1 // i386.cc -- i386 target support for gold.
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
36 #include "copy-relocs.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
50 // A class to handle the .got.plt section.
52 class Output_data_got_plt_i386 : public Output_section_data_build
55 Output_data_got_plt_i386(Layout* layout)
56 : Output_section_data_build(4),
61 // Write out the PLT data.
63 do_write(Output_file*);
65 // Write to a map file.
67 do_print_to_mapfile(Mapfile* mapfile) const
68 { mapfile->print_output_data(this, "** GOT PLT"); }
71 // A pointer to the Layout class, so that we can find the .dynamic
72 // section when we write out the GOT PLT section.
76 // A class to handle the PLT data.
77 // This is an abstract base class that handles most of the linker details
78 // but does not know the actual contents of PLT entries. The derived
79 // classes below fill in those details.
81 class Output_data_plt_i386 : public Output_section_data
84 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
86 Output_data_plt_i386(Layout*, uint64_t addralign,
87 Output_data_got_plt_i386*, Output_data_space*);
89 // Add an entry to the PLT.
91 add_entry(Symbol_table*, Layout*, Symbol* gsym);
93 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
95 add_local_ifunc_entry(Symbol_table*, Layout*,
96 Sized_relobj_file<32, false>* relobj,
97 unsigned int local_sym_index);
99 // Return the .rel.plt section data.
102 { return this->rel_; }
104 // Return where the TLS_DESC relocations should go.
106 rel_tls_desc(Layout*);
108 // Return where the IRELATIVE relocations should go.
110 rel_irelative(Symbol_table*, Layout*);
112 // Return whether we created a section for IRELATIVE relocations.
114 has_irelative_section() const
115 { return this->irelative_rel_ != NULL; }
117 // Return the number of PLT entries.
120 { return this->count_ + this->irelative_count_; }
122 // Return the offset of the first non-reserved PLT entry.
124 first_plt_entry_offset()
125 { return this->get_plt_entry_size(); }
127 // Return the size of a PLT entry.
129 get_plt_entry_size() const
130 { return this->do_get_plt_entry_size(); }
132 // Return the PLT address to use for a global symbol.
134 address_for_global(const Symbol*);
136 // Return the PLT address to use for a local symbol.
138 address_for_local(const Relobj*, unsigned int symndx);
140 // Add .eh_frame information for the PLT.
142 add_eh_frame(Layout* layout)
143 { this->do_add_eh_frame(layout); }
146 // Fill the first PLT entry, given the pointer to the PLT section data
147 // and the runtime address of the GOT.
149 fill_first_plt_entry(unsigned char* pov,
150 elfcpp::Elf_types<32>::Elf_Addr got_address)
151 { this->do_fill_first_plt_entry(pov, got_address); }
153 // Fill a normal PLT entry, given the pointer to the entry's data in the
154 // section, the runtime address of the GOT, the offset into the GOT of
155 // the corresponding slot, the offset into the relocation section of the
156 // corresponding reloc, and the offset of this entry within the whole
157 // PLT. Return the offset from this PLT entry's runtime address that
158 // should be used to compute the initial value of the GOT slot.
160 fill_plt_entry(unsigned char* pov,
161 elfcpp::Elf_types<32>::Elf_Addr got_address,
162 unsigned int got_offset,
163 unsigned int plt_offset,
164 unsigned int plt_rel_offset)
166 return this->do_fill_plt_entry(pov, got_address, got_offset,
167 plt_offset, plt_rel_offset);
171 do_get_plt_entry_size() const = 0;
174 do_fill_first_plt_entry(unsigned char* pov,
175 elfcpp::Elf_types<32>::Elf_Addr got_address) = 0;
178 do_fill_plt_entry(unsigned char* pov,
179 elfcpp::Elf_types<32>::Elf_Addr got_address,
180 unsigned int got_offset,
181 unsigned int plt_offset,
182 unsigned int plt_rel_offset) = 0;
185 do_add_eh_frame(Layout*) = 0;
188 do_adjust_output_section(Output_section* os);
190 // Write to a map file.
192 do_print_to_mapfile(Mapfile* mapfile) const
193 { mapfile->print_output_data(this, _("** PLT")); }
195 // The .eh_frame unwind information for the PLT.
196 // The CIE is common across variants of the PLT format.
197 static const int plt_eh_frame_cie_size = 16;
198 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
201 // Set the final size.
203 set_final_data_size()
205 this->set_data_size((this->count_ + this->irelative_count_ + 1)
206 * this->get_plt_entry_size());
209 // Write out the PLT data.
211 do_write(Output_file*);
213 // We keep a list of global STT_GNU_IFUNC symbols, each with its
214 // offset in the GOT.
218 unsigned int got_offset;
221 // We keep a list of local STT_GNU_IFUNC symbols, each with its
222 // offset in the GOT.
225 Sized_relobj_file<32, false>* object;
226 unsigned int local_sym_index;
227 unsigned int got_offset;
230 // The reloc section.
232 // The TLS_DESC relocations, if necessary. These must follow the
233 // regular PLT relocs.
234 Reloc_section* tls_desc_rel_;
235 // The IRELATIVE relocations, if necessary. These must follow the
236 // regular relocatoins and the TLS_DESC relocations.
237 Reloc_section* irelative_rel_;
238 // The .got.plt section.
239 Output_data_got_plt_i386* got_plt_;
240 // The part of the .got.plt section used for IRELATIVE relocs.
241 Output_data_space* got_irelative_;
242 // The number of PLT entries.
244 // Number of PLT entries with R_386_IRELATIVE relocs. These follow
245 // the regular PLT entries.
246 unsigned int irelative_count_;
247 // Global STT_GNU_IFUNC symbols.
248 std::vector<Global_ifunc> global_ifuncs_;
249 // Local STT_GNU_IFUNC symbols.
250 std::vector<Local_ifunc> local_ifuncs_;
253 // This is an abstract class for the standard PLT layout.
254 // The derived classes below handle the actual PLT contents
255 // for the executable (non-PIC) and shared-library (PIC) cases.
256 // The unwind information is uniform across those two, so it's here.
258 class Output_data_plt_i386_standard : public Output_data_plt_i386
261 Output_data_plt_i386_standard(Layout* layout,
262 Output_data_got_plt_i386* got_plt,
263 Output_data_space* got_irelative)
264 : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
269 do_get_plt_entry_size() const
270 { return plt_entry_size; }
273 do_add_eh_frame(Layout* layout)
275 layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
276 plt_eh_frame_fde, plt_eh_frame_fde_size);
279 // The size of an entry in the PLT.
280 static const int plt_entry_size = 16;
282 // The .eh_frame unwind information for the PLT.
283 static const int plt_eh_frame_fde_size = 32;
284 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
287 // Actually fill the PLT contents for an executable (non-PIC).
289 class Output_data_plt_i386_exec : public Output_data_plt_i386_standard
292 Output_data_plt_i386_exec(Layout* layout,
293 Output_data_got_plt_i386* got_plt,
294 Output_data_space* got_irelative)
295 : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
300 do_fill_first_plt_entry(unsigned char* pov,
301 elfcpp::Elf_types<32>::Elf_Addr got_address);
304 do_fill_plt_entry(unsigned char* pov,
305 elfcpp::Elf_types<32>::Elf_Addr got_address,
306 unsigned int got_offset,
307 unsigned int plt_offset,
308 unsigned int plt_rel_offset);
311 // The first entry in the PLT for an executable.
312 static const unsigned char first_plt_entry[plt_entry_size];
314 // Other entries in the PLT for an executable.
315 static const unsigned char plt_entry[plt_entry_size];
318 // Actually fill the PLT contents for a shared library (PIC).
320 class Output_data_plt_i386_dyn : public Output_data_plt_i386_standard
323 Output_data_plt_i386_dyn(Layout* layout,
324 Output_data_got_plt_i386* got_plt,
325 Output_data_space* got_irelative)
326 : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
331 do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
334 do_fill_plt_entry(unsigned char* pov,
335 elfcpp::Elf_types<32>::Elf_Addr,
336 unsigned int got_offset,
337 unsigned int plt_offset,
338 unsigned int plt_rel_offset);
341 // The first entry in the PLT for a shared object.
342 static const unsigned char first_plt_entry[plt_entry_size];
344 // Other entries in the PLT for a shared object.
345 static const unsigned char plt_entry[plt_entry_size];
348 // The i386 target class.
349 // TLS info comes from
350 // http://people.redhat.com/drepper/tls.pdf
351 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
353 class Target_i386 : public Sized_target<32, false>
356 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
358 Target_i386(const Target::Target_info* info = &i386_info)
359 : Sized_target<32, false>(info),
360 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
361 got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
362 rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY),
363 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
366 // Process the relocations to determine unreferenced sections for
367 // garbage collection.
369 gc_process_relocs(Symbol_table* symtab,
371 Sized_relobj_file<32, false>* object,
372 unsigned int data_shndx,
373 unsigned int sh_type,
374 const unsigned char* prelocs,
376 Output_section* output_section,
377 bool needs_special_offset_handling,
378 size_t local_symbol_count,
379 const unsigned char* plocal_symbols);
381 // Scan the relocations to look for symbol adjustments.
383 scan_relocs(Symbol_table* symtab,
385 Sized_relobj_file<32, false>* object,
386 unsigned int data_shndx,
387 unsigned int sh_type,
388 const unsigned char* prelocs,
390 Output_section* output_section,
391 bool needs_special_offset_handling,
392 size_t local_symbol_count,
393 const unsigned char* plocal_symbols);
395 // Finalize the sections.
397 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
399 // Return the value to use for a dynamic which requires special
402 do_dynsym_value(const Symbol*) const;
404 // Relocate a section.
406 relocate_section(const Relocate_info<32, false>*,
407 unsigned int sh_type,
408 const unsigned char* prelocs,
410 Output_section* output_section,
411 bool needs_special_offset_handling,
413 elfcpp::Elf_types<32>::Elf_Addr view_address,
414 section_size_type view_size,
415 const Reloc_symbol_changes*);
417 // Scan the relocs during a relocatable link.
419 scan_relocatable_relocs(Symbol_table* symtab,
421 Sized_relobj_file<32, false>* object,
422 unsigned int data_shndx,
423 unsigned int sh_type,
424 const unsigned char* prelocs,
426 Output_section* output_section,
427 bool needs_special_offset_handling,
428 size_t local_symbol_count,
429 const unsigned char* plocal_symbols,
430 Relocatable_relocs*);
432 // Scan the relocs for --emit-relocs.
434 emit_relocs_scan(Symbol_table* symtab,
436 Sized_relobj_file<32, false>* object,
437 unsigned int data_shndx,
438 unsigned int sh_type,
439 const unsigned char* prelocs,
441 Output_section* output_section,
442 bool needs_special_offset_handling,
443 size_t local_symbol_count,
444 const unsigned char* plocal_syms,
445 Relocatable_relocs* rr);
447 // Emit relocations for a section.
449 relocate_relocs(const Relocate_info<32, false>*,
450 unsigned int sh_type,
451 const unsigned char* prelocs,
453 Output_section* output_section,
454 elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
456 elfcpp::Elf_types<32>::Elf_Addr view_address,
457 section_size_type view_size,
458 unsigned char* reloc_view,
459 section_size_type reloc_view_size);
461 // Return a string used to fill a code section with nops.
463 do_code_fill(section_size_type length) const;
465 // Return whether SYM is defined by the ABI.
467 do_is_defined_by_abi(const Symbol* sym) const
468 { return strcmp(sym->name(), "___tls_get_addr") == 0; }
470 // Return whether a symbol name implies a local label. The UnixWare
471 // 2.1 cc generates temporary symbols that start with .X, so we
472 // recognize them here. FIXME: do other SVR4 compilers also use .X?.
473 // If so, we should move the .X recognition into
474 // Target::do_is_local_label_name.
476 do_is_local_label_name(const char* name) const
478 if (name[0] == '.' && name[1] == 'X')
480 return Target::do_is_local_label_name(name);
483 // Return the PLT address to use for a global symbol.
485 do_plt_address_for_global(const Symbol* gsym) const
486 { return this->plt_section()->address_for_global(gsym); }
489 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
490 { return this->plt_section()->address_for_local(relobj, symndx); }
492 // We can tell whether we take the address of a function.
494 do_can_check_for_function_pointers() const
497 // Return the base for a DW_EH_PE_datarel encoding.
499 do_ehframe_datarel_base() const;
501 // Return whether SYM is call to a non-split function.
503 do_is_call_to_non_split(const Symbol* sym, const unsigned char*,
504 const unsigned char*, section_size_type) const;
506 // Adjust -fsplit-stack code which calls non-split-stack code.
508 do_calls_non_split(Relobj* object, unsigned int shndx,
509 section_offset_type fnoffset, section_size_type fnsize,
510 const unsigned char* prelocs, size_t reloc_count,
511 unsigned char* view, section_size_type view_size,
512 std::string* from, std::string* to) const;
514 // Return the size of the GOT section.
518 gold_assert(this->got_ != NULL);
519 return this->got_->data_size();
522 // Return the number of entries in the GOT.
524 got_entry_count() const
526 if (this->got_ == NULL)
528 return this->got_size() / 4;
531 // Return the number of entries in the PLT.
533 plt_entry_count() const;
535 // Return the offset of the first non-reserved PLT entry.
537 first_plt_entry_offset() const;
539 // Return the size of each PLT entry.
541 plt_entry_size() const;
544 // Instantiate the plt_ member.
545 // This chooses the right PLT flavor for an executable or a shared object.
546 Output_data_plt_i386*
547 make_data_plt(Layout* layout,
548 Output_data_got_plt_i386* got_plt,
549 Output_data_space* got_irelative,
551 { return this->do_make_data_plt(layout, got_plt, got_irelative, dyn); }
553 virtual Output_data_plt_i386*
554 do_make_data_plt(Layout* layout,
555 Output_data_got_plt_i386* got_plt,
556 Output_data_space* got_irelative,
560 return new Output_data_plt_i386_dyn(layout, got_plt, got_irelative);
562 return new Output_data_plt_i386_exec(layout, got_plt, got_irelative);
566 // The class which scans relocations.
571 get_reference_flags(unsigned int r_type);
574 local(Symbol_table* symtab, Layout* layout, Target_i386* target,
575 Sized_relobj_file<32, false>* object,
576 unsigned int data_shndx,
577 Output_section* output_section,
578 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
579 const elfcpp::Sym<32, false>& lsym,
583 global(Symbol_table* symtab, Layout* layout, Target_i386* target,
584 Sized_relobj_file<32, false>* object,
585 unsigned int data_shndx,
586 Output_section* output_section,
587 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
591 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
593 Sized_relobj_file<32, false>* object,
594 unsigned int data_shndx,
595 Output_section* output_section,
596 const elfcpp::Rel<32, false>& reloc,
598 const elfcpp::Sym<32, false>& lsym);
601 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
603 Sized_relobj_file<32, false>* object,
604 unsigned int data_shndx,
605 Output_section* output_section,
606 const elfcpp::Rel<32, false>& reloc,
611 possible_function_pointer_reloc(unsigned int r_type);
614 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
615 unsigned int r_type);
618 unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
621 unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
625 // The class which implements relocation.
630 : skip_call_tls_get_addr_(false),
631 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
636 if (this->skip_call_tls_get_addr_)
638 // FIXME: This needs to specify the location somehow.
639 gold_error(_("missing expected TLS relocation"));
643 // Return whether the static relocation needs to be applied.
645 should_apply_static_reloc(const Sized_symbol<32>* gsym,
648 Output_section* output_section);
650 // Do a relocation. Return false if the caller should not issue
651 // any warnings about this relocation.
653 relocate(const Relocate_info<32, false>*, unsigned int,
654 Target_i386*, Output_section*, size_t, const unsigned char*,
655 const Sized_symbol<32>*, const Symbol_value<32>*,
656 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
660 // Do a TLS relocation.
662 relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
663 size_t relnum, const elfcpp::Rel<32, false>&,
664 unsigned int r_type, const Sized_symbol<32>*,
665 const Symbol_value<32>*,
666 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
669 // Do a TLS General-Dynamic to Initial-Exec transition.
671 tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
672 const elfcpp::Rel<32, false>&, unsigned int r_type,
673 elfcpp::Elf_types<32>::Elf_Addr value,
675 section_size_type view_size);
677 // Do a TLS General-Dynamic to Local-Exec transition.
679 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
680 Output_segment* tls_segment,
681 const elfcpp::Rel<32, false>&, unsigned int r_type,
682 elfcpp::Elf_types<32>::Elf_Addr value,
684 section_size_type view_size);
686 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
689 tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
690 const elfcpp::Rel<32, false>&, unsigned int r_type,
691 elfcpp::Elf_types<32>::Elf_Addr value,
693 section_size_type view_size);
695 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
698 tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
699 Output_segment* tls_segment,
700 const elfcpp::Rel<32, false>&, unsigned int r_type,
701 elfcpp::Elf_types<32>::Elf_Addr value,
703 section_size_type view_size);
705 // Do a TLS Local-Dynamic to Local-Exec transition.
707 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
708 Output_segment* tls_segment,
709 const elfcpp::Rel<32, false>&, unsigned int r_type,
710 elfcpp::Elf_types<32>::Elf_Addr value,
712 section_size_type view_size);
714 // Do a TLS Initial-Exec to Local-Exec transition.
716 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
717 Output_segment* tls_segment,
718 const elfcpp::Rel<32, false>&, unsigned int r_type,
719 elfcpp::Elf_types<32>::Elf_Addr value,
721 section_size_type view_size);
723 // We need to keep track of which type of local dynamic relocation
724 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
725 enum Local_dynamic_type
732 // This is set if we should skip the next reloc, which should be a
733 // PLT32 reloc against ___tls_get_addr.
734 bool skip_call_tls_get_addr_;
735 // The type of local dynamic relocation we have seen in the section
736 // being relocated, if any.
737 Local_dynamic_type local_dynamic_type_;
740 // A class for inquiring about properties of a relocation,
741 // used while scanning relocs during a relocatable link and
742 // garbage collection.
743 class Classify_reloc :
744 public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, false>
747 typedef Reloc_types<elfcpp::SHT_REL, 32, false>::Reloc Reltype;
749 // Return the explicit addend of the relocation (return 0 for SHT_REL).
750 static elfcpp::Elf_types<32>::Elf_Swxword
751 get_r_addend(const Reltype*)
754 // Return the size of the addend of the relocation (only used for SHT_REL).
756 get_size_for_reloc(unsigned int, Relobj*);
759 // Adjust TLS relocation type based on the options and whether this
760 // is a local symbol.
761 static tls::Tls_optimization
762 optimize_tls_reloc(bool is_final, int r_type);
764 // Check if relocation against this symbol is a candidate for
766 // mov foo@GOT(%reg), %reg
768 // lea foo@GOTOFF(%reg), %reg.
770 can_convert_mov_to_lea(const Symbol* gsym)
772 gold_assert(gsym != NULL);
773 return (gsym->type() != elfcpp::STT_GNU_IFUNC
774 && !gsym->is_undefined ()
775 && !gsym->is_from_dynobj()
776 && !gsym->is_preemptible()
777 && (!parameters->options().shared()
778 || (gsym->visibility() != elfcpp::STV_DEFAULT
779 && gsym->visibility() != elfcpp::STV_PROTECTED)
780 || parameters->options().Bsymbolic())
781 && strcmp(gsym->name(), "_DYNAMIC") != 0);
784 // Get the GOT section, creating it if necessary.
785 Output_data_got<32, false>*
786 got_section(Symbol_table*, Layout*);
788 // Get the GOT PLT section.
789 Output_data_got_plt_i386*
790 got_plt_section() const
792 gold_assert(this->got_plt_ != NULL);
793 return this->got_plt_;
796 // Get the GOT section for TLSDESC entries.
797 Output_data_got<32, false>*
798 got_tlsdesc_section() const
800 gold_assert(this->got_tlsdesc_ != NULL);
801 return this->got_tlsdesc_;
804 // Create the PLT section.
806 make_plt_section(Symbol_table* symtab, Layout* layout);
808 // Create a PLT entry for a global symbol.
810 make_plt_entry(Symbol_table*, Layout*, Symbol*);
812 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
814 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
815 Sized_relobj_file<32, false>* relobj,
816 unsigned int local_sym_index);
818 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
820 define_tls_base_symbol(Symbol_table*, Layout*);
822 // Create a GOT entry for the TLS module index.
824 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
825 Sized_relobj_file<32, false>* object);
827 // Get the PLT section.
828 Output_data_plt_i386*
831 gold_assert(this->plt_ != NULL);
835 // Get the dynamic reloc section, creating it if necessary.
837 rel_dyn_section(Layout*);
839 // Get the section to use for TLS_DESC relocations.
841 rel_tls_desc_section(Layout*) const;
843 // Get the section to use for IRELATIVE relocations.
845 rel_irelative_section(Layout*);
847 // Add a potential copy relocation.
849 copy_reloc(Symbol_table* symtab, Layout* layout,
850 Sized_relobj_file<32, false>* object,
851 unsigned int shndx, Output_section* output_section,
852 Symbol* sym, const elfcpp::Rel<32, false>& reloc)
854 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
855 this->copy_relocs_.copy_reloc(symtab, layout,
856 symtab->get_sized_symbol<32>(sym),
857 object, shndx, output_section,
858 r_type, reloc.get_r_offset(), 0,
859 this->rel_dyn_section(layout));
862 // Information about this specific target which we pass to the
863 // general Target structure.
864 static const Target::Target_info i386_info;
866 // The types of GOT entries needed for this platform.
867 // These values are exposed to the ABI in an incremental link.
868 // Do not renumber existing values without changing the version
869 // number of the .gnu_incremental_inputs section.
872 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
873 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
874 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
875 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
876 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
880 Output_data_got<32, false>* got_;
882 Output_data_plt_i386* plt_;
883 // The GOT PLT section.
884 Output_data_got_plt_i386* got_plt_;
885 // The GOT section for IRELATIVE relocations.
886 Output_data_space* got_irelative_;
887 // The GOT section for TLSDESC relocations.
888 Output_data_got<32, false>* got_tlsdesc_;
889 // The _GLOBAL_OFFSET_TABLE_ symbol.
890 Symbol* global_offset_table_;
891 // The dynamic reloc section.
892 Reloc_section* rel_dyn_;
893 // The section to use for IRELATIVE relocs.
894 Reloc_section* rel_irelative_;
895 // Relocs saved to avoid a COPY reloc.
896 Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
897 // Offset of the GOT entry for the TLS module index.
898 unsigned int got_mod_index_offset_;
899 // True if the _TLS_MODULE_BASE_ symbol has been defined.
900 bool tls_base_symbol_defined_;
903 const Target::Target_info Target_i386::i386_info =
906 false, // is_big_endian
907 elfcpp::EM_386, // machine_code
908 false, // has_make_symbol
909 false, // has_resolve
910 true, // has_code_fill
911 true, // is_default_stack_executable
912 true, // can_icf_inline_merge_sections
914 "/usr/lib/libc.so.1", // dynamic_linker
915 0x08048000, // default_text_segment_address
916 0x1000, // abi_pagesize (overridable by -z max-page-size)
917 0x1000, // common_pagesize (overridable by -z common-page-size)
918 false, // isolate_execinstr
920 elfcpp::SHN_UNDEF, // small_common_shndx
921 elfcpp::SHN_UNDEF, // large_common_shndx
922 0, // small_common_section_flags
923 0, // large_common_section_flags
924 NULL, // attributes_section
925 NULL, // attributes_vendor
926 "_start", // entry_symbol_name
927 32, // hash_entry_size
930 // Get the GOT section, creating it if necessary.
932 Output_data_got<32, false>*
933 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
935 if (this->got_ == NULL)
937 gold_assert(symtab != NULL && layout != NULL);
939 this->got_ = new Output_data_got<32, false>();
941 // When using -z now, we can treat .got.plt as a relro section.
942 // Without -z now, it is modified after program startup by lazy
944 bool is_got_plt_relro = parameters->options().now();
945 Output_section_order got_order = (is_got_plt_relro
948 Output_section_order got_plt_order = (is_got_plt_relro
950 : ORDER_NON_RELRO_FIRST);
952 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
954 | elfcpp::SHF_WRITE),
955 this->got_, got_order, true);
957 this->got_plt_ = new Output_data_got_plt_i386(layout);
958 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
960 | elfcpp::SHF_WRITE),
961 this->got_plt_, got_plt_order,
964 // The first three entries are reserved.
965 this->got_plt_->set_current_data_size(3 * 4);
967 if (!is_got_plt_relro)
969 // Those bytes can go into the relro segment.
970 layout->increase_relro(3 * 4);
973 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
974 this->global_offset_table_ =
975 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
976 Symbol_table::PREDEFINED,
978 0, 0, elfcpp::STT_OBJECT,
980 elfcpp::STV_HIDDEN, 0,
983 // If there are any IRELATIVE relocations, they get GOT entries
984 // in .got.plt after the jump slot relocations.
985 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
986 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
988 | elfcpp::SHF_WRITE),
989 this->got_irelative_,
990 got_plt_order, is_got_plt_relro);
992 // If there are any TLSDESC relocations, they get GOT entries in
993 // .got.plt after the jump slot entries.
994 this->got_tlsdesc_ = new Output_data_got<32, false>();
995 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
997 | elfcpp::SHF_WRITE),
999 got_plt_order, is_got_plt_relro);
1005 // Get the dynamic reloc section, creating it if necessary.
1007 Target_i386::Reloc_section*
1008 Target_i386::rel_dyn_section(Layout* layout)
1010 if (this->rel_dyn_ == NULL)
1012 gold_assert(layout != NULL);
1013 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
1014 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
1015 elfcpp::SHF_ALLOC, this->rel_dyn_,
1016 ORDER_DYNAMIC_RELOCS, false);
1018 return this->rel_dyn_;
1021 // Get the section to use for IRELATIVE relocs, creating it if
1022 // necessary. These go in .rel.dyn, but only after all other dynamic
1023 // relocations. They need to follow the other dynamic relocations so
1024 // that they can refer to global variables initialized by those
1027 Target_i386::Reloc_section*
1028 Target_i386::rel_irelative_section(Layout* layout)
1030 if (this->rel_irelative_ == NULL)
1032 // Make sure we have already create the dynamic reloc section.
1033 this->rel_dyn_section(layout);
1034 this->rel_irelative_ = new Reloc_section(false);
1035 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
1036 elfcpp::SHF_ALLOC, this->rel_irelative_,
1037 ORDER_DYNAMIC_RELOCS, false);
1038 gold_assert(this->rel_dyn_->output_section()
1039 == this->rel_irelative_->output_section());
1041 return this->rel_irelative_;
1044 // Write the first three reserved words of the .got.plt section.
1045 // The remainder of the section is written while writing the PLT
1046 // in Output_data_plt_i386::do_write.
1049 Output_data_got_plt_i386::do_write(Output_file* of)
1051 // The first entry in the GOT is the address of the .dynamic section
1052 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1053 // We saved space for them when we created the section in
1054 // Target_i386::got_section.
1055 const off_t got_file_offset = this->offset();
1056 gold_assert(this->data_size() >= 12);
1057 unsigned char* const got_view = of->get_output_view(got_file_offset, 12);
1058 Output_section* dynamic = this->layout_->dynamic_section();
1059 uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1060 elfcpp::Swap<32, false>::writeval(got_view, dynamic_addr);
1061 memset(got_view + 4, 0, 8);
1062 of->write_output_view(got_file_offset, 12, got_view);
1065 // Create the PLT section. The ordinary .got section is an argument,
1066 // since we need to refer to the start. We also create our own .got
1067 // section just for PLT entries.
1069 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
1071 Output_data_got_plt_i386* got_plt,
1072 Output_data_space* got_irelative)
1073 : Output_section_data(addralign),
1074 tls_desc_rel_(NULL), irelative_rel_(NULL), got_plt_(got_plt),
1075 got_irelative_(got_irelative), count_(0), irelative_count_(0),
1076 global_ifuncs_(), local_ifuncs_()
1078 this->rel_ = new Reloc_section(false);
1079 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1080 elfcpp::SHF_ALLOC, this->rel_,
1081 ORDER_DYNAMIC_PLT_RELOCS, false);
1085 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
1087 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
1088 // linker, and so do we.
1092 // Add an entry to the PLT.
1095 Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
1098 gold_assert(!gsym->has_plt_offset());
1100 // Every PLT entry needs a reloc.
1101 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1102 && gsym->can_use_relative_reloc(false))
1104 gsym->set_plt_offset(this->irelative_count_ * this->get_plt_entry_size());
1105 ++this->irelative_count_;
1106 section_offset_type got_offset =
1107 this->got_irelative_->current_data_size();
1108 this->got_irelative_->set_current_data_size(got_offset + 4);
1109 Reloc_section* rel = this->rel_irelative(symtab, layout);
1110 rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
1111 this->got_irelative_, got_offset);
1112 struct Global_ifunc gi;
1114 gi.got_offset = got_offset;
1115 this->global_ifuncs_.push_back(gi);
1119 // When setting the PLT offset we skip the initial reserved PLT
1121 gsym->set_plt_offset((this->count_ + 1) * this->get_plt_entry_size());
1125 section_offset_type got_offset = this->got_plt_->current_data_size();
1127 // Every PLT entry needs a GOT entry which points back to the
1128 // PLT entry (this will be changed by the dynamic linker,
1129 // normally lazily when the function is called).
1130 this->got_plt_->set_current_data_size(got_offset + 4);
1132 gsym->set_needs_dynsym_entry();
1133 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
1137 // Note that we don't need to save the symbol. The contents of the
1138 // PLT are independent of which symbols are used. The symbols only
1139 // appear in the relocations.
1142 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1146 Output_data_plt_i386::add_local_ifunc_entry(
1147 Symbol_table* symtab,
1149 Sized_relobj_file<32, false>* relobj,
1150 unsigned int local_sym_index)
1152 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1153 ++this->irelative_count_;
1155 section_offset_type got_offset = this->got_irelative_->current_data_size();
1157 // Every PLT entry needs a GOT entry which points back to the PLT
1159 this->got_irelative_->set_current_data_size(got_offset + 4);
1161 // Every PLT entry needs a reloc.
1162 Reloc_section* rel = this->rel_irelative(symtab, layout);
1163 rel->add_symbolless_local_addend(relobj, local_sym_index,
1164 elfcpp::R_386_IRELATIVE,
1165 this->got_irelative_, got_offset);
1167 struct Local_ifunc li;
1169 li.local_sym_index = local_sym_index;
1170 li.got_offset = got_offset;
1171 this->local_ifuncs_.push_back(li);
1176 // Return where the TLS_DESC relocations should go, creating it if
1177 // necessary. These follow the JUMP_SLOT relocations.
1179 Output_data_plt_i386::Reloc_section*
1180 Output_data_plt_i386::rel_tls_desc(Layout* layout)
1182 if (this->tls_desc_rel_ == NULL)
1184 this->tls_desc_rel_ = new Reloc_section(false);
1185 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1186 elfcpp::SHF_ALLOC, this->tls_desc_rel_,
1187 ORDER_DYNAMIC_PLT_RELOCS, false);
1188 gold_assert(this->tls_desc_rel_->output_section()
1189 == this->rel_->output_section());
1191 return this->tls_desc_rel_;
1194 // Return where the IRELATIVE relocations should go in the PLT. These
1195 // follow the JUMP_SLOT and TLS_DESC relocations.
1197 Output_data_plt_i386::Reloc_section*
1198 Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
1200 if (this->irelative_rel_ == NULL)
1202 // Make sure we have a place for the TLS_DESC relocations, in
1203 // case we see any later on.
1204 this->rel_tls_desc(layout);
1205 this->irelative_rel_ = new Reloc_section(false);
1206 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1207 elfcpp::SHF_ALLOC, this->irelative_rel_,
1208 ORDER_DYNAMIC_PLT_RELOCS, false);
1209 gold_assert(this->irelative_rel_->output_section()
1210 == this->rel_->output_section());
1212 if (parameters->doing_static_link())
1214 // A statically linked executable will only have a .rel.plt
1215 // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
1216 // symbols. The library will use these symbols to locate
1217 // the IRELATIVE relocs at program startup time.
1218 symtab->define_in_output_data("__rel_iplt_start", NULL,
1219 Symbol_table::PREDEFINED,
1220 this->irelative_rel_, 0, 0,
1221 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1222 elfcpp::STV_HIDDEN, 0, false, true);
1223 symtab->define_in_output_data("__rel_iplt_end", NULL,
1224 Symbol_table::PREDEFINED,
1225 this->irelative_rel_, 0, 0,
1226 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1227 elfcpp::STV_HIDDEN, 0, true, true);
1230 return this->irelative_rel_;
1233 // Return the PLT address to use for a global symbol.
1236 Output_data_plt_i386::address_for_global(const Symbol* gsym)
1238 uint64_t offset = 0;
1239 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1240 && gsym->can_use_relative_reloc(false))
1241 offset = (this->count_ + 1) * this->get_plt_entry_size();
1242 return this->address() + offset + gsym->plt_offset();
1245 // Return the PLT address to use for a local symbol. These are always
1246 // IRELATIVE relocs.
1249 Output_data_plt_i386::address_for_local(const Relobj* object,
1252 return (this->address()
1253 + (this->count_ + 1) * this->get_plt_entry_size()
1254 + object->local_plt_offset(r_sym));
1257 // The first entry in the PLT for an executable.
1259 const unsigned char Output_data_plt_i386_exec::first_plt_entry[plt_entry_size] =
1261 0xff, 0x35, // pushl contents of memory address
1262 0, 0, 0, 0, // replaced with address of .got + 4
1263 0xff, 0x25, // jmp indirect
1264 0, 0, 0, 0, // replaced with address of .got + 8
1265 0, 0, 0, 0 // unused
1269 Output_data_plt_i386_exec::do_fill_first_plt_entry(
1271 elfcpp::Elf_types<32>::Elf_Addr got_address)
1273 memcpy(pov, first_plt_entry, plt_entry_size);
1274 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
1275 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
1278 // The first entry in the PLT for a shared object.
1280 const unsigned char Output_data_plt_i386_dyn::first_plt_entry[plt_entry_size] =
1282 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
1283 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
1284 0, 0, 0, 0 // unused
1288 Output_data_plt_i386_dyn::do_fill_first_plt_entry(
1290 elfcpp::Elf_types<32>::Elf_Addr)
1292 memcpy(pov, first_plt_entry, plt_entry_size);
1295 // Subsequent entries in the PLT for an executable.
1297 const unsigned char Output_data_plt_i386_exec::plt_entry[plt_entry_size] =
1299 0xff, 0x25, // jmp indirect
1300 0, 0, 0, 0, // replaced with address of symbol in .got
1301 0x68, // pushl immediate
1302 0, 0, 0, 0, // replaced with offset into relocation table
1303 0xe9, // jmp relative
1304 0, 0, 0, 0 // replaced with offset to start of .plt
1308 Output_data_plt_i386_exec::do_fill_plt_entry(
1310 elfcpp::Elf_types<32>::Elf_Addr got_address,
1311 unsigned int got_offset,
1312 unsigned int plt_offset,
1313 unsigned int plt_rel_offset)
1315 memcpy(pov, plt_entry, plt_entry_size);
1316 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1317 got_address + got_offset);
1318 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1319 elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
1323 // Subsequent entries in the PLT for a shared object.
1325 const unsigned char Output_data_plt_i386_dyn::plt_entry[plt_entry_size] =
1327 0xff, 0xa3, // jmp *offset(%ebx)
1328 0, 0, 0, 0, // replaced with offset of symbol in .got
1329 0x68, // pushl immediate
1330 0, 0, 0, 0, // replaced with offset into relocation table
1331 0xe9, // jmp relative
1332 0, 0, 0, 0 // replaced with offset to start of .plt
1336 Output_data_plt_i386_dyn::do_fill_plt_entry(unsigned char* pov,
1337 elfcpp::Elf_types<32>::Elf_Addr,
1338 unsigned int got_offset,
1339 unsigned int plt_offset,
1340 unsigned int plt_rel_offset)
1342 memcpy(pov, plt_entry, plt_entry_size);
1343 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
1344 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1345 elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
1349 // The .eh_frame unwind information for the PLT.
1352 Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1355 'z', // Augmentation: augmentation size included.
1356 'R', // Augmentation: FDE encoding included.
1357 '\0', // End of augmentation string.
1358 1, // Code alignment factor.
1359 0x7c, // Data alignment factor.
1360 8, // Return address column.
1361 1, // Augmentation size.
1362 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1363 | elfcpp::DW_EH_PE_sdata4),
1364 elfcpp::DW_CFA_def_cfa, 4, 4, // DW_CFA_def_cfa: r4 (esp) ofs 4.
1365 elfcpp::DW_CFA_offset + 8, 1, // DW_CFA_offset: r8 (eip) at cfa-4.
1366 elfcpp::DW_CFA_nop, // Align to 16 bytes.
1371 Output_data_plt_i386_standard::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1373 0, 0, 0, 0, // Replaced with offset to .plt.
1374 0, 0, 0, 0, // Replaced with size of .plt.
1375 0, // Augmentation size.
1376 elfcpp::DW_CFA_def_cfa_offset, 8, // DW_CFA_def_cfa_offset: 8.
1377 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
1378 elfcpp::DW_CFA_def_cfa_offset, 12, // DW_CFA_def_cfa_offset: 12.
1379 elfcpp::DW_CFA_advance_loc + 10, // Advance 10 to __PLT__ + 16.
1380 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
1381 11, // Block length.
1382 elfcpp::DW_OP_breg4, 4, // Push %esp + 4.
1383 elfcpp::DW_OP_breg8, 0, // Push %eip.
1384 elfcpp::DW_OP_lit15, // Push 0xf.
1385 elfcpp::DW_OP_and, // & (%eip & 0xf).
1386 elfcpp::DW_OP_lit11, // Push 0xb.
1387 elfcpp::DW_OP_ge, // >= ((%eip & 0xf) >= 0xb)
1388 elfcpp::DW_OP_lit2, // Push 2.
1389 elfcpp::DW_OP_shl, // << (((%eip & 0xf) >= 0xb) << 2)
1390 elfcpp::DW_OP_plus, // + ((((%eip&0xf)>=0xb)<<2)+%esp+4
1391 elfcpp::DW_CFA_nop, // Align to 32 bytes.
1397 // Write out the PLT. This uses the hand-coded instructions above,
1398 // and adjusts them as needed. This is all specified by the i386 ELF
1399 // Processor Supplement.
1402 Output_data_plt_i386::do_write(Output_file* of)
1404 const off_t offset = this->offset();
1405 const section_size_type oview_size =
1406 convert_to_section_size_type(this->data_size());
1407 unsigned char* const oview = of->get_output_view(offset, oview_size);
1409 const off_t got_file_offset = this->got_plt_->offset();
1410 gold_assert(parameters->incremental_update()
1411 || (got_file_offset + this->got_plt_->data_size()
1412 == this->got_irelative_->offset()));
1413 const section_size_type got_size =
1414 convert_to_section_size_type(this->got_plt_->data_size()
1415 + this->got_irelative_->data_size());
1417 unsigned char* const got_view = of->get_output_view(got_file_offset,
1420 unsigned char* pov = oview;
1422 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
1423 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
1425 this->fill_first_plt_entry(pov, got_address);
1426 pov += this->get_plt_entry_size();
1428 // The first three entries in the GOT are reserved, and are written
1429 // by Output_data_got_plt_i386::do_write.
1430 unsigned char* got_pov = got_view + 12;
1432 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
1434 unsigned int plt_offset = this->get_plt_entry_size();
1435 unsigned int plt_rel_offset = 0;
1436 unsigned int got_offset = 12;
1437 const unsigned int count = this->count_ + this->irelative_count_;
1438 for (unsigned int i = 0;
1441 pov += this->get_plt_entry_size(),
1443 plt_offset += this->get_plt_entry_size(),
1444 plt_rel_offset += rel_size,
1447 // Set and adjust the PLT entry itself.
1448 unsigned int lazy_offset = this->fill_plt_entry(pov,
1454 // Set the entry in the GOT.
1455 elfcpp::Swap<32, false>::writeval(got_pov,
1456 plt_address + plt_offset + lazy_offset);
1459 // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
1460 // the GOT to point to the actual symbol value, rather than point to
1461 // the PLT entry. That will let the dynamic linker call the right
1462 // function when resolving IRELATIVE relocations.
1463 unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
1464 for (std::vector<Global_ifunc>::const_iterator p =
1465 this->global_ifuncs_.begin();
1466 p != this->global_ifuncs_.end();
1469 const Sized_symbol<32>* ssym =
1470 static_cast<const Sized_symbol<32>*>(p->sym);
1471 elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1475 for (std::vector<Local_ifunc>::const_iterator p =
1476 this->local_ifuncs_.begin();
1477 p != this->local_ifuncs_.end();
1480 const Symbol_value<32>* psymval =
1481 p->object->local_symbol(p->local_sym_index);
1482 elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1483 psymval->value(p->object, 0));
1486 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1487 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1489 of->write_output_view(offset, oview_size, oview);
1490 of->write_output_view(got_file_offset, got_size, got_view);
1493 // Create the PLT section.
1496 Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
1498 if (this->plt_ == NULL)
1500 // Create the GOT sections first.
1501 this->got_section(symtab, layout);
1503 const bool dyn = parameters->options().output_is_position_independent();
1504 this->plt_ = this->make_data_plt(layout,
1506 this->got_irelative_,
1509 // Add unwind information if requested.
1510 if (parameters->options().ld_generated_unwind_info())
1511 this->plt_->add_eh_frame(layout);
1513 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1515 | elfcpp::SHF_EXECINSTR),
1516 this->plt_, ORDER_PLT, false);
1518 // Make the sh_info field of .rel.plt point to .plt.
1519 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
1520 rel_plt_os->set_info_section(this->plt_->output_section());
1524 // Create a PLT entry for a global symbol.
1527 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
1529 if (gsym->has_plt_offset())
1531 if (this->plt_ == NULL)
1532 this->make_plt_section(symtab, layout);
1533 this->plt_->add_entry(symtab, layout, gsym);
1536 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1539 Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1540 Sized_relobj_file<32, false>* relobj,
1541 unsigned int local_sym_index)
1543 if (relobj->local_has_plt_offset(local_sym_index))
1545 if (this->plt_ == NULL)
1546 this->make_plt_section(symtab, layout);
1547 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1550 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1553 // Return the number of entries in the PLT.
1556 Target_i386::plt_entry_count() const
1558 if (this->plt_ == NULL)
1560 return this->plt_->entry_count();
1563 // Return the offset of the first non-reserved PLT entry.
1566 Target_i386::first_plt_entry_offset() const
1568 return this->plt_->first_plt_entry_offset();
1571 // Return the size of each PLT entry.
1574 Target_i386::plt_entry_size() const
1576 return this->plt_->get_plt_entry_size();
1579 // Get the section to use for TLS_DESC relocations.
1581 Target_i386::Reloc_section*
1582 Target_i386::rel_tls_desc_section(Layout* layout) const
1584 return this->plt_section()->rel_tls_desc(layout);
1587 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1590 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1592 if (this->tls_base_symbol_defined_)
1595 Output_segment* tls_segment = layout->tls_segment();
1596 if (tls_segment != NULL)
1598 bool is_exec = parameters->options().output_is_executable();
1599 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1600 Symbol_table::PREDEFINED,
1604 elfcpp::STV_HIDDEN, 0,
1606 ? Symbol::SEGMENT_END
1607 : Symbol::SEGMENT_START),
1610 this->tls_base_symbol_defined_ = true;
1613 // Create a GOT entry for the TLS module index.
1616 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1617 Sized_relobj_file<32, false>* object)
1619 if (this->got_mod_index_offset_ == -1U)
1621 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1622 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1623 Output_data_got<32, false>* got = this->got_section(symtab, layout);
1624 unsigned int got_offset = got->add_constant(0);
1625 rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
1627 got->add_constant(0);
1628 this->got_mod_index_offset_ = got_offset;
1630 return this->got_mod_index_offset_;
1633 // Optimize the TLS relocation type based on what we know about the
1634 // symbol. IS_FINAL is true if the final address of this symbol is
1635 // known at link time.
1637 tls::Tls_optimization
1638 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
1640 // If we are generating a shared library, then we can't do anything
1642 if (parameters->options().shared())
1643 return tls::TLSOPT_NONE;
1647 case elfcpp::R_386_TLS_GD:
1648 case elfcpp::R_386_TLS_GOTDESC:
1649 case elfcpp::R_386_TLS_DESC_CALL:
1650 // These are General-Dynamic which permits fully general TLS
1651 // access. Since we know that we are generating an executable,
1652 // we can convert this to Initial-Exec. If we also know that
1653 // this is a local symbol, we can further switch to Local-Exec.
1655 return tls::TLSOPT_TO_LE;
1656 return tls::TLSOPT_TO_IE;
1658 case elfcpp::R_386_TLS_LDM:
1659 // This is Local-Dynamic, which refers to a local symbol in the
1660 // dynamic TLS block. Since we know that we generating an
1661 // executable, we can switch to Local-Exec.
1662 return tls::TLSOPT_TO_LE;
1664 case elfcpp::R_386_TLS_LDO_32:
1665 // Another type of Local-Dynamic relocation.
1666 return tls::TLSOPT_TO_LE;
1668 case elfcpp::R_386_TLS_IE:
1669 case elfcpp::R_386_TLS_GOTIE:
1670 case elfcpp::R_386_TLS_IE_32:
1671 // These are Initial-Exec relocs which get the thread offset
1672 // from the GOT. If we know that we are linking against the
1673 // local symbol, we can switch to Local-Exec, which links the
1674 // thread offset into the instruction.
1676 return tls::TLSOPT_TO_LE;
1677 return tls::TLSOPT_NONE;
1679 case elfcpp::R_386_TLS_LE:
1680 case elfcpp::R_386_TLS_LE_32:
1681 // When we already have Local-Exec, there is nothing further we
1683 return tls::TLSOPT_NONE;
1690 // Get the Reference_flags for a particular relocation.
1693 Target_i386::Scan::get_reference_flags(unsigned int r_type)
1697 case elfcpp::R_386_NONE:
1698 case elfcpp::R_386_GNU_VTINHERIT:
1699 case elfcpp::R_386_GNU_VTENTRY:
1700 case elfcpp::R_386_GOTPC:
1701 // No symbol reference.
1704 case elfcpp::R_386_32:
1705 case elfcpp::R_386_16:
1706 case elfcpp::R_386_8:
1707 return Symbol::ABSOLUTE_REF;
1709 case elfcpp::R_386_PC32:
1710 case elfcpp::R_386_PC16:
1711 case elfcpp::R_386_PC8:
1712 case elfcpp::R_386_GOTOFF:
1713 return Symbol::RELATIVE_REF;
1715 case elfcpp::R_386_PLT32:
1716 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1718 case elfcpp::R_386_GOT32:
1719 case elfcpp::R_386_GOT32X:
1721 return Symbol::ABSOLUTE_REF;
1723 case elfcpp::R_386_TLS_GD: // Global-dynamic
1724 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1725 case elfcpp::R_386_TLS_DESC_CALL:
1726 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1727 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1728 case elfcpp::R_386_TLS_IE: // Initial-exec
1729 case elfcpp::R_386_TLS_IE_32:
1730 case elfcpp::R_386_TLS_GOTIE:
1731 case elfcpp::R_386_TLS_LE: // Local-exec
1732 case elfcpp::R_386_TLS_LE_32:
1733 return Symbol::TLS_REF;
1735 case elfcpp::R_386_COPY:
1736 case elfcpp::R_386_GLOB_DAT:
1737 case elfcpp::R_386_JUMP_SLOT:
1738 case elfcpp::R_386_RELATIVE:
1739 case elfcpp::R_386_IRELATIVE:
1740 case elfcpp::R_386_TLS_TPOFF:
1741 case elfcpp::R_386_TLS_DTPMOD32:
1742 case elfcpp::R_386_TLS_DTPOFF32:
1743 case elfcpp::R_386_TLS_TPOFF32:
1744 case elfcpp::R_386_TLS_DESC:
1745 case elfcpp::R_386_32PLT:
1746 case elfcpp::R_386_TLS_GD_32:
1747 case elfcpp::R_386_TLS_GD_PUSH:
1748 case elfcpp::R_386_TLS_GD_CALL:
1749 case elfcpp::R_386_TLS_GD_POP:
1750 case elfcpp::R_386_TLS_LDM_32:
1751 case elfcpp::R_386_TLS_LDM_PUSH:
1752 case elfcpp::R_386_TLS_LDM_CALL:
1753 case elfcpp::R_386_TLS_LDM_POP:
1754 case elfcpp::R_386_USED_BY_INTEL_200:
1756 // Not expected. We will give an error later.
1761 // Report an unsupported relocation against a local symbol.
1764 Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
1765 unsigned int r_type)
1767 gold_error(_("%s: unsupported reloc %u against local symbol"),
1768 object->name().c_str(), r_type);
1771 // Return whether we need to make a PLT entry for a relocation of a
1772 // given type against a STT_GNU_IFUNC symbol.
1775 Target_i386::Scan::reloc_needs_plt_for_ifunc(
1776 Sized_relobj_file<32, false>* object,
1777 unsigned int r_type)
1779 int flags = Scan::get_reference_flags(r_type);
1780 if (flags & Symbol::TLS_REF)
1781 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1782 object->name().c_str(), r_type);
1786 // Scan a relocation for a local symbol.
1789 Target_i386::Scan::local(Symbol_table* symtab,
1791 Target_i386* target,
1792 Sized_relobj_file<32, false>* object,
1793 unsigned int data_shndx,
1794 Output_section* output_section,
1795 const elfcpp::Rel<32, false>& reloc,
1796 unsigned int r_type,
1797 const elfcpp::Sym<32, false>& lsym,
1803 // A local STT_GNU_IFUNC symbol may require a PLT entry.
1804 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1805 && this->reloc_needs_plt_for_ifunc(object, r_type))
1807 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1808 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1813 case elfcpp::R_386_NONE:
1814 case elfcpp::R_386_GNU_VTINHERIT:
1815 case elfcpp::R_386_GNU_VTENTRY:
1818 case elfcpp::R_386_32:
1819 // If building a shared library (or a position-independent
1820 // executable), we need to create a dynamic relocation for
1821 // this location. The relocation applied at link time will
1822 // apply the link-time value, so we flag the location with
1823 // an R_386_RELATIVE relocation so the dynamic loader can
1824 // relocate it easily.
1825 if (parameters->options().output_is_position_independent())
1827 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1828 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1829 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
1830 output_section, data_shndx,
1831 reloc.get_r_offset());
1835 case elfcpp::R_386_16:
1836 case elfcpp::R_386_8:
1837 // If building a shared library (or a position-independent
1838 // executable), we need to create a dynamic relocation for
1839 // this location. Because the addend needs to remain in the
1840 // data section, we need to be careful not to apply this
1841 // relocation statically.
1842 if (parameters->options().output_is_position_independent())
1844 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1845 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1846 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1847 rel_dyn->add_local(object, r_sym, r_type, output_section,
1848 data_shndx, reloc.get_r_offset());
1851 gold_assert(lsym.get_st_value() == 0);
1852 unsigned int shndx = lsym.get_st_shndx();
1854 shndx = object->adjust_sym_shndx(r_sym, shndx,
1857 object->error(_("section symbol %u has bad shndx %u"),
1860 rel_dyn->add_local_section(object, shndx,
1861 r_type, output_section,
1862 data_shndx, reloc.get_r_offset());
1867 case elfcpp::R_386_PC32:
1868 case elfcpp::R_386_PC16:
1869 case elfcpp::R_386_PC8:
1872 case elfcpp::R_386_PLT32:
1873 // Since we know this is a local symbol, we can handle this as a
1877 case elfcpp::R_386_GOTOFF:
1878 case elfcpp::R_386_GOTPC:
1879 // We need a GOT section.
1880 target->got_section(symtab, layout);
1883 case elfcpp::R_386_GOT32:
1884 case elfcpp::R_386_GOT32X:
1886 // We need GOT section.
1887 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1889 // If the relocation symbol isn't IFUNC,
1890 // and is local, then we will convert
1891 // mov foo@GOT(%reg), %reg
1893 // lea foo@GOTOFF(%reg), %reg
1894 // in Relocate::relocate.
1895 if (reloc.get_r_offset() >= 2
1896 && lsym.get_st_type() != elfcpp::STT_GNU_IFUNC)
1898 section_size_type stype;
1899 const unsigned char* view = object->section_contents(data_shndx,
1901 if (view[reloc.get_r_offset() - 2] == 0x8b)
1905 // Otherwise, the symbol requires a GOT entry.
1906 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1908 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
1909 // lets function pointers compare correctly with shared
1910 // libraries. Otherwise we would need an IRELATIVE reloc.
1912 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1913 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1915 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1918 // If we are generating a shared object, we need to add a
1919 // dynamic RELATIVE relocation for this symbol's GOT entry.
1920 if (parameters->options().output_is_position_independent())
1922 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1923 unsigned int got_offset =
1924 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1925 rel_dyn->add_local_relative(object, r_sym,
1926 elfcpp::R_386_RELATIVE,
1933 // These are relocations which should only be seen by the
1934 // dynamic linker, and should never be seen here.
1935 case elfcpp::R_386_COPY:
1936 case elfcpp::R_386_GLOB_DAT:
1937 case elfcpp::R_386_JUMP_SLOT:
1938 case elfcpp::R_386_RELATIVE:
1939 case elfcpp::R_386_IRELATIVE:
1940 case elfcpp::R_386_TLS_TPOFF:
1941 case elfcpp::R_386_TLS_DTPMOD32:
1942 case elfcpp::R_386_TLS_DTPOFF32:
1943 case elfcpp::R_386_TLS_TPOFF32:
1944 case elfcpp::R_386_TLS_DESC:
1945 gold_error(_("%s: unexpected reloc %u in object file"),
1946 object->name().c_str(), r_type);
1949 // These are initial TLS relocs, which are expected when
1951 case elfcpp::R_386_TLS_GD: // Global-dynamic
1952 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1953 case elfcpp::R_386_TLS_DESC_CALL:
1954 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1955 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1956 case elfcpp::R_386_TLS_IE: // Initial-exec
1957 case elfcpp::R_386_TLS_IE_32:
1958 case elfcpp::R_386_TLS_GOTIE:
1959 case elfcpp::R_386_TLS_LE: // Local-exec
1960 case elfcpp::R_386_TLS_LE_32:
1962 bool output_is_shared = parameters->options().shared();
1963 const tls::Tls_optimization optimized_type
1964 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1967 case elfcpp::R_386_TLS_GD: // Global-dynamic
1968 if (optimized_type == tls::TLSOPT_NONE)
1970 // Create a pair of GOT entries for the module index and
1971 // dtv-relative offset.
1972 Output_data_got<32, false>* got
1973 = target->got_section(symtab, layout);
1974 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1975 unsigned int shndx = lsym.get_st_shndx();
1977 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1979 object->error(_("local symbol %u has bad shndx %u"),
1982 got->add_local_pair_with_rel(object, r_sym, shndx,
1984 target->rel_dyn_section(layout),
1985 elfcpp::R_386_TLS_DTPMOD32);
1987 else if (optimized_type != tls::TLSOPT_TO_LE)
1988 unsupported_reloc_local(object, r_type);
1991 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva)
1992 target->define_tls_base_symbol(symtab, layout);
1993 if (optimized_type == tls::TLSOPT_NONE)
1995 // Create a double GOT entry with an R_386_TLS_DESC
1996 // reloc. The R_386_TLS_DESC reloc is resolved
1997 // lazily, so the GOT entry needs to be in an area in
1998 // .got.plt, not .got. Call got_section to make sure
1999 // the section has been created.
2000 target->got_section(symtab, layout);
2001 Output_data_got<32, false>* got = target->got_tlsdesc_section();
2002 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2003 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2005 unsigned int got_offset = got->add_constant(0);
2006 // The local symbol value is stored in the second
2008 got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
2009 // That set the GOT offset of the local symbol to
2010 // point to the second entry, but we want it to
2011 // point to the first.
2012 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2014 Reloc_section* rt = target->rel_tls_desc_section(layout);
2015 rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
2018 else if (optimized_type != tls::TLSOPT_TO_LE)
2019 unsupported_reloc_local(object, r_type);
2022 case elfcpp::R_386_TLS_DESC_CALL:
2025 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2026 if (optimized_type == tls::TLSOPT_NONE)
2028 // Create a GOT entry for the module index.
2029 target->got_mod_index_entry(symtab, layout, object);
2031 else if (optimized_type != tls::TLSOPT_TO_LE)
2032 unsupported_reloc_local(object, r_type);
2035 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2038 case elfcpp::R_386_TLS_IE: // Initial-exec
2039 case elfcpp::R_386_TLS_IE_32:
2040 case elfcpp::R_386_TLS_GOTIE:
2041 layout->set_has_static_tls();
2042 if (optimized_type == tls::TLSOPT_NONE)
2044 // For the R_386_TLS_IE relocation, we need to create a
2045 // dynamic relocation when building a shared library.
2046 if (r_type == elfcpp::R_386_TLS_IE
2047 && parameters->options().shared())
2049 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2051 = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2052 rel_dyn->add_local_relative(object, r_sym,
2053 elfcpp::R_386_RELATIVE,
2054 output_section, data_shndx,
2055 reloc.get_r_offset());
2057 // Create a GOT entry for the tp-relative offset.
2058 Output_data_got<32, false>* got
2059 = target->got_section(symtab, layout);
2060 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2061 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2062 ? elfcpp::R_386_TLS_TPOFF32
2063 : elfcpp::R_386_TLS_TPOFF);
2064 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2065 ? GOT_TYPE_TLS_OFFSET
2066 : GOT_TYPE_TLS_NOFFSET);
2067 got->add_local_with_rel(object, r_sym, got_type,
2068 target->rel_dyn_section(layout),
2071 else if (optimized_type != tls::TLSOPT_TO_LE)
2072 unsupported_reloc_local(object, r_type);
2075 case elfcpp::R_386_TLS_LE: // Local-exec
2076 case elfcpp::R_386_TLS_LE_32:
2077 layout->set_has_static_tls();
2078 if (output_is_shared)
2080 // We need to create a dynamic relocation.
2081 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2082 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2083 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2084 ? elfcpp::R_386_TLS_TPOFF32
2085 : elfcpp::R_386_TLS_TPOFF);
2086 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2087 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
2088 data_shndx, reloc.get_r_offset());
2098 case elfcpp::R_386_32PLT:
2099 case elfcpp::R_386_TLS_GD_32:
2100 case elfcpp::R_386_TLS_GD_PUSH:
2101 case elfcpp::R_386_TLS_GD_CALL:
2102 case elfcpp::R_386_TLS_GD_POP:
2103 case elfcpp::R_386_TLS_LDM_32:
2104 case elfcpp::R_386_TLS_LDM_PUSH:
2105 case elfcpp::R_386_TLS_LDM_CALL:
2106 case elfcpp::R_386_TLS_LDM_POP:
2107 case elfcpp::R_386_USED_BY_INTEL_200:
2109 unsupported_reloc_local(object, r_type);
2114 // Report an unsupported relocation against a global symbol.
2117 Target_i386::Scan::unsupported_reloc_global(
2118 Sized_relobj_file<32, false>* object,
2119 unsigned int r_type,
2122 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2123 object->name().c_str(), r_type, gsym->demangled_name().c_str());
2127 Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
2131 case elfcpp::R_386_32:
2132 case elfcpp::R_386_16:
2133 case elfcpp::R_386_8:
2134 case elfcpp::R_386_GOTOFF:
2135 case elfcpp::R_386_GOT32:
2136 case elfcpp::R_386_GOT32X:
2147 Target_i386::Scan::local_reloc_may_be_function_pointer(
2151 Sized_relobj_file<32, false>* ,
2154 const elfcpp::Rel<32, false>& ,
2155 unsigned int r_type,
2156 const elfcpp::Sym<32, false>&)
2158 return possible_function_pointer_reloc(r_type);
2162 Target_i386::Scan::global_reloc_may_be_function_pointer(
2166 Sized_relobj_file<32, false>* ,
2169 const elfcpp::Rel<32, false>& ,
2170 unsigned int r_type,
2173 return possible_function_pointer_reloc(r_type);
2176 // Scan a relocation for a global symbol.
2179 Target_i386::Scan::global(Symbol_table* symtab,
2181 Target_i386* target,
2182 Sized_relobj_file<32, false>* object,
2183 unsigned int data_shndx,
2184 Output_section* output_section,
2185 const elfcpp::Rel<32, false>& reloc,
2186 unsigned int r_type,
2189 // A STT_GNU_IFUNC symbol may require a PLT entry.
2190 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2191 && this->reloc_needs_plt_for_ifunc(object, r_type))
2192 target->make_plt_entry(symtab, layout, gsym);
2196 case elfcpp::R_386_NONE:
2197 case elfcpp::R_386_GNU_VTINHERIT:
2198 case elfcpp::R_386_GNU_VTENTRY:
2201 case elfcpp::R_386_32:
2202 case elfcpp::R_386_16:
2203 case elfcpp::R_386_8:
2205 // Make a PLT entry if necessary.
2206 if (gsym->needs_plt_entry())
2208 target->make_plt_entry(symtab, layout, gsym);
2209 // Since this is not a PC-relative relocation, we may be
2210 // taking the address of a function. In that case we need to
2211 // set the entry in the dynamic symbol table to the address of
2213 if (gsym->is_from_dynobj() && !parameters->options().shared())
2214 gsym->set_needs_dynsym_value();
2216 // Make a dynamic relocation if necessary.
2217 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2219 if (!parameters->options().output_is_position_independent()
2220 && gsym->may_need_copy_reloc())
2222 target->copy_reloc(symtab, layout, object,
2223 data_shndx, output_section, gsym, reloc);
2225 else if (r_type == elfcpp::R_386_32
2226 && gsym->type() == elfcpp::STT_GNU_IFUNC
2227 && gsym->can_use_relative_reloc(false)
2228 && !gsym->is_from_dynobj()
2229 && !gsym->is_undefined()
2230 && !gsym->is_preemptible())
2232 // Use an IRELATIVE reloc for a locally defined
2233 // STT_GNU_IFUNC symbol. This makes a function
2234 // address in a PIE executable match the address in a
2235 // shared library that it links against.
2236 Reloc_section* rel_dyn = target->rel_irelative_section(layout);
2237 rel_dyn->add_symbolless_global_addend(gsym,
2238 elfcpp::R_386_IRELATIVE,
2241 reloc.get_r_offset());
2243 else if (r_type == elfcpp::R_386_32
2244 && gsym->can_use_relative_reloc(false))
2246 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2247 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2248 output_section, object,
2249 data_shndx, reloc.get_r_offset());
2253 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2254 rel_dyn->add_global(gsym, r_type, output_section, object,
2255 data_shndx, reloc.get_r_offset());
2261 case elfcpp::R_386_PC32:
2262 case elfcpp::R_386_PC16:
2263 case elfcpp::R_386_PC8:
2265 // Make a PLT entry if necessary.
2266 if (gsym->needs_plt_entry())
2268 // These relocations are used for function calls only in
2269 // non-PIC code. For a 32-bit relocation in a shared library,
2270 // we'll need a text relocation anyway, so we can skip the
2271 // PLT entry and let the dynamic linker bind the call directly
2272 // to the target. For smaller relocations, we should use a
2273 // PLT entry to ensure that the call can reach.
2274 if (!parameters->options().shared()
2275 || r_type != elfcpp::R_386_PC32)
2276 target->make_plt_entry(symtab, layout, gsym);
2278 // Make a dynamic relocation if necessary.
2279 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2281 if (parameters->options().output_is_executable()
2282 && gsym->may_need_copy_reloc())
2284 target->copy_reloc(symtab, layout, object,
2285 data_shndx, output_section, gsym, reloc);
2289 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2290 rel_dyn->add_global(gsym, r_type, output_section, object,
2291 data_shndx, reloc.get_r_offset());
2297 case elfcpp::R_386_GOT32:
2298 case elfcpp::R_386_GOT32X:
2300 // The symbol requires a GOT section.
2301 Output_data_got<32, false>* got = target->got_section(symtab, layout);
2303 // If we convert this from
2304 // mov foo@GOT(%reg), %reg
2306 // lea foo@GOTOFF(%reg), %reg
2307 // in Relocate::relocate, then there is nothing to do here.
2308 if (reloc.get_r_offset() >= 2
2309 && Target_i386::can_convert_mov_to_lea(gsym))
2311 section_size_type stype;
2312 const unsigned char* view = object->section_contents(data_shndx,
2314 if (view[reloc.get_r_offset() - 2] == 0x8b)
2318 if (gsym->final_value_is_known())
2320 // For a STT_GNU_IFUNC symbol we want the PLT address.
2321 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2322 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2324 got->add_global(gsym, GOT_TYPE_STANDARD);
2328 // If this symbol is not fully resolved, we need to add a
2329 // GOT entry with a dynamic relocation.
2330 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2332 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2334 // 1) The symbol may be defined in some other module.
2336 // 2) We are building a shared library and this is a
2337 // protected symbol; using GLOB_DAT means that the dynamic
2338 // linker can use the address of the PLT in the main
2339 // executable when appropriate so that function address
2340 // comparisons work.
2342 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2343 // code, again so that function address comparisons work.
2344 if (gsym->is_from_dynobj()
2345 || gsym->is_undefined()
2346 || gsym->is_preemptible()
2347 || (gsym->visibility() == elfcpp::STV_PROTECTED
2348 && parameters->options().shared())
2349 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2350 && parameters->options().output_is_position_independent()))
2351 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
2352 rel_dyn, elfcpp::R_386_GLOB_DAT);
2355 // For a STT_GNU_IFUNC symbol we want to write the PLT
2356 // offset into the GOT, so that function pointer
2357 // comparisons work correctly.
2359 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2360 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2363 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2364 // Tell the dynamic linker to use the PLT address
2365 // when resolving relocations.
2366 if (gsym->is_from_dynobj()
2367 && !parameters->options().shared())
2368 gsym->set_needs_dynsym_value();
2372 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2373 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2381 case elfcpp::R_386_PLT32:
2382 // If the symbol is fully resolved, this is just a PC32 reloc.
2383 // Otherwise we need a PLT entry.
2384 if (gsym->final_value_is_known())
2386 // If building a shared library, we can also skip the PLT entry
2387 // if the symbol is defined in the output file and is protected
2389 if (gsym->is_defined()
2390 && !gsym->is_from_dynobj()
2391 && !gsym->is_preemptible())
2393 target->make_plt_entry(symtab, layout, gsym);
2396 case elfcpp::R_386_GOTOFF:
2397 case elfcpp::R_386_GOTPC:
2398 // We need a GOT section.
2399 target->got_section(symtab, layout);
2402 // These are relocations which should only be seen by the
2403 // dynamic linker, and should never be seen here.
2404 case elfcpp::R_386_COPY:
2405 case elfcpp::R_386_GLOB_DAT:
2406 case elfcpp::R_386_JUMP_SLOT:
2407 case elfcpp::R_386_RELATIVE:
2408 case elfcpp::R_386_IRELATIVE:
2409 case elfcpp::R_386_TLS_TPOFF:
2410 case elfcpp::R_386_TLS_DTPMOD32:
2411 case elfcpp::R_386_TLS_DTPOFF32:
2412 case elfcpp::R_386_TLS_TPOFF32:
2413 case elfcpp::R_386_TLS_DESC:
2414 gold_error(_("%s: unexpected reloc %u in object file"),
2415 object->name().c_str(), r_type);
2418 // These are initial tls relocs, which are expected when
2420 case elfcpp::R_386_TLS_GD: // Global-dynamic
2421 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2422 case elfcpp::R_386_TLS_DESC_CALL:
2423 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2424 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2425 case elfcpp::R_386_TLS_IE: // Initial-exec
2426 case elfcpp::R_386_TLS_IE_32:
2427 case elfcpp::R_386_TLS_GOTIE:
2428 case elfcpp::R_386_TLS_LE: // Local-exec
2429 case elfcpp::R_386_TLS_LE_32:
2431 const bool is_final = gsym->final_value_is_known();
2432 const tls::Tls_optimization optimized_type
2433 = Target_i386::optimize_tls_reloc(is_final, r_type);
2436 case elfcpp::R_386_TLS_GD: // Global-dynamic
2437 if (optimized_type == tls::TLSOPT_NONE)
2439 // Create a pair of GOT entries for the module index and
2440 // dtv-relative offset.
2441 Output_data_got<32, false>* got
2442 = target->got_section(symtab, layout);
2443 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2444 target->rel_dyn_section(layout),
2445 elfcpp::R_386_TLS_DTPMOD32,
2446 elfcpp::R_386_TLS_DTPOFF32);
2448 else if (optimized_type == tls::TLSOPT_TO_IE)
2450 // Create a GOT entry for the tp-relative offset.
2451 Output_data_got<32, false>* got
2452 = target->got_section(symtab, layout);
2453 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2454 target->rel_dyn_section(layout),
2455 elfcpp::R_386_TLS_TPOFF);
2457 else if (optimized_type != tls::TLSOPT_TO_LE)
2458 unsupported_reloc_global(object, r_type, gsym);
2461 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (~oliva url)
2462 target->define_tls_base_symbol(symtab, layout);
2463 if (optimized_type == tls::TLSOPT_NONE)
2465 // Create a double GOT entry with an R_386_TLS_DESC
2466 // reloc. The R_386_TLS_DESC reloc is resolved
2467 // lazily, so the GOT entry needs to be in an area in
2468 // .got.plt, not .got. Call got_section to make sure
2469 // the section has been created.
2470 target->got_section(symtab, layout);
2471 Output_data_got<32, false>* got = target->got_tlsdesc_section();
2472 Reloc_section* rt = target->rel_tls_desc_section(layout);
2473 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
2474 elfcpp::R_386_TLS_DESC, 0);
2476 else if (optimized_type == tls::TLSOPT_TO_IE)
2478 // Create a GOT entry for the tp-relative offset.
2479 Output_data_got<32, false>* got
2480 = target->got_section(symtab, layout);
2481 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2482 target->rel_dyn_section(layout),
2483 elfcpp::R_386_TLS_TPOFF);
2485 else if (optimized_type != tls::TLSOPT_TO_LE)
2486 unsupported_reloc_global(object, r_type, gsym);
2489 case elfcpp::R_386_TLS_DESC_CALL:
2492 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2493 if (optimized_type == tls::TLSOPT_NONE)
2495 // Create a GOT entry for the module index.
2496 target->got_mod_index_entry(symtab, layout, object);
2498 else if (optimized_type != tls::TLSOPT_TO_LE)
2499 unsupported_reloc_global(object, r_type, gsym);
2502 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2505 case elfcpp::R_386_TLS_IE: // Initial-exec
2506 case elfcpp::R_386_TLS_IE_32:
2507 case elfcpp::R_386_TLS_GOTIE:
2508 layout->set_has_static_tls();
2509 if (optimized_type == tls::TLSOPT_NONE)
2511 // For the R_386_TLS_IE relocation, we need to create a
2512 // dynamic relocation when building a shared library.
2513 if (r_type == elfcpp::R_386_TLS_IE
2514 && parameters->options().shared())
2516 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2517 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2518 output_section, object,
2520 reloc.get_r_offset());
2522 // Create a GOT entry for the tp-relative offset.
2523 Output_data_got<32, false>* got
2524 = target->got_section(symtab, layout);
2525 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2526 ? elfcpp::R_386_TLS_TPOFF32
2527 : elfcpp::R_386_TLS_TPOFF);
2528 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2529 ? GOT_TYPE_TLS_OFFSET
2530 : GOT_TYPE_TLS_NOFFSET);
2531 got->add_global_with_rel(gsym, got_type,
2532 target->rel_dyn_section(layout),
2535 else if (optimized_type != tls::TLSOPT_TO_LE)
2536 unsupported_reloc_global(object, r_type, gsym);
2539 case elfcpp::R_386_TLS_LE: // Local-exec
2540 case elfcpp::R_386_TLS_LE_32:
2541 layout->set_has_static_tls();
2542 if (parameters->options().shared())
2544 // We need to create a dynamic relocation.
2545 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2546 ? elfcpp::R_386_TLS_TPOFF32
2547 : elfcpp::R_386_TLS_TPOFF);
2548 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2549 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
2550 data_shndx, reloc.get_r_offset());
2560 case elfcpp::R_386_32PLT:
2561 case elfcpp::R_386_TLS_GD_32:
2562 case elfcpp::R_386_TLS_GD_PUSH:
2563 case elfcpp::R_386_TLS_GD_CALL:
2564 case elfcpp::R_386_TLS_GD_POP:
2565 case elfcpp::R_386_TLS_LDM_32:
2566 case elfcpp::R_386_TLS_LDM_PUSH:
2567 case elfcpp::R_386_TLS_LDM_CALL:
2568 case elfcpp::R_386_TLS_LDM_POP:
2569 case elfcpp::R_386_USED_BY_INTEL_200:
2571 unsupported_reloc_global(object, r_type, gsym);
2576 // Process relocations for gc.
2579 Target_i386::gc_process_relocs(Symbol_table* symtab,
2581 Sized_relobj_file<32, false>* object,
2582 unsigned int data_shndx,
2584 const unsigned char* prelocs,
2586 Output_section* output_section,
2587 bool needs_special_offset_handling,
2588 size_t local_symbol_count,
2589 const unsigned char* plocal_symbols)
2591 gold::gc_process_relocs<32, false, Target_i386, Scan, Classify_reloc>(
2600 needs_special_offset_handling,
2605 // Scan relocations for a section.
2608 Target_i386::scan_relocs(Symbol_table* symtab,
2610 Sized_relobj_file<32, false>* object,
2611 unsigned int data_shndx,
2612 unsigned int sh_type,
2613 const unsigned char* prelocs,
2615 Output_section* output_section,
2616 bool needs_special_offset_handling,
2617 size_t local_symbol_count,
2618 const unsigned char* plocal_symbols)
2620 if (sh_type == elfcpp::SHT_RELA)
2622 gold_error(_("%s: unsupported RELA reloc section"),
2623 object->name().c_str());
2627 gold::scan_relocs<32, false, Target_i386, Scan, Classify_reloc>(
2636 needs_special_offset_handling,
2641 // Finalize the sections.
2644 Target_i386::do_finalize_sections(
2646 const Input_objects*,
2647 Symbol_table* symtab)
2649 const Reloc_section* rel_plt = (this->plt_ == NULL
2651 : this->plt_->rel_plt());
2652 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
2653 this->rel_dyn_, true, false);
2655 // Emit any relocs we saved in an attempt to avoid generating COPY
2657 if (this->copy_relocs_.any_saved_relocs())
2658 this->copy_relocs_.emit(this->rel_dyn_section(layout));
2660 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2661 // the .got.plt section.
2662 Symbol* sym = this->global_offset_table_;
2665 uint32_t data_size = this->got_plt_->current_data_size();
2666 symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
2669 if (parameters->doing_static_link()
2670 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
2672 // If linking statically, make sure that the __rel_iplt symbols
2673 // were defined if necessary, even if we didn't create a PLT.
2674 static const Define_symbol_in_segment syms[] =
2677 "__rel_iplt_start", // name
2678 elfcpp::PT_LOAD, // segment_type
2679 elfcpp::PF_W, // segment_flags_set
2680 elfcpp::PF(0), // segment_flags_clear
2683 elfcpp::STT_NOTYPE, // type
2684 elfcpp::STB_GLOBAL, // binding
2685 elfcpp::STV_HIDDEN, // visibility
2687 Symbol::SEGMENT_START, // offset_from_base
2691 "__rel_iplt_end", // name
2692 elfcpp::PT_LOAD, // segment_type
2693 elfcpp::PF_W, // segment_flags_set
2694 elfcpp::PF(0), // segment_flags_clear
2697 elfcpp::STT_NOTYPE, // type
2698 elfcpp::STB_GLOBAL, // binding
2699 elfcpp::STV_HIDDEN, // visibility
2701 Symbol::SEGMENT_START, // offset_from_base
2706 symtab->define_symbols(layout, 2, syms,
2707 layout->script_options()->saw_sections_clause());
2711 // Return whether a direct absolute static relocation needs to be applied.
2712 // In cases where Scan::local() or Scan::global() has created
2713 // a dynamic relocation other than R_386_RELATIVE, the addend
2714 // of the relocation is carried in the data, and we must not
2715 // apply the static relocation.
2718 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
2719 unsigned int r_type,
2721 Output_section* output_section)
2723 // If the output section is not allocated, then we didn't call
2724 // scan_relocs, we didn't create a dynamic reloc, and we must apply
2726 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
2729 int ref_flags = Scan::get_reference_flags(r_type);
2731 // For local symbols, we will have created a non-RELATIVE dynamic
2732 // relocation only if (a) the output is position independent,
2733 // (b) the relocation is absolute (not pc- or segment-relative), and
2734 // (c) the relocation is not 32 bits wide.
2736 return !(parameters->options().output_is_position_independent()
2737 && (ref_flags & Symbol::ABSOLUTE_REF)
2740 // For global symbols, we use the same helper routines used in the
2741 // scan pass. If we did not create a dynamic relocation, or if we
2742 // created a RELATIVE dynamic relocation, we should apply the static
2744 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
2745 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
2746 && gsym->can_use_relative_reloc(ref_flags
2747 & Symbol::FUNCTION_CALL);
2748 return !has_dyn || is_rel;
2751 // Perform a relocation.
2754 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
2756 Target_i386* target,
2757 Output_section* output_section,
2759 const unsigned char* preloc,
2760 const Sized_symbol<32>* gsym,
2761 const Symbol_value<32>* psymval,
2762 unsigned char* view,
2763 elfcpp::Elf_types<32>::Elf_Addr address,
2764 section_size_type view_size)
2766 const elfcpp::Rel<32, false> rel(preloc);
2767 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
2769 if (this->skip_call_tls_get_addr_)
2771 if ((r_type != elfcpp::R_386_PLT32
2772 && r_type != elfcpp::R_386_PC32)
2774 || strcmp(gsym->name(), "___tls_get_addr") != 0)
2775 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2776 _("missing expected TLS relocation"));
2779 this->skip_call_tls_get_addr_ = false;
2787 const Sized_relobj_file<32, false>* object = relinfo->object;
2789 // Pick the value to use for symbols defined in shared objects.
2790 Symbol_value<32> symval;
2792 && gsym->type() == elfcpp::STT_GNU_IFUNC
2793 && r_type == elfcpp::R_386_32
2794 && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
2795 && gsym->can_use_relative_reloc(false)
2796 && !gsym->is_from_dynobj()
2797 && !gsym->is_undefined()
2798 && !gsym->is_preemptible())
2800 // In this case we are generating a R_386_IRELATIVE reloc. We
2801 // want to use the real value of the symbol, not the PLT offset.
2803 else if (gsym != NULL
2804 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2806 symval.set_output_value(target->plt_address_for_global(gsym));
2809 else if (gsym == NULL && psymval->is_ifunc_symbol())
2811 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2812 if (object->local_has_plt_offset(r_sym))
2814 symval.set_output_value(target->plt_address_for_local(object, r_sym));
2823 case elfcpp::R_386_NONE:
2824 case elfcpp::R_386_GNU_VTINHERIT:
2825 case elfcpp::R_386_GNU_VTENTRY:
2828 case elfcpp::R_386_32:
2829 if (should_apply_static_reloc(gsym, r_type, true, output_section))
2830 Relocate_functions<32, false>::rel32(view, object, psymval);
2833 case elfcpp::R_386_PC32:
2834 if (should_apply_static_reloc(gsym, r_type, true, output_section))
2835 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2838 case elfcpp::R_386_16:
2839 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2840 Relocate_functions<32, false>::rel16(view, object, psymval);
2843 case elfcpp::R_386_PC16:
2844 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2845 Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
2848 case elfcpp::R_386_8:
2849 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2850 Relocate_functions<32, false>::rel8(view, object, psymval);
2853 case elfcpp::R_386_PC8:
2854 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2855 Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
2858 case elfcpp::R_386_PLT32:
2859 gold_assert(gsym == NULL
2860 || gsym->has_plt_offset()
2861 || gsym->final_value_is_known()
2862 || (gsym->is_defined()
2863 && !gsym->is_from_dynobj()
2864 && !gsym->is_preemptible()));
2865 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2868 case elfcpp::R_386_GOT32:
2869 case elfcpp::R_386_GOT32X:
2870 baseless = (view[-1] & 0xc7) == 0x5;
2871 // R_386_GOT32 and R_386_GOT32X don't work without base register
2872 // when generating a position-independent output file.
2874 && parameters->options().output_is_position_independent())
2877 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2878 _("unexpected reloc %u against global symbol %s without base register in object file when generating a position-independent output file"),
2879 r_type, gsym->demangled_name().c_str());
2881 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2882 _("unexpected reloc %u against local symbol without base register in object file when generating a position-independent output file"),
2887 // mov foo@GOT(%reg), %reg
2889 // lea foo@GOTOFF(%reg), %reg
2891 if (rel.get_r_offset() >= 2
2893 && ((gsym == NULL && !psymval->is_ifunc_symbol())
2895 && Target_i386::can_convert_mov_to_lea(gsym))))
2898 elfcpp::Elf_types<32>::Elf_Addr value;
2899 value = psymval->value(object, 0);
2900 // Don't subtract the .got.plt section address for baseless
2903 value -= target->got_plt_section()->address();
2904 Relocate_functions<32, false>::rel32(view, value);
2908 // The GOT pointer points to the end of the GOT section.
2909 // We need to subtract the size of the GOT section to get
2910 // the actual offset to use in the relocation.
2911 unsigned int got_offset = 0;
2914 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2915 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
2916 - target->got_size());
2920 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2921 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2922 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2923 - target->got_size());
2925 // Add the .got.plt section address for baseless addressing.
2927 got_offset += target->got_plt_section()->address();
2928 Relocate_functions<32, false>::rel32(view, got_offset);
2932 case elfcpp::R_386_GOTOFF:
2934 elfcpp::Elf_types<32>::Elf_Addr value;
2935 value = (psymval->value(object, 0)
2936 - target->got_plt_section()->address());
2937 Relocate_functions<32, false>::rel32(view, value);
2941 case elfcpp::R_386_GOTPC:
2943 elfcpp::Elf_types<32>::Elf_Addr value;
2944 value = target->got_plt_section()->address();
2945 Relocate_functions<32, false>::pcrel32(view, value, address);
2949 case elfcpp::R_386_COPY:
2950 case elfcpp::R_386_GLOB_DAT:
2951 case elfcpp::R_386_JUMP_SLOT:
2952 case elfcpp::R_386_RELATIVE:
2953 case elfcpp::R_386_IRELATIVE:
2954 // These are outstanding tls relocs, which are unexpected when
2956 case elfcpp::R_386_TLS_TPOFF:
2957 case elfcpp::R_386_TLS_DTPMOD32:
2958 case elfcpp::R_386_TLS_DTPOFF32:
2959 case elfcpp::R_386_TLS_TPOFF32:
2960 case elfcpp::R_386_TLS_DESC:
2961 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2962 _("unexpected reloc %u in object file"),
2966 // These are initial tls relocs, which are expected when
2968 case elfcpp::R_386_TLS_GD: // Global-dynamic
2969 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2970 case elfcpp::R_386_TLS_DESC_CALL:
2971 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2972 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2973 case elfcpp::R_386_TLS_IE: // Initial-exec
2974 case elfcpp::R_386_TLS_IE_32:
2975 case elfcpp::R_386_TLS_GOTIE:
2976 case elfcpp::R_386_TLS_LE: // Local-exec
2977 case elfcpp::R_386_TLS_LE_32:
2978 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
2979 view, address, view_size);
2982 case elfcpp::R_386_32PLT:
2983 case elfcpp::R_386_TLS_GD_32:
2984 case elfcpp::R_386_TLS_GD_PUSH:
2985 case elfcpp::R_386_TLS_GD_CALL:
2986 case elfcpp::R_386_TLS_GD_POP:
2987 case elfcpp::R_386_TLS_LDM_32:
2988 case elfcpp::R_386_TLS_LDM_PUSH:
2989 case elfcpp::R_386_TLS_LDM_CALL:
2990 case elfcpp::R_386_TLS_LDM_POP:
2991 case elfcpp::R_386_USED_BY_INTEL_200:
2993 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2994 _("unsupported reloc %u"),
3002 // Perform a TLS relocation.
3005 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
3006 Target_i386* target,
3008 const elfcpp::Rel<32, false>& rel,
3009 unsigned int r_type,
3010 const Sized_symbol<32>* gsym,
3011 const Symbol_value<32>* psymval,
3012 unsigned char* view,
3013 elfcpp::Elf_types<32>::Elf_Addr,
3014 section_size_type view_size)
3016 Output_segment* tls_segment = relinfo->layout->tls_segment();
3018 const Sized_relobj_file<32, false>* object = relinfo->object;
3020 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
3022 const bool is_final = (gsym == NULL
3023 ? !parameters->options().shared()
3024 : gsym->final_value_is_known());
3025 const tls::Tls_optimization optimized_type
3026 = Target_i386::optimize_tls_reloc(is_final, r_type);
3029 case elfcpp::R_386_TLS_GD: // Global-dynamic
3030 if (optimized_type == tls::TLSOPT_TO_LE)
3032 if (tls_segment == NULL)
3034 gold_assert(parameters->errors()->error_count() > 0
3035 || issue_undefined_symbol_error(gsym));
3038 this->tls_gd_to_le(relinfo, relnum, tls_segment,
3039 rel, r_type, value, view,
3045 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3046 ? GOT_TYPE_TLS_NOFFSET
3047 : GOT_TYPE_TLS_PAIR);
3048 unsigned int got_offset;
3051 gold_assert(gsym->has_got_offset(got_type));
3052 got_offset = gsym->got_offset(got_type) - target->got_size();
3056 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3057 gold_assert(object->local_has_got_offset(r_sym, got_type));
3058 got_offset = (object->local_got_offset(r_sym, got_type)
3059 - target->got_size());
3061 if (optimized_type == tls::TLSOPT_TO_IE)
3063 this->tls_gd_to_ie(relinfo, relnum, rel, r_type,
3064 got_offset, view, view_size);
3067 else if (optimized_type == tls::TLSOPT_NONE)
3069 // Relocate the field with the offset of the pair of GOT
3071 Relocate_functions<32, false>::rel32(view, got_offset);
3075 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3076 _("unsupported reloc %u"),
3080 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
3081 case elfcpp::R_386_TLS_DESC_CALL:
3082 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
3083 if (optimized_type == tls::TLSOPT_TO_LE)
3085 if (tls_segment == NULL)
3087 gold_assert(parameters->errors()->error_count() > 0
3088 || issue_undefined_symbol_error(gsym));
3091 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3092 rel, r_type, value, view,
3098 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3099 ? GOT_TYPE_TLS_NOFFSET
3100 : GOT_TYPE_TLS_DESC);
3101 unsigned int got_offset = 0;
3102 if (r_type == elfcpp::R_386_TLS_GOTDESC
3103 && optimized_type == tls::TLSOPT_NONE)
3105 // We created GOT entries in the .got.tlsdesc portion of
3106 // the .got.plt section, but the offset stored in the
3107 // symbol is the offset within .got.tlsdesc.
3108 got_offset = (target->got_size()
3109 + target->got_plt_section()->data_size());
3113 gold_assert(gsym->has_got_offset(got_type));
3114 got_offset += gsym->got_offset(got_type) - target->got_size();
3118 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3119 gold_assert(object->local_has_got_offset(r_sym, got_type));
3120 got_offset += (object->local_got_offset(r_sym, got_type)
3121 - target->got_size());
3123 if (optimized_type == tls::TLSOPT_TO_IE)
3125 this->tls_desc_gd_to_ie(relinfo, relnum, rel, r_type,
3126 got_offset, view, view_size);
3129 else if (optimized_type == tls::TLSOPT_NONE)
3131 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3133 // Relocate the field with the offset of the pair of GOT
3135 Relocate_functions<32, false>::rel32(view, got_offset);
3140 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3141 _("unsupported reloc %u"),
3145 case elfcpp::R_386_TLS_LDM: // Local-dynamic
3146 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
3148 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3149 _("both SUN and GNU model "
3150 "TLS relocations"));
3153 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
3154 if (optimized_type == tls::TLSOPT_TO_LE)
3156 if (tls_segment == NULL)
3158 gold_assert(parameters->errors()->error_count() > 0
3159 || issue_undefined_symbol_error(gsym));
3162 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
3163 value, view, view_size);
3166 else if (optimized_type == tls::TLSOPT_NONE)
3168 // Relocate the field with the offset of the GOT entry for
3169 // the module index.
3170 unsigned int got_offset;
3171 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3172 - target->got_size());
3173 Relocate_functions<32, false>::rel32(view, got_offset);
3176 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3177 _("unsupported reloc %u"),
3181 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
3182 if (optimized_type == tls::TLSOPT_TO_LE)
3184 // This reloc can appear in debugging sections, in which
3185 // case we must not convert to local-exec. We decide what
3186 // to do based on whether the section is marked as
3187 // containing executable code. That is what the GNU linker
3189 elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
3190 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
3192 if (tls_segment == NULL)
3194 gold_assert(parameters->errors()->error_count() > 0
3195 || issue_undefined_symbol_error(gsym));
3198 value -= tls_segment->memsz();
3201 Relocate_functions<32, false>::rel32(view, value);
3204 case elfcpp::R_386_TLS_IE: // Initial-exec
3205 case elfcpp::R_386_TLS_GOTIE:
3206 case elfcpp::R_386_TLS_IE_32:
3207 if (optimized_type == tls::TLSOPT_TO_LE)
3209 if (tls_segment == NULL)
3211 gold_assert(parameters->errors()->error_count() > 0
3212 || issue_undefined_symbol_error(gsym));
3215 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
3216 rel, r_type, value, view,
3220 else if (optimized_type == tls::TLSOPT_NONE)
3222 // Relocate the field with the offset of the GOT entry for
3223 // the tp-relative offset of the symbol.
3224 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
3225 ? GOT_TYPE_TLS_OFFSET
3226 : GOT_TYPE_TLS_NOFFSET);
3227 unsigned int got_offset;
3230 gold_assert(gsym->has_got_offset(got_type));
3231 got_offset = gsym->got_offset(got_type);
3235 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3236 gold_assert(object->local_has_got_offset(r_sym, got_type));
3237 got_offset = object->local_got_offset(r_sym, got_type);
3239 // For the R_386_TLS_IE relocation, we need to apply the
3240 // absolute address of the GOT entry.
3241 if (r_type == elfcpp::R_386_TLS_IE)
3242 got_offset += target->got_plt_section()->address();
3243 // All GOT offsets are relative to the end of the GOT.
3244 got_offset -= target->got_size();
3245 Relocate_functions<32, false>::rel32(view, got_offset);
3248 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3249 _("unsupported reloc %u"),
3253 case elfcpp::R_386_TLS_LE: // Local-exec
3254 // If we're creating a shared library, a dynamic relocation will
3255 // have been created for this location, so do not apply it now.
3256 if (!parameters->options().shared())
3258 if (tls_segment == NULL)
3260 gold_assert(parameters->errors()->error_count() > 0
3261 || issue_undefined_symbol_error(gsym));
3264 value -= tls_segment->memsz();
3265 Relocate_functions<32, false>::rel32(view, value);
3269 case elfcpp::R_386_TLS_LE_32:
3270 // If we're creating a shared library, a dynamic relocation will
3271 // have been created for this location, so do not apply it now.
3272 if (!parameters->options().shared())
3274 if (tls_segment == NULL)
3276 gold_assert(parameters->errors()->error_count() > 0
3277 || issue_undefined_symbol_error(gsym));
3280 value = tls_segment->memsz() - value;
3281 Relocate_functions<32, false>::rel32(view, value);
3287 // Do a relocation in which we convert a TLS General-Dynamic to a
3291 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
3293 Output_segment* tls_segment,
3294 const elfcpp::Rel<32, false>& rel,
3296 elfcpp::Elf_types<32>::Elf_Addr value,
3297 unsigned char* view,
3298 section_size_type view_size)
3300 // leal foo(,%reg,1),%eax; call ___tls_get_addr
3301 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
3302 // leal foo(%reg),%eax; call ___tls_get_addr
3303 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
3305 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3306 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3308 unsigned char op1 = view[-1];
3309 unsigned char op2 = view[-2];
3311 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3312 op2 == 0x8d || op2 == 0x04);
3313 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3319 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3320 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3321 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3322 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3323 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3327 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3328 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
3329 if (rel.get_r_offset() + 9 < view_size
3332 // There is a trailing nop. Use the size byte subl.
3333 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3338 // Use the five byte subl.
3339 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
3343 value = tls_segment->memsz() - value;
3344 Relocate_functions<32, false>::rel32(view + roff, value);
3346 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3348 this->skip_call_tls_get_addr_ = true;
3351 // Do a relocation in which we convert a TLS General-Dynamic to an
3355 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
3357 const elfcpp::Rel<32, false>& rel,
3359 elfcpp::Elf_types<32>::Elf_Addr value,
3360 unsigned char* view,
3361 section_size_type view_size)
3363 // leal foo(,%ebx,1),%eax; call ___tls_get_addr
3364 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
3365 // leal foo(%ebx),%eax; call ___tls_get_addr; nop
3366 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
3368 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3369 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3371 unsigned char op1 = view[-1];
3372 unsigned char op2 = view[-2];
3374 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3375 op2 == 0x8d || op2 == 0x04);
3376 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3382 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3383 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3384 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3385 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3390 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 10);
3391 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3392 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
3393 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[9] == 0x90);
3397 memcpy(view + roff - 8, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
3398 Relocate_functions<32, false>::rel32(view + roff, value);
3400 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3402 this->skip_call_tls_get_addr_ = true;
3405 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3406 // General-Dynamic to a Local-Exec.
3409 Target_i386::Relocate::tls_desc_gd_to_le(
3410 const Relocate_info<32, false>* relinfo,
3412 Output_segment* tls_segment,
3413 const elfcpp::Rel<32, false>& rel,
3414 unsigned int r_type,
3415 elfcpp::Elf_types<32>::Elf_Addr value,
3416 unsigned char* view,
3417 section_size_type view_size)
3419 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3421 // leal foo@TLSDESC(%ebx), %eax
3422 // ==> leal foo@NTPOFF, %eax
3423 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3424 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3425 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3426 view[-2] == 0x8d && view[-1] == 0x83);
3428 value -= tls_segment->memsz();
3429 Relocate_functions<32, false>::rel32(view, value);
3433 // call *foo@TLSCALL(%eax)
3435 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3436 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3437 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3438 view[0] == 0xff && view[1] == 0x10);
3444 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3445 // General-Dynamic to an Initial-Exec.
3448 Target_i386::Relocate::tls_desc_gd_to_ie(
3449 const Relocate_info<32, false>* relinfo,
3451 const elfcpp::Rel<32, false>& rel,
3452 unsigned int r_type,
3453 elfcpp::Elf_types<32>::Elf_Addr value,
3454 unsigned char* view,
3455 section_size_type view_size)
3457 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3459 // leal foo@TLSDESC(%ebx), %eax
3460 // ==> movl foo@GOTNTPOFF(%ebx), %eax
3461 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3462 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3463 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3464 view[-2] == 0x8d && view[-1] == 0x83);
3466 Relocate_functions<32, false>::rel32(view, value);
3470 // call *foo@TLSCALL(%eax)
3472 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3473 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3474 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3475 view[0] == 0xff && view[1] == 0x10);
3481 // Do a relocation in which we convert a TLS Local-Dynamic to a
3485 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
3488 const elfcpp::Rel<32, false>& rel,
3490 elfcpp::Elf_types<32>::Elf_Addr,
3491 unsigned char* view,
3492 section_size_type view_size)
3494 // leal foo(%reg), %eax; call ___tls_get_addr
3495 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
3497 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3498 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3500 // FIXME: Does this test really always pass?
3501 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3502 view[-2] == 0x8d && view[-1] == 0x83);
3504 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3506 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
3508 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3510 this->skip_call_tls_get_addr_ = true;
3513 // Do a relocation in which we convert a TLS Initial-Exec to a
3517 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
3519 Output_segment* tls_segment,
3520 const elfcpp::Rel<32, false>& rel,
3521 unsigned int r_type,
3522 elfcpp::Elf_types<32>::Elf_Addr value,
3523 unsigned char* view,
3524 section_size_type view_size)
3526 // We have to actually change the instructions, which means that we
3527 // need to examine the opcodes to figure out which instruction we
3529 if (r_type == elfcpp::R_386_TLS_IE)
3531 // movl %gs:XX,%eax ==> movl $YY,%eax
3532 // movl %gs:XX,%reg ==> movl $YY,%reg
3533 // addl %gs:XX,%reg ==> addl $YY,%reg
3534 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
3535 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3537 unsigned char op1 = view[-1];
3540 // movl XX,%eax ==> movl $YY,%eax
3545 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3547 unsigned char op2 = view[-2];
3550 // movl XX,%reg ==> movl $YY,%reg
3551 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3552 (op1 & 0xc7) == 0x05);
3554 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3556 else if (op2 == 0x03)
3558 // addl XX,%reg ==> addl $YY,%reg
3559 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3560 (op1 & 0xc7) == 0x05);
3562 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3565 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3570 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
3571 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
3572 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
3573 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3574 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3576 unsigned char op1 = view[-1];
3577 unsigned char op2 = view[-2];
3578 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3579 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
3582 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
3584 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3586 else if (op2 == 0x2b)
3588 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
3590 view[-1] = 0xe8 | ((op1 >> 3) & 7);
3592 else if (op2 == 0x03)
3594 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
3596 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3599 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3602 value = tls_segment->memsz() - value;
3603 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
3606 Relocate_functions<32, false>::rel32(view, value);
3609 // Relocate section data.
3612 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
3613 unsigned int sh_type,
3614 const unsigned char* prelocs,
3616 Output_section* output_section,
3617 bool needs_special_offset_handling,
3618 unsigned char* view,
3619 elfcpp::Elf_types<32>::Elf_Addr address,
3620 section_size_type view_size,
3621 const Reloc_symbol_changes* reloc_symbol_changes)
3623 gold_assert(sh_type == elfcpp::SHT_REL);
3625 gold::relocate_section<32, false, Target_i386, Relocate,
3626 gold::Default_comdat_behavior, Classify_reloc>(
3632 needs_special_offset_handling,
3636 reloc_symbol_changes);
3639 // Return the size of a relocation while scanning during a relocatable
3643 Target_i386::Classify_reloc::get_size_for_reloc(
3644 unsigned int r_type,
3649 case elfcpp::R_386_NONE:
3650 case elfcpp::R_386_GNU_VTINHERIT:
3651 case elfcpp::R_386_GNU_VTENTRY:
3652 case elfcpp::R_386_TLS_GD: // Global-dynamic
3653 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
3654 case elfcpp::R_386_TLS_DESC_CALL:
3655 case elfcpp::R_386_TLS_LDM: // Local-dynamic
3656 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
3657 case elfcpp::R_386_TLS_IE: // Initial-exec
3658 case elfcpp::R_386_TLS_IE_32:
3659 case elfcpp::R_386_TLS_GOTIE:
3660 case elfcpp::R_386_TLS_LE: // Local-exec
3661 case elfcpp::R_386_TLS_LE_32:
3664 case elfcpp::R_386_32:
3665 case elfcpp::R_386_PC32:
3666 case elfcpp::R_386_GOT32:
3667 case elfcpp::R_386_GOT32X:
3668 case elfcpp::R_386_PLT32:
3669 case elfcpp::R_386_GOTOFF:
3670 case elfcpp::R_386_GOTPC:
3673 case elfcpp::R_386_16:
3674 case elfcpp::R_386_PC16:
3677 case elfcpp::R_386_8:
3678 case elfcpp::R_386_PC8:
3681 // These are relocations which should only be seen by the
3682 // dynamic linker, and should never be seen here.
3683 case elfcpp::R_386_COPY:
3684 case elfcpp::R_386_GLOB_DAT:
3685 case elfcpp::R_386_JUMP_SLOT:
3686 case elfcpp::R_386_RELATIVE:
3687 case elfcpp::R_386_IRELATIVE:
3688 case elfcpp::R_386_TLS_TPOFF:
3689 case elfcpp::R_386_TLS_DTPMOD32:
3690 case elfcpp::R_386_TLS_DTPOFF32:
3691 case elfcpp::R_386_TLS_TPOFF32:
3692 case elfcpp::R_386_TLS_DESC:
3693 object->error(_("unexpected reloc %u in object file"), r_type);
3696 case elfcpp::R_386_32PLT:
3697 case elfcpp::R_386_TLS_GD_32:
3698 case elfcpp::R_386_TLS_GD_PUSH:
3699 case elfcpp::R_386_TLS_GD_CALL:
3700 case elfcpp::R_386_TLS_GD_POP:
3701 case elfcpp::R_386_TLS_LDM_32:
3702 case elfcpp::R_386_TLS_LDM_PUSH:
3703 case elfcpp::R_386_TLS_LDM_CALL:
3704 case elfcpp::R_386_TLS_LDM_POP:
3705 case elfcpp::R_386_USED_BY_INTEL_200:
3707 object->error(_("unsupported reloc %u in object file"), r_type);
3712 // Scan the relocs during a relocatable link.
3715 Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
3717 Sized_relobj_file<32, false>* object,
3718 unsigned int data_shndx,
3719 unsigned int sh_type,
3720 const unsigned char* prelocs,
3722 Output_section* output_section,
3723 bool needs_special_offset_handling,
3724 size_t local_symbol_count,
3725 const unsigned char* plocal_symbols,
3726 Relocatable_relocs* rr)
3728 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
3729 Scan_relocatable_relocs;
3731 gold_assert(sh_type == elfcpp::SHT_REL);
3733 gold::scan_relocatable_relocs<32, false, Scan_relocatable_relocs>(
3741 needs_special_offset_handling,
3747 // Scan the relocs for --emit-relocs.
3750 Target_i386::emit_relocs_scan(Symbol_table* symtab,
3752 Sized_relobj_file<32, false>* object,
3753 unsigned int data_shndx,
3754 unsigned int sh_type,
3755 const unsigned char* prelocs,
3757 Output_section* output_section,
3758 bool needs_special_offset_handling,
3759 size_t local_symbol_count,
3760 const unsigned char* plocal_syms,
3761 Relocatable_relocs* rr)
3763 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, false>
3765 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
3766 Emit_relocs_strategy;
3768 gold_assert(sh_type == elfcpp::SHT_REL);
3770 gold::scan_relocatable_relocs<32, false, Emit_relocs_strategy>(
3778 needs_special_offset_handling,
3784 // Emit relocations for a section.
3787 Target_i386::relocate_relocs(
3788 const Relocate_info<32, false>* relinfo,
3789 unsigned int sh_type,
3790 const unsigned char* prelocs,
3792 Output_section* output_section,
3793 elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
3794 unsigned char* view,
3795 elfcpp::Elf_types<32>::Elf_Addr view_address,
3796 section_size_type view_size,
3797 unsigned char* reloc_view,
3798 section_size_type reloc_view_size)
3800 gold_assert(sh_type == elfcpp::SHT_REL);
3802 gold::relocate_relocs<32, false, Classify_reloc>(
3807 offset_in_output_section,
3815 // Return the value to use for a dynamic which requires special
3816 // treatment. This is how we support equality comparisons of function
3817 // pointers across shared library boundaries, as described in the
3818 // processor specific ABI supplement.
3821 Target_i386::do_dynsym_value(const Symbol* gsym) const
3823 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3824 return this->plt_address_for_global(gsym);
3827 // Return a string used to fill a code section with nops to take up
3828 // the specified length.
3831 Target_i386::do_code_fill(section_size_type length) const
3835 // Build a jmp instruction to skip over the bytes.
3836 unsigned char jmp[5];
3838 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3839 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3840 + std::string(length - 5, static_cast<char>(0x90)));
3843 // Nop sequences of various lengths.
3844 const char nop1[1] = { '\x90' }; // nop
3845 const char nop2[2] = { '\x66', '\x90' }; // xchg %ax %ax
3846 const char nop3[3] = { '\x8d', '\x76', '\x00' }; // leal 0(%esi),%esi
3847 const char nop4[4] = { '\x8d', '\x74', '\x26', // leal 0(%esi,1),%esi
3849 const char nop5[5] = { '\x90', '\x8d', '\x74', // nop
3850 '\x26', '\x00' }; // leal 0(%esi,1),%esi
3851 const char nop6[6] = { '\x8d', '\xb6', '\x00', // leal 0L(%esi),%esi
3852 '\x00', '\x00', '\x00' };
3853 const char nop7[7] = { '\x8d', '\xb4', '\x26', // leal 0L(%esi,1),%esi
3854 '\x00', '\x00', '\x00',
3856 const char nop8[8] = { '\x90', '\x8d', '\xb4', // nop
3857 '\x26', '\x00', '\x00', // leal 0L(%esi,1),%esi
3859 const char nop9[9] = { '\x89', '\xf6', '\x8d', // movl %esi,%esi
3860 '\xbc', '\x27', '\x00', // leal 0L(%edi,1),%edi
3861 '\x00', '\x00', '\x00' };
3862 const char nop10[10] = { '\x8d', '\x76', '\x00', // leal 0(%esi),%esi
3863 '\x8d', '\xbc', '\x27', // leal 0L(%edi,1),%edi
3864 '\x00', '\x00', '\x00',
3866 const char nop11[11] = { '\x8d', '\x74', '\x26', // leal 0(%esi,1),%esi
3867 '\x00', '\x8d', '\xbc', // leal 0L(%edi,1),%edi
3868 '\x27', '\x00', '\x00',
3870 const char nop12[12] = { '\x8d', '\xb6', '\x00', // leal 0L(%esi),%esi
3871 '\x00', '\x00', '\x00', // leal 0L(%edi),%edi
3872 '\x8d', '\xbf', '\x00',
3873 '\x00', '\x00', '\x00' };
3874 const char nop13[13] = { '\x8d', '\xb6', '\x00', // leal 0L(%esi),%esi
3875 '\x00', '\x00', '\x00', // leal 0L(%edi,1),%edi
3876 '\x8d', '\xbc', '\x27',
3877 '\x00', '\x00', '\x00',
3879 const char nop14[14] = { '\x8d', '\xb4', '\x26', // leal 0L(%esi,1),%esi
3880 '\x00', '\x00', '\x00', // leal 0L(%edi,1),%edi
3881 '\x00', '\x8d', '\xbc',
3882 '\x27', '\x00', '\x00',
3884 const char nop15[15] = { '\xeb', '\x0d', '\x90', // jmp .+15
3885 '\x90', '\x90', '\x90', // nop,nop,nop,...
3886 '\x90', '\x90', '\x90',
3887 '\x90', '\x90', '\x90',
3888 '\x90', '\x90', '\x90' };
3890 const char* nops[16] = {
3892 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3893 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3896 return std::string(nops[length], length);
3899 // Return the value to use for the base of a DW_EH_PE_datarel offset
3900 // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
3901 // assembler can not write out the difference between two labels in
3902 // different sections, so instead of using a pc-relative value they
3903 // use an offset from the GOT.
3906 Target_i386::do_ehframe_datarel_base() const
3908 gold_assert(this->global_offset_table_ != NULL);
3909 Symbol* sym = this->global_offset_table_;
3910 Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
3911 return ssym->value();
3914 // Return whether SYM should be treated as a call to a non-split
3915 // function. We don't want that to be true of a call to a
3916 // get_pc_thunk function.
3919 Target_i386::do_is_call_to_non_split(const Symbol* sym,
3920 const unsigned char*,
3921 const unsigned char*,
3922 section_size_type) const
3924 return (sym->type() == elfcpp::STT_FUNC
3925 && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
3928 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3929 // compiled with -fsplit-stack. The function calls non-split-stack
3930 // code. We have to change the function so that it always ensures
3931 // that it has enough stack space to run some random function.
3934 Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
3935 section_offset_type fnoffset,
3936 section_size_type fnsize,
3937 const unsigned char*,
3939 unsigned char* view,
3940 section_size_type view_size,
3942 std::string* to) const
3944 // The function starts with a comparison of the stack pointer and a
3945 // field in the TCB. This is followed by a jump.
3948 if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
3951 // We will call __morestack if the carry flag is set after this
3952 // comparison. We turn the comparison into an stc instruction
3954 view[fnoffset] = '\xf9';
3955 this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
3957 // lea NN(%esp),%ecx
3958 // lea NN(%esp),%edx
3959 else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
3960 || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
3963 // This is loading an offset from the stack pointer for a
3964 // comparison. The offset is negative, so we decrease the
3965 // offset by the amount of space we need for the stack. This
3966 // means we will avoid calling __morestack if there happens to
3967 // be plenty of space on the stack already.
3968 unsigned char* pval = view + fnoffset + 3;
3969 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3970 val -= parameters->options().split_stack_adjust_size();
3971 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3975 if (!object->has_no_split_stack())
3976 object->error(_("failed to match split-stack sequence at "
3977 "section %u offset %0zx"),
3978 shndx, static_cast<size_t>(fnoffset));
3982 // We have to change the function so that it calls
3983 // __morestack_non_split instead of __morestack. The former will
3984 // allocate additional stack space.
3985 *from = "__morestack";
3986 *to = "__morestack_non_split";
3989 // The selector for i386 object files. Note this is never instantiated
3990 // directly. It's only used in Target_selector_i386_nacl, below.
3992 class Target_selector_i386 : public Target_selector_freebsd
3995 Target_selector_i386()
3996 : Target_selector_freebsd(elfcpp::EM_386, 32, false,
3997 "elf32-i386", "elf32-i386-freebsd",
4002 do_instantiate_target()
4003 { return new Target_i386(); }
4006 // NaCl variant. It uses different PLT contents.
4008 class Output_data_plt_i386_nacl : public Output_data_plt_i386
4011 Output_data_plt_i386_nacl(Layout* layout,
4012 Output_data_got_plt_i386* got_plt,
4013 Output_data_space* got_irelative)
4014 : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
4018 virtual unsigned int
4019 do_get_plt_entry_size() const
4020 { return plt_entry_size; }
4023 do_add_eh_frame(Layout* layout)
4025 layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
4026 plt_eh_frame_fde, plt_eh_frame_fde_size);
4029 // The size of an entry in the PLT.
4030 static const int plt_entry_size = 64;
4032 // The .eh_frame unwind information for the PLT.
4033 static const int plt_eh_frame_fde_size = 32;
4034 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4037 class Output_data_plt_i386_nacl_exec : public Output_data_plt_i386_nacl
4040 Output_data_plt_i386_nacl_exec(Layout* layout,
4041 Output_data_got_plt_i386* got_plt,
4042 Output_data_space* got_irelative)
4043 : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
4048 do_fill_first_plt_entry(unsigned char* pov,
4049 elfcpp::Elf_types<32>::Elf_Addr got_address);
4051 virtual unsigned int
4052 do_fill_plt_entry(unsigned char* pov,
4053 elfcpp::Elf_types<32>::Elf_Addr got_address,
4054 unsigned int got_offset,
4055 unsigned int plt_offset,
4056 unsigned int plt_rel_offset);
4059 // The first entry in the PLT for an executable.
4060 static const unsigned char first_plt_entry[plt_entry_size];
4062 // Other entries in the PLT for an executable.
4063 static const unsigned char plt_entry[plt_entry_size];
4066 class Output_data_plt_i386_nacl_dyn : public Output_data_plt_i386_nacl
4069 Output_data_plt_i386_nacl_dyn(Layout* layout,
4070 Output_data_got_plt_i386* got_plt,
4071 Output_data_space* got_irelative)
4072 : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
4077 do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
4079 virtual unsigned int
4080 do_fill_plt_entry(unsigned char* pov,
4081 elfcpp::Elf_types<32>::Elf_Addr,
4082 unsigned int got_offset,
4083 unsigned int plt_offset,
4084 unsigned int plt_rel_offset);
4087 // The first entry in the PLT for a shared object.
4088 static const unsigned char first_plt_entry[plt_entry_size];
4090 // Other entries in the PLT for a shared object.
4091 static const unsigned char plt_entry[plt_entry_size];
4094 class Target_i386_nacl : public Target_i386
4098 : Target_i386(&i386_nacl_info)
4102 virtual Output_data_plt_i386*
4103 do_make_data_plt(Layout* layout,
4104 Output_data_got_plt_i386* got_plt,
4105 Output_data_space* got_irelative,
4109 return new Output_data_plt_i386_nacl_dyn(layout, got_plt, got_irelative);
4111 return new Output_data_plt_i386_nacl_exec(layout, got_plt, got_irelative);
4115 do_code_fill(section_size_type length) const;
4118 static const Target::Target_info i386_nacl_info;
4121 const Target::Target_info Target_i386_nacl::i386_nacl_info =
4124 false, // is_big_endian
4125 elfcpp::EM_386, // machine_code
4126 false, // has_make_symbol
4127 false, // has_resolve
4128 true, // has_code_fill
4129 true, // is_default_stack_executable
4130 true, // can_icf_inline_merge_sections
4132 "/lib/ld-nacl-x86-32.so.1", // dynamic_linker
4133 0x20000, // default_text_segment_address
4134 0x10000, // abi_pagesize (overridable by -z max-page-size)
4135 0x10000, // common_pagesize (overridable by -z common-page-size)
4136 true, // isolate_execinstr
4137 0x10000000, // rosegment_gap
4138 elfcpp::SHN_UNDEF, // small_common_shndx
4139 elfcpp::SHN_UNDEF, // large_common_shndx
4140 0, // small_common_section_flags
4141 0, // large_common_section_flags
4142 NULL, // attributes_section
4143 NULL, // attributes_vendor
4144 "_start", // entry_symbol_name
4145 32, // hash_entry_size
4148 #define NACLMASK 0xe0 // 32-byte alignment mask
4151 Output_data_plt_i386_nacl_exec::first_plt_entry[plt_entry_size] =
4153 0xff, 0x35, // pushl contents of memory address
4154 0, 0, 0, 0, // replaced with address of .got + 4
4155 0x8b, 0x0d, // movl contents of address, %ecx
4156 0, 0, 0, 0, // replaced with address of .got + 8
4157 0x83, 0xe1, NACLMASK, // andl $NACLMASK, %ecx
4158 0xff, 0xe1, // jmp *%ecx
4159 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4160 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4161 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4162 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4163 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4164 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4165 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4166 0x90, 0x90, 0x90, 0x90, 0x90
4170 Output_data_plt_i386_nacl_exec::do_fill_first_plt_entry(
4172 elfcpp::Elf_types<32>::Elf_Addr got_address)
4174 memcpy(pov, first_plt_entry, plt_entry_size);
4175 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
4176 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
4179 // The first entry in the PLT for a shared object.
4182 Output_data_plt_i386_nacl_dyn::first_plt_entry[plt_entry_size] =
4184 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
4185 0x8b, 0x4b, 0x08, // mov 0x8(%ebx), %ecx
4186 0x83, 0xe1, NACLMASK, // andl $NACLMASK, %ecx
4187 0xff, 0xe1, // jmp *%ecx
4188 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4189 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4190 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4191 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4192 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4193 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4194 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4195 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4196 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4197 0x90, 0x90, 0x90, 0x90, 0x90 // nops
4201 Output_data_plt_i386_nacl_dyn::do_fill_first_plt_entry(
4203 elfcpp::Elf_types<32>::Elf_Addr)
4205 memcpy(pov, first_plt_entry, plt_entry_size);
4208 // Subsequent entries in the PLT for an executable.
4211 Output_data_plt_i386_nacl_exec::plt_entry[plt_entry_size] =
4213 0x8b, 0x0d, // movl contents of address, %ecx */
4214 0, 0, 0, 0, // replaced with address of symbol in .got
4215 0x83, 0xe1, NACLMASK, // andl $NACLMASK, %ecx
4216 0xff, 0xe1, // jmp *%ecx
4218 // Pad to the next 32-byte boundary with nop instructions.
4220 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4221 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4223 // Lazy GOT entries point here (32-byte aligned).
4224 0x68, // pushl immediate
4225 0, 0, 0, 0, // replaced with offset into relocation table
4226 0xe9, // jmp relative
4227 0, 0, 0, 0, // replaced with offset to start of .plt
4229 // Pad to the next 32-byte boundary with nop instructions.
4230 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4231 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4236 Output_data_plt_i386_nacl_exec::do_fill_plt_entry(
4238 elfcpp::Elf_types<32>::Elf_Addr got_address,
4239 unsigned int got_offset,
4240 unsigned int plt_offset,
4241 unsigned int plt_rel_offset)
4243 memcpy(pov, plt_entry, plt_entry_size);
4244 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4245 got_address + got_offset);
4246 elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
4247 elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
4251 // Subsequent entries in the PLT for a shared object.
4254 Output_data_plt_i386_nacl_dyn::plt_entry[plt_entry_size] =
4256 0x8b, 0x8b, // movl offset(%ebx), %ecx
4257 0, 0, 0, 0, // replaced with offset of symbol in .got
4258 0x83, 0xe1, 0xe0, // andl $NACLMASK, %ecx
4259 0xff, 0xe1, // jmp *%ecx
4261 // Pad to the next 32-byte boundary with nop instructions.
4263 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4264 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4266 // Lazy GOT entries point here (32-byte aligned).
4267 0x68, // pushl immediate
4268 0, 0, 0, 0, // replaced with offset into relocation table.
4269 0xe9, // jmp relative
4270 0, 0, 0, 0, // replaced with offset to start of .plt.
4272 // Pad to the next 32-byte boundary with nop instructions.
4273 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4274 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4279 Output_data_plt_i386_nacl_dyn::do_fill_plt_entry(
4281 elfcpp::Elf_types<32>::Elf_Addr,
4282 unsigned int got_offset,
4283 unsigned int plt_offset,
4284 unsigned int plt_rel_offset)
4286 memcpy(pov, plt_entry, plt_entry_size);
4287 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
4288 elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
4289 elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
4294 Output_data_plt_i386_nacl::plt_eh_frame_fde[plt_eh_frame_fde_size] =
4296 0, 0, 0, 0, // Replaced with offset to .plt.
4297 0, 0, 0, 0, // Replaced with size of .plt.
4298 0, // Augmentation size.
4299 elfcpp::DW_CFA_def_cfa_offset, 8, // DW_CFA_def_cfa_offset: 8.
4300 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
4301 elfcpp::DW_CFA_def_cfa_offset, 12, // DW_CFA_def_cfa_offset: 12.
4302 elfcpp::DW_CFA_advance_loc + 58, // Advance 58 to __PLT__ + 64.
4303 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
4304 13, // Block length.
4305 elfcpp::DW_OP_breg4, 4, // Push %esp + 4.
4306 elfcpp::DW_OP_breg8, 0, // Push %eip.
4307 elfcpp::DW_OP_const1u, 63, // Push 0x3f.
4308 elfcpp::DW_OP_and, // & (%eip & 0x3f).
4309 elfcpp::DW_OP_const1u, 37, // Push 0x25.
4310 elfcpp::DW_OP_ge, // >= ((%eip & 0x3f) >= 0x25)
4311 elfcpp::DW_OP_lit2, // Push 2.
4312 elfcpp::DW_OP_shl, // << (((%eip & 0x3f) >= 0x25) << 2)
4313 elfcpp::DW_OP_plus, // + ((((%eip&0x3f)>=0x25)<<2)+%esp+4
4314 elfcpp::DW_CFA_nop, // Align to 32 bytes.
4318 // Return a string used to fill a code section with nops.
4319 // For NaCl, long NOPs are only valid if they do not cross
4320 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
4322 Target_i386_nacl::do_code_fill(section_size_type length) const
4324 return std::string(length, static_cast<char>(0x90));
4327 // The selector for i386-nacl object files.
4329 class Target_selector_i386_nacl
4330 : public Target_selector_nacl<Target_selector_i386, Target_i386_nacl>
4333 Target_selector_i386_nacl()
4334 : Target_selector_nacl<Target_selector_i386,
4335 Target_i386_nacl>("x86-32",
4341 Target_selector_i386_nacl target_selector_i386;
4343 // IAMCU variant. It uses EM_IAMCU, not EM_386.
4345 class Target_iamcu : public Target_i386
4349 : Target_i386(&iamcu_info)
4353 // Information about this specific target which we pass to the
4354 // general Target structure.
4355 static const Target::Target_info iamcu_info;
4358 const Target::Target_info Target_iamcu::iamcu_info =
4361 false, // is_big_endian
4362 elfcpp::EM_IAMCU, // machine_code
4363 false, // has_make_symbol
4364 false, // has_resolve
4365 true, // has_code_fill
4366 true, // is_default_stack_executable
4367 true, // can_icf_inline_merge_sections
4369 "/usr/lib/libc.so.1", // dynamic_linker
4370 0x08048000, // default_text_segment_address
4371 0x1000, // abi_pagesize (overridable by -z max-page-size)
4372 0x1000, // common_pagesize (overridable by -z common-page-size)
4373 false, // isolate_execinstr
4375 elfcpp::SHN_UNDEF, // small_common_shndx
4376 elfcpp::SHN_UNDEF, // large_common_shndx
4377 0, // small_common_section_flags
4378 0, // large_common_section_flags
4379 NULL, // attributes_section
4380 NULL, // attributes_vendor
4381 "_start", // entry_symbol_name
4382 32, // hash_entry_size
4385 class Target_selector_iamcu : public Target_selector
4388 Target_selector_iamcu()
4389 : Target_selector(elfcpp::EM_IAMCU, 32, false, "elf32-iamcu",
4394 do_instantiate_target()
4395 { return new Target_iamcu(); }
4398 Target_selector_iamcu target_selector_iamcu;
4400 } // End anonymous namespace.