1 // dwarf_reader.cc -- parse dwarf2/3 debug information
3 // Copyright 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
28 #include "elfcpp_swap.h"
32 #include "dwarf_reader.h"
33 #include "int_encoding.h"
34 #include "compressed_output.h"
38 // Class Sized_elf_reloc_mapper
40 // Initialize the relocation tracker for section RELOC_SHNDX.
42 template<int size, bool big_endian>
44 Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
45 unsigned int reloc_shndx, unsigned int reloc_type)
47 this->reloc_type_ = reloc_type;
48 return this->track_relocs_.initialize(this->object_, reloc_shndx,
52 // Looks in the symtab to see what section a symbol is in.
54 template<int size, bool big_endian>
56 Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
57 unsigned int symndx, Address* value, bool* is_ordinary)
59 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
60 gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
61 elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
62 *value = elfsym.get_st_value();
63 return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
67 // Return the section index and offset within the section of
68 // the target of the relocation for RELOC_OFFSET.
70 template<int size, bool big_endian>
72 Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
73 off_t reloc_offset, off_t* target_offset)
75 this->track_relocs_.advance(reloc_offset);
76 if (reloc_offset != this->track_relocs_.next_offset())
78 unsigned int symndx = this->track_relocs_.next_symndx();
79 typename elfcpp::Elf_types<size>::Elf_Addr value;
81 unsigned int target_shndx = this->symbol_section(symndx, &value,
85 if (this->reloc_type_ == elfcpp::SHT_RELA)
86 value += this->track_relocs_.next_addend();
87 *target_offset = value;
91 static inline Elf_reloc_mapper*
92 make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
95 if (object->elfsize() == 32)
97 if (object->is_big_endian())
99 #ifdef HAVE_TARGET_32_BIG
100 return new Sized_elf_reloc_mapper<32, true>(object, symtab,
108 #ifdef HAVE_TARGET_32_LITTLE
109 return new Sized_elf_reloc_mapper<32, false>(object, symtab,
116 else if (object->elfsize() == 64)
118 if (object->is_big_endian())
120 #ifdef HAVE_TARGET_64_BIG
121 return new Sized_elf_reloc_mapper<64, true>(object, symtab,
129 #ifdef HAVE_TARGET_64_LITTLE
130 return new Sized_elf_reloc_mapper<64, false>(object, symtab,
141 // class Dwarf_abbrev_table
144 Dwarf_abbrev_table::clear_abbrev_codes()
146 for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
148 if (this->low_abbrev_codes_[code] != NULL)
150 delete this->low_abbrev_codes_[code];
151 this->low_abbrev_codes_[code] = NULL;
154 for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
155 it != this->high_abbrev_codes_.end();
158 if (it->second != NULL)
161 this->high_abbrev_codes_.clear();
164 // Read the abbrev table from an object file.
167 Dwarf_abbrev_table::do_read_abbrevs(
169 unsigned int abbrev_shndx,
172 this->clear_abbrev_codes();
174 // If we don't have relocations, abbrev_shndx will be 0, and
175 // we'll have to hunt for the .debug_abbrev section.
176 if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
177 abbrev_shndx = this->abbrev_shndx_;
178 else if (abbrev_shndx == 0)
180 for (unsigned int i = 1; i < object->shnum(); ++i)
182 std::string name = object->section_name(i);
183 if (name == ".debug_abbrev")
186 // Correct the offset. For incremental update links, we have a
187 // relocated offset that is relative to the output section, but
188 // here we need an offset relative to the input section.
189 abbrev_offset -= object->output_section_offset(i);
193 if (abbrev_shndx == 0)
197 // Get the section contents and decompress if necessary.
198 if (abbrev_shndx != this->abbrev_shndx_)
200 if (this->owns_buffer_ && this->buffer_ != NULL)
202 delete[] this->buffer_;
203 this->owns_buffer_ = false;
206 section_size_type buffer_size;
208 object->decompressed_section_contents(abbrev_shndx,
210 &this->owns_buffer_);
211 this->buffer_end_ = this->buffer_ + buffer_size;
212 this->abbrev_shndx_ = abbrev_shndx;
215 this->buffer_pos_ = this->buffer_ + abbrev_offset;
219 // Lookup the abbrev code entry for CODE. This function is called
220 // only when the abbrev code is not in the direct lookup table.
221 // It may be in the hash table, it may not have been read yet,
222 // or it may not exist in the abbrev table.
224 const Dwarf_abbrev_table::Abbrev_code*
225 Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
227 // See if the abbrev code is already in the hash table.
228 Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
229 if (it != this->high_abbrev_codes_.end())
232 // Read and store abbrev code definitions until we find the
233 // one we're looking for.
236 // Read the abbrev code. A zero here indicates the end of the
239 if (this->buffer_pos_ >= this->buffer_end_)
241 uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
244 this->buffer_pos_ = this->buffer_end_;
247 this->buffer_pos_ += len;
250 if (this->buffer_pos_ >= this->buffer_end_)
252 uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
253 this->buffer_pos_ += len;
255 // Read the has_children flag.
256 if (this->buffer_pos_ >= this->buffer_end_)
258 bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
259 this->buffer_pos_ += 1;
261 // Read the list of (attribute, form) pairs.
262 Abbrev_code* entry = new Abbrev_code(tag, has_children);
265 // Read the attribute.
266 if (this->buffer_pos_ >= this->buffer_end_)
268 uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
269 this->buffer_pos_ += len;
272 if (this->buffer_pos_ >= this->buffer_end_)
274 uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
275 this->buffer_pos_ += len;
277 // A (0,0) pair terminates the list.
278 if (attr == 0 && form == 0)
281 if (attr == elfcpp::DW_AT_sibling)
282 entry->has_sibling_attribute = true;
284 entry->add_attribute(attr, form);
287 this->store_abbrev(nextcode, entry);
288 if (nextcode == code)
295 // class Dwarf_ranges_table
297 // Read the ranges table from an object file.
300 Dwarf_ranges_table::read_ranges_table(
302 const unsigned char* symtab,
304 unsigned int ranges_shndx)
306 // If we've already read this abbrev table, return immediately.
307 if (this->ranges_shndx_ > 0
308 && this->ranges_shndx_ == ranges_shndx)
311 // If we don't have relocations, ranges_shndx will be 0, and
312 // we'll have to hunt for the .debug_ranges section.
313 if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
314 ranges_shndx = this->ranges_shndx_;
315 else if (ranges_shndx == 0)
317 for (unsigned int i = 1; i < object->shnum(); ++i)
319 std::string name = object->section_name(i);
320 if (name == ".debug_ranges")
323 this->output_section_offset_ = object->output_section_offset(i);
327 if (ranges_shndx == 0)
331 // Get the section contents and decompress if necessary.
332 if (ranges_shndx != this->ranges_shndx_)
334 if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
336 delete[] this->ranges_buffer_;
337 this->owns_ranges_buffer_ = false;
340 section_size_type buffer_size;
341 this->ranges_buffer_ =
342 object->decompressed_section_contents(ranges_shndx,
344 &this->owns_ranges_buffer_);
345 this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
346 this->ranges_shndx_ = ranges_shndx;
349 if (this->ranges_reloc_mapper_ != NULL)
351 delete this->ranges_reloc_mapper_;
352 this->ranges_reloc_mapper_ = NULL;
355 // For incremental objects, we have no relocations.
356 if (object->is_incremental())
359 // Find the relocation section for ".debug_ranges".
360 unsigned int reloc_shndx = 0;
361 unsigned int reloc_type = 0;
362 for (unsigned int i = 0; i < object->shnum(); ++i)
364 reloc_type = object->section_type(i);
365 if ((reloc_type == elfcpp::SHT_REL
366 || reloc_type == elfcpp::SHT_RELA)
367 && object->section_info(i) == ranges_shndx)
374 this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
376 this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
381 // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
384 Dwarf_ranges_table::read_range_list(
386 const unsigned char* symtab,
388 unsigned int addr_size,
389 unsigned int ranges_shndx,
392 Dwarf_range_list* ranges;
394 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
397 // Correct the offset. For incremental update links, we have a
398 // relocated offset that is relative to the output section, but
399 // here we need an offset relative to the input section.
400 offset -= this->output_section_offset_;
402 // Read the range list at OFFSET.
403 ranges = new Dwarf_range_list();
406 this->ranges_buffer_ + offset < this->ranges_buffer_end_;
407 offset += 2 * addr_size)
412 // Read the raw contents of the section.
415 start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
417 end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
422 start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
424 end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
428 // Check for relocations and adjust the values.
429 unsigned int shndx1 = 0;
430 unsigned int shndx2 = 0;
431 if (this->ranges_reloc_mapper_ != NULL)
434 this->ranges_reloc_mapper_->get_reloc_target(offset, &start);
436 this->ranges_reloc_mapper_->get_reloc_target(offset + addr_size,
440 // End of list is marked by a pair of zeroes.
441 if (shndx1 == 0 && start == 0 && end == 0)
444 // A "base address selection entry" is identified by
445 // 0xffffffff for the first value of the pair. The second
446 // value is used as a base for subsequent range list entries.
447 if (shndx1 == 0 && start == -1)
449 else if (shndx1 == shndx2)
451 if (shndx1 == 0 || object->is_section_included(shndx1))
452 ranges->add(shndx1, base + start, base + end);
455 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
456 "range list entry are in different sections"),
457 object->name().c_str());
463 // class Dwarf_pubnames_table
465 // Read the pubnames section SHNDX from the object file.
468 Dwarf_pubnames_table::read_section(Relobj* object, unsigned int shndx)
470 section_size_type buffer_size;
472 // If we don't have relocations, shndx will be 0, and
473 // we'll have to hunt for the .debug_pubnames/pubtypes section.
476 const char* name = (this->is_pubtypes_
478 : ".debug_pubnames");
479 for (unsigned int i = 1; i < object->shnum(); ++i)
481 if (object->section_name(i) == name)
484 this->output_section_offset_ = object->output_section_offset(i);
492 this->buffer_ = object->decompressed_section_contents(shndx,
494 &this->owns_buffer_);
495 if (this->buffer_ == NULL)
497 this->buffer_end_ = this->buffer_ + buffer_size;
501 // Read the header for the set at OFFSET.
504 Dwarf_pubnames_table::read_header(off_t offset)
506 // Correct the offset. For incremental update links, we have a
507 // relocated offset that is relative to the output section, but
508 // here we need an offset relative to the input section.
509 offset -= this->output_section_offset_;
511 if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
514 const unsigned char* pinfo = this->buffer_ + offset;
516 // Read the unit_length field.
517 uint32_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
519 if (unit_length == 0xffffffff)
521 unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
523 this->offset_size_ = 8;
526 this->offset_size_ = 4;
528 // Check the version.
529 unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
534 // Skip the debug_info_offset and debug_info_size fields.
535 pinfo += 2 * this->offset_size_;
537 if (pinfo >= this->buffer_end_)
540 this->pinfo_ = pinfo;
544 // Read the next name from the set.
547 Dwarf_pubnames_table::next_name()
549 const unsigned char* pinfo = this->pinfo_;
551 // Read the offset within the CU. If this is zero, we have reached
552 // the end of the list.
554 if (this->offset_size_ == 4)
555 offset = this->dwinfo_->read_from_pointer<32>(&pinfo);
557 offset = this->dwinfo_->read_from_pointer<64>(&pinfo);
561 // Return a pointer to the string at the current location,
562 // and advance the pointer to the next entry.
563 const char* ret = reinterpret_cast<const char*>(pinfo);
564 while (pinfo < this->buffer_end_ && *pinfo != '\0')
566 if (pinfo < this->buffer_end_)
569 this->pinfo_ = pinfo;
575 Dwarf_die::Dwarf_die(
576 Dwarf_info_reader* dwinfo,
579 : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
580 child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
581 attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
582 linkage_name_off_(-1), string_shndx_(0), specification_(0),
586 const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
589 unsigned int code = read_unsigned_LEB_128(pdie, &len);
593 parent->set_sibling_offset(die_offset + len);
596 this->attr_offset_ = len;
598 // Lookup the abbrev code in the abbrev table.
599 this->abbrev_code_ = dwinfo->get_abbrev(code);
602 // Read all the attributes of the DIE.
605 Dwarf_die::read_attributes()
607 if (this->attributes_read_)
610 gold_assert(this->abbrev_code_ != NULL);
612 const unsigned char* pdie =
613 this->dwinfo_->buffer_at_offset(this->die_offset_);
616 const unsigned char* pattr = pdie + this->attr_offset_;
618 unsigned int nattr = this->abbrev_code_->attributes.size();
619 this->attributes_.reserve(nattr);
620 for (unsigned int i = 0; i < nattr; ++i)
623 unsigned int attr = this->abbrev_code_->attributes[i].attr;
624 unsigned int form = this->abbrev_code_->attributes[i].form;
625 if (form == elfcpp::DW_FORM_indirect)
627 form = read_unsigned_LEB_128(pattr, &len);
630 off_t attr_off = this->die_offset_ + (pattr - pdie);
631 bool ref_form = false;
632 Attribute_value attr_value;
633 attr_value.attr = attr;
634 attr_value.form = form;
635 attr_value.aux.shndx = 0;
638 case elfcpp::DW_FORM_flag_present:
639 attr_value.val.intval = 1;
641 case elfcpp::DW_FORM_strp:
644 if (this->dwinfo_->offset_size() == 4)
645 str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
647 str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
649 this->dwinfo_->lookup_reloc(attr_off, &str_off);
650 attr_value.aux.shndx = shndx;
651 attr_value.val.refval = str_off;
654 case elfcpp::DW_FORM_sec_offset:
657 if (this->dwinfo_->offset_size() == 4)
658 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
660 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
662 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
663 attr_value.aux.shndx = shndx;
664 attr_value.val.refval = sec_off;
668 case elfcpp::DW_FORM_addr:
669 case elfcpp::DW_FORM_ref_addr:
672 if (this->dwinfo_->address_size() == 4)
673 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
675 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
677 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
678 attr_value.aux.shndx = shndx;
679 attr_value.val.refval = sec_off;
683 case elfcpp::DW_FORM_block1:
684 attr_value.aux.blocklen = *pattr++;
685 attr_value.val.blockval = pattr;
686 pattr += attr_value.aux.blocklen;
688 case elfcpp::DW_FORM_block2:
689 attr_value.aux.blocklen =
690 this->dwinfo_->read_from_pointer<16>(&pattr);
691 attr_value.val.blockval = pattr;
692 pattr += attr_value.aux.blocklen;
694 case elfcpp::DW_FORM_block4:
695 attr_value.aux.blocklen =
696 this->dwinfo_->read_from_pointer<32>(&pattr);
697 attr_value.val.blockval = pattr;
698 pattr += attr_value.aux.blocklen;
700 case elfcpp::DW_FORM_block:
701 case elfcpp::DW_FORM_exprloc:
702 attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
703 attr_value.val.blockval = pattr + len;
704 pattr += len + attr_value.aux.blocklen;
706 case elfcpp::DW_FORM_data1:
707 case elfcpp::DW_FORM_flag:
708 attr_value.val.intval = *pattr++;
710 case elfcpp::DW_FORM_ref1:
711 attr_value.val.refval = *pattr++;
714 case elfcpp::DW_FORM_data2:
715 attr_value.val.intval =
716 this->dwinfo_->read_from_pointer<16>(&pattr);
718 case elfcpp::DW_FORM_ref2:
719 attr_value.val.refval =
720 this->dwinfo_->read_from_pointer<16>(&pattr);
723 case elfcpp::DW_FORM_data4:
726 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
728 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
729 attr_value.aux.shndx = shndx;
730 attr_value.val.intval = sec_off;
733 case elfcpp::DW_FORM_ref4:
736 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
738 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
739 attr_value.aux.shndx = shndx;
740 attr_value.val.refval = sec_off;
744 case elfcpp::DW_FORM_data8:
747 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
749 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
750 attr_value.aux.shndx = shndx;
751 attr_value.val.intval = sec_off;
754 case elfcpp::DW_FORM_ref_sig8:
755 attr_value.val.uintval =
756 this->dwinfo_->read_from_pointer<64>(&pattr);
758 case elfcpp::DW_FORM_ref8:
761 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
763 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
764 attr_value.aux.shndx = shndx;
765 attr_value.val.refval = sec_off;
769 case elfcpp::DW_FORM_ref_udata:
770 attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
774 case elfcpp::DW_FORM_udata:
775 case elfcpp::DW_FORM_GNU_addr_index:
776 case elfcpp::DW_FORM_GNU_str_index:
777 attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
780 case elfcpp::DW_FORM_sdata:
781 attr_value.val.intval = read_signed_LEB_128(pattr, &len);
784 case elfcpp::DW_FORM_string:
785 attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
786 len = strlen(attr_value.val.stringval);
793 // Cache the most frequently-requested attributes.
796 case elfcpp::DW_AT_name:
797 if (form == elfcpp::DW_FORM_string)
798 this->name_ = attr_value.val.stringval;
799 else if (form == elfcpp::DW_FORM_strp)
801 // All indirect strings should refer to the same
802 // string section, so we just save the last one seen.
803 this->string_shndx_ = attr_value.aux.shndx;
804 this->name_off_ = attr_value.val.refval;
807 case elfcpp::DW_AT_linkage_name:
808 case elfcpp::DW_AT_MIPS_linkage_name:
809 if (form == elfcpp::DW_FORM_string)
810 this->linkage_name_ = attr_value.val.stringval;
811 else if (form == elfcpp::DW_FORM_strp)
813 // All indirect strings should refer to the same
814 // string section, so we just save the last one seen.
815 this->string_shndx_ = attr_value.aux.shndx;
816 this->linkage_name_off_ = attr_value.val.refval;
819 case elfcpp::DW_AT_specification:
821 this->specification_ = attr_value.val.refval;
823 case elfcpp::DW_AT_abstract_origin:
825 this->abstract_origin_ = attr_value.val.refval;
827 case elfcpp::DW_AT_sibling:
828 if (ref_form && attr_value.aux.shndx == 0)
829 this->sibling_offset_ = attr_value.val.refval;
834 this->attributes_.push_back(attr_value);
837 // Now that we know where the next DIE begins, record the offset
838 // to avoid later recalculation.
839 if (this->has_children())
840 this->child_offset_ = this->die_offset_ + (pattr - pdie);
842 this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
844 this->attributes_read_ = true;
848 // Skip all the attributes of the DIE and return the offset of the next DIE.
851 Dwarf_die::skip_attributes()
853 gold_assert(this->abbrev_code_ != NULL);
855 const unsigned char* pdie =
856 this->dwinfo_->buffer_at_offset(this->die_offset_);
859 const unsigned char* pattr = pdie + this->attr_offset_;
861 for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
864 unsigned int form = this->abbrev_code_->attributes[i].form;
865 if (form == elfcpp::DW_FORM_indirect)
867 form = read_unsigned_LEB_128(pattr, &len);
872 case elfcpp::DW_FORM_flag_present:
874 case elfcpp::DW_FORM_strp:
875 case elfcpp::DW_FORM_sec_offset:
876 pattr += this->dwinfo_->offset_size();
878 case elfcpp::DW_FORM_addr:
879 case elfcpp::DW_FORM_ref_addr:
880 pattr += this->dwinfo_->address_size();
882 case elfcpp::DW_FORM_block1:
885 case elfcpp::DW_FORM_block2:
888 block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
892 case elfcpp::DW_FORM_block4:
895 block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
899 case elfcpp::DW_FORM_block:
900 case elfcpp::DW_FORM_exprloc:
903 block_size = read_unsigned_LEB_128(pattr, &len);
904 pattr += len + block_size;
907 case elfcpp::DW_FORM_data1:
908 case elfcpp::DW_FORM_ref1:
909 case elfcpp::DW_FORM_flag:
912 case elfcpp::DW_FORM_data2:
913 case elfcpp::DW_FORM_ref2:
916 case elfcpp::DW_FORM_data4:
917 case elfcpp::DW_FORM_ref4:
920 case elfcpp::DW_FORM_data8:
921 case elfcpp::DW_FORM_ref8:
922 case elfcpp::DW_FORM_ref_sig8:
925 case elfcpp::DW_FORM_ref_udata:
926 case elfcpp::DW_FORM_udata:
927 case elfcpp::DW_FORM_GNU_addr_index:
928 case elfcpp::DW_FORM_GNU_str_index:
929 read_unsigned_LEB_128(pattr, &len);
932 case elfcpp::DW_FORM_sdata:
933 read_signed_LEB_128(pattr, &len);
936 case elfcpp::DW_FORM_string:
937 len = strlen(reinterpret_cast<const char*>(pattr));
945 return this->die_offset_ + (pattr - pdie);
948 // Get the name of the DIE and cache it.
951 Dwarf_die::set_name()
953 if (this->name_ != NULL || !this->read_attributes())
955 if (this->name_off_ != -1)
956 this->name_ = this->dwinfo_->get_string(this->name_off_,
957 this->string_shndx_);
960 // Get the linkage name of the DIE and cache it.
963 Dwarf_die::set_linkage_name()
965 if (this->linkage_name_ != NULL || !this->read_attributes())
967 if (this->linkage_name_off_ != -1)
968 this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
969 this->string_shndx_);
972 // Return the value of attribute ATTR.
974 const Dwarf_die::Attribute_value*
975 Dwarf_die::attribute(unsigned int attr)
977 if (!this->read_attributes())
979 for (unsigned int i = 0; i < this->attributes_.size(); ++i)
981 if (this->attributes_[i].attr == attr)
982 return &this->attributes_[i];
988 Dwarf_die::string_attribute(unsigned int attr)
990 const Attribute_value* attr_val = this->attribute(attr);
991 if (attr_val == NULL)
993 switch (attr_val->form)
995 case elfcpp::DW_FORM_string:
996 return attr_val->val.stringval;
997 case elfcpp::DW_FORM_strp:
998 return this->dwinfo_->get_string(attr_val->val.refval,
999 attr_val->aux.shndx);
1006 Dwarf_die::int_attribute(unsigned int attr)
1008 const Attribute_value* attr_val = this->attribute(attr);
1009 if (attr_val == NULL)
1011 switch (attr_val->form)
1013 case elfcpp::DW_FORM_flag_present:
1014 case elfcpp::DW_FORM_data1:
1015 case elfcpp::DW_FORM_flag:
1016 case elfcpp::DW_FORM_data2:
1017 case elfcpp::DW_FORM_data4:
1018 case elfcpp::DW_FORM_data8:
1019 case elfcpp::DW_FORM_sdata:
1020 return attr_val->val.intval;
1027 Dwarf_die::uint_attribute(unsigned int attr)
1029 const Attribute_value* attr_val = this->attribute(attr);
1030 if (attr_val == NULL)
1032 switch (attr_val->form)
1034 case elfcpp::DW_FORM_flag_present:
1035 case elfcpp::DW_FORM_data1:
1036 case elfcpp::DW_FORM_flag:
1037 case elfcpp::DW_FORM_data4:
1038 case elfcpp::DW_FORM_data8:
1039 case elfcpp::DW_FORM_ref_sig8:
1040 case elfcpp::DW_FORM_udata:
1041 return attr_val->val.uintval;
1048 Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1050 const Attribute_value* attr_val = this->attribute(attr);
1051 if (attr_val == NULL)
1053 switch (attr_val->form)
1055 case elfcpp::DW_FORM_sec_offset:
1056 case elfcpp::DW_FORM_addr:
1057 case elfcpp::DW_FORM_ref_addr:
1058 case elfcpp::DW_FORM_ref1:
1059 case elfcpp::DW_FORM_ref2:
1060 case elfcpp::DW_FORM_ref4:
1061 case elfcpp::DW_FORM_ref8:
1062 case elfcpp::DW_FORM_ref_udata:
1063 *shndx = attr_val->aux.shndx;
1064 return attr_val->val.refval;
1065 case elfcpp::DW_FORM_ref_sig8:
1066 *shndx = attr_val->aux.shndx;
1067 return attr_val->val.uintval;
1068 case elfcpp::DW_FORM_data4:
1069 case elfcpp::DW_FORM_data8:
1070 *shndx = attr_val->aux.shndx;
1071 return attr_val->val.intval;
1078 Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
1080 const Attribute_value* attr_val = this->attribute(attr);
1081 if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
1084 *shndx = attr_val->aux.shndx;
1085 return attr_val->val.refval;
1088 // Return the offset of this DIE's first child.
1091 Dwarf_die::child_offset()
1093 gold_assert(this->abbrev_code_ != NULL);
1094 if (!this->has_children())
1096 if (this->child_offset_ == 0)
1097 this->child_offset_ = this->skip_attributes();
1098 return this->child_offset_;
1101 // Return the offset of this DIE's next sibling.
1104 Dwarf_die::sibling_offset()
1106 gold_assert(this->abbrev_code_ != NULL);
1108 if (this->sibling_offset_ != 0)
1109 return this->sibling_offset_;
1111 if (!this->has_children())
1113 this->sibling_offset_ = this->skip_attributes();
1114 return this->sibling_offset_;
1117 if (this->has_sibling_attribute())
1119 if (!this->read_attributes())
1121 if (this->sibling_offset_ != 0)
1122 return this->sibling_offset_;
1125 // Skip over the children.
1126 off_t child_offset = this->child_offset();
1127 while (child_offset > 0)
1129 Dwarf_die die(this->dwinfo_, child_offset, this);
1130 // The Dwarf_die ctor will set this DIE's sibling offset
1131 // when it reads a zero abbrev code.
1134 child_offset = die.sibling_offset();
1137 // This should be set by now. If not, there was a problem reading
1138 // the DWARF info, and we return 0.
1139 return this->sibling_offset_;
1142 // class Dwarf_info_reader
1144 // Begin parsing the debug info. This calls visit_compilation_unit()
1145 // or visit_type_unit() for each compilation or type unit found in the
1146 // section, and visit_die() for each top-level DIE.
1149 Dwarf_info_reader::parse()
1151 if (this->object_->is_big_endian())
1153 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1154 this->do_parse<true>();
1161 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1162 this->do_parse<false>();
1169 template<bool big_endian>
1171 Dwarf_info_reader::do_parse()
1173 // Get the section contents and decompress if necessary.
1174 section_size_type buffer_size;
1176 this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1179 if (this->buffer_ == NULL || buffer_size == 0)
1181 this->buffer_end_ = this->buffer_ + buffer_size;
1183 // The offset of this input section in the output section.
1184 off_t section_offset = this->object_->output_section_offset(this->shndx_);
1186 // Start tracking relocations for this section.
1187 this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1188 this->symtab_size_);
1189 this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1191 // Loop over compilation units (or type units).
1192 unsigned int abbrev_shndx = this->abbrev_shndx_;
1193 off_t abbrev_offset = 0;
1194 const unsigned char* pinfo = this->buffer_;
1195 while (pinfo < this->buffer_end_)
1197 // Read the compilation (or type) unit header.
1198 const unsigned char* cu_start = pinfo;
1199 this->cu_offset_ = cu_start - this->buffer_;
1200 this->cu_length_ = this->buffer_end_ - cu_start;
1202 // Read unit_length (4 or 12 bytes).
1203 if (!this->check_buffer(pinfo + 4))
1205 uint32_t unit_length =
1206 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1208 if (unit_length == 0xffffffff)
1210 if (!this->check_buffer(pinfo + 8))
1212 unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1214 this->offset_size_ = 8;
1217 this->offset_size_ = 4;
1218 if (!this->check_buffer(pinfo + unit_length))
1220 const unsigned char* cu_end = pinfo + unit_length;
1221 this->cu_length_ = cu_end - cu_start;
1222 if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1225 // Read version (2 bytes).
1227 elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1230 // Read debug_abbrev_offset (4 or 8 bytes).
1231 if (this->offset_size_ == 4)
1232 abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1234 abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1235 if (this->reloc_shndx_ > 0)
1237 off_t reloc_offset = pinfo - this->buffer_;
1240 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1241 if (abbrev_shndx == 0)
1243 if (this->reloc_type_ == elfcpp::SHT_REL)
1244 abbrev_offset += value;
1246 abbrev_offset = value;
1248 pinfo += this->offset_size_;
1250 // Read address_size (1 byte).
1251 this->address_size_ = *pinfo++;
1253 // For type units, read the two extra fields.
1254 uint64_t signature = 0;
1255 off_t type_offset = 0;
1256 if (this->is_type_unit_)
1258 if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1261 // Read type_signature (8 bytes).
1262 signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1265 // Read type_offset (4 or 8 bytes).
1266 if (this->offset_size_ == 4)
1268 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1271 elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1272 pinfo += this->offset_size_;
1275 // Read the .debug_abbrev table.
1276 this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1279 // Visit the root DIE.
1280 Dwarf_die root_die(this,
1281 pinfo - (this->buffer_ + this->cu_offset_),
1283 if (root_die.tag() != 0)
1285 // Visit the CU or TU.
1286 if (this->is_type_unit_)
1287 this->visit_type_unit(section_offset + this->cu_offset_,
1288 cu_end - cu_start, type_offset, signature,
1291 this->visit_compilation_unit(section_offset + this->cu_offset_,
1292 cu_end - cu_start, &root_die);
1295 // Advance to the next CU.
1301 delete[] this->buffer_;
1302 this->buffer_ = NULL;
1306 // Read the DWARF string table.
1309 Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1311 Relobj* object = this->object_;
1313 // If we don't have relocations, string_shndx will be 0, and
1314 // we'll have to hunt for the .debug_str section.
1315 if (string_shndx == 0)
1317 for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1319 std::string name = object->section_name(i);
1320 if (name == ".debug_str")
1323 this->string_output_section_offset_ =
1324 object->output_section_offset(i);
1328 if (string_shndx == 0)
1332 if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1334 delete[] this->string_buffer_;
1335 this->owns_string_buffer_ = false;
1338 // Get the secton contents and decompress if necessary.
1339 section_size_type buffer_size;
1340 const unsigned char* buffer =
1341 object->decompressed_section_contents(string_shndx,
1343 &this->owns_string_buffer_);
1344 this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1345 this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1346 this->string_shndx_ = string_shndx;
1350 // Read a possibly unaligned integer of SIZE.
1351 template <int valsize>
1352 inline typename elfcpp::Valtype_base<valsize>::Valtype
1353 Dwarf_info_reader::read_from_pointer(const unsigned char* source)
1355 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1356 if (this->object_->is_big_endian())
1357 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
1359 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
1360 return return_value;
1363 // Read a possibly unaligned integer of SIZE. Update SOURCE after read.
1364 template <int valsize>
1365 inline typename elfcpp::Valtype_base<valsize>::Valtype
1366 Dwarf_info_reader::read_from_pointer(const unsigned char** source)
1368 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1369 if (this->object_->is_big_endian())
1370 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
1372 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
1373 *source += valsize / 8;
1374 return return_value;
1377 // Look for a relocation at offset ATTR_OFF in the dwarf info,
1378 // and return the section index and offset of the target.
1381 Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1384 attr_off += this->cu_offset_;
1385 unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1388 if (this->reloc_type_ == elfcpp::SHT_REL)
1389 *target_off += value;
1391 *target_off = value;
1395 // Return a string from the DWARF string table.
1398 Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1400 if (!this->read_string_table(string_shndx))
1403 // Correct the offset. For incremental update links, we have a
1404 // relocated offset that is relative to the output section, but
1405 // here we need an offset relative to the input section.
1406 str_off -= this->string_output_section_offset_;
1408 const char* p = this->string_buffer_ + str_off;
1410 if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1416 // The following are default, do-nothing, implementations of the
1417 // hook methods normally provided by a derived class. We provide
1418 // default implementations rather than no implementation so that
1419 // a derived class needs to implement only the hooks that it needs
1422 // Process a compilation unit and parse its child DIE.
1425 Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1429 // Process a type unit and parse its child DIE.
1432 Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*)
1436 // Print a warning about a corrupt debug section.
1439 Dwarf_info_reader::warn_corrupt_debug_section() const
1441 gold_warning(_("%s: corrupt debug info in %s"),
1442 this->object_->name().c_str(),
1443 this->object_->section_name(this->shndx_).c_str());
1446 // class Sized_dwarf_line_info
1448 struct LineStateMachine
1454 unsigned int shndx; // the section address refers to
1455 bool is_stmt; // stmt means statement.
1461 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1466 lsm->column_num = 0;
1468 lsm->is_stmt = default_is_stmt;
1469 lsm->basic_block = false;
1470 lsm->end_sequence = false;
1473 template<int size, bool big_endian>
1474 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1476 unsigned int read_shndx)
1477 : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
1478 reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1479 current_header_index_(-1)
1481 unsigned int debug_shndx;
1483 for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
1485 // FIXME: do this more efficiently: section_name() isn't super-fast
1486 std::string name = object->section_name(debug_shndx);
1487 if (name == ".debug_line" || name == ".zdebug_line")
1489 section_size_type buffer_size;
1490 bool is_new = false;
1491 this->buffer_ = object->decompressed_section_contents(debug_shndx,
1495 this->buffer_start_ = this->buffer_;
1496 this->buffer_end_ = this->buffer_ + buffer_size;
1500 if (this->buffer_ == NULL)
1503 // Find the relocation section for ".debug_line".
1504 // We expect these for relobjs (.o's) but not dynobjs (.so's).
1505 unsigned int reloc_shndx = 0;
1506 for (unsigned int i = 0; i < object->shnum(); ++i)
1508 unsigned int reloc_sh_type = object->section_type(i);
1509 if ((reloc_sh_type == elfcpp::SHT_REL
1510 || reloc_sh_type == elfcpp::SHT_RELA)
1511 && object->section_info(i) == debug_shndx)
1514 this->track_relocs_type_ = reloc_sh_type;
1519 // Finally, we need the symtab section to interpret the relocs.
1520 if (reloc_shndx != 0)
1522 unsigned int symtab_shndx;
1523 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1524 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1526 this->symtab_buffer_ = object->section_contents(
1527 symtab_shndx, &this->symtab_buffer_size_, false);
1530 if (this->symtab_buffer_ == NULL)
1534 this->reloc_mapper_ =
1535 new Sized_elf_reloc_mapper<size, big_endian>(object,
1536 this->symtab_buffer_,
1537 this->symtab_buffer_size_);
1538 if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1541 // Now that we have successfully read all the data, parse the debug
1543 this->data_valid_ = true;
1544 this->read_line_mappings(read_shndx);
1547 // Read the DWARF header.
1549 template<int size, bool big_endian>
1550 const unsigned char*
1551 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
1552 const unsigned char* lineptr)
1554 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1557 // In DWARF2/3, if the initial length is all 1 bits, then the offset
1558 // size is 8 and we need to read the next 8 bytes for the real length.
1559 if (initial_length == 0xffffffff)
1561 header_.offset_size = 8;
1562 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1566 header_.offset_size = 4;
1568 header_.total_length = initial_length;
1570 gold_assert(lineptr + header_.total_length <= buffer_end_);
1572 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
1575 if (header_.offset_size == 4)
1576 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1578 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1579 lineptr += header_.offset_size;
1581 header_.min_insn_length = *lineptr;
1584 header_.default_is_stmt = *lineptr;
1587 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1590 header_.line_range = *lineptr;
1593 header_.opcode_base = *lineptr;
1596 header_.std_opcode_lengths.resize(header_.opcode_base + 1);
1597 header_.std_opcode_lengths[0] = 0;
1598 for (int i = 1; i < header_.opcode_base; i++)
1600 header_.std_opcode_lengths[i] = *lineptr;
1607 // The header for a debug_line section is mildly complicated, because
1608 // the line info is very tightly encoded.
1610 template<int size, bool big_endian>
1611 const unsigned char*
1612 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
1613 const unsigned char* lineptr)
1615 ++this->current_header_index_;
1617 // Create a new directories_ entry and a new files_ entry for our new
1618 // header. We initialize each with a single empty element, because
1619 // dwarf indexes directory and filenames starting at 1.
1620 gold_assert(static_cast<int>(this->directories_.size())
1621 == this->current_header_index_);
1622 gold_assert(static_cast<int>(this->files_.size())
1623 == this->current_header_index_);
1624 this->directories_.push_back(std::vector<std::string>(1));
1625 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1627 // It is legal for the directory entry table to be empty.
1633 const char* dirname = reinterpret_cast<const char*>(lineptr);
1634 gold_assert(dirindex
1635 == static_cast<int>(this->directories_.back().size()));
1636 this->directories_.back().push_back(dirname);
1637 lineptr += this->directories_.back().back().size() + 1;
1643 // It is also legal for the file entry table to be empty.
1650 const char* filename = reinterpret_cast<const char*>(lineptr);
1651 lineptr += strlen(filename) + 1;
1653 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
1656 if (dirindex >= this->directories_.back().size())
1658 int dirindexi = static_cast<int>(dirindex);
1660 read_unsigned_LEB_128(lineptr, &len); // mod_time
1663 read_unsigned_LEB_128(lineptr, &len); // filelength
1666 gold_assert(fileindex
1667 == static_cast<int>(this->files_.back().size()));
1668 this->files_.back().push_back(std::make_pair(dirindexi, filename));
1677 // Process a single opcode in the .debug.line structure.
1679 template<int size, bool big_endian>
1681 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
1682 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
1686 unsigned char opcode = *start;
1690 // If the opcode is great than the opcode_base, it is a special
1691 // opcode. Most line programs consist mainly of special opcodes.
1692 if (opcode >= header_.opcode_base)
1694 opcode -= header_.opcode_base;
1695 const int advance_address = ((opcode / header_.line_range)
1696 * header_.min_insn_length);
1697 lsm->address += advance_address;
1699 const int advance_line = ((opcode % header_.line_range)
1700 + header_.line_base);
1701 lsm->line_num += advance_line;
1702 lsm->basic_block = true;
1707 // Otherwise, we have the regular opcodes
1710 case elfcpp::DW_LNS_copy:
1711 lsm->basic_block = false;
1715 case elfcpp::DW_LNS_advance_pc:
1717 const uint64_t advance_address
1718 = read_unsigned_LEB_128(start, &templen);
1720 lsm->address += header_.min_insn_length * advance_address;
1724 case elfcpp::DW_LNS_advance_line:
1726 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
1728 lsm->line_num += advance_line;
1732 case elfcpp::DW_LNS_set_file:
1734 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
1736 lsm->file_num = fileno;
1740 case elfcpp::DW_LNS_set_column:
1742 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
1744 lsm->column_num = colno;
1748 case elfcpp::DW_LNS_negate_stmt:
1749 lsm->is_stmt = !lsm->is_stmt;
1752 case elfcpp::DW_LNS_set_basic_block:
1753 lsm->basic_block = true;
1756 case elfcpp::DW_LNS_fixed_advance_pc:
1758 int advance_address;
1759 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
1761 lsm->address += advance_address;
1765 case elfcpp::DW_LNS_const_add_pc:
1767 const int advance_address = (header_.min_insn_length
1768 * ((255 - header_.opcode_base)
1769 / header_.line_range));
1770 lsm->address += advance_address;
1774 case elfcpp::DW_LNS_extended_op:
1776 const uint64_t extended_op_len
1777 = read_unsigned_LEB_128(start, &templen);
1779 oplen += templen + extended_op_len;
1781 const unsigned char extended_op = *start;
1784 switch (extended_op)
1786 case elfcpp::DW_LNE_end_sequence:
1787 // This means that the current byte is the one immediately
1788 // after a set of instructions. Record the current line
1789 // for up to one less than the current address.
1791 lsm->end_sequence = true;
1795 case elfcpp::DW_LNE_set_address:
1798 elfcpp::Swap_unaligned<size, big_endian>::readval(start);
1799 typename Reloc_map::const_iterator it
1800 = this->reloc_map_.find(start - this->buffer_);
1801 if (it != reloc_map_.end())
1803 // If this is a SHT_RELA section, then ignore the
1804 // section contents. This assumes that this is a
1805 // straight reloc which just uses the reloc addend.
1806 // The reloc addend has already been included in the
1808 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1810 // Add in the symbol value.
1811 lsm->address += it->second.second;
1812 lsm->shndx = it->second.first;
1816 // If we're a normal .o file, with relocs, every
1817 // set_address should have an associated relocation.
1818 if (this->input_is_relobj())
1819 this->data_valid_ = false;
1823 case elfcpp::DW_LNE_define_file:
1825 const char* filename = reinterpret_cast<const char*>(start);
1826 templen = strlen(filename) + 1;
1829 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
1831 if (dirindex >= this->directories_.back().size())
1833 int dirindexi = static_cast<int>(dirindex);
1835 // This opcode takes two additional ULEB128 parameters
1836 // (mod_time and filelength), but we don't use those
1837 // values. Because OPLEN already tells us how far to
1838 // skip to the next opcode, we don't need to read
1841 this->files_.back().push_back(std::make_pair(dirindexi,
1851 // Ignore unknown opcode silently
1852 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
1855 read_unsigned_LEB_128(start, &templen);
1866 // Read the debug information at LINEPTR and store it in the line
1869 template<int size, bool big_endian>
1870 unsigned const char*
1871 Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
1874 struct LineStateMachine lsm;
1876 // LENGTHSTART is the place the length field is based on. It is the
1877 // point in the header after the initial length field.
1878 const unsigned char* lengthstart = buffer_;
1880 // In 64 bit dwarf, the initial length is 12 bytes, because of the
1881 // 0xffffffff at the start.
1882 if (header_.offset_size == 8)
1887 while (lineptr < lengthstart + header_.total_length)
1889 ResetLineStateMachine(&lsm, header_.default_is_stmt);
1890 while (!lsm.end_sequence)
1893 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
1895 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
1897 Offset_to_lineno_entry entry
1898 = { static_cast<off_t>(lsm.address),
1899 this->current_header_index_,
1900 static_cast<unsigned int>(lsm.file_num),
1901 true, lsm.line_num };
1902 std::vector<Offset_to_lineno_entry>&
1903 map(this->line_number_map_[lsm.shndx]);
1904 // If we see two consecutive entries with the same
1905 // offset and a real line number, then mark the first
1906 // one as non-canonical.
1908 && (map.back().offset == static_cast<off_t>(lsm.address))
1909 && lsm.line_num != -1
1910 && map.back().line_num != -1)
1911 map.back().last_line_for_offset = false;
1912 map.push_back(entry);
1914 lineptr += oplength;
1918 return lengthstart + header_.total_length;
1921 // Read the relocations into a Reloc_map.
1923 template<int size, bool big_endian>
1925 Sized_dwarf_line_info<size, big_endian>::read_relocs()
1927 if (this->symtab_buffer_ == NULL)
1932 while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
1934 const unsigned int shndx =
1935 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1937 // There is no reason to record non-ordinary section indexes, or
1938 // SHN_UNDEF, because they will never match the real section.
1940 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
1942 this->reloc_mapper_->advance(reloc_offset + 1);
1946 // Read the line number info.
1948 template<int size, bool big_endian>
1950 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
1952 gold_assert(this->data_valid_ == true);
1954 this->read_relocs();
1955 while (this->buffer_ < this->buffer_end_)
1957 const unsigned char* lineptr = this->buffer_;
1958 lineptr = this->read_header_prolog(lineptr);
1959 lineptr = this->read_header_tables(lineptr);
1960 lineptr = this->read_lines(lineptr, shndx);
1961 this->buffer_ = lineptr;
1964 // Sort the lines numbers, so addr2line can use binary search.
1965 for (typename Lineno_map::iterator it = line_number_map_.begin();
1966 it != line_number_map_.end();
1968 // Each vector needs to be sorted by offset.
1969 std::sort(it->second.begin(), it->second.end());
1972 // Some processing depends on whether the input is a .o file or not.
1973 // For instance, .o files have relocs, and have .debug_lines
1974 // information on a per section basis. .so files, on the other hand,
1975 // lack relocs, and offsets are unique, so we can ignore the section
1978 template<int size, bool big_endian>
1980 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
1982 // Only .o files have relocs and the symtab buffer that goes with them.
1983 return this->symtab_buffer_ != NULL;
1986 // Given an Offset_to_lineno_entry vector, and an offset, figure out
1987 // if the offset points into a function according to the vector (see
1988 // comments below for the algorithm). If it does, return an iterator
1989 // into the vector that points to the line-number that contains that
1990 // offset. If not, it returns vector::end().
1992 static std::vector<Offset_to_lineno_entry>::const_iterator
1993 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
1996 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
1998 // lower_bound() returns the smallest offset which is >= lookup_key.
1999 // If no offset in offsets is >= lookup_key, returns end().
2000 std::vector<Offset_to_lineno_entry>::const_iterator it
2001 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
2003 // This code is easiest to understand with a concrete example.
2004 // Here's a possible offsets array:
2005 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0
2006 // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1
2007 // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2
2008 // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3
2009 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4
2010 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5
2011 // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6
2012 // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7
2013 // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8
2014 // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9
2015 // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10
2016 // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11
2017 // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12
2018 // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13
2019 // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14
2020 // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15
2021 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16
2022 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17
2023 // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18
2024 // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19
2025 // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20
2026 // The entries with line_num == -1 mark the end of a function: the
2027 // associated offset is one past the last instruction in the
2028 // function. This can correspond to the beginning of the next
2029 // function (as is true for offset 3232); alternately, there can be
2030 // a gap between the end of one function and the start of the next
2031 // (as is true for some others, most obviously from 3236->5764).
2033 // Case 1: lookup_key has offset == 10. lower_bound returns
2034 // offsets[0]. Since it's not an exact match and we're
2035 // at the beginning of offsets, we return end() (invalid).
2036 // Case 2: lookup_key has offset 10000. lower_bound returns
2037 // offset[21] (end()). We return end() (invalid).
2038 // Case 3: lookup_key has offset == 3211. lower_bound matches
2039 // offsets[0] exactly, and that's the entry we return.
2040 // Case 4: lookup_key has offset == 3232. lower_bound returns
2041 // offsets[4]. That's an exact match, but indicates
2042 // end-of-function. We check if offsets[5] is also an
2043 // exact match but not end-of-function. It is, so we
2044 // return offsets[5].
2045 // Case 5: lookup_key has offset == 3214. lower_bound returns
2046 // offsets[1]. Since it's not an exact match, we back
2047 // up to the offset that's < lookup_key, offsets[0].
2048 // We note offsets[0] is a valid entry (not end-of-function),
2049 // so that's the entry we return.
2050 // Case 6: lookup_key has offset == 4000. lower_bound returns
2051 // offsets[8]. Since it's not an exact match, we back
2052 // up to offsets[7]. Since offsets[7] indicates
2053 // end-of-function, we know lookup_key is between
2054 // functions, so we return end() (not a valid offset).
2055 // Case 7: lookup_key has offset == 5794. lower_bound returns
2056 // offsets[19]. Since it's not an exact match, we back
2057 // up to offsets[16]. Note we back up to the *first*
2058 // entry with offset 5793, not just offsets[19-1].
2059 // We note offsets[16] is a valid entry, so we return it.
2060 // If offsets[16] had had line_num == -1, we would have
2061 // checked offsets[17]. The reason for this is that
2062 // 16 and 17 can be in an arbitrary order, since we sort
2063 // only by offset and last_line_for_offset. (Note it
2064 // doesn't help to use line_number as a tertiary sort key,
2065 // since sometimes we want the -1 to be first and sometimes
2066 // we want it to be last.)
2068 // This deals with cases (1) and (2).
2069 if ((it == offsets->begin() && offset < it->offset)
2070 || it == offsets->end())
2071 return offsets->end();
2073 // This deals with cases (3) and (4).
2074 if (offset == it->offset)
2076 while (it != offsets->end()
2077 && it->offset == offset
2078 && it->line_num == -1)
2080 if (it == offsets->end() || it->offset != offset)
2081 return offsets->end();
2086 // This handles the first part of case (7) -- we back up to the
2087 // *first* entry that has the offset that's behind us.
2088 gold_assert(it != offsets->begin());
2089 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2091 const off_t range_value = it->offset;
2092 while (it != offsets->begin() && (it-1)->offset == range_value)
2095 // This handles cases (5), (6), and (7): if any entry in the
2096 // equal_range [it, range_end) has a line_num != -1, it's a valid
2097 // match. If not, we're not in a function. The line number we saw
2098 // last for an offset will be sorted first, so it'll get returned if
2100 for (; it != range_end; ++it)
2101 if (it->line_num != -1)
2103 return offsets->end();
2106 // Returns the canonical filename:lineno for the address passed in.
2107 // If other_lines is not NULL, appends the non-canonical lines
2108 // assigned to the same address.
2110 template<int size, bool big_endian>
2112 Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2115 std::vector<std::string>* other_lines)
2117 if (this->data_valid_ == false)
2120 const std::vector<Offset_to_lineno_entry>* offsets;
2121 // If we do not have reloc information, then our input is a .so or
2122 // some similar data structure where all the information is held in
2123 // the offset. In that case, we ignore the input shndx.
2124 if (this->input_is_relobj())
2125 offsets = &this->line_number_map_[shndx];
2127 offsets = &this->line_number_map_[-1U];
2128 if (offsets->empty())
2131 typename std::vector<Offset_to_lineno_entry>::const_iterator it
2132 = offset_to_iterator(offsets, offset);
2133 if (it == offsets->end())
2136 std::string result = this->format_file_lineno(*it);
2137 if (other_lines != NULL)
2138 for (++it; it != offsets->end() && it->offset == offset; ++it)
2140 if (it->line_num == -1)
2141 continue; // The end of a previous function.
2142 other_lines->push_back(this->format_file_lineno(*it));
2147 // Convert the file_num + line_num into a string.
2149 template<int size, bool big_endian>
2151 Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2152 const Offset_to_lineno_entry& loc) const
2156 gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2157 gold_assert(loc.file_num
2158 < static_cast<unsigned int>(this->files_[loc.header_num].size()));
2159 const std::pair<int, std::string>& filename_pair
2160 = this->files_[loc.header_num][loc.file_num];
2161 const std::string& filename = filename_pair.second;
2163 gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
2164 gold_assert(filename_pair.first
2165 < static_cast<int>(this->directories_[loc.header_num].size()));
2166 const std::string& dirname
2167 = this->directories_[loc.header_num][filename_pair.first];
2169 if (!dirname.empty())
2178 char buffer[64]; // enough to hold a line number
2179 snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
2186 // Dwarf_line_info routines.
2188 static unsigned int next_generation_count = 0;
2190 struct Addr2line_cache_entry
2194 Dwarf_line_info* dwarf_line_info;
2195 unsigned int generation_count;
2196 unsigned int access_count;
2198 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2199 : object(o), shndx(s), dwarf_line_info(d),
2200 generation_count(next_generation_count), access_count(0)
2202 if (next_generation_count < (1U << 31))
2203 ++next_generation_count;
2206 // We expect this cache to be small, so don't bother with a hashtable
2207 // or priority queue or anything: just use a simple vector.
2208 static std::vector<Addr2line_cache_entry> addr2line_cache;
2211 Dwarf_line_info::one_addr2line(Object* object,
2212 unsigned int shndx, off_t offset,
2214 std::vector<std::string>* other_lines)
2216 Dwarf_line_info* lineinfo = NULL;
2217 std::vector<Addr2line_cache_entry>::iterator it;
2219 // First, check the cache. If we hit, update the counts.
2220 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2222 if (it->object == object && it->shndx == shndx)
2224 lineinfo = it->dwarf_line_info;
2225 it->generation_count = next_generation_count;
2226 // We cap generation_count at 2^31 -1 to avoid overflow.
2227 if (next_generation_count < (1U << 31))
2228 ++next_generation_count;
2229 // We cap access_count at 31 so 2^access_count doesn't overflow
2230 if (it->access_count < 31)
2236 // If we don't hit the cache, create a new object and insert into the
2238 if (lineinfo == NULL)
2240 switch (parameters->size_and_endianness())
2242 #ifdef HAVE_TARGET_32_LITTLE
2243 case Parameters::TARGET_32_LITTLE:
2244 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
2246 #ifdef HAVE_TARGET_32_BIG
2247 case Parameters::TARGET_32_BIG:
2248 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
2250 #ifdef HAVE_TARGET_64_LITTLE
2251 case Parameters::TARGET_64_LITTLE:
2252 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
2254 #ifdef HAVE_TARGET_64_BIG
2255 case Parameters::TARGET_64_BIG:
2256 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
2261 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2264 // Now that we have our object, figure out the answer
2265 std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
2267 // Finally, if our cache has grown too big, delete old objects. We
2268 // assume the common (probably only) case is deleting only one object.
2269 // We use a pretty simple scheme to evict: function of LRU and MFU.
2270 while (addr2line_cache.size() > cache_size)
2272 unsigned int lowest_score = ~0U;
2273 std::vector<Addr2line_cache_entry>::iterator lowest
2274 = addr2line_cache.end();
2275 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2277 const unsigned int score = (it->generation_count
2278 + (1U << it->access_count));
2279 if (score < lowest_score)
2281 lowest_score = score;
2285 if (lowest != addr2line_cache.end())
2287 delete lowest->dwarf_line_info;
2288 addr2line_cache.erase(lowest);
2296 Dwarf_line_info::clear_addr2line_cache()
2298 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2299 it != addr2line_cache.end();
2301 delete it->dwarf_line_info;
2302 addr2line_cache.clear();
2305 #ifdef HAVE_TARGET_32_LITTLE
2307 class Sized_dwarf_line_info<32, false>;
2310 #ifdef HAVE_TARGET_32_BIG
2312 class Sized_dwarf_line_info<32, true>;
2315 #ifdef HAVE_TARGET_64_LITTLE
2317 class Sized_dwarf_line_info<64, false>;
2320 #ifdef HAVE_TARGET_64_BIG
2322 class Sized_dwarf_line_info<64, true>;
2325 } // End namespace gold.