1 // ehframe.cc -- handle exception frame sections for gold
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
37 // This file handles generation of the exception frame header that
38 // gcc's runtime support libraries use to find unwind information at
39 // runtime. This file also handles discarding duplicate exception
42 // The exception frame header starts with four bytes:
44 // 0: The version number, currently 1.
46 // 1: The encoding of the pointer to the exception frames. This can
47 // be any DWARF unwind encoding (DW_EH_PE_*). It is normally a 4
48 // byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
50 // 2: The encoding of the count of the number of FDE pointers in the
51 // lookup table. This can be any DWARF unwind encoding, and in
52 // particular can be DW_EH_PE_omit if the count is omitted. It is
53 // normally a 4 byte unsigned count (DW_EH_PE_udata4).
55 // 3: The encoding of the lookup table entries. Currently gcc's
56 // libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57 // which means that the values are 4 byte offsets from the start of
60 // The exception frame header is followed by a pointer to the contents
61 // of the exception frame section (.eh_frame). This pointer is
62 // encoded as specified in the byte at offset 1 of the header (i.e.,
63 // it is normally a 4 byte PC relative offset).
65 // If there is a lookup table, this is followed by the count of the
66 // number of FDE pointers, encoded as specified in the byte at offset
67 // 2 of the header (i.e., normally a 4 byte unsigned integer).
69 // This is followed by the table, which should start at an 4-byte
70 // aligned address in memory. Each entry in the table is 8 bytes.
71 // Each entry represents an FDE. The first four bytes of each entry
72 // are an offset to the starting PC for the FDE. The last four bytes
73 // of each entry are an offset to the FDE data. The offsets are from
74 // the start of the exception frame header information. The entries
75 // are in sorted order by starting PC.
77 const int eh_frame_hdr_size = 4;
79 // Construct the exception frame header.
81 Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82 const Eh_frame* eh_frame_data)
83 : Output_section_data(4),
84 eh_frame_section_(eh_frame_section),
85 eh_frame_data_(eh_frame_data),
87 any_unrecognized_eh_frame_sections_(false)
91 // Set the size of the exception frame header.
94 Eh_frame_hdr::set_final_data_size()
96 unsigned int data_size = eh_frame_hdr_size + 4;
97 if (!this->any_unrecognized_eh_frame_sections_)
99 unsigned int fde_count = this->eh_frame_data_->fde_count();
101 data_size += 4 + 8 * fde_count;
102 this->fde_offsets_.reserve(fde_count);
104 this->set_data_size(data_size);
107 // Write the data to the file.
110 Eh_frame_hdr::do_write(Output_file* of)
112 switch (parameters->size_and_endianness())
114 #ifdef HAVE_TARGET_32_LITTLE
115 case Parameters::TARGET_32_LITTLE:
116 this->do_sized_write<32, false>(of);
119 #ifdef HAVE_TARGET_32_BIG
120 case Parameters::TARGET_32_BIG:
121 this->do_sized_write<32, true>(of);
124 #ifdef HAVE_TARGET_64_LITTLE
125 case Parameters::TARGET_64_LITTLE:
126 this->do_sized_write<64, false>(of);
129 #ifdef HAVE_TARGET_64_BIG
130 case Parameters::TARGET_64_BIG:
131 this->do_sized_write<64, true>(of);
139 // Write the data to the file with the right endianness.
141 template<int size, bool big_endian>
143 Eh_frame_hdr::do_sized_write(Output_file* of)
145 const off_t off = this->offset();
146 const off_t oview_size = this->data_size();
147 unsigned char* const oview = of->get_output_view(off, oview_size);
152 // Write out a 4 byte PC relative offset to the address of the
153 // .eh_frame section.
154 oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155 uint64_t eh_frame_address = this->eh_frame_section_->address();
156 uint64_t eh_frame_hdr_address = this->address();
157 uint64_t eh_frame_offset = (eh_frame_address -
158 (eh_frame_hdr_address + 4));
159 elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
161 if (this->any_unrecognized_eh_frame_sections_
162 || this->fde_offsets_.empty())
164 // There are no FDEs, or we didn't recognize the format of the
165 // some of the .eh_frame sections, so we can't write out the
167 oview[2] = elfcpp::DW_EH_PE_omit;
168 oview[3] = elfcpp::DW_EH_PE_omit;
170 gold_assert(oview_size == 8);
174 oview[2] = elfcpp::DW_EH_PE_udata4;
175 oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
177 elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178 this->fde_offsets_.size());
180 // We have the offsets of the FDEs in the .eh_frame section. We
181 // couldn't easily get the PC values before, as they depend on
182 // relocations which are, of course, target specific. This code
183 // is run after all those relocations have been applied to the
184 // output file. Here we read the output file again to find the
185 // PC values. Then we sort the list and write it out.
187 Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188 this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
191 std::sort(fde_addresses.begin(), fde_addresses.end(),
192 Fde_address_compare<size>());
194 typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195 output_address = this->address();
197 unsigned char* pfde = oview + 12;
198 for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199 p != fde_addresses.end();
202 elfcpp::Swap<32, big_endian>::writeval(pfde,
203 p->first - output_address);
204 elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205 p->second - output_address);
209 gold_assert(pfde - oview == oview_size);
212 of->write_output_view(off, oview_size, oview);
215 // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216 // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217 // FDE's encoding is FDE_ENCODING, return the output address of the
220 template<int size, bool big_endian>
221 typename elfcpp::Elf_types<size>::Elf_Addr
222 Eh_frame_hdr::get_fde_pc(
223 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224 const unsigned char* eh_frame_contents,
225 section_offset_type fde_offset,
226 unsigned char fde_encoding)
228 // The FDE starts with a 4 byte length and a 4 byte offset to the
229 // CIE. The PC follows.
230 const unsigned char* p = eh_frame_contents + fde_offset + 8;
232 typename elfcpp::Elf_types<size>::Elf_Addr pc;
233 bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234 int pc_size = fde_encoding & 7;
235 if (pc_size == elfcpp::DW_EH_PE_absptr)
238 pc_size = elfcpp::DW_EH_PE_udata4;
240 pc_size = elfcpp::DW_EH_PE_udata8;
247 case elfcpp::DW_EH_PE_udata2:
248 pc = elfcpp::Swap<16, big_endian>::readval(p);
250 pc = (pc ^ 0x8000) - 0x8000;
253 case elfcpp::DW_EH_PE_udata4:
254 pc = elfcpp::Swap<32, big_endian>::readval(p);
255 if (size > 32 && is_signed)
256 pc = (pc ^ 0x80000000) - 0x80000000;
259 case elfcpp::DW_EH_PE_udata8:
260 gold_assert(size == 64);
261 pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
265 // All other cases were rejected in Eh_frame::read_cie.
269 switch (fde_encoding & 0x70)
274 case elfcpp::DW_EH_PE_pcrel:
275 pc += eh_frame_address + fde_offset + 8;
278 case elfcpp::DW_EH_PE_datarel:
279 pc += parameters->target().ehframe_datarel_base();
283 // If other cases arise, then we have to handle them, or we have
284 // to reject them by returning false in Eh_frame::read_cie.
288 gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0);
293 // Given an array of FDE offsets in the .eh_frame section, return an
294 // array of offsets from the exception frame header to the FDE's
295 // output PC and to the output address of the FDE itself. We get the
296 // FDE's PC by actually looking in the .eh_frame section we just wrote
297 // to the output file.
299 template<int size, bool big_endian>
301 Eh_frame_hdr::get_fde_addresses(Output_file* of,
302 const Fde_offsets* fde_offsets,
303 Fde_addresses<size>* fde_addresses)
305 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
306 eh_frame_address = this->eh_frame_section_->address();
307 off_t eh_frame_offset = this->eh_frame_section_->offset();
308 off_t eh_frame_size = this->eh_frame_section_->data_size();
309 const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
312 for (Fde_offsets::const_iterator p = fde_offsets->begin();
313 p != fde_offsets->end();
316 typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
317 fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
319 p->first, p->second);
320 fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
323 of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
328 // Write the FDE to OVIEW starting at OFFSET. CIE_OFFSET is the
329 // offset of the CIE in OVIEW. OUTPUT_OFFSET is the offset of the
330 // Eh_frame section within the output section. FDE_ENCODING is the
331 // encoding, from the CIE. ADDRALIGN is the required alignment.
332 // ADDRESS is the virtual address of OVIEW. Record the FDE pc for
333 // EH_FRAME_HDR. Return the new offset.
335 template<int size, bool big_endian>
337 Fde::write(unsigned char* oview, section_offset_type output_offset,
338 section_offset_type offset, uint64_t address, unsigned int addralign,
339 section_offset_type cie_offset, unsigned char fde_encoding,
340 Eh_frame_hdr* eh_frame_hdr)
342 gold_assert((offset & (addralign - 1)) == 0);
344 size_t length = this->contents_.length();
346 // We add 8 when getting the aligned length to account for the
347 // length word and the CIE offset.
348 size_t aligned_full_length = align_address(length + 8, addralign);
350 // Write the length of the FDE as a 32-bit word. The length word
351 // does not include the four bytes of the length word itself, but it
352 // does include the offset to the CIE.
353 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
354 aligned_full_length - 4);
356 // Write the offset to the CIE as a 32-bit word. This is the
357 // difference between the address of the offset word itself and the
359 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
360 offset + 4 - cie_offset);
362 // Copy the rest of the FDE. Note that this is run before
363 // relocation processing is done on this section, so the relocations
364 // will later be applied to the FDE data.
365 memcpy(oview + offset + 8, this->contents_.data(), length);
367 // If this FDE is associated with a PLT, fill in the PLT's address
369 if (this->object_ == NULL)
371 gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0);
374 parameters->target().plt_fde_location(this->u_.from_linker.plt,
377 uint64_t poffset = paddress - (address + offset + 8);
378 int32_t spoffset = static_cast<int32_t>(poffset);
379 uint32_t upsize = static_cast<uint32_t>(psize);
380 if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset
381 || static_cast<off_t>(upsize) != psize)
382 gold_warning(_("overflow in PLT unwind data; "
383 "unwinding through PLT may fail"));
384 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset);
385 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize);
388 if (aligned_full_length > length + 8)
389 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
391 // Tell the exception frame header about this FDE.
392 if (eh_frame_hdr != NULL)
393 eh_frame_hdr->record_fde(output_offset + offset, fde_encoding);
395 return offset + aligned_full_length;
404 for (std::vector<Fde*>::iterator p = this->fdes_.begin();
405 p != this->fdes_.end();
410 // Set the output offset of a CIE. Return the new output offset.
413 Cie::set_output_offset(section_offset_type output_offset,
414 unsigned int addralign,
415 Output_section_data *output_data)
417 size_t length = this->contents_.length();
419 // Add 4 for length and 4 for zero CIE identifier tag.
422 if (this->object_ != NULL)
424 // Add a mapping so that relocations are applied correctly.
425 this->object_->add_merge_mapping(output_data, this->shndx_,
426 this->input_offset_, length,
430 length = align_address(length, addralign);
432 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
433 p != this->fdes_.end();
436 (*p)->add_mapping(output_offset + length, output_data);
438 size_t fde_length = (*p)->length();
439 fde_length = align_address(fde_length, addralign);
440 length += fde_length;
443 return output_offset + length;
446 // Write the CIE to OVIEW starting at OFFSET. OUTPUT_OFFSET is the
447 // offset of the Eh_frame section within the output section. Round up
448 // the bytes to ADDRALIGN. ADDRESS is the virtual address of OVIEW.
449 // EH_FRAME_HDR is the exception frame header for FDE recording.
450 // POST_FDES stashes FDEs created after mappings were done, for later
451 // writing. Return the new offset.
453 template<int size, bool big_endian>
455 Cie::write(unsigned char* oview, section_offset_type output_offset,
456 section_offset_type offset, uint64_t address,
457 unsigned int addralign, Eh_frame_hdr* eh_frame_hdr,
458 Post_fdes* post_fdes)
460 gold_assert((offset & (addralign - 1)) == 0);
462 section_offset_type cie_offset = offset;
464 size_t length = this->contents_.length();
466 // We add 8 when getting the aligned length to account for the
467 // length word and the CIE tag.
468 size_t aligned_full_length = align_address(length + 8, addralign);
470 // Write the length of the CIE as a 32-bit word. The length word
471 // does not include the four bytes of the length word itself.
472 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
473 aligned_full_length - 4);
475 // Write the tag which marks this as a CIE: a 32-bit zero.
476 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
478 // Write out the CIE data.
479 memcpy(oview + offset + 8, this->contents_.data(), length);
481 if (aligned_full_length > length + 8)
482 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
484 offset += aligned_full_length;
486 // Write out the associated FDEs.
487 unsigned char fde_encoding = this->fde_encoding_;
488 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
489 p != this->fdes_.end();
492 if ((*p)->post_map())
493 post_fdes->push_back(Post_fde(*p, cie_offset, fde_encoding));
495 offset = (*p)->write<size, big_endian>(oview, output_offset, offset,
496 address, addralign, cie_offset,
497 fde_encoding, eh_frame_hdr);
503 // We track all the CIEs we see, and merge them when possible. This
504 // works because each FDE holds an offset to the relevant CIE: we
505 // rewrite the FDEs to point to the merged CIE. This is worthwhile
506 // because in a typical C++ program many FDEs in many different object
507 // files will use the same CIE.
509 // An equality operator for Cie.
512 operator==(const Cie& cie1, const Cie& cie2)
514 return (cie1.personality_name_ == cie2.personality_name_
515 && cie1.contents_ == cie2.contents_);
518 // A less-than operator for Cie.
521 operator<(const Cie& cie1, const Cie& cie2)
523 if (cie1.personality_name_ != cie2.personality_name_)
524 return cie1.personality_name_ < cie2.personality_name_;
525 return cie1.contents_ < cie2.contents_;
531 : Output_section_data(Output_data::default_alignment()),
534 unmergeable_cie_offsets_(),
535 mappings_are_done_(false),
540 // Skip an LEB128, updating *PP to point to the next character.
541 // Return false if we ran off the end of the string.
544 Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
546 const unsigned char* p;
547 for (p = *pp; p < pend; ++p)
549 if ((*p & 0x80) == 0)
558 // Add input section SHNDX in OBJECT to an exception frame section.
559 // SYMBOLS is the contents of the symbol table section (size
560 // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
561 // SYMBOL_NAMES_SIZE). RELOC_SHNDX is the index of a relocation
562 // section applying to SHNDX, or 0 if none, or -1U if more than one.
563 // RELOC_TYPE is the type of the reloc section if there is one, either
564 // SHT_REL or SHT_RELA. We try to parse the input exception frame
565 // data into our data structures. If we can't do it, we return false
566 // to mean that the section should be handled as a normal input
569 template<int size, bool big_endian>
570 Eh_frame::Eh_frame_section_disposition
571 Eh_frame::add_ehframe_input_section(
572 Sized_relobj_file<size, big_endian>* object,
573 const unsigned char* symbols,
574 section_size_type symbols_size,
575 const unsigned char* symbol_names,
576 section_size_type symbol_names_size,
578 unsigned int reloc_shndx,
579 unsigned int reloc_type)
581 // Get the section contents.
582 section_size_type contents_len;
583 const unsigned char* pcontents = object->section_contents(shndx,
586 if (contents_len == 0)
587 return EH_EMPTY_SECTION;
589 // If this is the marker section for the end of the data, then
590 // return false to force it to be handled as an ordinary input
591 // section. If we don't do this, we won't correctly handle the case
592 // of unrecognized .eh_frame sections.
593 if (contents_len == 4
594 && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
595 return EH_END_MARKER_SECTION;
598 if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
599 symbol_names, symbol_names_size,
601 reloc_type, pcontents,
602 contents_len, &new_cies))
604 if (this->eh_frame_hdr_ != NULL)
605 this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
607 for (New_cies::iterator p = new_cies.begin();
612 return EH_UNRECOGNIZED_SECTION;
615 // Now that we know we are using this section, record any new CIEs
617 for (New_cies::const_iterator p = new_cies.begin();
622 this->cie_offsets_.insert(p->first);
624 this->unmergeable_cie_offsets_.push_back(p->first);
627 return EH_OPTIMIZABLE_SECTION;
630 // The bulk of the implementation of add_ehframe_input_section.
632 template<int size, bool big_endian>
634 Eh_frame::do_add_ehframe_input_section(
635 Sized_relobj_file<size, big_endian>* object,
636 const unsigned char* symbols,
637 section_size_type symbols_size,
638 const unsigned char* symbol_names,
639 section_size_type symbol_names_size,
641 unsigned int reloc_shndx,
642 unsigned int reloc_type,
643 const unsigned char* pcontents,
644 section_size_type contents_len,
647 Track_relocs<size, big_endian> relocs;
649 const unsigned char* p = pcontents;
650 const unsigned char* pend = p + contents_len;
652 // Get the contents of the reloc section if any.
653 if (!relocs.initialize(object, reloc_shndx, reloc_type))
656 // Keep track of which CIEs are at which offsets.
664 // There shouldn't be any relocations here.
665 if (relocs.advance(p + 4 - pcontents) > 0)
668 unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
672 // We should only find a zero-length entry at the end of the
678 // We don't support a 64-bit .eh_frame.
679 if (len == 0xffffffff)
681 if (static_cast<unsigned int>(pend - p) < len)
684 const unsigned char* const pentend = p + len;
688 if (relocs.advance(p + 4 - pcontents) > 0)
691 unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
697 if (!this->read_cie(object, shndx, symbols, symbols_size,
698 symbol_names, symbol_names_size,
699 pcontents, p, pentend, &relocs, &cies,
706 if (!this->read_fde(object, shndx, symbols, symbols_size,
707 pcontents, id, p, pentend, &relocs, &cies))
717 // Read a CIE. Return false if we can't parse the information.
719 template<int size, bool big_endian>
721 Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object,
723 const unsigned char* symbols,
724 section_size_type symbols_size,
725 const unsigned char* symbol_names,
726 section_size_type symbol_names_size,
727 const unsigned char* pcontents,
728 const unsigned char* pcie,
729 const unsigned char* pcieend,
730 Track_relocs<size, big_endian>* relocs,
731 Offsets_to_cie* cies,
734 bool mergeable = true;
736 // We need to find the personality routine if there is one, since we
737 // can only merge CIEs which use the same routine. We also need to
738 // find the FDE encoding if there is one, so that we can read the PC
741 const unsigned char* p = pcie;
745 unsigned char version = *p++;
746 if (version != 1 && version != 3)
749 const unsigned char* paug = p;
750 const void* paugendv = memchr(p, '\0', pcieend - p);
751 const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
756 if (paug[0] == 'e' && paug[1] == 'h')
758 // This is a CIE from gcc before version 3.0. We can't merge
759 // these. We can still read the FDEs.
764 if (pcieend - p < size / 8)
769 // Skip the code alignment.
770 if (!skip_leb128(&p, pcieend))
773 // Skip the data alignment.
774 if (!skip_leb128(&p, pcieend))
777 // Skip the return column.
786 if (!skip_leb128(&p, pcieend))
793 // Skip the augmentation size.
794 if (!skip_leb128(&p, pcieend))
798 unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
800 while (*paug != '\0')
804 case 'L': // LSDA encoding.
810 case 'R': // FDE encoding.
814 switch (fde_encoding & 7)
816 case elfcpp::DW_EH_PE_absptr:
817 case elfcpp::DW_EH_PE_udata2:
818 case elfcpp::DW_EH_PE_udata4:
819 case elfcpp::DW_EH_PE_udata8:
822 // We don't expect to see any other cases here, and
823 // we're not prepared to handle them.
833 // Personality encoding.
837 unsigned char per_encoding = *p;
840 if ((per_encoding & 0x60) == 0x60)
842 unsigned int per_width;
843 switch (per_encoding & 7)
845 case elfcpp::DW_EH_PE_udata2:
848 case elfcpp::DW_EH_PE_udata4:
851 case elfcpp::DW_EH_PE_udata8:
854 case elfcpp::DW_EH_PE_absptr:
855 per_width = size / 8;
861 if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
863 unsigned int len = p - pcie;
864 len += per_width - 1;
865 len &= ~ (per_width - 1);
866 if (static_cast<unsigned int>(pcieend - p) < len)
871 per_offset = p - pcontents;
873 if (static_cast<unsigned int>(pcieend - p) < per_width)
886 const char* personality_name = "";
887 if (per_offset != -1)
889 if (relocs->advance(per_offset) > 0)
891 if (relocs->next_offset() != per_offset)
894 unsigned int personality_symndx = relocs->next_symndx();
895 if (personality_symndx == -1U)
898 if (personality_symndx < object->local_symbol_count())
900 // We can only merge this CIE if the personality routine is
901 // a global symbol. We can still read the FDEs.
906 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
907 if (personality_symndx >= symbols_size / sym_size)
909 elfcpp::Sym<size, big_endian> sym(symbols
910 + (personality_symndx * sym_size));
911 unsigned int name_offset = sym.get_st_name();
912 if (name_offset >= symbol_names_size)
914 personality_name = (reinterpret_cast<const char*>(symbol_names)
918 int r = relocs->advance(per_offset + 1);
922 if (relocs->advance(pcieend - pcontents) > 0)
925 Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
926 personality_name, pcie, pcieend - pcie);
927 Cie* cie_pointer = NULL;
930 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
931 if (find_cie != this->cie_offsets_.end())
932 cie_pointer = *find_cie;
935 // See if we already saw this CIE in this object file.
936 for (New_cies::const_iterator pc = new_cies->begin();
937 pc != new_cies->end();
940 if (*(pc->first) == cie)
942 cie_pointer = pc->first;
949 if (cie_pointer == NULL)
951 cie_pointer = new Cie(cie);
952 new_cies->push_back(std::make_pair(cie_pointer, mergeable));
956 // We are deleting this CIE. Record that in our mapping from
957 // input sections to the output section. At this point we don't
958 // know for sure that we are doing a special mapping for this
959 // input section, but that's OK--if we don't do a special
960 // mapping, nobody will ever ask for the mapping we add here.
961 object->add_merge_mapping(this, shndx, (pcie - 8) - pcontents,
962 pcieend - (pcie - 8), -1);
965 // Record this CIE plus the offset in the input section.
966 cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
971 // Read an FDE. Return false if we can't parse the information.
973 template<int size, bool big_endian>
975 Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object,
977 const unsigned char* symbols,
978 section_size_type symbols_size,
979 const unsigned char* pcontents,
981 const unsigned char* pfde,
982 const unsigned char* pfdeend,
983 Track_relocs<size, big_endian>* relocs,
984 Offsets_to_cie* cies)
986 // OFFSET is the distance between the 4 bytes before PFDE to the
987 // start of the CIE. The offset we recorded for the CIE is 8 bytes
988 // after the start of the CIE--after the length and the zero tag.
989 unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
990 Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
991 if (pcie == cies->end())
993 Cie* cie = pcie->second;
996 switch (cie->fde_encoding() & 7)
998 case elfcpp::DW_EH_PE_udata2:
1001 case elfcpp::DW_EH_PE_udata4:
1004 case elfcpp::DW_EH_PE_udata8:
1005 gold_assert(size == 64);
1008 case elfcpp::DW_EH_PE_absptr:
1009 pc_size = size == 32 ? 4 : 8;
1012 // All other cases were rejected in Eh_frame::read_cie.
1016 // The FDE should start with a reloc to the start of the code which
1018 if (relocs->advance(pfde - pcontents) > 0)
1020 if (relocs->next_offset() != pfde - pcontents)
1022 // In an object produced by a relocatable link, gold may have
1023 // discarded a COMDAT group in the previous link, but not the
1024 // corresponding FDEs. In that case, gold will have discarded
1025 // the relocations, so the FDE will have a non-relocatable zero
1026 // (regardless of whether the PC encoding is absolute, pc-relative,
1027 // or data-relative) instead of a pointer to the start of the code.
1029 uint64_t pc_value = 0;
1033 pc_value = elfcpp::Swap<16, big_endian>::readval(pfde);
1036 pc_value = elfcpp::Swap<32, big_endian>::readval(pfde);
1039 pc_value = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde);
1047 // This FDE applies to a discarded function. We
1048 // can discard this FDE.
1049 object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
1050 pfdeend - (pfde - 8), -1);
1054 // Otherwise, reject the FDE.
1058 unsigned int symndx = relocs->next_symndx();
1062 // There can be another reloc in the FDE, if the CIE specifies an
1063 // LSDA (language specific data area). We currently don't care. We
1064 // will care later if we want to optimize the LSDA from an absolute
1065 // pointer to a PC relative offset when generating a shared library.
1066 relocs->advance(pfdeend - pcontents);
1068 // Find the section index for code that this FDE describes.
1069 // If we have discarded the section, we can also discard the FDE.
1070 unsigned int fde_shndx;
1071 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1072 if (symndx >= symbols_size / sym_size)
1074 elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
1076 fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
1078 bool is_discarded = (is_ordinary
1079 && fde_shndx != elfcpp::SHN_UNDEF
1080 && fde_shndx < object->shnum()
1081 && !object->is_section_included(fde_shndx));
1083 // Fetch the address range field from the FDE. The offset and size
1084 // of the field depends on the PC encoding given in the CIE, but
1085 // it is always an absolute value. If the address range is 0, this
1086 // FDE corresponds to a function that was discarded during optimization
1087 // (too late to discard the corresponding FDE).
1088 uint64_t address_range = 0;
1092 address_range = elfcpp::Swap<16, big_endian>::readval(pfde + 2);
1095 address_range = elfcpp::Swap<32, big_endian>::readval(pfde + 4);
1098 address_range = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde + 8);
1104 if (is_discarded || address_range == 0)
1106 // This FDE applies to a discarded function. We
1107 // can discard this FDE.
1108 object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
1109 pfdeend - (pfde - 8), -1);
1113 cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
1114 pfde, pfdeend - pfde));
1119 // Add unwind information for a PLT.
1122 Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
1123 size_t cie_length, const unsigned char* fde_data,
1126 Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
1127 cie_data, cie_length);
1128 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
1130 if (find_cie != this->cie_offsets_.end())
1134 gold_assert(!this->mappings_are_done_);
1135 pcie = new Cie(cie);
1136 this->cie_offsets_.insert(pcie);
1139 Fde* fde = new Fde(plt, fde_data, fde_length, this->mappings_are_done_);
1142 if (this->mappings_are_done_)
1143 this->final_data_size_ += align_address(fde_length + 8, this->addralign());
1146 // Return the number of FDEs.
1149 Eh_frame::fde_count() const
1151 unsigned int ret = 0;
1152 for (Unmergeable_cie_offsets::const_iterator p =
1153 this->unmergeable_cie_offsets_.begin();
1154 p != this->unmergeable_cie_offsets_.end();
1156 ret += (*p)->fde_count();
1157 for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1158 p != this->cie_offsets_.end();
1160 ret += (*p)->fde_count();
1164 // Set the final data size.
1167 Eh_frame::set_final_data_size()
1169 // We can be called more than once if Layout::set_segment_offsets
1170 // finds a better mapping. We don't want to add all the mappings
1172 if (this->mappings_are_done_)
1174 this->set_data_size(this->final_data_size_);
1178 section_offset_type output_start = 0;
1179 if (this->is_offset_valid())
1180 output_start = this->offset() - this->output_section()->offset();
1181 section_offset_type output_offset = output_start;
1183 for (Unmergeable_cie_offsets::iterator p =
1184 this->unmergeable_cie_offsets_.begin();
1185 p != this->unmergeable_cie_offsets_.end();
1187 output_offset = (*p)->set_output_offset(output_offset,
1191 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1192 p != this->cie_offsets_.end();
1194 output_offset = (*p)->set_output_offset(output_offset,
1198 this->mappings_are_done_ = true;
1199 this->final_data_size_ = output_offset - output_start;
1201 gold_assert((output_offset & (this->addralign() - 1)) == 0);
1202 this->set_data_size(this->final_data_size_);
1205 // Return an output offset for an input offset.
1208 Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1209 section_offset_type offset,
1210 section_offset_type* poutput) const
1212 return object->merge_output_offset(shndx, offset, poutput);
1215 // Write the data to the output file.
1218 Eh_frame::do_write(Output_file* of)
1220 const off_t offset = this->offset();
1221 const off_t oview_size = this->data_size();
1222 unsigned char* const oview = of->get_output_view(offset, oview_size);
1224 switch (parameters->size_and_endianness())
1226 #ifdef HAVE_TARGET_32_LITTLE
1227 case Parameters::TARGET_32_LITTLE:
1228 this->do_sized_write<32, false>(oview);
1231 #ifdef HAVE_TARGET_32_BIG
1232 case Parameters::TARGET_32_BIG:
1233 this->do_sized_write<32, true>(oview);
1236 #ifdef HAVE_TARGET_64_LITTLE
1237 case Parameters::TARGET_64_LITTLE:
1238 this->do_sized_write<64, false>(oview);
1241 #ifdef HAVE_TARGET_64_BIG
1242 case Parameters::TARGET_64_BIG:
1243 this->do_sized_write<64, true>(oview);
1250 of->write_output_view(offset, oview_size, oview);
1253 // Write the data to the output file--template version.
1255 template<int size, bool big_endian>
1257 Eh_frame::do_sized_write(unsigned char* oview)
1259 uint64_t address = this->address();
1260 unsigned int addralign = this->addralign();
1261 section_offset_type o = 0;
1262 const off_t output_offset = this->offset() - this->output_section()->offset();
1263 Post_fdes post_fdes;
1264 for (Unmergeable_cie_offsets::iterator p =
1265 this->unmergeable_cie_offsets_.begin();
1266 p != this->unmergeable_cie_offsets_.end();
1268 o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
1269 addralign, this->eh_frame_hdr_,
1271 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1272 p != this->cie_offsets_.end();
1274 o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
1275 addralign, this->eh_frame_hdr_,
1277 for (Post_fdes::iterator p = post_fdes.begin();
1278 p != post_fdes.end();
1280 o = (*p).fde->write<size, big_endian>(oview, output_offset, o, address,
1281 addralign, (*p).cie_offset,
1283 this->eh_frame_hdr_);
1286 #ifdef HAVE_TARGET_32_LITTLE
1288 Eh_frame::Eh_frame_section_disposition
1289 Eh_frame::add_ehframe_input_section<32, false>(
1290 Sized_relobj_file<32, false>* object,
1291 const unsigned char* symbols,
1292 section_size_type symbols_size,
1293 const unsigned char* symbol_names,
1294 section_size_type symbol_names_size,
1296 unsigned int reloc_shndx,
1297 unsigned int reloc_type);
1300 #ifdef HAVE_TARGET_32_BIG
1302 Eh_frame::Eh_frame_section_disposition
1303 Eh_frame::add_ehframe_input_section<32, true>(
1304 Sized_relobj_file<32, true>* object,
1305 const unsigned char* symbols,
1306 section_size_type symbols_size,
1307 const unsigned char* symbol_names,
1308 section_size_type symbol_names_size,
1310 unsigned int reloc_shndx,
1311 unsigned int reloc_type);
1314 #ifdef HAVE_TARGET_64_LITTLE
1316 Eh_frame::Eh_frame_section_disposition
1317 Eh_frame::add_ehframe_input_section<64, false>(
1318 Sized_relobj_file<64, false>* object,
1319 const unsigned char* symbols,
1320 section_size_type symbols_size,
1321 const unsigned char* symbol_names,
1322 section_size_type symbol_names_size,
1324 unsigned int reloc_shndx,
1325 unsigned int reloc_type);
1328 #ifdef HAVE_TARGET_64_BIG
1330 Eh_frame::Eh_frame_section_disposition
1331 Eh_frame::add_ehframe_input_section<64, true>(
1332 Sized_relobj_file<64, true>* object,
1333 const unsigned char* symbols,
1334 section_size_type symbols_size,
1335 const unsigned char* symbol_names,
1336 section_size_type symbol_names_size,
1338 unsigned int reloc_shndx,
1339 unsigned int reloc_type);
1342 } // End namespace gold.