Use nops when doing alignment padding between code sections.
[platform/upstream/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 #include "gold.h"
4
5 #include <cstring>
6
7 #include "elfcpp.h"
8 #include "reloc.h"
9 #include "i386.h"
10 #include "object.h"
11 #include "symtab.h"
12 #include "layout.h"
13 #include "output.h"
14 #include "target.h"
15 #include "target-reloc.h"
16 #include "target-select.h"
17
18 namespace
19 {
20
21 using namespace gold;
22
23 class Output_data_plt_i386;
24
25 // The i386 target class.
26
27 class Target_i386 : public Sized_target<32, false>
28 {
29  public:
30   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
31
32   Target_i386()
33     : Sized_target<32, false>(&i386_info),
34       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
35       copy_relocs_(NULL), dynbss_(NULL)
36   { }
37
38   // Scan the relocations to look for symbol adjustments.
39   void
40   scan_relocs(const General_options& options,
41               Symbol_table* symtab,
42               Layout* layout,
43               Sized_relobj<32, false>* object,
44               unsigned int data_shndx,
45               unsigned int sh_type,
46               const unsigned char* prelocs,
47               size_t reloc_count,
48               size_t local_symbol_count,
49               const unsigned char* plocal_symbols,
50               Symbol** global_symbols);
51
52   // Finalize the sections.
53   void
54   do_finalize_sections(const General_options*, Layout*);
55
56   // Relocate a section.
57   void
58   relocate_section(const Relocate_info<32, false>*,
59                    unsigned int sh_type,
60                    const unsigned char* prelocs,
61                    size_t reloc_count,
62                    unsigned char* view,
63                    elfcpp::Elf_types<32>::Elf_Addr view_address,
64                    off_t view_size);
65
66   // Return a string used to fill a code section with nops.
67   std::string
68   do_code_fill(off_t length);
69
70  private:
71   // The class which scans relocations.
72   struct Scan
73   {
74     inline void
75     local(const General_options& options, Symbol_table* symtab,
76           Layout* layout, Target_i386* target,
77           Sized_relobj<32, false>* object,
78           unsigned int data_shndx,
79           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
80           const elfcpp::Sym<32, false>& lsym);
81
82     inline void
83     global(const General_options& options, Symbol_table* symtab,
84            Layout* layout, Target_i386* target,
85            Sized_relobj<32, false>* object,
86            unsigned int data_shndx,
87            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
88            Symbol* gsym);
89   };
90
91   // The class which implements relocation.
92   class Relocate
93   {
94    public:
95     Relocate()
96       : skip_call_tls_get_addr_(false)
97     { }
98
99     ~Relocate()
100     {
101       if (this->skip_call_tls_get_addr_)
102         {
103           // FIXME: This needs to specify the location somehow.
104           fprintf(stderr, _("%s: missing expected TLS relocation\n"),
105                   program_name);
106           gold_exit(false);
107         }
108     }
109
110     // Do a relocation.  Return false if the caller should not issue
111     // any warnings about this relocation.
112     inline bool
113     relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
114              const elfcpp::Rel<32, false>&,
115              unsigned int r_type, const Sized_symbol<32>*,
116              const Symbol_value<32>*,
117              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
118              off_t);
119
120    private:
121     // Do a TLS relocation.
122     inline void
123     relocate_tls(const Relocate_info<32, false>*, size_t relnum,
124                  const elfcpp::Rel<32, false>&,
125                  unsigned int r_type, const Sized_symbol<32>*,
126                  const Symbol_value<32>*,
127                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
128
129     // Do a TLS Initial-Exec to Local-Exec transition.
130     static inline void
131     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
132                  Output_segment* tls_segment,
133                  const elfcpp::Rel<32, false>&, unsigned int r_type,
134                  elfcpp::Elf_types<32>::Elf_Addr value,
135                  unsigned char* view,
136                  off_t view_size);
137
138     // Do a TLS Global-Dynamic to Local-Exec transition.
139     inline void
140     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
141                  Output_segment* tls_segment,
142                  const elfcpp::Rel<32, false>&, unsigned int r_type,
143                  elfcpp::Elf_types<32>::Elf_Addr value,
144                  unsigned char* view,
145                  off_t view_size);
146
147     // Check the range for a TLS relocation.
148     static inline void
149     check_range(const Relocate_info<32, false>*, size_t relnum,
150                 const elfcpp::Rel<32, false>&, off_t, off_t);
151
152     // Check the validity of a TLS relocation.  This is like assert.
153     static inline void
154     check_tls(const Relocate_info<32, false>*, size_t relnum,
155               const elfcpp::Rel<32, false>&, bool);
156
157     // This is set if we should skip the next reloc, which should be a
158     // PLT32 reloc against ___tls_get_addr.
159     bool skip_call_tls_get_addr_;
160   };
161
162   // Adjust TLS relocation type based on the options and whether this
163   // is a local symbol.
164   static unsigned int
165   optimize_tls_reloc(const General_options*, bool is_final, int r_type);
166
167   // Get the GOT section, creating it if necessary.
168   Output_data_got<32, false>*
169   got_section(const General_options*, Symbol_table*, Layout*);
170
171   // Create a PLT entry for a global symbol.
172   void
173   make_plt_entry(const General_options* options, Symbol_table*,
174                  Layout*, Symbol*);
175
176   // Get the PLT section.
177   Output_data_plt_i386*
178   plt_section() const
179   {
180     gold_assert(this->plt_ != NULL);
181     return this->plt_;
182   }
183
184   // Get the dynamic reloc section, creating it if necessary.
185   Reloc_section*
186   rel_dyn_section(Layout*);
187
188   // Copy a relocation against a global symbol.
189   void
190   copy_reloc(const General_options*, Symbol_table*, Layout*,
191              Sized_relobj<32, false>*, unsigned int,
192              Symbol*, const elfcpp::Rel<32, false>&);
193
194   // Information about this specific target which we pass to the
195   // general Target structure.
196   static const Target::Target_info i386_info;
197
198   // The GOT section.
199   Output_data_got<32, false>* got_;
200   // The PLT section.
201   Output_data_plt_i386* plt_;
202   // The GOT PLT section.
203   Output_data_space* got_plt_;
204   // The dynamic reloc section.
205   Reloc_section* rel_dyn_;
206   // Relocs saved to avoid a COPY reloc.
207   Copy_relocs<32, false>* copy_relocs_;
208   // Space for variables copied with a COPY reloc.
209   Output_data_space* dynbss_;
210 };
211
212 const Target::Target_info Target_i386::i386_info =
213 {
214   32,                   // size
215   false,                // is_big_endian
216   elfcpp::EM_386,       // machine_code
217   false,                // has_make_symbol
218   false,                // has_resolve
219   true,                 // has_code_fill
220   "/usr/lib/libc.so.1", // dynamic_linker
221   0x08048000,           // text_segment_address
222   0x1000,               // abi_pagesize
223   0x1000                // common_pagesize
224 };
225
226 // Get the GOT section, creating it if necessary.
227
228 Output_data_got<32, false>*
229 Target_i386::got_section(const General_options* options, Symbol_table* symtab,
230                          Layout* layout)
231 {
232   if (this->got_ == NULL)
233     {
234       gold_assert(options != NULL && symtab != NULL && layout != NULL);
235
236       this->got_ = new Output_data_got<32, false>(options);
237
238       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
239                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
240                                       this->got_);
241
242       // The old GNU linker creates a .got.plt section.  We just
243       // create another set of data in the .got section.  Note that we
244       // always create a PLT if we create a GOT, although the PLT
245       // might be empty.
246       this->got_plt_ = new Output_data_space(4);
247       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
248                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
249                                       this->got_plt_);
250
251       // The first three entries are reserved.
252       this->got_plt_->set_space_size(3 * 4);
253
254       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
255       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
256                                     this->got_plt_,
257                                     0, 0, elfcpp::STT_OBJECT,
258                                     elfcpp::STB_LOCAL,
259                                     elfcpp::STV_HIDDEN, 0,
260                                     false, false);
261     }
262
263   return this->got_;
264 }
265
266 // Get the dynamic reloc section, creating it if necessary.
267
268 Target_i386::Reloc_section*
269 Target_i386::rel_dyn_section(Layout* layout)
270 {
271   if (this->rel_dyn_ == NULL)
272     {
273       gold_assert(layout != NULL);
274       this->rel_dyn_ = new Reloc_section();
275       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
276                                       elfcpp::SHF_ALLOC, this->rel_dyn_);
277     }
278   return this->rel_dyn_;
279 }
280
281 // A class to handle the PLT data.
282
283 class Output_data_plt_i386 : public Output_section_data
284 {
285  public:
286   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
287
288   Output_data_plt_i386(Layout*, Output_data_space*, bool is_shared);
289
290   // Add an entry to the PLT.
291   void
292   add_entry(Symbol* gsym);
293
294   // Return the .rel.plt section data.
295   const Reloc_section*
296   rel_plt() const
297   { return this->rel_; }
298
299  protected:
300   void
301   do_adjust_output_section(Output_section* os);
302
303  private:
304   // The size of an entry in the PLT.
305   static const int plt_entry_size = 16;
306
307   // The first entry in the PLT for an executable.
308   static unsigned char exec_first_plt_entry[plt_entry_size];
309
310   // The first entry in the PLT for a shared object.
311   static unsigned char dyn_first_plt_entry[plt_entry_size];
312
313   // Other entries in the PLT for an executable.
314   static unsigned char exec_plt_entry[plt_entry_size];
315
316   // Other entries in the PLT for a shared object.
317   static unsigned char dyn_plt_entry[plt_entry_size];
318
319   // Set the final size.
320   void
321   do_set_address(uint64_t, off_t)
322   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
323
324   // Write out the PLT data.
325   void
326   do_write(Output_file*);
327
328   // The reloc section.
329   Reloc_section* rel_;
330   // The .got.plt section.
331   Output_data_space* got_plt_;
332   // The number of PLT entries.
333   unsigned int count_;
334   // Whether we are generated a shared object.
335   bool is_shared_;
336 };
337
338 // Create the PLT section.  The ordinary .got section is an argument,
339 // since we need to refer to the start.  We also create our own .got
340 // section just for PLT entries.
341
342 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
343                                            Output_data_space* got_plt,
344                                            bool is_shared)
345   : Output_section_data(4), got_plt_(got_plt), is_shared_(is_shared)
346 {
347   this->rel_ = new Reloc_section();
348   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
349                                   elfcpp::SHF_ALLOC, this->rel_);
350 }
351
352 // For some reason
353
354 void
355 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
356 {
357   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
358   // linker, and so do we.
359   os->set_entsize(4);
360 }
361
362 // Add an entry to the PLT.
363
364 void
365 Output_data_plt_i386::add_entry(Symbol* gsym)
366 {
367   gold_assert(!gsym->has_plt_offset());
368
369   // Note that when setting the PLT offset we skip the initial
370   // reserved PLT entry.
371   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
372
373   ++this->count_;
374
375   off_t got_offset = this->got_plt_->data_size();
376
377   // Every PLT entry needs a GOT entry which points back to the PLT
378   // entry (this will be changed by the dynamic linker, normally
379   // lazily when the function is called).
380   this->got_plt_->set_space_size(got_offset + 4);
381
382   // Every PLT entry needs a reloc.
383   gsym->set_needs_dynsym_entry();
384   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
385                          got_offset);
386
387   // Note that we don't need to save the symbol.  The contents of the
388   // PLT are independent of which symbols are used.  The symbols only
389   // appear in the relocations.
390 }
391
392 // The first entry in the PLT for an executable.
393
394 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
395 {
396   0xff, 0x35,   // pushl contents of memory address
397   0, 0, 0, 0,   // replaced with address of .got + 4
398   0xff, 0x25,   // jmp indirect
399   0, 0, 0, 0,   // replaced with address of .got + 8
400   0, 0, 0, 0    // unused
401 };
402
403 // The first entry in the PLT for a shared object.
404
405 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
406 {
407   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
408   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
409   0, 0, 0, 0                    // unused
410 };
411
412 // Subsequent entries in the PLT for an executable.
413
414 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
415 {
416   0xff, 0x25,   // jmp indirect
417   0, 0, 0, 0,   // replaced with address of symbol in .got
418   0x68,         // pushl immediate
419   0, 0, 0, 0,   // replaced with offset into relocation table
420   0xe9,         // jmp relative
421   0, 0, 0, 0    // replaced with offset to start of .plt
422 };
423
424 // Subsequent entries in the PLT for a shared object.
425
426 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
427 {
428   0xff, 0xa3,   // jmp *offset(%ebx)
429   0, 0, 0, 0,   // replaced with offset of symbol in .got
430   0x68,         // pushl immediate
431   0, 0, 0, 0,   // replaced with offset into relocation table
432   0xe9,         // jmp relative
433   0, 0, 0, 0    // replaced with offset to start of .plt
434 };
435
436 // Write out the PLT.  This uses the hand-coded instructions above,
437 // and adjusts them as needed.  This is all specified by the i386 ELF
438 // Processor Supplement.
439
440 void
441 Output_data_plt_i386::do_write(Output_file* of)
442 {
443   const off_t offset = this->offset();
444   const off_t oview_size = this->data_size();
445   unsigned char* const oview = of->get_output_view(offset, oview_size);
446
447   const off_t got_file_offset = this->got_plt_->offset();
448   const off_t got_size = this->got_plt_->data_size();
449   unsigned char* const got_view = of->get_output_view(got_file_offset,
450                                                       got_size);
451
452   unsigned char* pov = oview;
453
454   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
455   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
456
457   if (this->is_shared_)
458     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
459   else
460     {
461       memcpy(pov, exec_first_plt_entry, plt_entry_size);
462       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
463       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
464     }
465   pov += plt_entry_size;
466
467   unsigned char* got_pov = got_view;
468
469   memset(got_pov, 0, 12);
470   got_pov += 12;
471
472   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
473
474   unsigned int plt_offset = plt_entry_size;
475   unsigned int plt_rel_offset = 0;
476   unsigned int got_offset = 12;
477   const unsigned int count = this->count_;
478   for (unsigned int i = 0;
479        i < count;
480        ++i,
481          pov += plt_entry_size,
482          got_pov += 4,
483          plt_offset += plt_entry_size,
484          plt_rel_offset += rel_size,
485          got_offset += 4)
486     {
487       // Set and adjust the PLT entry itself.
488
489       if (this->is_shared_)
490         {
491           memcpy(pov, dyn_plt_entry, plt_entry_size);
492           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
493         }
494       else
495         {
496           memcpy(pov, exec_plt_entry, plt_entry_size);
497           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
498                                                       (got_address
499                                                        + got_offset));
500         }
501
502       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
503       elfcpp::Swap<32, false>::writeval(pov + 12,
504                                         - (plt_offset + plt_entry_size));
505
506       // Set the entry in the GOT.
507       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
508     }
509
510   gold_assert(pov - oview == oview_size);
511   gold_assert(got_pov - got_view == got_size);
512
513   of->write_output_view(offset, oview_size, oview);
514   of->write_output_view(got_file_offset, got_size, got_view);
515 }
516
517 // Create a PLT entry for a global symbol.
518
519 void
520 Target_i386::make_plt_entry(const General_options* options,
521                             Symbol_table* symtab, Layout* layout, Symbol* gsym)
522 {
523   if (gsym->has_plt_offset())
524     return;
525
526   if (this->plt_ == NULL)
527     {
528       // Create the GOT sections first.
529       this->got_section(options, symtab, layout);
530
531       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_,
532                                             options->is_shared());
533       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
534                                       (elfcpp::SHF_ALLOC
535                                        | elfcpp::SHF_EXECINSTR),
536                                       this->plt_);
537     }
538
539   this->plt_->add_entry(gsym);
540 }
541
542 // Handle a relocation against a non-function symbol defined in a
543 // dynamic object.  The traditional way to handle this is to generate
544 // a COPY relocation to copy the variable at runtime from the shared
545 // object into the executable's data segment.  However, this is
546 // undesirable in general, as if the size of the object changes in the
547 // dynamic object, the executable will no longer work correctly.  If
548 // this relocation is in a writable section, then we can create a
549 // dynamic reloc and the dynamic linker will resolve it to the correct
550 // address at runtime.  However, we do not want do that if the
551 // relocation is in a read-only section, as it would prevent the
552 // readonly segment from being shared.  And if we have to eventually
553 // generate a COPY reloc, then any dynamic relocations will be
554 // useless.  So this means that if this is a writable section, we need
555 // to save the relocation until we see whether we have to create a
556 // COPY relocation for this symbol for any other relocation.
557
558 void
559 Target_i386::copy_reloc(const General_options* options,
560                         Symbol_table* symtab,
561                         Layout* layout,
562                         Sized_relobj<32, false>* object,
563                         unsigned int data_shndx, Symbol* gsym,
564                         const elfcpp::Rel<32, false>& rel)
565 {
566   Sized_symbol<32>* ssym;
567   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
568                                                         SELECT_SIZE(32));
569
570   if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
571                                                data_shndx, ssym))
572     {
573       // So far we do not need a COPY reloc.  Save this relocation.
574       // If it turns out that we never need a COPY reloc for this
575       // symbol, then we will emit the relocation.
576       if (this->copy_relocs_ == NULL)
577         this->copy_relocs_ = new Copy_relocs<32, false>();
578       this->copy_relocs_->save(ssym, object, data_shndx, rel);
579     }
580   else
581     {
582       // Allocate space for this symbol in the .bss section.
583
584       elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
585
586       // There is no defined way to determine the required alignment
587       // of the symbol.  We pick the alignment based on the size.  We
588       // set an arbitrary maximum of 256.
589       unsigned int align;
590       for (align = 1; align < 512; align <<= 1)
591         if ((symsize & align) != 0)
592           break;
593
594       if (this->dynbss_ == NULL)
595         {
596           this->dynbss_ = new Output_data_space(align);
597           layout->add_output_section_data(".bss",
598                                           elfcpp::SHT_NOBITS,
599                                           (elfcpp::SHF_ALLOC
600                                            | elfcpp::SHF_WRITE),
601                                           this->dynbss_);
602         }
603
604       Output_data_space* dynbss = this->dynbss_;
605
606       if (align > dynbss->addralign())
607         dynbss->set_space_alignment(align);
608
609       off_t dynbss_size = dynbss->data_size();
610       dynbss_size = align_address(dynbss_size, align);
611       off_t offset = dynbss_size;
612       dynbss->set_space_size(dynbss_size + symsize);
613
614       // Define the symbol in the .dynbss section.
615       symtab->define_in_output_data(this, ssym->name(), ssym->version(),
616                                     dynbss, offset, symsize, ssym->type(),
617                                     ssym->binding(), ssym->visibility(),
618                                     ssym->nonvis(), false, false);
619
620       // Add the COPY reloc.
621       ssym->set_needs_dynsym_entry();
622       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
623       rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
624     }
625 }
626
627 // Optimize the TLS relocation type based on what we know about the
628 // symbol.  IS_FINAL is true if the final address of this symbol is
629 // known at link time.
630
631 unsigned int
632 Target_i386::optimize_tls_reloc(const General_options* options,
633                                 bool is_final,
634                                 int r_type)
635 {
636   // If we are generating a shared library, then we can't do anything
637   // in the linker.
638   if (options->is_shared())
639     return r_type;
640
641   switch (r_type)
642     {
643     case elfcpp::R_386_TLS_GD:
644     case elfcpp::R_386_TLS_GOTDESC:
645     case elfcpp::R_386_TLS_DESC_CALL:
646       // These are Global-Dynamic which permits fully general TLS
647       // access.  Since we know that we are generating an executable,
648       // we can convert this to Initial-Exec.  If we also know that
649       // this is a local symbol, we can further switch to Local-Exec.
650       if (is_final)
651         return elfcpp::R_386_TLS_LE_32;
652       return elfcpp::R_386_TLS_IE_32;
653
654     case elfcpp::R_386_TLS_LDM:
655       // This is Local-Dynamic, which refers to a local symbol in the
656       // dynamic TLS block.  Since we know that we generating an
657       // executable, we can switch to Local-Exec.
658       return elfcpp::R_386_TLS_LE_32;
659
660     case elfcpp::R_386_TLS_LDO_32:
661       // Another type of Local-Dynamic relocation.
662       return elfcpp::R_386_TLS_LE;
663
664     case elfcpp::R_386_TLS_IE:
665     case elfcpp::R_386_TLS_GOTIE:
666     case elfcpp::R_386_TLS_IE_32:
667       // These are Initial-Exec relocs which get the thread offset
668       // from the GOT.  If we know that we are linking against the
669       // local symbol, we can switch to Local-Exec, which links the
670       // thread offset into the instruction.
671       if (is_final)
672         return elfcpp::R_386_TLS_LE_32;
673       return r_type;
674
675     case elfcpp::R_386_TLS_LE:
676     case elfcpp::R_386_TLS_LE_32:
677       // When we already have Local-Exec, there is nothing further we
678       // can do.
679       return r_type;
680
681     default:
682       gold_unreachable();
683     }
684 }
685
686 // Scan a relocation for a local symbol.
687
688 inline void
689 Target_i386::Scan::local(const General_options& options,
690                          Symbol_table* symtab,
691                          Layout* layout,
692                          Target_i386* target,
693                          Sized_relobj<32, false>* object,
694                          unsigned int,
695                          const elfcpp::Rel<32, false>&,
696                          unsigned int r_type,
697                          const elfcpp::Sym<32, false>&)
698 {
699   switch (r_type)
700     {
701     case elfcpp::R_386_NONE:
702     case elfcpp::R_386_GNU_VTINHERIT:
703     case elfcpp::R_386_GNU_VTENTRY:
704       break;
705
706     case elfcpp::R_386_32:
707     case elfcpp::R_386_16:
708     case elfcpp::R_386_8:
709       // FIXME: If we are generating a shared object we need to copy
710       // this relocation into the object.
711       gold_assert(!options.is_shared());
712       break;
713
714     case elfcpp::R_386_PC32:
715     case elfcpp::R_386_PC16:
716     case elfcpp::R_386_PC8:
717       break;
718
719     case elfcpp::R_386_GOTOFF:
720     case elfcpp::R_386_GOTPC:
721       // We need a GOT section.
722       target->got_section(&options, symtab, layout);
723       break;
724
725     case elfcpp::R_386_COPY:
726     case elfcpp::R_386_GLOB_DAT:
727     case elfcpp::R_386_JUMP_SLOT:
728     case elfcpp::R_386_RELATIVE:
729     case elfcpp::R_386_TLS_TPOFF:
730     case elfcpp::R_386_TLS_DTPMOD32:
731     case elfcpp::R_386_TLS_DTPOFF32:
732     case elfcpp::R_386_TLS_TPOFF32:
733     case elfcpp::R_386_TLS_DESC:
734       fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
735               program_name, object->name().c_str(), r_type);
736       gold_exit(false);
737       break;
738
739     case elfcpp::R_386_TLS_IE:
740     case elfcpp::R_386_TLS_GOTIE:
741     case elfcpp::R_386_TLS_LE:
742     case elfcpp::R_386_TLS_GD:
743     case elfcpp::R_386_TLS_LDM:
744     case elfcpp::R_386_TLS_LDO_32:
745     case elfcpp::R_386_TLS_IE_32:
746     case elfcpp::R_386_TLS_LE_32:
747     case elfcpp::R_386_TLS_GOTDESC:
748     case elfcpp::R_386_TLS_DESC_CALL:
749       r_type = Target_i386::optimize_tls_reloc(&options,
750                                                !options.is_shared(),
751                                                r_type);
752       switch (r_type)
753         {
754         case elfcpp::R_386_TLS_LE:
755         case elfcpp::R_386_TLS_LE_32:
756           // FIXME: If generating a shared object, we need to copy
757           // this relocation into the object.
758           gold_assert(!options.is_shared());
759           break;
760
761         case elfcpp::R_386_TLS_IE:
762         case elfcpp::R_386_TLS_GOTIE:
763         case elfcpp::R_386_TLS_GD:
764         case elfcpp::R_386_TLS_LDM:
765         case elfcpp::R_386_TLS_LDO_32:
766         case elfcpp::R_386_TLS_IE_32:
767         case elfcpp::R_386_TLS_GOTDESC:
768         case elfcpp::R_386_TLS_DESC_CALL:
769           fprintf(stderr,
770                   _("%s: %s: unsupported reloc %u against local symbol\n"),
771                   program_name, object->name().c_str(), r_type);
772           break;
773         }
774       break;
775
776     case elfcpp::R_386_GOT32:
777     case elfcpp::R_386_PLT32:
778     case elfcpp::R_386_32PLT:
779     case elfcpp::R_386_TLS_GD_32:
780     case elfcpp::R_386_TLS_GD_PUSH:
781     case elfcpp::R_386_TLS_GD_CALL:
782     case elfcpp::R_386_TLS_GD_POP:
783     case elfcpp::R_386_TLS_LDM_32:
784     case elfcpp::R_386_TLS_LDM_PUSH:
785     case elfcpp::R_386_TLS_LDM_CALL:
786     case elfcpp::R_386_TLS_LDM_POP:
787     case elfcpp::R_386_USED_BY_INTEL_200:
788     default:
789       fprintf(stderr, _("%s: %s: unsupported reloc %u against local symbol\n"),
790               program_name, object->name().c_str(), r_type);
791       break;
792     }
793 }
794
795 // Scan a relocation for a global symbol.
796
797 inline void
798 Target_i386::Scan::global(const General_options& options,
799                           Symbol_table* symtab,
800                           Layout* layout,
801                           Target_i386* target,
802                           Sized_relobj<32, false>* object,
803                           unsigned int data_shndx,
804                           const elfcpp::Rel<32, false>& reloc,
805                           unsigned int r_type,
806                           Symbol* gsym)
807 {
808   switch (r_type)
809     {
810     case elfcpp::R_386_NONE:
811     case elfcpp::R_386_GNU_VTINHERIT:
812     case elfcpp::R_386_GNU_VTENTRY:
813       break;
814
815     case elfcpp::R_386_32:
816     case elfcpp::R_386_PC32:
817     case elfcpp::R_386_16:
818     case elfcpp::R_386_PC16:
819     case elfcpp::R_386_8:
820     case elfcpp::R_386_PC8:
821       // FIXME: If we are generating a shared object we may need to
822       // copy this relocation into the object.  If this symbol is
823       // defined in a shared object, we may need to copy this
824       // relocation in order to avoid a COPY relocation.
825       gold_assert(!options.is_shared());
826
827       if (gsym->is_from_dynobj())
828         {
829           // This symbol is defined in a dynamic object.  If it is a
830           // function, we make a PLT entry.  Otherwise we need to
831           // either generate a COPY reloc or copy this reloc.
832           if (gsym->type() == elfcpp::STT_FUNC)
833             target->make_plt_entry(&options, symtab, layout, gsym);
834           else
835             target->copy_reloc(&options, symtab, layout, object, data_shndx,
836                                gsym, reloc);
837         }
838
839       break;
840
841     case elfcpp::R_386_GOT32:
842       {
843         // The symbol requires a GOT entry.
844         Output_data_got<32, false>* got = target->got_section(&options, symtab,
845                                                               layout);
846         if (got->add_global(gsym))
847           {
848             // If this symbol is not fully resolved, we need to add a
849             // dynamic relocation for it.
850             if (!gsym->final_value_is_known(&options))
851               {
852                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
853                 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
854                                     gsym->got_offset());
855               }
856           }
857       }
858       break;
859
860     case elfcpp::R_386_PLT32:
861       // If the symbol is fully resolved, this is just a PC32 reloc.
862       // Otherwise we need a PLT entry.
863       if (gsym->final_value_is_known(&options))
864         break;
865       target->make_plt_entry(&options, symtab, layout, gsym);
866       break;
867
868     case elfcpp::R_386_GOTOFF:
869     case elfcpp::R_386_GOTPC:
870       // We need a GOT section.
871       target->got_section(&options, symtab, layout);
872       break;
873
874     case elfcpp::R_386_COPY:
875     case elfcpp::R_386_GLOB_DAT:
876     case elfcpp::R_386_JUMP_SLOT:
877     case elfcpp::R_386_RELATIVE:
878     case elfcpp::R_386_TLS_TPOFF:
879     case elfcpp::R_386_TLS_DTPMOD32:
880     case elfcpp::R_386_TLS_DTPOFF32:
881     case elfcpp::R_386_TLS_TPOFF32:
882     case elfcpp::R_386_TLS_DESC:
883       fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
884               program_name, object->name().c_str(), r_type);
885       gold_exit(false);
886       break;
887
888     case elfcpp::R_386_TLS_IE:
889     case elfcpp::R_386_TLS_GOTIE:
890     case elfcpp::R_386_TLS_LE:
891     case elfcpp::R_386_TLS_GD:
892     case elfcpp::R_386_TLS_LDM:
893     case elfcpp::R_386_TLS_LDO_32:
894     case elfcpp::R_386_TLS_IE_32:
895     case elfcpp::R_386_TLS_LE_32:
896     case elfcpp::R_386_TLS_GOTDESC:
897     case elfcpp::R_386_TLS_DESC_CALL:
898       {
899         const bool is_final = gsym->final_value_is_known(&options);
900         r_type = Target_i386::optimize_tls_reloc(&options, is_final, r_type);
901         switch (r_type)
902           {
903           case elfcpp::R_386_TLS_LE:
904           case elfcpp::R_386_TLS_LE_32:
905             // FIXME: If generating a shared object, we need to copy
906             // this relocation into the object.
907             gold_assert(!options.is_shared());
908             break;
909
910           case elfcpp::R_386_TLS_IE:
911           case elfcpp::R_386_TLS_GOTIE:
912           case elfcpp::R_386_TLS_GD:
913           case elfcpp::R_386_TLS_LDM:
914           case elfcpp::R_386_TLS_LDO_32:
915           case elfcpp::R_386_TLS_IE_32:
916           case elfcpp::R_386_TLS_GOTDESC:
917           case elfcpp::R_386_TLS_DESC_CALL:
918             fprintf(stderr,
919                     _("%s: %s: unsupported reloc %u "
920                       "against global symbol %s\n"),
921                     program_name, object->name().c_str(), r_type,
922                     gsym->name());
923             break;
924           }
925       }
926       break;
927
928     case elfcpp::R_386_32PLT:
929     case elfcpp::R_386_TLS_GD_32:
930     case elfcpp::R_386_TLS_GD_PUSH:
931     case elfcpp::R_386_TLS_GD_CALL:
932     case elfcpp::R_386_TLS_GD_POP:
933     case elfcpp::R_386_TLS_LDM_32:
934     case elfcpp::R_386_TLS_LDM_PUSH:
935     case elfcpp::R_386_TLS_LDM_CALL:
936     case elfcpp::R_386_TLS_LDM_POP:
937     case elfcpp::R_386_USED_BY_INTEL_200:
938     default:
939       fprintf(stderr,
940               _("%s: %s: unsupported reloc %u against global symbol %s\n"),
941               program_name, object->name().c_str(), r_type, gsym->name());
942       break;
943     }
944 }
945
946 // Scan relocations for a section.
947
948 void
949 Target_i386::scan_relocs(const General_options& options,
950                          Symbol_table* symtab,
951                          Layout* layout,
952                          Sized_relobj<32, false>* object,
953                          unsigned int data_shndx,
954                          unsigned int sh_type,
955                          const unsigned char* prelocs,
956                          size_t reloc_count,
957                          size_t local_symbol_count,
958                          const unsigned char* plocal_symbols,
959                          Symbol** global_symbols)
960 {
961   if (sh_type == elfcpp::SHT_RELA)
962     {
963       fprintf(stderr, _("%s: %s: unsupported RELA reloc section\n"),
964               program_name, object->name().c_str());
965       gold_exit(false);
966     }
967
968   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
969                     Target_i386::Scan>(
970     options,
971     symtab,
972     layout,
973     this,
974     object,
975     data_shndx,
976     prelocs,
977     reloc_count,
978     local_symbol_count,
979     plocal_symbols,
980     global_symbols);
981 }
982
983 // Finalize the sections.
984
985 void
986 Target_i386::do_finalize_sections(const General_options* options,
987                                   Layout* layout)
988 {
989   // Fill in some more dynamic tags.
990   Output_data_dynamic* const odyn = layout->dynamic_data();
991   if (odyn != NULL)
992     {
993       if (this->got_plt_ != NULL)
994         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
995
996       if (this->plt_ != NULL)
997         {
998           const Output_data* od = this->plt_->rel_plt();
999           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1000           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1001           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1002         }
1003
1004       if (this->rel_dyn_ != NULL)
1005         {
1006           const Output_data* od = this->rel_dyn_;
1007           odyn->add_section_address(elfcpp::DT_REL, od);
1008           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1009           odyn->add_constant(elfcpp::DT_RELENT,
1010                              elfcpp::Elf_sizes<32>::rel_size);
1011         }
1012
1013       if (!options->is_shared())
1014         {
1015           // The value of the DT_DEBUG tag is filled in by the dynamic
1016           // linker at run time, and used by the debugger.
1017           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1018         }
1019     }
1020
1021   // Emit any relocs we saved in an attempt to avoid generating COPY
1022   // relocs.
1023   if (this->copy_relocs_ == NULL)
1024     return;
1025   if (this->copy_relocs_->any_to_emit())
1026     {
1027       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1028       this->copy_relocs_->emit(rel_dyn);
1029     }
1030   delete this->copy_relocs_;
1031   this->copy_relocs_ = NULL;
1032 }
1033
1034 // Perform a relocation.
1035
1036 inline bool
1037 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1038                                 Target_i386* target,
1039                                 size_t relnum,
1040                                 const elfcpp::Rel<32, false>& rel,
1041                                 unsigned int r_type,
1042                                 const Sized_symbol<32>* gsym,
1043                                 const Symbol_value<32>* psymval,
1044                                 unsigned char* view,
1045                                 elfcpp::Elf_types<32>::Elf_Addr address,
1046                                 off_t view_size)
1047 {
1048   if (this->skip_call_tls_get_addr_)
1049     {
1050       if (r_type != elfcpp::R_386_PLT32
1051           || gsym == NULL
1052           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1053         {
1054           fprintf(stderr, _("%s: %s: missing expected TLS relocation\n"),
1055                   program_name,
1056                   relinfo->location(relnum, rel.get_r_offset()).c_str());
1057           gold_exit(false);
1058         }
1059
1060       this->skip_call_tls_get_addr_ = false;
1061
1062       return false;
1063     }
1064
1065   // Pick the value to use for symbols defined in shared objects.
1066   Symbol_value<32> symval;
1067   if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1068     {
1069       symval.set_output_value(target->plt_section()->address()
1070                               + gsym->plt_offset());
1071       psymval = &symval;
1072     }
1073
1074   const Sized_relobj<32, false>* object = relinfo->object;
1075
1076   switch (r_type)
1077     {
1078     case elfcpp::R_386_NONE:
1079     case elfcpp::R_386_GNU_VTINHERIT:
1080     case elfcpp::R_386_GNU_VTENTRY:
1081       break;
1082
1083     case elfcpp::R_386_32:
1084       Relocate_functions<32, false>::rel32(view, object, psymval);
1085       break;
1086
1087     case elfcpp::R_386_PC32:
1088       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1089       break;
1090
1091     case elfcpp::R_386_16:
1092       Relocate_functions<32, false>::rel16(view, object, psymval);
1093       break;
1094
1095     case elfcpp::R_386_PC16:
1096       Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1097       break;
1098
1099     case elfcpp::R_386_8:
1100       Relocate_functions<32, false>::rel8(view, object, psymval);
1101       break;
1102
1103     case elfcpp::R_386_PC8:
1104       Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1105       break;
1106
1107     case elfcpp::R_386_PLT32:
1108       gold_assert(gsym->has_plt_offset()
1109                   || gsym->final_value_is_known(relinfo->options));
1110       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1111       break;
1112
1113     case elfcpp::R_386_GOT32:
1114       // Local GOT offsets not yet supported.
1115       gold_assert(gsym);
1116       gold_assert(gsym->has_got_offset());
1117       Relocate_functions<32, false>::rel32(view, gsym->got_offset());
1118       break;
1119
1120     case elfcpp::R_386_GOTOFF:
1121       {
1122         elfcpp::Elf_types<32>::Elf_Addr value;
1123         value = (psymval->value(object, 0)
1124                  - target->got_section(NULL, NULL, NULL)->address());
1125         Relocate_functions<32, false>::rel32(view, value);
1126       }
1127       break;
1128
1129     case elfcpp::R_386_GOTPC:
1130       {
1131         elfcpp::Elf_types<32>::Elf_Addr value;
1132         value = target->got_section(NULL, NULL, NULL)->address();
1133         Relocate_functions<32, false>::pcrel32(view, value, address);
1134       }
1135       break;
1136
1137     case elfcpp::R_386_COPY:
1138     case elfcpp::R_386_GLOB_DAT:
1139     case elfcpp::R_386_JUMP_SLOT:
1140     case elfcpp::R_386_RELATIVE:
1141     case elfcpp::R_386_TLS_TPOFF:
1142     case elfcpp::R_386_TLS_DTPMOD32:
1143     case elfcpp::R_386_TLS_DTPOFF32:
1144     case elfcpp::R_386_TLS_TPOFF32:
1145     case elfcpp::R_386_TLS_DESC:
1146       fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
1147               program_name,
1148               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1149               r_type);
1150       gold_exit(false);
1151       break;
1152
1153     case elfcpp::R_386_TLS_IE:
1154     case elfcpp::R_386_TLS_GOTIE:
1155     case elfcpp::R_386_TLS_LE:
1156     case elfcpp::R_386_TLS_GD:
1157     case elfcpp::R_386_TLS_LDM:
1158     case elfcpp::R_386_TLS_LDO_32:
1159     case elfcpp::R_386_TLS_IE_32:
1160     case elfcpp::R_386_TLS_LE_32:
1161     case elfcpp::R_386_TLS_GOTDESC:
1162     case elfcpp::R_386_TLS_DESC_CALL:
1163       this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1164                          address, view_size);
1165       break;
1166
1167     case elfcpp::R_386_32PLT:
1168     case elfcpp::R_386_TLS_GD_32:
1169     case elfcpp::R_386_TLS_GD_PUSH:
1170     case elfcpp::R_386_TLS_GD_CALL:
1171     case elfcpp::R_386_TLS_GD_POP:
1172     case elfcpp::R_386_TLS_LDM_32:
1173     case elfcpp::R_386_TLS_LDM_PUSH:
1174     case elfcpp::R_386_TLS_LDM_CALL:
1175     case elfcpp::R_386_TLS_LDM_POP:
1176     case elfcpp::R_386_USED_BY_INTEL_200:
1177     default:
1178       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1179               program_name,
1180               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1181               r_type);
1182       // gold_exit(false);
1183       break;
1184     }
1185
1186   return true;
1187 }
1188
1189 // Perform a TLS relocation.
1190
1191 inline void
1192 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1193                                     size_t relnum,
1194                                     const elfcpp::Rel<32, false>& rel,
1195                                     unsigned int r_type,
1196                                     const Sized_symbol<32>* gsym,
1197                                     const Symbol_value<32>* psymval,
1198                                     unsigned char* view,
1199                                     elfcpp::Elf_types<32>::Elf_Addr,
1200                                     off_t view_size)
1201 {
1202   Output_segment* tls_segment = relinfo->layout->tls_segment();
1203   if (tls_segment == NULL)
1204     {
1205       fprintf(stderr, _("%s: %s: TLS reloc but no TLS segment\n"),
1206               program_name,
1207               relinfo->location(relnum, rel.get_r_offset()).c_str());
1208       gold_exit(false);
1209     }
1210
1211   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1212
1213   const bool is_final = (gsym == NULL
1214                          ? !relinfo->options->is_shared()
1215                          : gsym->final_value_is_known(relinfo->options));
1216   const unsigned int opt_r_type =
1217     Target_i386::optimize_tls_reloc(relinfo->options, is_final, r_type);
1218   switch (r_type)
1219     {
1220     case elfcpp::R_386_TLS_LE_32:
1221       value = tls_segment->vaddr() + tls_segment->memsz() - value;
1222       Relocate_functions<32, false>::rel32(view, value);
1223       break;
1224
1225     case elfcpp::R_386_TLS_LE:
1226       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1227       Relocate_functions<32, false>::rel32(view, value);
1228       break;
1229
1230     case elfcpp::R_386_TLS_IE:
1231     case elfcpp::R_386_TLS_GOTIE:
1232     case elfcpp::R_386_TLS_IE_32:
1233       if (opt_r_type == elfcpp::R_386_TLS_LE_32)
1234         {
1235           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1236                                               rel, r_type, value, view,
1237                                               view_size);
1238           break;
1239         }
1240       fprintf(stderr, _("%s: %s: unsupported reloc type %u\n"),
1241               program_name,
1242               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1243               r_type);
1244       // gold_exit(false);
1245       break;
1246
1247     case elfcpp::R_386_TLS_GD:
1248       if (opt_r_type == elfcpp::R_386_TLS_LE_32)
1249         {
1250           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1251                              rel, r_type, value, view,
1252                              view_size);
1253           break;
1254         }
1255       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1256               program_name,
1257               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1258               r_type);
1259       // gold_exit(false);
1260       break;
1261
1262     case elfcpp::R_386_TLS_LDM:
1263     case elfcpp::R_386_TLS_LDO_32:
1264     case elfcpp::R_386_TLS_GOTDESC:
1265     case elfcpp::R_386_TLS_DESC_CALL:
1266       fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1267               program_name,
1268               relinfo->location(relnum, rel.get_r_offset()).c_str(),
1269               r_type);
1270       // gold_exit(false);
1271       break;
1272     }
1273 }
1274
1275 // Do a relocation in which we convert a TLS Initial-Exec to a
1276 // Local-Exec.
1277
1278 inline void
1279 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1280                                     size_t relnum,
1281                                     Output_segment* tls_segment,
1282                                     const elfcpp::Rel<32, false>& rel,
1283                                     unsigned int r_type,
1284                                     elfcpp::Elf_types<32>::Elf_Addr value,
1285                                     unsigned char* view,
1286                                     off_t view_size)
1287 {
1288   // We have to actually change the instructions, which means that we
1289   // need to examine the opcodes to figure out which instruction we
1290   // are looking at.
1291   if (r_type == elfcpp::R_386_TLS_IE)
1292     {
1293       // movl %gs:XX,%eax  ==>  movl $YY,%eax
1294       // movl %gs:XX,%reg  ==>  movl $YY,%reg
1295       // addl %gs:XX,%reg  ==>  addl $YY,%reg
1296       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -1);
1297       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1298
1299       unsigned char op1 = view[-1];
1300       if (op1 == 0xa1)
1301         {
1302           // movl XX,%eax  ==>  movl $YY,%eax
1303           view[-1] = 0xb8;
1304         }
1305       else
1306         {
1307           Target_i386::Relocate::check_range(relinfo, relnum, rel,
1308                                              view_size, -2);
1309
1310           unsigned char op2 = view[-2];
1311           if (op2 == 0x8b)
1312             {
1313               // movl XX,%reg  ==>  movl $YY,%reg
1314               Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1315                                                (op1 & 0xc7) == 0x05);
1316               view[-2] = 0xc7;
1317               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1318             }
1319           else if (op2 == 0x03)
1320             {
1321               // addl XX,%reg  ==>  addl $YY,%reg
1322               Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1323                                                (op1 & 0xc7) == 0x05);
1324               view[-2] = 0x81;
1325               view[-1] = 0xc0 | ((op1 >> 3) & 7);
1326             }
1327           else
1328             Target_i386::Relocate::check_tls(relinfo, relnum, rel, 0);
1329         }
1330     }
1331   else
1332     {
1333       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1334       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1335       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1336       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1337       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1338
1339       unsigned char op1 = view[-1];
1340       unsigned char op2 = view[-2];
1341       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1342                                        (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1343       if (op2 == 0x8b)
1344         {
1345           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
1346           view[-2] = 0xc7;
1347           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1348         }
1349       else if (op2 == 0x2b)
1350         {
1351           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
1352           view[-2] = 0x81;
1353           view[-1] = 0xe8 | ((op1 >> 3) & 7);
1354         }
1355       else if (op2 == 0x03)
1356         {
1357           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
1358           view[-2] = 0x81;
1359           view[-1] = 0xc0 | ((op1 >> 3) & 7);
1360         }
1361       else
1362         Target_i386::Relocate::check_tls(relinfo, relnum, rel, 0);
1363     }
1364
1365   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1366   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1367     value = - value;
1368
1369   Relocate_functions<32, false>::rel32(view, value);
1370 }
1371
1372 // Do a relocation in which we convert a TLS Global-Dynamic to a
1373 // Local-Exec.
1374
1375 inline void
1376 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1377                                     size_t relnum,
1378                                     Output_segment* tls_segment,
1379                                     const elfcpp::Rel<32, false>& rel,
1380                                     unsigned int,
1381                                     elfcpp::Elf_types<32>::Elf_Addr value,
1382                                     unsigned char* view,
1383                                     off_t view_size)
1384 {
1385   // leal foo(,%reg,1),%eax; call ___tls_get_addr
1386   //  ==> movl %gs,0,%eax; subl $foo@tpoff,%eax
1387   // leal foo(%reg),%eax; call ___tls_get_addr
1388   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1389
1390   Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1391   Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, 9);
1392
1393   unsigned char op1 = view[-1];
1394   unsigned char op2 = view[-2];
1395
1396   Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1397                                    op2 == 0x8d || op2 == 0x04);
1398   Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1399                                    view[4] == 0xe8);
1400
1401   int roff = 5;
1402
1403   if (op2 == 0x04)
1404     {
1405       Target_i386::Relocate::check_range(relinfo, relnum, rel, view_size, -3);
1406       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1407                                        view[-3] == 0x8d);
1408       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1409                                        ((op1 & 0xc7) == 0x05
1410                                         && op1 != (4 << 3)));
1411       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1412     }
1413   else
1414     {
1415       Target_i386::Relocate::check_tls(relinfo, relnum, rel,
1416                                        (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1417       if (rel.get_r_offset() + 9 < view_size && view[9] == 0x90)
1418         {
1419           // There is a trailing nop.  Use the size byte subl.
1420           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1421           roff = 6;
1422         }
1423       else
1424         {
1425           // Use the five byte subl.
1426           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1427         }
1428     }
1429
1430   value = tls_segment->vaddr() + tls_segment->memsz() - value;
1431   Relocate_functions<32, false>::rel32(view + roff, value);
1432
1433   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1434   // We can skip it.
1435   this->skip_call_tls_get_addr_ = true;
1436 }
1437
1438 // Check the range for a TLS relocation.
1439
1440 inline void
1441 Target_i386::Relocate::check_range(const Relocate_info<32, false>* relinfo,
1442                                    size_t relnum,
1443                                    const elfcpp::Rel<32, false>& rel,
1444                                    off_t view_size, off_t off)
1445 {
1446   off_t offset = rel.get_r_offset() + off;
1447   if (offset < 0 || offset > view_size)
1448     {
1449       fprintf(stderr, _("%s: %s: TLS relocation out of range\n"),
1450               program_name,
1451               relinfo->location(relnum, rel.get_r_offset()).c_str());
1452       gold_exit(false);
1453     }
1454 }
1455
1456 // Check the validity of a TLS relocation.  This is like assert.
1457
1458 inline void
1459 Target_i386::Relocate::check_tls(const Relocate_info<32, false>* relinfo,
1460                                  size_t relnum,
1461                                  const elfcpp::Rel<32, false>& rel,
1462                                  bool valid)
1463 {
1464   if (!valid)
1465     {
1466       fprintf(stderr,
1467               _("%s: %s: TLS relocation against invalid instruction\n"),
1468               program_name,
1469               relinfo->location(relnum, rel.get_r_offset()).c_str());
1470       gold_exit(false);
1471     }
1472 }
1473
1474 // Relocate section data.
1475
1476 void
1477 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1478                               unsigned int sh_type,
1479                               const unsigned char* prelocs,
1480                               size_t reloc_count,
1481                               unsigned char* view,
1482                               elfcpp::Elf_types<32>::Elf_Addr address,
1483                               off_t view_size)
1484 {
1485   gold_assert(sh_type == elfcpp::SHT_REL);
1486
1487   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1488                          Target_i386::Relocate>(
1489     relinfo,
1490     this,
1491     prelocs,
1492     reloc_count,
1493     view,
1494     address,
1495     view_size);
1496 }
1497
1498 // Return a string used to fill a code section with nops to take up
1499 // the specified length.
1500
1501 std::string
1502 Target_i386::do_code_fill(off_t length)
1503 {
1504   if (length >= 16)
1505     {
1506       // Build a jmp instruction to skip over the bytes.
1507       unsigned char jmp[5];
1508       jmp[0] = 0xe9;
1509       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1510       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1511               + std::string(length - 5, '\0'));
1512     }
1513
1514   // Nop sequences of various lengths.
1515   const char nop1[1] = { 0x90 };                   // nop
1516   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1517   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1518   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1519   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1520                          0x00 };                   // leal 0(%esi,1),%esi
1521   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1522                          0x00, 0x00 };
1523   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1524                          0x00, 0x00, 0x00 };
1525   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1526                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1527   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1528                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1529                          0x00 };
1530   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1531                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1532                            0x00, 0x00 };
1533   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1534                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1535                            0x00, 0x00, 0x00 };
1536   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1537                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1538                            0x00, 0x00, 0x00, 0x00 };
1539   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1540                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1541                            0x27, 0x00, 0x00, 0x00,
1542                            0x00 };
1543   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1544                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1545                            0xbc, 0x27, 0x00, 0x00,
1546                            0x00, 0x00 };
1547   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1548                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1549                            0x90, 0x90, 0x90, 0x90,
1550                            0x90, 0x90, 0x90 };
1551
1552   const char* nops[16] = {
1553     NULL,
1554     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1555     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1556   };
1557
1558   return std::string(nops[length], length);
1559 }
1560
1561 // The selector for i386 object files.
1562
1563 class Target_selector_i386 : public Target_selector
1564 {
1565 public:
1566   Target_selector_i386()
1567     : Target_selector(elfcpp::EM_386, 32, false)
1568   { }
1569
1570   Target*
1571   recognize(int machine, int osabi, int abiversion);
1572
1573  private:
1574   Target_i386* target_;
1575 };
1576
1577 // Recognize an i386 object file when we already know that the machine
1578 // number is EM_386.
1579
1580 Target*
1581 Target_selector_i386::recognize(int, int, int)
1582 {
1583   if (this->target_ == NULL)
1584     this->target_ = new Target_i386();
1585   return this->target_;
1586 }
1587
1588 Target_selector_i386 target_selector_i386;
1589
1590 } // End anonymous namespace.