Use @acronym{MIPS} where appropriate.
[external/binutils.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43   : Object(name, input_file, true, offset),
44     needed_(),
45     unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47   // This will be overridden by a DT_SONAME entry, hopefully.  But if
48   // we never see a DT_SONAME entry, our rule is to use the dynamic
49   // object's filename.  The only exception is when the dynamic object
50   // is part of an archive (so the filename is the archive's
51   // filename).  In that case, we use just the dynobj's name-in-archive.
52   if (input_file == NULL)
53     this->soname_ = name;
54   else
55     {
56       this->soname_ = input_file->found_name();
57       if (this->offset() != 0)
58         {
59           std::string::size_type open_paren = this->name().find('(');
60           std::string::size_type close_paren = this->name().find(')');
61           if (open_paren != std::string::npos
62               && close_paren != std::string::npos)
63             {
64               // It's an archive, and name() is of the form 'foo.a(bar.so)'.
65               open_paren += 1;
66               this->soname_ = this->name().substr(open_paren,
67                                                   close_paren - open_paren);
68             }
69         }
70     }
71 }
72
73 // Class Sized_dynobj.
74
75 template<int size, bool big_endian>
76 Sized_dynobj<size, big_endian>::Sized_dynobj(
77     const std::string& name,
78     Input_file* input_file,
79     off_t offset,
80     const elfcpp::Ehdr<size, big_endian>& ehdr)
81   : Dynobj(name, input_file, offset),
82     elf_file_(this, ehdr),
83     dynsym_shndx_(-1U),
84     symbols_(NULL),
85     defined_count_(0)
86 {
87 }
88
89 // Set up the object.
90
91 template<int size, bool big_endian>
92 void
93 Sized_dynobj<size, big_endian>::setup()
94 {
95   const unsigned int shnum = this->elf_file_.shnum();
96   this->set_shnum(shnum);
97 }
98
99 // Find the SHT_DYNSYM section and the various version sections, and
100 // the dynamic section, given the section headers.
101
102 template<int size, bool big_endian>
103 void
104 Sized_dynobj<size, big_endian>::find_dynsym_sections(
105     const unsigned char* pshdrs,
106     unsigned int* pversym_shndx,
107     unsigned int* pverdef_shndx,
108     unsigned int* pverneed_shndx,
109     unsigned int* pdynamic_shndx)
110 {
111   *pversym_shndx = -1U;
112   *pverdef_shndx = -1U;
113   *pverneed_shndx = -1U;
114   *pdynamic_shndx = -1U;
115
116   unsigned int symtab_shndx = 0;
117   unsigned int xindex_shndx = 0;
118   unsigned int xindex_link = 0;
119   const unsigned int shnum = this->shnum();
120   const unsigned char* p = pshdrs;
121   for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
122     {
123       typename This::Shdr shdr(p);
124
125       unsigned int* pi;
126       switch (shdr.get_sh_type())
127         {
128         case elfcpp::SHT_DYNSYM:
129           this->dynsym_shndx_ = i;
130           if (xindex_shndx > 0 && xindex_link == i)
131             {
132               Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
133               xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
134                                                            pshdrs);
135               this->set_xindex(xindex);
136             }
137           pi = NULL;
138           break;
139         case elfcpp::SHT_SYMTAB:
140           symtab_shndx = i;
141           pi = NULL;
142           break;
143         case elfcpp::SHT_GNU_versym:
144           pi = pversym_shndx;
145           break;
146         case elfcpp::SHT_GNU_verdef:
147           pi = pverdef_shndx;
148           break;
149         case elfcpp::SHT_GNU_verneed:
150           pi = pverneed_shndx;
151           break;
152         case elfcpp::SHT_DYNAMIC:
153           pi = pdynamic_shndx;
154           break;
155         case elfcpp::SHT_SYMTAB_SHNDX:
156           xindex_shndx = i;
157           xindex_link = this->adjust_shndx(shdr.get_sh_link());
158           if (xindex_link == this->dynsym_shndx_)
159             {
160               Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
161               xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
162                                                            pshdrs);
163               this->set_xindex(xindex);
164             }
165           pi = NULL;
166           break;
167         default:
168           pi = NULL;
169           break;
170         }
171
172       if (pi == NULL)
173         continue;
174
175       if (*pi != -1U)
176         this->error(_("unexpected duplicate type %u section: %u, %u"),
177                     shdr.get_sh_type(), *pi, i);
178
179       *pi = i;
180     }
181
182   // If there is no dynamic symbol table, use the normal symbol table.
183   // On some SVR4 systems, a shared library is stored in an archive.
184   // The version stored in the archive only has a normal symbol table.
185   // It has an SONAME entry which points to another copy in the file
186   // system which has a dynamic symbol table as usual.  This is way of
187   // addressing the issues which glibc addresses using GROUP with
188   // libc_nonshared.a.
189   if (this->dynsym_shndx_ == -1U && symtab_shndx != 0)
190     {
191       this->dynsym_shndx_ = symtab_shndx;
192       if (xindex_shndx > 0 && xindex_link == symtab_shndx)
193         {
194           Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
195           xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
196                                                        pshdrs);
197           this->set_xindex(xindex);
198         }
199     }
200 }
201
202 // Read the contents of section SHNDX.  PSHDRS points to the section
203 // headers.  TYPE is the expected section type.  LINK is the expected
204 // section link.  Store the data in *VIEW and *VIEW_SIZE.  The
205 // section's sh_info field is stored in *VIEW_INFO.
206
207 template<int size, bool big_endian>
208 void
209 Sized_dynobj<size, big_endian>::read_dynsym_section(
210     const unsigned char* pshdrs,
211     unsigned int shndx,
212     elfcpp::SHT type,
213     unsigned int link,
214     File_view** view,
215     section_size_type* view_size,
216     unsigned int* view_info)
217 {
218   if (shndx == -1U)
219     {
220       *view = NULL;
221       *view_size = 0;
222       *view_info = 0;
223       return;
224     }
225
226   typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
227
228   gold_assert(shdr.get_sh_type() == type);
229
230   if (this->adjust_shndx(shdr.get_sh_link()) != link)
231     this->error(_("unexpected link in section %u header: %u != %u"),
232                 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
233
234   *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
235                                  true, false);
236   *view_size = convert_to_section_size_type(shdr.get_sh_size());
237   *view_info = shdr.get_sh_info();
238 }
239
240 // Read the dynamic tags.  Set the soname field if this shared object
241 // has a DT_SONAME tag.  Record the DT_NEEDED tags.  PSHDRS points to
242 // the section headers.  DYNAMIC_SHNDX is the section index of the
243 // SHT_DYNAMIC section.  STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
244 // section index and contents of a string table which may be the one
245 // associated with the SHT_DYNAMIC section.
246
247 template<int size, bool big_endian>
248 void
249 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
250                                              unsigned int dynamic_shndx,
251                                              unsigned int strtab_shndx,
252                                              const unsigned char* strtabu,
253                                              off_t strtab_size)
254 {
255   typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
256   gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
257
258   const off_t dynamic_size = dynamicshdr.get_sh_size();
259   const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
260                                                  dynamic_size, true, false);
261
262   const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
263   if (link != strtab_shndx)
264     {
265       if (link >= this->shnum())
266         {
267           this->error(_("DYNAMIC section %u link out of range: %u"),
268                       dynamic_shndx, link);
269           return;
270         }
271
272       typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
273       if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
274         {
275           this->error(_("DYNAMIC section %u link %u is not a strtab"),
276                       dynamic_shndx, link);
277           return;
278         }
279
280       strtab_size = strtabshdr.get_sh_size();
281       strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
282                                false);
283     }
284
285   const char* const strtab = reinterpret_cast<const char*>(strtabu);
286
287   for (const unsigned char* p = pdynamic;
288        p < pdynamic + dynamic_size;
289        p += This::dyn_size)
290     {
291       typename This::Dyn dyn(p);
292
293       switch (dyn.get_d_tag())
294         {
295         case elfcpp::DT_NULL:
296           // We should always see DT_NULL at the end of the dynamic
297           // tags.
298           return;
299
300         case elfcpp::DT_SONAME:
301           {
302             off_t val = dyn.get_d_val();
303             if (val >= strtab_size)
304               this->error(_("DT_SONAME value out of range: %lld >= %lld"),
305                           static_cast<long long>(val),
306                           static_cast<long long>(strtab_size));
307             else
308               this->set_soname_string(strtab + val);
309           }
310           break;
311
312         case elfcpp::DT_NEEDED:
313           {
314             off_t val = dyn.get_d_val();
315             if (val >= strtab_size)
316               this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
317                           static_cast<long long>(val),
318                           static_cast<long long>(strtab_size));
319             else
320               this->add_needed(strtab + val);
321           }
322           break;
323
324         default:
325           break;
326         }
327     }
328
329   this->error(_("missing DT_NULL in dynamic segment"));
330 }
331
332 // Read the symbols and sections from a dynamic object.  We read the
333 // dynamic symbols, not the normal symbols.
334
335 template<int size, bool big_endian>
336 void
337 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
338 {
339   this->read_section_data(&this->elf_file_, sd);
340
341   const unsigned char* const pshdrs = sd->section_headers->data();
342
343   unsigned int versym_shndx;
344   unsigned int verdef_shndx;
345   unsigned int verneed_shndx;
346   unsigned int dynamic_shndx;
347   this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
348                              &verneed_shndx, &dynamic_shndx);
349
350   unsigned int strtab_shndx = -1U;
351
352   sd->symbols = NULL;
353   sd->symbols_size = 0;
354   sd->external_symbols_offset = 0;
355   sd->symbol_names = NULL;
356   sd->symbol_names_size = 0;
357   sd->versym = NULL;
358   sd->versym_size = 0;
359   sd->verdef = NULL;
360   sd->verdef_size = 0;
361   sd->verdef_info = 0;
362   sd->verneed = NULL;
363   sd->verneed_size = 0;
364   sd->verneed_info = 0;
365
366   if (this->dynsym_shndx_ != -1U)
367     {
368       // Get the dynamic symbols.
369       typename This::Shdr dynsymshdr(pshdrs
370                                      + this->dynsym_shndx_ * This::shdr_size);
371
372       sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
373                                            dynsymshdr.get_sh_size(), true,
374                                            false);
375       sd->symbols_size =
376         convert_to_section_size_type(dynsymshdr.get_sh_size());
377
378       // Get the symbol names.
379       strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
380       if (strtab_shndx >= this->shnum())
381         {
382           this->error(_("invalid dynamic symbol table name index: %u"),
383                       strtab_shndx);
384           return;
385         }
386       typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
387       if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
388         {
389           this->error(_("dynamic symbol table name section "
390                         "has wrong type: %u"),
391                       static_cast<unsigned int>(strtabshdr.get_sh_type()));
392           return;
393         }
394
395       sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
396                                                 strtabshdr.get_sh_size(),
397                                                 false, false);
398       sd->symbol_names_size =
399         convert_to_section_size_type(strtabshdr.get_sh_size());
400
401       // Get the version information.
402
403       unsigned int dummy;
404       this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
405                                 this->dynsym_shndx_,
406                                 &sd->versym, &sd->versym_size, &dummy);
407
408       // We require that the version definition and need section link
409       // to the same string table as the dynamic symbol table.  This
410       // is not a technical requirement, but it always happens in
411       // practice.  We could change this if necessary.
412
413       this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
414                                 strtab_shndx, &sd->verdef, &sd->verdef_size,
415                                 &sd->verdef_info);
416
417       this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
418                                 strtab_shndx, &sd->verneed, &sd->verneed_size,
419                                 &sd->verneed_info);
420     }
421
422   // Read the SHT_DYNAMIC section to find whether this shared object
423   // has a DT_SONAME tag and to record any DT_NEEDED tags.  This
424   // doesn't really have anything to do with reading the symbols, but
425   // this is a convenient place to do it.
426   if (dynamic_shndx != -1U)
427     this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
428                        (sd->symbol_names == NULL
429                         ? NULL
430                         : sd->symbol_names->data()),
431                        sd->symbol_names_size);
432 }
433
434 // Return the Xindex structure to use for object with lots of
435 // sections.
436
437 template<int size, bool big_endian>
438 Xindex*
439 Sized_dynobj<size, big_endian>::do_initialize_xindex()
440 {
441   gold_assert(this->dynsym_shndx_ != -1U);
442   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
443   xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
444   return xindex;
445 }
446
447 // Lay out the input sections for a dynamic object.  We don't want to
448 // include sections from a dynamic object, so all that we actually do
449 // here is check for .gnu.warning and .note.GNU-split-stack sections.
450
451 template<int size, bool big_endian>
452 void
453 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
454                                           Layout*,
455                                           Read_symbols_data* sd)
456 {
457   const unsigned int shnum = this->shnum();
458   if (shnum == 0)
459     return;
460
461   // Get the section headers.
462   const unsigned char* pshdrs = sd->section_headers->data();
463
464   // Get the section names.
465   const unsigned char* pnamesu = sd->section_names->data();
466   const char* pnames = reinterpret_cast<const char*>(pnamesu);
467
468   // Skip the first, dummy, section.
469   pshdrs += This::shdr_size;
470   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
471     {
472       typename This::Shdr shdr(pshdrs);
473
474       if (shdr.get_sh_name() >= sd->section_names_size)
475         {
476           this->error(_("bad section name offset for section %u: %lu"),
477                       i, static_cast<unsigned long>(shdr.get_sh_name()));
478           return;
479         }
480
481       const char* name = pnames + shdr.get_sh_name();
482
483       this->handle_gnu_warning_section(name, i, symtab);
484       this->handle_split_stack_section(name);
485     }
486
487   delete sd->section_headers;
488   sd->section_headers = NULL;
489   delete sd->section_names;
490   sd->section_names = NULL;
491 }
492
493 // Add an entry to the vector mapping version numbers to version
494 // strings.
495
496 template<int size, bool big_endian>
497 void
498 Sized_dynobj<size, big_endian>::set_version_map(
499     Version_map* version_map,
500     unsigned int ndx,
501     const char* name) const
502 {
503   if (ndx >= version_map->size())
504     version_map->resize(ndx + 1);
505   if ((*version_map)[ndx] != NULL)
506     this->error(_("duplicate definition for version %u"), ndx);
507   (*version_map)[ndx] = name;
508 }
509
510 // Add mappings for the version definitions to VERSION_MAP.
511
512 template<int size, bool big_endian>
513 void
514 Sized_dynobj<size, big_endian>::make_verdef_map(
515     Read_symbols_data* sd,
516     Version_map* version_map) const
517 {
518   if (sd->verdef == NULL)
519     return;
520
521   const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
522   section_size_type names_size = sd->symbol_names_size;
523
524   const unsigned char* pverdef = sd->verdef->data();
525   section_size_type verdef_size = sd->verdef_size;
526   const unsigned int count = sd->verdef_info;
527
528   const unsigned char* p = pverdef;
529   for (unsigned int i = 0; i < count; ++i)
530     {
531       elfcpp::Verdef<size, big_endian> verdef(p);
532
533       if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
534         {
535           this->error(_("unexpected verdef version %u"),
536                       verdef.get_vd_version());
537           return;
538         }
539
540       const section_size_type vd_ndx = verdef.get_vd_ndx();
541
542       // The GNU linker clears the VERSYM_HIDDEN bit.  I'm not
543       // sure why.
544
545       // The first Verdaux holds the name of this version.  Subsequent
546       // ones are versions that this one depends upon, which we don't
547       // care about here.
548       const section_size_type vd_cnt = verdef.get_vd_cnt();
549       if (vd_cnt < 1)
550         {
551           this->error(_("verdef vd_cnt field too small: %u"),
552                       static_cast<unsigned int>(vd_cnt));
553           return;
554         }
555
556       const section_size_type vd_aux = verdef.get_vd_aux();
557       if ((p - pverdef) + vd_aux >= verdef_size)
558         {
559           this->error(_("verdef vd_aux field out of range: %u"),
560                       static_cast<unsigned int>(vd_aux));
561           return;
562         }
563
564       const unsigned char* pvda = p + vd_aux;
565       elfcpp::Verdaux<size, big_endian> verdaux(pvda);
566
567       const section_size_type vda_name = verdaux.get_vda_name();
568       if (vda_name >= names_size)
569         {
570           this->error(_("verdaux vda_name field out of range: %u"),
571                       static_cast<unsigned int>(vda_name));
572           return;
573         }
574
575       this->set_version_map(version_map, vd_ndx, names + vda_name);
576
577       const section_size_type vd_next = verdef.get_vd_next();
578       if ((p - pverdef) + vd_next >= verdef_size)
579         {
580           this->error(_("verdef vd_next field out of range: %u"),
581                       static_cast<unsigned int>(vd_next));
582           return;
583         }
584
585       p += vd_next;
586     }
587 }
588
589 // Add mappings for the required versions to VERSION_MAP.
590
591 template<int size, bool big_endian>
592 void
593 Sized_dynobj<size, big_endian>::make_verneed_map(
594     Read_symbols_data* sd,
595     Version_map* version_map) const
596 {
597   if (sd->verneed == NULL)
598     return;
599
600   const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
601   section_size_type names_size = sd->symbol_names_size;
602
603   const unsigned char* pverneed = sd->verneed->data();
604   const section_size_type verneed_size = sd->verneed_size;
605   const unsigned int count = sd->verneed_info;
606
607   const unsigned char* p = pverneed;
608   for (unsigned int i = 0; i < count; ++i)
609     {
610       elfcpp::Verneed<size, big_endian> verneed(p);
611
612       if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
613         {
614           this->error(_("unexpected verneed version %u"),
615                       verneed.get_vn_version());
616           return;
617         }
618
619       const section_size_type vn_aux = verneed.get_vn_aux();
620
621       if ((p - pverneed) + vn_aux >= verneed_size)
622         {
623           this->error(_("verneed vn_aux field out of range: %u"),
624                       static_cast<unsigned int>(vn_aux));
625           return;
626         }
627
628       const unsigned int vn_cnt = verneed.get_vn_cnt();
629       const unsigned char* pvna = p + vn_aux;
630       for (unsigned int j = 0; j < vn_cnt; ++j)
631         {
632           elfcpp::Vernaux<size, big_endian> vernaux(pvna);
633
634           const unsigned int vna_name = vernaux.get_vna_name();
635           if (vna_name >= names_size)
636             {
637               this->error(_("vernaux vna_name field out of range: %u"),
638                           static_cast<unsigned int>(vna_name));
639               return;
640             }
641
642           this->set_version_map(version_map, vernaux.get_vna_other(),
643                                 names + vna_name);
644
645           const section_size_type vna_next = vernaux.get_vna_next();
646           if ((pvna - pverneed) + vna_next >= verneed_size)
647             {
648               this->error(_("verneed vna_next field out of range: %u"),
649                           static_cast<unsigned int>(vna_next));
650               return;
651             }
652
653           pvna += vna_next;
654         }
655
656       const section_size_type vn_next = verneed.get_vn_next();
657       if ((p - pverneed) + vn_next >= verneed_size)
658         {
659           this->error(_("verneed vn_next field out of range: %u"),
660                       static_cast<unsigned int>(vn_next));
661           return;
662         }
663
664       p += vn_next;
665     }
666 }
667
668 // Create a vector mapping version numbers to version strings.
669
670 template<int size, bool big_endian>
671 void
672 Sized_dynobj<size, big_endian>::make_version_map(
673     Read_symbols_data* sd,
674     Version_map* version_map) const
675 {
676   if (sd->verdef == NULL && sd->verneed == NULL)
677     return;
678
679   // A guess at the maximum version number we will see.  If this is
680   // wrong we will be less efficient but still correct.
681   version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
682
683   this->make_verdef_map(sd, version_map);
684   this->make_verneed_map(sd, version_map);
685 }
686
687 // Add the dynamic symbols to the symbol table.
688
689 template<int size, bool big_endian>
690 void
691 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
692                                                Read_symbols_data* sd,
693                                                Layout*)
694 {
695   if (sd->symbols == NULL)
696     {
697       gold_assert(sd->symbol_names == NULL);
698       gold_assert(sd->versym == NULL && sd->verdef == NULL
699                   && sd->verneed == NULL);
700       return;
701     }
702
703   const int sym_size = This::sym_size;
704   const size_t symcount = sd->symbols_size / sym_size;
705   gold_assert(sd->external_symbols_offset == 0);
706   if (symcount * sym_size != sd->symbols_size)
707     {
708       this->error(_("size of dynamic symbols is not multiple of symbol size"));
709       return;
710     }
711
712   Version_map version_map;
713   this->make_version_map(sd, &version_map);
714
715   // If printing symbol counts or a cross reference table or
716   // preparing for an incremental link, we want to track symbols.
717   if (parameters->options().user_set_print_symbol_counts()
718       || parameters->options().cref()
719       || parameters->incremental())
720     {
721       this->symbols_ = new Symbols();
722       this->symbols_->resize(symcount);
723     }
724
725   const char* sym_names =
726     reinterpret_cast<const char*>(sd->symbol_names->data());
727   symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
728                           sym_names, sd->symbol_names_size,
729                           (sd->versym == NULL
730                            ? NULL
731                            : sd->versym->data()),
732                           sd->versym_size,
733                           &version_map,
734                           this->symbols_,
735                           &this->defined_count_);
736
737   delete sd->symbols;
738   sd->symbols = NULL;
739   delete sd->symbol_names;
740   sd->symbol_names = NULL;
741   if (sd->versym != NULL)
742     {
743       delete sd->versym;
744       sd->versym = NULL;
745     }
746   if (sd->verdef != NULL)
747     {
748       delete sd->verdef;
749       sd->verdef = NULL;
750     }
751   if (sd->verneed != NULL)
752     {
753       delete sd->verneed;
754       sd->verneed = NULL;
755     }
756
757   // This is normally the last time we will read any data from this
758   // file.
759   this->clear_view_cache_marks();
760 }
761
762 template<int size, bool big_endian>
763 Archive::Should_include
764 Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*,
765                                                          Layout*,
766                                                          Read_symbols_data*,
767                                                          std::string*)
768 {
769   return Archive::SHOULD_INCLUDE_YES;
770 }
771
772 // Iterate over global symbols, calling a visitor class V for each.
773
774 template<int size, bool big_endian>
775 void
776 Sized_dynobj<size, big_endian>::do_for_all_global_symbols(
777     Read_symbols_data* sd,
778     Library_base::Symbol_visitor_base* v)
779 {
780   const char* sym_names =
781       reinterpret_cast<const char*>(sd->symbol_names->data());
782   const unsigned char* syms =
783       sd->symbols->data() + sd->external_symbols_offset;
784   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
785   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
786                      / sym_size);
787   const unsigned char* p = syms;
788
789   for (size_t i = 0; i < symcount; ++i, p += sym_size)
790     {
791       elfcpp::Sym<size, big_endian> sym(p);
792       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
793           && sym.get_st_bind() != elfcpp::STB_LOCAL)
794         v->visit(sym_names + sym.get_st_name());
795     }
796 }
797
798 // Iterate over local symbols, calling a visitor class V for each GOT offset
799 // associated with a local symbol.
800
801 template<int size, bool big_endian>
802 void
803 Sized_dynobj<size, big_endian>::do_for_all_local_got_entries(
804     Got_offset_list::Visitor*) const
805 {
806 }
807
808 // Get symbol counts.
809
810 template<int size, bool big_endian>
811 void
812 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
813     const Symbol_table*,
814     size_t* defined,
815     size_t* used) const
816 {
817   *defined = this->defined_count_;
818   size_t count = 0;
819   for (typename Symbols::const_iterator p = this->symbols_->begin();
820        p != this->symbols_->end();
821        ++p)
822     if (*p != NULL
823         && (*p)->source() == Symbol::FROM_OBJECT
824         && (*p)->object() == this
825         && (*p)->is_defined()
826         && (*p)->dynsym_index() != -1U)
827       ++count;
828   *used = count;
829 }
830
831 // Given a vector of hash codes, compute the number of hash buckets to
832 // use.
833
834 unsigned int
835 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
836                              bool for_gnu_hash_table)
837 {
838   // FIXME: Implement optional hash table optimization.
839
840   // Array used to determine the number of hash table buckets to use
841   // based on the number of symbols there are.  If there are fewer
842   // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
843   // buckets, fewer than 37 we use 17 buckets, and so forth.  We never
844   // use more than 262147 buckets.  This is straight from the old GNU
845   // linker.
846   static const unsigned int buckets[] =
847   {
848     1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
849     16411, 32771, 65537, 131101, 262147
850   };
851   const int buckets_count = sizeof buckets / sizeof buckets[0];
852
853   unsigned int symcount = hashcodes.size();
854   unsigned int ret = 1;
855   const double full_fraction
856     = 1.0 - parameters->options().hash_bucket_empty_fraction();
857   for (int i = 0; i < buckets_count; ++i)
858     {
859       if (symcount < buckets[i] * full_fraction)
860         break;
861       ret = buckets[i];
862     }
863
864   if (for_gnu_hash_table && ret < 2)
865     ret = 2;
866
867   return ret;
868 }
869
870 // The standard ELF hash function.  This hash function must not
871 // change, as the dynamic linker uses it also.
872
873 uint32_t
874 Dynobj::elf_hash(const char* name)
875 {
876   const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
877   uint32_t h = 0;
878   unsigned char c;
879   while ((c = *nameu++) != '\0')
880     {
881       h = (h << 4) + c;
882       uint32_t g = h & 0xf0000000;
883       if (g != 0)
884         {
885           h ^= g >> 24;
886           // The ELF ABI says h &= ~g, but using xor is equivalent in
887           // this case (since g was set from h) and may save one
888           // instruction.
889           h ^= g;
890         }
891     }
892   return h;
893 }
894
895 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
896 // DYNSYMS is a vector with all the global dynamic symbols.
897 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
898 // symbol table.
899
900 void
901 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
902                               unsigned int local_dynsym_count,
903                               unsigned char** pphash,
904                               unsigned int* phashlen)
905 {
906   unsigned int dynsym_count = dynsyms.size();
907
908   // Get the hash values for all the symbols.
909   std::vector<uint32_t> dynsym_hashvals(dynsym_count);
910   for (unsigned int i = 0; i < dynsym_count; ++i)
911     dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
912
913   const unsigned int bucketcount =
914     Dynobj::compute_bucket_count(dynsym_hashvals, false);
915
916   std::vector<uint32_t> bucket(bucketcount);
917   std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
918
919   for (unsigned int i = 0; i < dynsym_count; ++i)
920     {
921       unsigned int dynsym_index = dynsyms[i]->dynsym_index();
922       unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
923       chain[dynsym_index] = bucket[bucketpos];
924       bucket[bucketpos] = dynsym_index;
925     }
926
927   unsigned int hashlen = ((2
928                            + bucketcount
929                            + local_dynsym_count
930                            + dynsym_count)
931                           * 4);
932   unsigned char* phash = new unsigned char[hashlen];
933
934   if (parameters->target().is_big_endian())
935     {
936 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
937       Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
938                                                 hashlen);
939 #else
940       gold_unreachable();
941 #endif
942     }
943   else
944     {
945 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
946       Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
947                                                  hashlen);
948 #else
949       gold_unreachable();
950 #endif
951     }
952
953   *pphash = phash;
954   *phashlen = hashlen;
955 }
956
957 // Fill in an ELF hash table.
958
959 template<bool big_endian>
960 void
961 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
962                                     const std::vector<uint32_t>& chain,
963                                     unsigned char* phash,
964                                     unsigned int hashlen)
965 {
966   unsigned char* p = phash;
967
968   const unsigned int bucketcount = bucket.size();
969   const unsigned int chaincount = chain.size();
970
971   elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
972   p += 4;
973   elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
974   p += 4;
975
976   for (unsigned int i = 0; i < bucketcount; ++i)
977     {
978       elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
979       p += 4;
980     }
981
982   for (unsigned int i = 0; i < chaincount; ++i)
983     {
984       elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
985       p += 4;
986     }
987
988   gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
989 }
990
991 // The hash function used for the GNU hash table.  This hash function
992 // must not change, as the dynamic linker uses it also.
993
994 uint32_t
995 Dynobj::gnu_hash(const char* name)
996 {
997   const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
998   uint32_t h = 5381;
999   unsigned char c;
1000   while ((c = *nameu++) != '\0')
1001     h = (h << 5) + h + c;
1002   return h;
1003 }
1004
1005 // Create a GNU hash table, setting *PPHASH and *PHASHLEN.  GNU hash
1006 // tables are an extension to ELF which are recognized by the GNU
1007 // dynamic linker.  They are referenced using dynamic tag DT_GNU_HASH.
1008 // TARGET is the target.  DYNSYMS is a vector with all the global
1009 // symbols which will be going into the dynamic symbol table.
1010 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
1011 // symbol table.
1012
1013 void
1014 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
1015                               unsigned int local_dynsym_count,
1016                               unsigned char** pphash,
1017                               unsigned int* phashlen)
1018 {
1019   const unsigned int count = dynsyms.size();
1020
1021   // Sort the dynamic symbols into two vectors.  Symbols which we do
1022   // not want to put into the hash table we store into
1023   // UNHASHED_DYNSYMS.  Symbols which we do want to store we put into
1024   // HASHED_DYNSYMS.  DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
1025   // and records the hash codes.
1026
1027   std::vector<Symbol*> unhashed_dynsyms;
1028   unhashed_dynsyms.reserve(count);
1029
1030   std::vector<Symbol*> hashed_dynsyms;
1031   hashed_dynsyms.reserve(count);
1032
1033   std::vector<uint32_t> dynsym_hashvals;
1034   dynsym_hashvals.reserve(count);
1035   
1036   for (unsigned int i = 0; i < count; ++i)
1037     {
1038       Symbol* sym = dynsyms[i];
1039
1040       if (!sym->needs_dynsym_value()
1041           && (sym->is_undefined()
1042               || sym->is_from_dynobj()
1043               || sym->is_forced_local()))
1044         unhashed_dynsyms.push_back(sym);
1045       else
1046         {
1047           hashed_dynsyms.push_back(sym);
1048           dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
1049         }
1050     }
1051
1052   // Put the unhashed symbols at the start of the global portion of
1053   // the dynamic symbol table.
1054   const unsigned int unhashed_count = unhashed_dynsyms.size();
1055   unsigned int unhashed_dynsym_index = local_dynsym_count;
1056   for (unsigned int i = 0; i < unhashed_count; ++i)
1057     {
1058       unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
1059       ++unhashed_dynsym_index;
1060     }
1061
1062   // For the actual data generation we call out to a templatized
1063   // function.
1064   int size = parameters->target().get_size();
1065   bool big_endian = parameters->target().is_big_endian();
1066   if (size == 32)
1067     {
1068       if (big_endian)
1069         {
1070 #ifdef HAVE_TARGET_32_BIG
1071           Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
1072                                                         dynsym_hashvals,
1073                                                         unhashed_dynsym_index,
1074                                                         pphash,
1075                                                         phashlen);
1076 #else
1077           gold_unreachable();
1078 #endif
1079         }
1080       else
1081         {
1082 #ifdef HAVE_TARGET_32_LITTLE
1083           Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1084                                                          dynsym_hashvals,
1085                                                          unhashed_dynsym_index,
1086                                                          pphash,
1087                                                          phashlen);
1088 #else
1089           gold_unreachable();
1090 #endif
1091         }
1092     }
1093   else if (size == 64)
1094     {
1095       if (big_endian)
1096         {
1097 #ifdef HAVE_TARGET_64_BIG
1098           Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1099                                                         dynsym_hashvals,
1100                                                         unhashed_dynsym_index,
1101                                                         pphash,
1102                                                         phashlen);
1103 #else
1104           gold_unreachable();
1105 #endif
1106         }
1107       else
1108         {
1109 #ifdef HAVE_TARGET_64_LITTLE
1110           Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1111                                                          dynsym_hashvals,
1112                                                          unhashed_dynsym_index,
1113                                                          pphash,
1114                                                          phashlen);
1115 #else
1116           gold_unreachable();
1117 #endif
1118         }
1119     }
1120   else
1121     gold_unreachable();
1122 }
1123
1124 // Create the actual data for a GNU hash table.  This is just a copy
1125 // of the code from the old GNU linker.
1126
1127 template<int size, bool big_endian>
1128 void
1129 Dynobj::sized_create_gnu_hash_table(
1130     const std::vector<Symbol*>& hashed_dynsyms,
1131     const std::vector<uint32_t>& dynsym_hashvals,
1132     unsigned int unhashed_dynsym_count,
1133     unsigned char** pphash,
1134     unsigned int* phashlen)
1135 {
1136   if (hashed_dynsyms.empty())
1137     {
1138       // Special case for the empty hash table.
1139       unsigned int hashlen = 5 * 4 + size / 8;
1140       unsigned char* phash = new unsigned char[hashlen];
1141       // One empty bucket.
1142       elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1143       // Symbol index above unhashed symbols.
1144       elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1145       // One word for bitmask.
1146       elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1147       // Only bloom filter.
1148       elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1149       // No valid hashes.
1150       elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1151       // No hashes in only bucket.
1152       elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1153
1154       *phashlen = hashlen;
1155       *pphash = phash;
1156
1157       return;
1158     }
1159
1160   const unsigned int bucketcount =
1161     Dynobj::compute_bucket_count(dynsym_hashvals, true);
1162
1163   const unsigned int nsyms = hashed_dynsyms.size();
1164
1165   uint32_t maskbitslog2 = 1;
1166   uint32_t x = nsyms >> 1;
1167   while (x != 0)
1168     {
1169       ++maskbitslog2;
1170       x >>= 1;
1171     }
1172   if (maskbitslog2 < 3)
1173     maskbitslog2 = 5;
1174   else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1175     maskbitslog2 += 3;
1176   else
1177     maskbitslog2 += 2;
1178
1179   uint32_t shift1;
1180   if (size == 32)
1181     shift1 = 5;
1182   else
1183     {
1184       if (maskbitslog2 == 5)
1185         maskbitslog2 = 6;
1186       shift1 = 6;
1187     }
1188   uint32_t mask = (1U << shift1) - 1U;
1189   uint32_t shift2 = maskbitslog2;
1190   uint32_t maskbits = 1U << maskbitslog2;
1191   uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1192
1193   typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1194   std::vector<Word> bitmask(maskwords);
1195   std::vector<uint32_t> counts(bucketcount);
1196   std::vector<uint32_t> indx(bucketcount);
1197   uint32_t symindx = unhashed_dynsym_count;
1198
1199   // Count the number of times each hash bucket is used.
1200   for (unsigned int i = 0; i < nsyms; ++i)
1201     ++counts[dynsym_hashvals[i] % bucketcount];
1202
1203   unsigned int cnt = symindx;
1204   for (unsigned int i = 0; i < bucketcount; ++i)
1205     {
1206       indx[i] = cnt;
1207       cnt += counts[i];
1208     }
1209
1210   unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1211   hashlen += maskbits / 8;
1212   unsigned char* phash = new unsigned char[hashlen];
1213
1214   elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1215   elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1216   elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1217   elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1218
1219   unsigned char* p = phash + 16 + maskbits / 8;
1220   for (unsigned int i = 0; i < bucketcount; ++i)
1221     {
1222       if (counts[i] == 0)
1223         elfcpp::Swap<32, big_endian>::writeval(p, 0);
1224       else
1225         elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1226       p += 4;
1227     }
1228
1229   for (unsigned int i = 0; i < nsyms; ++i)
1230     {
1231       Symbol* sym = hashed_dynsyms[i];
1232       uint32_t hashval = dynsym_hashvals[i];
1233
1234       unsigned int bucket = hashval % bucketcount;
1235       unsigned int val = ((hashval >> shift1)
1236                           & ((maskbits >> shift1) - 1));
1237       bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1238       bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1239       val = hashval & ~ 1U;
1240       if (counts[bucket] == 1)
1241         {
1242           // Last element terminates the chain.
1243           val |= 1;
1244         }
1245       elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1246                                              val);
1247       --counts[bucket];
1248
1249       sym->set_dynsym_index(indx[bucket]);
1250       ++indx[bucket];
1251     }
1252
1253   p = phash + 16;
1254   for (unsigned int i = 0; i < maskwords; ++i)
1255     {
1256       elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1257       p += size / 8;
1258     }
1259
1260   *phashlen = hashlen;
1261   *pphash = phash;
1262 }
1263
1264 // Verdef methods.
1265
1266 // Write this definition to a buffer for the output section.
1267
1268 template<int size, bool big_endian>
1269 unsigned char*
1270 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1271 {
1272   const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1273   const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1274
1275   elfcpp::Verdef_write<size, big_endian> vd(pb);
1276   vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1277   vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1278                   | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)
1279                   | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0));
1280   vd.set_vd_ndx(this->index());
1281   vd.set_vd_cnt(1 + this->deps_.size());
1282   vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1283   vd.set_vd_aux(verdef_size);
1284   vd.set_vd_next(is_last
1285                  ? 0
1286                  : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1287   pb += verdef_size;
1288
1289   elfcpp::Verdaux_write<size, big_endian> vda(pb);
1290   vda.set_vda_name(dynpool->get_offset(this->name()));
1291   vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1292   pb += verdaux_size;
1293
1294   Deps::const_iterator p;
1295   unsigned int i;
1296   for (p = this->deps_.begin(), i = 0;
1297        p != this->deps_.end();
1298        ++p, ++i)
1299     {
1300       elfcpp::Verdaux_write<size, big_endian> vda(pb);
1301       vda.set_vda_name(dynpool->get_offset(*p));
1302       vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1303       pb += verdaux_size;
1304     }
1305
1306   return pb;
1307 }
1308
1309 // Verneed methods.
1310
1311 Verneed::~Verneed()
1312 {
1313   for (Need_versions::iterator p = this->need_versions_.begin();
1314        p != this->need_versions_.end();
1315        ++p)
1316     delete *p;
1317 }
1318
1319 // Add a new version to this file reference.
1320
1321 Verneed_version*
1322 Verneed::add_name(const char* name)
1323 {
1324   Verneed_version* vv = new Verneed_version(name);
1325   this->need_versions_.push_back(vv);
1326   return vv;
1327 }
1328
1329 // Set the version indexes starting at INDEX.
1330
1331 unsigned int
1332 Verneed::finalize(unsigned int index)
1333 {
1334   for (Need_versions::iterator p = this->need_versions_.begin();
1335        p != this->need_versions_.end();
1336        ++p)
1337     {
1338       (*p)->set_index(index);
1339       ++index;
1340     }
1341   return index;
1342 }
1343
1344 // Write this list of referenced versions to a buffer for the output
1345 // section.
1346
1347 template<int size, bool big_endian>
1348 unsigned char*
1349 Verneed::write(const Stringpool* dynpool, bool is_last,
1350                unsigned char* pb) const
1351 {
1352   const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1353   const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1354
1355   elfcpp::Verneed_write<size, big_endian> vn(pb);
1356   vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1357   vn.set_vn_cnt(this->need_versions_.size());
1358   vn.set_vn_file(dynpool->get_offset(this->filename()));
1359   vn.set_vn_aux(verneed_size);
1360   vn.set_vn_next(is_last
1361                  ? 0
1362                  : verneed_size + this->need_versions_.size() * vernaux_size);
1363   pb += verneed_size;
1364
1365   Need_versions::const_iterator p;
1366   unsigned int i;
1367   for (p = this->need_versions_.begin(), i = 0;
1368        p != this->need_versions_.end();
1369        ++p, ++i)
1370     {
1371       elfcpp::Vernaux_write<size, big_endian> vna(pb);
1372       vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1373       // FIXME: We need to sometimes set VER_FLG_WEAK here.
1374       vna.set_vna_flags(0);
1375       vna.set_vna_other((*p)->index());
1376       vna.set_vna_name(dynpool->get_offset((*p)->version()));
1377       vna.set_vna_next(i + 1 >= this->need_versions_.size()
1378                        ? 0
1379                        : vernaux_size);
1380       pb += vernaux_size;
1381     }
1382
1383   return pb;
1384 }
1385
1386 // Versions methods.
1387
1388 Versions::Versions(const Version_script_info& version_script,
1389                    Stringpool* dynpool)
1390   : defs_(), needs_(), version_table_(),
1391     is_finalized_(false), version_script_(version_script),
1392     needs_base_version_(parameters->options().shared())
1393 {
1394   if (!this->version_script_.empty())
1395     {
1396       // Parse the version script, and insert each declared version into
1397       // defs_ and version_table_.
1398       std::vector<std::string> versions = this->version_script_.get_versions();
1399
1400       if (this->needs_base_version_ && !versions.empty())
1401         this->define_base_version(dynpool);
1402
1403       for (size_t k = 0; k < versions.size(); ++k)
1404         {
1405           Stringpool::Key version_key;
1406           const char* version = dynpool->add(versions[k].c_str(),
1407                                              true, &version_key);
1408           Verdef* const vd = new Verdef(
1409               version,
1410               this->version_script_.get_dependencies(version),
1411               false, false, false, false);
1412           this->defs_.push_back(vd);
1413           Key key(version_key, 0);
1414           this->version_table_.insert(std::make_pair(key, vd));
1415         }
1416     }
1417 }
1418
1419 Versions::~Versions()
1420 {
1421   for (Defs::iterator p = this->defs_.begin();
1422        p != this->defs_.end();
1423        ++p)
1424     delete *p;
1425
1426   for (Needs::iterator p = this->needs_.begin();
1427        p != this->needs_.end();
1428        ++p)
1429     delete *p;
1430 }
1431
1432 // Define the base version of a shared library.  The base version definition
1433 // must be the first entry in defs_.  We insert it lazily so that defs_ is
1434 // empty if no symbol versioning is used.  Then layout can just drop the
1435 // version sections.
1436
1437 void
1438 Versions::define_base_version(Stringpool* dynpool)
1439 {
1440   // If we do any versioning at all,  we always need a base version, so
1441   // define that first.  Nothing explicitly declares itself as part of base,
1442   // so it doesn't need to be in version_table_.
1443   gold_assert(this->defs_.empty());
1444   const char* name = parameters->options().soname();
1445   if (name == NULL)
1446     name = parameters->options().output_file_name();
1447   name = dynpool->add(name, false, NULL);
1448   Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1449                               true, false, false, true);
1450   this->defs_.push_back(vdbase);
1451   this->needs_base_version_ = false;
1452 }
1453
1454 // Return the dynamic object which a symbol refers to.
1455
1456 Dynobj*
1457 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1458                              const Symbol* sym) const
1459 {
1460   if (sym->is_copied_from_dynobj())
1461     return symtab->get_copy_source(sym);
1462   else
1463     {
1464       Object* object = sym->object();
1465       gold_assert(object->is_dynamic());
1466       return static_cast<Dynobj*>(object);
1467     }
1468 }
1469
1470 // Record version information for a symbol going into the dynamic
1471 // symbol table.
1472
1473 void
1474 Versions::record_version(const Symbol_table* symtab,
1475                          Stringpool* dynpool, const Symbol* sym)
1476 {
1477   gold_assert(!this->is_finalized_);
1478   gold_assert(sym->version() != NULL);
1479
1480   Stringpool::Key version_key;
1481   const char* version = dynpool->add(sym->version(), false, &version_key);
1482
1483   if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1484     {
1485       if (parameters->options().shared())
1486         this->add_def(dynpool, sym, version, version_key);
1487     }
1488   else
1489     {
1490       // This is a version reference.
1491       Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1492       this->add_need(dynpool, dynobj->soname(), version, version_key);
1493     }
1494 }
1495
1496 // We've found a symbol SYM defined in version VERSION.
1497
1498 void
1499 Versions::add_def(Stringpool* dynpool, const Symbol* sym, const char* version,
1500                   Stringpool::Key version_key)
1501 {
1502   Key k(version_key, 0);
1503   Version_base* const vbnull = NULL;
1504   std::pair<Version_table::iterator, bool> ins =
1505     this->version_table_.insert(std::make_pair(k, vbnull));
1506
1507   if (!ins.second)
1508     {
1509       // We already have an entry for this version.
1510       Version_base* vb = ins.first->second;
1511
1512       // We have now seen a symbol in this version, so it is not
1513       // weak.
1514       gold_assert(vb != NULL);
1515       vb->clear_weak();
1516     }
1517   else
1518     {
1519       // If we are creating a shared object, it is an error to
1520       // find a definition of a symbol with a version which is not
1521       // in the version script.
1522       if (parameters->options().shared())
1523         {
1524           gold_error(_("symbol %s has undefined version %s"),
1525                      sym->demangled_name().c_str(), version);
1526           if (this->needs_base_version_)
1527             this->define_base_version(dynpool);
1528         }
1529       else
1530         // We only insert a base version for shared library.
1531         gold_assert(!this->needs_base_version_);
1532         
1533       // When creating a regular executable, automatically define
1534       // a new version.
1535       Verdef* vd = new Verdef(version, std::vector<std::string>(),
1536                               false, false, false, false);
1537       this->defs_.push_back(vd);
1538       ins.first->second = vd;
1539     }
1540 }
1541
1542 // Add a reference to version NAME in file FILENAME.
1543
1544 void
1545 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1546                    Stringpool::Key name_key)
1547 {
1548   Stringpool::Key filename_key;
1549   filename = dynpool->add(filename, true, &filename_key);
1550
1551   Key k(name_key, filename_key);
1552   Version_base* const vbnull = NULL;
1553   std::pair<Version_table::iterator, bool> ins =
1554     this->version_table_.insert(std::make_pair(k, vbnull));
1555
1556   if (!ins.second)
1557     {
1558       // We already have an entry for this filename/version.
1559       return;
1560     }
1561
1562   // See whether we already have this filename.  We don't expect many
1563   // version references, so we just do a linear search.  This could be
1564   // replaced by a hash table.
1565   Verneed* vn = NULL;
1566   for (Needs::iterator p = this->needs_.begin();
1567        p != this->needs_.end();
1568        ++p)
1569     {
1570       if ((*p)->filename() == filename)
1571         {
1572           vn = *p;
1573           break;
1574         }
1575     }
1576
1577   if (vn == NULL)
1578     {
1579       // Create base version definition lazily for shared library.
1580       if (this->needs_base_version_)
1581         this->define_base_version(dynpool);
1582
1583       // We have a new filename.
1584       vn = new Verneed(filename);
1585       this->needs_.push_back(vn);
1586     }
1587
1588   ins.first->second = vn->add_name(name);
1589 }
1590
1591 // Set the version indexes.  Create a new dynamic version symbol for
1592 // each new version definition.
1593
1594 unsigned int
1595 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1596                    std::vector<Symbol*>* syms)
1597 {
1598   gold_assert(!this->is_finalized_);
1599
1600   unsigned int vi = 1;
1601
1602   for (Defs::iterator p = this->defs_.begin();
1603        p != this->defs_.end();
1604        ++p)
1605     {
1606       (*p)->set_index(vi);
1607       ++vi;
1608
1609       // Create a version symbol if necessary.
1610       if (!(*p)->is_symbol_created())
1611         {
1612           Symbol* vsym = symtab->define_as_constant((*p)->name(),
1613                                                     (*p)->name(),
1614                                                     Symbol_table::PREDEFINED,
1615                                                     0, 0,
1616                                                     elfcpp::STT_OBJECT,
1617                                                     elfcpp::STB_GLOBAL,
1618                                                     elfcpp::STV_DEFAULT, 0,
1619                                                     false, false);
1620           vsym->set_needs_dynsym_entry();
1621           vsym->set_dynsym_index(dynsym_index);
1622           vsym->set_is_default();
1623           ++dynsym_index;
1624           syms->push_back(vsym);
1625           // The name is already in the dynamic pool.
1626         }
1627     }
1628
1629   // Index 1 is used for global symbols.
1630   if (vi == 1)
1631     {
1632       gold_assert(this->defs_.empty());
1633       vi = 2;
1634     }
1635
1636   for (Needs::iterator p = this->needs_.begin();
1637        p != this->needs_.end();
1638        ++p)
1639     vi = (*p)->finalize(vi);
1640
1641   this->is_finalized_ = true;
1642
1643   return dynsym_index;
1644 }
1645
1646 // Return the version index to use for a symbol.  This does two hash
1647 // table lookups: one in DYNPOOL and one in this->version_table_.
1648 // Another approach alternative would be store a pointer in SYM, which
1649 // would increase the size of the symbol table.  Or perhaps we could
1650 // use a hash table from dynamic symbol pointer values to Version_base
1651 // pointers.
1652
1653 unsigned int
1654 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1655                         const Symbol* sym) const
1656 {
1657   Stringpool::Key version_key;
1658   const char* version = dynpool->find(sym->version(), &version_key);
1659   gold_assert(version != NULL);
1660
1661   Key k;
1662   if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1663     {
1664       if (!parameters->options().shared())
1665         return elfcpp::VER_NDX_GLOBAL;
1666       k = Key(version_key, 0);
1667     }
1668   else
1669     {
1670       Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1671
1672       Stringpool::Key filename_key;
1673       const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1674       gold_assert(filename != NULL);
1675
1676       k = Key(version_key, filename_key);
1677     }
1678
1679   Version_table::const_iterator p = this->version_table_.find(k);
1680   gold_assert(p != this->version_table_.end());
1681
1682   return p->second->index();
1683 }
1684
1685 // Return an allocated buffer holding the contents of the symbol
1686 // version section.
1687
1688 template<int size, bool big_endian>
1689 void
1690 Versions::symbol_section_contents(const Symbol_table* symtab,
1691                                   const Stringpool* dynpool,
1692                                   unsigned int local_symcount,
1693                                   const std::vector<Symbol*>& syms,
1694                                   unsigned char** pp,
1695                                   unsigned int* psize) const
1696 {
1697   gold_assert(this->is_finalized_);
1698
1699   unsigned int sz = (local_symcount + syms.size()) * 2;
1700   unsigned char* pbuf = new unsigned char[sz];
1701
1702   for (unsigned int i = 0; i < local_symcount; ++i)
1703     elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1704                                            elfcpp::VER_NDX_LOCAL);
1705
1706   for (std::vector<Symbol*>::const_iterator p = syms.begin();
1707        p != syms.end();
1708        ++p)
1709     {
1710       unsigned int version_index;
1711       const char* version = (*p)->version();
1712       if (version != NULL)
1713         version_index = this->version_index(symtab, dynpool, *p);
1714       else
1715         {
1716           if ((*p)->is_defined() && !(*p)->is_from_dynobj())
1717             version_index = elfcpp::VER_NDX_GLOBAL;
1718           else
1719             version_index = elfcpp::VER_NDX_LOCAL;
1720         }
1721       // If the symbol was defined as foo@V1 instead of foo@@V1, add
1722       // the hidden bit.
1723       if ((*p)->version() != NULL && !(*p)->is_default())
1724         version_index |= elfcpp::VERSYM_HIDDEN;
1725       elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1726                                              version_index);
1727     }
1728
1729   *pp = pbuf;
1730   *psize = sz;
1731 }
1732
1733 // Return an allocated buffer holding the contents of the version
1734 // definition section.
1735
1736 template<int size, bool big_endian>
1737 void
1738 Versions::def_section_contents(const Stringpool* dynpool,
1739                                unsigned char** pp, unsigned int* psize,
1740                                unsigned int* pentries) const
1741 {
1742   gold_assert(this->is_finalized_);
1743   gold_assert(!this->defs_.empty());
1744
1745   const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1746   const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1747
1748   unsigned int sz = 0;
1749   for (Defs::const_iterator p = this->defs_.begin();
1750        p != this->defs_.end();
1751        ++p)
1752     {
1753       sz += verdef_size + verdaux_size;
1754       sz += (*p)->count_dependencies() * verdaux_size;
1755     }
1756
1757   unsigned char* pbuf = new unsigned char[sz];
1758
1759   unsigned char* pb = pbuf;
1760   Defs::const_iterator p;
1761   unsigned int i;
1762   for (p = this->defs_.begin(), i = 0;
1763        p != this->defs_.end();
1764        ++p, ++i)
1765     pb = (*p)->write<size, big_endian>(dynpool,
1766                                        i + 1 >= this->defs_.size(),
1767                                        pb);
1768
1769   gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1770
1771   *pp = pbuf;
1772   *psize = sz;
1773   *pentries = this->defs_.size();
1774 }
1775
1776 // Return an allocated buffer holding the contents of the version
1777 // reference section.
1778
1779 template<int size, bool big_endian>
1780 void
1781 Versions::need_section_contents(const Stringpool* dynpool,
1782                                 unsigned char** pp, unsigned int* psize,
1783                                 unsigned int* pentries) const
1784 {
1785   gold_assert(this->is_finalized_);
1786   gold_assert(!this->needs_.empty());
1787
1788   const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1789   const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1790
1791   unsigned int sz = 0;
1792   for (Needs::const_iterator p = this->needs_.begin();
1793        p != this->needs_.end();
1794        ++p)
1795     {
1796       sz += verneed_size;
1797       sz += (*p)->count_versions() * vernaux_size;
1798     }
1799
1800   unsigned char* pbuf = new unsigned char[sz];
1801
1802   unsigned char* pb = pbuf;
1803   Needs::const_iterator p;
1804   unsigned int i;
1805   for (p = this->needs_.begin(), i = 0;
1806        p != this->needs_.end();
1807        ++p, ++i)
1808     pb = (*p)->write<size, big_endian>(dynpool,
1809                                        i + 1 >= this->needs_.size(),
1810                                        pb);
1811
1812   gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1813
1814   *pp = pbuf;
1815   *psize = sz;
1816   *pentries = this->needs_.size();
1817 }
1818
1819 // Instantiate the templates we need.  We could use the configure
1820 // script to restrict this to only the ones for implemented targets.
1821
1822 #ifdef HAVE_TARGET_32_LITTLE
1823 template
1824 class Sized_dynobj<32, false>;
1825 #endif
1826
1827 #ifdef HAVE_TARGET_32_BIG
1828 template
1829 class Sized_dynobj<32, true>;
1830 #endif
1831
1832 #ifdef HAVE_TARGET_64_LITTLE
1833 template
1834 class Sized_dynobj<64, false>;
1835 #endif
1836
1837 #ifdef HAVE_TARGET_64_BIG
1838 template
1839 class Sized_dynobj<64, true>;
1840 #endif
1841
1842 #ifdef HAVE_TARGET_32_LITTLE
1843 template
1844 void
1845 Versions::symbol_section_contents<32, false>(
1846     const Symbol_table*,
1847     const Stringpool*,
1848     unsigned int,
1849     const std::vector<Symbol*>&,
1850     unsigned char**,
1851     unsigned int*) const;
1852 #endif
1853
1854 #ifdef HAVE_TARGET_32_BIG
1855 template
1856 void
1857 Versions::symbol_section_contents<32, true>(
1858     const Symbol_table*,
1859     const Stringpool*,
1860     unsigned int,
1861     const std::vector<Symbol*>&,
1862     unsigned char**,
1863     unsigned int*) const;
1864 #endif
1865
1866 #ifdef HAVE_TARGET_64_LITTLE
1867 template
1868 void
1869 Versions::symbol_section_contents<64, false>(
1870     const Symbol_table*,
1871     const Stringpool*,
1872     unsigned int,
1873     const std::vector<Symbol*>&,
1874     unsigned char**,
1875     unsigned int*) const;
1876 #endif
1877
1878 #ifdef HAVE_TARGET_64_BIG
1879 template
1880 void
1881 Versions::symbol_section_contents<64, true>(
1882     const Symbol_table*,
1883     const Stringpool*,
1884     unsigned int,
1885     const std::vector<Symbol*>&,
1886     unsigned char**,
1887     unsigned int*) const;
1888 #endif
1889
1890 #ifdef HAVE_TARGET_32_LITTLE
1891 template
1892 void
1893 Versions::def_section_contents<32, false>(
1894     const Stringpool*,
1895     unsigned char**,
1896     unsigned int*,
1897     unsigned int*) const;
1898 #endif
1899
1900 #ifdef HAVE_TARGET_32_BIG
1901 template
1902 void
1903 Versions::def_section_contents<32, true>(
1904     const Stringpool*,
1905     unsigned char**,
1906     unsigned int*,
1907     unsigned int*) const;
1908 #endif
1909
1910 #ifdef HAVE_TARGET_64_LITTLE
1911 template
1912 void
1913 Versions::def_section_contents<64, false>(
1914     const Stringpool*,
1915     unsigned char**,
1916     unsigned int*,
1917     unsigned int*) const;
1918 #endif
1919
1920 #ifdef HAVE_TARGET_64_BIG
1921 template
1922 void
1923 Versions::def_section_contents<64, true>(
1924     const Stringpool*,
1925     unsigned char**,
1926     unsigned int*,
1927     unsigned int*) const;
1928 #endif
1929
1930 #ifdef HAVE_TARGET_32_LITTLE
1931 template
1932 void
1933 Versions::need_section_contents<32, false>(
1934     const Stringpool*,
1935     unsigned char**,
1936     unsigned int*,
1937     unsigned int*) const;
1938 #endif
1939
1940 #ifdef HAVE_TARGET_32_BIG
1941 template
1942 void
1943 Versions::need_section_contents<32, true>(
1944     const Stringpool*,
1945     unsigned char**,
1946     unsigned int*,
1947     unsigned int*) const;
1948 #endif
1949
1950 #ifdef HAVE_TARGET_64_LITTLE
1951 template
1952 void
1953 Versions::need_section_contents<64, false>(
1954     const Stringpool*,
1955     unsigned char**,
1956     unsigned int*,
1957     unsigned int*) const;
1958 #endif
1959
1960 #ifdef HAVE_TARGET_64_BIG
1961 template
1962 void
1963 Versions::need_section_contents<64, true>(
1964     const Stringpool*,
1965     unsigned char**,
1966     unsigned int*,
1967     unsigned int*) const;
1968 #endif
1969
1970 } // End namespace gold.