Track sections for expressions.
[external/binutils.git] / gold / expression.cc
1 // expression.cc -- expressions in linker scripts for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <string>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34
35 namespace gold
36 {
37
38 // This file holds the code which handles linker expressions.
39
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment.  The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols.  We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50
51 struct Expression::Expression_eval_info
52 {
53   // The symbol table.
54   const Symbol_table* symtab;
55   // The layout--we use this to get section information.
56   const Layout* layout;
57   // Whether expressions can refer to the dot symbol.  The dot symbol
58   // is only available within a SECTIONS clause.
59   bool is_dot_available;
60   // The current value of the dot symbol.
61   uint64_t dot_value;
62   // The section in which the dot symbol is defined; this is NULL if
63   // it is absolute.
64   Output_section* dot_section;
65   // Points to where the section of the result should be stored.
66   Output_section** result_section_pointer;
67 };
68
69 // Evaluate an expression.
70
71 uint64_t
72 Expression::eval(const Symbol_table* symtab, const Layout* layout)
73 {
74   Output_section* dummy;
75   return this->eval_maybe_dot(symtab, layout, false, 0, NULL, &dummy);
76 }
77
78 // Evaluate an expression which may refer to the dot symbol.
79
80 uint64_t
81 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
82                           uint64_t dot_value, Output_section* dot_section,
83                           Output_section** result_section_pointer)
84 {
85   return this->eval_maybe_dot(symtab, layout, true, dot_value, dot_section,
86                               result_section_pointer);
87 }
88
89 // Evaluate an expression which may or may not refer to the dot
90 // symbol.
91
92 uint64_t
93 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
94                            bool is_dot_available, uint64_t dot_value,
95                            Output_section* dot_section,
96                            Output_section** result_section_pointer)
97 {
98   Expression_eval_info eei;
99   eei.symtab = symtab;
100   eei.layout = layout;
101   eei.is_dot_available = is_dot_available;
102   eei.dot_value = dot_value;
103   eei.dot_section = dot_section;
104
105   // We assume the value is absolute, and only set this to a section
106   // if we find a section relative reference.
107   *result_section_pointer = NULL;
108   eei.result_section_pointer = result_section_pointer;
109
110   return this->value(&eei);
111 }
112
113 // A number.
114
115 class Integer_expression : public Expression
116 {
117  public:
118   Integer_expression(uint64_t val)
119     : val_(val)
120   { }
121
122   uint64_t
123   value(const Expression_eval_info*)
124   { return this->val_; }
125
126   void
127   print(FILE* f) const
128   { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
129
130  private:
131   uint64_t val_;
132 };
133
134 extern "C" Expression*
135 script_exp_integer(uint64_t val)
136 {
137   return new Integer_expression(val);
138 }
139
140 // An expression whose value is the value of a symbol.
141
142 class Symbol_expression : public Expression
143 {
144  public:
145   Symbol_expression(const char* name, size_t length)
146     : name_(name, length)
147   { }
148
149   uint64_t
150   value(const Expression_eval_info*);
151
152   void
153   print(FILE* f) const
154   { fprintf(f, "%s", this->name_.c_str()); }
155
156  private:
157   std::string name_;
158 };
159
160 uint64_t
161 Symbol_expression::value(const Expression_eval_info* eei)
162 {
163   Symbol* sym = eei->symtab->lookup(this->name_.c_str());
164   if (sym == NULL || !sym->is_defined())
165     {
166       gold_error(_("undefined symbol '%s' referenced in expression"),
167                  this->name_.c_str());
168       return 0;
169     }
170
171   *eei->result_section_pointer = sym->output_section();
172
173   if (parameters->get_size() == 32)
174     return eei->symtab->get_sized_symbol<32>(sym)->value();
175   else if (parameters->get_size() == 64)
176     return eei->symtab->get_sized_symbol<64>(sym)->value();
177   else
178     gold_unreachable();
179 }
180
181 // An expression whose value is the value of the special symbol ".".
182 // This is only valid within a SECTIONS clause.
183
184 class Dot_expression : public Expression
185 {
186  public:
187   Dot_expression()
188   { }
189
190   uint64_t
191   value(const Expression_eval_info*);
192
193   void
194   print(FILE* f) const
195   { fprintf(f, "."); }
196 };
197
198 uint64_t
199 Dot_expression::value(const Expression_eval_info* eei)
200 {
201   if (!eei->is_dot_available)
202     {
203       gold_error(_("invalid reference to dot symbol outside of "
204                    "SECTIONS clause"));
205       return 0;
206     }
207   *eei->result_section_pointer = eei->dot_section;
208   return eei->dot_value;
209 }
210
211 // A string.  This is either the name of a symbol, or ".".
212
213 extern "C" Expression*
214 script_exp_string(const char* name, size_t length)
215 {
216   if (length == 1 && name[0] == '.')
217     return new Dot_expression();
218   else
219     return new Symbol_expression(name, length);
220 }
221
222 // A unary expression.
223
224 class Unary_expression : public Expression
225 {
226  public:
227   Unary_expression(Expression* arg)
228     : arg_(arg)
229   { }
230
231   ~Unary_expression()
232   { delete this->arg_; }
233
234  protected:
235   uint64_t
236   arg_value(const Expression_eval_info* eei,
237             Output_section** arg_section_pointer) const
238   {
239     return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
240                                       eei->is_dot_available,
241                                       eei->dot_value,
242                                       eei->dot_section,
243                                       arg_section_pointer);
244   }
245
246   void
247   arg_print(FILE* f) const
248   { this->arg_->print(f); }
249
250  private:
251   Expression* arg_;
252 };
253
254 // Handle unary operators.  We use a preprocessor macro as a hack to
255 // capture the C operator.
256
257 #define UNARY_EXPRESSION(NAME, OPERATOR)                                \
258   class Unary_ ## NAME : public Unary_expression                        \
259   {                                                                     \
260   public:                                                               \
261     Unary_ ## NAME(Expression* arg)                                     \
262       : Unary_expression(arg)                                           \
263     { }                                                                 \
264                                                                         \
265     uint64_t                                                            \
266     value(const Expression_eval_info* eei)                              \
267     {                                                                   \
268       Output_section* arg_section;                                      \
269       uint64_t ret = OPERATOR this->arg_value(eei, &arg_section);       \
270       if (arg_section != NULL && parameters->output_is_object())        \
271         gold_warning(_("unary " #NAME " applied to section "            \
272                        "relative value"));                              \
273       return ret;                                                       \
274     }                                                                   \
275                                                                         \
276     void                                                                \
277     print(FILE* f) const                                                \
278     {                                                                   \
279       fprintf(f, "(%s ", #OPERATOR);                                    \
280       this->arg_print(f);                                               \
281       fprintf(f, ")");                                                  \
282     }                                                                   \
283   };                                                                    \
284                                                                         \
285   extern "C" Expression*                                                \
286   script_exp_unary_ ## NAME(Expression* arg)                            \
287   {                                                                     \
288       return new Unary_ ## NAME(arg);                                   \
289   }
290
291 UNARY_EXPRESSION(minus, -)
292 UNARY_EXPRESSION(logical_not, !)
293 UNARY_EXPRESSION(bitwise_not, ~)
294
295 // A binary expression.
296
297 class Binary_expression : public Expression
298 {
299  public:
300   Binary_expression(Expression* left, Expression* right)
301     : left_(left), right_(right)
302   { }
303
304   ~Binary_expression()
305   {
306     delete this->left_;
307     delete this->right_;
308   }
309
310  protected:
311   uint64_t
312   left_value(const Expression_eval_info* eei,
313              Output_section** section_pointer) const
314   {
315     return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
316                                        eei->is_dot_available,
317                                        eei->dot_value,
318                                        eei->dot_section,
319                                        section_pointer);
320   }
321
322   uint64_t
323   right_value(const Expression_eval_info* eei,
324               Output_section** section_pointer) const
325   {
326     return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
327                                         eei->is_dot_available,
328                                         eei->dot_value,
329                                         eei->dot_section,
330                                         section_pointer);
331   }
332
333   void
334   left_print(FILE* f) const
335   { this->left_->print(f); }
336
337   void
338   right_print(FILE* f) const
339   { this->right_->print(f); }
340
341   // This is a call to function FUNCTION_NAME.  Print it.  This is for
342   // debugging.
343   void
344   print_function(FILE* f, const char *function_name) const
345   {
346     fprintf(f, "%s(", function_name);
347     this->left_print(f);
348     fprintf(f, ", ");
349     this->right_print(f);
350     fprintf(f, ")");
351   }
352
353  private:
354   Expression* left_;
355   Expression* right_;
356 };
357
358 // Handle binary operators.  We use a preprocessor macro as a hack to
359 // capture the C operator.  KEEP_LEFT means that if the left operand
360 // is section relative and the right operand is not, the result uses
361 // the same section as the left operand.  KEEP_RIGHT is the same with
362 // left and right swapped.  IS_DIV means that we need to give an error
363 // if the right operand is zero.  WARN means that we should warn if
364 // used on section relative values in a relocatable link.  We always
365 // warn if used on values in different sections in a relocatable link.
366
367 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
368   class Binary_ ## NAME : public Binary_expression                      \
369   {                                                                     \
370   public:                                                               \
371     Binary_ ## NAME(Expression* left, Expression* right)                \
372       : Binary_expression(left, right)                                  \
373     { }                                                                 \
374                                                                         \
375     uint64_t                                                            \
376     value(const Expression_eval_info* eei)                              \
377     {                                                                   \
378       Output_section* left_section;                                     \
379       uint64_t left = this->left_value(eei, &left_section);             \
380       Output_section* right_section;                                    \
381       uint64_t right = this->right_value(eei, &right_section);          \
382       if (KEEP_RIGHT && left_section == NULL && right_section != NULL)  \
383         *eei->result_section_pointer = right_section;                   \
384       else if (KEEP_LEFT                                                \
385                && left_section != NULL                                  \
386                && right_section == NULL)                                \
387         *eei->result_section_pointer = left_section;                    \
388       else if ((WARN || left_section != right_section)                  \
389                && (left_section != NULL || right_section != NULL)       \
390                && parameters->output_is_object())                       \
391         gold_warning(_("binary " #NAME " applied to section "           \
392                        "relative value"));                              \
393       if (IS_DIV && right == 0)                                         \
394         {                                                               \
395           gold_error(_(#NAME " by zero"));                              \
396           return 0;                                                     \
397         }                                                               \
398       return left OPERATOR right;                                       \
399     }                                                                   \
400                                                                         \
401     void                                                                \
402     print(FILE* f) const                                                \
403     {                                                                   \
404       fprintf(f, "(");                                                  \
405       this->left_print(f);                                              \
406       fprintf(f, " %s ", #OPERATOR);                                    \
407       this->right_print(f);                                             \
408       fprintf(f, ")");                                                  \
409     }                                                                   \
410   };                                                                    \
411                                                                         \
412   extern "C" Expression*                                                \
413   script_exp_binary_ ## NAME(Expression* left, Expression* right)       \
414   {                                                                     \
415     return new Binary_ ## NAME(left, right);                            \
416   }
417
418 BINARY_EXPRESSION(mult, *, false, false, false, true)
419 BINARY_EXPRESSION(div, /, false, false, true, true)
420 BINARY_EXPRESSION(mod, %, false, false, true, true)
421 BINARY_EXPRESSION(add, +, true, true, false, true)
422 BINARY_EXPRESSION(sub, -, true, false, false, false)
423 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
424 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
425 BINARY_EXPRESSION(eq, ==, false, false, false, false)
426 BINARY_EXPRESSION(ne, !=, false, false, false, false)
427 BINARY_EXPRESSION(le, <=, false, false, false, false)
428 BINARY_EXPRESSION(ge, >=, false, false, false, false)
429 BINARY_EXPRESSION(lt, <, false, false, false, false)
430 BINARY_EXPRESSION(gt, >, false, false, false, false)
431 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
432 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
433 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
434 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
435 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
436
437 // A trinary expression.
438
439 class Trinary_expression : public Expression
440 {
441  public:
442   Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
443     : arg1_(arg1), arg2_(arg2), arg3_(arg3)
444   { }
445
446   ~Trinary_expression()
447   {
448     delete this->arg1_;
449     delete this->arg2_;
450     delete this->arg3_;
451   }
452
453  protected:
454   uint64_t
455   arg1_value(const Expression_eval_info* eei,
456              Output_section** section_pointer) const
457   {
458     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
459                                        eei->is_dot_available,
460                                        eei->dot_value,
461                                        eei->dot_section,
462                                        section_pointer);
463   }
464
465   uint64_t
466   arg2_value(const Expression_eval_info* eei,
467              Output_section** section_pointer) const
468   {
469     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
470                                        eei->is_dot_available,
471                                        eei->dot_value,
472                                        eei->dot_section,
473                                        section_pointer);
474   }
475
476   uint64_t
477   arg3_value(const Expression_eval_info* eei,
478              Output_section** section_pointer) const
479   {
480     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
481                                        eei->is_dot_available,
482                                        eei->dot_value,
483                                        eei->dot_section,
484                                        section_pointer);
485   }
486
487   void
488   arg1_print(FILE* f) const
489   { this->arg1_->print(f); }
490
491   void
492   arg2_print(FILE* f) const
493   { this->arg2_->print(f); }
494
495   void
496   arg3_print(FILE* f) const
497   { this->arg3_->print(f); }
498
499  private:
500   Expression* arg1_;
501   Expression* arg2_;
502   Expression* arg3_;
503 };
504
505 // The conditional operator.
506
507 class Trinary_cond : public Trinary_expression
508 {
509  public:
510   Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
511     : Trinary_expression(arg1, arg2, arg3)
512   { }
513
514   uint64_t
515   value(const Expression_eval_info* eei)
516   {
517     Output_section* arg1_section;
518     uint64_t arg1 = this->arg1_value(eei, &arg1_section);
519     return (arg1
520             ? this->arg2_value(eei, eei->result_section_pointer)
521             : this->arg3_value(eei, eei->result_section_pointer));
522   }
523
524   void
525   print(FILE* f) const
526   {
527     fprintf(f, "(");
528     this->arg1_print(f);
529     fprintf(f, " ? ");
530     this->arg2_print(f);
531     fprintf(f, " : ");
532     this->arg3_print(f);
533     fprintf(f, ")");
534   }
535 };
536
537 extern "C" Expression*
538 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
539 {
540   return new Trinary_cond(arg1, arg2, arg3);
541 }
542
543 // Max function.
544
545 class Max_expression : public Binary_expression
546 {
547  public:
548   Max_expression(Expression* left, Expression* right)
549     : Binary_expression(left, right)
550   { }
551
552   uint64_t
553   value(const Expression_eval_info* eei)
554   {
555     Output_section* left_section;
556     uint64_t left = this->left_value(eei, &left_section);
557     Output_section* right_section;
558     uint64_t right = this->right_value(eei, &right_section);
559     if (left_section == right_section)
560       *eei->result_section_pointer = left_section;
561     else if ((left_section != NULL || right_section != NULL)
562              && parameters->output_is_object())
563       gold_warning(_("max applied to section relative value"));
564     return std::max(left, right);
565   }
566
567   void
568   print(FILE* f) const
569   { this->print_function(f, "MAX"); }
570 };
571
572 extern "C" Expression*
573 script_exp_function_max(Expression* left, Expression* right)
574 {
575   return new Max_expression(left, right);
576 }
577
578 // Min function.
579
580 class Min_expression : public Binary_expression
581 {
582  public:
583   Min_expression(Expression* left, Expression* right)
584     : Binary_expression(left, right)
585   { }
586
587   uint64_t
588   value(const Expression_eval_info* eei)
589   {
590     Output_section* left_section;
591     uint64_t left = this->left_value(eei, &left_section);
592     Output_section* right_section;
593     uint64_t right = this->right_value(eei, &right_section);
594     if (left_section == right_section)
595       *eei->result_section_pointer = left_section;
596     else if ((left_section != NULL || right_section != NULL)
597              && parameters->output_is_object())
598       gold_warning(_("min applied to section relative value"));
599     return std::min(left, right);
600   }
601
602   void
603   print(FILE* f) const
604   { this->print_function(f, "MIN"); }
605 };
606
607 extern "C" Expression*
608 script_exp_function_min(Expression* left, Expression* right)
609 {
610   return new Min_expression(left, right);
611 }
612
613 // Align function.
614
615 class Align_expression : public Binary_expression
616 {
617  public:
618   Align_expression(Expression* left, Expression* right)
619     : Binary_expression(left, right)
620   { }
621
622   uint64_t
623   value(const Expression_eval_info* eei)
624   {
625     Output_section* align_section;
626     uint64_t align = this->right_value(eei, &align_section);
627     if (align_section != NULL
628         && parameters->output_is_object())
629       gold_warning(_("aligning to section relative value"));
630
631     uint64_t value = this->left_value(eei, eei->result_section_pointer);
632     if (align <= 1)
633       return value;
634     return ((value + align - 1) / align) * align;
635   }
636
637   void
638   print(FILE* f) const
639   { this->print_function(f, "ALIGN"); }
640 };
641
642 extern "C" Expression*
643 script_exp_function_align(Expression* left, Expression* right)
644 {
645   return new Align_expression(left, right);
646 }
647
648 // Assert function.
649
650 class Assert_expression : public Unary_expression
651 {
652  public:
653   Assert_expression(Expression* arg, const char* message, size_t length)
654     : Unary_expression(arg), message_(message, length)
655   { }
656
657   uint64_t
658   value(const Expression_eval_info* eei)
659   {
660     uint64_t value = this->arg_value(eei, eei->result_section_pointer);
661     if (!value)
662       gold_error("%s", this->message_.c_str());
663     return value;
664   }
665
666   void
667   print(FILE* f) const
668   {
669     fprintf(f, "ASSERT(");
670     this->arg_print(f);
671     fprintf(f, ", %s)", this->message_.c_str());
672   }
673
674  private:
675   std::string message_;
676 };
677
678 extern "C" Expression*
679 script_exp_function_assert(Expression* expr, const char* message,
680                            size_t length)
681 {
682   return new Assert_expression(expr, message, length);
683 }
684
685 // Addr function.
686
687 class Addr_expression : public Expression
688 {
689  public:
690   Addr_expression(const char* section_name, size_t section_name_len)
691     : section_name_(section_name, section_name_len)
692   { }
693
694   uint64_t
695   value(const Expression_eval_info*);
696
697   void
698   print(FILE* f) const
699   { fprintf(f, "ADDR(%s)", this->section_name_.c_str()); }
700
701  private:
702   std::string section_name_;
703 };
704
705 uint64_t
706 Addr_expression::value(const Expression_eval_info* eei)
707 {
708   const char* section_name = this->section_name_.c_str();
709   Output_section* os = eei->layout->find_output_section(section_name);
710   if (os == NULL)
711     {
712       gold_error("ADDR called on nonexistent output section '%s'",
713                  section_name);
714       return 0;
715     }
716
717   *eei->result_section_pointer = os;
718
719   return os->address();
720 }
721
722 extern "C" Expression*
723 script_exp_function_addr(const char* section_name, size_t section_name_len)
724 {
725   return new Addr_expression(section_name, section_name_len);
726 }
727
728 // CONSTANT.  It would be nice if we could simply evaluate this
729 // immediately and return an Integer_expression, but unfortunately we
730 // don't know the target.
731
732 class Constant_expression : public Expression
733 {
734  public:
735   Constant_expression(const char* name, size_t length);
736
737   uint64_t
738   value(const Expression_eval_info*);
739
740   void
741   print(FILE* f) const;
742
743  private:
744   enum Constant_function
745   {
746     CONSTANT_MAXPAGESIZE,
747     CONSTANT_COMMONPAGESIZE
748   };
749
750   Constant_function function_;
751 };
752
753 Constant_expression::Constant_expression(const char* name, size_t length)
754 {
755   if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
756     this->function_ = CONSTANT_MAXPAGESIZE;
757   else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
758     this->function_ = CONSTANT_COMMONPAGESIZE;
759   else
760     {
761       std::string s(name, length);
762       gold_error(_("unknown constant %s"), s.c_str());
763       this->function_ = CONSTANT_MAXPAGESIZE;
764     }
765 }
766
767 uint64_t
768 Constant_expression::value(const Expression_eval_info*)
769 {
770   switch (this->function_)
771     {
772     case CONSTANT_MAXPAGESIZE:
773       return parameters->target()->abi_pagesize();
774     case CONSTANT_COMMONPAGESIZE:
775       return parameters->target()->common_pagesize();
776     default:
777       gold_unreachable();
778     }
779 }
780
781 void
782 Constant_expression::print(FILE* f) const
783 {
784   const char* name;
785   switch (this->function_)
786     {
787     case CONSTANT_MAXPAGESIZE:
788       name = "MAXPAGESIZE";
789       break;
790     case CONSTANT_COMMONPAGESIZE:
791       name = "COMMONPAGESIZE";
792       break;
793     default:
794       gold_unreachable();
795     }
796   fprintf(f, "CONSTANT(%s)", name);
797 }
798   
799 extern "C" Expression*
800 script_exp_function_constant(const char* name, size_t length)
801 {
802   return new Constant_expression(name, length);
803 }
804
805 // DATA_SEGMENT_ALIGN.  FIXME: we don't implement this; we always fall
806 // back to the general case.
807
808 extern "C" Expression*
809 script_exp_function_data_segment_align(Expression* left, Expression*)
810 {
811   Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
812   Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
813   Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
814                                                  e2);
815   return script_exp_binary_add(e1, e3);
816 }
817
818 // DATA_SEGMENT_RELRO.  FIXME: This is not implemented.
819
820 extern "C" Expression*
821 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
822 {
823   return right;
824 }
825
826 // DATA_SEGMENT_END.  FIXME: This is not implemented.
827
828 extern "C" Expression*
829 script_exp_function_data_segment_end(Expression* val)
830 {
831   return val;
832 }
833
834 // SIZEOF_HEADERS.
835
836 class Sizeof_headers_expression : public Expression
837 {
838  public:
839   Sizeof_headers_expression()
840   { }
841
842   uint64_t
843   value(const Expression_eval_info*);
844
845   void
846   print(FILE* f) const
847   { fprintf(f, "SIZEOF_HEADERS"); }
848 };
849
850 uint64_t
851 Sizeof_headers_expression::value(const Expression_eval_info* eei)
852 {
853   unsigned int ehdr_size;
854   unsigned int phdr_size;
855   if (parameters->get_size() == 32)
856     {
857       ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
858       phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
859     }
860   else if (parameters->get_size() == 64)
861     {
862       ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
863       phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
864     }
865   else
866     gold_unreachable();
867
868   return ehdr_size + phdr_size * eei->layout->expected_segment_count();
869 }
870
871 extern "C" Expression*
872 script_exp_function_sizeof_headers()
873 {
874   return new Sizeof_headers_expression();
875 }
876
877 // Functions.
878
879 extern "C" Expression*
880 script_exp_function_defined(const char*, size_t)
881 {
882   gold_fatal(_("DEFINED not implemented"));
883 }
884
885 extern "C" Expression*
886 script_exp_function_alignof(const char*, size_t)
887 {
888   gold_fatal(_("ALIGNOF not implemented"));
889 }
890
891 extern "C" Expression*
892 script_exp_function_sizeof(const char*, size_t)
893 {
894   gold_fatal(_("SIZEOF not implemented"));
895 }
896
897 extern "C" Expression*
898 script_exp_function_loadaddr(const char*, size_t)
899 {
900   gold_fatal(_("LOADADDR not implemented"));
901 }
902
903 extern "C" Expression*
904 script_exp_function_origin(const char*, size_t)
905 {
906   gold_fatal(_("ORIGIN not implemented"));
907 }
908
909 extern "C" Expression*
910 script_exp_function_length(const char*, size_t)
911 {
912   gold_fatal(_("LENGTH not implemented"));
913 }
914
915 extern "C" Expression*
916 script_exp_function_absolute(Expression*)
917 {
918   gold_fatal(_("ABSOLUTE not implemented"));
919 }
920
921 extern "C" Expression*
922 script_exp_function_segment_start(const char*, size_t, Expression*)
923 {
924   gold_fatal(_("SEGMENT_START not implemented"));
925 }
926
927 } // End namespace gold.