* expression.cc (eval): Replace dummy argument with NULL.
[external/binutils.git] / gold / expression.cc
1 // expression.cc -- expressions in linker scripts for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <string>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34
35 namespace gold
36 {
37
38 // This file holds the code which handles linker expressions.
39
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment.  The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols.  We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50
51 struct Expression::Expression_eval_info
52 {
53   // The symbol table.
54   const Symbol_table* symtab;
55   // The layout--we use this to get section information.
56   const Layout* layout;
57   // Whether to check assertions.
58   bool check_assertions;
59   // Whether expressions can refer to the dot symbol.  The dot symbol
60   // is only available within a SECTIONS clause.
61   bool is_dot_available;
62   // The current value of the dot symbol.
63   uint64_t dot_value;
64   // The section in which the dot symbol is defined; this is NULL if
65   // it is absolute.
66   Output_section* dot_section;
67   // Points to where the section of the result should be stored.
68   Output_section** result_section_pointer;
69   // Pointer to where the alignment of the result should be stored.
70   uint64_t* result_alignment_pointer;
71 };
72
73 // Evaluate an expression.
74
75 uint64_t
76 Expression::eval(const Symbol_table* symtab, const Layout* layout,
77                  bool check_assertions)
78 {
79   return this->eval_maybe_dot(symtab, layout, check_assertions,
80                               false, 0, NULL, NULL, NULL);
81 }
82
83 // Evaluate an expression which may refer to the dot symbol.
84
85 uint64_t
86 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
87                           bool check_assertions, uint64_t dot_value,
88                           Output_section* dot_section,
89                           Output_section** result_section_pointer,
90                           uint64_t* result_alignment_pointer)
91 {
92   return this->eval_maybe_dot(symtab, layout, check_assertions, true,
93                               dot_value, dot_section, result_section_pointer,
94                               result_alignment_pointer);
95 }
96
97 // Evaluate an expression which may or may not refer to the dot
98 // symbol.
99
100 uint64_t
101 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
102                            bool check_assertions, bool is_dot_available,
103                            uint64_t dot_value, Output_section* dot_section,
104                            Output_section** result_section_pointer,
105                            uint64_t* result_alignment_pointer)
106 {
107   Expression_eval_info eei;
108   eei.symtab = symtab;
109   eei.layout = layout;
110   eei.check_assertions = check_assertions;
111   eei.is_dot_available = is_dot_available;
112   eei.dot_value = dot_value;
113   eei.dot_section = dot_section;
114
115   // We assume the value is absolute, and only set this to a section
116   // if we find a section relative reference.
117   if (result_section_pointer != NULL)
118     *result_section_pointer = NULL;
119   eei.result_section_pointer = result_section_pointer;
120
121   eei.result_alignment_pointer = result_alignment_pointer;
122
123   return this->value(&eei);
124 }
125
126 // A number.
127
128 class Integer_expression : public Expression
129 {
130  public:
131   Integer_expression(uint64_t val)
132     : val_(val)
133   { }
134
135   uint64_t
136   value(const Expression_eval_info*)
137   { return this->val_; }
138
139   void
140   print(FILE* f) const
141   { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
142
143  private:
144   uint64_t val_;
145 };
146
147 extern "C" Expression*
148 script_exp_integer(uint64_t val)
149 {
150   return new Integer_expression(val);
151 }
152
153 // An expression whose value is the value of a symbol.
154
155 class Symbol_expression : public Expression
156 {
157  public:
158   Symbol_expression(const char* name, size_t length)
159     : name_(name, length)
160   { }
161
162   uint64_t
163   value(const Expression_eval_info*);
164
165   void
166   print(FILE* f) const
167   { fprintf(f, "%s", this->name_.c_str()); }
168
169  private:
170   std::string name_;
171 };
172
173 uint64_t
174 Symbol_expression::value(const Expression_eval_info* eei)
175 {
176   Symbol* sym = eei->symtab->lookup(this->name_.c_str());
177   if (sym == NULL || !sym->is_defined())
178     {
179       gold_error(_("undefined symbol '%s' referenced in expression"),
180                  this->name_.c_str());
181       return 0;
182     }
183
184   if (eei->result_section_pointer != NULL)
185     *eei->result_section_pointer = sym->output_section();
186
187   if (parameters->target().get_size() == 32)
188     return eei->symtab->get_sized_symbol<32>(sym)->value();
189   else if (parameters->target().get_size() == 64)
190     return eei->symtab->get_sized_symbol<64>(sym)->value();
191   else
192     gold_unreachable();
193 }
194
195 // An expression whose value is the value of the special symbol ".".
196 // This is only valid within a SECTIONS clause.
197
198 class Dot_expression : public Expression
199 {
200  public:
201   Dot_expression()
202   { }
203
204   uint64_t
205   value(const Expression_eval_info*);
206
207   void
208   print(FILE* f) const
209   { fprintf(f, "."); }
210 };
211
212 uint64_t
213 Dot_expression::value(const Expression_eval_info* eei)
214 {
215   if (!eei->is_dot_available)
216     {
217       gold_error(_("invalid reference to dot symbol outside of "
218                    "SECTIONS clause"));
219       return 0;
220     }
221   if (eei->result_section_pointer != NULL)
222     *eei->result_section_pointer = eei->dot_section;
223   return eei->dot_value;
224 }
225
226 // A string.  This is either the name of a symbol, or ".".
227
228 extern "C" Expression*
229 script_exp_string(const char* name, size_t length)
230 {
231   if (length == 1 && name[0] == '.')
232     return new Dot_expression();
233   else
234     return new Symbol_expression(name, length);
235 }
236
237 // A unary expression.
238
239 class Unary_expression : public Expression
240 {
241  public:
242   Unary_expression(Expression* arg)
243     : arg_(arg)
244   { }
245
246   ~Unary_expression()
247   { delete this->arg_; }
248
249  protected:
250   uint64_t
251   arg_value(const Expression_eval_info* eei,
252             Output_section** arg_section_pointer) const
253   {
254     return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
255                                       eei->check_assertions,
256                                       eei->is_dot_available,
257                                       eei->dot_value,
258                                       eei->dot_section,
259                                       arg_section_pointer,
260                                       eei->result_alignment_pointer);
261   }
262
263   void
264   arg_print(FILE* f) const
265   { this->arg_->print(f); }
266
267  private:
268   Expression* arg_;
269 };
270
271 // Handle unary operators.  We use a preprocessor macro as a hack to
272 // capture the C operator.
273
274 #define UNARY_EXPRESSION(NAME, OPERATOR)                                \
275   class Unary_ ## NAME : public Unary_expression                        \
276   {                                                                     \
277   public:                                                               \
278     Unary_ ## NAME(Expression* arg)                                     \
279       : Unary_expression(arg)                                           \
280     { }                                                                 \
281                                                                         \
282     uint64_t                                                            \
283     value(const Expression_eval_info* eei)                              \
284     {                                                                   \
285       Output_section* arg_section;                                      \
286       uint64_t ret = OPERATOR this->arg_value(eei, &arg_section);       \
287       if (arg_section != NULL && parameters->options().relocatable())   \
288         gold_warning(_("unary " #NAME " applied to section "            \
289                        "relative value"));                              \
290       return ret;                                                       \
291     }                                                                   \
292                                                                         \
293     void                                                                \
294     print(FILE* f) const                                                \
295     {                                                                   \
296       fprintf(f, "(%s ", #OPERATOR);                                    \
297       this->arg_print(f);                                               \
298       fprintf(f, ")");                                                  \
299     }                                                                   \
300   };                                                                    \
301                                                                         \
302   extern "C" Expression*                                                \
303   script_exp_unary_ ## NAME(Expression* arg)                            \
304   {                                                                     \
305       return new Unary_ ## NAME(arg);                                   \
306   }
307
308 UNARY_EXPRESSION(minus, -)
309 UNARY_EXPRESSION(logical_not, !)
310 UNARY_EXPRESSION(bitwise_not, ~)
311
312 // A binary expression.
313
314 class Binary_expression : public Expression
315 {
316  public:
317   Binary_expression(Expression* left, Expression* right)
318     : left_(left), right_(right)
319   { }
320
321   ~Binary_expression()
322   {
323     delete this->left_;
324     delete this->right_;
325   }
326
327  protected:
328   uint64_t
329   left_value(const Expression_eval_info* eei,
330              Output_section** section_pointer,
331              uint64_t* alignment_pointer) const
332   {
333     return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
334                                        eei->check_assertions,
335                                        eei->is_dot_available,
336                                        eei->dot_value,
337                                        eei->dot_section,
338                                        section_pointer,
339                                        alignment_pointer);
340   }
341
342   uint64_t
343   right_value(const Expression_eval_info* eei,
344               Output_section** section_pointer,
345               uint64_t* alignment_pointer) const
346   {
347     return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
348                                         eei->check_assertions,
349                                         eei->is_dot_available,
350                                         eei->dot_value,
351                                         eei->dot_section,
352                                         section_pointer,
353                                         alignment_pointer);
354   }
355
356   void
357   left_print(FILE* f) const
358   { this->left_->print(f); }
359
360   void
361   right_print(FILE* f) const
362   { this->right_->print(f); }
363
364   // This is a call to function FUNCTION_NAME.  Print it.  This is for
365   // debugging.
366   void
367   print_function(FILE* f, const char* function_name) const
368   {
369     fprintf(f, "%s(", function_name);
370     this->left_print(f);
371     fprintf(f, ", ");
372     this->right_print(f);
373     fprintf(f, ")");
374   }
375
376  private:
377   Expression* left_;
378   Expression* right_;
379 };
380
381 // Handle binary operators.  We use a preprocessor macro as a hack to
382 // capture the C operator.  KEEP_LEFT means that if the left operand
383 // is section relative and the right operand is not, the result uses
384 // the same section as the left operand.  KEEP_RIGHT is the same with
385 // left and right swapped.  IS_DIV means that we need to give an error
386 // if the right operand is zero.  WARN means that we should warn if
387 // used on section relative values in a relocatable link.  We always
388 // warn if used on values in different sections in a relocatable link.
389
390 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
391   class Binary_ ## NAME : public Binary_expression                      \
392   {                                                                     \
393   public:                                                               \
394     Binary_ ## NAME(Expression* left, Expression* right)                \
395       : Binary_expression(left, right)                                  \
396     { }                                                                 \
397                                                                         \
398     uint64_t                                                            \
399     value(const Expression_eval_info* eei)                              \
400     {                                                                   \
401       Output_section* left_section;                                     \
402       uint64_t left_alignment;                                          \
403       uint64_t left = this->left_value(eei, &left_section,              \
404                                        &left_alignment);                \
405       Output_section* right_section;                                    \
406       uint64_t right_alignment;                                         \
407       uint64_t right = this->right_value(eei, &right_section,           \
408                                          &right_alignment);             \
409       if (KEEP_RIGHT && left_section == NULL && right_section != NULL)  \
410         {                                                               \
411           if (eei->result_section_pointer != NULL)                      \
412             *eei->result_section_pointer = right_section;               \
413           if (eei->result_alignment_pointer != NULL)                    \
414             *eei->result_alignment_pointer = right_alignment;           \
415         }                                                               \
416       else if (KEEP_LEFT                                                \
417                && left_section != NULL                                  \
418                && right_section == NULL)                                \
419         {                                                               \
420           if (eei->result_section_pointer != NULL)                      \
421             *eei->result_section_pointer = left_section;                \
422           if (eei->result_alignment_pointer != NULL)                    \
423             *eei->result_alignment_pointer = right_alignment;           \
424         }                                                               \
425       else if ((WARN || left_section != right_section)                  \
426                && (left_section != NULL || right_section != NULL)       \
427                && parameters->options().relocatable())                  \
428         gold_warning(_("binary " #NAME " applied to section "           \
429                        "relative value"));                              \
430       if (IS_DIV && right == 0)                                         \
431         {                                                               \
432           gold_error(_(#NAME " by zero"));                              \
433           return 0;                                                     \
434         }                                                               \
435       return left OPERATOR right;                                       \
436     }                                                                   \
437                                                                         \
438     void                                                                \
439     print(FILE* f) const                                                \
440     {                                                                   \
441       fprintf(f, "(");                                                  \
442       this->left_print(f);                                              \
443       fprintf(f, " %s ", #OPERATOR);                                    \
444       this->right_print(f);                                             \
445       fprintf(f, ")");                                                  \
446     }                                                                   \
447   };                                                                    \
448                                                                         \
449   extern "C" Expression*                                                \
450   script_exp_binary_ ## NAME(Expression* left, Expression* right)       \
451   {                                                                     \
452     return new Binary_ ## NAME(left, right);                            \
453   }
454
455 BINARY_EXPRESSION(mult, *, false, false, false, true)
456 BINARY_EXPRESSION(div, /, false, false, true, true)
457 BINARY_EXPRESSION(mod, %, false, false, true, true)
458 BINARY_EXPRESSION(add, +, true, true, false, true)
459 BINARY_EXPRESSION(sub, -, true, false, false, false)
460 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
461 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
462 BINARY_EXPRESSION(eq, ==, false, false, false, false)
463 BINARY_EXPRESSION(ne, !=, false, false, false, false)
464 BINARY_EXPRESSION(le, <=, false, false, false, false)
465 BINARY_EXPRESSION(ge, >=, false, false, false, false)
466 BINARY_EXPRESSION(lt, <, false, false, false, false)
467 BINARY_EXPRESSION(gt, >, false, false, false, false)
468 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
469 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
470 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
471 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
472 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
473
474 // A trinary expression.
475
476 class Trinary_expression : public Expression
477 {
478  public:
479   Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
480     : arg1_(arg1), arg2_(arg2), arg3_(arg3)
481   { }
482
483   ~Trinary_expression()
484   {
485     delete this->arg1_;
486     delete this->arg2_;
487     delete this->arg3_;
488   }
489
490  protected:
491   uint64_t
492   arg1_value(const Expression_eval_info* eei,
493              Output_section** section_pointer) const
494   {
495     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
496                                        eei->check_assertions,
497                                        eei->is_dot_available,
498                                        eei->dot_value,
499                                        eei->dot_section,
500                                        section_pointer,
501                                        NULL);
502   }
503
504   uint64_t
505   arg2_value(const Expression_eval_info* eei,
506              Output_section** section_pointer,
507              uint64_t* alignment_pointer) const
508   {
509     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
510                                        eei->check_assertions,
511                                        eei->is_dot_available,
512                                        eei->dot_value,
513                                        eei->dot_section,
514                                        section_pointer,
515                                        alignment_pointer);
516   }
517
518   uint64_t
519   arg3_value(const Expression_eval_info* eei,
520              Output_section** section_pointer,
521              uint64_t* alignment_pointer) const
522   {
523     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
524                                        eei->check_assertions,
525                                        eei->is_dot_available,
526                                        eei->dot_value,
527                                        eei->dot_section,
528                                        section_pointer,
529                                        alignment_pointer);
530   }
531
532   void
533   arg1_print(FILE* f) const
534   { this->arg1_->print(f); }
535
536   void
537   arg2_print(FILE* f) const
538   { this->arg2_->print(f); }
539
540   void
541   arg3_print(FILE* f) const
542   { this->arg3_->print(f); }
543
544  private:
545   Expression* arg1_;
546   Expression* arg2_;
547   Expression* arg3_;
548 };
549
550 // The conditional operator.
551
552 class Trinary_cond : public Trinary_expression
553 {
554  public:
555   Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
556     : Trinary_expression(arg1, arg2, arg3)
557   { }
558
559   uint64_t
560   value(const Expression_eval_info* eei)
561   {
562     Output_section* arg1_section;
563     uint64_t arg1 = this->arg1_value(eei, &arg1_section);
564     return (arg1
565             ? this->arg2_value(eei, eei->result_section_pointer,
566                                eei->result_alignment_pointer)
567             : this->arg3_value(eei, eei->result_section_pointer,
568                                eei->result_alignment_pointer));
569   }
570
571   void
572   print(FILE* f) const
573   {
574     fprintf(f, "(");
575     this->arg1_print(f);
576     fprintf(f, " ? ");
577     this->arg2_print(f);
578     fprintf(f, " : ");
579     this->arg3_print(f);
580     fprintf(f, ")");
581   }
582 };
583
584 extern "C" Expression*
585 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
586 {
587   return new Trinary_cond(arg1, arg2, arg3);
588 }
589
590 // Max function.
591
592 class Max_expression : public Binary_expression
593 {
594  public:
595   Max_expression(Expression* left, Expression* right)
596     : Binary_expression(left, right)
597   { }
598
599   uint64_t
600   value(const Expression_eval_info* eei)
601   {
602     Output_section* left_section;
603     uint64_t left_alignment;
604     uint64_t left = this->left_value(eei, &left_section, &left_alignment);
605     Output_section* right_section;
606     uint64_t right_alignment;
607     uint64_t right = this->right_value(eei, &right_section, &right_alignment);
608     if (left_section == right_section)
609       {
610         if (eei->result_section_pointer != NULL)
611           *eei->result_section_pointer = left_section;
612       }
613     else if ((left_section != NULL || right_section != NULL)
614              && parameters->options().relocatable())
615       gold_warning(_("max applied to section relative value"));
616     if (eei->result_alignment_pointer != NULL)
617       {
618         uint64_t ra = *eei->result_alignment_pointer;
619         if (left > right)
620           ra = std::max(ra, left_alignment);
621         else if (right > left)
622           ra = std::max(ra, right_alignment);
623         else
624           ra = std::max(ra, std::max(left_alignment, right_alignment));
625         *eei->result_alignment_pointer = ra;
626       }
627     return std::max(left, right);
628   }
629
630   void
631   print(FILE* f) const
632   { this->print_function(f, "MAX"); }
633 };
634
635 extern "C" Expression*
636 script_exp_function_max(Expression* left, Expression* right)
637 {
638   return new Max_expression(left, right);
639 }
640
641 // Min function.
642
643 class Min_expression : public Binary_expression
644 {
645  public:
646   Min_expression(Expression* left, Expression* right)
647     : Binary_expression(left, right)
648   { }
649
650   uint64_t
651   value(const Expression_eval_info* eei)
652   {
653     Output_section* left_section;
654     uint64_t left_alignment;
655     uint64_t left = this->left_value(eei, &left_section, &left_alignment);
656     Output_section* right_section;
657     uint64_t right_alignment;
658     uint64_t right = this->right_value(eei, &right_section, &right_alignment);
659     if (left_section == right_section)
660       {
661         if (eei->result_section_pointer != NULL)
662           *eei->result_section_pointer = left_section;
663       }
664     else if ((left_section != NULL || right_section != NULL)
665              && parameters->options().relocatable())
666       gold_warning(_("min applied to section relative value"));
667     if (eei->result_alignment_pointer != NULL)
668       {
669         uint64_t ra = *eei->result_alignment_pointer;
670         if (left < right)
671           ra = std::max(ra, left_alignment);
672         else if (right < left)
673           ra = std::max(ra, right_alignment);
674         else
675           ra = std::max(ra, std::max(left_alignment, right_alignment));
676         *eei->result_alignment_pointer = ra;
677       }
678     return std::min(left, right);
679   }
680
681   void
682   print(FILE* f) const
683   { this->print_function(f, "MIN"); }
684 };
685
686 extern "C" Expression*
687 script_exp_function_min(Expression* left, Expression* right)
688 {
689   return new Min_expression(left, right);
690 }
691
692 // Class Section_expression.  This is a parent class used for
693 // functions which take the name of an output section.
694
695 class Section_expression : public Expression
696 {
697  public:
698   Section_expression(const char* section_name, size_t section_name_len)
699     : section_name_(section_name, section_name_len)
700   { }
701
702   uint64_t
703   value(const Expression_eval_info*);
704
705   void
706   print(FILE* f) const
707   { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
708
709  protected:
710   // The child class must implement this.
711   virtual uint64_t
712   value_from_output_section(const Expression_eval_info*,
713                             Output_section*) = 0;
714
715   // The child class must implement this.
716   virtual uint64_t
717   value_from_script_output_section(uint64_t address, uint64_t load_address,
718                                    uint64_t addralign, uint64_t size) = 0;
719
720   // The child class must implement this.
721   virtual const char*
722   function_name() const = 0;
723
724  private:
725   std::string section_name_;
726 };
727
728 uint64_t
729 Section_expression::value(const Expression_eval_info* eei)
730 {
731   const char* section_name = this->section_name_.c_str();
732   Output_section* os = eei->layout->find_output_section(section_name);
733   if (os != NULL)
734     return this->value_from_output_section(eei, os);
735
736   uint64_t address;
737   uint64_t load_address;
738   uint64_t addralign;
739   uint64_t size;
740   const Script_options* ss = eei->layout->script_options();
741   if (ss->saw_sections_clause())
742     {
743       if (ss->script_sections()->get_output_section_info(section_name,
744                                                          &address,
745                                                          &load_address,
746                                                          &addralign,
747                                                          &size))
748         return this->value_from_script_output_section(address, load_address,
749                                                       addralign, size);
750     }
751
752   gold_error("%s called on nonexistent output section '%s'",
753              this->function_name(), section_name);
754   return 0;
755 }
756
757 // ABSOLUTE function.
758
759 class Absolute_expression : public Unary_expression
760 {
761  public:
762   Absolute_expression(Expression* arg)
763     : Unary_expression(arg)
764   { }
765
766   uint64_t
767   value(const Expression_eval_info* eei)
768   {
769     uint64_t ret = this->arg_value(eei, NULL);
770     // Force the value to be absolute.
771     if (eei->result_section_pointer != NULL)
772       *eei->result_section_pointer = NULL;
773     return ret;
774   }
775
776   void
777   print(FILE* f) const
778   {
779     fprintf(f, "ABSOLUTE(");
780     this->arg_print(f);
781     fprintf(f, ")");
782   }
783 };
784
785 extern "C" Expression*
786 script_exp_function_absolute(Expression* arg)
787 {
788   return new Absolute_expression(arg);
789 }
790
791 // ALIGN function.
792
793 class Align_expression : public Binary_expression
794 {
795  public:
796   Align_expression(Expression* left, Expression* right)
797     : Binary_expression(left, right)
798   { }
799
800   uint64_t
801   value(const Expression_eval_info* eei)
802   {
803     Output_section* align_section;
804     uint64_t align = this->right_value(eei, &align_section, NULL);
805     if (align_section != NULL
806         && parameters->options().relocatable())
807       gold_warning(_("aligning to section relative value"));
808
809     if (eei->result_alignment_pointer != NULL
810         && align > *eei->result_alignment_pointer)
811       {
812         uint64_t a = align;
813         while ((a & (a - 1)) != 0)
814           a &= a - 1;
815         *eei->result_alignment_pointer = a;
816       }
817
818     uint64_t value = this->left_value(eei, eei->result_section_pointer, NULL);
819     if (align <= 1)
820       return value;
821     return ((value + align - 1) / align) * align;
822   }
823
824   void
825   print(FILE* f) const
826   { this->print_function(f, "ALIGN"); }
827 };
828
829 extern "C" Expression*
830 script_exp_function_align(Expression* left, Expression* right)
831 {
832   return new Align_expression(left, right);
833 }
834
835 // ASSERT function.
836
837 class Assert_expression : public Unary_expression
838 {
839  public:
840   Assert_expression(Expression* arg, const char* message, size_t length)
841     : Unary_expression(arg), message_(message, length)
842   { }
843
844   uint64_t
845   value(const Expression_eval_info* eei)
846   {
847     uint64_t value = this->arg_value(eei, eei->result_section_pointer);
848     if (!value && eei->check_assertions)
849       gold_error("%s", this->message_.c_str());
850     return value;
851   }
852
853   void
854   print(FILE* f) const
855   {
856     fprintf(f, "ASSERT(");
857     this->arg_print(f);
858     fprintf(f, ", %s)", this->message_.c_str());
859   }
860
861  private:
862   std::string message_;
863 };
864
865 extern "C" Expression*
866 script_exp_function_assert(Expression* expr, const char* message,
867                            size_t length)
868 {
869   return new Assert_expression(expr, message, length);
870 }
871
872 // ADDR function.
873
874 class Addr_expression : public Section_expression
875 {
876  public:
877   Addr_expression(const char* section_name, size_t section_name_len)
878     : Section_expression(section_name, section_name_len)
879   { }
880
881  protected:
882   uint64_t
883   value_from_output_section(const Expression_eval_info* eei,
884                             Output_section* os)
885   {
886     if (eei->result_section_pointer != NULL)
887       *eei->result_section_pointer = os;
888     return os->address();
889   }
890
891   uint64_t
892   value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
893                                    uint64_t)
894   { return address; }
895
896   const char*
897   function_name() const
898   { return "ADDR"; }
899 };
900
901 extern "C" Expression*
902 script_exp_function_addr(const char* section_name, size_t section_name_len)
903 {
904   return new Addr_expression(section_name, section_name_len);
905 }
906
907 // ALIGNOF.
908
909 class Alignof_expression : public Section_expression
910 {
911  public:
912   Alignof_expression(const char* section_name, size_t section_name_len)
913     : Section_expression(section_name, section_name_len)
914   { }
915
916  protected:
917   uint64_t
918   value_from_output_section(const Expression_eval_info*,
919                             Output_section* os)
920   { return os->addralign(); }
921
922   uint64_t
923   value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
924                                    uint64_t)
925   { return addralign; }
926
927   const char*
928   function_name() const
929   { return "ALIGNOF"; }
930 };
931
932 extern "C" Expression*
933 script_exp_function_alignof(const char* section_name, size_t section_name_len)
934 {
935   return new Alignof_expression(section_name, section_name_len);
936 }
937
938 // CONSTANT.  It would be nice if we could simply evaluate this
939 // immediately and return an Integer_expression, but unfortunately we
940 // don't know the target.
941
942 class Constant_expression : public Expression
943 {
944  public:
945   Constant_expression(const char* name, size_t length);
946
947   uint64_t
948   value(const Expression_eval_info*);
949
950   void
951   print(FILE* f) const;
952
953  private:
954   enum Constant_function
955   {
956     CONSTANT_MAXPAGESIZE,
957     CONSTANT_COMMONPAGESIZE
958   };
959
960   Constant_function function_;
961 };
962
963 Constant_expression::Constant_expression(const char* name, size_t length)
964 {
965   if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
966     this->function_ = CONSTANT_MAXPAGESIZE;
967   else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
968     this->function_ = CONSTANT_COMMONPAGESIZE;
969   else
970     {
971       std::string s(name, length);
972       gold_error(_("unknown constant %s"), s.c_str());
973       this->function_ = CONSTANT_MAXPAGESIZE;
974     }
975 }
976
977 uint64_t
978 Constant_expression::value(const Expression_eval_info*)
979 {
980   switch (this->function_)
981     {
982     case CONSTANT_MAXPAGESIZE:
983       return parameters->target().abi_pagesize();
984     case CONSTANT_COMMONPAGESIZE:
985       return parameters->target().common_pagesize();
986     default:
987       gold_unreachable();
988     }
989 }
990
991 void
992 Constant_expression::print(FILE* f) const
993 {
994   const char* name;
995   switch (this->function_)
996     {
997     case CONSTANT_MAXPAGESIZE:
998       name = "MAXPAGESIZE";
999       break;
1000     case CONSTANT_COMMONPAGESIZE:
1001       name = "COMMONPAGESIZE";
1002       break;
1003     default:
1004       gold_unreachable();
1005     }
1006   fprintf(f, "CONSTANT(%s)", name);
1007 }
1008   
1009 extern "C" Expression*
1010 script_exp_function_constant(const char* name, size_t length)
1011 {
1012   return new Constant_expression(name, length);
1013 }
1014
1015 // DATA_SEGMENT_ALIGN.  FIXME: we don't implement this; we always fall
1016 // back to the general case.
1017
1018 extern "C" Expression*
1019 script_exp_function_data_segment_align(Expression* left, Expression*)
1020 {
1021   Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
1022   Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
1023   Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
1024                                                  e2);
1025   return script_exp_binary_add(e1, e3);
1026 }
1027
1028 // DATA_SEGMENT_RELRO.  FIXME: This is not implemented.
1029
1030 extern "C" Expression*
1031 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
1032 {
1033   return right;
1034 }
1035
1036 // DATA_SEGMENT_END.  FIXME: This is not implemented.
1037
1038 extern "C" Expression*
1039 script_exp_function_data_segment_end(Expression* val)
1040 {
1041   return val;
1042 }
1043
1044 // DEFINED function.
1045
1046 class Defined_expression : public Expression
1047 {
1048  public:
1049   Defined_expression(const char* symbol_name, size_t symbol_name_len)
1050     : symbol_name_(symbol_name, symbol_name_len)
1051   { }
1052
1053   uint64_t
1054   value(const Expression_eval_info* eei)
1055   {
1056     Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
1057     return sym != NULL && sym->is_defined();
1058   }
1059
1060   void
1061   print(FILE* f) const
1062   { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
1063
1064  private:
1065   std::string symbol_name_;
1066 };
1067
1068 extern "C" Expression*
1069 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
1070 {
1071   return new Defined_expression(symbol_name, symbol_name_len);
1072 }
1073
1074 // LOADADDR function
1075
1076 class Loadaddr_expression : public Section_expression
1077 {
1078  public:
1079   Loadaddr_expression(const char* section_name, size_t section_name_len)
1080     : Section_expression(section_name, section_name_len)
1081   { }
1082
1083  protected:
1084   uint64_t
1085   value_from_output_section(const Expression_eval_info* eei,
1086                             Output_section* os)
1087   {
1088     if (os->has_load_address())
1089       return os->load_address();
1090     else
1091       {
1092         if (eei->result_section_pointer != NULL)
1093           *eei->result_section_pointer = os;
1094         return os->address();
1095       }
1096   }
1097
1098   uint64_t
1099   value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
1100                                    uint64_t)
1101   { return load_address; }
1102
1103   const char*
1104   function_name() const
1105   { return "LOADADDR"; }
1106 };
1107
1108 extern "C" Expression*
1109 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
1110 {
1111   return new Loadaddr_expression(section_name, section_name_len);
1112 }
1113
1114 // SIZEOF function
1115
1116 class Sizeof_expression : public Section_expression
1117 {
1118  public:
1119   Sizeof_expression(const char* section_name, size_t section_name_len)
1120     : Section_expression(section_name, section_name_len)
1121   { }
1122
1123  protected:
1124   uint64_t
1125   value_from_output_section(const Expression_eval_info*,
1126                             Output_section* os)
1127   {
1128     // We can not use data_size here, as the size of the section may
1129     // not have been finalized.  Instead we get whatever the current
1130     // size is.  This will work correctly for backward references in
1131     // linker scripts.
1132     return os->current_data_size();
1133   }
1134
1135   uint64_t
1136   value_from_script_output_section(uint64_t, uint64_t, uint64_t,
1137                                    uint64_t size)
1138   { return size; }
1139
1140   const char*
1141   function_name() const
1142   { return "SIZEOF"; }
1143 };
1144
1145 extern "C" Expression*
1146 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1147 {
1148   return new Sizeof_expression(section_name, section_name_len);
1149 }
1150
1151 // SIZEOF_HEADERS.
1152
1153 class Sizeof_headers_expression : public Expression
1154 {
1155  public:
1156   Sizeof_headers_expression()
1157   { }
1158
1159   uint64_t
1160   value(const Expression_eval_info*);
1161
1162   void
1163   print(FILE* f) const
1164   { fprintf(f, "SIZEOF_HEADERS"); }
1165 };
1166
1167 uint64_t
1168 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1169 {
1170   unsigned int ehdr_size;
1171   unsigned int phdr_size;
1172   if (parameters->target().get_size() == 32)
1173     {
1174       ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1175       phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1176     }
1177   else if (parameters->target().get_size() == 64)
1178     {
1179       ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1180       phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1181     }
1182   else
1183     gold_unreachable();
1184
1185   return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1186 }
1187
1188 extern "C" Expression*
1189 script_exp_function_sizeof_headers()
1190 {
1191   return new Sizeof_headers_expression();
1192 }
1193
1194 // SEGMENT_START.
1195
1196 class Segment_start_expression : public Unary_expression
1197 {
1198  public:
1199   Segment_start_expression(const char* segment_name, size_t segment_name_len,
1200                            Expression* default_value)
1201     : Unary_expression(default_value),
1202       segment_name_(segment_name, segment_name_len)
1203   { }
1204
1205   uint64_t
1206   value(const Expression_eval_info*);
1207
1208   void
1209   print(FILE* f) const
1210   {
1211     fprintf(f, "SEGMENT_START(\"%s\", ", this->segment_name_.c_str());
1212     this->arg_print(f);
1213     fprintf(f, ")");
1214   }
1215
1216  private:
1217   std::string segment_name_;
1218 };
1219
1220 uint64_t
1221 Segment_start_expression::value(const Expression_eval_info* eei)
1222 {
1223   // Check for command line overrides.
1224   if (parameters->options().user_set_Ttext()
1225       && this->segment_name_ == ".text")
1226     return parameters->options().Ttext();
1227   else if (parameters->options().user_set_Tdata()
1228            && this->segment_name_ == ".data")
1229     return parameters->options().Tdata();
1230   else if (parameters->options().user_set_Tbss()
1231            && this->segment_name_ == ".bss")
1232     return parameters->options().Tbss();
1233   else
1234     {
1235       uint64_t ret = this->arg_value(eei, NULL);
1236       // Force the value to be absolute.
1237       if (eei->result_section_pointer != NULL)
1238         *eei->result_section_pointer = NULL;
1239       return ret;
1240     }
1241 }
1242
1243 extern "C" Expression*
1244 script_exp_function_segment_start(const char* segment_name,
1245                                   size_t segment_name_len,
1246                                   Expression* default_value)
1247 {
1248   return new Segment_start_expression(segment_name, segment_name_len,
1249                                       default_value);
1250 }
1251
1252 } // End namespace gold.