1 // gold.cc -- main linker functions
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
7 // This file is part of gold.
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
31 #include "libiberty.h"
34 #include "target-select.h"
36 #include "workqueue.h"
37 #include "dirsearch.h"
48 #include "incremental.h"
56 const char* program_name;
59 process_incremental_input(Incremental_binary*, unsigned int, Input_objects*,
60 Symbol_table*, Layout*, Dirsearch*, Mapfile*,
61 Task_token*, Task_token*);
64 gold_exit(Exit_status status)
66 if (parameters != NULL
67 && parameters->options_valid()
68 && parameters->options().has_plugins())
69 parameters->options().plugins()->cleanup();
70 if (status != GOLD_OK && parameters != NULL && parameters->options_valid())
71 unlink_if_ordinary(parameters->options().output_file_name());
78 // We are out of memory, so try hard to print a reasonable message.
79 // Note that we don't try to translate this message, since the
80 // translation process itself will require memory.
82 // LEN only exists to avoid a pointless warning when write is
83 // declared with warn_use_result, as when compiling with
84 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
85 // work, at least not with gcc 4.3.0.
87 ssize_t len = write(2, program_name, strlen(program_name));
90 const char* const s = ": out of memory\n";
91 len = write(2, s, strlen(s));
96 // Handle an unreachable case.
99 do_gold_unreachable(const char* filename, int lineno, const char* function)
101 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
102 program_name, function, filename, lineno);
106 // This class arranges to run the functions done in the middle of the
107 // link. It is just a closure.
109 class Middle_runner : public Task_function_runner
112 Middle_runner(const General_options& options,
113 const Input_objects* input_objects,
114 Symbol_table* symtab,
115 Layout* layout, Mapfile* mapfile)
116 : options_(options), input_objects_(input_objects), symtab_(symtab),
117 layout_(layout), mapfile_(mapfile)
121 run(Workqueue*, const Task*);
124 const General_options& options_;
125 const Input_objects* input_objects_;
126 Symbol_table* symtab_;
132 Middle_runner::run(Workqueue* workqueue, const Task* task)
134 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
135 this->layout_, workqueue, this->mapfile_);
138 // This class arranges the tasks to process the relocs for garbage collection.
140 class Gc_runner : public Task_function_runner
143 Gc_runner(const General_options& options,
144 const Input_objects* input_objects,
145 Symbol_table* symtab,
146 Layout* layout, Mapfile* mapfile)
147 : options_(options), input_objects_(input_objects), symtab_(symtab),
148 layout_(layout), mapfile_(mapfile)
152 run(Workqueue*, const Task*);
155 const General_options& options_;
156 const Input_objects* input_objects_;
157 Symbol_table* symtab_;
163 Gc_runner::run(Workqueue* workqueue, const Task* task)
165 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
166 this->symtab_, this->layout_, workqueue,
170 // Queue up the initial set of tasks for this link job.
173 queue_initial_tasks(const General_options& options,
174 Dirsearch& search_path,
175 const Command_line& cmdline,
176 Workqueue* workqueue, Input_objects* input_objects,
177 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
179 if (cmdline.begin() == cmdline.end())
182 if (options.printed_version())
184 if (options.print_output_format())
186 print_output_format();
191 gold_fatal(_("no input files"));
194 int thread_count = options.thread_count_initial();
195 if (thread_count == 0)
196 thread_count = cmdline.number_of_input_files();
197 workqueue->set_thread_count(thread_count);
199 // For incremental links, the base output file.
200 Incremental_binary* ibase = NULL;
202 if (parameters->incremental_update())
204 Output_file* of = new Output_file(options.output_file_name());
205 if (of->open_base_file(options.incremental_base(), true))
207 ibase = open_incremental_binary(of);
209 && ibase->check_inputs(cmdline, layout->incremental_inputs()))
210 ibase->init_layout(layout);
220 if (set_parameters_incremental_full())
221 gold_info(_("linking with --incremental-full"));
223 gold_fallback(_("restart link with --incremental-full"));
227 // Read the input files. We have to add the symbols to the symbol
228 // table in order. We do this by creating a separate blocker for
229 // each input file. We associate the blocker with the following
230 // input file, to give us a convenient place to delete it.
231 Task_token* this_blocker = NULL;
234 // Normal link. Queue a Read_symbols task for each input file
235 // on the command line.
236 for (Command_line::const_iterator p = cmdline.begin();
240 Task_token* next_blocker = new Task_token(true);
241 next_blocker->add_blocker();
242 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
243 &search_path, 0, mapfile, &*p, NULL,
244 NULL, this_blocker, next_blocker));
245 this_blocker = next_blocker;
250 // Incremental update link. Process the list of input files
251 // stored in the base file, and queue a task for each file:
252 // a Read_symbols task for a changed file, and an Add_symbols task
253 // for an unchanged file. We need to mark all the space used by
254 // unchanged files before we can start any tasks running.
255 unsigned int input_file_count = ibase->input_file_count();
256 std::vector<Task*> tasks;
257 tasks.reserve(input_file_count);
258 for (unsigned int i = 0; i < input_file_count; ++i)
260 Task_token* next_blocker = new Task_token(true);
261 next_blocker->add_blocker();
262 Task* t = process_incremental_input(ibase, i, input_objects, symtab,
263 layout, &search_path, mapfile,
264 this_blocker, next_blocker);
266 this_blocker = next_blocker;
268 // Now we can queue the tasks.
269 for (unsigned int i = 0; i < tasks.size(); i++)
270 workqueue->queue(tasks[i]);
273 if (options.has_plugins())
275 Task_token* next_blocker = new Task_token(true);
276 next_blocker->add_blocker();
277 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
278 &search_path, mapfile, this_blocker,
280 this_blocker = next_blocker;
283 if (options.relocatable()
284 && (options.gc_sections() || options.icf_enabled()))
285 gold_error(_("cannot mix -r with --gc-sections or --icf"));
287 if (options.gc_sections() || options.icf_enabled())
289 workqueue->queue(new Task_function(new Gc_runner(options,
295 "Task_function Gc_runner"));
299 workqueue->queue(new Task_function(new Middle_runner(options,
305 "Task_function Middle_runner"));
309 // Process an incremental input file: if it is unchanged from the previous
310 // link, return a task to add its symbols from the base file's incremental
311 // info; if it has changed, return a normal Read_symbols task. We create a
312 // task for every input file, if only to report the file for rebuilding the
316 process_incremental_input(Incremental_binary* ibase,
317 unsigned int input_file_index,
318 Input_objects* input_objects,
319 Symbol_table* symtab,
321 Dirsearch* search_path,
323 Task_token* this_blocker,
324 Task_token* next_blocker)
326 const Incremental_binary::Input_reader* input_reader =
327 ibase->get_input_reader(input_file_index);
328 Incremental_input_type input_type = input_reader->type();
330 // Get the input argument corresponding to this input file, matching on
331 // the argument serial number. If the input file cannot be matched
332 // to an existing input argument, synthesize a new one.
333 const Input_argument* input_argument =
334 ibase->get_input_argument(input_file_index);
335 if (input_argument == NULL)
337 Input_file_argument file(input_reader->filename(),
338 Input_file_argument::INPUT_FILE_TYPE_FILE,
339 "", false, parameters->options());
340 Input_argument* arg = new Input_argument(file);
341 arg->set_script_info(ibase->get_script_info(input_file_index));
342 input_argument = arg;
345 gold_debug(DEBUG_INCREMENTAL, "Incremental object: %s, type %d",
346 input_reader->filename(), input_type);
348 if (input_type == INCREMENTAL_INPUT_SCRIPT)
350 // Incremental_binary::check_inputs should have cancelled the
351 // incremental update if the script has changed.
352 gold_assert(!ibase->file_has_changed(input_file_index));
353 return new Check_script(layout, ibase, input_file_index, input_reader,
354 this_blocker, next_blocker);
357 if (input_type == INCREMENTAL_INPUT_ARCHIVE)
359 Incremental_library* lib = ibase->get_library(input_file_index);
360 gold_assert(lib != NULL);
361 if (lib->filename() == "/group/"
362 || !ibase->file_has_changed(input_file_index))
364 // Queue a task to check that no references have been added to any
365 // of the library's unused symbols.
366 return new Check_library(symtab, layout, ibase, input_file_index,
367 input_reader, this_blocker, next_blocker);
371 // Queue a Read_symbols task to process the archive normally.
372 return new Read_symbols(input_objects, symtab, layout, search_path,
373 0, mapfile, input_argument, NULL, NULL,
374 this_blocker, next_blocker);
378 if (input_type == INCREMENTAL_INPUT_ARCHIVE_MEMBER)
380 // For archive members, check the timestamp of the containing archive.
381 Incremental_library* lib = ibase->get_library(input_file_index);
382 gold_assert(lib != NULL);
383 // Process members of a --start-lib/--end-lib group as normal objects.
384 if (lib->filename() != "/group/")
386 if (ibase->file_has_changed(lib->input_file_index()))
388 return new Read_member(input_objects, symtab, layout, mapfile,
389 input_reader, this_blocker, next_blocker);
393 // The previous contributions from this file will be kept.
394 // Mark the pieces of output sections contributed by this
396 ibase->reserve_layout(input_file_index);
397 Object* obj = make_sized_incremental_object(ibase,
401 return new Add_symbols(input_objects, symtab, layout,
402 search_path, 0, mapfile, input_argument,
403 obj, lib, NULL, this_blocker,
409 // Normal object file or shared library. Check if the file has changed
410 // since the last incremental link.
411 if (ibase->file_has_changed(input_file_index))
413 return new Read_symbols(input_objects, symtab, layout, search_path, 0,
414 mapfile, input_argument, NULL, NULL,
415 this_blocker, next_blocker);
419 // The previous contributions from this file will be kept.
420 // Mark the pieces of output sections contributed by this object.
421 ibase->reserve_layout(input_file_index);
422 Object* obj = make_sized_incremental_object(ibase,
426 return new Add_symbols(input_objects, symtab, layout, search_path, 0,
427 mapfile, input_argument, obj, NULL, NULL,
428 this_blocker, next_blocker);
432 // Queue up a set of tasks to be done before queueing the middle set
433 // of tasks. This is only necessary when garbage collection
434 // (--gc-sections) of unused sections is desired. The relocs are read
435 // and processed here early to determine the garbage sections before the
436 // relocs can be scanned in later tasks.
439 queue_middle_gc_tasks(const General_options& options,
441 const Input_objects* input_objects,
442 Symbol_table* symtab,
444 Workqueue* workqueue,
447 // Read_relocs for all the objects must be done and processed to find
448 // unused sections before any scanning of the relocs can take place.
449 Task_token* this_blocker = NULL;
450 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
451 p != input_objects->relobj_end();
454 Task_token* next_blocker = new Task_token(true);
455 next_blocker->add_blocker();
456 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
458 this_blocker = next_blocker;
461 // If we are given only archives in input, we have no regular
462 // objects and THIS_BLOCKER is NULL here. Create a dummy
463 // blocker here so that we can run the middle tasks immediately.
464 if (this_blocker == NULL)
466 gold_assert(input_objects->number_of_relobjs() == 0);
467 this_blocker = new Task_token(true);
470 workqueue->queue(new Task_function(new Middle_runner(options,
476 "Task_function Middle_runner"));
479 // Queue up the middle set of tasks. These are the tasks which run
480 // after all the input objects have been found and all the symbols
481 // have been read, but before we lay out the output file.
484 queue_middle_tasks(const General_options& options,
486 const Input_objects* input_objects,
487 Symbol_table* symtab,
489 Workqueue* workqueue,
492 Timer* timer = parameters->timer();
496 // Add any symbols named with -u options to the symbol table.
497 symtab->add_undefined_symbols_from_command_line(layout);
499 // If garbage collection was chosen, relocs have been read and processed
500 // at this point by pre_middle_tasks. Layout can then be done for all
502 if (parameters->options().gc_sections())
504 // Find the start symbol if any.
505 Symbol* sym = symtab->lookup(parameters->entry());
507 symtab->gc_mark_symbol(sym);
508 sym = symtab->lookup(parameters->options().init());
509 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
510 symtab->gc_mark_symbol(sym);
511 sym = symtab->lookup(parameters->options().fini());
512 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
513 symtab->gc_mark_symbol(sym);
514 // Symbols named with -u should not be considered garbage.
515 symtab->gc_mark_undef_symbols(layout);
516 gold_assert(symtab->gc() != NULL);
517 // Do a transitive closure on all references to determine the worklist.
518 symtab->gc()->do_transitive_closure();
521 // If identical code folding (--icf) is chosen it makes sense to do it
522 // only after garbage collection (--gc-sections) as we do not want to
523 // be folding sections that will be garbage.
524 if (parameters->options().icf_enabled())
526 symtab->icf()->find_identical_sections(input_objects, symtab);
529 // Call Object::layout for the second time to determine the
530 // output_sections for all referenced input sections. When
531 // --gc-sections or --icf is turned on, or when certain input
532 // sections have to be mapped to unique segments, Object::layout
533 // is called twice. It is called the first time when symbols
535 if (parameters->options().gc_sections()
536 || parameters->options().icf_enabled()
537 || layout->is_unique_segment_for_sections_specified())
539 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
540 p != input_objects->relobj_end();
543 Task_lock_obj<Object> tlo(task, *p);
544 (*p)->layout(symtab, layout, NULL);
548 // Layout deferred objects due to plugins.
549 if (parameters->options().has_plugins())
551 Plugin_manager* plugins = parameters->options().plugins();
552 gold_assert(plugins != NULL);
553 plugins->layout_deferred_objects();
556 /* If plugins have specified a section order, re-arrange input sections
557 according to a specified section order. If --section-ordering-file is
558 also specified, do not do anything here. */
559 if (parameters->options().has_plugins()
560 && layout->is_section_ordering_specified()
561 && !parameters->options().section_ordering_file ())
563 for (Layout::Section_list::const_iterator p
564 = layout->section_list().begin();
565 p != layout->section_list().end();
567 (*p)->update_section_layout(layout->get_section_order_map());
570 if (parameters->options().gc_sections()
571 || parameters->options().icf_enabled())
573 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
574 p != input_objects->relobj_end();
577 // Update the value of output_section stored in rd.
578 Read_relocs_data* rd = (*p)->get_relocs_data();
579 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
580 q != rd->relocs.end();
583 q->output_section = (*p)->output_section(q->data_shndx);
584 q->needs_special_offset_handling =
585 (*p)->is_output_section_offset_invalid(q->data_shndx);
590 // We have to support the case of not seeing any input objects, and
591 // generate an empty file. Existing builds depend on being able to
592 // pass an empty archive to the linker and get an empty object file
593 // out. In order to do this we need to use a default target.
594 if (input_objects->number_of_input_objects() == 0
595 && layout->incremental_base() == NULL)
596 parameters_force_valid_target();
598 int thread_count = options.thread_count_middle();
599 if (thread_count == 0)
600 thread_count = std::max(2, input_objects->number_of_input_objects());
601 workqueue->set_thread_count(thread_count);
603 // Now we have seen all the input files.
604 const bool doing_static_link =
605 (!input_objects->any_dynamic()
606 && !parameters->options().output_is_position_independent());
607 set_parameters_doing_static_link(doing_static_link);
608 if (!doing_static_link && options.is_static())
610 // We print out just the first .so we see; there may be others.
611 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
612 gold_error(_("cannot mix -static with dynamic object %s"),
613 (*input_objects->dynobj_begin())->name().c_str());
615 if (!doing_static_link && parameters->options().relocatable())
616 gold_fatal(_("cannot mix -r with dynamic object %s"),
617 (*input_objects->dynobj_begin())->name().c_str());
618 if (!doing_static_link
619 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
620 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
621 (*input_objects->dynobj_begin())->name().c_str());
623 if (parameters->options().relocatable())
625 Input_objects::Relobj_iterator p = input_objects->relobj_begin();
626 if (p != input_objects->relobj_end())
628 bool uses_split_stack = (*p)->uses_split_stack();
629 for (++p; p != input_objects->relobj_end(); ++p)
631 if ((*p)->uses_split_stack() != uses_split_stack)
632 gold_fatal(_("cannot mix split-stack '%s' and "
633 "non-split-stack '%s' when using -r"),
634 (*input_objects->relobj_begin())->name().c_str(),
635 (*p)->name().c_str());
640 // For incremental updates, record the existing GOT and PLT entries,
641 // and the COPY relocations.
642 if (parameters->incremental_update())
644 Incremental_binary* ibase = layout->incremental_base();
645 ibase->process_got_plt(symtab, layout);
646 ibase->emit_copy_relocs(symtab);
649 if (is_debugging_enabled(DEBUG_SCRIPT))
650 layout->script_options()->print(stderr);
652 // For each dynamic object, record whether we've seen all the
653 // dynamic objects that it depends upon.
654 input_objects->check_dynamic_dependencies();
656 // Do the --no-undefined-version check.
657 if (!parameters->options().undefined_version())
659 Script_options* so = layout->script_options();
660 so->version_script_info()->check_unmatched_names(symtab);
663 // Create any automatic note sections.
664 layout->create_notes();
666 // Create any output sections required by any linker script.
667 layout->create_script_sections();
669 // Define some sections and symbols needed for a dynamic link. This
670 // handles some cases we want to see before we read the relocs.
671 layout->create_initial_dynamic_sections(symtab);
673 // Define symbols from any linker scripts.
674 layout->define_script_symbols(symtab);
676 // TODO(csilvers): figure out a more principled way to get the target
677 Target* target = const_cast<Target*>(¶meters->target());
679 // Attach sections to segments.
680 layout->attach_sections_to_segments(target);
682 if (!parameters->options().relocatable())
684 // Predefine standard symbols.
685 define_standard_symbols(symtab, layout);
687 // Define __start and __stop symbols for output sections where
689 layout->define_section_symbols(symtab);
691 // Define target-specific symbols.
692 target->define_standard_symbols(symtab, layout);
695 // Make sure we have symbols for any required group signatures.
696 layout->define_group_signatures(symtab);
698 Task_token* this_blocker = NULL;
700 // Allocate common symbols. We use a blocker to run this before the
701 // Scan_relocs tasks, because it writes to the symbol table just as
703 if (parameters->options().define_common())
705 this_blocker = new Task_token(true);
706 this_blocker->add_blocker();
707 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
711 // If doing garbage collection, the relocations have already been read.
712 // Otherwise, read and scan the relocations.
713 if (parameters->options().gc_sections()
714 || parameters->options().icf_enabled())
716 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
717 p != input_objects->relobj_end();
720 Task_token* next_blocker = new Task_token(true);
721 next_blocker->add_blocker();
722 workqueue->queue(new Scan_relocs(symtab, layout, *p,
723 (*p)->get_relocs_data(),
724 this_blocker, next_blocker));
725 this_blocker = next_blocker;
730 // Read the relocations of the input files. We do this to find
731 // which symbols are used by relocations which require a GOT and/or
732 // a PLT entry, or a COPY reloc. When we implement garbage
733 // collection we will do it here by reading the relocations in a
734 // breadth first search by references.
736 // We could also read the relocations during the first pass, and
737 // mark symbols at that time. That is how the old GNU linker works.
738 // Doing that is more complex, since we may later decide to discard
739 // some of the sections, and thus change our minds about the types
740 // of references made to the symbols.
741 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
742 p != input_objects->relobj_end();
745 Task_token* next_blocker = new Task_token(true);
746 next_blocker->add_blocker();
747 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
749 this_blocker = next_blocker;
753 if (this_blocker == NULL)
755 if (input_objects->number_of_relobjs() == 0)
757 // If we are given only archives in input, we have no regular
758 // objects and THIS_BLOCKER is NULL here. Create a dummy
759 // blocker here so that we can run the layout task immediately.
760 this_blocker = new Task_token(true);
764 // If we failed to open any input files, it's possible for
765 // THIS_BLOCKER to be NULL here. There's no real point in
766 // continuing if that happens.
767 gold_assert(parameters->errors()->error_count() > 0);
772 // When all those tasks are complete, we can start laying out the
774 workqueue->queue(new Task_function(new Layout_task_runner(options,
781 "Task_function Layout_task_runner"));
784 // Queue up the final set of tasks. This is called at the end of
788 queue_final_tasks(const General_options& options,
789 const Input_objects* input_objects,
790 const Symbol_table* symtab,
792 Workqueue* workqueue,
795 Timer* timer = parameters->timer();
799 int thread_count = options.thread_count_final();
800 if (thread_count == 0)
801 thread_count = std::max(2, input_objects->number_of_input_objects());
802 workqueue->set_thread_count(thread_count);
804 bool any_postprocessing_sections = layout->any_postprocessing_sections();
806 // Use a blocker to wait until all the input sections have been
808 Task_token* input_sections_blocker = NULL;
809 if (!any_postprocessing_sections)
811 input_sections_blocker = new Task_token(true);
812 input_sections_blocker->add_blockers(input_objects->number_of_relobjs());
815 // Use a blocker to block any objects which have to wait for the
816 // output sections to complete before they can apply relocations.
817 Task_token* output_sections_blocker = new Task_token(true);
818 output_sections_blocker->add_blocker();
820 // Use a blocker to block the final cleanup task.
821 Task_token* final_blocker = new Task_token(true);
822 // Write_symbols_task, Write_sections_task, Write_data_task,
824 final_blocker->add_blockers(3);
825 final_blocker->add_blockers(input_objects->number_of_relobjs());
826 if (!any_postprocessing_sections)
827 final_blocker->add_blocker();
829 // Queue a task to write out the symbol table.
830 workqueue->queue(new Write_symbols_task(layout,
838 // Queue a task to write out the output sections.
839 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
842 // Queue a task to write out everything else.
843 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
845 // Queue a task for each input object to relocate the sections and
846 // write out the local symbols.
847 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
848 p != input_objects->relobj_end();
850 workqueue->queue(new Relocate_task(symtab, layout, *p, of,
851 input_sections_blocker,
852 output_sections_blocker,
855 // Queue a task to write out the output sections which depend on
856 // input sections. If there are any sections which require
857 // postprocessing, then we need to do this last, since it may resize
859 if (!any_postprocessing_sections)
861 Task* t = new Write_after_input_sections_task(layout, of,
862 input_sections_blocker,
868 Task_token* new_final_blocker = new Task_token(true);
869 new_final_blocker->add_blocker();
870 Task* t = new Write_after_input_sections_task(layout, of,
874 final_blocker = new_final_blocker;
877 // Create tasks for tree-style build ID computation, if necessary.
878 final_blocker = layout->queue_build_id_tasks(workqueue, final_blocker, of);
880 // Queue a task to close the output file. This will be blocked by
882 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
885 "Task_function Close_task_runner"));
888 } // End namespace gold.