
2415                  object->name().c_str(), r_type);
2416       break;
2417
2418       // These are initial tls relocs, which are expected when
2419       // linking.
2420     case elfcpp::R_386_TLS_GD:            // Global-dynamic
2421     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
2422     case elfcpp::R_386_TLS_DESC_CALL:
2423     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
2424     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
2425     case elfcpp::R_386_TLS_IE:            // Initial-exec
2426     case elfcpp::R_386_TLS_IE_32:
2427     case elfcpp::R_386_TLS_GOTIE:
2428     case elfcpp::R_386_TLS_LE:            // Local-exec
2429     case elfcpp::R_386_TLS_LE_32:
2430       {
2431         const bool is_final = gsym->final_value_is_known();
2432         const tls::Tls_optimization optimized_type
2433             = Target_i386::optimize_tls_reloc(is_final, r_type);
2434         switch (r_type)
2435           {
2436           case elfcpp::R_386_TLS_GD:          // Global-dynamic
2437             if (optimized_type == tls::TLSOPT_NONE)
2438               {
2439                 // Create a pair of GOT entries for the module index and
2440                 // dtv-relative offset.
2441                 Output_data_got<32, false>* got
2442                     = target->got_section(symtab, layout);
2443                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2444                                              target->rel_dyn_section(layout),
2445                                              elfcpp::R_386_TLS_DTPMOD32,
2446                                              elfcpp::R_386_TLS_DTPOFF32);
2447               }
2448             else if (optimized_type == tls::TLSOPT_TO_IE)
2449               {
2450                 // Create a GOT entry for the tp-relative offset.
2451                 Output_data_got<32, false>* got
2452                     = target->got_section(symtab, layout);
2453                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2454                                          target->rel_dyn_section(layout),
2455                                          elfcpp::R_386_TLS_TPOFF);
2456               }
2457             else if (optimized_type != tls::TLSOPT_TO_LE)
2458               unsupported_reloc_global(object, r_type, gsym);
2459             break;
2460
2461           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
2462             target->define_tls_base_symbol(symtab, layout);
2463             if (optimized_type == tls::TLSOPT_NONE)
2464               {
2465                 // Create a double GOT entry with an R_386_TLS_DESC
2466                 // reloc.  The R_386_TLS_DESC reloc is resolved
2467                 // lazily, so the GOT entry needs to be in an area in
2468                 // .got.plt, not .got.  Call got_section to make sure
2469                 // the section has been created.
2470                 target->got_section(symtab, layout);
2471                 Output_data_got<32, false>* got = target->got_tlsdesc_section();
2472                 Reloc_section* rt = target->rel_tls_desc_section(layout);
2473                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
2474                                              elfcpp::R_386_TLS_DESC, 0);
2475               }
2476             else if (optimized_type == tls::TLSOPT_TO_IE)
2477               {
2478                 // Create a GOT entry for the tp-relative offset.
2479                 Output_data_got<32, false>* got
2480                     = target->got_section(symtab, layout);
2481                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2482                                          target->rel_dyn_section(layout),
2483                                          elfcpp::R_386_TLS_TPOFF);
2484               }
2485             else if (optimized_type != tls::TLSOPT_TO_LE)
2486               unsupported_reloc_global(object, r_type, gsym);
2487             break;
2488
2489           case elfcpp::R_386_TLS_DESC_CALL:
2490             break;
2491
2492           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
2493             if (optimized_type == tls::TLSOPT_NONE)
2494               {
2495                 // Create a GOT entry for the module index.
2496                 target->got_mod_index_entry(symtab, layout, object);
2497               }
2498             else if (optimized_type != tls::TLSOPT_TO_LE)
2499               unsupported_reloc_global(object, r_type, gsym);
2500             break;
2501
2502           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
2503             break;
2504
2505           case elfcpp::R_386_TLS_IE:          // Initial-exec
2506           case elfcpp::R_386_TLS_IE_32:
2507           case elfcpp::R_386_TLS_GOTIE:
2508             layout->set_has_static_tls();
2509             if (optimized_type == tls::TLSOPT_NONE)
2510               {
2511                 // For the R_386_TLS_IE relocation, we need to create a
2512                 // dynamic relocation when building a shared library.
2513                 if (r_type == elfcpp::R_386_TLS_IE
2514                     && parameters->options().shared())
2515                   {
2516                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2517                     rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2518                                                  output_section, object,
2519                                                  data_shndx,
2520                                                  reloc.get_r_offset());
2521                   }
2522                 // Create a GOT entry for the tp-relative offset.
2523                 Output_data_got<32, false>* got
2524                     = target->got_section(symtab, layout);
2525                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2526                                            ? elfcpp::R_386_TLS_TPOFF32
2527                                            : elfcpp::R_386_TLS_TPOFF);
2528                 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2529                                          ? GOT_TYPE_TLS_OFFSET
2530                                          : GOT_TYPE_TLS_NOFFSET);
2531                 got->add_global_with_rel(gsym, got_type,
2532                                          target->rel_dyn_section(layout),
2533                                          dyn_r_type);
2534               }
2535             else if (optimized_type != tls::TLSOPT_TO_LE)
2536               unsupported_reloc_global(object, r_type, gsym);
2537             break;
2538
2539           case elfcpp::R_386_TLS_LE:          // Local-exec
2540           case elfcpp::R_386_TLS_LE_32:
2541             layout->set_has_static_tls();
2542             if (parameters->options().shared())
2543               {
2544                 // We need to create a dynamic relocation.
2545                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2546                                            ? elfcpp::R_386_TLS_TPOFF32
2547                                            : elfcpp::R_386_TLS_TPOFF);
2548                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2549                 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
2550                                     data_shndx, reloc.get_r_offset());
2551               }
2552             break;
2553
2554           default:
2555             gold_unreachable();
2556           }
2557       }
2558       break;
2559
2560     case elfcpp::R_386_32PLT:
2561     case elfcpp::R_386_TLS_GD_32:
2562     case elfcpp::R_386_TLS_GD_PUSH:
2563     case elfcpp::R_386_TLS_GD_CALL:
2564     case elfcpp::R_386_TLS_GD_POP:
2565     case elfcpp::R_386_TLS_LDM_32:
2566     case elfcpp::R_386_TLS_LDM_PUSH:
2567     case elfcpp::R_386_TLS_LDM_CALL:
2568     case elfcpp::R_386_TLS_LDM_POP:
2569     case elfcpp::R_386_USED_BY_INTEL_200:
2570     default:
2571       unsupported_reloc_global(object, r_type, gsym);
2572       break;
2573     }
2574 }
2575
2576 // Process relocations for gc.
2577
2578 void
2579 Target_i386::gc_process_relocs(Symbol_table* symtab,
2580                                       Layout* layout,
2581                                       Sized_relobj_file<32, false>* object,
2582                                       unsigned int data_shndx,
2583                                       unsigned int,
2584                                       const unsigned char* prelocs,
2585                                       size_t reloc_count,
2586                                       Output_section* output_section,
2587                                       bool needs_special_offset_handling,
2588                                       size_t local_symbol_count,
2589                                       const unsigned char* plocal_symbols)
2590 {
2591   gold::gc_process_relocs<32, false, Target_i386, Scan, Classify_reloc>(
2592     symtab,
2593     layout,
2594     this,
2595     object,
2596     data_shndx,
2597     prelocs,
2598     reloc_count,
2599     output_section,
2600     needs_special_offset_handling,
2601     local_symbol_count,
2602     plocal_symbols);
2603 }
2604
2605 // Scan relocations for a section.
2606
2607 void
2608 Target_i386::scan_relocs(Symbol_table* symtab,
2609                                 Layout* layout,
2610                                 Sized_relobj_file<32, false>* object,
2611                                 unsigned int data_shndx,
2612                                 unsigned int sh_type,
2613                                 const unsigned char* prelocs,
2614                                 size_t reloc_count,
2615                                 Output_section* output_section,
2616                                 bool needs_special_offset_handling,
2617                                 size_t local_symbol_count,
2618                                 const unsigned char* plocal_symbols)
2619 {
2620   if (sh_type == elfcpp::SHT_RELA)
2621     {
2622       gold_error(_("%s: unsupported RELA reloc section"),
2623                  object->name().c_str());
2624       return;
2625     }
2626
2627   gold::scan_relocs<32, false, Target_i386, Scan, Classify_reloc>(
2628     symtab,
2629     layout,
2630     this,
2631     object,
2632     data_shndx,
2633     prelocs,
2634     reloc_count,
2635     output_section,
2636     needs_special_offset_handling,
2637     local_symbol_count,
2638     plocal_symbols);
2639 }
2640
2641 // Finalize the sections.
2642
2643 void
2644 Target_i386::do_finalize_sections(
2645     Layout* layout,
2646     const Input_objects*,
2647     Symbol_table* symtab)
2648 {
2649   const Reloc_section* rel_plt = (this->plt_ == NULL
2650                                   ? NULL
2651                                   : this->plt_->rel_plt());
2652   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
2653                                   this->rel_dyn_, true, false);
2654
2655   // Emit any relocs we saved in an attempt to avoid generating COPY
2656   // relocs.
2657   if (this->copy_relocs_.any_saved_relocs())
2658     this->copy_relocs_.emit(this->rel_dyn_section(layout));
2659
2660   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2661   // the .got.plt section.
2662   Symbol* sym = this->global_offset_table_;
2663   if (sym != NULL)
2664     {
2665       uint32_t data_size = this->got_plt_->current_data_size();
2666       symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
2667     }
2668
2669   if (parameters->doing_static_link()
2670       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
2671     {
2672       // If linking statically, make sure that the __rel_iplt symbols
2673       // were defined if necessary, even if we didn't create a PLT.
2674       static const Define_symbol_in_segment syms[] =
2675         {
2676           {
2677             "__rel_iplt_start",         // name
2678             elfcpp::PT_LOAD,            // segment_type
2679             elfcpp::PF_W,               // segment_flags_set
2680             elfcpp::PF(0),              // segment_flags_clear
2681             0,                          // value
2682             0,                          // size
2683             elfcpp::STT_NOTYPE,         // type
2684             elfcpp::STB_GLOBAL,         // binding
2685             elfcpp::STV_HIDDEN,         // visibility
2686             0,                          // nonvis
2687             Symbol::SEGMENT_START,      // offset_from_base
2688             true                        // only_if_ref
2689           },
2690           {
2691             "__rel_iplt_end",           // name
2692             elfcpp::PT_LOAD,            // segment_type
2693             elfcpp::PF_W,               // segment_flags_set
2694             elfcpp::PF(0),              // segment_flags_clear
2695             0,                          // value
2696             0,                          // size
2697             elfcpp::STT_NOTYPE,         // type
2698             elfcpp::STB_GLOBAL,         // binding
2699             elfcpp::STV_HIDDEN,         // visibility
2700             0,                          // nonvis
2701             Symbol::SEGMENT_START,      // offset_from_base
2702             true                        // only_if_ref
2703           }
2704         };
2705
2706       symtab->define_symbols(layout, 2, syms,
2707                              layout->script_options()->saw_sections_clause());
2708     }
2709 }
2710
2711 // Return whether a direct absolute static relocation needs to be applied.
2712 // In cases where Scan::local() or Scan::global() has created
2713 // a dynamic relocation other than R_386_RELATIVE, the addend
2714 // of the relocation is carried in the data, and we must not
2715 // apply the static relocation.
2716
2717 inline bool
2718 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
2719                                                  unsigned int r_type,
2720                                                  bool is_32bit,
2721                                                  Output_section* output_section)
2722 {
2723   // If the output section is not allocated, then we didn't call
2724   // scan_relocs, we didn't create a dynamic reloc, and we must apply
2725   // the reloc here.
2726   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
2727     return true;
2728
2729   int ref_flags = Scan::get_reference_flags(r_type);
2730
2731   // For local symbols, we will have created a non-RELATIVE dynamic
2732   // relocation only if (a) the output is position independent,
2733   // (b) the relocation is absolute (not pc- or segment-relative), and
2734   // (c) the relocation is not 32 bits wide.
2735   if (gsym == NULL)
2736     return !(parameters->options().output_is_position_independent()
2737              && (ref_flags & Symbol::ABSOLUTE_REF)
2738              && !is_32bit);
2739
2740   // For global symbols, we use the same helper routines used in the
2741   // scan pass.  If we did not create a dynamic relocation, or if we
2742   // created a RELATIVE dynamic relocation, we should apply the static
2743   // relocation.
2744   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
2745   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
2746                 && gsym->can_use_relative_reloc(ref_flags
2747                                                 & Symbol::FUNCTION_CALL);
2748   return !has_dyn || is_rel;
2749 }
2750
2751 // Perform a relocation.
2752
2753 inline bool
2754 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
2755                                 unsigned int,
2756                                 Target_i386* target,
2757                                 Output_section* output_section,
2758                                 size_t relnum,
2759                                 const unsigned char* preloc,
2760                                 const Sized_symbol<32>* gsym,
2761                                 const Symbol_value<32>* psymval,
2762                                 unsigned char* view,
2763                                 elfcpp::Elf_types<32>::Elf_Addr address,
2764                                 section_size_type view_size)
2765 {
2766   const elfcpp::Rel<32, false> rel(preloc);
2767   unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
2768
2769   if (this->skip_call_tls_get_addr_)
2770     {
2771       if ((r_type != elfcpp::R_386_PLT32
2772            && r_type != elfcpp::R_386_PC32)
2773           || gsym == NULL
2774           || strcmp(gsym->name(), "___tls_get_addr") != 0)
2775         gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2776                                _("missing expected TLS relocation"));
2777       else
2778         {
2779           this->skip_call_tls_get_addr_ = false;
2780           return false;
2781         }
2782     }
2783
2784   if (view == NULL)
2785     return true;
2786
2787   const Sized_relobj_file<32, false>* object = relinfo->object;
2788
2789   // Pick the value to use for symbols defined in shared objects.
2790   Symbol_value<32> symval;
2791   if (gsym != NULL
2792       && gsym->type() == elfcpp::STT_GNU_IFUNC
2793       && r_type == elfcpp::R_386_32
2794       && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
2795       && gsym->can_use_relative_reloc(false)
2796       && !gsym->is_from_dynobj()
2797       && !gsym->is_undefined()
2798       && !gsym->is_preemptible())
2799     {
2800       // In this case we are generating a R_386_IRELATIVE reloc.  We
2801       // want to use the real value of the symbol, not the PLT offset.
2802     }
2803   else if (gsym != NULL
2804            && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2805     {
2806       symval.set_output_value(target->plt_address_for_global(gsym));
2807       psymval = &symval;
2808     }
2809   else if (gsym == NULL && psymval->is_ifunc_symbol())
2810     {
2811       unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2812       if (object->local_has_plt_offset(r_sym))
2813         {
2814           symval.set_output_value(target->plt_address_for_local(object, r_sym));
2815           psymval = &symval;
2816         }
2817     }
2818
2819   bool baseless;
2820
2821   switch (r_type)
2822     {
2823     case elfcpp::R_386_NONE:
2824     case elfcpp::R_386_GNU_VTINHERIT:
2825     case elfcpp::R_386_GNU_VTENTRY:
2826       break;
2827
2828     case elfcpp::R_386_32:
2829       if (should_apply_static_reloc(gsym, r_type, true, output_section))
2830         Relocate_functions<32, false>::rel32(view, object, psymval);
2831       break;
2832
2833     case elfcpp::R_386_PC32:
2834       if (should_apply_static_reloc(gsym, r_type, true, output_section))
2835         Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2836       break;
2837
2838     case elfcpp::R_386_16:
2839       if (should_apply_static_reloc(gsym, r_type, false, output_section))
2840         Relocate_functions<32, false>::rel16(view, object, psymval);
2841       break;
2842
2843     case elfcpp::R_386_PC16:
2844       if (should_apply_static_reloc(gsym, r_type, false, output_section))
2845         Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
2846       break;
2847
2848     case elfcpp::R_386_8:
2849       if (should_apply_static_reloc(gsym, r_type, false, output_section))
2850         Relocate_functions<32, false>::rel8(view, object, psymval);
2851       break;
2852
2853     case elfcpp::R_386_PC8:
2854       if (should_apply_static_reloc(gsym, r_type, false, output_section))
2855         Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
2856       break;
2857
2858     case elfcpp::R_386_PLT32:
2859       gold_assert(gsym == NULL
2860                   || gsym->has_plt_offset()
2861                   || gsym->final_value_is_known()
2862                   || (gsym->is_defined()
2863                       && !gsym->is_from_dynobj()
2864                       && !gsym->is_preemptible()));
2865       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2866       break;
2867
2868     case elfcpp::R_386_GOT32:
2869     case elfcpp::R_386_GOT32X:
2870       baseless = (view[-1] & 0xc7) == 0x5;
2871       // R_386_GOT32 and R_386_GOT32X don't work without base register
2872       // when generating a position-independent output file.
2873       if (baseless
2874           && parameters->options().output_is_position_independent())
2875         {
2876           if(gsym)
2877             gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2878                                    _("unexpected reloc %u against global symbol %s without base register in object file when generating a position-independent output file"),
2879                                    r_type, gsym->demangled_name().c_str());
2880           else
2881             gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2882                                    _("unexpected reloc %u against local symbol without base register in object file when generating a position-independent output file"),
2883                                    r_type);
2884         }
2885
2886       // Convert
2887       // mov foo@GOT(%reg), %reg
2888       // to
2889       // lea foo@GOTOFF(%reg), %reg
2890       // if possible.
2891       if (rel.get_r_offset() >= 2
2892           && view[-2] == 0x8b
2893           && ((gsym == NULL && !psymval->is_ifunc_symbol())
2894               || (gsym != NULL
2895                   && Target_i386::can_convert_mov_to_lea(gsym))))
2896         {
2897           view[-2] = 0x8d;
2898           elfcpp::Elf_types<32>::Elf_Addr value;
2899           value = psymval->value(object, 0);
2900           // Don't subtract the .got.plt section address for baseless
2901           // addressing.
2902           if (!baseless)
2903             value -= target->got_plt_section()->address();
2904           Relocate_functions<32, false>::rel32(view, value);
2905         }
2906       else
2907         {
2908           // The GOT pointer points to the end of the GOT section.
2909           // We need to subtract the size of the GOT section to get
2910           // the actual offset to use in the relocation.
2911           unsigned int got_offset = 0;
2912           if (gsym != NULL)
2913             {
2914               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2915               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
2916                             - target->got_size());
2917             }
2918           else
2919             {
2920               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2921               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2922               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2923                             - target->got_size());
2924             }
2925           // Add the .got.plt section address for baseless addressing.
2926           if (baseless)
2927             got_offset += target->got_plt_section()->address();
2928           Relocate_functions<32, false>::rel32(view, got_offset);
2929         }
2930       break;
2931
2932     case elfcpp::R_386_GOTOFF:
2933       {
2934         elfcpp::Elf_types<32>::Elf_Addr value;
2935         value = (psymval->value(object, 0)
2936                  - target->got_plt_section()->address());
2937         Relocate_functions<32, false>::rel32(view, value);
2938       }
2939       break;
2940
2941     case elfcpp::R_386_GOTPC:
2942       {
2943         elfcpp::Elf_types<32>::Elf_Addr value;
2944         value = target->got_plt_section()->address();
2945         Relocate_functions<32, false>::pcrel32(view, value, address);
2946       }
2947       break;
2948
2949     case elfcpp::R_386_COPY:
2950     case elfcpp::R_386_GLOB_DAT:
2951     case elfcpp::R_386_JUMP_SLOT:
2952     case elfcpp::R_386_RELATIVE:
2953     case elfcpp::R_386_IRELATIVE:
2954       // These are outstanding tls relocs, which are unexpected when
2955       // linking.
2956     case elfcpp::R_386_TLS_TPOFF:
2957     case elfcpp::R_386_TLS_DTPMOD32:
2958     case elfcpp::R_386_TLS_DTPOFF32:
2959     case elfcpp::R_386_TLS_TPOFF32:
2960     case elfcpp::R_386_TLS_DESC:
2961       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2962                              _("unexpected reloc %u in object file"),
2963                              r_type);
2964       break;
2965
2966       // These are initial tls relocs, which are expected when
2967       // linking.
2968     case elfcpp::R_386_TLS_GD:             // Global-dynamic
2969     case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
2970     case elfcpp::R_386_TLS_DESC_CALL:
2971     case elfcpp::R_386_TLS_LDM:            // Local-dynamic
2972     case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
2973     case elfcpp::R_386_TLS_IE:             // Initial-exec
2974     case elfcpp::R_386_TLS_IE_32:
2975     case elfcpp::R_386_TLS_GOTIE:
2976     case elfcpp::R_386_TLS_LE:             // Local-exec
2977     case elfcpp::R_386_TLS_LE_32:
2978       this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
2979                          view, address, view_size);
2980       break;
2981
2982     case elfcpp::R_386_32PLT:
2983     case elfcpp::R_386_TLS_GD_32:
2984     case elfcpp::R_386_TLS_GD_PUSH:
2985     case elfcpp::R_386_TLS_GD_CALL:
2986     case elfcpp::R_386_TLS_GD_POP:
2987     case elfcpp::R_386_TLS_LDM_32:
2988     case elfcpp::R_386_TLS_LDM_PUSH:
2989     case elfcpp::R_386_TLS_LDM_CALL:
2990     case elfcpp::R_386_TLS_LDM_POP:
2991     case elfcpp::R_386_USED_BY_INTEL_200:
2992     default:
2993       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2994                              _("unsupported reloc %u"),
2995                              r_type);
2996       break;
2997     }
2998
2999   return true;
3000 }
3001
3002 // Perform a TLS relocation.
3003
3004 inline void
3005 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
3006                                     Target_i386* target,
3007                                     size_t relnum,
3008                                     const elfcpp::Rel<32, false>& rel,
3009                                     unsigned int r_type,
3010                                     const Sized_symbol<32>* gsym,
3011                                     const Symbol_value<32>* psymval,
3012                                     unsigned char* view,
3013                                     elfcpp::Elf_types<32>::Elf_Addr,
3014                                     section_size_type view_size)
3015 {
3016   Output_segment* tls_segment = relinfo->layout->tls_segment();
3017
3018   const Sized_relobj_file<32, false>* object = relinfo->object;
3019
3020   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
3021
3022   const bool is_final = (gsym == NULL
3023                          ? !parameters->options().shared()
3024                          : gsym->final_value_is_known());
3025   const tls::Tls_optimization optimized_type
3026       = Target_i386::optimize_tls_reloc(is_final, r_type);
3027   switch (r_type)
3028     {
3029     case elfcpp::R_386_TLS_GD:           // Global-dynamic
3030       if (optimized_type == tls::TLSOPT_TO_LE)
3031         {
3032           if (tls_segment == NULL)
3033             {
3034               gold_assert(parameters->errors()->error_count() > 0
3035                           || issue_undefined_symbol_error(gsym));
3036               return;
3037             }
3038           this->tls_gd_to_le(relinfo, relnum, tls_segment,
3039                              rel, r_type, value, view,
3040                              view_size);
3041           break;
3042         }
3043       else
3044         {
3045           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3046                                    ? GOT_TYPE_TLS_NOFFSET
3047                                    : GOT_TYPE_TLS_PAIR);
3048           unsigned int got_offset;
3049           if (gsym != NULL)
3050             {
3051               gold_assert(gsym->has_got_offset(got_type));
3052               got_offset = gsym->got_offset(got_type) - target->got_size();
3053             }
3054           else
3055             {
3056               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3057               gold_assert(object->local_has_got_offset(r_sym, got_type));
3058               got_offset = (object->local_got_offset(r_sym, got_type)
3059                             - target->got_size());
3060             }
3061           if (optimized_type == tls::TLSOPT_TO_IE)
3062             {
3063               this->tls_gd_to_ie(relinfo, relnum, rel, r_type,
3064                                  got_offset, view, view_size);
3065               break;
3066             }
3067           else if (optimized_type == tls::TLSOPT_NONE)
3068             {
3069               // Relocate the field with the offset of the pair of GOT
3070               // entries.
3071               Relocate_functions<32, false>::rel32(view, got_offset);
3072               break;
3073             }
3074         }
3075       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3076                              _("unsupported reloc %u"),
3077                              r_type);
3078       break;
3079
3080     case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
3081     case elfcpp::R_386_TLS_DESC_CALL:
3082       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
3083       if (optimized_type == tls::TLSOPT_TO_LE)
3084         {
3085           if (tls_segment == NULL)
3086             {
3087               gold_assert(parameters->errors()->error_count() > 0
3088                           || issue_undefined_symbol_error(gsym));
3089               return;
3090             }
3091           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3092                                   rel, r_type, value, view,
3093                                   view_size);
3094           break;
3095         }
3096       else
3097         {
3098           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3099                                    ? GOT_TYPE_TLS_NOFFSET
3100                                    : GOT_TYPE_TLS_DESC);
3101           unsigned int got_offset = 0;
3102           if (r_type == elfcpp::R_386_TLS_GOTDESC
3103               && optimized_type == tls::TLSOPT_NONE)
3104             {
3105               // We created GOT entries in the .got.tlsdesc portion of
3106               // the .got.plt section, but the offset stored in the
3107               // symbol is the offset within .got.tlsdesc.
3108               got_offset = (target->got_size()
3109                             + target->got_plt_section()->data_size());
3110             }
3111           if (gsym != NULL)
3112             {
3113               gold_assert(gsym->has_got_offset(got_type));
3114               got_offset += gsym->got_offset(got_type) - target->got_size();
3115             }
3116           else
3117             {
3118               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3119               gold_assert(object->local_has_got_offset(r_sym, got_type));
3120               got_offset += (object->local_got_offset(r_sym, got_type)
3121                              - target->got_size());
3122             }
3123           if (optimized_type == tls::TLSOPT_TO_IE)
3124             {
3125               this->tls_desc_gd_to_ie(relinfo, relnum, rel, r_type,
3126                                       got_offset, view, view_size);
3127               break;
3128             }
3129           else if (optimized_type == tls::TLSOPT_NONE)
3130             {
3131               if (r_type == elfcpp::R_386_TLS_GOTDESC)
3132                 {
3133                   // Relocate the field with the offset of the pair of GOT
3134                   // entries.
3135                   Relocate_functions<32, false>::rel32(view, got_offset);
3136                 }
3137               break;
3138             }
3139         }
3140       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3141                              _("unsupported reloc %u"),
3142                              r_type);
3143       break;
3144
3145     case elfcpp::R_386_TLS_LDM:          // Local-dynamic
3146       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
3147         {
3148           gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3149                                  _("both SUN and GNU model "
3150                                    "TLS relocations"));
3151           break;
3152         }
3153       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
3154       if (optimized_type == tls::TLSOPT_TO_LE)
3155         {
3156           if (tls_segment == NULL)
3157             {
3158               gold_assert(parameters->errors()->error_count() > 0
3159                           || issue_undefined_symbol_error(gsym));
3160               return;
3161             }
3162           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
3163                              value, view, view_size);
3164           break;
3165         }
3166       else if (optimized_type == tls::TLSOPT_NONE)
3167         {
3168           // Relocate the field with the offset of the GOT entry for
3169           // the module index.
3170           unsigned int got_offset;
3171           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3172                         - target->got_size());
3173           Relocate_functions<32, false>::rel32(view, got_offset);
3174           break;
3175         }
3176       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3177                              _("unsupported reloc %u"),
3178                              r_type);
3179       break;
3180
3181     case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
3182       if (optimized_type == tls::TLSOPT_TO_LE)
3183         {
3184           // This reloc can appear in debugging sections, in which
3185           // case we must not convert to local-exec.  We decide what
3186           // to do based on whether the section is marked as
3187           // containing executable code.  That is what the GNU linker
3188           // does as well.
3189           elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
3190           if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
3191             {
3192               if (tls_segment == NULL)
3193                 {
3194                   gold_assert(parameters->errors()->error_count() > 0
3195                               || issue_undefined_symbol_error(gsym));
3196                   return;
3197                 }
3198               value -= tls_segment->memsz();
3199             }
3200         }
3201       Relocate_functions<32, false>::rel32(view, value);
3202       break;
3203
3204     case elfcpp::R_386_TLS_IE:           // Initial-exec
3205     case elfcpp::R_386_TLS_GOTIE:
3206     case elfcpp::R_386_TLS_IE_32:
3207       if (optimized_type == tls::TLSOPT_TO_LE)
3208         {
3209           if (tls_segment == NULL)
3210             {
3211               gold_assert(parameters->errors()->error_count() > 0
3212                           || issue_undefined_symbol_error(gsym));
3213               return;
3214             }
3215           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
3216                                               rel, r_type, value, view,
3217                                               view_size);
3218           break;
3219         }
3220       else if (optimized_type == tls::TLSOPT_NONE)
3221         {
3222           // Relocate the field with the offset of the GOT entry for
3223           // the tp-relative offset of the symbol.
3224           unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
3225                                    ? GOT_TYPE_TLS_OFFSET
3226                                    : GOT_TYPE_TLS_NOFFSET);
3227           unsigned int got_offset;
3228           if (gsym != NULL)
3229             {
3230               gold_assert(gsym->has_got_offset(got_type));
3231               got_offset = gsym->got_offset(got_type);
3232             }
3233           else
3234             {
3235               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3236               gold_assert(object->local_has_got_offset(r_sym, got_type));
3237               got_offset = object->local_got_offset(r_sym, got_type);
3238             }
3239           // For the R_386_TLS_IE relocation, we need to apply the
3240           // absolute address of the GOT entry.
3241           if (r_type == elfcpp::R_386_TLS_IE)
3242             got_offset += target->got_plt_section()->address();
3243           // All GOT offsets are relative to the end of the GOT.
3244           got_offset -= target->got_size();
3245           Relocate_functions<32, false>::rel32(view, got_offset);
3246           break;
3247         }
3248       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3249                              _("unsupported reloc %u"),
3250                              r_type);
3251       break;
3252
3253     case elfcpp::R_386_TLS_LE:           // Local-exec
3254       // If we're creating a shared library, a dynamic relocation will
3255       // have been created for this location, so do not apply it now.
3256       if (!parameters->options().shared())
3257         {
3258           if (tls_segment == NULL)
3259             {
3260               gold_assert(parameters->errors()->error_count() > 0
3261                           || issue_undefined_symbol_error(gsym));
3262               return;
3263             }
3264           value -= tls_segment->memsz();
3265           Relocate_functions<32, false>::rel32(view, value);
3266         }
3267       break;
3268
3269     case elfcpp::R_386_TLS_LE_32:
3270       // If we're creating a shared library, a dynamic relocation will
3271       // have been created for this location, so do not apply it now.
3272       if (!parameters->options().shared())
3273         {
3274           if (tls_segment == NULL)
3275             {
3276               gold_assert(parameters->errors()->error_count() > 0
3277                           || issue_undefined_symbol_error(gsym));
3278               return;
3279             }
3280           value = tls_segment->memsz() - value;
3281           Relocate_functions<32, false>::rel32(view, value);
3282         }
3283       break;
3284     }
3285 }
3286
3287 // Do a relocation in which we convert a TLS General-Dynamic to a
3288 // Local-Exec.
3289
3290 inline void
3291 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
3292                                     size_t relnum,
3293                                     Output_segment* tls_segment,
3294                                     const elfcpp::Rel<32, false>& rel,
3295                                     unsigned int,
3296                                     elfcpp::Elf_types<32>::Elf_Addr value,
3297                                     unsigned char* view,
3298                                     section_size_type view_size)
3299 {
3300   // leal foo(,%reg,1),%eax; call ___tls_get_addr
3301   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
3302   // leal foo(%reg),%eax; call ___tls_get_addr
3303   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
3304
3305   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3306   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3307
3308   unsigned char op1 = view[-1];
3309   unsigned char op2 = view[-2];
3310
3311   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3312                  op2 == 0x8d || op2 == 0x04);
3313   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3314
3315   int roff = 5;
3316
3317   if (op2 == 0x04)
3318     {
3319       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3320       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3321       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3322                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3323       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3324     }
3325   else
3326     {
3327       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3328                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
3329       if (rel.get_r_offset() + 9 < view_size
3330           && view[9] == 0x90)
3331         {
3332           // There is a trailing nop.  Use the size byte subl.
3333           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3334           roff = 6;
3335         }
3336       else
3337         {
3338           // Use the five byte subl.
3339           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
3340         }
3341     }
3342
3343   value = tls_segment->memsz() - value;
3344   Relocate_functions<32, false>::rel32(view + roff, value);
3345
3346   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3347   // We can skip it.
3348   this->skip_call_tls_get_addr_ = true;
3349 }
3350
3351 // Do a relocation in which we convert a TLS General-Dynamic to an
3352 // Initial-Exec.
3353
3354 inline void
3355 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
3356                                     size_t relnum,
3357                                     const elfcpp::Rel<32, false>& rel,
3358                                     unsigned int,
3359                                     elfcpp::Elf_types<32>::Elf_Addr value,
3360                                     unsigned char* view,
3361                                     section_size_type view_size)
3362 {
3363   // leal foo(,%ebx,1),%eax; call ___tls_get_addr
3364   //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
3365   // leal foo(%ebx),%eax; call ___tls_get_addr; nop
3366   //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
3367
3368   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3369   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3370
3371   unsigned char op1 = view[-1];
3372   unsigned char op2 = view[-2];
3373
3374   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3375                  op2 == 0x8d || op2 == 0x04);
3376   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3377
3378   int roff;
3379
3380   if (op2 == 0x04)
3381     {
3382       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3383       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3384       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3385                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3386       roff = 5;
3387     }
3388   else
3389     {
3390       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 10);
3391       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3392                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
3393       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[9] == 0x90);
3394       roff = 6;
3395     }
3396
3397   memcpy(view + roff - 8, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
3398   Relocate_functions<32, false>::rel32(view + roff, value);
3399
3400   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3401   // We can skip it.
3402   this->skip_call_tls_get_addr_ = true;
3403 }
3404
3405 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3406 // General-Dynamic to a Local-Exec.
3407
3408 inline void
3409 Target_i386::Relocate::tls_desc_gd_to_le(
3410     const Relocate_info<32, false>* relinfo,
3411     size_t relnum,
3412     Output_segment* tls_segment,
3413     const elfcpp::Rel<32, false>& rel,
3414     unsigned int r_type,
3415     elfcpp::Elf_types<32>::Elf_Addr value,
3416     unsigned char* view,
3417     section_size_type view_size)
3418 {
3419   if (r_type == elfcpp::R_386_TLS_GOTDESC)
3420     {
3421       // leal foo@TLSDESC(%ebx), %eax
3422       // ==> leal foo@NTPOFF, %eax
3423       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3424       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3425       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3426                      view[-2] == 0x8d && view[-1] == 0x83);
3427       view[-1] = 0x05;
3428       value -= tls_segment->memsz();
3429       Relocate_functions<32, false>::rel32(view, value);
3430     }
3431   else
3432     {
3433       // call *foo@TLSCALL(%eax)
3434       // ==> nop; nop
3435       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3436       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3437       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3438                      view[0] == 0xff && view[1] == 0x10);
3439       view[0] = 0x66;
3440       view[1] = 0x90;
3441     }
3442 }
3443
3444 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3445 // General-Dynamic to an Initial-Exec.
3446
3447 inline void
3448 Target_i386::Relocate::tls_desc_gd_to_ie(
3449     const Relocate_info<32, false>* relinfo,
3450     size_t relnum,
3451     const elfcpp::Rel<32, false>& rel,
3452     unsigned int r_type,
3453     elfcpp::Elf_types<32>::Elf_Addr value,
3454     unsigned char* view,
3455     section_size_type view_size)
3456 {
3457   if (r_type == elfcpp::R_386_TLS_GOTDESC)
3458     {
3459       // leal foo@TLSDESC(%ebx), %eax
3460       // ==> movl foo@GOTNTPOFF(%ebx), %eax
3461       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3462       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3463       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3464                      view[-2] == 0x8d && view[-1] == 0x83);
3465       view[-2] = 0x8b;
3466       Relocate_functions<32, false>::rel32(view, value);
3467     }
3468   else
3469     {
3470       // call *foo@TLSCALL(%eax)
3471       // ==> nop; nop
3472       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3473       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3474       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3475                      view[0] == 0xff && view[1] == 0x10);
3476       view[0] = 0x66;
3477       view[1] = 0x90;
3478     }
3479 }
3480
3481 // Do a relocation in which we convert a TLS Local-Dynamic to a
3482 // Local-Exec.
3483
3484 inline void
3485 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
3486                                     size_t relnum,
3487                                     Output_segment*,
3488                                     const elfcpp::Rel<32, false>& rel,
3489                                     unsigned int,
3490                                     elfcpp::Elf_types<32>::Elf_Addr,
3491                                     unsigned char* view,
3492                                     section_size_type view_size)
3493 {
3494   // leal foo(%reg), %eax; call ___tls_get_addr
3495   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
3496
3497   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3498   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3499
3500   // FIXME: Does this test really always pass?
3501   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3502                  view[-2] == 0x8d && view[-1] == 0x83);
3503
3504   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3505
3506   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
3507
3508   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3509   // We can skip it.
3510   this->skip_call_tls_get_addr_ = true;
3511 }
3512
3513 // Do a relocation in which we convert a TLS Initial-Exec to a
3514 // Local-Exec.
3515
3516 inline void
3517 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
3518                                     size_t relnum,
3519                                     Output_segment* tls_segment,
3520                                     const elfcpp::Rel<32, false>& rel,
3521                                     unsigned int r_type,
3522                                     elfcpp::Elf_types<32>::Elf_Addr value,
3523                                     unsigned char* view,
3524                                     section_size_type view_size)
3525 {
3526   // We have to actually change the instructions, which means that we
3527   // need to examine the opcodes to figure out which instruction we
3528   // are looking at.
3529   if (r_type == elfcpp::R_386_TLS_IE)
3530     {
3531       // movl %gs:XX,%eax  ==>  movl $YY,%eax
3532       // movl %gs:XX,%reg  ==>  movl $YY,%reg
3533       // addl %gs:XX,%reg  ==>  addl $YY,%reg
3534       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
3535       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3536
3537       unsigned char op1 = view[-1];
3538       if (op1 == 0xa1)
3539         {
3540           // movl XX,%eax  ==>  movl $YY,%eax
3541           view[-1] = 0xb8;
3542         }
3543       else
3544         {
3545           tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3546
3547           unsigned char op2 = view[-2];
3548           if (op2 == 0x8b)
3549             {
3550               // movl XX,%reg  ==>  movl $YY,%reg
3551               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3552                              (op1 & 0xc7) == 0x05);
3553               view[-2] = 0xc7;
3554               view[-1] = 0xc0 | ((op1 >> 3) & 7);
3555             }
3556           else if (op2 == 0x03)
3557             {
3558               // addl XX,%reg  ==>  addl $YY,%reg
3559               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3560                              (op1 & 0xc7) == 0x05);
3561               view[-2] = 0x81;
3562               view[-1] = 0xc0 | ((op1 >> 3) & 7);
3563             }
3564           else
3565             tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3566         }
3567     }
3568   else
3569     {
3570       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
3571       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
3572       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
3573       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3574       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3575
3576       unsigned char op1 = view[-1];
3577       unsigned char op2 = view[-2];
3578       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3579                      (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
3580       if (op2 == 0x8b)
3581         {
3582           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
3583           view[-2] = 0xc7;
3584           view[-1] = 0xc0 | ((op1 >> 3) & 7);
3585         }
3586       else if (op2 == 0x2b)
3587         {
3588           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
3589           view[-2] = 0x81;
3590           view[-1] = 0xe8 | ((op1 >> 3) & 7);
3591         }
3592       else if (op2 == 0x03)
3593         {
3594           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
3595           view[-2] = 0x81;
3596           view[-1] = 0xc0 | ((op1 >> 3) & 7);
3597         }
3598       else
3599         tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3600     }
3601
3602   value = tls_segment->memsz() - value;
3603   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
3604     value = - value;
3605
3606   Relocate_functions<32, false>::rel32(view, value);
3607 }
3608
3609 // Relocate section data.
3610
3611 void
3612 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
3613                               unsigned int sh_type,
3614                               const unsigned char* prelocs,
3615                               size_t reloc_count,
3616                               Output_section* output_section,
3617                               bool needs_special_offset_handling,
3618                               unsigned char* view,
3619                               elfcpp::Elf_types<32>::Elf_Addr address,
3620                               section_size_type view_size,
3621                               const Reloc_symbol_changes* reloc_symbol_changes)
3622 {
3623   gold_assert(sh_type == elfcpp::SHT_REL);
3624
3625   gold::relocate_section<32, false, Target_i386, Relocate,
3626                          gold::Default_comdat_behavior, Classify_reloc>(
3627     relinfo,
3628     this,
3629     prelocs,
3630     reloc_count,
3631     output_section,
3632     needs_special_offset_handling,
3633     view,
3634     address,
3635     view_size,
3636     reloc_symbol_changes);
3637 }
3638
3639 // Return the size of a relocation while scanning during a relocatable
3640 // link.
3641
3642 unsigned int
3643 Target_i386::Classify_reloc::get_size_for_reloc(
3644     unsigned int r_type,
3645     Relobj* object)
3646 {
3647   switch (r_type)
3648     {
3649     case elfcpp::R_386_NONE:
3650     case elfcpp::R_386_GNU_VTINHERIT:
3651     case elfcpp::R_386_GNU_VTENTRY:
3652     case elfcpp::R_386_TLS_GD:            // Global-dynamic
3653     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
3654     case elfcpp::R_386_TLS_DESC_CALL:
3655     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
3656     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
3657     case elfcpp::R_386_TLS_IE:            // Initial-exec
3658     case elfcpp::R_386_TLS_IE_32:
3659     case elfcpp::R_386_TLS_GOTIE:
3660     case elfcpp::R_386_TLS_LE:            // Local-exec
3661     case elfcpp::R_386_TLS_LE_32:
3662       return 0;
3663
3664     case elfcpp::R_386_32:
3665     case elfcpp::R_386_PC32:
3666     case elfcpp::R_386_GOT32:
3667     case elfcpp::R_386_GOT32X:
3668     case elfcpp::R_386_PLT32:
3669     case elfcpp::R_386_GOTOFF:
3670     case elfcpp::R_386_GOTPC:
3671      return 4;
3672
3673     case elfcpp::R_386_16:
3674     case elfcpp::R_386_PC16:
3675       return 2;
3676
3677     case elfcpp::R_386_8:
3678     case elfcpp::R_386_PC8:
3679       return 1;
3680
3681       // These are relocations which should only be seen by the
3682       // dynamic linker, and should never be seen here.
3683     case elfcpp::R_386_COPY:
3684     case elfcpp::R_386_GLOB_DAT:
3685     case elfcpp::R_386_JUMP_SLOT:
3686     case elfcpp::R_386_RELATIVE:
3687     case elfcpp::R_386_IRELATIVE:
3688     case elfcpp::R_386_TLS_TPOFF:
3689     case elfcpp::R_386_TLS_DTPMOD32:
3690     case elfcpp::R_386_TLS_DTPOFF32:
3691     case elfcpp::R_386_TLS_TPOFF32:
3692     case elfcpp::R_386_TLS_DESC:
3693       object->error(_("unexpected reloc %u in object file"), r_type);
3694       return 0;
3695
3696     case elfcpp::R_386_32PLT:
3697     case elfcpp::R_386_TLS_GD_32:
3698     case elfcpp::R_386_TLS_GD_PUSH:
3699     case elfcpp::R_386_TLS_GD_CALL:
3700     case elfcpp::R_386_TLS_GD_POP:
3701     case elfcpp::R_386_TLS_LDM_32:
3702     case elfcpp::R_386_TLS_LDM_PUSH:
3703     case elfcpp::R_386_TLS_LDM_CALL:
3704     case elfcpp::R_386_TLS_LDM_POP:
3705     case elfcpp::R_386_USED_BY_INTEL_200:
3706     default:
3707       object->error(_("unsupported reloc %u in object file"), r_type);
3708       return 0;
3709     }
3710 }
3711
3712 // Scan the relocs during a relocatable link.
3713
3714 void
3715 Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
3716                                      Layout* layout,
3717                                      Sized_relobj_file<32, false>* object,
3718                                      unsigned int data_shndx,
3719                                      unsigned int sh_type,
3720                                      const unsigned char* prelocs,
3721                                      size_t reloc_count,
3722                                      Output_section* output_section,
3723                                      bool needs_special_offset_handling,
3724                                      size_t local_symbol_count,
3725                                      const unsigned char* plocal_symbols,
3726                                      Relocatable_relocs* rr)
3727 {
3728   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
3729       Scan_relocatable_relocs;
3730
3731   gold_assert(sh_type == elfcpp::SHT_REL);
3732
3733   gold::scan_relocatable_relocs<32, false, Scan_relocatable_relocs>(
3734     symtab,
3735     layout,
3736     object,
3737     data_shndx,
3738     prelocs,
3739     reloc_count,
3740     output_section,
3741     needs_special_offset_handling,
3742     local_symbol_count,
3743     plocal_symbols,
3744     rr);
3745 }
3746
3747 // Scan the relocs for --emit-relocs.
3748
3749 void
3750 Target_i386::emit_relocs_scan(Symbol_table* symtab,
3751                               Layout* layout,
3752                               Sized_relobj_file<32, false>* object,
3753                               unsigned int data_shndx,
3754                               unsigned int sh_type,
3755                               const unsigned char* prelocs,
3756                               size_t reloc_count,
3757                               Output_section* output_section,
3758                               bool needs_special_offset_handling,
3759                               size_t local_symbol_count,
3760                               const unsigned char* plocal_syms,
3761                               Relocatable_relocs* rr)
3762 {
3763   typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, false>
3764       Classify_reloc;
3765   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
3766       Emit_relocs_strategy;
3767
3768   gold_assert(sh_type == elfcpp::SHT_REL);
3769
3770   gold::scan_relocatable_relocs<32, false, Emit_relocs_strategy>(
3771     symtab,
3772     layout,
3773     object,
3774     data_shndx,
3775     prelocs,
3776     reloc_count,
3777     output_section,
3778     needs_special_offset_handling,
3779     local_symbol_count,
3780     plocal_syms,
3781     rr);
3782 }
3783
3784 // Emit relocations for a section.
3785
3786 void
3787 Target_i386::relocate_relocs(
3788     const Relocate_info<32, false>* relinfo,
3789     unsigned int sh_type,
3790     const unsigned char* prelocs,
3791     size_t reloc_count,
3792     Output_section* output_section,
3793     elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
3794     unsigned char* view,
3795     elfcpp::Elf_types<32>::Elf_Addr view_address,
3796     section_size_type view_size,
3797     unsigned char* reloc_view,
3798     section_size_type reloc_view_size)
3799 {
3800   gold_assert(sh_type == elfcpp::SHT_REL);
3801
3802   gold::relocate_relocs<32, false, Classify_reloc>(
3803     relinfo,
3804     prelocs,
3805     reloc_count,
3806     output_section,
3807     offset_in_output_section,
3808     view,
3809     view_address,
3810     view_size,
3811     reloc_view,
3812     reloc_view_size);
3813 }
3814
3815 // Return the value to use for a dynamic which requires special
3816 // treatment.  This is how we support equality comparisons of function
3817 // pointers across shared library boundaries, as described in the
3818 // processor specific ABI supplement.
3819
3820 uint64_t
3821 Target_i386::do_dynsym_value(const Symbol* gsym) const
3822 {
3823   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3824   return this->plt_address_for_global(gsym);
3825 }
3826
3827 // Return a string used to fill a code section with nops to take up
3828 // the specified length.
3829
3830 std::string
3831 Target_i386::do_code_fill(section_size_type length) const
3832 {
3833   if (length >= 16)
3834     {
3835       // Build a jmp instruction to skip over the bytes.
3836       unsigned char jmp[5];
3837       jmp[0] = 0xe9;
3838       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3839       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3840               + std::string(length - 5, static_cast<char>(0x90)));
3841     }
3842
3843   // Nop sequences of various lengths.
3844   const char nop1[1] = { '\x90' };                   // nop
3845   const char nop2[2] = { '\x66', '\x90' };           // xchg %ax %ax
3846   const char nop3[3] = { '\x8d', '\x76', '\x00' };   // leal 0(%esi),%esi
3847   const char nop4[4] = { '\x8d', '\x74', '\x26',     // leal 0(%esi,1),%esi
3848                          '\x00'};
3849   const char nop5[5] = { '\x90', '\x8d', '\x74',     // nop
3850                          '\x26', '\x00' };           // leal 0(%esi,1),%esi
3851   const char nop6[6] = { '\x8d', '\xb6', '\x00',     // leal 0L(%esi),%esi
3852                          '\x00', '\x00', '\x00' };
3853   const char nop7[7] = { '\x8d', '\xb4', '\x26',     // leal 0L(%esi,1),%esi
3854                          '\x00', '\x00', '\x00',
3855                          '\x00' };
3856   const char nop8[8] = { '\x90', '\x8d', '\xb4',     // nop
3857                          '\x26', '\x00', '\x00',     // leal 0L(%esi,1),%esi
3858                          '\x00', '\x00' };
3859   const char nop9[9] = { '\x89', '\xf6', '\x8d',     // movl %esi,%esi
3860                          '\xbc', '\x27', '\x00',     // leal 0L(%edi,1),%edi
3861                          '\x00', '\x00', '\x00' };
3862   const char nop10[10] = { '\x8d', '\x76', '\x00',   // leal 0(%esi),%esi
3863                            '\x8d', '\xbc', '\x27',   // leal 0L(%edi,1),%edi
3864                            '\x00', '\x00', '\x00',
3865                            '\x00' };
3866   const char nop11[11] = { '\x8d', '\x74', '\x26',   // leal 0(%esi,1),%esi
3867                            '\x00', '\x8d', '\xbc',   // leal 0L(%edi,1),%edi
3868                            '\x27', '\x00', '\x00',
3869                            '\x00', '\x00' };
3870   const char nop12[12] = { '\x8d', '\xb6', '\x00',   // leal 0L(%esi),%esi
3871                            '\x00', '\x00', '\x00',   // leal 0L(%edi),%edi
3872                            '\x8d', '\xbf', '\x00',
3873                            '\x00', '\x00', '\x00' };
3874   const char nop13[13] = { '\x8d', '\xb6', '\x00',   // leal 0L(%esi),%esi
3875                            '\x00', '\x00', '\x00',   // leal 0L(%edi,1),%edi
3876                            '\x8d', '\xbc', '\x27',
3877                            '\x00', '\x00', '\x00',
3878                            '\x00' };
3879   const char nop14[14] = { '\x8d', '\xb4', '\x26',   // leal 0L(%esi,1),%esi
3880                            '\x00', '\x00', '\x00',   // leal 0L(%edi,1),%edi
3881                            '\x00', '\x8d', '\xbc',
3882                            '\x27', '\x00', '\x00',
3883                            '\x00', '\x00' };
3884   const char nop15[15] = { '\xeb', '\x0d', '\x90',   // jmp .+15
3885                            '\x90', '\x90', '\x90',   // nop,nop,nop,...
3886                            '\x90', '\x90', '\x90',
3887                            '\x90', '\x90', '\x90',
3888                            '\x90', '\x90', '\x90' };
3889
3890   const char* nops[16] = {
3891     NULL,
3892     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3893     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3894   };
3895
3896   return std::string(nops[length], length);
3897 }
3898
3899 // Return the value to use for the base of a DW_EH_PE_datarel offset
3900 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
3901 // assembler can not write out the difference between two labels in
3902 // different sections, so instead of using a pc-relative value they
3903 // use an offset from the GOT.
3904
3905 uint64_t
3906 Target_i386::do_ehframe_datarel_base() const
3907 {
3908   gold_assert(this->global_offset_table_ != NULL);
3909   Symbol* sym = this->global_offset_table_;
3910   Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
3911   return ssym->value();
3912 }
3913
3914 // Return whether SYM should be treated as a call to a non-split
3915 // function.  We don't want that to be true of a call to a
3916 // get_pc_thunk function.
3917
3918 bool
3919 Target_i386::do_is_call_to_non_split(const Symbol* sym,
3920                                      const unsigned char*,
3921                                      const unsigned char*,
3922                                      section_size_type) const
3923 {
3924   return (sym->type() == elfcpp::STT_FUNC
3925           && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
3926 }
3927
3928 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3929 // compiled with -fsplit-stack.  The function calls non-split-stack
3930 // code.  We have to change the function so that it always ensures
3931 // that it has enough stack space to run some random function.
3932
3933 void
3934 Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
3935                                        section_offset_type fnoffset,
3936                                        section_size_type fnsize,
3937                                        const unsigned char*,
3938                                        size_t,
3939                                        unsigned char* view,
3940                                        section_size_type view_size,
3941                                        std::string* from,
3942                                        std::string* to) const
3943 {
3944   // The function starts with a comparison of the stack pointer and a
3945   // field in the TCB.  This is followed by a jump.
3946
3947   // cmp %gs:NN,%esp
3948   if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
3949       && fnsize > 7)
3950     {
3951       // We will call __morestack if the carry flag is set after this
3952       // comparison.  We turn the comparison into an stc instruction
3953       // and some nops.
3954       view[fnoffset] = '\xf9';
3955       this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
3956     }
3957   // lea NN(%esp),%ecx
3958   // lea NN(%esp),%edx
3959   else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
3960             || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
3961            && fnsize > 7)
3962     {
3963       // This is loading an offset from the stack pointer for a
3964       // comparison.  The offset is negative, so we decrease the
3965       // offset by the amount of space we need for the stack.  This
3966       // means we will avoid calling __morestack if there happens to
3967       // be plenty of space on the stack already.
3968       unsigned char* pval = view + fnoffset + 3;
3969       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3970       val -= parameters->options().split_stack_adjust_size();
3971       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3972     }
3973   else
3974     {
3975       if (!object->has_no_split_stack())
3976         object->error(_("failed to match split-stack sequence at "
3977                         "section %u offset %0zx"),
3978                       shndx, static_cast<size_t>(fnoffset));
3979       return;
3980     }
3981
3982   // We have to change the function so that it calls
3983   // __morestack_non_split instead of __morestack.  The former will
3984   // allocate additional stack space.
3985   *from = "__morestack";
3986   *to = "__morestack_non_split";
3987 }
3988
3989 // The selector for i386 object files.  Note this is never instantiated
3990 // directly.  It's only used in Target_selector_i386_nacl, below.
3991
3992 class Target_selector_i386 : public Target_selector_freebsd
3993 {
3994 public:
3995   Target_selector_i386()
3996     : Target_selector_freebsd(elfcpp::EM_386, 32, false,
3997                               "elf32-i386", "elf32-i386-freebsd",
3998                               "elf_i386")
3999   { }
4000
4001   Target*
4002   do_instantiate_target()
4003   { return new Target_i386(); }
4004 };
4005
4006 // NaCl variant.  It uses different PLT contents.
4007
4008 class Output_data_plt_i386_nacl : public Output_data_plt_i386
4009 {
4010  public:
4011   Output_data_plt_i386_nacl(Layout* layout,
4012                             Output_data_got_plt_i386* got_plt,
4013                             Output_data_space* got_irelative)
4014     : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
4015   { }
4016
4017  protected:
4018   virtual unsigned int
4019   do_get_plt_entry_size() const
4020   { return plt_entry_size; }
4021
4022   virtual void
4023   do_add_eh_frame(Layout* layout)
4024   {
4025     layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
4026                                  plt_eh_frame_fde, plt_eh_frame_fde_size);
4027   }
4028
4029   // The size of an entry in the PLT.
4030   static const int plt_entry_size = 64;
4031
4032   // The .eh_frame unwind information for the PLT.
4033   static const int plt_eh_frame_fde_size = 32;
4034   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4035 };
4036
4037 class Output_data_plt_i386_nacl_exec : public Output_data_plt_i386_nacl
4038 {
4039 public:
4040   Output_data_plt_i386_nacl_exec(Layout* layout,
4041                                  Output_data_got_plt_i386* got_plt,
4042                                  Output_data_space* got_irelative)
4043     : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
4044   { }
4045
4046  protected:
4047   virtual void
4048   do_fill_first_plt_entry(unsigned char* pov,
4049                           elfcpp::Elf_types<32>::Elf_Addr got_address);
4050
4051   virtual unsigned int
4052   do_fill_plt_entry(unsigned char* pov,
4053                     elfcpp::Elf_types<32>::Elf_Addr got_address,
4054                     unsigned int got_offset,
4055                     unsigned int plt_offset,
4056                     unsigned int plt_rel_offset);
4057
4058  private:
4059   // The first entry in the PLT for an executable.
4060   static const unsigned char first_plt_entry[plt_entry_size];
4061
4062   // Other entries in the PLT for an executable.
4063   static const unsigned char plt_entry[plt_entry_size];
4064 };
4065
4066 class Output_data_plt_i386_nacl_dyn : public Output_data_plt_i386_nacl
4067 {
4068  public:
4069   Output_data_plt_i386_nacl_dyn(Layout* layout,
4070                                 Output_data_got_plt_i386* got_plt,
4071                                 Output_data_space* got_irelative)
4072     : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
4073   { }
4074
4075  protected:
4076   virtual void
4077   do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
4078
4079   virtual unsigned int
4080   do_fill_plt_entry(unsigned char* pov,
4081                     elfcpp::Elf_types<32>::Elf_Addr,
4082                     unsigned int got_offset,
4083                     unsigned int plt_offset,
4084                     unsigned int plt_rel_offset);
4085
4086  private:
4087   // The first entry in the PLT for a shared object.
4088   static const unsigned char first_plt_entry[plt_entry_size];
4089
4090   // Other entries in the PLT for a shared object.
4091   static const unsigned char plt_entry[plt_entry_size];
4092 };
4093
4094 class Target_i386_nacl : public Target_i386
4095 {
4096  public:
4097   Target_i386_nacl()
4098     : Target_i386(&i386_nacl_info)
4099   { }
4100
4101  protected:
4102   virtual Output_data_plt_i386*
4103   do_make_data_plt(Layout* layout,
4104                    Output_data_got_plt_i386* got_plt,
4105                    Output_data_space* got_irelative,
4106                    bool dyn)
4107   {
4108     if (dyn)
4109       return new Output_data_plt_i386_nacl_dyn(layout, got_plt, got_irelative);
4110     else
4111       return new Output_data_plt_i386_nacl_exec(layout, got_plt, got_irelative);
4112   }
4113
4114   virtual std::string
4115   do_code_fill(section_size_type length) const;
4116
4117  private:
4118   static const Target::Target_info i386_nacl_info;
4119 };
4120
4121 const Target::Target_info Target_i386_nacl::i386_nacl_info =
4122 {
4123   32,                   // size
4124   false,                // is_big_endian
4125   elfcpp::EM_386,       // machine_code
4126   false,                // has_make_symbol
4127   false,                // has_resolve
4128   true,                 // has_code_fill
4129   true,                 // is_default_stack_executable
4130   true,                 // can_icf_inline_merge_sections
4131   '\0',                 // wrap_char
4132   "/lib/ld-nacl-x86-32.so.1", // dynamic_linker
4133   0x20000,              // default_text_segment_address
4134   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4135   0x10000,              // common_pagesize (overridable by -z common-page-size)
4136   true,                 // isolate_execinstr
4137   0x10000000,           // rosegment_gap
4138   elfcpp::SHN_UNDEF,    // small_common_shndx
4139   elfcpp::SHN_UNDEF,    // large_common_shndx
4140   0,                    // small_common_section_flags
4141   0,                    // large_common_section_flags
4142   NULL,                 // attributes_section
4143   NULL,                 // attributes_vendor
4144   "_start",             // entry_symbol_name
4145   32,                   // hash_entry_size
4146 };
4147
4148 #define NACLMASK        0xe0            // 32-byte alignment mask
4149
4150 const unsigned char
4151 Output_data_plt_i386_nacl_exec::first_plt_entry[plt_entry_size] =
4152 {
4153   0xff, 0x35,                          // pushl contents of memory address
4154   0, 0, 0, 0,                          // replaced with address of .got + 4
4155   0x8b, 0x0d,                          // movl contents of address, %ecx
4156   0, 0, 0, 0,                          // replaced with address of .got + 8
4157   0x83, 0xe1, NACLMASK,                // andl $NACLMASK, %ecx
4158   0xff, 0xe1,                          // jmp *%ecx
4159   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4160   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4161   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4162   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4163   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4164   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4165   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4166   0x90, 0x90, 0x90, 0x90, 0x90
4167 };
4168
4169 void
4170 Output_data_plt_i386_nacl_exec::do_fill_first_plt_entry(
4171     unsigned char* pov,
4172     elfcpp::Elf_types<32>::Elf_Addr got_address)
4173 {
4174   memcpy(pov, first_plt_entry, plt_entry_size);
4175   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
4176   elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
4177 }
4178
4179 // The first entry in the PLT for a shared object.
4180
4181 const unsigned char
4182 Output_data_plt_i386_nacl_dyn::first_plt_entry[plt_entry_size] =
4183 {
4184   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
4185   0x8b, 0x4b, 0x08,             // mov 0x8(%ebx), %ecx
4186   0x83, 0xe1, NACLMASK,         // andl $NACLMASK, %ecx
4187   0xff, 0xe1,                   // jmp *%ecx
4188   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4189   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4190   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4191   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4192   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4193   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4194   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4195   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4196   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
4197   0x90, 0x90, 0x90, 0x90, 0x90   // nops
4198 };
4199
4200 void
4201 Output_data_plt_i386_nacl_dyn::do_fill_first_plt_entry(
4202     unsigned char* pov,
4203     elfcpp::Elf_types<32>::Elf_Addr)
4204 {
4205   memcpy(pov, first_plt_entry, plt_entry_size);
4206 }
4207
4208 // Subsequent entries in the PLT for an executable.
4209
4210 const unsigned char
4211 Output_data_plt_i386_nacl_exec::plt_entry[plt_entry_size] =
4212 {
4213   0x8b, 0x0d,                    // movl contents of address, %ecx */
4214   0, 0, 0, 0,                    // replaced with address of symbol in .got
4215   0x83, 0xe1, NACLMASK,          // andl $NACLMASK, %ecx
4216   0xff, 0xe1,                    // jmp *%ecx
4217
4218   // Pad to the next 32-byte boundary with nop instructions.
4219   0x90,
4220   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4221   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4222
4223   // Lazy GOT entries point here (32-byte aligned).
4224   0x68,                       // pushl immediate
4225   0, 0, 0, 0,                 // replaced with offset into relocation table
4226   0xe9,                       // jmp relative
4227   0, 0, 0, 0,                 // replaced with offset to start of .plt
4228
4229   // Pad to the next 32-byte boundary with nop instructions.
4230   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4231   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4232   0x90, 0x90
4233 };
4234
4235 unsigned int
4236 Output_data_plt_i386_nacl_exec::do_fill_plt_entry(
4237     unsigned char* pov,
4238     elfcpp::Elf_types<32>::Elf_Addr got_address,
4239     unsigned int got_offset,
4240     unsigned int plt_offset,
4241     unsigned int plt_rel_offset)
4242 {
4243   memcpy(pov, plt_entry, plt_entry_size);
4244   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4245                                               got_address + got_offset);
4246   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
4247   elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
4248   return 32;
4249 }
4250
4251 // Subsequent entries in the PLT for a shared object.
4252
4253 const unsigned char
4254 Output_data_plt_i386_nacl_dyn::plt_entry[plt_entry_size] =
4255 {
4256   0x8b, 0x8b,          // movl offset(%ebx), %ecx
4257   0, 0, 0, 0,          // replaced with offset of symbol in .got
4258   0x83, 0xe1, 0xe0,    // andl $NACLMASK, %ecx
4259   0xff, 0xe1,          // jmp *%ecx
4260
4261   // Pad to the next 32-byte boundary with nop instructions.
4262   0x90,
4263   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4264   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4265
4266   // Lazy GOT entries point here (32-byte aligned).
4267   0x68,                // pushl immediate
4268   0, 0, 0, 0,          // replaced with offset into relocation table.
4269   0xe9,                // jmp relative
4270   0, 0, 0, 0,          // replaced with offset to start of .plt.
4271
4272   // Pad to the next 32-byte boundary with nop instructions.
4273   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4274   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4275   0x90, 0x90
4276 };
4277
4278 unsigned int
4279 Output_data_plt_i386_nacl_dyn::do_fill_plt_entry(
4280     unsigned char* pov,
4281     elfcpp::Elf_types<32>::Elf_Addr,
4282     unsigned int got_offset,
4283     unsigned int plt_offset,
4284     unsigned int plt_rel_offset)
4285 {
4286   memcpy(pov, plt_entry, plt_entry_size);
4287   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
4288   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
4289   elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
4290   return 32;
4291 }
4292
4293 const unsigned char
4294 Output_data_plt_i386_nacl::plt_eh_frame_fde[plt_eh_frame_fde_size] =
4295 {
4296   0, 0, 0, 0,                           // Replaced with offset to .plt.
4297   0, 0, 0, 0,                           // Replaced with size of .plt.
4298   0,                                    // Augmentation size.
4299   elfcpp::DW_CFA_def_cfa_offset, 8,     // DW_CFA_def_cfa_offset: 8.
4300   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
4301   elfcpp::DW_CFA_def_cfa_offset, 12,    // DW_CFA_def_cfa_offset: 12.
4302   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
4303   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
4304   13,                                   // Block length.
4305   elfcpp::DW_OP_breg4, 4,               // Push %esp + 4.
4306   elfcpp::DW_OP_breg8, 0,               // Push %eip.
4307   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
4308   elfcpp::DW_OP_and,                    // & (%eip & 0x3f).
4309   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
4310   elfcpp::DW_OP_ge,                     // >= ((%eip & 0x3f) >= 0x25)
4311   elfcpp::DW_OP_lit2,                   // Push 2.
4312   elfcpp::DW_OP_shl,                    // << (((%eip & 0x3f) >= 0x25) << 2)
4313   elfcpp::DW_OP_plus,                   // + ((((%eip&0x3f)>=0x25)<<2)+%esp+4
4314   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
4315   elfcpp::DW_CFA_nop
4316 };
4317
4318 // Return a string used to fill a code section with nops.
4319 // For NaCl, long NOPs are only valid if they do not cross
4320 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
4321 std::string
4322 Target_i386_nacl::do_code_fill(section_size_type length) const
4323 {
4324   return std::string(length, static_cast<char>(0x90));
4325 }
4326
4327 // The selector for i386-nacl object files.
4328
4329 class Target_selector_i386_nacl
4330   : public Target_selector_nacl<Target_selector_i386, Target_i386_nacl>
4331 {
4332  public:
4333   Target_selector_i386_nacl()
4334     : Target_selector_nacl<Target_selector_i386,
4335                            Target_i386_nacl>("x86-32",
4336                                              "elf32-i386-nacl",
4337                                              "elf_i386_nacl")
4338   { }
4339 };
4340
4341 Target_selector_i386_nacl target_selector_i386;
4342
4343 // IAMCU variant.  It uses EM_IAMCU, not EM_386.
4344
4345 class Target_iamcu : public Target_i386
4346 {
4347  public:
4348   Target_iamcu()
4349     : Target_i386(&iamcu_info)
4350   { }
4351
4352  private:
4353   // Information about this specific target which we pass to the
4354   // general Target structure.
4355   static const Target::Target_info iamcu_info;
4356 };
4357
4358 const Target::Target_info Target_iamcu::iamcu_info =
4359 {
4360   32,                   // size
4361   false,                // is_big_endian
4362   elfcpp::EM_IAMCU,     // machine_code
4363   false,                // has_make_symbol
4364   false,                // has_resolve
4365   true,                 // has_code_fill
4366   true,                 // is_default_stack_executable
4367   true,                 // can_icf_inline_merge_sections
4368   '\0',                 // wrap_char
4369   "/usr/lib/libc.so.1", // dynamic_linker
4370   0x08048000,           // default_text_segment_address
4371   0x1000,               // abi_pagesize (overridable by -z max-page-size)
4372   0x1000,               // common_pagesize (overridable by -z common-page-size)
4373   false,                // isolate_execinstr
4374   0,                    // rosegment_gap
4375   elfcpp::SHN_UNDEF,    // small_common_shndx
4376   elfcpp::SHN_UNDEF,    // large_common_shndx
4377   0,                    // small_common_section_flags
4378   0,                    // large_common_section_flags
4379   NULL,                 // attributes_section
4380   NULL,                 // attributes_vendor
4381   "_start",             // entry_symbol_name
4382   32,                   // hash_entry_size
4383 };
4384
4385 class Target_selector_iamcu : public Target_selector
4386 {
4387 public:
4388   Target_selector_iamcu()
4389     : Target_selector(elfcpp::EM_IAMCU, 32, false, "elf32-iamcu",
4390                       "elf_iamcu")
4391   { }
4392
4393   Target*
4394   do_instantiate_target()
4395   { return new Target_iamcu(); }
4396 };
4397
4398 Target_selector_iamcu target_selector_iamcu;
4399
4400 } // End anonymous namespace.