1 // gold.cc -- main linker functions
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
30 #include "libiberty.h"
33 #include "target-select.h"
35 #include "workqueue.h"
36 #include "dirsearch.h"
47 #include "incremental.h"
55 const char* program_name;
58 process_incremental_input(Incremental_binary*, unsigned int, Input_objects*,
59 Symbol_table*, Layout*, Dirsearch*, Mapfile*,
60 Task_token*, Task_token*);
63 gold_exit(Exit_status status)
65 if (parameters != NULL
66 && parameters->options_valid()
67 && parameters->options().has_plugins())
68 parameters->options().plugins()->cleanup();
69 if (status != GOLD_OK && parameters != NULL && parameters->options_valid())
70 unlink_if_ordinary(parameters->options().output_file_name());
77 // We are out of memory, so try hard to print a reasonable message.
78 // Note that we don't try to translate this message, since the
79 // translation process itself will require memory.
81 // LEN only exists to avoid a pointless warning when write is
82 // declared with warn_use_result, as when compiling with
83 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
84 // work, at least not with gcc 4.3.0.
86 ssize_t len = write(2, program_name, strlen(program_name));
89 const char* const s = ": out of memory\n";
90 len = write(2, s, strlen(s));
95 // Handle an unreachable case.
98 do_gold_unreachable(const char* filename, int lineno, const char* function)
100 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
101 program_name, function, filename, lineno);
105 // This class arranges to run the functions done in the middle of the
106 // link. It is just a closure.
108 class Middle_runner : public Task_function_runner
111 Middle_runner(const General_options& options,
112 const Input_objects* input_objects,
113 Symbol_table* symtab,
114 Layout* layout, Mapfile* mapfile)
115 : options_(options), input_objects_(input_objects), symtab_(symtab),
116 layout_(layout), mapfile_(mapfile)
120 run(Workqueue*, const Task*);
123 const General_options& options_;
124 const Input_objects* input_objects_;
125 Symbol_table* symtab_;
131 Middle_runner::run(Workqueue* workqueue, const Task* task)
133 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
134 this->layout_, workqueue, this->mapfile_);
137 // This class arranges the tasks to process the relocs for garbage collection.
139 class Gc_runner : public Task_function_runner
142 Gc_runner(const General_options& options,
143 const Input_objects* input_objects,
144 Symbol_table* symtab,
145 Layout* layout, Mapfile* mapfile)
146 : options_(options), input_objects_(input_objects), symtab_(symtab),
147 layout_(layout), mapfile_(mapfile)
151 run(Workqueue*, const Task*);
154 const General_options& options_;
155 const Input_objects* input_objects_;
156 Symbol_table* symtab_;
162 Gc_runner::run(Workqueue* workqueue, const Task* task)
164 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
165 this->symtab_, this->layout_, workqueue,
169 // Queue up the initial set of tasks for this link job.
172 queue_initial_tasks(const General_options& options,
173 Dirsearch& search_path,
174 const Command_line& cmdline,
175 Workqueue* workqueue, Input_objects* input_objects,
176 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
178 if (cmdline.begin() == cmdline.end())
181 if (options.printed_version())
183 if (options.print_output_format())
185 print_output_format();
190 gold_fatal(_("no input files"));
193 int thread_count = options.thread_count_initial();
194 if (thread_count == 0)
195 thread_count = cmdline.number_of_input_files();
196 workqueue->set_thread_count(thread_count);
198 // For incremental links, the base output file.
199 Incremental_binary* ibase = NULL;
201 if (parameters->incremental_update())
203 Output_file* of = new Output_file(options.output_file_name());
204 if (of->open_base_file(options.incremental_base(), true))
206 ibase = open_incremental_binary(of);
208 && ibase->check_inputs(cmdline, layout->incremental_inputs()))
209 ibase->init_layout(layout);
219 if (set_parameters_incremental_full())
220 gold_info(_("linking with --incremental-full"));
222 gold_fallback(_("restart link with --incremental-full"));
226 // Read the input files. We have to add the symbols to the symbol
227 // table in order. We do this by creating a separate blocker for
228 // each input file. We associate the blocker with the following
229 // input file, to give us a convenient place to delete it.
230 Task_token* this_blocker = NULL;
233 // Normal link. Queue a Read_symbols task for each input file
234 // on the command line.
235 for (Command_line::const_iterator p = cmdline.begin();
239 Task_token* next_blocker = new Task_token(true);
240 next_blocker->add_blocker();
241 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
242 &search_path, 0, mapfile, &*p, NULL,
243 NULL, this_blocker, next_blocker));
244 this_blocker = next_blocker;
249 // Incremental update link. Process the list of input files
250 // stored in the base file, and queue a task for each file:
251 // a Read_symbols task for a changed file, and an Add_symbols task
252 // for an unchanged file. We need to mark all the space used by
253 // unchanged files before we can start any tasks running.
254 unsigned int input_file_count = ibase->input_file_count();
255 std::vector<Task*> tasks;
256 tasks.reserve(input_file_count);
257 for (unsigned int i = 0; i < input_file_count; ++i)
259 Task_token* next_blocker = new Task_token(true);
260 next_blocker->add_blocker();
261 Task* t = process_incremental_input(ibase, i, input_objects, symtab,
262 layout, &search_path, mapfile,
263 this_blocker, next_blocker);
265 this_blocker = next_blocker;
267 // Now we can queue the tasks.
268 for (unsigned int i = 0; i < tasks.size(); i++)
269 workqueue->queue(tasks[i]);
272 if (options.has_plugins())
274 Task_token* next_blocker = new Task_token(true);
275 next_blocker->add_blocker();
276 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
277 &search_path, mapfile, this_blocker,
279 this_blocker = next_blocker;
282 if (options.relocatable()
283 && (options.gc_sections() || options.icf_enabled()))
284 gold_error(_("cannot mix -r with --gc-sections or --icf"));
286 if (options.gc_sections() || options.icf_enabled())
288 workqueue->queue(new Task_function(new Gc_runner(options,
294 "Task_function Gc_runner"));
298 workqueue->queue(new Task_function(new Middle_runner(options,
304 "Task_function Middle_runner"));
308 // Process an incremental input file: if it is unchanged from the previous
309 // link, return a task to add its symbols from the base file's incremental
310 // info; if it has changed, return a normal Read_symbols task. We create a
311 // task for every input file, if only to report the file for rebuilding the
315 process_incremental_input(Incremental_binary* ibase,
316 unsigned int input_file_index,
317 Input_objects* input_objects,
318 Symbol_table* symtab,
320 Dirsearch* search_path,
322 Task_token* this_blocker,
323 Task_token* next_blocker)
325 const Incremental_binary::Input_reader* input_reader =
326 ibase->get_input_reader(input_file_index);
327 Incremental_input_type input_type = input_reader->type();
329 // Get the input argument corresponding to this input file, matching on
330 // the argument serial number. If the input file cannot be matched
331 // to an existing input argument, synthesize a new one.
332 const Input_argument* input_argument =
333 ibase->get_input_argument(input_file_index);
334 if (input_argument == NULL)
336 Input_file_argument file(input_reader->filename(),
337 Input_file_argument::INPUT_FILE_TYPE_FILE,
338 "", false, parameters->options());
339 Input_argument* arg = new Input_argument(file);
340 arg->set_script_info(ibase->get_script_info(input_file_index));
341 input_argument = arg;
344 gold_debug(DEBUG_INCREMENTAL, "Incremental object: %s, type %d",
345 input_reader->filename(), input_type);
347 if (input_type == INCREMENTAL_INPUT_SCRIPT)
349 // Incremental_binary::check_inputs should have cancelled the
350 // incremental update if the script has changed.
351 gold_assert(!ibase->file_has_changed(input_file_index));
352 return new Check_script(layout, ibase, input_file_index, input_reader,
353 this_blocker, next_blocker);
356 if (input_type == INCREMENTAL_INPUT_ARCHIVE)
358 Incremental_library* lib = ibase->get_library(input_file_index);
359 gold_assert(lib != NULL);
360 if (lib->filename() == "/group/"
361 || !ibase->file_has_changed(input_file_index))
363 // Queue a task to check that no references have been added to any
364 // of the library's unused symbols.
365 return new Check_library(symtab, layout, ibase, input_file_index,
366 input_reader, this_blocker, next_blocker);
370 // Queue a Read_symbols task to process the archive normally.
371 return new Read_symbols(input_objects, symtab, layout, search_path,
372 0, mapfile, input_argument, NULL, NULL,
373 this_blocker, next_blocker);
377 if (input_type == INCREMENTAL_INPUT_ARCHIVE_MEMBER)
379 // For archive members, check the timestamp of the containing archive.
380 Incremental_library* lib = ibase->get_library(input_file_index);
381 gold_assert(lib != NULL);
382 // Process members of a --start-lib/--end-lib group as normal objects.
383 if (lib->filename() != "/group/")
385 if (ibase->file_has_changed(lib->input_file_index()))
387 return new Read_member(input_objects, symtab, layout, mapfile,
388 input_reader, this_blocker, next_blocker);
392 // The previous contributions from this file will be kept.
393 // Mark the pieces of output sections contributed by this
395 ibase->reserve_layout(input_file_index);
396 Object* obj = make_sized_incremental_object(ibase,
400 return new Add_symbols(input_objects, symtab, layout,
401 search_path, 0, mapfile, input_argument,
402 obj, lib, NULL, this_blocker,
408 // Normal object file or shared library. Check if the file has changed
409 // since the last incremental link.
410 if (ibase->file_has_changed(input_file_index))
412 return new Read_symbols(input_objects, symtab, layout, search_path, 0,
413 mapfile, input_argument, NULL, NULL,
414 this_blocker, next_blocker);
418 // The previous contributions from this file will be kept.
419 // Mark the pieces of output sections contributed by this object.
420 ibase->reserve_layout(input_file_index);
421 Object* obj = make_sized_incremental_object(ibase,
425 return new Add_symbols(input_objects, symtab, layout, search_path, 0,
426 mapfile, input_argument, obj, NULL, NULL,
427 this_blocker, next_blocker);
431 // Queue up a set of tasks to be done before queueing the middle set
432 // of tasks. This is only necessary when garbage collection
433 // (--gc-sections) of unused sections is desired. The relocs are read
434 // and processed here early to determine the garbage sections before the
435 // relocs can be scanned in later tasks.
438 queue_middle_gc_tasks(const General_options& options,
440 const Input_objects* input_objects,
441 Symbol_table* symtab,
443 Workqueue* workqueue,
446 // Read_relocs for all the objects must be done and processed to find
447 // unused sections before any scanning of the relocs can take place.
448 Task_token* this_blocker = NULL;
449 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
450 p != input_objects->relobj_end();
453 Task_token* next_blocker = new Task_token(true);
454 next_blocker->add_blocker();
455 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
457 this_blocker = next_blocker;
460 // If we are given only archives in input, we have no regular
461 // objects and THIS_BLOCKER is NULL here. Create a dummy
462 // blocker here so that we can run the middle tasks immediately.
463 if (this_blocker == NULL)
465 gold_assert(input_objects->number_of_relobjs() == 0);
466 this_blocker = new Task_token(true);
469 workqueue->queue(new Task_function(new Middle_runner(options,
475 "Task_function Middle_runner"));
478 // Queue up the middle set of tasks. These are the tasks which run
479 // after all the input objects have been found and all the symbols
480 // have been read, but before we lay out the output file.
483 queue_middle_tasks(const General_options& options,
485 const Input_objects* input_objects,
486 Symbol_table* symtab,
488 Workqueue* workqueue,
491 Timer* timer = parameters->timer();
495 // Add any symbols named with -u options to the symbol table.
496 symtab->add_undefined_symbols_from_command_line(layout);
498 // If garbage collection was chosen, relocs have been read and processed
499 // at this point by pre_middle_tasks. Layout can then be done for all
501 if (parameters->options().gc_sections())
503 // Find the start symbol if any.
504 Symbol* sym = symtab->lookup(parameters->entry());
506 symtab->gc_mark_symbol(sym);
507 sym = symtab->lookup(parameters->options().init());
508 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
509 symtab->gc_mark_symbol(sym);
510 sym = symtab->lookup(parameters->options().fini());
511 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
512 symtab->gc_mark_symbol(sym);
513 // Symbols named with -u should not be considered garbage.
514 symtab->gc_mark_undef_symbols(layout);
515 gold_assert(symtab->gc() != NULL);
516 // Do a transitive closure on all references to determine the worklist.
517 symtab->gc()->do_transitive_closure();
520 // If identical code folding (--icf) is chosen it makes sense to do it
521 // only after garbage collection (--gc-sections) as we do not want to
522 // be folding sections that will be garbage.
523 if (parameters->options().icf_enabled())
525 symtab->icf()->find_identical_sections(input_objects, symtab);
528 // Call Object::layout for the second time to determine the
529 // output_sections for all referenced input sections. When
530 // --gc-sections or --icf is turned on, or when certain input
531 // sections have to be mapped to unique segments, Object::layout
532 // is called twice. It is called the first time when symbols
534 if (parameters->options().gc_sections()
535 || parameters->options().icf_enabled()
536 || layout->is_unique_segment_for_sections_specified())
538 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
539 p != input_objects->relobj_end();
542 Task_lock_obj<Object> tlo(task, *p);
543 (*p)->layout(symtab, layout, NULL);
547 // Layout deferred objects due to plugins.
548 if (parameters->options().has_plugins())
550 Plugin_manager* plugins = parameters->options().plugins();
551 gold_assert(plugins != NULL);
552 plugins->layout_deferred_objects();
555 /* If plugins have specified a section order, re-arrange input sections
556 according to a specified section order. If --section-ordering-file is
557 also specified, do not do anything here. */
558 if (parameters->options().has_plugins()
559 && layout->is_section_ordering_specified()
560 && !parameters->options().section_ordering_file ())
562 for (Layout::Section_list::const_iterator p
563 = layout->section_list().begin();
564 p != layout->section_list().end();
566 (*p)->update_section_layout(layout->get_section_order_map());
569 if (parameters->options().gc_sections()
570 || parameters->options().icf_enabled())
572 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
573 p != input_objects->relobj_end();
576 // Update the value of output_section stored in rd.
577 Read_relocs_data* rd = (*p)->get_relocs_data();
578 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
579 q != rd->relocs.end();
582 q->output_section = (*p)->output_section(q->data_shndx);
583 q->needs_special_offset_handling =
584 (*p)->is_output_section_offset_invalid(q->data_shndx);
589 // We have to support the case of not seeing any input objects, and
590 // generate an empty file. Existing builds depend on being able to
591 // pass an empty archive to the linker and get an empty object file
592 // out. In order to do this we need to use a default target.
593 if (input_objects->number_of_input_objects() == 0
594 && layout->incremental_base() == NULL)
595 parameters_force_valid_target();
597 int thread_count = options.thread_count_middle();
598 if (thread_count == 0)
599 thread_count = std::max(2, input_objects->number_of_input_objects());
600 workqueue->set_thread_count(thread_count);
602 // Now we have seen all the input files.
603 const bool doing_static_link =
604 (!input_objects->any_dynamic()
605 && !parameters->options().output_is_position_independent());
606 set_parameters_doing_static_link(doing_static_link);
607 if (!doing_static_link && options.is_static())
609 // We print out just the first .so we see; there may be others.
610 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
611 gold_error(_("cannot mix -static with dynamic object %s"),
612 (*input_objects->dynobj_begin())->name().c_str());
614 if (!doing_static_link && parameters->options().relocatable())
615 gold_fatal(_("cannot mix -r with dynamic object %s"),
616 (*input_objects->dynobj_begin())->name().c_str());
617 if (!doing_static_link
618 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
619 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
620 (*input_objects->dynobj_begin())->name().c_str());
622 if (parameters->options().relocatable())
624 Input_objects::Relobj_iterator p = input_objects->relobj_begin();
625 if (p != input_objects->relobj_end())
627 bool uses_split_stack = (*p)->uses_split_stack();
628 for (++p; p != input_objects->relobj_end(); ++p)
630 if ((*p)->uses_split_stack() != uses_split_stack)
631 gold_fatal(_("cannot mix split-stack '%s' and "
632 "non-split-stack '%s' when using -r"),
633 (*input_objects->relobj_begin())->name().c_str(),
634 (*p)->name().c_str());
639 // For incremental updates, record the existing GOT and PLT entries,
640 // and the COPY relocations.
641 if (parameters->incremental_update())
643 Incremental_binary* ibase = layout->incremental_base();
644 ibase->process_got_plt(symtab, layout);
645 ibase->emit_copy_relocs(symtab);
648 if (is_debugging_enabled(DEBUG_SCRIPT))
649 layout->script_options()->print(stderr);
651 // For each dynamic object, record whether we've seen all the
652 // dynamic objects that it depends upon.
653 input_objects->check_dynamic_dependencies();
655 // Do the --no-undefined-version check.
656 if (!parameters->options().undefined_version())
658 Script_options* so = layout->script_options();
659 so->version_script_info()->check_unmatched_names(symtab);
662 // Create any automatic note sections.
663 layout->create_notes();
665 // Create any output sections required by any linker script.
666 layout->create_script_sections();
668 // Define some sections and symbols needed for a dynamic link. This
669 // handles some cases we want to see before we read the relocs.
670 layout->create_initial_dynamic_sections(symtab);
672 // Define symbols from any linker scripts.
673 layout->define_script_symbols(symtab);
675 // TODO(csilvers): figure out a more principled way to get the target
676 Target* target = const_cast<Target*>(¶meters->target());
678 // Attach sections to segments.
679 layout->attach_sections_to_segments(target);
681 if (!parameters->options().relocatable())
683 // Predefine standard symbols.
684 define_standard_symbols(symtab, layout);
686 // Define __start and __stop symbols for output sections where
688 layout->define_section_symbols(symtab);
690 // Define target-specific symbols.
691 target->define_standard_symbols(symtab, layout);
694 // Make sure we have symbols for any required group signatures.
695 layout->define_group_signatures(symtab);
697 Task_token* this_blocker = NULL;
699 // Allocate common symbols. We use a blocker to run this before the
700 // Scan_relocs tasks, because it writes to the symbol table just as
702 if (parameters->options().define_common())
704 this_blocker = new Task_token(true);
705 this_blocker->add_blocker();
706 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
710 // If doing garbage collection, the relocations have already been read.
711 // Otherwise, read and scan the relocations.
712 if (parameters->options().gc_sections()
713 || parameters->options().icf_enabled())
715 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
716 p != input_objects->relobj_end();
719 Task_token* next_blocker = new Task_token(true);
720 next_blocker->add_blocker();
721 workqueue->queue(new Scan_relocs(symtab, layout, *p,
722 (*p)->get_relocs_data(),
723 this_blocker, next_blocker));
724 this_blocker = next_blocker;
729 // Read the relocations of the input files. We do this to find
730 // which symbols are used by relocations which require a GOT and/or
731 // a PLT entry, or a COPY reloc. When we implement garbage
732 // collection we will do it here by reading the relocations in a
733 // breadth first search by references.
735 // We could also read the relocations during the first pass, and
736 // mark symbols at that time. That is how the old GNU linker works.
737 // Doing that is more complex, since we may later decide to discard
738 // some of the sections, and thus change our minds about the types
739 // of references made to the symbols.
740 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
741 p != input_objects->relobj_end();
744 Task_token* next_blocker = new Task_token(true);
745 next_blocker->add_blocker();
746 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
748 this_blocker = next_blocker;
752 if (this_blocker == NULL)
754 if (input_objects->number_of_relobjs() == 0)
756 // If we are given only archives in input, we have no regular
757 // objects and THIS_BLOCKER is NULL here. Create a dummy
758 // blocker here so that we can run the layout task immediately.
759 this_blocker = new Task_token(true);
763 // If we failed to open any input files, it's possible for
764 // THIS_BLOCKER to be NULL here. There's no real point in
765 // continuing if that happens.
766 gold_assert(parameters->errors()->error_count() > 0);
771 // When all those tasks are complete, we can start laying out the
773 workqueue->queue(new Task_function(new Layout_task_runner(options,
780 "Task_function Layout_task_runner"));
783 // Queue up the final set of tasks. This is called at the end of
787 queue_final_tasks(const General_options& options,
788 const Input_objects* input_objects,
789 const Symbol_table* symtab,
791 Workqueue* workqueue,
794 Timer* timer = parameters->timer();
798 int thread_count = options.thread_count_final();
799 if (thread_count == 0)
800 thread_count = std::max(2, input_objects->number_of_input_objects());
801 workqueue->set_thread_count(thread_count);
803 bool any_postprocessing_sections = layout->any_postprocessing_sections();
805 // Use a blocker to wait until all the input sections have been
807 Task_token* input_sections_blocker = NULL;
808 if (!any_postprocessing_sections)
810 input_sections_blocker = new Task_token(true);
811 // Write_symbols_task, Relocate_tasks.
812 input_sections_blocker->add_blocker();
813 input_sections_blocker->add_blockers(input_objects->number_of_relobjs());
816 // Use a blocker to block any objects which have to wait for the
817 // output sections to complete before they can apply relocations.
818 Task_token* output_sections_blocker = new Task_token(true);
819 output_sections_blocker->add_blocker();
821 // Use a blocker to block the final cleanup task.
822 Task_token* final_blocker = new Task_token(true);
823 // Write_symbols_task, Write_sections_task, Write_data_task,
825 final_blocker->add_blockers(3);
826 final_blocker->add_blockers(input_objects->number_of_relobjs());
827 if (!any_postprocessing_sections)
828 final_blocker->add_blocker();
830 // Queue a task to write out the symbol table.
831 workqueue->queue(new Write_symbols_task(layout,
839 // Queue a task to write out the output sections.
840 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
841 input_sections_blocker,
844 // Queue a task to write out everything else.
845 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
847 // Queue a task for each input object to relocate the sections and
848 // write out the local symbols.
849 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
850 p != input_objects->relobj_end();
852 workqueue->queue(new Relocate_task(symtab, layout, *p, of,
853 input_sections_blocker,
854 output_sections_blocker,
857 // Queue a task to write out the output sections which depend on
858 // input sections. If there are any sections which require
859 // postprocessing, then we need to do this last, since it may resize
861 if (!any_postprocessing_sections)
863 Task* t = new Write_after_input_sections_task(layout, of,
864 input_sections_blocker,
870 Task_token* new_final_blocker = new Task_token(true);
871 new_final_blocker->add_blocker();
872 Task* t = new Write_after_input_sections_task(layout, of,
876 final_blocker = new_final_blocker;
879 // Create tasks for tree-style build ID computation, if necessary.
880 final_blocker = layout->queue_build_id_tasks(workqueue, final_blocker, of);
882 // Queue a task to close the output file. This will be blocked by
884 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
887 "Task_function Close_task_runner"));
890 } // End namespace gold.