43edd65db757da8bdcaa11e31cd0dfc825aa0686
[external/binutils.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
42
43 namespace
44 {
45
46 using namespace gold;
47
48 class Output_data_plt_i386;
49
50 // The i386 target class.
51 // TLS info comes from
52 //   http://people.redhat.com/drepper/tls.pdf
53 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
54
55 class Target_i386 : public Target_freebsd<32, false>
56 {
57  public:
58   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
59
60   Target_i386()
61     : Target_freebsd<32, false>(&i386_info),
62       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
63       copy_relocs_(elfcpp::R_386_COPY), dynbss_(NULL),
64       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
65   { }
66
67   // Process the relocations to determine unreferenced sections for 
68   // garbage collection.
69   void
70   gc_process_relocs(Symbol_table* symtab,
71                     Layout* layout,
72                     Sized_relobj<32, false>* object,
73                     unsigned int data_shndx,
74                     unsigned int sh_type,
75                     const unsigned char* prelocs,
76                     size_t reloc_count,
77                     Output_section* output_section,
78                     bool needs_special_offset_handling,
79                     size_t local_symbol_count,
80                     const unsigned char* plocal_symbols);
81
82   // Scan the relocations to look for symbol adjustments.
83   void
84   scan_relocs(Symbol_table* symtab,
85               Layout* layout,
86               Sized_relobj<32, false>* object,
87               unsigned int data_shndx,
88               unsigned int sh_type,
89               const unsigned char* prelocs,
90               size_t reloc_count,
91               Output_section* output_section,
92               bool needs_special_offset_handling,
93               size_t local_symbol_count,
94               const unsigned char* plocal_symbols);
95
96   // Finalize the sections.
97   void
98   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
99
100   // Return the value to use for a dynamic which requires special
101   // treatment.
102   uint64_t
103   do_dynsym_value(const Symbol*) const;
104
105   // Relocate a section.
106   void
107   relocate_section(const Relocate_info<32, false>*,
108                    unsigned int sh_type,
109                    const unsigned char* prelocs,
110                    size_t reloc_count,
111                    Output_section* output_section,
112                    bool needs_special_offset_handling,
113                    unsigned char* view,
114                    elfcpp::Elf_types<32>::Elf_Addr view_address,
115                    section_size_type view_size,
116                    const Reloc_symbol_changes*);
117
118   // Scan the relocs during a relocatable link.
119   void
120   scan_relocatable_relocs(Symbol_table* symtab,
121                           Layout* layout,
122                           Sized_relobj<32, false>* object,
123                           unsigned int data_shndx,
124                           unsigned int sh_type,
125                           const unsigned char* prelocs,
126                           size_t reloc_count,
127                           Output_section* output_section,
128                           bool needs_special_offset_handling,
129                           size_t local_symbol_count,
130                           const unsigned char* plocal_symbols,
131                           Relocatable_relocs*);
132
133   // Relocate a section during a relocatable link.
134   void
135   relocate_for_relocatable(const Relocate_info<32, false>*,
136                            unsigned int sh_type,
137                            const unsigned char* prelocs,
138                            size_t reloc_count,
139                            Output_section* output_section,
140                            off_t offset_in_output_section,
141                            const Relocatable_relocs*,
142                            unsigned char* view,
143                            elfcpp::Elf_types<32>::Elf_Addr view_address,
144                            section_size_type view_size,
145                            unsigned char* reloc_view,
146                            section_size_type reloc_view_size);
147
148   // Return a string used to fill a code section with nops.
149   std::string
150   do_code_fill(section_size_type length) const;
151
152   // Return whether SYM is defined by the ABI.
153   bool
154   do_is_defined_by_abi(const Symbol* sym) const
155   { return strcmp(sym->name(), "___tls_get_addr") == 0; }
156
157   // Return whether a symbol name implies a local label.  The UnixWare
158   // 2.1 cc generates temporary symbols that start with .X, so we
159   // recognize them here.  FIXME: do other SVR4 compilers also use .X?.
160   // If so, we should move the .X recognition into
161   // Target::do_is_local_label_name.
162   bool
163   do_is_local_label_name(const char* name) const
164   {
165     if (name[0] == '.' && name[1] == 'X')
166       return true;
167     return Target::do_is_local_label_name(name);
168   }
169
170   // Adjust -fstack-split code which calls non-stack-split code.
171   void
172   do_calls_non_split(Relobj* object, unsigned int shndx,
173                      section_offset_type fnoffset, section_size_type fnsize,
174                      unsigned char* view, section_size_type view_size,
175                      std::string* from, std::string* to) const;
176
177   // Return the size of the GOT section.
178   section_size_type
179   got_size()
180   {
181     gold_assert(this->got_ != NULL);
182     return this->got_->data_size();
183   }
184
185  private:
186   // The class which scans relocations.
187   struct Scan
188   {
189     inline void
190     local(Symbol_table* symtab, Layout* layout, Target_i386* target,
191           Sized_relobj<32, false>* object,
192           unsigned int data_shndx,
193           Output_section* output_section,
194           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
195           const elfcpp::Sym<32, false>& lsym);
196
197     inline void
198     global(Symbol_table* symtab, Layout* layout, Target_i386* target,
199            Sized_relobj<32, false>* object,
200            unsigned int data_shndx,
201            Output_section* output_section,
202            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
203            Symbol* gsym);
204
205     static void
206     unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
207
208     static void
209     unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
210                              Symbol*);
211   };
212
213   // The class which implements relocation.
214   class Relocate
215   {
216    public:
217     Relocate()
218       : skip_call_tls_get_addr_(false),
219         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
220     { }
221
222     ~Relocate()
223     {
224       if (this->skip_call_tls_get_addr_)
225         {
226           // FIXME: This needs to specify the location somehow.
227           gold_error(_("missing expected TLS relocation"));
228         }
229     }
230
231     // Return whether the static relocation needs to be applied.
232     inline bool
233     should_apply_static_reloc(const Sized_symbol<32>* gsym,
234                               int ref_flags,
235                               bool is_32bit,
236                               Output_section* output_section);
237
238     // Do a relocation.  Return false if the caller should not issue
239     // any warnings about this relocation.
240     inline bool
241     relocate(const Relocate_info<32, false>*, Target_i386*, Output_section*,
242              size_t relnum, const elfcpp::Rel<32, false>&,
243              unsigned int r_type, const Sized_symbol<32>*,
244              const Symbol_value<32>*,
245              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
246              section_size_type);
247
248    private:
249     // Do a TLS relocation.
250     inline void
251     relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
252                  size_t relnum, const elfcpp::Rel<32, false>&,
253                  unsigned int r_type, const Sized_symbol<32>*,
254                  const Symbol_value<32>*,
255                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
256                  section_size_type);
257
258     // Do a TLS General-Dynamic to Initial-Exec transition.
259     inline void
260     tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
261                  Output_segment* tls_segment,
262                  const elfcpp::Rel<32, false>&, unsigned int r_type,
263                  elfcpp::Elf_types<32>::Elf_Addr value,
264                  unsigned char* view,
265                  section_size_type view_size);
266
267     // Do a TLS General-Dynamic to Local-Exec transition.
268     inline void
269     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
270                  Output_segment* tls_segment,
271                  const elfcpp::Rel<32, false>&, unsigned int r_type,
272                  elfcpp::Elf_types<32>::Elf_Addr value,
273                  unsigned char* view,
274                  section_size_type view_size);
275
276     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
277     // transition.
278     inline void
279     tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
280                       Output_segment* tls_segment,
281                       const elfcpp::Rel<32, false>&, unsigned int r_type,
282                       elfcpp::Elf_types<32>::Elf_Addr value,
283                       unsigned char* view,
284                       section_size_type view_size);
285
286     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
287     // transition.
288     inline void
289     tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
290                       Output_segment* tls_segment,
291                       const elfcpp::Rel<32, false>&, unsigned int r_type,
292                       elfcpp::Elf_types<32>::Elf_Addr value,
293                       unsigned char* view,
294                       section_size_type view_size);
295
296     // Do a TLS Local-Dynamic to Local-Exec transition.
297     inline void
298     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
299                  Output_segment* tls_segment,
300                  const elfcpp::Rel<32, false>&, unsigned int r_type,
301                  elfcpp::Elf_types<32>::Elf_Addr value,
302                  unsigned char* view,
303                  section_size_type view_size);
304
305     // Do a TLS Initial-Exec to Local-Exec transition.
306     static inline void
307     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
308                  Output_segment* tls_segment,
309                  const elfcpp::Rel<32, false>&, unsigned int r_type,
310                  elfcpp::Elf_types<32>::Elf_Addr value,
311                  unsigned char* view,
312                  section_size_type view_size);
313
314     // We need to keep track of which type of local dynamic relocation
315     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
316     enum Local_dynamic_type
317     {
318       LOCAL_DYNAMIC_NONE,
319       LOCAL_DYNAMIC_SUN,
320       LOCAL_DYNAMIC_GNU
321     };
322
323     // This is set if we should skip the next reloc, which should be a
324     // PLT32 reloc against ___tls_get_addr.
325     bool skip_call_tls_get_addr_;
326     // The type of local dynamic relocation we have seen in the section
327     // being relocated, if any.
328     Local_dynamic_type local_dynamic_type_;
329   };
330
331   // A class which returns the size required for a relocation type,
332   // used while scanning relocs during a relocatable link.
333   class Relocatable_size_for_reloc
334   {
335    public:
336     unsigned int
337     get_size_for_reloc(unsigned int, Relobj*);
338   };
339
340   // Adjust TLS relocation type based on the options and whether this
341   // is a local symbol.
342   static tls::Tls_optimization
343   optimize_tls_reloc(bool is_final, int r_type);
344
345   // Get the GOT section, creating it if necessary.
346   Output_data_got<32, false>*
347   got_section(Symbol_table*, Layout*);
348
349   // Get the GOT PLT section.
350   Output_data_space*
351   got_plt_section() const
352   {
353     gold_assert(this->got_plt_ != NULL);
354     return this->got_plt_;
355   }
356
357   // Create a PLT entry for a global symbol.
358   void
359   make_plt_entry(Symbol_table*, Layout*, Symbol*);
360
361   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
362   void
363   define_tls_base_symbol(Symbol_table*, Layout*);
364
365   // Create a GOT entry for the TLS module index.
366   unsigned int
367   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
368                       Sized_relobj<32, false>* object);
369
370   // Get the PLT section.
371   const Output_data_plt_i386*
372   plt_section() const
373   {
374     gold_assert(this->plt_ != NULL);
375     return this->plt_;
376   }
377
378   // Get the dynamic reloc section, creating it if necessary.
379   Reloc_section*
380   rel_dyn_section(Layout*);
381
382   // Add a potential copy relocation.
383   void
384   copy_reloc(Symbol_table* symtab, Layout* layout,
385              Sized_relobj<32, false>* object,
386              unsigned int shndx, Output_section* output_section,
387              Symbol* sym, const elfcpp::Rel<32, false>& reloc)
388   {
389     this->copy_relocs_.copy_reloc(symtab, layout,
390                                   symtab->get_sized_symbol<32>(sym),
391                                   object, shndx, output_section, reloc,
392                                   this->rel_dyn_section(layout));
393   }
394
395   // Information about this specific target which we pass to the
396   // general Target structure.
397   static const Target::Target_info i386_info;
398
399   // The types of GOT entries needed for this platform.
400   enum Got_type
401   {
402     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
403     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
404     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
405     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
406     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
407   };
408
409   // The GOT section.
410   Output_data_got<32, false>* got_;
411   // The PLT section.
412   Output_data_plt_i386* plt_;
413   // The GOT PLT section.
414   Output_data_space* got_plt_;
415   // The dynamic reloc section.
416   Reloc_section* rel_dyn_;
417   // Relocs saved to avoid a COPY reloc.
418   Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
419   // Space for variables copied with a COPY reloc.
420   Output_data_space* dynbss_;
421   // Offset of the GOT entry for the TLS module index.
422   unsigned int got_mod_index_offset_;
423   // True if the _TLS_MODULE_BASE_ symbol has been defined.
424   bool tls_base_symbol_defined_;
425 };
426
427 const Target::Target_info Target_i386::i386_info =
428 {
429   32,                   // size
430   false,                // is_big_endian
431   elfcpp::EM_386,       // machine_code
432   false,                // has_make_symbol
433   false,                // has_resolve
434   true,                 // has_code_fill
435   true,                 // is_default_stack_executable
436   '\0',                 // wrap_char
437   "/usr/lib/libc.so.1", // dynamic_linker
438   0x08048000,           // default_text_segment_address
439   0x1000,               // abi_pagesize (overridable by -z max-page-size)
440   0x1000,               // common_pagesize (overridable by -z common-page-size)
441   elfcpp::SHN_UNDEF,    // small_common_shndx
442   elfcpp::SHN_UNDEF,    // large_common_shndx
443   0,                    // small_common_section_flags
444   0,                    // large_common_section_flags
445   NULL,                 // attributes_section
446   NULL                  // attributes_vendor
447 };
448
449 // Get the GOT section, creating it if necessary.
450
451 Output_data_got<32, false>*
452 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
453 {
454   if (this->got_ == NULL)
455     {
456       gold_assert(symtab != NULL && layout != NULL);
457
458       this->got_ = new Output_data_got<32, false>();
459
460       Output_section* os;
461       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
462                                            (elfcpp::SHF_ALLOC
463                                             | elfcpp::SHF_WRITE),
464                                            this->got_, false);
465       os->set_is_relro();
466
467       // The old GNU linker creates a .got.plt section.  We just
468       // create another set of data in the .got section.  Note that we
469       // always create a PLT if we create a GOT, although the PLT
470       // might be empty.
471       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
472       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
473                                            (elfcpp::SHF_ALLOC
474                                             | elfcpp::SHF_WRITE),
475                                            this->got_plt_, false);
476       os->set_is_relro();
477
478       // The first three entries are reserved.
479       this->got_plt_->set_current_data_size(3 * 4);
480
481       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
482       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
483                                     Symbol_table::PREDEFINED,
484                                     this->got_plt_,
485                                     0, 0, elfcpp::STT_OBJECT,
486                                     elfcpp::STB_LOCAL,
487                                     elfcpp::STV_HIDDEN, 0,
488                                     false, false);
489     }
490
491   return this->got_;
492 }
493
494 // Get the dynamic reloc section, creating it if necessary.
495
496 Target_i386::Reloc_section*
497 Target_i386::rel_dyn_section(Layout* layout)
498 {
499   if (this->rel_dyn_ == NULL)
500     {
501       gold_assert(layout != NULL);
502       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
503       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
504                                       elfcpp::SHF_ALLOC, this->rel_dyn_, true);
505     }
506   return this->rel_dyn_;
507 }
508
509 // A class to handle the PLT data.
510
511 class Output_data_plt_i386 : public Output_section_data
512 {
513  public:
514   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
515
516   Output_data_plt_i386(Layout*, Output_data_space*);
517
518   // Add an entry to the PLT.
519   void
520   add_entry(Symbol* gsym);
521
522   // Return the .rel.plt section data.
523   const Reloc_section*
524   rel_plt() const
525   { return this->rel_; }
526
527  protected:
528   void
529   do_adjust_output_section(Output_section* os);
530
531   // Write to a map file.
532   void
533   do_print_to_mapfile(Mapfile* mapfile) const
534   { mapfile->print_output_data(this, _("** PLT")); }
535
536  private:
537   // The size of an entry in the PLT.
538   static const int plt_entry_size = 16;
539
540   // The first entry in the PLT for an executable.
541   static unsigned char exec_first_plt_entry[plt_entry_size];
542
543   // The first entry in the PLT for a shared object.
544   static unsigned char dyn_first_plt_entry[plt_entry_size];
545
546   // Other entries in the PLT for an executable.
547   static unsigned char exec_plt_entry[plt_entry_size];
548
549   // Other entries in the PLT for a shared object.
550   static unsigned char dyn_plt_entry[plt_entry_size];
551
552   // Set the final size.
553   void
554   set_final_data_size()
555   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
556
557   // Write out the PLT data.
558   void
559   do_write(Output_file*);
560
561   // The reloc section.
562   Reloc_section* rel_;
563   // The .got.plt section.
564   Output_data_space* got_plt_;
565   // The number of PLT entries.
566   unsigned int count_;
567 };
568
569 // Create the PLT section.  The ordinary .got section is an argument,
570 // since we need to refer to the start.  We also create our own .got
571 // section just for PLT entries.
572
573 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
574                                            Output_data_space* got_plt)
575   : Output_section_data(4), got_plt_(got_plt), count_(0)
576 {
577   this->rel_ = new Reloc_section(false);
578   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
579                                   elfcpp::SHF_ALLOC, this->rel_, true);
580 }
581
582 void
583 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
584 {
585   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
586   // linker, and so do we.
587   os->set_entsize(4);
588 }
589
590 // Add an entry to the PLT.
591
592 void
593 Output_data_plt_i386::add_entry(Symbol* gsym)
594 {
595   gold_assert(!gsym->has_plt_offset());
596
597   // Note that when setting the PLT offset we skip the initial
598   // reserved PLT entry.
599   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
600
601   ++this->count_;
602
603   section_offset_type got_offset = this->got_plt_->current_data_size();
604
605   // Every PLT entry needs a GOT entry which points back to the PLT
606   // entry (this will be changed by the dynamic linker, normally
607   // lazily when the function is called).
608   this->got_plt_->set_current_data_size(got_offset + 4);
609
610   // Every PLT entry needs a reloc.
611   gsym->set_needs_dynsym_entry();
612   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
613                          got_offset);
614
615   // Note that we don't need to save the symbol.  The contents of the
616   // PLT are independent of which symbols are used.  The symbols only
617   // appear in the relocations.
618 }
619
620 // The first entry in the PLT for an executable.
621
622 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
623 {
624   0xff, 0x35,   // pushl contents of memory address
625   0, 0, 0, 0,   // replaced with address of .got + 4
626   0xff, 0x25,   // jmp indirect
627   0, 0, 0, 0,   // replaced with address of .got + 8
628   0, 0, 0, 0    // unused
629 };
630
631 // The first entry in the PLT for a shared object.
632
633 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
634 {
635   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
636   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
637   0, 0, 0, 0                    // unused
638 };
639
640 // Subsequent entries in the PLT for an executable.
641
642 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
643 {
644   0xff, 0x25,   // jmp indirect
645   0, 0, 0, 0,   // replaced with address of symbol in .got
646   0x68,         // pushl immediate
647   0, 0, 0, 0,   // replaced with offset into relocation table
648   0xe9,         // jmp relative
649   0, 0, 0, 0    // replaced with offset to start of .plt
650 };
651
652 // Subsequent entries in the PLT for a shared object.
653
654 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
655 {
656   0xff, 0xa3,   // jmp *offset(%ebx)
657   0, 0, 0, 0,   // replaced with offset of symbol in .got
658   0x68,         // pushl immediate
659   0, 0, 0, 0,   // replaced with offset into relocation table
660   0xe9,         // jmp relative
661   0, 0, 0, 0    // replaced with offset to start of .plt
662 };
663
664 // Write out the PLT.  This uses the hand-coded instructions above,
665 // and adjusts them as needed.  This is all specified by the i386 ELF
666 // Processor Supplement.
667
668 void
669 Output_data_plt_i386::do_write(Output_file* of)
670 {
671   const off_t offset = this->offset();
672   const section_size_type oview_size =
673     convert_to_section_size_type(this->data_size());
674   unsigned char* const oview = of->get_output_view(offset, oview_size);
675
676   const off_t got_file_offset = this->got_plt_->offset();
677   const section_size_type got_size =
678     convert_to_section_size_type(this->got_plt_->data_size());
679   unsigned char* const got_view = of->get_output_view(got_file_offset,
680                                                       got_size);
681
682   unsigned char* pov = oview;
683
684   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
685   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
686
687   if (parameters->options().output_is_position_independent())
688     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
689   else
690     {
691       memcpy(pov, exec_first_plt_entry, plt_entry_size);
692       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
693       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
694     }
695   pov += plt_entry_size;
696
697   unsigned char* got_pov = got_view;
698
699   memset(got_pov, 0, 12);
700   got_pov += 12;
701
702   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
703
704   unsigned int plt_offset = plt_entry_size;
705   unsigned int plt_rel_offset = 0;
706   unsigned int got_offset = 12;
707   const unsigned int count = this->count_;
708   for (unsigned int i = 0;
709        i < count;
710        ++i,
711          pov += plt_entry_size,
712          got_pov += 4,
713          plt_offset += plt_entry_size,
714          plt_rel_offset += rel_size,
715          got_offset += 4)
716     {
717       // Set and adjust the PLT entry itself.
718
719       if (parameters->options().output_is_position_independent())
720         {
721           memcpy(pov, dyn_plt_entry, plt_entry_size);
722           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
723         }
724       else
725         {
726           memcpy(pov, exec_plt_entry, plt_entry_size);
727           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
728                                                       (got_address
729                                                        + got_offset));
730         }
731
732       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
733       elfcpp::Swap<32, false>::writeval(pov + 12,
734                                         - (plt_offset + plt_entry_size));
735
736       // Set the entry in the GOT.
737       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
738     }
739
740   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
741   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
742
743   of->write_output_view(offset, oview_size, oview);
744   of->write_output_view(got_file_offset, got_size, got_view);
745 }
746
747 // Create a PLT entry for a global symbol.
748
749 void
750 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
751 {
752   if (gsym->has_plt_offset())
753     return;
754
755   if (this->plt_ == NULL)
756     {
757       // Create the GOT sections first.
758       this->got_section(symtab, layout);
759
760       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
761       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
762                                       (elfcpp::SHF_ALLOC
763                                        | elfcpp::SHF_EXECINSTR),
764                                       this->plt_, false);
765     }
766
767   this->plt_->add_entry(gsym);
768 }
769
770 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
771
772 void
773 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
774 {
775   if (this->tls_base_symbol_defined_)
776     return;
777
778   Output_segment* tls_segment = layout->tls_segment();
779   if (tls_segment != NULL)
780     {
781       bool is_exec = parameters->options().output_is_executable();
782       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
783                                        Symbol_table::PREDEFINED,
784                                        tls_segment, 0, 0,
785                                        elfcpp::STT_TLS,
786                                        elfcpp::STB_LOCAL,
787                                        elfcpp::STV_HIDDEN, 0,
788                                        (is_exec
789                                         ? Symbol::SEGMENT_END
790                                         : Symbol::SEGMENT_START),
791                                        true);
792     }
793   this->tls_base_symbol_defined_ = true;
794 }
795
796 // Create a GOT entry for the TLS module index.
797
798 unsigned int
799 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
800                                  Sized_relobj<32, false>* object)
801 {
802   if (this->got_mod_index_offset_ == -1U)
803     {
804       gold_assert(symtab != NULL && layout != NULL && object != NULL);
805       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
806       Output_data_got<32, false>* got = this->got_section(symtab, layout);
807       unsigned int got_offset = got->add_constant(0);
808       rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
809                          got_offset);
810       got->add_constant(0);
811       this->got_mod_index_offset_ = got_offset;
812     }
813   return this->got_mod_index_offset_;
814 }
815
816 // Optimize the TLS relocation type based on what we know about the
817 // symbol.  IS_FINAL is true if the final address of this symbol is
818 // known at link time.
819
820 tls::Tls_optimization
821 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
822 {
823   // If we are generating a shared library, then we can't do anything
824   // in the linker.
825   if (parameters->options().shared())
826     return tls::TLSOPT_NONE;
827
828   switch (r_type)
829     {
830     case elfcpp::R_386_TLS_GD:
831     case elfcpp::R_386_TLS_GOTDESC:
832     case elfcpp::R_386_TLS_DESC_CALL:
833       // These are General-Dynamic which permits fully general TLS
834       // access.  Since we know that we are generating an executable,
835       // we can convert this to Initial-Exec.  If we also know that
836       // this is a local symbol, we can further switch to Local-Exec.
837       if (is_final)
838         return tls::TLSOPT_TO_LE;
839       return tls::TLSOPT_TO_IE;
840
841     case elfcpp::R_386_TLS_LDM:
842       // This is Local-Dynamic, which refers to a local symbol in the
843       // dynamic TLS block.  Since we know that we generating an
844       // executable, we can switch to Local-Exec.
845       return tls::TLSOPT_TO_LE;
846
847     case elfcpp::R_386_TLS_LDO_32:
848       // Another type of Local-Dynamic relocation.
849       return tls::TLSOPT_TO_LE;
850
851     case elfcpp::R_386_TLS_IE:
852     case elfcpp::R_386_TLS_GOTIE:
853     case elfcpp::R_386_TLS_IE_32:
854       // These are Initial-Exec relocs which get the thread offset
855       // from the GOT.  If we know that we are linking against the
856       // local symbol, we can switch to Local-Exec, which links the
857       // thread offset into the instruction.
858       if (is_final)
859         return tls::TLSOPT_TO_LE;
860       return tls::TLSOPT_NONE;
861
862     case elfcpp::R_386_TLS_LE:
863     case elfcpp::R_386_TLS_LE_32:
864       // When we already have Local-Exec, there is nothing further we
865       // can do.
866       return tls::TLSOPT_NONE;
867
868     default:
869       gold_unreachable();
870     }
871 }
872
873 // Report an unsupported relocation against a local symbol.
874
875 void
876 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
877                                            unsigned int r_type)
878 {
879   gold_error(_("%s: unsupported reloc %u against local symbol"),
880              object->name().c_str(), r_type);
881 }
882
883 // Scan a relocation for a local symbol.
884
885 inline void
886 Target_i386::Scan::local(Symbol_table* symtab,
887                          Layout* layout,
888                          Target_i386* target,
889                          Sized_relobj<32, false>* object,
890                          unsigned int data_shndx,
891                          Output_section* output_section,
892                          const elfcpp::Rel<32, false>& reloc,
893                          unsigned int r_type,
894                          const elfcpp::Sym<32, false>& lsym)
895 {
896   switch (r_type)
897     {
898     case elfcpp::R_386_NONE:
899     case elfcpp::R_386_GNU_VTINHERIT:
900     case elfcpp::R_386_GNU_VTENTRY:
901       break;
902
903     case elfcpp::R_386_32:
904       // If building a shared library (or a position-independent
905       // executable), we need to create a dynamic relocation for
906       // this location. The relocation applied at link time will
907       // apply the link-time value, so we flag the location with
908       // an R_386_RELATIVE relocation so the dynamic loader can
909       // relocate it easily.
910       if (parameters->options().output_is_position_independent())
911         {
912           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
913           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
914           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
915                                       output_section, data_shndx,
916                                       reloc.get_r_offset());
917         }
918       break;
919
920     case elfcpp::R_386_16:
921     case elfcpp::R_386_8:
922       // If building a shared library (or a position-independent
923       // executable), we need to create a dynamic relocation for
924       // this location. Because the addend needs to remain in the
925       // data section, we need to be careful not to apply this
926       // relocation statically.
927       if (parameters->options().output_is_position_independent())
928         {
929           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
930           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
931           if (lsym.get_st_type() != elfcpp::STT_SECTION)
932             rel_dyn->add_local(object, r_sym, r_type, output_section,
933                                data_shndx, reloc.get_r_offset());
934           else
935             {
936               gold_assert(lsym.get_st_value() == 0);
937               unsigned int shndx = lsym.get_st_shndx();
938               bool is_ordinary;
939               shndx = object->adjust_sym_shndx(r_sym, shndx,
940                                                &is_ordinary);
941               if (!is_ordinary)
942                 object->error(_("section symbol %u has bad shndx %u"),
943                               r_sym, shndx);
944               else
945                 rel_dyn->add_local_section(object, shndx,
946                                            r_type, output_section,
947                                            data_shndx, reloc.get_r_offset());
948             }
949         }
950       break;
951
952     case elfcpp::R_386_PC32:
953     case elfcpp::R_386_PC16:
954     case elfcpp::R_386_PC8:
955       break;
956
957     case elfcpp::R_386_PLT32:
958       // Since we know this is a local symbol, we can handle this as a
959       // PC32 reloc.
960       break;
961
962     case elfcpp::R_386_GOTOFF:
963     case elfcpp::R_386_GOTPC:
964       // We need a GOT section.
965       target->got_section(symtab, layout);
966       break;
967
968     case elfcpp::R_386_GOT32:
969       {
970         // The symbol requires a GOT entry.
971         Output_data_got<32, false>* got = target->got_section(symtab, layout);
972         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
973         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
974           {
975             // If we are generating a shared object, we need to add a
976             // dynamic RELATIVE relocation for this symbol's GOT entry.
977             if (parameters->options().output_is_position_independent())
978               {
979                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
980                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
981                 rel_dyn->add_local_relative(
982                     object, r_sym, elfcpp::R_386_RELATIVE, got,
983                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
984               }
985           }
986       }
987       break;
988
989       // These are relocations which should only be seen by the
990       // dynamic linker, and should never be seen here.
991     case elfcpp::R_386_COPY:
992     case elfcpp::R_386_GLOB_DAT:
993     case elfcpp::R_386_JUMP_SLOT:
994     case elfcpp::R_386_RELATIVE:
995     case elfcpp::R_386_TLS_TPOFF:
996     case elfcpp::R_386_TLS_DTPMOD32:
997     case elfcpp::R_386_TLS_DTPOFF32:
998     case elfcpp::R_386_TLS_TPOFF32:
999     case elfcpp::R_386_TLS_DESC:
1000       gold_error(_("%s: unexpected reloc %u in object file"),
1001                  object->name().c_str(), r_type);
1002       break;
1003
1004       // These are initial TLS relocs, which are expected when
1005       // linking.
1006     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1007     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1008     case elfcpp::R_386_TLS_DESC_CALL:
1009     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1010     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1011     case elfcpp::R_386_TLS_IE:            // Initial-exec
1012     case elfcpp::R_386_TLS_IE_32:
1013     case elfcpp::R_386_TLS_GOTIE:
1014     case elfcpp::R_386_TLS_LE:            // Local-exec
1015     case elfcpp::R_386_TLS_LE_32:
1016       {
1017         bool output_is_shared = parameters->options().shared();
1018         const tls::Tls_optimization optimized_type
1019             = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1020         switch (r_type)
1021           {
1022           case elfcpp::R_386_TLS_GD:          // Global-dynamic
1023             if (optimized_type == tls::TLSOPT_NONE)
1024               {
1025                 // Create a pair of GOT entries for the module index and
1026                 // dtv-relative offset.
1027                 Output_data_got<32, false>* got
1028                     = target->got_section(symtab, layout);
1029                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1030                 unsigned int shndx = lsym.get_st_shndx();
1031                 bool is_ordinary;
1032                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1033                 if (!is_ordinary)
1034                   object->error(_("local symbol %u has bad shndx %u"),
1035                               r_sym, shndx);
1036                 else
1037                   got->add_local_pair_with_rel(object, r_sym, shndx,
1038                                                GOT_TYPE_TLS_PAIR,
1039                                                target->rel_dyn_section(layout),
1040                                                elfcpp::R_386_TLS_DTPMOD32, 0);
1041               }
1042             else if (optimized_type != tls::TLSOPT_TO_LE)
1043               unsupported_reloc_local(object, r_type);
1044             break;
1045
1046           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
1047             target->define_tls_base_symbol(symtab, layout);
1048             if (optimized_type == tls::TLSOPT_NONE)
1049               {
1050                 // Create a double GOT entry with an R_386_TLS_DESC reloc.
1051                 Output_data_got<32, false>* got
1052                     = target->got_section(symtab, layout);
1053                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1054                 unsigned int shndx = lsym.get_st_shndx();
1055                 bool is_ordinary;
1056                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1057                 if (!is_ordinary)
1058                   object->error(_("local symbol %u has bad shndx %u"),
1059                               r_sym, shndx);
1060                 else
1061                   got->add_local_pair_with_rel(object, r_sym, shndx,
1062                                                GOT_TYPE_TLS_DESC,
1063                                                target->rel_dyn_section(layout),
1064                                                elfcpp::R_386_TLS_DESC, 0);
1065               }
1066             else if (optimized_type != tls::TLSOPT_TO_LE)
1067               unsupported_reloc_local(object, r_type);
1068             break;
1069
1070           case elfcpp::R_386_TLS_DESC_CALL:
1071             break;
1072
1073           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1074             if (optimized_type == tls::TLSOPT_NONE)
1075               {
1076                 // Create a GOT entry for the module index.
1077                 target->got_mod_index_entry(symtab, layout, object);
1078               }
1079             else if (optimized_type != tls::TLSOPT_TO_LE)
1080               unsupported_reloc_local(object, r_type);
1081             break;
1082
1083           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1084             break;
1085
1086           case elfcpp::R_386_TLS_IE:          // Initial-exec
1087           case elfcpp::R_386_TLS_IE_32:
1088           case elfcpp::R_386_TLS_GOTIE:
1089             layout->set_has_static_tls();
1090             if (optimized_type == tls::TLSOPT_NONE)
1091               {
1092                 // For the R_386_TLS_IE relocation, we need to create a
1093                 // dynamic relocation when building a shared library.
1094                 if (r_type == elfcpp::R_386_TLS_IE
1095                     && parameters->options().shared())
1096                   {
1097                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1098                     unsigned int r_sym
1099                         = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1100                     rel_dyn->add_local_relative(object, r_sym,
1101                                                 elfcpp::R_386_RELATIVE,
1102                                                 output_section, data_shndx,
1103                                                 reloc.get_r_offset());
1104                   }
1105                 // Create a GOT entry for the tp-relative offset.
1106                 Output_data_got<32, false>* got
1107                     = target->got_section(symtab, layout);
1108                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1109                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1110                                            ? elfcpp::R_386_TLS_TPOFF32
1111                                            : elfcpp::R_386_TLS_TPOFF);
1112                 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1113                                          ? GOT_TYPE_TLS_OFFSET
1114                                          : GOT_TYPE_TLS_NOFFSET);
1115                 got->add_local_with_rel(object, r_sym, got_type,
1116                                         target->rel_dyn_section(layout),
1117                                         dyn_r_type);
1118               }
1119             else if (optimized_type != tls::TLSOPT_TO_LE)
1120               unsupported_reloc_local(object, r_type);
1121             break;
1122
1123           case elfcpp::R_386_TLS_LE:          // Local-exec
1124           case elfcpp::R_386_TLS_LE_32:
1125             layout->set_has_static_tls();
1126             if (output_is_shared)
1127               {
1128                 // We need to create a dynamic relocation.
1129                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1130                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1131                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1132                                            ? elfcpp::R_386_TLS_TPOFF32
1133                                            : elfcpp::R_386_TLS_TPOFF);
1134                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1135                 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1136                                    data_shndx, reloc.get_r_offset());
1137               }
1138             break;
1139
1140           default:
1141             gold_unreachable();
1142           }
1143       }
1144       break;
1145
1146     case elfcpp::R_386_32PLT:
1147     case elfcpp::R_386_TLS_GD_32:
1148     case elfcpp::R_386_TLS_GD_PUSH:
1149     case elfcpp::R_386_TLS_GD_CALL:
1150     case elfcpp::R_386_TLS_GD_POP:
1151     case elfcpp::R_386_TLS_LDM_32:
1152     case elfcpp::R_386_TLS_LDM_PUSH:
1153     case elfcpp::R_386_TLS_LDM_CALL:
1154     case elfcpp::R_386_TLS_LDM_POP:
1155     case elfcpp::R_386_USED_BY_INTEL_200:
1156     default:
1157       unsupported_reloc_local(object, r_type);
1158       break;
1159     }
1160 }
1161
1162 // Report an unsupported relocation against a global symbol.
1163
1164 void
1165 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
1166                                             unsigned int r_type,
1167                                             Symbol* gsym)
1168 {
1169   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1170              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1171 }
1172
1173 // Scan a relocation for a global symbol.
1174
1175 inline void
1176 Target_i386::Scan::global(Symbol_table* symtab,
1177                           Layout* layout,
1178                           Target_i386* target,
1179                           Sized_relobj<32, false>* object,
1180                           unsigned int data_shndx,
1181                           Output_section* output_section,
1182                           const elfcpp::Rel<32, false>& reloc,
1183                           unsigned int r_type,
1184                           Symbol* gsym)
1185 {
1186   switch (r_type)
1187     {
1188     case elfcpp::R_386_NONE:
1189     case elfcpp::R_386_GNU_VTINHERIT:
1190     case elfcpp::R_386_GNU_VTENTRY:
1191       break;
1192
1193     case elfcpp::R_386_32:
1194     case elfcpp::R_386_16:
1195     case elfcpp::R_386_8:
1196       {
1197         // Make a PLT entry if necessary.
1198         if (gsym->needs_plt_entry())
1199           {
1200             target->make_plt_entry(symtab, layout, gsym);
1201             // Since this is not a PC-relative relocation, we may be
1202             // taking the address of a function. In that case we need to
1203             // set the entry in the dynamic symbol table to the address of
1204             // the PLT entry.
1205             if (gsym->is_from_dynobj() && !parameters->options().shared())
1206               gsym->set_needs_dynsym_value();
1207           }
1208         // Make a dynamic relocation if necessary.
1209         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1210           {
1211             if (gsym->may_need_copy_reloc())
1212               {
1213                 target->copy_reloc(symtab, layout, object,
1214                                    data_shndx, output_section, gsym, reloc);
1215               }
1216             else if (r_type == elfcpp::R_386_32
1217                      && gsym->can_use_relative_reloc(false))
1218               {
1219                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1220                 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1221                                              output_section, object,
1222                                              data_shndx, reloc.get_r_offset());
1223               }
1224             else
1225               {
1226                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1227                 rel_dyn->add_global(gsym, r_type, output_section, object,
1228                                     data_shndx, reloc.get_r_offset());
1229               }
1230           }
1231       }
1232       break;
1233
1234     case elfcpp::R_386_PC32:
1235     case elfcpp::R_386_PC16:
1236     case elfcpp::R_386_PC8:
1237       {
1238         // Make a PLT entry if necessary.
1239         if (gsym->needs_plt_entry())
1240           {
1241             // These relocations are used for function calls only in
1242             // non-PIC code.  For a 32-bit relocation in a shared library,
1243             // we'll need a text relocation anyway, so we can skip the
1244             // PLT entry and let the dynamic linker bind the call directly
1245             // to the target.  For smaller relocations, we should use a
1246             // PLT entry to ensure that the call can reach.
1247             if (!parameters->options().shared()
1248                 || r_type != elfcpp::R_386_PC32)
1249               target->make_plt_entry(symtab, layout, gsym);
1250           }
1251         // Make a dynamic relocation if necessary.
1252         int flags = Symbol::NON_PIC_REF;
1253         if (gsym->is_func())
1254           flags |= Symbol::FUNCTION_CALL;
1255         if (gsym->needs_dynamic_reloc(flags))
1256           {
1257             if (gsym->may_need_copy_reloc())
1258               {
1259                 target->copy_reloc(symtab, layout, object,
1260                                    data_shndx, output_section, gsym, reloc);
1261               }
1262             else
1263               {
1264                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1265                 rel_dyn->add_global(gsym, r_type, output_section, object,
1266                                     data_shndx, reloc.get_r_offset());
1267               }
1268           }
1269       }
1270       break;
1271
1272     case elfcpp::R_386_GOT32:
1273       {
1274         // The symbol requires a GOT entry.
1275         Output_data_got<32, false>* got = target->got_section(symtab, layout);
1276         if (gsym->final_value_is_known())
1277           got->add_global(gsym, GOT_TYPE_STANDARD);
1278         else
1279           {
1280             // If this symbol is not fully resolved, we need to add a
1281             // GOT entry with a dynamic relocation.
1282             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1283             if (gsym->is_from_dynobj()
1284                 || gsym->is_undefined()
1285                 || gsym->is_preemptible())
1286               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
1287                                        rel_dyn, elfcpp::R_386_GLOB_DAT);
1288             else
1289               {
1290                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1291                   rel_dyn->add_global_relative(
1292                       gsym, elfcpp::R_386_RELATIVE, got,
1293                       gsym->got_offset(GOT_TYPE_STANDARD));
1294               }
1295           }
1296       }
1297       break;
1298
1299     case elfcpp::R_386_PLT32:
1300       // If the symbol is fully resolved, this is just a PC32 reloc.
1301       // Otherwise we need a PLT entry.
1302       if (gsym->final_value_is_known())
1303         break;
1304       // If building a shared library, we can also skip the PLT entry
1305       // if the symbol is defined in the output file and is protected
1306       // or hidden.
1307       if (gsym->is_defined()
1308           && !gsym->is_from_dynobj()
1309           && !gsym->is_preemptible())
1310         break;
1311       target->make_plt_entry(symtab, layout, gsym);
1312       break;
1313
1314     case elfcpp::R_386_GOTOFF:
1315     case elfcpp::R_386_GOTPC:
1316       // We need a GOT section.
1317       target->got_section(symtab, layout);
1318       break;
1319
1320       // These are relocations which should only be seen by the
1321       // dynamic linker, and should never be seen here.
1322     case elfcpp::R_386_COPY:
1323     case elfcpp::R_386_GLOB_DAT:
1324     case elfcpp::R_386_JUMP_SLOT:
1325     case elfcpp::R_386_RELATIVE:
1326     case elfcpp::R_386_TLS_TPOFF:
1327     case elfcpp::R_386_TLS_DTPMOD32:
1328     case elfcpp::R_386_TLS_DTPOFF32:
1329     case elfcpp::R_386_TLS_TPOFF32:
1330     case elfcpp::R_386_TLS_DESC:
1331       gold_error(_("%s: unexpected reloc %u in object file"),
1332                  object->name().c_str(), r_type);
1333       break;
1334
1335       // These are initial tls relocs, which are expected when
1336       // linking.
1337     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1338     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1339     case elfcpp::R_386_TLS_DESC_CALL:
1340     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1341     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1342     case elfcpp::R_386_TLS_IE:            // Initial-exec
1343     case elfcpp::R_386_TLS_IE_32:
1344     case elfcpp::R_386_TLS_GOTIE:
1345     case elfcpp::R_386_TLS_LE:            // Local-exec
1346     case elfcpp::R_386_TLS_LE_32:
1347       {
1348         const bool is_final = gsym->final_value_is_known();
1349         const tls::Tls_optimization optimized_type
1350             = Target_i386::optimize_tls_reloc(is_final, r_type);
1351         switch (r_type)
1352           {
1353           case elfcpp::R_386_TLS_GD:          // Global-dynamic
1354             if (optimized_type == tls::TLSOPT_NONE)
1355               {
1356                 // Create a pair of GOT entries for the module index and
1357                 // dtv-relative offset.
1358                 Output_data_got<32, false>* got
1359                     = target->got_section(symtab, layout);
1360                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
1361                                              target->rel_dyn_section(layout),
1362                                              elfcpp::R_386_TLS_DTPMOD32,
1363                                              elfcpp::R_386_TLS_DTPOFF32);
1364               }
1365             else if (optimized_type == tls::TLSOPT_TO_IE)
1366               {
1367                 // Create a GOT entry for the tp-relative offset.
1368                 Output_data_got<32, false>* got
1369                     = target->got_section(symtab, layout);
1370                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
1371                                          target->rel_dyn_section(layout),
1372                                          elfcpp::R_386_TLS_TPOFF);
1373               }
1374             else if (optimized_type != tls::TLSOPT_TO_LE)
1375               unsupported_reloc_global(object, r_type, gsym);
1376             break;
1377
1378           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
1379             target->define_tls_base_symbol(symtab, layout);
1380             if (optimized_type == tls::TLSOPT_NONE)
1381               {
1382                 // Create a double GOT entry with an R_386_TLS_DESC reloc.
1383                 Output_data_got<32, false>* got
1384                     = target->got_section(symtab, layout);
1385                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC,
1386                                              target->rel_dyn_section(layout),
1387                                              elfcpp::R_386_TLS_DESC, 0);
1388               }
1389             else if (optimized_type == tls::TLSOPT_TO_IE)
1390               {
1391                 // Create a GOT entry for the tp-relative offset.
1392                 Output_data_got<32, false>* got
1393                     = target->got_section(symtab, layout);
1394                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
1395                                          target->rel_dyn_section(layout),
1396                                          elfcpp::R_386_TLS_TPOFF);
1397               }
1398             else if (optimized_type != tls::TLSOPT_TO_LE)
1399               unsupported_reloc_global(object, r_type, gsym);
1400             break;
1401
1402           case elfcpp::R_386_TLS_DESC_CALL:
1403             break;
1404
1405           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1406             if (optimized_type == tls::TLSOPT_NONE)
1407               {
1408                 // Create a GOT entry for the module index.
1409                 target->got_mod_index_entry(symtab, layout, object);
1410               }
1411             else if (optimized_type != tls::TLSOPT_TO_LE)
1412               unsupported_reloc_global(object, r_type, gsym);
1413             break;
1414
1415           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1416             break;
1417
1418           case elfcpp::R_386_TLS_IE:          // Initial-exec
1419           case elfcpp::R_386_TLS_IE_32:
1420           case elfcpp::R_386_TLS_GOTIE:
1421             layout->set_has_static_tls();
1422             if (optimized_type == tls::TLSOPT_NONE)
1423               {
1424                 // For the R_386_TLS_IE relocation, we need to create a
1425                 // dynamic relocation when building a shared library.
1426                 if (r_type == elfcpp::R_386_TLS_IE
1427                     && parameters->options().shared())
1428                   {
1429                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1430                     rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1431                                                  output_section, object,
1432                                                  data_shndx,
1433                                                  reloc.get_r_offset());
1434                   }
1435                 // Create a GOT entry for the tp-relative offset.
1436                 Output_data_got<32, false>* got
1437                     = target->got_section(symtab, layout);
1438                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1439                                            ? elfcpp::R_386_TLS_TPOFF32
1440                                            : elfcpp::R_386_TLS_TPOFF);
1441                 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1442                                          ? GOT_TYPE_TLS_OFFSET
1443                                          : GOT_TYPE_TLS_NOFFSET);
1444                 got->add_global_with_rel(gsym, got_type,
1445                                          target->rel_dyn_section(layout),
1446                                          dyn_r_type);
1447               }
1448             else if (optimized_type != tls::TLSOPT_TO_LE)
1449               unsupported_reloc_global(object, r_type, gsym);
1450             break;
1451
1452           case elfcpp::R_386_TLS_LE:          // Local-exec
1453           case elfcpp::R_386_TLS_LE_32:
1454             layout->set_has_static_tls();
1455             if (parameters->options().shared())
1456               {
1457                 // We need to create a dynamic relocation.
1458                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1459                                            ? elfcpp::R_386_TLS_TPOFF32
1460                                            : elfcpp::R_386_TLS_TPOFF);
1461                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1462                 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
1463                                     data_shndx, reloc.get_r_offset());
1464               }
1465             break;
1466
1467           default:
1468             gold_unreachable();
1469           }
1470       }
1471       break;
1472
1473     case elfcpp::R_386_32PLT:
1474     case elfcpp::R_386_TLS_GD_32:
1475     case elfcpp::R_386_TLS_GD_PUSH:
1476     case elfcpp::R_386_TLS_GD_CALL:
1477     case elfcpp::R_386_TLS_GD_POP:
1478     case elfcpp::R_386_TLS_LDM_32:
1479     case elfcpp::R_386_TLS_LDM_PUSH:
1480     case elfcpp::R_386_TLS_LDM_CALL:
1481     case elfcpp::R_386_TLS_LDM_POP:
1482     case elfcpp::R_386_USED_BY_INTEL_200:
1483     default:
1484       unsupported_reloc_global(object, r_type, gsym);
1485       break;
1486     }
1487 }
1488
1489 // Process relocations for gc.
1490
1491 void
1492 Target_i386::gc_process_relocs(Symbol_table* symtab,
1493                                Layout* layout,
1494                                Sized_relobj<32, false>* object,
1495                                unsigned int data_shndx,
1496                                unsigned int,
1497                                const unsigned char* prelocs,
1498                                size_t reloc_count,
1499                                Output_section* output_section,
1500                                bool needs_special_offset_handling,
1501                                size_t local_symbol_count,
1502                                const unsigned char* plocal_symbols)
1503 {
1504   gold::gc_process_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1505                           Target_i386::Scan>(
1506     symtab,
1507     layout,
1508     this,
1509     object,
1510     data_shndx,
1511     prelocs,
1512     reloc_count,
1513     output_section,
1514     needs_special_offset_handling,
1515     local_symbol_count,
1516     plocal_symbols);
1517 }
1518
1519 // Scan relocations for a section.
1520
1521 void
1522 Target_i386::scan_relocs(Symbol_table* symtab,
1523                          Layout* layout,
1524                          Sized_relobj<32, false>* object,
1525                          unsigned int data_shndx,
1526                          unsigned int sh_type,
1527                          const unsigned char* prelocs,
1528                          size_t reloc_count,
1529                          Output_section* output_section,
1530                          bool needs_special_offset_handling,
1531                          size_t local_symbol_count,
1532                          const unsigned char* plocal_symbols)
1533 {
1534   if (sh_type == elfcpp::SHT_RELA)
1535     {
1536       gold_error(_("%s: unsupported RELA reloc section"),
1537                  object->name().c_str());
1538       return;
1539     }
1540
1541   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1542                     Target_i386::Scan>(
1543     symtab,
1544     layout,
1545     this,
1546     object,
1547     data_shndx,
1548     prelocs,
1549     reloc_count,
1550     output_section,
1551     needs_special_offset_handling,
1552     local_symbol_count,
1553     plocal_symbols);
1554 }
1555
1556 // Finalize the sections.
1557
1558 void
1559 Target_i386::do_finalize_sections(
1560     Layout* layout,
1561     const Input_objects*,
1562     Symbol_table*)
1563 {
1564   // Fill in some more dynamic tags.
1565   Output_data_dynamic* const odyn = layout->dynamic_data();
1566   if (odyn != NULL)
1567     {
1568       if (this->got_plt_ != NULL
1569           && this->got_plt_->output_section() != NULL)
1570         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1571
1572       if (this->plt_ != NULL
1573           && this->plt_->output_section() != NULL)
1574         {
1575           const Output_data* od = this->plt_->rel_plt();
1576           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1577           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1578           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1579         }
1580
1581       if (this->rel_dyn_ != NULL
1582           && this->rel_dyn_->output_section() != NULL)
1583         {
1584           const Output_data* od = this->rel_dyn_;
1585           odyn->add_section_address(elfcpp::DT_REL, od);
1586           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1587           odyn->add_constant(elfcpp::DT_RELENT,
1588                              elfcpp::Elf_sizes<32>::rel_size);
1589         }
1590
1591       if (!parameters->options().shared())
1592         {
1593           // The value of the DT_DEBUG tag is filled in by the dynamic
1594           // linker at run time, and used by the debugger.
1595           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1596         }
1597     }
1598
1599   // Emit any relocs we saved in an attempt to avoid generating COPY
1600   // relocs.
1601   if (this->copy_relocs_.any_saved_relocs())
1602     this->copy_relocs_.emit(this->rel_dyn_section(layout));
1603 }
1604
1605 // Return whether a direct absolute static relocation needs to be applied.
1606 // In cases where Scan::local() or Scan::global() has created
1607 // a dynamic relocation other than R_386_RELATIVE, the addend
1608 // of the relocation is carried in the data, and we must not
1609 // apply the static relocation.
1610
1611 inline bool
1612 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
1613                                                  int ref_flags,
1614                                                  bool is_32bit,
1615                                                  Output_section* output_section)
1616 {
1617   // If the output section is not allocated, then we didn't call
1618   // scan_relocs, we didn't create a dynamic reloc, and we must apply
1619   // the reloc here.
1620   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
1621     return true;
1622
1623   // For local symbols, we will have created a non-RELATIVE dynamic
1624   // relocation only if (a) the output is position independent,
1625   // (b) the relocation is absolute (not pc- or segment-relative), and
1626   // (c) the relocation is not 32 bits wide.
1627   if (gsym == NULL)
1628     return !(parameters->options().output_is_position_independent()
1629              && (ref_flags & Symbol::ABSOLUTE_REF)
1630              && !is_32bit);
1631
1632   // For global symbols, we use the same helper routines used in the
1633   // scan pass.  If we did not create a dynamic relocation, or if we
1634   // created a RELATIVE dynamic relocation, we should apply the static
1635   // relocation.
1636   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
1637   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
1638                 && gsym->can_use_relative_reloc(ref_flags
1639                                                 & Symbol::FUNCTION_CALL);
1640   return !has_dyn || is_rel;
1641 }
1642
1643 // Perform a relocation.
1644
1645 inline bool
1646 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1647                                 Target_i386* target,
1648                                 Output_section *output_section,
1649                                 size_t relnum,
1650                                 const elfcpp::Rel<32, false>& rel,
1651                                 unsigned int r_type,
1652                                 const Sized_symbol<32>* gsym,
1653                                 const Symbol_value<32>* psymval,
1654                                 unsigned char* view,
1655                                 elfcpp::Elf_types<32>::Elf_Addr address,
1656                                 section_size_type view_size)
1657 {
1658   if (this->skip_call_tls_get_addr_)
1659     {
1660       if ((r_type != elfcpp::R_386_PLT32
1661            && r_type != elfcpp::R_386_PC32)
1662           || gsym == NULL
1663           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1664         gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1665                                _("missing expected TLS relocation"));
1666       else
1667         {
1668           this->skip_call_tls_get_addr_ = false;
1669           return false;
1670         }
1671     }
1672
1673   // Pick the value to use for symbols defined in shared objects.
1674   Symbol_value<32> symval;
1675   if (gsym != NULL
1676       && gsym->use_plt_offset(r_type == elfcpp::R_386_PC8
1677                               || r_type == elfcpp::R_386_PC16
1678                               || r_type == elfcpp::R_386_PC32))
1679     {
1680       symval.set_output_value(target->plt_section()->address()
1681                               + gsym->plt_offset());
1682       psymval = &symval;
1683     }
1684
1685   const Sized_relobj<32, false>* object = relinfo->object;
1686
1687   // Get the GOT offset if needed.
1688   // The GOT pointer points to the end of the GOT section.
1689   // We need to subtract the size of the GOT section to get
1690   // the actual offset to use in the relocation.
1691   bool have_got_offset = false;
1692   unsigned int got_offset = 0;
1693   switch (r_type)
1694     {
1695     case elfcpp::R_386_GOT32:
1696       if (gsym != NULL)
1697         {
1698           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1699           got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
1700                         - target->got_size());
1701         }
1702       else
1703         {
1704           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1705           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1706           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1707                         - target->got_size());
1708         }
1709       have_got_offset = true;
1710       break;
1711
1712     default:
1713       break;
1714     }
1715
1716   switch (r_type)
1717     {
1718     case elfcpp::R_386_NONE:
1719     case elfcpp::R_386_GNU_VTINHERIT:
1720     case elfcpp::R_386_GNU_VTENTRY:
1721       break;
1722
1723     case elfcpp::R_386_32:
1724       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
1725                                     output_section))
1726         Relocate_functions<32, false>::rel32(view, object, psymval);
1727       break;
1728
1729     case elfcpp::R_386_PC32:
1730       {
1731         int ref_flags = Symbol::NON_PIC_REF;
1732         if (gsym != NULL && gsym->is_func())
1733           ref_flags |= Symbol::FUNCTION_CALL;
1734         if (should_apply_static_reloc(gsym, ref_flags, true, output_section))
1735           Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1736       }
1737       break;
1738
1739     case elfcpp::R_386_16:
1740       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
1741                                     output_section))
1742         Relocate_functions<32, false>::rel16(view, object, psymval);
1743       break;
1744
1745     case elfcpp::R_386_PC16:
1746       {
1747         int ref_flags = Symbol::NON_PIC_REF;
1748         if (gsym != NULL && gsym->is_func())
1749           ref_flags |= Symbol::FUNCTION_CALL;
1750         if (should_apply_static_reloc(gsym, ref_flags, false, output_section))
1751           Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1752       }
1753       break;
1754
1755     case elfcpp::R_386_8:
1756       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
1757                                     output_section))
1758         Relocate_functions<32, false>::rel8(view, object, psymval);
1759       break;
1760
1761     case elfcpp::R_386_PC8:
1762       {
1763         int ref_flags = Symbol::NON_PIC_REF;
1764         if (gsym != NULL && gsym->is_func())
1765           ref_flags |= Symbol::FUNCTION_CALL;
1766         if (should_apply_static_reloc(gsym, ref_flags, false,
1767                                       output_section))
1768           Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1769       }
1770       break;
1771
1772     case elfcpp::R_386_PLT32:
1773       gold_assert(gsym == NULL
1774                   || gsym->has_plt_offset()
1775                   || gsym->final_value_is_known()
1776                   || (gsym->is_defined()
1777                       && !gsym->is_from_dynobj()
1778                       && !gsym->is_preemptible()));
1779       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1780       break;
1781
1782     case elfcpp::R_386_GOT32:
1783       gold_assert(have_got_offset);
1784       Relocate_functions<32, false>::rel32(view, got_offset);
1785       break;
1786
1787     case elfcpp::R_386_GOTOFF:
1788       {
1789         elfcpp::Elf_types<32>::Elf_Addr value;
1790         value = (psymval->value(object, 0)
1791                  - target->got_plt_section()->address());
1792         Relocate_functions<32, false>::rel32(view, value);
1793       }
1794       break;
1795
1796     case elfcpp::R_386_GOTPC:
1797       {
1798         elfcpp::Elf_types<32>::Elf_Addr value;
1799         value = target->got_plt_section()->address();
1800         Relocate_functions<32, false>::pcrel32(view, value, address);
1801       }
1802       break;
1803
1804     case elfcpp::R_386_COPY:
1805     case elfcpp::R_386_GLOB_DAT:
1806     case elfcpp::R_386_JUMP_SLOT:
1807     case elfcpp::R_386_RELATIVE:
1808       // These are outstanding tls relocs, which are unexpected when
1809       // linking.
1810     case elfcpp::R_386_TLS_TPOFF:
1811     case elfcpp::R_386_TLS_DTPMOD32:
1812     case elfcpp::R_386_TLS_DTPOFF32:
1813     case elfcpp::R_386_TLS_TPOFF32:
1814     case elfcpp::R_386_TLS_DESC:
1815       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1816                              _("unexpected reloc %u in object file"),
1817                              r_type);
1818       break;
1819
1820       // These are initial tls relocs, which are expected when
1821       // linking.
1822     case elfcpp::R_386_TLS_GD:             // Global-dynamic
1823     case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
1824     case elfcpp::R_386_TLS_DESC_CALL:
1825     case elfcpp::R_386_TLS_LDM:            // Local-dynamic
1826     case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
1827     case elfcpp::R_386_TLS_IE:             // Initial-exec
1828     case elfcpp::R_386_TLS_IE_32:
1829     case elfcpp::R_386_TLS_GOTIE:
1830     case elfcpp::R_386_TLS_LE:             // Local-exec
1831     case elfcpp::R_386_TLS_LE_32:
1832       this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
1833                          view, address, view_size);
1834       break;
1835
1836     case elfcpp::R_386_32PLT:
1837     case elfcpp::R_386_TLS_GD_32:
1838     case elfcpp::R_386_TLS_GD_PUSH:
1839     case elfcpp::R_386_TLS_GD_CALL:
1840     case elfcpp::R_386_TLS_GD_POP:
1841     case elfcpp::R_386_TLS_LDM_32:
1842     case elfcpp::R_386_TLS_LDM_PUSH:
1843     case elfcpp::R_386_TLS_LDM_CALL:
1844     case elfcpp::R_386_TLS_LDM_POP:
1845     case elfcpp::R_386_USED_BY_INTEL_200:
1846     default:
1847       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1848                              _("unsupported reloc %u"),
1849                              r_type);
1850       break;
1851     }
1852
1853   return true;
1854 }
1855
1856 // Perform a TLS relocation.
1857
1858 inline void
1859 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1860                                     Target_i386* target,
1861                                     size_t relnum,
1862                                     const elfcpp::Rel<32, false>& rel,
1863                                     unsigned int r_type,
1864                                     const Sized_symbol<32>* gsym,
1865                                     const Symbol_value<32>* psymval,
1866                                     unsigned char* view,
1867                                     elfcpp::Elf_types<32>::Elf_Addr,
1868                                     section_size_type view_size)
1869 {
1870   Output_segment* tls_segment = relinfo->layout->tls_segment();
1871
1872   const Sized_relobj<32, false>* object = relinfo->object;
1873
1874   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
1875
1876   const bool is_final =
1877     (gsym == NULL
1878      ? !parameters->options().output_is_position_independent()
1879      : gsym->final_value_is_known());
1880   const tls::Tls_optimization optimized_type
1881       = Target_i386::optimize_tls_reloc(is_final, r_type);
1882   switch (r_type)
1883     {
1884     case elfcpp::R_386_TLS_GD:           // Global-dynamic
1885       if (optimized_type == tls::TLSOPT_TO_LE)
1886         {
1887           gold_assert(tls_segment != NULL);
1888           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1889                              rel, r_type, value, view,
1890                              view_size);
1891           break;
1892         }
1893       else
1894         {
1895           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1896                                    ? GOT_TYPE_TLS_NOFFSET
1897                                    : GOT_TYPE_TLS_PAIR);
1898           unsigned int got_offset;
1899           if (gsym != NULL)
1900             {
1901               gold_assert(gsym->has_got_offset(got_type));
1902               got_offset = gsym->got_offset(got_type) - target->got_size();
1903             }
1904           else
1905             {
1906               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1907               gold_assert(object->local_has_got_offset(r_sym, got_type));
1908               got_offset = (object->local_got_offset(r_sym, got_type)
1909                             - target->got_size());
1910             }
1911           if (optimized_type == tls::TLSOPT_TO_IE)
1912             {
1913               gold_assert(tls_segment != NULL);
1914               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1915                                  got_offset, view, view_size);
1916               break;
1917             }
1918           else if (optimized_type == tls::TLSOPT_NONE)
1919             {
1920               // Relocate the field with the offset of the pair of GOT
1921               // entries.
1922               Relocate_functions<32, false>::rel32(view, got_offset);
1923               break;
1924             }
1925         }
1926       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1927                              _("unsupported reloc %u"),
1928                              r_type);
1929       break;
1930
1931     case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
1932     case elfcpp::R_386_TLS_DESC_CALL:
1933       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1934       if (optimized_type == tls::TLSOPT_TO_LE)
1935         {
1936           gold_assert(tls_segment != NULL);
1937           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
1938                                   rel, r_type, value, view,
1939                                   view_size);
1940           break;
1941         }
1942       else
1943         {
1944           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1945                                    ? GOT_TYPE_TLS_NOFFSET
1946                                    : GOT_TYPE_TLS_DESC);
1947           unsigned int got_offset;
1948           if (gsym != NULL)
1949             {
1950               gold_assert(gsym->has_got_offset(got_type));
1951               got_offset = gsym->got_offset(got_type) - target->got_size();
1952             }
1953           else
1954             {
1955               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1956               gold_assert(object->local_has_got_offset(r_sym, got_type));
1957               got_offset = (object->local_got_offset(r_sym, got_type)
1958                             - target->got_size());
1959             }
1960           if (optimized_type == tls::TLSOPT_TO_IE)
1961             {
1962               gold_assert(tls_segment != NULL);
1963               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1964                                       got_offset, view, view_size);
1965               break;
1966             }
1967           else if (optimized_type == tls::TLSOPT_NONE)
1968             {
1969               if (r_type == elfcpp::R_386_TLS_GOTDESC)
1970                 {
1971                   // Relocate the field with the offset of the pair of GOT
1972                   // entries.
1973                   Relocate_functions<32, false>::rel32(view, got_offset);
1974                 }
1975               break;
1976             }
1977         }
1978       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1979                              _("unsupported reloc %u"),
1980                              r_type);
1981       break;
1982
1983     case elfcpp::R_386_TLS_LDM:          // Local-dynamic
1984       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1985         {
1986           gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1987                                  _("both SUN and GNU model "
1988                                    "TLS relocations"));
1989           break;
1990         }
1991       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1992       if (optimized_type == tls::TLSOPT_TO_LE)
1993         {
1994           gold_assert(tls_segment != NULL);
1995           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1996                              value, view, view_size);
1997           break;
1998         }
1999       else if (optimized_type == tls::TLSOPT_NONE)
2000         {
2001           // Relocate the field with the offset of the GOT entry for
2002           // the module index.
2003           unsigned int got_offset;
2004           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2005                         - target->got_size());
2006           Relocate_functions<32, false>::rel32(view, got_offset);
2007           break;
2008         }
2009       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2010                              _("unsupported reloc %u"),
2011                              r_type);
2012       break;
2013
2014     case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
2015       if (optimized_type == tls::TLSOPT_TO_LE)
2016         {
2017           // This reloc can appear in debugging sections, in which
2018           // case we must not convert to local-exec.  We decide what
2019           // to do based on whether the section is marked as
2020           // containing executable code.  That is what the GNU linker
2021           // does as well.
2022           elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
2023           if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
2024             {
2025               gold_assert(tls_segment != NULL);
2026               value -= tls_segment->memsz();
2027             }
2028         }
2029       Relocate_functions<32, false>::rel32(view, value);
2030       break;
2031
2032     case elfcpp::R_386_TLS_IE:           // Initial-exec
2033     case elfcpp::R_386_TLS_GOTIE:
2034     case elfcpp::R_386_TLS_IE_32:
2035       if (optimized_type == tls::TLSOPT_TO_LE)
2036         {
2037           gold_assert(tls_segment != NULL);
2038           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2039                                               rel, r_type, value, view,
2040                                               view_size);
2041           break;
2042         }
2043       else if (optimized_type == tls::TLSOPT_NONE)
2044         {
2045           // Relocate the field with the offset of the GOT entry for
2046           // the tp-relative offset of the symbol.
2047           unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2048                                    ? GOT_TYPE_TLS_OFFSET
2049                                    : GOT_TYPE_TLS_NOFFSET);
2050           unsigned int got_offset;
2051           if (gsym != NULL)
2052             {
2053               gold_assert(gsym->has_got_offset(got_type));
2054               got_offset = gsym->got_offset(got_type);
2055             }
2056           else
2057             {
2058               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2059               gold_assert(object->local_has_got_offset(r_sym, got_type));
2060               got_offset = object->local_got_offset(r_sym, got_type);
2061             }
2062           // For the R_386_TLS_IE relocation, we need to apply the
2063           // absolute address of the GOT entry.
2064           if (r_type == elfcpp::R_386_TLS_IE)
2065             got_offset += target->got_plt_section()->address();
2066           // All GOT offsets are relative to the end of the GOT.
2067           got_offset -= target->got_size();
2068           Relocate_functions<32, false>::rel32(view, got_offset);
2069           break;
2070         }
2071       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2072                              _("unsupported reloc %u"),
2073                              r_type);
2074       break;
2075
2076     case elfcpp::R_386_TLS_LE:           // Local-exec
2077       // If we're creating a shared library, a dynamic relocation will
2078       // have been created for this location, so do not apply it now.
2079       if (!parameters->options().shared())
2080         {
2081           gold_assert(tls_segment != NULL);
2082           value -= tls_segment->memsz();
2083           Relocate_functions<32, false>::rel32(view, value);
2084         }
2085       break;
2086
2087     case elfcpp::R_386_TLS_LE_32:
2088       // If we're creating a shared library, a dynamic relocation will
2089       // have been created for this location, so do not apply it now.
2090       if (!parameters->options().shared())
2091         {
2092           gold_assert(tls_segment != NULL);
2093           value = tls_segment->memsz() - value;
2094           Relocate_functions<32, false>::rel32(view, value);
2095         }
2096       break;
2097     }
2098 }
2099
2100 // Do a relocation in which we convert a TLS General-Dynamic to a
2101 // Local-Exec.
2102
2103 inline void
2104 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
2105                                     size_t relnum,
2106                                     Output_segment* tls_segment,
2107                                     const elfcpp::Rel<32, false>& rel,
2108                                     unsigned int,
2109                                     elfcpp::Elf_types<32>::Elf_Addr value,
2110                                     unsigned char* view,
2111                                     section_size_type view_size)
2112 {
2113   // leal foo(,%reg,1),%eax; call ___tls_get_addr
2114   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2115   // leal foo(%reg),%eax; call ___tls_get_addr
2116   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2117
2118   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2119   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2120
2121   unsigned char op1 = view[-1];
2122   unsigned char op2 = view[-2];
2123
2124   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2125                  op2 == 0x8d || op2 == 0x04);
2126   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2127
2128   int roff = 5;
2129
2130   if (op2 == 0x04)
2131     {
2132       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2133       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2134       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2135                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2136       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2137     }
2138   else
2139     {
2140       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2141                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2142       if (rel.get_r_offset() + 9 < view_size
2143           && view[9] == 0x90)
2144         {
2145           // There is a trailing nop.  Use the size byte subl.
2146           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2147           roff = 6;
2148         }
2149       else
2150         {
2151           // Use the five byte subl.
2152           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2153         }
2154     }
2155
2156   value = tls_segment->memsz() - value;
2157   Relocate_functions<32, false>::rel32(view + roff, value);
2158
2159   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2160   // We can skip it.
2161   this->skip_call_tls_get_addr_ = true;
2162 }
2163
2164 // Do a relocation in which we convert a TLS General-Dynamic to an
2165 // Initial-Exec.
2166
2167 inline void
2168 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
2169                                     size_t relnum,
2170                                     Output_segment*,
2171                                     const elfcpp::Rel<32, false>& rel,
2172                                     unsigned int,
2173                                     elfcpp::Elf_types<32>::Elf_Addr value,
2174                                     unsigned char* view,
2175                                     section_size_type view_size)
2176 {
2177   // leal foo(,%ebx,1),%eax; call ___tls_get_addr
2178   //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
2179
2180   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2181   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2182
2183   unsigned char op1 = view[-1];
2184   unsigned char op2 = view[-2];
2185
2186   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2187                  op2 == 0x8d || op2 == 0x04);
2188   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2189
2190   int roff = 5;
2191
2192   // FIXME: For now, support only the first (SIB) form.
2193   tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
2194
2195   if (op2 == 0x04)
2196     {
2197       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2198       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2199       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2200                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2201       memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
2202     }
2203   else
2204     {
2205       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2206                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2207       if (rel.get_r_offset() + 9 < view_size
2208           && view[9] == 0x90)
2209         {
2210           // FIXME: This is not the right instruction sequence.
2211           // There is a trailing nop.  Use the size byte subl.
2212           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2213           roff = 6;
2214         }
2215       else
2216         {
2217           // FIXME: This is not the right instruction sequence.
2218           // Use the five byte subl.
2219           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2220         }
2221     }
2222
2223   Relocate_functions<32, false>::rel32(view + roff, value);
2224
2225   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2226   // We can skip it.
2227   this->skip_call_tls_get_addr_ = true;
2228 }
2229
2230 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
2231 // General-Dynamic to a Local-Exec.
2232
2233 inline void
2234 Target_i386::Relocate::tls_desc_gd_to_le(
2235     const Relocate_info<32, false>* relinfo,
2236     size_t relnum,
2237     Output_segment* tls_segment,
2238     const elfcpp::Rel<32, false>& rel,
2239     unsigned int r_type,
2240     elfcpp::Elf_types<32>::Elf_Addr value,
2241     unsigned char* view,
2242     section_size_type view_size)
2243 {
2244   if (r_type == elfcpp::R_386_TLS_GOTDESC)
2245     {
2246       // leal foo@TLSDESC(%ebx), %eax
2247       // ==> leal foo@NTPOFF, %eax
2248       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2249       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2250       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2251                      view[-2] == 0x8d && view[-1] == 0x83);
2252       view[-1] = 0x05;
2253       value -= tls_segment->memsz();
2254       Relocate_functions<32, false>::rel32(view, value);
2255     }
2256   else
2257     {
2258       // call *foo@TLSCALL(%eax)
2259       // ==> nop; nop
2260       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
2261       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
2262       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2263                      view[0] == 0xff && view[1] == 0x10);
2264       view[0] = 0x66;
2265       view[1] = 0x90;
2266     }
2267 }
2268
2269 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
2270 // General-Dynamic to an Initial-Exec.
2271
2272 inline void
2273 Target_i386::Relocate::tls_desc_gd_to_ie(
2274     const Relocate_info<32, false>* relinfo,
2275     size_t relnum,
2276     Output_segment*,
2277     const elfcpp::Rel<32, false>& rel,
2278     unsigned int r_type,
2279     elfcpp::Elf_types<32>::Elf_Addr value,
2280     unsigned char* view,
2281     section_size_type view_size)
2282 {
2283   if (r_type == elfcpp::R_386_TLS_GOTDESC)
2284     {
2285       // leal foo@TLSDESC(%ebx), %eax
2286       // ==> movl foo@GOTNTPOFF(%ebx), %eax
2287       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2288       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2289       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2290                      view[-2] == 0x8d && view[-1] == 0x83);
2291       view[-2] = 0x8b;
2292       Relocate_functions<32, false>::rel32(view, value);
2293     }
2294   else
2295     {
2296       // call *foo@TLSCALL(%eax)
2297       // ==> nop; nop
2298       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
2299       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
2300       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2301                      view[0] == 0xff && view[1] == 0x10);
2302       view[0] = 0x66;
2303       view[1] = 0x90;
2304     }
2305 }
2306
2307 // Do a relocation in which we convert a TLS Local-Dynamic to a
2308 // Local-Exec.
2309
2310 inline void
2311 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
2312                                     size_t relnum,
2313                                     Output_segment*,
2314                                     const elfcpp::Rel<32, false>& rel,
2315                                     unsigned int,
2316                                     elfcpp::Elf_types<32>::Elf_Addr,
2317                                     unsigned char* view,
2318                                     section_size_type view_size)
2319 {
2320   // leal foo(%reg), %eax; call ___tls_get_addr
2321   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
2322
2323   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2324   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2325
2326   // FIXME: Does this test really always pass?
2327   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2328                  view[-2] == 0x8d && view[-1] == 0x83);
2329
2330   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2331
2332   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
2333
2334   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2335   // We can skip it.
2336   this->skip_call_tls_get_addr_ = true;
2337 }
2338
2339 // Do a relocation in which we convert a TLS Initial-Exec to a
2340 // Local-Exec.
2341
2342 inline void
2343 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
2344                                     size_t relnum,
2345                                     Output_segment* tls_segment,
2346                                     const elfcpp::Rel<32, false>& rel,
2347                                     unsigned int r_type,
2348                                     elfcpp::Elf_types<32>::Elf_Addr value,
2349                                     unsigned char* view,
2350                                     section_size_type view_size)
2351 {
2352   // We have to actually change the instructions, which means that we
2353   // need to examine the opcodes to figure out which instruction we
2354   // are looking at.
2355   if (r_type == elfcpp::R_386_TLS_IE)
2356     {
2357       // movl %gs:XX,%eax  ==>  movl $YY,%eax
2358       // movl %gs:XX,%reg  ==>  movl $YY,%reg
2359       // addl %gs:XX,%reg  ==>  addl $YY,%reg
2360       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
2361       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2362
2363       unsigned char op1 = view[-1];
2364       if (op1 == 0xa1)
2365         {
2366           // movl XX,%eax  ==>  movl $YY,%eax
2367           view[-1] = 0xb8;
2368         }
2369       else
2370         {
2371           tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2372
2373           unsigned char op2 = view[-2];
2374           if (op2 == 0x8b)
2375             {
2376               // movl XX,%reg  ==>  movl $YY,%reg
2377               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2378                              (op1 & 0xc7) == 0x05);
2379               view[-2] = 0xc7;
2380               view[-1] = 0xc0 | ((op1 >> 3) & 7);
2381             }
2382           else if (op2 == 0x03)
2383             {
2384               // addl XX,%reg  ==>  addl $YY,%reg
2385               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2386                              (op1 & 0xc7) == 0x05);
2387               view[-2] = 0x81;
2388               view[-1] = 0xc0 | ((op1 >> 3) & 7);
2389             }
2390           else
2391             tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2392         }
2393     }
2394   else
2395     {
2396       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
2397       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
2398       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
2399       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2400       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2401
2402       unsigned char op1 = view[-1];
2403       unsigned char op2 = view[-2];
2404       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2405                      (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
2406       if (op2 == 0x8b)
2407         {
2408           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
2409           view[-2] = 0xc7;
2410           view[-1] = 0xc0 | ((op1 >> 3) & 7);
2411         }
2412       else if (op2 == 0x2b)
2413         {
2414           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
2415           view[-2] = 0x81;
2416           view[-1] = 0xe8 | ((op1 >> 3) & 7);
2417         }
2418       else if (op2 == 0x03)
2419         {
2420           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
2421           view[-2] = 0x81;
2422           view[-1] = 0xc0 | ((op1 >> 3) & 7);
2423         }
2424       else
2425         tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2426     }
2427
2428   value = tls_segment->memsz() - value;
2429   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
2430     value = - value;
2431
2432   Relocate_functions<32, false>::rel32(view, value);
2433 }
2434
2435 // Relocate section data.
2436
2437 void
2438 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
2439                               unsigned int sh_type,
2440                               const unsigned char* prelocs,
2441                               size_t reloc_count,
2442                               Output_section* output_section,
2443                               bool needs_special_offset_handling,
2444                               unsigned char* view,
2445                               elfcpp::Elf_types<32>::Elf_Addr address,
2446                               section_size_type view_size,
2447                               const Reloc_symbol_changes* reloc_symbol_changes)
2448 {
2449   gold_assert(sh_type == elfcpp::SHT_REL);
2450
2451   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
2452                          Target_i386::Relocate>(
2453     relinfo,
2454     this,
2455     prelocs,
2456     reloc_count,
2457     output_section,
2458     needs_special_offset_handling,
2459     view,
2460     address,
2461     view_size,
2462     reloc_symbol_changes);
2463 }
2464
2465 // Return the size of a relocation while scanning during a relocatable
2466 // link.
2467
2468 unsigned int
2469 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
2470     unsigned int r_type,
2471     Relobj* object)
2472 {
2473   switch (r_type)
2474     {
2475     case elfcpp::R_386_NONE:
2476     case elfcpp::R_386_GNU_VTINHERIT:
2477     case elfcpp::R_386_GNU_VTENTRY:
2478     case elfcpp::R_386_TLS_GD:            // Global-dynamic
2479     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
2480     case elfcpp::R_386_TLS_DESC_CALL:
2481     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
2482     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
2483     case elfcpp::R_386_TLS_IE:            // Initial-exec
2484     case elfcpp::R_386_TLS_IE_32:
2485     case elfcpp::R_386_TLS_GOTIE:
2486     case elfcpp::R_386_TLS_LE:            // Local-exec
2487     case elfcpp::R_386_TLS_LE_32:
2488       return 0;
2489
2490     case elfcpp::R_386_32:
2491     case elfcpp::R_386_PC32:
2492     case elfcpp::R_386_GOT32:
2493     case elfcpp::R_386_PLT32:
2494     case elfcpp::R_386_GOTOFF:
2495     case elfcpp::R_386_GOTPC:
2496      return 4;
2497
2498     case elfcpp::R_386_16:
2499     case elfcpp::R_386_PC16:
2500       return 2;
2501
2502     case elfcpp::R_386_8:
2503     case elfcpp::R_386_PC8:
2504       return 1;
2505
2506       // These are relocations which should only be seen by the
2507       // dynamic linker, and should never be seen here.
2508     case elfcpp::R_386_COPY:
2509     case elfcpp::R_386_GLOB_DAT:
2510     case elfcpp::R_386_JUMP_SLOT:
2511     case elfcpp::R_386_RELATIVE:
2512     case elfcpp::R_386_TLS_TPOFF:
2513     case elfcpp::R_386_TLS_DTPMOD32:
2514     case elfcpp::R_386_TLS_DTPOFF32:
2515     case elfcpp::R_386_TLS_TPOFF32:
2516     case elfcpp::R_386_TLS_DESC:
2517       object->error(_("unexpected reloc %u in object file"), r_type);
2518       return 0;
2519
2520     case elfcpp::R_386_32PLT:
2521     case elfcpp::R_386_TLS_GD_32:
2522     case elfcpp::R_386_TLS_GD_PUSH:
2523     case elfcpp::R_386_TLS_GD_CALL:
2524     case elfcpp::R_386_TLS_GD_POP:
2525     case elfcpp::R_386_TLS_LDM_32:
2526     case elfcpp::R_386_TLS_LDM_PUSH:
2527     case elfcpp::R_386_TLS_LDM_CALL:
2528     case elfcpp::R_386_TLS_LDM_POP:
2529     case elfcpp::R_386_USED_BY_INTEL_200:
2530     default:
2531       object->error(_("unsupported reloc %u in object file"), r_type);
2532       return 0;
2533     }
2534 }
2535
2536 // Scan the relocs during a relocatable link.
2537
2538 void
2539 Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
2540                                      Layout* layout,
2541                                      Sized_relobj<32, false>* object,
2542                                      unsigned int data_shndx,
2543                                      unsigned int sh_type,
2544                                      const unsigned char* prelocs,
2545                                      size_t reloc_count,
2546                                      Output_section* output_section,
2547                                      bool needs_special_offset_handling,
2548                                      size_t local_symbol_count,
2549                                      const unsigned char* plocal_symbols,
2550                                      Relocatable_relocs* rr)
2551 {
2552   gold_assert(sh_type == elfcpp::SHT_REL);
2553
2554   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
2555     Relocatable_size_for_reloc> Scan_relocatable_relocs;
2556
2557   gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
2558       Scan_relocatable_relocs>(
2559     symtab,
2560     layout,
2561     object,
2562     data_shndx,
2563     prelocs,
2564     reloc_count,
2565     output_section,
2566     needs_special_offset_handling,
2567     local_symbol_count,
2568     plocal_symbols,
2569     rr);
2570 }
2571
2572 // Relocate a section during a relocatable link.
2573
2574 void
2575 Target_i386::relocate_for_relocatable(
2576     const Relocate_info<32, false>* relinfo,
2577     unsigned int sh_type,
2578     const unsigned char* prelocs,
2579     size_t reloc_count,
2580     Output_section* output_section,
2581     off_t offset_in_output_section,
2582     const Relocatable_relocs* rr,
2583     unsigned char* view,
2584     elfcpp::Elf_types<32>::Elf_Addr view_address,
2585     section_size_type view_size,
2586     unsigned char* reloc_view,
2587     section_size_type reloc_view_size)
2588 {
2589   gold_assert(sh_type == elfcpp::SHT_REL);
2590
2591   gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
2592     relinfo,
2593     prelocs,
2594     reloc_count,
2595     output_section,
2596     offset_in_output_section,
2597     rr,
2598     view,
2599     view_address,
2600     view_size,
2601     reloc_view,
2602     reloc_view_size);
2603 }
2604
2605 // Return the value to use for a dynamic which requires special
2606 // treatment.  This is how we support equality comparisons of function
2607 // pointers across shared library boundaries, as described in the
2608 // processor specific ABI supplement.
2609
2610 uint64_t
2611 Target_i386::do_dynsym_value(const Symbol* gsym) const
2612 {
2613   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2614   return this->plt_section()->address() + gsym->plt_offset();
2615 }
2616
2617 // Return a string used to fill a code section with nops to take up
2618 // the specified length.
2619
2620 std::string
2621 Target_i386::do_code_fill(section_size_type length) const
2622 {
2623   if (length >= 16)
2624     {
2625       // Build a jmp instruction to skip over the bytes.
2626       unsigned char jmp[5];
2627       jmp[0] = 0xe9;
2628       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2629       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2630               + std::string(length - 5, '\0'));
2631     }
2632
2633   // Nop sequences of various lengths.
2634   const char nop1[1] = { 0x90 };                   // nop
2635   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
2636   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
2637   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
2638   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
2639                          0x00 };                   // leal 0(%esi,1),%esi
2640   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
2641                          0x00, 0x00 };
2642   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
2643                          0x00, 0x00, 0x00 };
2644   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
2645                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2646   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
2647                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
2648                          0x00 };
2649   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2650                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2651                            0x00, 0x00 };
2652   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2653                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2654                            0x00, 0x00, 0x00 };
2655   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2656                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2657                            0x00, 0x00, 0x00, 0x00 };
2658   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2659                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2660                            0x27, 0x00, 0x00, 0x00,
2661                            0x00 };
2662   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2663                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2664                            0xbc, 0x27, 0x00, 0x00,
2665                            0x00, 0x00 };
2666   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2667                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2668                            0x90, 0x90, 0x90, 0x90,
2669                            0x90, 0x90, 0x90 };
2670
2671   const char* nops[16] = {
2672     NULL,
2673     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2674     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2675   };
2676
2677   return std::string(nops[length], length);
2678 }
2679
2680 // FNOFFSET in section SHNDX in OBJECT is the start of a function
2681 // compiled with -fstack-split.  The function calls non-stack-split
2682 // code.  We have to change the function so that it always ensures
2683 // that it has enough stack space to run some random function.
2684
2685 void
2686 Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
2687                                 section_offset_type fnoffset,
2688                                 section_size_type fnsize,
2689                                 unsigned char* view,
2690                                 section_size_type view_size,
2691                                 std::string* from,
2692                                 std::string* to) const
2693 {
2694   // The function starts with a comparison of the stack pointer and a
2695   // field in the TCB.  This is followed by a jump.
2696
2697   // cmp %gs:NN,%esp
2698   if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
2699       && fnsize > 7)
2700     {
2701       // We will call __morestack if the carry flag is set after this
2702       // comparison.  We turn the comparison into an stc instruction
2703       // and some nops.
2704       view[fnoffset] = '\xf9';
2705       this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
2706     }
2707   // lea NN(%esp),%ecx
2708   // lea NN(%esp),%edx
2709   else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
2710             || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
2711            && fnsize > 7)
2712     {
2713       // This is loading an offset from the stack pointer for a
2714       // comparison.  The offset is negative, so we decrease the
2715       // offset by the amount of space we need for the stack.  This
2716       // means we will avoid calling __morestack if there happens to
2717       // be plenty of space on the stack already.
2718       unsigned char* pval = view + fnoffset + 3;
2719       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
2720       val -= parameters->options().split_stack_adjust_size();
2721       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
2722     }
2723   else
2724     {
2725       if (!object->has_no_split_stack())
2726         object->error(_("failed to match split-stack sequence at "
2727                         "section %u offset %0zx"),
2728                       shndx, static_cast<size_t>(fnoffset));
2729       return;
2730     }
2731
2732   // We have to change the function so that it calls
2733   // __morestack_non_split instead of __morestack.  The former will
2734   // allocate additional stack space.
2735   *from = "__morestack";
2736   *to = "__morestack_non_split";
2737 }
2738
2739 // The selector for i386 object files.
2740
2741 class Target_selector_i386 : public Target_selector_freebsd
2742 {
2743 public:
2744   Target_selector_i386()
2745     : Target_selector_freebsd(elfcpp::EM_386, 32, false,
2746                               "elf32-i386", "elf32-i386-freebsd")
2747   { }
2748
2749   Target*
2750   do_instantiate_target()
2751   { return new Target_i386(); }
2752 };
2753
2754 Target_selector_i386 target_selector_i386;
2755
2756 } // End anonymous namespace.