2012-03-14 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI.  It is intended for
109 // supporting Android only for the time being.
110 // 
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 //   Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops.  If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked.  The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only.  That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
131 // Instruction template class.  This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136  public:
137   // Types of instruction templates.
138   enum Type
139     {
140       THUMB16_TYPE = 1,
141       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142       // templates with class-specific semantics.  Currently this is used
143       // only by the Cortex_a8_stub class for handling condition codes in
144       // conditional branches.
145       THUMB16_SPECIAL_TYPE,
146       THUMB32_TYPE,
147       ARM_TYPE,
148       DATA_TYPE
149     };
150
151   // Factory methods to create instruction templates in different formats.
152
153   static const Insn_template
154   thumb16_insn(uint32_t data)
155   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
156
157   // A Thumb conditional branch, in which the proper condition is inserted
158   // when we build the stub.
159   static const Insn_template
160   thumb16_bcond_insn(uint32_t data)
161   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
162
163   static const Insn_template
164   thumb32_insn(uint32_t data)
165   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
166
167   static const Insn_template
168   thumb32_b_insn(uint32_t data, int reloc_addend)
169   {
170     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171                          reloc_addend);
172   } 
173
174   static const Insn_template
175   arm_insn(uint32_t data)
176   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178   static const Insn_template
179   arm_rel_insn(unsigned data, int reloc_addend)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182   static const Insn_template
183   data_word(unsigned data, unsigned int r_type, int reloc_addend)
184   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
185
186   // Accessors.  This class is used for read-only objects so no modifiers
187   // are provided.
188
189   uint32_t
190   data() const
191   { return this->data_; }
192
193   // Return the instruction sequence type of this.
194   Type
195   type() const
196   { return this->type_; }
197
198   // Return the ARM relocation type of this.
199   unsigned int
200   r_type() const
201   { return this->r_type_; }
202
203   int32_t
204   reloc_addend() const
205   { return this->reloc_addend_; }
206
207   // Return size of instruction template in bytes.
208   size_t
209   size() const;
210
211   // Return byte-alignment of instruction template.
212   unsigned
213   alignment() const;
214
215  private:
216   // We make the constructor private to ensure that only the factory
217   // methods are used.
218   inline
219   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221   { }
222
223   // Instruction specific data.  This is used to store information like
224   // some of the instruction bits.
225   uint32_t data_;
226   // Instruction template type.
227   Type type_;
228   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229   unsigned int r_type_;
230   // Relocation addend.
231   int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238   DEF_STUB(long_branch_any_any) \
239   DEF_STUB(long_branch_v4t_arm_thumb) \
240   DEF_STUB(long_branch_thumb_only) \
241   DEF_STUB(long_branch_v4t_thumb_thumb) \
242   DEF_STUB(long_branch_v4t_thumb_arm) \
243   DEF_STUB(short_branch_v4t_thumb_arm) \
244   DEF_STUB(long_branch_any_arm_pic) \
245   DEF_STUB(long_branch_any_thumb_pic) \
246   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249   DEF_STUB(long_branch_thumb_only_pic) \
250   DEF_STUB(a8_veneer_b_cond) \
251   DEF_STUB(a8_veneer_b) \
252   DEF_STUB(a8_veneer_bl) \
253   DEF_STUB(a8_veneer_blx) \
254   DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260   {
261     arm_stub_none,
262     DEF_STUBS
263
264     // First reloc stub type.
265     arm_stub_reloc_first = arm_stub_long_branch_any_any,
266     // Last  reloc stub type.
267     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269     // First Cortex-A8 stub type.
270     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271     // Last Cortex-A8 stub type.
272     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273     
274     // Last stub type.
275     arm_stub_type_last = arm_stub_v4_veneer_bx
276   } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class.  Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285  public:
286   Stub_template(Stub_type, const Insn_template*, size_t);
287
288   ~Stub_template()
289   { }
290
291   // Return stub type.
292   Stub_type
293   type() const
294   { return this->type_; }
295
296   // Return an array of instruction templates.
297   const Insn_template*
298   insns() const
299   { return this->insns_; }
300
301   // Return size of template in number of instructions.
302   size_t
303   insn_count() const
304   { return this->insn_count_; }
305
306   // Return size of template in bytes.
307   size_t
308   size() const
309   { return this->size_; }
310
311   // Return alignment of the stub template.
312   unsigned
313   alignment() const
314   { return this->alignment_; }
315   
316   // Return whether entry point is in thumb mode.
317   bool
318   entry_in_thumb_mode() const
319   { return this->entry_in_thumb_mode_; }
320
321   // Return number of relocations in this template.
322   size_t
323   reloc_count() const
324   { return this->relocs_.size(); }
325
326   // Return index of the I-th instruction with relocation.
327   size_t
328   reloc_insn_index(size_t i) const
329   {
330     gold_assert(i < this->relocs_.size());
331     return this->relocs_[i].first;
332   }
333
334   // Return the offset of the I-th instruction with relocation from the
335   // beginning of the stub.
336   section_size_type
337   reloc_offset(size_t i) const
338   {
339     gold_assert(i < this->relocs_.size());
340     return this->relocs_[i].second;
341   }
342
343  private:
344   // This contains information about an instruction template with a relocation
345   // and its offset from start of stub.
346   typedef std::pair<size_t, section_size_type> Reloc;
347
348   // A Stub_template may not be copied.  We want to share templates as much
349   // as possible.
350   Stub_template(const Stub_template&);
351   Stub_template& operator=(const Stub_template&);
352   
353   // Stub type.
354   Stub_type type_;
355   // Points to an array of Insn_templates.
356   const Insn_template* insns_;
357   // Number of Insn_templates in insns_[].
358   size_t insn_count_;
359   // Size of templated instructions in bytes.
360   size_t size_;
361   // Alignment of templated instructions.
362   unsigned alignment_;
363   // Flag to indicate if entry is in thumb mode.
364   bool entry_in_thumb_mode_;
365   // A table of reloc instruction indices and offsets.  We can find these by
366   // looking at the instruction templates but we pre-compute and then stash
367   // them here for speed. 
368   std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs.  This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378  private:
379   static const section_offset_type invalid_offset =
380     static_cast<section_offset_type>(-1);
381
382  public:
383   Stub(const Stub_template* stub_template)
384     : stub_template_(stub_template), offset_(invalid_offset)
385   { }
386
387   virtual
388    ~Stub()
389   { }
390
391   // Return the stub template.
392   const Stub_template*
393   stub_template() const
394   { return this->stub_template_; }
395
396   // Return offset of code stub from beginning of its containing stub table.
397   section_offset_type
398   offset() const
399   {
400     gold_assert(this->offset_ != invalid_offset);
401     return this->offset_;
402   }
403
404   // Set offset of code stub from beginning of its containing stub table.
405   void
406   set_offset(section_offset_type offset)
407   { this->offset_ = offset; }
408   
409   // Return the relocation target address of the i-th relocation in the
410   // stub.  This must be defined in a child class.
411   Arm_address
412   reloc_target(size_t i)
413   { return this->do_reloc_target(i); }
414
415   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416   void
417   write(unsigned char* view, section_size_type view_size, bool big_endian)
418   { this->do_write(view, view_size, big_endian); }
419
420   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421   // for the i-th instruction.
422   uint16_t
423   thumb16_special(size_t i)
424   { return this->do_thumb16_special(i); }
425
426  protected:
427   // This must be defined in the child class.
428   virtual Arm_address
429   do_reloc_target(size_t) = 0;
430
431   // This may be overridden in the child class.
432   virtual void
433   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434   {
435     if (big_endian)
436       this->do_fixed_endian_write<true>(view, view_size);
437     else
438       this->do_fixed_endian_write<false>(view, view_size);
439   }
440   
441   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442   // instruction template.
443   virtual uint16_t
444   do_thumb16_special(size_t)
445   { gold_unreachable(); }
446
447  private:
448   // A template to implement do_write.
449   template<bool big_endian>
450   void inline
451   do_fixed_endian_write(unsigned char*, section_size_type);
452
453   // Its template.
454   const Stub_template* stub_template_;
455   // Offset within the section of containing this stub.
456   section_offset_type offset_;
457 };
458
459 // Reloc stub class.  These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464  public:
465   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466   // We assume we never jump to this address.
467   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469   // Return destination address.
470   Arm_address
471   destination_address() const
472   {
473     gold_assert(this->destination_address_ != this->invalid_address);
474     return this->destination_address_;
475   }
476
477   // Set destination address.
478   void
479   set_destination_address(Arm_address address)
480   {
481     gold_assert(address != this->invalid_address);
482     this->destination_address_ = address;
483   }
484
485   // Reset destination address.
486   void
487   reset_destination_address()
488   { this->destination_address_ = this->invalid_address; }
489
490   // Determine stub type for a branch of a relocation of R_TYPE going
491   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492   // the branch target is a thumb instruction.  TARGET is used for look
493   // up ARM-specific linker settings.
494   static Stub_type
495   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496                       Arm_address branch_target, bool target_is_thumb);
497
498   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499   // and an addend.  Since we treat global and local symbol differently, we
500   // use a Symbol object for a global symbol and a object-index pair for
501   // a local symbol.
502   class Key
503   {
504    public:
505     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507     // and R_SYM must not be invalid_index.
508     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509         unsigned int r_sym, int32_t addend)
510       : stub_type_(stub_type), addend_(addend)
511     {
512       if (symbol != NULL)
513         {
514           this->r_sym_ = Reloc_stub::invalid_index;
515           this->u_.symbol = symbol;
516         }
517       else
518         {
519           gold_assert(relobj != NULL && r_sym != invalid_index);
520           this->r_sym_ = r_sym;
521           this->u_.relobj = relobj;
522         }
523     }
524
525     ~Key()
526     { }
527
528     // Accessors: Keys are meant to be read-only object so no modifiers are
529     // provided.
530
531     // Return stub type.
532     Stub_type
533     stub_type() const
534     { return this->stub_type_; }
535
536     // Return the local symbol index or invalid_index.
537     unsigned int
538     r_sym() const
539     { return this->r_sym_; }
540
541     // Return the symbol if there is one.
542     const Symbol*
543     symbol() const
544     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546     // Return the relobj if there is one.
547     const Relobj*
548     relobj() const
549     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551     // Whether this equals to another key k.
552     bool
553     eq(const Key& k) const 
554     {
555       return ((this->stub_type_ == k.stub_type_)
556               && (this->r_sym_ == k.r_sym_)
557               && ((this->r_sym_ != Reloc_stub::invalid_index)
558                   ? (this->u_.relobj == k.u_.relobj)
559                   : (this->u_.symbol == k.u_.symbol))
560               && (this->addend_ == k.addend_));
561     }
562
563     // Return a hash value.
564     size_t
565     hash_value() const
566     {
567       return (this->stub_type_
568               ^ this->r_sym_
569               ^ gold::string_hash<char>(
570                     (this->r_sym_ != Reloc_stub::invalid_index)
571                     ? this->u_.relobj->name().c_str()
572                     : this->u_.symbol->name())
573               ^ this->addend_);
574     }
575
576     // Functors for STL associative containers.
577     struct hash
578     {
579       size_t
580       operator()(const Key& k) const
581       { return k.hash_value(); }
582     };
583
584     struct equal_to
585     {
586       bool
587       operator()(const Key& k1, const Key& k2) const
588       { return k1.eq(k2); }
589     };
590
591     // Name of key.  This is mainly for debugging.
592     std::string
593     name() const;
594
595    private:
596     // Stub type.
597     Stub_type stub_type_;
598     // If this is a local symbol, this is the index in the defining object.
599     // Otherwise, it is invalid_index for a global symbol.
600     unsigned int r_sym_;
601     // If r_sym_ is an invalid index, this points to a global symbol.
602     // Otherwise, it points to a relobj.  We used the unsized and target
603     // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604     // Arm_relobj, in order to avoid making the stub class a template
605     // as most of the stub machinery is endianness-neutral.  However, it
606     // may require a bit of casting done by users of this class.
607     union
608     {
609       const Symbol* symbol;
610       const Relobj* relobj;
611     } u_;
612     // Addend associated with a reloc.
613     int32_t addend_;
614   };
615
616  protected:
617   // Reloc_stubs are created via a stub factory.  So these are protected.
618   Reloc_stub(const Stub_template* stub_template)
619     : Stub(stub_template), destination_address_(invalid_address)
620   { }
621
622   ~Reloc_stub()
623   { }
624
625   friend class Stub_factory;
626
627   // Return the relocation target address of the i-th relocation in the
628   // stub.
629   Arm_address
630   do_reloc_target(size_t i)
631   {
632     // All reloc stub have only one relocation.
633     gold_assert(i == 0);
634     return this->destination_address_;
635   }
636
637  private:
638   // Address of destination.
639   Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 // 
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 //    branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 //    branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least.  We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch.  The
654 // condition code is used in a special instruction template.  We also want
655 // to identify input sections needing Cortex-A8 workaround quickly.  We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up.  The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663  public:
664   ~Cortex_a8_stub()
665   { }
666
667   // Return the object of the code section containing the branch being fixed
668   // up.
669   Relobj*
670   relobj() const
671   { return this->relobj_; }
672
673   // Return the section index of the code section containing the branch being
674   // fixed up.
675   unsigned int
676   shndx() const
677   { return this->shndx_; }
678
679   // Return the source address of stub.  This is the address of the original
680   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681   // instruction.
682   Arm_address
683   source_address() const
684   { return this->source_address_; }
685
686   // Return the destination address of the stub.  This is the branch taken
687   // address of the original branch instruction.  LSB is 1 if it is a THUMB
688   // instruction address.
689   Arm_address
690   destination_address() const
691   { return this->destination_address_; }
692
693   // Return the instruction being fixed up.
694   uint32_t
695   original_insn() const
696   { return this->original_insn_; }
697
698  protected:
699   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701                  unsigned int shndx, Arm_address source_address,
702                  Arm_address destination_address, uint32_t original_insn)
703     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704       source_address_(source_address | 1U),
705       destination_address_(destination_address),
706       original_insn_(original_insn)
707   { }
708
709   friend class Stub_factory;
710
711   // Return the relocation target address of the i-th relocation in the
712   // stub.
713   Arm_address
714   do_reloc_target(size_t i)
715   {
716     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717       {
718         // The conditional branch veneer has two relocations.
719         gold_assert(i < 2);
720         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721       }
722     else
723       {
724         // All other Cortex-A8 stubs have only one relocation.
725         gold_assert(i == 0);
726         return this->destination_address_;
727       }
728   }
729
730   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731   uint16_t
732   do_thumb16_special(size_t);
733
734  private:
735   // Object of the code section containing the branch being fixed up.
736   Relobj* relobj_;
737   // Section index of the code section containing the branch begin fixed up.
738   unsigned int shndx_;
739   // Source address of original branch.
740   Arm_address source_address_;
741   // Destination address of the original branch.
742   Arm_address destination_address_;
743   // Original branch instruction.  This is needed for copying the condition
744   // code from a condition branch to its stub.
745   uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751  public:
752   ~Arm_v4bx_stub()
753   { }
754
755   // Return the associated register.
756   uint32_t
757   reg() const
758   { return this->reg_; }
759
760  protected:
761   // Arm V4BX stubs are created via a stub factory.  So these are protected.
762   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763     : Stub(stub_template), reg_(reg)
764   { }
765
766   friend class Stub_factory;
767
768   // Return the relocation target address of the i-th relocation in the
769   // stub.
770   Arm_address
771   do_reloc_target(size_t)
772   { gold_unreachable(); }
773
774   // This may be overridden in the child class.
775   virtual void
776   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777   {
778     if (big_endian)
779       this->do_fixed_endian_v4bx_write<true>(view, view_size);
780     else
781       this->do_fixed_endian_v4bx_write<false>(view, view_size);
782   }
783
784  private:
785   // A template to implement do_write.
786   template<bool big_endian>
787   void inline
788   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789   {
790     const Insn_template* insns = this->stub_template()->insns();
791     elfcpp::Swap<32, big_endian>::writeval(view,
792                                            (insns[0].data()
793                                            + (this->reg_ << 16)));
794     view += insns[0].size();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[1].data() + this->reg_));
797     view += insns[1].size();
798     elfcpp::Swap<32, big_endian>::writeval(view,
799                                            (insns[2].data() + this->reg_));
800   }
801
802   // A register index (r0-r14), which is associated with the stub.
803   uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810  public:
811   // Return the unique instance of this class.
812   static const Stub_factory&
813   get_instance()
814   {
815     static Stub_factory singleton;
816     return singleton;
817   }
818
819   // Make a relocation stub.
820   Reloc_stub*
821   make_reloc_stub(Stub_type stub_type) const
822   {
823     gold_assert(stub_type >= arm_stub_reloc_first
824                 && stub_type <= arm_stub_reloc_last);
825     return new Reloc_stub(this->stub_templates_[stub_type]);
826   }
827
828   // Make a Cortex-A8 stub.
829   Cortex_a8_stub*
830   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831                       Arm_address source, Arm_address destination,
832                       uint32_t original_insn) const
833   {
834     gold_assert(stub_type >= arm_stub_cortex_a8_first
835                 && stub_type <= arm_stub_cortex_a8_last);
836     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837                               source, destination, original_insn);
838   }
839
840   // Make an ARM V4BX relocation stub.
841   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842   Arm_v4bx_stub*
843   make_arm_v4bx_stub(uint32_t reg) const
844   {
845     gold_assert(reg < 0xf);
846     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847                              reg);
848   }
849
850  private:
851   // Constructor and destructor are protected since we only return a single
852   // instance created in Stub_factory::get_instance().
853   
854   Stub_factory();
855
856   // A Stub_factory may not be copied since it is a singleton.
857   Stub_factory(const Stub_factory&);
858   Stub_factory& operator=(Stub_factory&);
859   
860   // Stub templates.  These are initialized in the constructor.
861   const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869  public:
870   Stub_table(Arm_input_section<big_endian>* owner)
871     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873       prev_data_size_(0), prev_addralign_(1)
874   { }
875
876   ~Stub_table()
877   { }
878
879   // Owner of this stub table.
880   Arm_input_section<big_endian>*
881   owner() const
882   { return this->owner_; }
883
884   // Whether this stub table is empty.
885   bool
886   empty() const
887   {
888     return (this->reloc_stubs_.empty()
889             && this->cortex_a8_stubs_.empty()
890             && this->arm_v4bx_stubs_.empty());
891   }
892
893   // Return the current data size.
894   off_t
895   current_data_size() const
896   { return this->current_data_size_for_child(); }
897
898   // Add a STUB using KEY.  The caller is responsible for avoiding addition
899   // if a STUB with the same key has already been added.
900   void
901   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902   {
903     const Stub_template* stub_template = stub->stub_template();
904     gold_assert(stub_template->type() == key.stub_type());
905     this->reloc_stubs_[key] = stub;
906
907     // Assign stub offset early.  We can do this because we never remove
908     // reloc stubs and they are in the beginning of the stub table.
909     uint64_t align = stub_template->alignment();
910     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911     stub->set_offset(this->reloc_stubs_size_);
912     this->reloc_stubs_size_ += stub_template->size();
913     this->reloc_stubs_addralign_ =
914       std::max(this->reloc_stubs_addralign_, align);
915   }
916
917   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918   // The caller is responsible for avoiding addition if a STUB with the same
919   // address has already been added.
920   void
921   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922   {
923     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924     this->cortex_a8_stubs_.insert(value);
925   }
926
927   // Add an ARM V4BX relocation stub. A register index will be retrieved
928   // from the stub.
929   void
930   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931   {
932     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933     this->arm_v4bx_stubs_[stub->reg()] = stub;
934   }
935
936   // Remove all Cortex-A8 stubs.
937   void
938   remove_all_cortex_a8_stubs();
939
940   // Look up a relocation stub using KEY.  Return NULL if there is none.
941   Reloc_stub*
942   find_reloc_stub(const Reloc_stub::Key& key) const
943   {
944     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946   }
947
948   // Look up an arm v4bx relocation stub using the register index.
949   // Return NULL if there is none.
950   Arm_v4bx_stub*
951   find_arm_v4bx_stub(const uint32_t reg) const
952   {
953     gold_assert(reg < 0xf);
954     return this->arm_v4bx_stubs_[reg];
955   }
956
957   // Relocate stubs in this stub table.
958   void
959   relocate_stubs(const Relocate_info<32, big_endian>*,
960                  Target_arm<big_endian>*, Output_section*,
961                  unsigned char*, Arm_address, section_size_type);
962
963   // Update data size and alignment at the end of a relaxation pass.  Return
964   // true if either data size or alignment is different from that of the
965   // previous relaxation pass.
966   bool
967   update_data_size_and_addralign();
968
969   // Finalize stubs.  Set the offsets of all stubs and mark input sections
970   // needing the Cortex-A8 workaround.
971   void
972   finalize_stubs();
973   
974   // Apply Cortex-A8 workaround to an address range.
975   void
976   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977                                               unsigned char*, Arm_address,
978                                               section_size_type);
979
980  protected:
981   // Write out section contents.
982   void
983   do_write(Output_file*);
984  
985   // Return the required alignment.
986   uint64_t
987   do_addralign() const
988   { return this->prev_addralign_; }
989
990   // Reset address and file offset.
991   void
992   do_reset_address_and_file_offset()
993   { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995   // Set final data size.
996   void
997   set_final_data_size()
998   { this->set_data_size(this->current_data_size()); }
999   
1000  private:
1001   // Relocate one stub.
1002   void
1003   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004                 Target_arm<big_endian>*, Output_section*,
1005                 unsigned char*, Arm_address, section_size_type);
1006
1007   // Unordered map of relocation stubs.
1008   typedef
1009     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010                   Reloc_stub::Key::equal_to>
1011     Reloc_stub_map;
1012
1013   // List of Cortex-A8 stubs ordered by addresses of branches being
1014   // fixed up in output.
1015   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016   // List of Arm V4BX relocation stubs ordered by associated registers.
1017   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019   // Owner of this stub table.
1020   Arm_input_section<big_endian>* owner_;
1021   // The relocation stubs.
1022   Reloc_stub_map reloc_stubs_;
1023   // Size of reloc stubs.
1024   off_t reloc_stubs_size_;
1025   // Maximum address alignment of reloc stubs.
1026   uint64_t reloc_stubs_addralign_;
1027   // The cortex_a8_stubs.
1028   Cortex_a8_stub_list cortex_a8_stubs_;
1029   // The Arm V4BX relocation stubs.
1030   Arm_v4bx_stub_list arm_v4bx_stubs_;
1031   // data size of this in the previous pass.
1032   off_t prev_data_size_;
1033   // address alignment of this in the previous pass.
1034   uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042  public:
1043   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045   { }
1046
1047   // Return the object containing the section pointed by this.
1048   Relobj*
1049   relobj() const
1050   { return this->relobj_; }
1051
1052   // Return the section index of the section pointed by this.
1053   unsigned int
1054   shndx() const
1055   { return this->shndx_; }
1056
1057  protected:
1058   void
1059   do_write(Output_file* of)
1060   {
1061     if (parameters->target().is_big_endian())
1062       this->do_fixed_endian_write<true>(of);
1063     else
1064       this->do_fixed_endian_write<false>(of);
1065   }
1066
1067   // Write to a map file.
1068   void
1069   do_print_to_mapfile(Mapfile* mapfile) const
1070   { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
1072  private:
1073   // Implement do_write for a given endianness.
1074   template<bool big_endian>
1075   void inline
1076   do_fixed_endian_write(Output_file*);
1077   
1078   // The object containing the section pointed by this.
1079   Relobj* relobj_;
1080   // The section index of the section pointed by this.
1081   unsigned int shndx_;
1082 };
1083
1084 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section. 
1087
1088 typedef std::map<section_offset_type, section_offset_type>
1089         Arm_exidx_section_offset_map;
1090
1091 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1092 // with some of its entries merged.
1093
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1095 {
1096  public:
1097   // Constructor for Arm_exidx_merged_section.
1098   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099   // SECTION_OFFSET_MAP points to a section offset map describing how
1100   // parts of the input section are mapped to output.  DELETED_BYTES is
1101   // the number of bytes deleted from the EXIDX input section.
1102   Arm_exidx_merged_section(
1103       const Arm_exidx_input_section& exidx_input_section,
1104       const Arm_exidx_section_offset_map& section_offset_map,
1105       uint32_t deleted_bytes);
1106
1107   // Build output contents.
1108   void
1109   build_contents(const unsigned char*, section_size_type);
1110
1111   // Return the original EXIDX input section.
1112   const Arm_exidx_input_section&
1113   exidx_input_section() const
1114   { return this->exidx_input_section_; }
1115
1116   // Return the section offset map.
1117   const Arm_exidx_section_offset_map&
1118   section_offset_map() const
1119   { return this->section_offset_map_; }
1120
1121  protected:
1122   // Write merged section into file OF.
1123   void
1124   do_write(Output_file* of);
1125
1126   bool
1127   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128                   section_offset_type*) const;
1129
1130  private:
1131   // Original EXIDX input section.
1132   const Arm_exidx_input_section& exidx_input_section_;
1133   // Section offset map.
1134   const Arm_exidx_section_offset_map& section_offset_map_;
1135   // Merged section contents.  We need to keep build the merged section 
1136   // and save it here to avoid accessing the original EXIDX section when
1137   // we cannot lock the sections' object.
1138   unsigned char* section_contents_;
1139 };
1140
1141 // A class to wrap an ordinary input section containing executable code.
1142
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1145 {
1146  public:
1147   Arm_input_section(Relobj* relobj, unsigned int shndx)
1148     : Output_relaxed_input_section(relobj, shndx, 1),
1149       original_addralign_(1), original_size_(0), stub_table_(NULL),
1150       original_contents_(NULL)
1151   { }
1152
1153   ~Arm_input_section()
1154   { delete[] this->original_contents_; }
1155
1156   // Initialize.
1157   void
1158   init();
1159   
1160   // Whether this is a stub table owner.
1161   bool
1162   is_stub_table_owner() const
1163   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165   // Return the stub table.
1166   Stub_table<big_endian>*
1167   stub_table() const
1168   { return this->stub_table_; }
1169
1170   // Set the stub_table.
1171   void
1172   set_stub_table(Stub_table<big_endian>* stub_table)
1173   { this->stub_table_ = stub_table; }
1174
1175   // Downcast a base pointer to an Arm_input_section pointer.  This is
1176   // not type-safe but we only use Arm_input_section not the base class.
1177   static Arm_input_section<big_endian>*
1178   as_arm_input_section(Output_relaxed_input_section* poris)
1179   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
1181   // Return the original size of the section.
1182   uint32_t
1183   original_size() const
1184   { return this->original_size_; }
1185
1186  protected:
1187   // Write data to output file.
1188   void
1189   do_write(Output_file*);
1190
1191   // Return required alignment of this.
1192   uint64_t
1193   do_addralign() const
1194   {
1195     if (this->is_stub_table_owner())
1196       return std::max(this->stub_table_->addralign(),
1197                       static_cast<uint64_t>(this->original_addralign_));
1198     else
1199       return this->original_addralign_;
1200   }
1201
1202   // Finalize data size.
1203   void
1204   set_final_data_size();
1205
1206   // Reset address and file offset.
1207   void
1208   do_reset_address_and_file_offset();
1209
1210   // Output offset.
1211   bool
1212   do_output_offset(const Relobj* object, unsigned int shndx,
1213                    section_offset_type offset,
1214                    section_offset_type* poutput) const
1215   {
1216     if ((object == this->relobj())
1217         && (shndx == this->shndx())
1218         && (offset >= 0)
1219         && (offset <=
1220             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221       {
1222         *poutput = offset;
1223         return true;
1224       }
1225     else
1226       return false;
1227   }
1228
1229  private:
1230   // Copying is not allowed.
1231   Arm_input_section(const Arm_input_section&);
1232   Arm_input_section& operator=(const Arm_input_section&);
1233
1234   // Address alignment of the original input section.
1235   uint32_t original_addralign_;
1236   // Section size of the original input section.
1237   uint32_t original_size_;
1238   // Stub table.
1239   Stub_table<big_endian>* stub_table_;
1240   // Original section contents.  We have to make a copy here since the file
1241   // containing the original section may not be locked when we need to access
1242   // the contents.
1243   unsigned char* original_contents_;
1244 };
1245
1246 // Arm_exidx_fixup class.  This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1248
1249 class Arm_exidx_fixup
1250 {
1251  public:
1252   Arm_exidx_fixup(Output_section* exidx_output_section,
1253                   bool merge_exidx_entries = true)
1254     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255       last_inlined_entry_(0), last_input_section_(NULL),
1256       section_offset_map_(NULL), first_output_text_section_(NULL),
1257       merge_exidx_entries_(merge_exidx_entries)
1258   { }
1259
1260   ~Arm_exidx_fixup()
1261   { delete this->section_offset_map_; }
1262
1263   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1264   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265   // number of bytes to be deleted in output.  If parts of the input EXIDX
1266   // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1268   // responsible for releasing it.
1269   template<bool big_endian>
1270   uint32_t
1271   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272                         const unsigned char* section_contents,
1273                         section_size_type section_size,
1274                         Arm_exidx_section_offset_map** psection_offset_map);
1275   
1276   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277   // input section, if there is not one already.
1278   void
1279   add_exidx_cantunwind_as_needed();
1280
1281   // Return the output section for the text section which is linked to the
1282   // first exidx input in output.
1283   Output_section*
1284   first_output_text_section() const
1285   { return this->first_output_text_section_; }
1286
1287  private:
1288   // Copying is not allowed.
1289   Arm_exidx_fixup(const Arm_exidx_fixup&);
1290   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292   // Type of EXIDX unwind entry.
1293   enum Unwind_type
1294   {
1295     // No type.
1296     UT_NONE,
1297     // EXIDX_CANTUNWIND.
1298     UT_EXIDX_CANTUNWIND,
1299     // Inlined entry.
1300     UT_INLINED_ENTRY,
1301     // Normal entry.
1302     UT_NORMAL_ENTRY,
1303   };
1304
1305   // Process an EXIDX entry.  We only care about the second word of the
1306   // entry.  Return true if the entry can be deleted.
1307   bool
1308   process_exidx_entry(uint32_t second_word);
1309
1310   // Update the current section offset map during EXIDX section fix-up.
1311   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1312   // reference point, DELETED_BYTES is the number of deleted by in the
1313   // section so far.  If DELETE_ENTRY is true, the reference point and
1314   // all offsets after the previous reference point are discarded.
1315   void
1316   update_offset_map(section_offset_type input_offset,
1317                     section_size_type deleted_bytes, bool delete_entry);
1318
1319   // EXIDX output section.
1320   Output_section* exidx_output_section_;
1321   // Unwind type of the last EXIDX entry processed.
1322   Unwind_type last_unwind_type_;
1323   // Last seen inlined EXIDX entry.
1324   uint32_t last_inlined_entry_;
1325   // Last processed EXIDX input section.
1326   const Arm_exidx_input_section* last_input_section_;
1327   // Section offset map created in process_exidx_section.
1328   Arm_exidx_section_offset_map* section_offset_map_;
1329   // Output section for the text section which is linked to the first exidx
1330   // input in output.
1331   Output_section* first_output_text_section_;
1332
1333   bool merge_exidx_entries_;
1334 };
1335
1336 // Arm output section class.  This is defined mainly to add a number of
1337 // stub generation methods.
1338
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1341 {
1342  public:
1343   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
1345   // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347                      elfcpp::Elf_Xword flags)
1348     : Output_section(name, type,
1349                      (type == elfcpp::SHT_ARM_EXIDX
1350                       ? flags | elfcpp::SHF_LINK_ORDER
1351                       : flags))
1352   {
1353     if (type == elfcpp::SHT_ARM_EXIDX)
1354       this->set_always_keeps_input_sections();
1355   }
1356
1357   ~Arm_output_section()
1358   { }
1359   
1360   // Group input sections for stub generation.
1361   void
1362   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1363
1364   // Downcast a base pointer to an Arm_output_section pointer.  This is
1365   // not type-safe but we only use Arm_output_section not the base class.
1366   static Arm_output_section<big_endian>*
1367   as_arm_output_section(Output_section* os)
1368   { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
1370   // Append all input text sections in this into LIST.
1371   void
1372   append_text_sections_to_list(Text_section_list* list);
1373
1374   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1375   // is a list of text input sections sorted in ascending order of their
1376   // output addresses.
1377   void
1378   fix_exidx_coverage(Layout* layout,
1379                      const Text_section_list& sorted_text_section,
1380                      Symbol_table* symtab,
1381                      bool merge_exidx_entries,
1382                      const Task* task);
1383
1384   // Link an EXIDX section into its corresponding text section.
1385   void
1386   set_exidx_section_link();
1387
1388  private:
1389   // For convenience.
1390   typedef Output_section::Input_section Input_section;
1391   typedef Output_section::Input_section_list Input_section_list;
1392
1393   // Create a stub group.
1394   void create_stub_group(Input_section_list::const_iterator,
1395                          Input_section_list::const_iterator,
1396                          Input_section_list::const_iterator,
1397                          Target_arm<big_endian>*,
1398                          std::vector<Output_relaxed_input_section*>*,
1399                          const Task* task);
1400 };
1401
1402 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1403
1404 class Arm_exidx_input_section
1405 {
1406  public:
1407   static const section_offset_type invalid_offset =
1408     static_cast<section_offset_type>(-1);
1409
1410   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411                           unsigned int link, uint32_t size,
1412                           uint32_t addralign, uint32_t text_size)
1413     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414       addralign_(addralign), text_size_(text_size), has_errors_(false)
1415   { }
1416
1417   ~Arm_exidx_input_section()
1418   { }
1419         
1420   // Accessors:  This is a read-only class.
1421
1422   // Return the object containing this EXIDX input section.
1423   Relobj*
1424   relobj() const
1425   { return this->relobj_; }
1426
1427   // Return the section index of this EXIDX input section.
1428   unsigned int
1429   shndx() const
1430   { return this->shndx_; }
1431
1432   // Return the section index of linked text section in the same object.
1433   unsigned int
1434   link() const
1435   { return this->link_; }
1436
1437   // Return size of the EXIDX input section.
1438   uint32_t
1439   size() const
1440   { return this->size_; }
1441
1442   // Return address alignment of EXIDX input section.
1443   uint32_t
1444   addralign() const
1445   { return this->addralign_; }
1446
1447   // Return size of the associated text input section.
1448   uint32_t
1449   text_size() const
1450   { return this->text_size_; }
1451
1452   // Whether there are any errors in the EXIDX input section.
1453   bool
1454   has_errors() const
1455   { return this->has_errors_; }
1456
1457   // Set has-errors flag.
1458   void
1459   set_has_errors()
1460   { this->has_errors_ = true; }
1461
1462  private:
1463   // Object containing this.
1464   Relobj* relobj_;
1465   // Section index of this.
1466   unsigned int shndx_;
1467   // text section linked to this in the same object.
1468   unsigned int link_;
1469   // Size of this.  For ARM 32-bit is sufficient.
1470   uint32_t size_;
1471   // Address alignment of this.  For ARM 32-bit is sufficient.
1472   uint32_t addralign_;
1473   // Size of associated text section.
1474   uint32_t text_size_;
1475   // Whether this has any errors.
1476   bool has_errors_;
1477 };
1478
1479 // Arm_relobj class.
1480
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1483 {
1484  public:
1485   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
1487   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489     : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490       stub_tables_(), local_symbol_is_thumb_function_(),
1491       attributes_section_data_(NULL), mapping_symbols_info_(),
1492       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493       output_local_symbol_count_needs_update_(false),
1494       merge_flags_and_attributes_(true)
1495   { }
1496
1497   ~Arm_relobj()
1498   { delete this->attributes_section_data_; }
1499  
1500   // Return the stub table of the SHNDX-th section if there is one.
1501   Stub_table<big_endian>*
1502   stub_table(unsigned int shndx) const
1503   {
1504     gold_assert(shndx < this->stub_tables_.size());
1505     return this->stub_tables_[shndx];
1506   }
1507
1508   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509   void
1510   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1511   {
1512     gold_assert(shndx < this->stub_tables_.size());
1513     this->stub_tables_[shndx] = stub_table;
1514   }
1515
1516   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1517   // index.  This is only valid after do_count_local_symbol is called.
1518   bool
1519   local_symbol_is_thumb_function(unsigned int r_sym) const
1520   {
1521     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522     return this->local_symbol_is_thumb_function_[r_sym];
1523   }
1524   
1525   // Scan all relocation sections for stub generation.
1526   void
1527   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528                           const Layout*);
1529
1530   // Convert regular input section with index SHNDX to a relaxed section.
1531   void
1532   convert_input_section_to_relaxed_section(unsigned shndx)
1533   {
1534     // The stubs have relocations and we need to process them after writing
1535     // out the stubs.  So relocation now must follow section write.
1536     this->set_section_offset(shndx, -1ULL);
1537     this->set_relocs_must_follow_section_writes();
1538   }
1539
1540   // Downcast a base pointer to an Arm_relobj pointer.  This is
1541   // not type-safe but we only use Arm_relobj not the base class.
1542   static Arm_relobj<big_endian>*
1543   as_arm_relobj(Relobj* relobj)
1544   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1545
1546   // Processor-specific flags in ELF file header.  This is valid only after
1547   // reading symbols.
1548   elfcpp::Elf_Word
1549   processor_specific_flags() const
1550   { return this->processor_specific_flags_; }
1551
1552   // Attribute section data  This is the contents of the .ARM.attribute section
1553   // if there is one.
1554   const Attributes_section_data*
1555   attributes_section_data() const
1556   { return this->attributes_section_data_; }
1557
1558   // Mapping symbol location.
1559   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561   // Functor for STL container.
1562   struct Mapping_symbol_position_less
1563   {
1564     bool
1565     operator()(const Mapping_symbol_position& p1,
1566                const Mapping_symbol_position& p2) const
1567     {
1568       return (p1.first < p2.first
1569               || (p1.first == p2.first && p1.second < p2.second));
1570     }
1571   };
1572   
1573   // We only care about the first character of a mapping symbol, so
1574   // we only store that instead of the whole symbol name.
1575   typedef std::map<Mapping_symbol_position, char,
1576                    Mapping_symbol_position_less> Mapping_symbols_info;
1577
1578   // Whether a section contains any Cortex-A8 workaround.
1579   bool
1580   section_has_cortex_a8_workaround(unsigned int shndx) const
1581   { 
1582     return (this->section_has_cortex_a8_workaround_ != NULL
1583             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584   }
1585   
1586   // Mark a section that has Cortex-A8 workaround.
1587   void
1588   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589   {
1590     if (this->section_has_cortex_a8_workaround_ == NULL)
1591       this->section_has_cortex_a8_workaround_ =
1592         new std::vector<bool>(this->shnum(), false);
1593     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594   }
1595
1596   // Return the EXIDX section of an text section with index SHNDX or NULL
1597   // if the text section has no associated EXIDX section.
1598   const Arm_exidx_input_section*
1599   exidx_input_section_by_link(unsigned int shndx) const
1600   {
1601     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602     return ((p != this->exidx_section_map_.end()
1603              && p->second->link() == shndx)
1604             ? p->second
1605             : NULL);
1606   }
1607
1608   // Return the EXIDX section with index SHNDX or NULL if there is none.
1609   const Arm_exidx_input_section*
1610   exidx_input_section_by_shndx(unsigned shndx) const
1611   {
1612     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613     return ((p != this->exidx_section_map_.end()
1614              && p->second->shndx() == shndx)
1615             ? p->second
1616             : NULL);
1617   }
1618
1619   // Whether output local symbol count needs updating.
1620   bool
1621   output_local_symbol_count_needs_update() const
1622   { return this->output_local_symbol_count_needs_update_; }
1623
1624   // Set output_local_symbol_count_needs_update flag to be true.
1625   void
1626   set_output_local_symbol_count_needs_update()
1627   { this->output_local_symbol_count_needs_update_ = true; }
1628   
1629   // Update output local symbol count at the end of relaxation.
1630   void
1631   update_output_local_symbol_count();
1632
1633   // Whether we want to merge processor-specific flags and attributes.
1634   bool
1635   merge_flags_and_attributes() const
1636   { return this->merge_flags_and_attributes_; }
1637   
1638   // Export list of EXIDX section indices.
1639   void
1640   get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641   {
1642     list->clear();
1643     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644          p != this->exidx_section_map_.end();
1645          ++p)
1646       {
1647         if (p->second->shndx() == p->first)
1648           list->push_back(p->first);
1649       }
1650     // Sort list to make result independent of implementation of map. 
1651     std::sort(list->begin(), list->end());
1652   }
1653
1654  protected:
1655   // Post constructor setup.
1656   void
1657   do_setup()
1658   {
1659     // Call parent's setup method.
1660     Sized_relobj_file<32, big_endian>::do_setup();
1661
1662     // Initialize look-up tables.
1663     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664     this->stub_tables_.swap(empty_stub_table_list);
1665   }
1666
1667   // Count the local symbols.
1668   void
1669   do_count_local_symbols(Stringpool_template<char>*,
1670                          Stringpool_template<char>*);
1671
1672   void
1673   do_relocate_sections(
1674       const Symbol_table* symtab, const Layout* layout,
1675       const unsigned char* pshdrs, Output_file* of,
1676       typename Sized_relobj_file<32, big_endian>::Views* pivews);
1677
1678   // Read the symbol information.
1679   void
1680   do_read_symbols(Read_symbols_data* sd);
1681
1682   // Process relocs for garbage collection.
1683   void
1684   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
1686  private:
1687
1688   // Whether a section needs to be scanned for relocation stubs.
1689   bool
1690   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691                                     const Relobj::Output_sections&,
1692                                     const Symbol_table*, const unsigned char*);
1693
1694   // Whether a section is a scannable text section.
1695   bool
1696   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697                        const Output_section*, const Symbol_table*);
1698
1699   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700   bool
1701   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702                                         unsigned int, Output_section*,
1703                                         const Symbol_table*);
1704
1705   // Scan a section for the Cortex-A8 erratum.
1706   void
1707   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708                                      unsigned int, Output_section*,
1709                                      Target_arm<big_endian>*);
1710
1711   // Find the linked text section of an EXIDX section by looking at the
1712   // first relocation of the EXIDX section.  PSHDR points to the section
1713   // headers of a relocation section and PSYMS points to the local symbols.
1714   // PSHNDX points to a location storing the text section index if found.
1715   // Return whether we can find the linked section.
1716   bool
1717   find_linked_text_section(const unsigned char* pshdr,
1718                            const unsigned char* psyms, unsigned int* pshndx);
1719
1720   //
1721   // Make a new Arm_exidx_input_section object for EXIDX section with
1722   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1723   // index of the linked text section.
1724   void
1725   make_exidx_input_section(unsigned int shndx,
1726                            const elfcpp::Shdr<32, big_endian>& shdr,
1727                            unsigned int text_shndx,
1728                            const elfcpp::Shdr<32, big_endian>& text_shdr);
1729
1730   // Return the output address of either a plain input section or a
1731   // relaxed input section.  SHNDX is the section index.
1732   Arm_address
1733   simple_input_section_output_address(unsigned int, Output_section*);
1734
1735   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737     Exidx_section_map;
1738
1739   // List of stub tables.
1740   Stub_table_list stub_tables_;
1741   // Bit vector to tell if a local symbol is a thumb function or not.
1742   // This is only valid after do_count_local_symbol is called.
1743   std::vector<bool> local_symbol_is_thumb_function_;
1744   // processor-specific flags in ELF file header.
1745   elfcpp::Elf_Word processor_specific_flags_;
1746   // Object attributes if there is an .ARM.attributes section or NULL.
1747   Attributes_section_data* attributes_section_data_;
1748   // Mapping symbols information.
1749   Mapping_symbols_info mapping_symbols_info_;
1750   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751   std::vector<bool>* section_has_cortex_a8_workaround_;
1752   // Map a text section to its associated .ARM.exidx section, if there is one.
1753   Exidx_section_map exidx_section_map_;
1754   // Whether output local symbol count needs updating.
1755   bool output_local_symbol_count_needs_update_;
1756   // Whether we merge processor flags and attributes of this object to
1757   // output.
1758   bool merge_flags_and_attributes_;
1759 };
1760
1761 // Arm_dynobj class.
1762
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765 {
1766  public:
1767   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768              const elfcpp::Ehdr<32, big_endian>& ehdr)
1769     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770       processor_specific_flags_(0), attributes_section_data_(NULL)
1771   { }
1772  
1773   ~Arm_dynobj()
1774   { delete this->attributes_section_data_; }
1775
1776   // Downcast a base pointer to an Arm_relobj pointer.  This is
1777   // not type-safe but we only use Arm_relobj not the base class.
1778   static Arm_dynobj<big_endian>*
1779   as_arm_dynobj(Dynobj* dynobj)
1780   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782   // Processor-specific flags in ELF file header.  This is valid only after
1783   // reading symbols.
1784   elfcpp::Elf_Word
1785   processor_specific_flags() const
1786   { return this->processor_specific_flags_; }
1787
1788   // Attributes section data.
1789   const Attributes_section_data*
1790   attributes_section_data() const
1791   { return this->attributes_section_data_; }
1792
1793  protected:
1794   // Read the symbol information.
1795   void
1796   do_read_symbols(Read_symbols_data* sd);
1797
1798  private:
1799   // processor-specific flags in ELF file header.
1800   elfcpp::Elf_Word processor_specific_flags_;
1801   // Object attributes if there is an .ARM.attributes section or NULL.
1802   Attributes_section_data* attributes_section_data_;
1803 };
1804
1805 // Functor to read reloc addends during stub generation.
1806
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1809 {
1810   // Return the addend for a relocation of a particular type.  Depending
1811   // on whether this is a REL or RELA relocation, read the addend from a
1812   // view or from a Reloc object.
1813   elfcpp::Elf_types<32>::Elf_Swxword
1814   operator()(
1815     unsigned int /* r_type */,
1816     const unsigned char* /* view */,
1817     const typename Reloc_types<sh_type,
1818                                32, big_endian>::Reloc& /* reloc */) const;
1819 };
1820
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825 {
1826   elfcpp::Elf_types<32>::Elf_Swxword
1827   operator()(
1828     unsigned int,
1829     const unsigned char*,
1830     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831 };
1832
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader.  This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1837
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840 {
1841   elfcpp::Elf_types<32>::Elf_Swxword
1842   operator()(
1843     unsigned int,
1844     const unsigned char*,
1845     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846                                big_endian>::Reloc& reloc) const
1847   { return reloc.get_r_addend(); }
1848 };
1849
1850 // Cortex_a8_reloc class.  We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1852
1853 class Cortex_a8_reloc
1854 {
1855  public:
1856   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857                   Arm_address destination)
1858     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859   { }
1860
1861   ~Cortex_a8_reloc()
1862   { }
1863
1864   // Accessors:  This is a read-only class.
1865   
1866   // Return the relocation stub associated with this relocation if there is
1867   // one.
1868   const Reloc_stub*
1869   reloc_stub() const
1870   { return this->reloc_stub_; } 
1871   
1872   // Return the relocation type.
1873   unsigned int
1874   r_type() const
1875   { return this->r_type_; }
1876
1877   // Return the destination address of the relocation.  LSB stores the THUMB
1878   // bit.
1879   Arm_address
1880   destination() const
1881   { return this->destination_; }
1882
1883  private:
1884   // Associated relocation stub if there is one, or NULL.
1885   const Reloc_stub* reloc_stub_;
1886   // Relocation type.
1887   unsigned int r_type_;
1888   // Destination address of this relocation.  LSB is used to distinguish
1889   // ARM/THUMB mode.
1890   Arm_address destination_;
1891 };
1892
1893 // Arm_output_data_got class.  We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1895
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1898 {
1899  public:
1900   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902   { }
1903
1904   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1905   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906   // applied in a static link.
1907   void
1908   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1912   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1913   // relocation that needs to be applied in a static link.
1914   void
1915   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916                    Sized_relobj_file<32, big_endian>* relobj,
1917                    unsigned int index)
1918   {
1919     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920                                                 index));
1921   }
1922
1923   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1924   // The first one is initialized to be 1, which is the module index for
1925   // the main executable and the second one 0.  A reloc of the type
1926   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927   // be applied by gold.  GSYM is a global symbol.
1928   void
1929   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931   // Same as the above but for a local symbol in OBJECT with INDEX.
1932   void
1933   add_tls_gd32_with_static_reloc(unsigned int got_type,
1934                                  Sized_relobj_file<32, big_endian>* object,
1935                                  unsigned int index);
1936
1937  protected:
1938   // Write out the GOT table.
1939   void
1940   do_write(Output_file*);
1941
1942  private:
1943   // This class represent dynamic relocations that need to be applied by
1944   // gold because we are using TLS relocations in a static link.
1945   class Static_reloc
1946   {
1947    public:
1948     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950     { this->u_.global.symbol = gsym; }
1951
1952     Static_reloc(unsigned int got_offset, unsigned int r_type,
1953           Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955     {
1956       this->u_.local.relobj = relobj;
1957       this->u_.local.index = index;
1958     }
1959
1960     // Return the GOT offset.
1961     unsigned int
1962     got_offset() const
1963     { return this->got_offset_; }
1964
1965     // Relocation type.
1966     unsigned int
1967     r_type() const
1968     { return this->r_type_; }
1969
1970     // Whether the symbol is global or not.
1971     bool
1972     symbol_is_global() const
1973     { return this->symbol_is_global_; }
1974
1975     // For a relocation against a global symbol, the global symbol.
1976     Symbol*
1977     symbol() const
1978     {
1979       gold_assert(this->symbol_is_global_);
1980       return this->u_.global.symbol;
1981     }
1982
1983     // For a relocation against a local symbol, the defining object.
1984     Sized_relobj_file<32, big_endian>*
1985     relobj() const
1986     {
1987       gold_assert(!this->symbol_is_global_);
1988       return this->u_.local.relobj;
1989     }
1990
1991     // For a relocation against a local symbol, the local symbol index.
1992     unsigned int
1993     index() const
1994     {
1995       gold_assert(!this->symbol_is_global_);
1996       return this->u_.local.index;
1997     }
1998
1999    private:
2000     // GOT offset of the entry to which this relocation is applied.
2001     unsigned int got_offset_;
2002     // Type of relocation.
2003     unsigned int r_type_;
2004     // Whether this relocation is against a global symbol.
2005     bool symbol_is_global_;
2006     // A global or local symbol.
2007     union
2008     {
2009       struct
2010       {
2011         // For a global symbol, the symbol itself.
2012         Symbol* symbol;
2013       } global;
2014       struct
2015       {
2016         // For a local symbol, the object defining object.
2017         Sized_relobj_file<32, big_endian>* relobj;
2018         // For a local symbol, the symbol index.
2019         unsigned int index;
2020       } local;
2021     } u_;
2022   };
2023
2024   // Symbol table of the output object.
2025   Symbol_table* symbol_table_;
2026   // Layout of the output object.
2027   Layout* layout_;
2028   // Static relocs to be applied to the GOT.
2029   std::vector<Static_reloc> static_relocs_;
2030 };
2031
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits.  The default handling of relocatable relocation cannot process these
2034 // relocations.  So we have to extend the default code.
2035
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039 {
2040  public:
2041   // Return the strategy to use for a local symbol which is a section
2042   // symbol, given the relocation type.
2043   inline Relocatable_relocs::Reloc_strategy
2044   local_section_strategy(unsigned int r_type, Relobj*)
2045   {
2046     if (sh_type == elfcpp::SHT_RELA)
2047       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048     else
2049       {
2050         if (r_type == elfcpp::R_ARM_TARGET1
2051             || r_type == elfcpp::R_ARM_TARGET2)
2052           {
2053             const Target_arm<big_endian>* arm_target =
2054               Target_arm<big_endian>::default_target();
2055             r_type = arm_target->get_real_reloc_type(r_type);
2056           }
2057
2058         switch(r_type)
2059           {
2060           // Relocations that write nothing.  These exclude R_ARM_TARGET1
2061           // and R_ARM_TARGET2.
2062           case elfcpp::R_ARM_NONE:
2063           case elfcpp::R_ARM_V4BX:
2064           case elfcpp::R_ARM_TLS_GOTDESC:
2065           case elfcpp::R_ARM_TLS_CALL:
2066           case elfcpp::R_ARM_TLS_DESCSEQ:
2067           case elfcpp::R_ARM_THM_TLS_CALL:
2068           case elfcpp::R_ARM_GOTRELAX:
2069           case elfcpp::R_ARM_GNU_VTENTRY:
2070           case elfcpp::R_ARM_GNU_VTINHERIT:
2071           case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072           case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074           // These should have been converted to something else above.
2075           case elfcpp::R_ARM_TARGET1:
2076           case elfcpp::R_ARM_TARGET2:
2077             gold_unreachable();
2078           // Relocations that write full 32 bits and
2079           // have alignment of 1.
2080           case elfcpp::R_ARM_ABS32:
2081           case elfcpp::R_ARM_REL32:
2082           case elfcpp::R_ARM_SBREL32:
2083           case elfcpp::R_ARM_GOTOFF32:
2084           case elfcpp::R_ARM_BASE_PREL:
2085           case elfcpp::R_ARM_GOT_BREL:
2086           case elfcpp::R_ARM_BASE_ABS:
2087           case elfcpp::R_ARM_ABS32_NOI:
2088           case elfcpp::R_ARM_REL32_NOI:
2089           case elfcpp::R_ARM_PLT32_ABS:
2090           case elfcpp::R_ARM_GOT_ABS:
2091           case elfcpp::R_ARM_GOT_PREL:
2092           case elfcpp::R_ARM_TLS_GD32:
2093           case elfcpp::R_ARM_TLS_LDM32:
2094           case elfcpp::R_ARM_TLS_LDO32:
2095           case elfcpp::R_ARM_TLS_IE32:
2096           case elfcpp::R_ARM_TLS_LE32:
2097             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2098           default:
2099             // For all other static relocations, return RELOC_SPECIAL.
2100             return Relocatable_relocs::RELOC_SPECIAL;
2101           }
2102       }
2103   }
2104 };
2105
2106 template<bool big_endian>
2107 class Target_arm : public Sized_target<32, big_endian>
2108 {
2109  public:
2110   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2111     Reloc_section;
2112
2113   // When were are relocating a stub, we pass this as the relocation number.
2114   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2115
2116   Target_arm()
2117     : Sized_target<32, big_endian>(&arm_info),
2118       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2119       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
2120       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2121       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2122       should_force_pic_veneer_(false),
2123       arm_input_section_map_(), attributes_section_data_(NULL),
2124       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2125   { }
2126
2127   // Whether we force PCI branch veneers.
2128   bool
2129   should_force_pic_veneer() const
2130   { return this->should_force_pic_veneer_; }
2131
2132   // Set PIC veneer flag.
2133   void
2134   set_should_force_pic_veneer(bool value)
2135   { this->should_force_pic_veneer_ = value; }
2136   
2137   // Whether we use THUMB-2 instructions.
2138   bool
2139   using_thumb2() const
2140   {
2141     Object_attribute* attr =
2142       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2143     int arch = attr->int_value();
2144     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2145   }
2146
2147   // Whether we use THUMB/THUMB-2 instructions only.
2148   bool
2149   using_thumb_only() const
2150   {
2151     Object_attribute* attr =
2152       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2153
2154     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2155         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2156       return true;
2157     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2158         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2159       return false;
2160     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2161     return attr->int_value() == 'M';
2162   }
2163
2164   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2165   bool
2166   may_use_arm_nop() const
2167   {
2168     Object_attribute* attr =
2169       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2170     int arch = attr->int_value();
2171     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2172             || arch == elfcpp::TAG_CPU_ARCH_V6K
2173             || arch == elfcpp::TAG_CPU_ARCH_V7
2174             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2175   }
2176
2177   // Whether we have THUMB-2 NOP.W instruction.
2178   bool
2179   may_use_thumb2_nop() const
2180   {
2181     Object_attribute* attr =
2182       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2183     int arch = attr->int_value();
2184     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2185             || arch == elfcpp::TAG_CPU_ARCH_V7
2186             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2187   }
2188
2189   // Whether we have v4T interworking instructions available.
2190   bool
2191   may_use_v4t_interworking() const
2192   {
2193     Object_attribute* attr =
2194       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2195     int arch = attr->int_value();
2196     return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2197             && arch != elfcpp::TAG_CPU_ARCH_V4);
2198   }
2199   
2200   // Whether we have v5T interworking instructions available.
2201   bool
2202   may_use_v5t_interworking() const
2203   {
2204     Object_attribute* attr =
2205       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2206     int arch = attr->int_value();
2207     if (parameters->options().fix_arm1176())
2208       return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2209               || arch == elfcpp::TAG_CPU_ARCH_V7
2210               || arch == elfcpp::TAG_CPU_ARCH_V6_M
2211               || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2212               || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2213     else
2214       return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2215               && arch != elfcpp::TAG_CPU_ARCH_V4
2216               && arch != elfcpp::TAG_CPU_ARCH_V4T);
2217   }
2218   
2219   // Process the relocations to determine unreferenced sections for 
2220   // garbage collection.
2221   void
2222   gc_process_relocs(Symbol_table* symtab,
2223                     Layout* layout,
2224                     Sized_relobj_file<32, big_endian>* object,
2225                     unsigned int data_shndx,
2226                     unsigned int sh_type,
2227                     const unsigned char* prelocs,
2228                     size_t reloc_count,
2229                     Output_section* output_section,
2230                     bool needs_special_offset_handling,
2231                     size_t local_symbol_count,
2232                     const unsigned char* plocal_symbols);
2233
2234   // Scan the relocations to look for symbol adjustments.
2235   void
2236   scan_relocs(Symbol_table* symtab,
2237               Layout* layout,
2238               Sized_relobj_file<32, big_endian>* object,
2239               unsigned int data_shndx,
2240               unsigned int sh_type,
2241               const unsigned char* prelocs,
2242               size_t reloc_count,
2243               Output_section* output_section,
2244               bool needs_special_offset_handling,
2245               size_t local_symbol_count,
2246               const unsigned char* plocal_symbols);
2247
2248   // Finalize the sections.
2249   void
2250   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2251
2252   // Return the value to use for a dynamic symbol which requires special
2253   // treatment.
2254   uint64_t
2255   do_dynsym_value(const Symbol*) const;
2256
2257   // Relocate a section.
2258   void
2259   relocate_section(const Relocate_info<32, big_endian>*,
2260                    unsigned int sh_type,
2261                    const unsigned char* prelocs,
2262                    size_t reloc_count,
2263                    Output_section* output_section,
2264                    bool needs_special_offset_handling,
2265                    unsigned char* view,
2266                    Arm_address view_address,
2267                    section_size_type view_size,
2268                    const Reloc_symbol_changes*);
2269
2270   // Scan the relocs during a relocatable link.
2271   void
2272   scan_relocatable_relocs(Symbol_table* symtab,
2273                           Layout* layout,
2274                           Sized_relobj_file<32, big_endian>* object,
2275                           unsigned int data_shndx,
2276                           unsigned int sh_type,
2277                           const unsigned char* prelocs,
2278                           size_t reloc_count,
2279                           Output_section* output_section,
2280                           bool needs_special_offset_handling,
2281                           size_t local_symbol_count,
2282                           const unsigned char* plocal_symbols,
2283                           Relocatable_relocs*);
2284
2285   // Relocate a section during a relocatable link.
2286   void
2287   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2288                            unsigned int sh_type,
2289                            const unsigned char* prelocs,
2290                            size_t reloc_count,
2291                            Output_section* output_section,
2292                            off_t offset_in_output_section,
2293                            const Relocatable_relocs*,
2294                            unsigned char* view,
2295                            Arm_address view_address,
2296                            section_size_type view_size,
2297                            unsigned char* reloc_view,
2298                            section_size_type reloc_view_size);
2299
2300   // Perform target-specific processing in a relocatable link.  This is
2301   // only used if we use the relocation strategy RELOC_SPECIAL.
2302   void
2303   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2304                                unsigned int sh_type,
2305                                const unsigned char* preloc_in,
2306                                size_t relnum,
2307                                Output_section* output_section,
2308                                off_t offset_in_output_section,
2309                                unsigned char* view,
2310                                typename elfcpp::Elf_types<32>::Elf_Addr
2311                                  view_address,
2312                                section_size_type view_size,
2313                                unsigned char* preloc_out);
2314  
2315   // Return whether SYM is defined by the ABI.
2316   bool
2317   do_is_defined_by_abi(Symbol* sym) const
2318   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2319
2320   // Return whether there is a GOT section.
2321   bool
2322   has_got_section() const
2323   { return this->got_ != NULL; }
2324
2325   // Return the size of the GOT section.
2326   section_size_type
2327   got_size() const
2328   {
2329     gold_assert(this->got_ != NULL);
2330     return this->got_->data_size();
2331   }
2332
2333   // Return the number of entries in the GOT.
2334   unsigned int
2335   got_entry_count() const
2336   {
2337     if (!this->has_got_section())
2338       return 0;
2339     return this->got_size() / 4;
2340   }
2341
2342   // Return the number of entries in the PLT.
2343   unsigned int
2344   plt_entry_count() const;
2345
2346   // Return the offset of the first non-reserved PLT entry.
2347   unsigned int
2348   first_plt_entry_offset() const;
2349
2350   // Return the size of each PLT entry.
2351   unsigned int
2352   plt_entry_size() const;
2353
2354   // Map platform-specific reloc types
2355   static unsigned int
2356   get_real_reloc_type(unsigned int r_type);
2357
2358   //
2359   // Methods to support stub-generations.
2360   //
2361   
2362   // Return the stub factory
2363   const Stub_factory&
2364   stub_factory() const
2365   { return this->stub_factory_; }
2366
2367   // Make a new Arm_input_section object.
2368   Arm_input_section<big_endian>*
2369   new_arm_input_section(Relobj*, unsigned int);
2370
2371   // Find the Arm_input_section object corresponding to the SHNDX-th input
2372   // section of RELOBJ.
2373   Arm_input_section<big_endian>*
2374   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2375
2376   // Make a new Stub_table
2377   Stub_table<big_endian>*
2378   new_stub_table(Arm_input_section<big_endian>*);
2379
2380   // Scan a section for stub generation.
2381   void
2382   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2383                          const unsigned char*, size_t, Output_section*,
2384                          bool, const unsigned char*, Arm_address,
2385                          section_size_type);
2386
2387   // Relocate a stub. 
2388   void
2389   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2390                 Output_section*, unsigned char*, Arm_address,
2391                 section_size_type);
2392  
2393   // Get the default ARM target.
2394   static Target_arm<big_endian>*
2395   default_target()
2396   {
2397     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2398                 && parameters->target().is_big_endian() == big_endian);
2399     return static_cast<Target_arm<big_endian>*>(
2400              parameters->sized_target<32, big_endian>());
2401   }
2402
2403   // Whether NAME belongs to a mapping symbol.
2404   static bool
2405   is_mapping_symbol_name(const char* name)
2406   {
2407     return (name
2408             && name[0] == '$'
2409             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2410             && (name[2] == '\0' || name[2] == '.'));
2411   }
2412
2413   // Whether we work around the Cortex-A8 erratum.
2414   bool
2415   fix_cortex_a8() const
2416   { return this->fix_cortex_a8_; }
2417
2418   // Whether we merge exidx entries in debuginfo.
2419   bool
2420   merge_exidx_entries() const
2421   { return parameters->options().merge_exidx_entries(); }
2422
2423   // Whether we fix R_ARM_V4BX relocation.
2424   // 0 - do not fix
2425   // 1 - replace with MOV instruction (armv4 target)
2426   // 2 - make interworking veneer (>= armv4t targets only)
2427   General_options::Fix_v4bx
2428   fix_v4bx() const
2429   { return parameters->options().fix_v4bx(); }
2430
2431   // Scan a span of THUMB code section for Cortex-A8 erratum.
2432   void
2433   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2434                                   section_size_type, section_size_type,
2435                                   const unsigned char*, Arm_address);
2436
2437   // Apply Cortex-A8 workaround to a branch.
2438   void
2439   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2440                              unsigned char*, Arm_address);
2441
2442  protected:
2443   // Make an ELF object.
2444   Object*
2445   do_make_elf_object(const std::string&, Input_file*, off_t,
2446                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2447
2448   Object*
2449   do_make_elf_object(const std::string&, Input_file*, off_t,
2450                      const elfcpp::Ehdr<32, !big_endian>&)
2451   { gold_unreachable(); }
2452
2453   Object*
2454   do_make_elf_object(const std::string&, Input_file*, off_t,
2455                       const elfcpp::Ehdr<64, false>&)
2456   { gold_unreachable(); }
2457
2458   Object*
2459   do_make_elf_object(const std::string&, Input_file*, off_t,
2460                      const elfcpp::Ehdr<64, true>&)
2461   { gold_unreachable(); }
2462
2463   // Make an output section.
2464   Output_section*
2465   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2466                          elfcpp::Elf_Xword flags)
2467   { return new Arm_output_section<big_endian>(name, type, flags); }
2468
2469   void
2470   do_adjust_elf_header(unsigned char* view, int len) const;
2471
2472   // We only need to generate stubs, and hence perform relaxation if we are
2473   // not doing relocatable linking.
2474   bool
2475   do_may_relax() const
2476   { return !parameters->options().relocatable(); }
2477
2478   bool
2479   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2480
2481   // Determine whether an object attribute tag takes an integer, a
2482   // string or both.
2483   int
2484   do_attribute_arg_type(int tag) const;
2485
2486   // Reorder tags during output.
2487   int
2488   do_attributes_order(int num) const;
2489
2490   // This is called when the target is selected as the default.
2491   void
2492   do_select_as_default_target()
2493   {
2494     // No locking is required since there should only be one default target.
2495     // We cannot have both the big-endian and little-endian ARM targets
2496     // as the default.
2497     gold_assert(arm_reloc_property_table == NULL);
2498     arm_reloc_property_table = new Arm_reloc_property_table();
2499   }
2500
2501   // Virtual function which is set to return true by a target if
2502   // it can use relocation types to determine if a function's
2503   // pointer is taken.
2504   virtual bool
2505   do_can_check_for_function_pointers() const
2506   { return true; }
2507
2508   // Whether a section called SECTION_NAME may have function pointers to
2509   // sections not eligible for safe ICF folding.
2510   virtual bool
2511   do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2512   {
2513     return (!is_prefix_of(".ARM.exidx", section_name)
2514             && !is_prefix_of(".ARM.extab", section_name)
2515             && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2516   }
2517   
2518  private:
2519   // The class which scans relocations.
2520   class Scan
2521   {
2522    public:
2523     Scan()
2524       : issued_non_pic_error_(false)
2525     { }
2526
2527     static inline int
2528     get_reference_flags(unsigned int r_type);
2529
2530     inline void
2531     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2532           Sized_relobj_file<32, big_endian>* object,
2533           unsigned int data_shndx,
2534           Output_section* output_section,
2535           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2536           const elfcpp::Sym<32, big_endian>& lsym);
2537
2538     inline void
2539     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2540            Sized_relobj_file<32, big_endian>* object,
2541            unsigned int data_shndx,
2542            Output_section* output_section,
2543            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2544            Symbol* gsym);
2545
2546     inline bool
2547     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2548                                         Sized_relobj_file<32, big_endian>* ,
2549                                         unsigned int ,
2550                                         Output_section* ,
2551                                         const elfcpp::Rel<32, big_endian>& ,
2552                                         unsigned int ,
2553                                         const elfcpp::Sym<32, big_endian>&);
2554
2555     inline bool
2556     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2557                                          Sized_relobj_file<32, big_endian>* ,
2558                                          unsigned int ,
2559                                          Output_section* ,
2560                                          const elfcpp::Rel<32, big_endian>& ,
2561                                          unsigned int , Symbol*);
2562
2563    private:
2564     static void
2565     unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2566                             unsigned int r_type);
2567
2568     static void
2569     unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2570                              unsigned int r_type, Symbol*);
2571
2572     void
2573     check_non_pic(Relobj*, unsigned int r_type);
2574
2575     // Almost identical to Symbol::needs_plt_entry except that it also
2576     // handles STT_ARM_TFUNC.
2577     static bool
2578     symbol_needs_plt_entry(const Symbol* sym)
2579     {
2580       // An undefined symbol from an executable does not need a PLT entry.
2581       if (sym->is_undefined() && !parameters->options().shared())
2582         return false;
2583
2584       return (!parameters->doing_static_link()
2585               && (sym->type() == elfcpp::STT_FUNC
2586                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2587               && (sym->is_from_dynobj()
2588                   || sym->is_undefined()
2589                   || sym->is_preemptible()));
2590     }
2591
2592     inline bool
2593     possible_function_pointer_reloc(unsigned int r_type);
2594
2595     // Whether we have issued an error about a non-PIC compilation.
2596     bool issued_non_pic_error_;
2597   };
2598
2599   // The class which implements relocation.
2600   class Relocate
2601   {
2602    public:
2603     Relocate()
2604     { }
2605
2606     ~Relocate()
2607     { }
2608
2609     // Return whether the static relocation needs to be applied.
2610     inline bool
2611     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2612                               unsigned int r_type,
2613                               bool is_32bit,
2614                               Output_section* output_section);
2615
2616     // Do a relocation.  Return false if the caller should not issue
2617     // any warnings about this relocation.
2618     inline bool
2619     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2620              Output_section*,  size_t relnum,
2621              const elfcpp::Rel<32, big_endian>&,
2622              unsigned int r_type, const Sized_symbol<32>*,
2623              const Symbol_value<32>*,
2624              unsigned char*, Arm_address,
2625              section_size_type);
2626
2627     // Return whether we want to pass flag NON_PIC_REF for this
2628     // reloc.  This means the relocation type accesses a symbol not via
2629     // GOT or PLT.
2630     static inline bool
2631     reloc_is_non_pic(unsigned int r_type)
2632     {
2633       switch (r_type)
2634         {
2635         // These relocation types reference GOT or PLT entries explicitly.
2636         case elfcpp::R_ARM_GOT_BREL:
2637         case elfcpp::R_ARM_GOT_ABS:
2638         case elfcpp::R_ARM_GOT_PREL:
2639         case elfcpp::R_ARM_GOT_BREL12:
2640         case elfcpp::R_ARM_PLT32_ABS:
2641         case elfcpp::R_ARM_TLS_GD32:
2642         case elfcpp::R_ARM_TLS_LDM32:
2643         case elfcpp::R_ARM_TLS_IE32:
2644         case elfcpp::R_ARM_TLS_IE12GP:
2645
2646         // These relocate types may use PLT entries.
2647         case elfcpp::R_ARM_CALL:
2648         case elfcpp::R_ARM_THM_CALL:
2649         case elfcpp::R_ARM_JUMP24:
2650         case elfcpp::R_ARM_THM_JUMP24:
2651         case elfcpp::R_ARM_THM_JUMP19:
2652         case elfcpp::R_ARM_PLT32:
2653         case elfcpp::R_ARM_THM_XPC22:
2654         case elfcpp::R_ARM_PREL31:
2655         case elfcpp::R_ARM_SBREL31:
2656           return false;
2657
2658         default:
2659           return true;
2660         }
2661     }
2662
2663    private:
2664     // Do a TLS relocation.
2665     inline typename Arm_relocate_functions<big_endian>::Status
2666     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2667                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2668                  const Sized_symbol<32>*, const Symbol_value<32>*,
2669                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2670                  section_size_type);
2671
2672   };
2673
2674   // A class which returns the size required for a relocation type,
2675   // used while scanning relocs during a relocatable link.
2676   class Relocatable_size_for_reloc
2677   {
2678    public:
2679     unsigned int
2680     get_size_for_reloc(unsigned int, Relobj*);
2681   };
2682
2683   // Adjust TLS relocation type based on the options and whether this
2684   // is a local symbol.
2685   static tls::Tls_optimization
2686   optimize_tls_reloc(bool is_final, int r_type);
2687
2688   // Get the GOT section, creating it if necessary.
2689   Arm_output_data_got<big_endian>*
2690   got_section(Symbol_table*, Layout*);
2691
2692   // Get the GOT PLT section.
2693   Output_data_space*
2694   got_plt_section() const
2695   {
2696     gold_assert(this->got_plt_ != NULL);
2697     return this->got_plt_;
2698   }
2699
2700   // Create a PLT entry for a global symbol.
2701   void
2702   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2703
2704   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2705   void
2706   define_tls_base_symbol(Symbol_table*, Layout*);
2707
2708   // Create a GOT entry for the TLS module index.
2709   unsigned int
2710   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2711                       Sized_relobj_file<32, big_endian>* object);
2712
2713   // Get the PLT section.
2714   const Output_data_plt_arm<big_endian>*
2715   plt_section() const
2716   {
2717     gold_assert(this->plt_ != NULL);
2718     return this->plt_;
2719   }
2720
2721   // Get the dynamic reloc section, creating it if necessary.
2722   Reloc_section*
2723   rel_dyn_section(Layout*);
2724
2725   // Get the section to use for TLS_DESC relocations.
2726   Reloc_section*
2727   rel_tls_desc_section(Layout*) const;
2728
2729   // Return true if the symbol may need a COPY relocation.
2730   // References from an executable object to non-function symbols
2731   // defined in a dynamic object may need a COPY relocation.
2732   bool
2733   may_need_copy_reloc(Symbol* gsym)
2734   {
2735     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2736             && gsym->may_need_copy_reloc());
2737   }
2738
2739   // Add a potential copy relocation.
2740   void
2741   copy_reloc(Symbol_table* symtab, Layout* layout,
2742              Sized_relobj_file<32, big_endian>* object,
2743              unsigned int shndx, Output_section* output_section,
2744              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2745   {
2746     this->copy_relocs_.copy_reloc(symtab, layout,
2747                                   symtab->get_sized_symbol<32>(sym),
2748                                   object, shndx, output_section, reloc,
2749                                   this->rel_dyn_section(layout));
2750   }
2751
2752   // Whether two EABI versions are compatible.
2753   static bool
2754   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2755
2756   // Merge processor-specific flags from input object and those in the ELF
2757   // header of the output.
2758   void
2759   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2760
2761   // Get the secondary compatible architecture.
2762   static int
2763   get_secondary_compatible_arch(const Attributes_section_data*);
2764
2765   // Set the secondary compatible architecture.
2766   static void
2767   set_secondary_compatible_arch(Attributes_section_data*, int);
2768
2769   static int
2770   tag_cpu_arch_combine(const char*, int, int*, int, int);
2771
2772   // Helper to print AEABI enum tag value.
2773   static std::string
2774   aeabi_enum_name(unsigned int);
2775
2776   // Return string value for TAG_CPU_name.
2777   static std::string
2778   tag_cpu_name_value(unsigned int);
2779
2780   // Merge object attributes from input object and those in the output.
2781   void
2782   merge_object_attributes(const char*, const Attributes_section_data*);
2783
2784   // Helper to get an AEABI object attribute
2785   Object_attribute*
2786   get_aeabi_object_attribute(int tag) const
2787   {
2788     Attributes_section_data* pasd = this->attributes_section_data_;
2789     gold_assert(pasd != NULL);
2790     Object_attribute* attr =
2791       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2792     gold_assert(attr != NULL);
2793     return attr;
2794   }
2795
2796   //
2797   // Methods to support stub-generations.
2798   //
2799
2800   // Group input sections for stub generation.
2801   void
2802   group_sections(Layout*, section_size_type, bool, const Task*);
2803
2804   // Scan a relocation for stub generation.
2805   void
2806   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2807                       const Sized_symbol<32>*, unsigned int,
2808                       const Symbol_value<32>*,
2809                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2810
2811   // Scan a relocation section for stub.
2812   template<int sh_type>
2813   void
2814   scan_reloc_section_for_stubs(
2815       const Relocate_info<32, big_endian>* relinfo,
2816       const unsigned char* prelocs,
2817       size_t reloc_count,
2818       Output_section* output_section,
2819       bool needs_special_offset_handling,
2820       const unsigned char* view,
2821       elfcpp::Elf_types<32>::Elf_Addr view_address,
2822       section_size_type);
2823
2824   // Fix .ARM.exidx section coverage.
2825   void
2826   fix_exidx_coverage(Layout*, const Input_objects*,
2827                      Arm_output_section<big_endian>*, Symbol_table*,
2828                      const Task*);
2829
2830   // Functors for STL set.
2831   struct output_section_address_less_than
2832   {
2833     bool
2834     operator()(const Output_section* s1, const Output_section* s2) const
2835     { return s1->address() < s2->address(); }
2836   };
2837
2838   // Information about this specific target which we pass to the
2839   // general Target structure.
2840   static const Target::Target_info arm_info;
2841
2842   // The types of GOT entries needed for this platform.
2843   // These values are exposed to the ABI in an incremental link.
2844   // Do not renumber existing values without changing the version
2845   // number of the .gnu_incremental_inputs section.
2846   enum Got_type
2847   {
2848     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2849     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2850     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2851     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2852     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2853   };
2854
2855   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2856
2857   // Map input section to Arm_input_section.
2858   typedef Unordered_map<Section_id,
2859                         Arm_input_section<big_endian>*,
2860                         Section_id_hash>
2861           Arm_input_section_map;
2862     
2863   // Map output addresses to relocs for Cortex-A8 erratum.
2864   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2865           Cortex_a8_relocs_info;
2866
2867   // The GOT section.
2868   Arm_output_data_got<big_endian>* got_;
2869   // The PLT section.
2870   Output_data_plt_arm<big_endian>* plt_;
2871   // The GOT PLT section.
2872   Output_data_space* got_plt_;
2873   // The dynamic reloc section.
2874   Reloc_section* rel_dyn_;
2875   // Relocs saved to avoid a COPY reloc.
2876   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2877   // Space for variables copied with a COPY reloc.
2878   Output_data_space* dynbss_;
2879   // Offset of the GOT entry for the TLS module index.
2880   unsigned int got_mod_index_offset_;
2881   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2882   bool tls_base_symbol_defined_;
2883   // Vector of Stub_tables created.
2884   Stub_table_list stub_tables_;
2885   // Stub factory.
2886   const Stub_factory &stub_factory_;
2887   // Whether we force PIC branch veneers.
2888   bool should_force_pic_veneer_;
2889   // Map for locating Arm_input_sections.
2890   Arm_input_section_map arm_input_section_map_;
2891   // Attributes section data in output.
2892   Attributes_section_data* attributes_section_data_;
2893   // Whether we want to fix code for Cortex-A8 erratum.
2894   bool fix_cortex_a8_;
2895   // Map addresses to relocs for Cortex-A8 erratum.
2896   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2897 };
2898
2899 template<bool big_endian>
2900 const Target::Target_info Target_arm<big_endian>::arm_info =
2901 {
2902   32,                   // size
2903   big_endian,           // is_big_endian
2904   elfcpp::EM_ARM,       // machine_code
2905   false,                // has_make_symbol
2906   false,                // has_resolve
2907   false,                // has_code_fill
2908   true,                 // is_default_stack_executable
2909   false,                // can_icf_inline_merge_sections
2910   '\0',                 // wrap_char
2911   "/usr/lib/libc.so.1", // dynamic_linker
2912   0x8000,               // default_text_segment_address
2913   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2914   0x1000,               // common_pagesize (overridable by -z common-page-size)
2915   elfcpp::SHN_UNDEF,    // small_common_shndx
2916   elfcpp::SHN_UNDEF,    // large_common_shndx
2917   0,                    // small_common_section_flags
2918   0,                    // large_common_section_flags
2919   ".ARM.attributes",    // attributes_section
2920   "aeabi"               // attributes_vendor
2921 };
2922
2923 // Arm relocate functions class
2924 //
2925
2926 template<bool big_endian>
2927 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2928 {
2929  public:
2930   typedef enum
2931   {
2932     STATUS_OKAY,        // No error during relocation.
2933     STATUS_OVERFLOW,    // Relocation overflow.
2934     STATUS_BAD_RELOC    // Relocation cannot be applied.
2935   } Status;
2936
2937  private:
2938   typedef Relocate_functions<32, big_endian> Base;
2939   typedef Arm_relocate_functions<big_endian> This;
2940
2941   // Encoding of imm16 argument for movt and movw ARM instructions
2942   // from ARM ARM:
2943   //     
2944   //     imm16 := imm4 | imm12
2945   //
2946   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2947   // +-------+---------------+-------+-------+-----------------------+
2948   // |       |               |imm4   |       |imm12                  |
2949   // +-------+---------------+-------+-------+-----------------------+
2950
2951   // Extract the relocation addend from VAL based on the ARM
2952   // instruction encoding described above.
2953   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2954   extract_arm_movw_movt_addend(
2955       typename elfcpp::Swap<32, big_endian>::Valtype val)
2956   {
2957     // According to the Elf ABI for ARM Architecture the immediate
2958     // field is sign-extended to form the addend.
2959     return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2960   }
2961
2962   // Insert X into VAL based on the ARM instruction encoding described
2963   // above.
2964   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2965   insert_val_arm_movw_movt(
2966       typename elfcpp::Swap<32, big_endian>::Valtype val,
2967       typename elfcpp::Swap<32, big_endian>::Valtype x)
2968   {
2969     val &= 0xfff0f000;
2970     val |= x & 0x0fff;
2971     val |= (x & 0xf000) << 4;
2972     return val;
2973   }
2974
2975   // Encoding of imm16 argument for movt and movw Thumb2 instructions
2976   // from ARM ARM:
2977   //     
2978   //     imm16 := imm4 | i | imm3 | imm8
2979   //
2980   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
2981   // +---------+-+-----------+-------++-+-----+-------+---------------+
2982   // |         |i|           |imm4   || |imm3 |       |imm8           |
2983   // +---------+-+-----------+-------++-+-----+-------+---------------+
2984
2985   // Extract the relocation addend from VAL based on the Thumb2
2986   // instruction encoding described above.
2987   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2988   extract_thumb_movw_movt_addend(
2989       typename elfcpp::Swap<32, big_endian>::Valtype val)
2990   {
2991     // According to the Elf ABI for ARM Architecture the immediate
2992     // field is sign-extended to form the addend.
2993     return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
2994                                    | ((val >> 15) & 0x0800)
2995                                    | ((val >> 4) & 0x0700)
2996                                    | (val & 0x00ff));
2997   }
2998
2999   // Insert X into VAL based on the Thumb2 instruction encoding
3000   // described above.
3001   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3002   insert_val_thumb_movw_movt(
3003       typename elfcpp::Swap<32, big_endian>::Valtype val,
3004       typename elfcpp::Swap<32, big_endian>::Valtype x)
3005   {
3006     val &= 0xfbf08f00;
3007     val |= (x & 0xf000) << 4;
3008     val |= (x & 0x0800) << 15;
3009     val |= (x & 0x0700) << 4;
3010     val |= (x & 0x00ff);
3011     return val;
3012   }
3013
3014   // Calculate the smallest constant Kn for the specified residual.
3015   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3016   static uint32_t
3017   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3018   {
3019     int32_t msb;
3020
3021     if (residual == 0)
3022       return 0;
3023     // Determine the most significant bit in the residual and
3024     // align the resulting value to a 2-bit boundary.
3025     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3026       ;
3027     // The desired shift is now (msb - 6), or zero, whichever
3028     // is the greater.
3029     return (((msb - 6) < 0) ? 0 : (msb - 6));
3030   }
3031
3032   // Calculate the final residual for the specified group index.
3033   // If the passed group index is less than zero, the method will return
3034   // the value of the specified residual without any change.
3035   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3036   static typename elfcpp::Swap<32, big_endian>::Valtype
3037   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3038                     const int group)
3039   {
3040     for (int n = 0; n <= group; n++)
3041       {
3042         // Calculate which part of the value to mask.
3043         uint32_t shift = calc_grp_kn(residual);
3044         // Calculate the residual for the next time around.
3045         residual &= ~(residual & (0xff << shift));
3046       }
3047
3048     return residual;
3049   }
3050
3051   // Calculate the value of Gn for the specified group index.
3052   // We return it in the form of an encoded constant-and-rotation.
3053   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3054   static typename elfcpp::Swap<32, big_endian>::Valtype
3055   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3056               const int group)
3057   {
3058     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3059     uint32_t shift = 0;
3060
3061     for (int n = 0; n <= group; n++)
3062       {
3063         // Calculate which part of the value to mask.
3064         shift = calc_grp_kn(residual);
3065         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3066         gn = residual & (0xff << shift);
3067         // Calculate the residual for the next time around.
3068         residual &= ~gn;
3069       }
3070     // Return Gn in the form of an encoded constant-and-rotation.
3071     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3072   }
3073
3074  public:
3075   // Handle ARM long branches.
3076   static typename This::Status
3077   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3078                     unsigned char*, const Sized_symbol<32>*,
3079                     const Arm_relobj<big_endian>*, unsigned int,
3080                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
3081
3082   // Handle THUMB long branches.
3083   static typename This::Status
3084   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3085                       unsigned char*, const Sized_symbol<32>*,
3086                       const Arm_relobj<big_endian>*, unsigned int,
3087                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
3088
3089
3090   // Return the branch offset of a 32-bit THUMB branch.
3091   static inline int32_t
3092   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3093   {
3094     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3095     // involving the J1 and J2 bits.
3096     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3097     uint32_t upper = upper_insn & 0x3ffU;
3098     uint32_t lower = lower_insn & 0x7ffU;
3099     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3100     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3101     uint32_t i1 = j1 ^ s ? 0 : 1;
3102     uint32_t i2 = j2 ^ s ? 0 : 1;
3103
3104     return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3105                                    | (upper << 12) | (lower << 1));
3106   }
3107
3108   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3109   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3110   // responsible for overflow checking and BLX offset adjustment.
3111   static inline uint16_t
3112   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3113   {
3114     uint32_t s = offset < 0 ? 1 : 0;
3115     uint32_t bits = static_cast<uint32_t>(offset);
3116     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3117   }
3118
3119   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3120   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3121   // responsible for overflow checking and BLX offset adjustment.
3122   static inline uint16_t
3123   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3124   {
3125     uint32_t s = offset < 0 ? 1 : 0;
3126     uint32_t bits = static_cast<uint32_t>(offset);
3127     return ((lower_insn & ~0x2fffU)
3128             | ((((bits >> 23) & 1) ^ !s) << 13)
3129             | ((((bits >> 22) & 1) ^ !s) << 11)
3130             | ((bits >> 1) & 0x7ffU));
3131   }
3132
3133   // Return the branch offset of a 32-bit THUMB conditional branch.
3134   static inline int32_t
3135   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3136   {
3137     uint32_t s = (upper_insn & 0x0400U) >> 10;
3138     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3139     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3140     uint32_t lower = (lower_insn & 0x07ffU);
3141     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3142
3143     return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3144   }
3145
3146   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3147   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3148   // Caller is responsible for overflow checking.
3149   static inline uint16_t
3150   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3151   {
3152     uint32_t s = offset < 0 ? 1 : 0;
3153     uint32_t bits = static_cast<uint32_t>(offset);
3154     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3155   }
3156
3157   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3158   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3159   // The caller is responsible for overflow checking.
3160   static inline uint16_t
3161   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3162   {
3163     uint32_t bits = static_cast<uint32_t>(offset);
3164     uint32_t j2 = (bits & 0x00080000U) >> 19;
3165     uint32_t j1 = (bits & 0x00040000U) >> 18;
3166     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3167
3168     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3169   }
3170
3171   // R_ARM_ABS8: S + A
3172   static inline typename This::Status
3173   abs8(unsigned char* view,
3174        const Sized_relobj_file<32, big_endian>* object,
3175        const Symbol_value<32>* psymval)
3176   {
3177     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3178     Valtype* wv = reinterpret_cast<Valtype*>(view);
3179     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3180     int32_t addend = Bits<8>::sign_extend32(val);
3181     Arm_address x = psymval->value(object, addend);
3182     val = Bits<32>::bit_select32(val, x, 0xffU);
3183     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3184
3185     // R_ARM_ABS8 permits signed or unsigned results.
3186     return (Bits<8>::has_signed_unsigned_overflow32(x)
3187             ? This::STATUS_OVERFLOW
3188             : This::STATUS_OKAY);
3189   }
3190
3191   // R_ARM_THM_ABS5: S + A
3192   static inline typename This::Status
3193   thm_abs5(unsigned char* view,
3194        const Sized_relobj_file<32, big_endian>* object,
3195        const Symbol_value<32>* psymval)
3196   {
3197     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3198     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3199     Valtype* wv = reinterpret_cast<Valtype*>(view);
3200     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3201     Reltype addend = (val & 0x7e0U) >> 6;
3202     Reltype x = psymval->value(object, addend);
3203     val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3204     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3205     return (Bits<5>::has_overflow32(x)
3206             ? This::STATUS_OVERFLOW
3207             : This::STATUS_OKAY);
3208   }
3209
3210   // R_ARM_ABS12: S + A
3211   static inline typename This::Status
3212   abs12(unsigned char* view,
3213         const Sized_relobj_file<32, big_endian>* object,
3214         const Symbol_value<32>* psymval)
3215   {
3216     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3217     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3218     Valtype* wv = reinterpret_cast<Valtype*>(view);
3219     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3220     Reltype addend = val & 0x0fffU;
3221     Reltype x = psymval->value(object, addend);
3222     val = Bits<32>::bit_select32(val, x, 0x0fffU);
3223     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3224     return (Bits<12>::has_overflow32(x)
3225             ? This::STATUS_OVERFLOW
3226             : This::STATUS_OKAY);
3227   }
3228
3229   // R_ARM_ABS16: S + A
3230   static inline typename This::Status
3231   abs16(unsigned char* view,
3232         const Sized_relobj_file<32, big_endian>* object,
3233         const Symbol_value<32>* psymval)
3234   {
3235     typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3236     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3237     Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3238     int32_t addend = Bits<16>::sign_extend32(val);
3239     Arm_address x = psymval->value(object, addend);
3240     val = Bits<32>::bit_select32(val, x, 0xffffU);
3241     elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3242
3243     // R_ARM_ABS16 permits signed or unsigned results.
3244     return (Bits<16>::has_signed_unsigned_overflow32(x)
3245             ? This::STATUS_OVERFLOW
3246             : This::STATUS_OKAY);
3247   }
3248
3249   // R_ARM_ABS32: (S + A) | T
3250   static inline typename This::Status
3251   abs32(unsigned char* view,
3252         const Sized_relobj_file<32, big_endian>* object,
3253         const Symbol_value<32>* psymval,
3254         Arm_address thumb_bit)
3255   {
3256     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3257     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3258     Valtype x = psymval->value(object, addend) | thumb_bit;
3259     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3260     return This::STATUS_OKAY;
3261   }
3262
3263   // R_ARM_REL32: (S + A) | T - P
3264   static inline typename This::Status
3265   rel32(unsigned char* view,
3266         const Sized_relobj_file<32, big_endian>* object,
3267         const Symbol_value<32>* psymval,
3268         Arm_address address,
3269         Arm_address thumb_bit)
3270   {
3271     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3272     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3273     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3274     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3275     return This::STATUS_OKAY;
3276   }
3277
3278   // R_ARM_THM_JUMP24: (S + A) | T - P
3279   static typename This::Status
3280   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3281              const Symbol_value<32>* psymval, Arm_address address,
3282              Arm_address thumb_bit);
3283
3284   // R_ARM_THM_JUMP6: S + A â€“ P
3285   static inline typename This::Status
3286   thm_jump6(unsigned char* view,
3287             const Sized_relobj_file<32, big_endian>* object,
3288             const Symbol_value<32>* psymval,
3289             Arm_address address)
3290   {
3291     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3292     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3293     Valtype* wv = reinterpret_cast<Valtype*>(view);
3294     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3295     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3296     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3297     Reltype x = (psymval->value(object, addend) - address);
3298     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3299     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3300     // CZB does only forward jumps.
3301     return ((x > 0x007e)
3302             ? This::STATUS_OVERFLOW
3303             : This::STATUS_OKAY);
3304   }
3305
3306   // R_ARM_THM_JUMP8: S + A â€“ P
3307   static inline typename This::Status
3308   thm_jump8(unsigned char* view,
3309             const Sized_relobj_file<32, big_endian>* object,
3310             const Symbol_value<32>* psymval,
3311             Arm_address address)
3312   {
3313     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3314     Valtype* wv = reinterpret_cast<Valtype*>(view);
3315     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3316     int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3317     int32_t x = (psymval->value(object, addend) - address);
3318     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3319                                                 | ((x & 0x01fe) >> 1)));
3320     // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3321     return (Bits<9>::has_overflow32(x)
3322             ? This::STATUS_OVERFLOW
3323             : This::STATUS_OKAY);
3324   }
3325
3326   // R_ARM_THM_JUMP11: S + A â€“ P
3327   static inline typename This::Status
3328   thm_jump11(unsigned char* view,
3329             const Sized_relobj_file<32, big_endian>* object,
3330             const Symbol_value<32>* psymval,
3331             Arm_address address)
3332   {
3333     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3334     Valtype* wv = reinterpret_cast<Valtype*>(view);
3335     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3336     int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3337     int32_t x = (psymval->value(object, addend) - address);
3338     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3339                                                 | ((x & 0x0ffe) >> 1)));
3340     // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3341     return (Bits<12>::has_overflow32(x)
3342             ? This::STATUS_OVERFLOW
3343             : This::STATUS_OKAY);
3344   }
3345
3346   // R_ARM_BASE_PREL: B(S) + A - P
3347   static inline typename This::Status
3348   base_prel(unsigned char* view,
3349             Arm_address origin,
3350             Arm_address address)
3351   {
3352     Base::rel32(view, origin - address);
3353     return STATUS_OKAY;
3354   }
3355
3356   // R_ARM_BASE_ABS: B(S) + A
3357   static inline typename This::Status
3358   base_abs(unsigned char* view,
3359            Arm_address origin)
3360   {
3361     Base::rel32(view, origin);
3362     return STATUS_OKAY;
3363   }
3364
3365   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3366   static inline typename This::Status
3367   got_brel(unsigned char* view,
3368            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3369   {
3370     Base::rel32(view, got_offset);
3371     return This::STATUS_OKAY;
3372   }
3373
3374   // R_ARM_GOT_PREL: GOT(S) + A - P
3375   static inline typename This::Status
3376   got_prel(unsigned char* view,
3377            Arm_address got_entry,
3378            Arm_address address)
3379   {
3380     Base::rel32(view, got_entry - address);
3381     return This::STATUS_OKAY;
3382   }
3383
3384   // R_ARM_PREL: (S + A) | T - P
3385   static inline typename This::Status
3386   prel31(unsigned char* view,
3387          const Sized_relobj_file<32, big_endian>* object,
3388          const Symbol_value<32>* psymval,
3389          Arm_address address,
3390          Arm_address thumb_bit)
3391   {
3392     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3393     Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3394     Valtype addend = Bits<31>::sign_extend32(val);
3395     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3396     val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3397     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3398     return (Bits<31>::has_overflow32(x)
3399             ? This::STATUS_OVERFLOW
3400             : This::STATUS_OKAY);
3401   }
3402
3403   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3404   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3405   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3406   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3407   static inline typename This::Status
3408   movw(unsigned char* view,
3409        const Sized_relobj_file<32, big_endian>* object,
3410        const Symbol_value<32>* psymval,
3411        Arm_address relative_address_base,
3412        Arm_address thumb_bit,
3413        bool check_overflow)
3414   {
3415     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3416     Valtype* wv = reinterpret_cast<Valtype*>(view);
3417     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3418     Valtype addend = This::extract_arm_movw_movt_addend(val);
3419     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3420                  - relative_address_base);
3421     val = This::insert_val_arm_movw_movt(val, x);
3422     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3423     return ((check_overflow && Bits<16>::has_overflow32(x))
3424             ? This::STATUS_OVERFLOW
3425             : This::STATUS_OKAY);
3426   }
3427
3428   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3429   // R_ARM_MOVT_PREL: S + A - P
3430   // R_ARM_MOVT_BREL: S + A - B(S)
3431   static inline typename This::Status
3432   movt(unsigned char* view,
3433        const Sized_relobj_file<32, big_endian>* object,
3434        const Symbol_value<32>* psymval,
3435        Arm_address relative_address_base)
3436   {
3437     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3438     Valtype* wv = reinterpret_cast<Valtype*>(view);
3439     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3440     Valtype addend = This::extract_arm_movw_movt_addend(val);
3441     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3442     val = This::insert_val_arm_movw_movt(val, x);
3443     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3444     // FIXME: IHI0044D says that we should check for overflow.
3445     return This::STATUS_OKAY;
3446   }
3447
3448   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3449   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3450   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3451   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3452   static inline typename This::Status
3453   thm_movw(unsigned char* view,
3454            const Sized_relobj_file<32, big_endian>* object,
3455            const Symbol_value<32>* psymval,
3456            Arm_address relative_address_base,
3457            Arm_address thumb_bit,
3458            bool check_overflow)
3459   {
3460     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3461     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3462     Valtype* wv = reinterpret_cast<Valtype*>(view);
3463     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3464                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3465     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3466     Reltype x =
3467       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3468     val = This::insert_val_thumb_movw_movt(val, x);
3469     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3470     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3471     return ((check_overflow && Bits<16>::has_overflow32(x))
3472             ? This::STATUS_OVERFLOW
3473             : This::STATUS_OKAY);
3474   }
3475
3476   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3477   // R_ARM_THM_MOVT_PREL: S + A - P
3478   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3479   static inline typename This::Status
3480   thm_movt(unsigned char* view,
3481            const Sized_relobj_file<32, big_endian>* object,
3482            const Symbol_value<32>* psymval,
3483            Arm_address relative_address_base)
3484   {
3485     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3486     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3487     Valtype* wv = reinterpret_cast<Valtype*>(view);
3488     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3489                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3490     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3491     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3492     val = This::insert_val_thumb_movw_movt(val, x);
3493     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3494     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3495     return This::STATUS_OKAY;
3496   }
3497
3498   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3499   static inline typename This::Status
3500   thm_alu11(unsigned char* view,
3501             const Sized_relobj_file<32, big_endian>* object,
3502             const Symbol_value<32>* psymval,
3503             Arm_address address,
3504             Arm_address thumb_bit)
3505   {
3506     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3507     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3508     Valtype* wv = reinterpret_cast<Valtype*>(view);
3509     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3510                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3511
3512     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3513     // -----------------------------------------------------------------------
3514     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3515     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3516     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3517     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3518     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3519     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3520
3521     // Determine a sign for the addend.
3522     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3523                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3524     // Thumb2 addend encoding:
3525     // imm12 := i | imm3 | imm8
3526     int32_t addend = (insn & 0xff)
3527                      | ((insn & 0x00007000) >> 4)
3528                      | ((insn & 0x04000000) >> 15);
3529     // Apply a sign to the added.
3530     addend *= sign;
3531
3532     int32_t x = (psymval->value(object, addend) | thumb_bit)
3533                 - (address & 0xfffffffc);
3534     Reltype val = abs(x);
3535     // Mask out the value and a distinct part of the ADD/SUB opcode
3536     // (bits 7:5 of opword).
3537     insn = (insn & 0xfb0f8f00)
3538            | (val & 0xff)
3539            | ((val & 0x700) << 4)
3540            | ((val & 0x800) << 15);
3541     // Set the opcode according to whether the value to go in the
3542     // place is negative.
3543     if (x < 0)
3544       insn |= 0x00a00000;
3545
3546     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3547     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3548     return ((val > 0xfff) ?
3549             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3550   }
3551
3552   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3553   static inline typename This::Status
3554   thm_pc8(unsigned char* view,
3555           const Sized_relobj_file<32, big_endian>* object,
3556           const Symbol_value<32>* psymval,
3557           Arm_address address)
3558   {
3559     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3560     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3561     Valtype* wv = reinterpret_cast<Valtype*>(view);
3562     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3563     Reltype addend = ((insn & 0x00ff) << 2);
3564     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3565     Reltype val = abs(x);
3566     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3567
3568     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3569     return ((val > 0x03fc)
3570             ? This::STATUS_OVERFLOW
3571             : This::STATUS_OKAY);
3572   }
3573
3574   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3575   static inline typename This::Status
3576   thm_pc12(unsigned char* view,
3577            const Sized_relobj_file<32, big_endian>* object,
3578            const Symbol_value<32>* psymval,
3579            Arm_address address)
3580   {
3581     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3582     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3583     Valtype* wv = reinterpret_cast<Valtype*>(view);
3584     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3585                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3586     // Determine a sign for the addend (positive if the U bit is 1).
3587     const int sign = (insn & 0x00800000) ? 1 : -1;
3588     int32_t addend = (insn & 0xfff);
3589     // Apply a sign to the added.
3590     addend *= sign;
3591
3592     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3593     Reltype val = abs(x);
3594     // Mask out and apply the value and the U bit.
3595     insn = (insn & 0xff7ff000) | (val & 0xfff);
3596     // Set the U bit according to whether the value to go in the
3597     // place is positive.
3598     if (x >= 0)
3599       insn |= 0x00800000;
3600
3601     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3602     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3603     return ((val > 0xfff) ?
3604             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3605   }
3606
3607   // R_ARM_V4BX
3608   static inline typename This::Status
3609   v4bx(const Relocate_info<32, big_endian>* relinfo,
3610        unsigned char* view,
3611        const Arm_relobj<big_endian>* object,
3612        const Arm_address address,
3613        const bool is_interworking)
3614   {
3615
3616     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3617     Valtype* wv = reinterpret_cast<Valtype*>(view);
3618     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3619
3620     // Ensure that we have a BX instruction.
3621     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3622     const uint32_t reg = (val & 0xf);
3623     if (is_interworking && reg != 0xf)
3624       {
3625         Stub_table<big_endian>* stub_table =
3626             object->stub_table(relinfo->data_shndx);
3627         gold_assert(stub_table != NULL);
3628
3629         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3630         gold_assert(stub != NULL);
3631
3632         int32_t veneer_address =
3633             stub_table->address() + stub->offset() - 8 - address;
3634         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3635                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3636         // Replace with a branch to veneer (B <addr>)
3637         val = (val & 0xf0000000) | 0x0a000000
3638               | ((veneer_address >> 2) & 0x00ffffff);
3639       }
3640     else
3641       {
3642         // Preserve Rm (lowest four bits) and the condition code
3643         // (highest four bits). Other bits encode MOV PC,Rm.
3644         val = (val & 0xf000000f) | 0x01a0f000;
3645       }
3646     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3647     return This::STATUS_OKAY;
3648   }
3649
3650   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3651   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3652   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3653   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3654   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3655   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3656   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3657   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3658   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3659   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3660   static inline typename This::Status
3661   arm_grp_alu(unsigned char* view,
3662         const Sized_relobj_file<32, big_endian>* object,
3663         const Symbol_value<32>* psymval,
3664         const int group,
3665         Arm_address address,
3666         Arm_address thumb_bit,
3667         bool check_overflow)
3668   {
3669     gold_assert(group >= 0 && group < 3);
3670     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3671     Valtype* wv = reinterpret_cast<Valtype*>(view);
3672     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3673
3674     // ALU group relocations are allowed only for the ADD/SUB instructions.
3675     // (0x00800000 - ADD, 0x00400000 - SUB)
3676     const Valtype opcode = insn & 0x01e00000;
3677     if (opcode != 0x00800000 && opcode != 0x00400000)
3678       return This::STATUS_BAD_RELOC;
3679
3680     // Determine a sign for the addend.
3681     const int sign = (opcode == 0x00800000) ? 1 : -1;
3682     // shifter = rotate_imm * 2
3683     const uint32_t shifter = (insn & 0xf00) >> 7;
3684     // Initial addend value.
3685     int32_t addend = insn & 0xff;
3686     // Rotate addend right by shifter.
3687     addend = (addend >> shifter) | (addend << (32 - shifter));
3688     // Apply a sign to the added.
3689     addend *= sign;
3690
3691     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3692     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3693     // Check for overflow if required
3694     if (check_overflow
3695         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3696       return This::STATUS_OVERFLOW;
3697
3698     // Mask out the value and the ADD/SUB part of the opcode; take care
3699     // not to destroy the S bit.
3700     insn &= 0xff1ff000;
3701     // Set the opcode according to whether the value to go in the
3702     // place is negative.
3703     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3704     // Encode the offset (encoded Gn).
3705     insn |= gn;
3706
3707     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3708     return This::STATUS_OKAY;
3709   }
3710
3711   // R_ARM_LDR_PC_G0: S + A - P
3712   // R_ARM_LDR_PC_G1: S + A - P
3713   // R_ARM_LDR_PC_G2: S + A - P
3714   // R_ARM_LDR_SB_G0: S + A - B(S)
3715   // R_ARM_LDR_SB_G1: S + A - B(S)
3716   // R_ARM_LDR_SB_G2: S + A - B(S)
3717   static inline typename This::Status
3718   arm_grp_ldr(unsigned char* view,
3719         const Sized_relobj_file<32, big_endian>* object,
3720         const Symbol_value<32>* psymval,
3721         const int group,
3722         Arm_address address)
3723   {
3724     gold_assert(group >= 0 && group < 3);
3725     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3726     Valtype* wv = reinterpret_cast<Valtype*>(view);
3727     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3728
3729     const int sign = (insn & 0x00800000) ? 1 : -1;
3730     int32_t addend = (insn & 0xfff) * sign;
3731     int32_t x = (psymval->value(object, addend) - address);
3732     // Calculate the relevant G(n-1) value to obtain this stage residual.
3733     Valtype residual =
3734         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3735     if (residual >= 0x1000)
3736       return This::STATUS_OVERFLOW;
3737
3738     // Mask out the value and U bit.
3739     insn &= 0xff7ff000;
3740     // Set the U bit for non-negative values.
3741     if (x >= 0)
3742       insn |= 0x00800000;
3743     insn |= residual;
3744
3745     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3746     return This::STATUS_OKAY;
3747   }
3748
3749   // R_ARM_LDRS_PC_G0: S + A - P
3750   // R_ARM_LDRS_PC_G1: S + A - P
3751   // R_ARM_LDRS_PC_G2: S + A - P
3752   // R_ARM_LDRS_SB_G0: S + A - B(S)
3753   // R_ARM_LDRS_SB_G1: S + A - B(S)
3754   // R_ARM_LDRS_SB_G2: S + A - B(S)
3755   static inline typename This::Status
3756   arm_grp_ldrs(unsigned char* view,
3757         const Sized_relobj_file<32, big_endian>* object,
3758         const Symbol_value<32>* psymval,
3759         const int group,
3760         Arm_address address)
3761   {
3762     gold_assert(group >= 0 && group < 3);
3763     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3764     Valtype* wv = reinterpret_cast<Valtype*>(view);
3765     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3766
3767     const int sign = (insn & 0x00800000) ? 1 : -1;
3768     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3769     int32_t x = (psymval->value(object, addend) - address);
3770     // Calculate the relevant G(n-1) value to obtain this stage residual.
3771     Valtype residual =
3772         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3773    if (residual >= 0x100)
3774       return This::STATUS_OVERFLOW;
3775
3776     // Mask out the value and U bit.
3777     insn &= 0xff7ff0f0;
3778     // Set the U bit for non-negative values.
3779     if (x >= 0)
3780       insn |= 0x00800000;
3781     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3782
3783     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3784     return This::STATUS_OKAY;
3785   }
3786
3787   // R_ARM_LDC_PC_G0: S + A - P
3788   // R_ARM_LDC_PC_G1: S + A - P
3789   // R_ARM_LDC_PC_G2: S + A - P
3790   // R_ARM_LDC_SB_G0: S + A - B(S)
3791   // R_ARM_LDC_SB_G1: S + A - B(S)
3792   // R_ARM_LDC_SB_G2: S + A - B(S)
3793   static inline typename This::Status
3794   arm_grp_ldc(unsigned char* view,
3795       const Sized_relobj_file<32, big_endian>* object,
3796       const Symbol_value<32>* psymval,
3797       const int group,
3798       Arm_address address)
3799   {
3800     gold_assert(group >= 0 && group < 3);
3801     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3802     Valtype* wv = reinterpret_cast<Valtype*>(view);
3803     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3804
3805     const int sign = (insn & 0x00800000) ? 1 : -1;
3806     int32_t addend = ((insn & 0xff) << 2) * sign;
3807     int32_t x = (psymval->value(object, addend) - address);
3808     // Calculate the relevant G(n-1) value to obtain this stage residual.
3809     Valtype residual =
3810       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3811     if ((residual & 0x3) != 0 || residual >= 0x400)
3812       return This::STATUS_OVERFLOW;
3813
3814     // Mask out the value and U bit.
3815     insn &= 0xff7fff00;
3816     // Set the U bit for non-negative values.
3817     if (x >= 0)
3818       insn |= 0x00800000;
3819     insn |= (residual >> 2);
3820
3821     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3822     return This::STATUS_OKAY;
3823   }
3824 };
3825
3826 // Relocate ARM long branches.  This handles relocation types
3827 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3828 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3829 // undefined and we do not use PLT in this relocation.  In such a case,
3830 // the branch is converted into an NOP.
3831
3832 template<bool big_endian>
3833 typename Arm_relocate_functions<big_endian>::Status
3834 Arm_relocate_functions<big_endian>::arm_branch_common(
3835     unsigned int r_type,
3836     const Relocate_info<32, big_endian>* relinfo,
3837     unsigned char* view,
3838     const Sized_symbol<32>* gsym,
3839     const Arm_relobj<big_endian>* object,
3840     unsigned int r_sym,
3841     const Symbol_value<32>* psymval,
3842     Arm_address address,
3843     Arm_address thumb_bit,
3844     bool is_weakly_undefined_without_plt)
3845 {
3846   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3847   Valtype* wv = reinterpret_cast<Valtype*>(view);
3848   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3849      
3850   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3851                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3852   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3853   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3854                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3855   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3856   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3857
3858   // Check that the instruction is valid.
3859   if (r_type == elfcpp::R_ARM_CALL)
3860     {
3861       if (!insn_is_uncond_bl && !insn_is_blx)
3862         return This::STATUS_BAD_RELOC;
3863     }
3864   else if (r_type == elfcpp::R_ARM_JUMP24)
3865     {
3866       if (!insn_is_b && !insn_is_cond_bl)
3867         return This::STATUS_BAD_RELOC;
3868     }
3869   else if (r_type == elfcpp::R_ARM_PLT32)
3870     {
3871       if (!insn_is_any_branch)
3872         return This::STATUS_BAD_RELOC;
3873     }
3874   else if (r_type == elfcpp::R_ARM_XPC25)
3875     {
3876       // FIXME: AAELF document IH0044C does not say much about it other
3877       // than it being obsolete.
3878       if (!insn_is_any_branch)
3879         return This::STATUS_BAD_RELOC;
3880     }
3881   else
3882     gold_unreachable();
3883
3884   // A branch to an undefined weak symbol is turned into a jump to
3885   // the next instruction unless a PLT entry will be created.
3886   // Do the same for local undefined symbols.
3887   // The jump to the next instruction is optimized as a NOP depending
3888   // on the architecture.
3889   const Target_arm<big_endian>* arm_target =
3890     Target_arm<big_endian>::default_target();
3891   if (is_weakly_undefined_without_plt)
3892     {
3893       gold_assert(!parameters->options().relocatable());
3894       Valtype cond = val & 0xf0000000U;
3895       if (arm_target->may_use_arm_nop())
3896         val = cond | 0x0320f000;
3897       else
3898         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3899       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3900       return This::STATUS_OKAY;
3901     }
3902  
3903   Valtype addend = Bits<26>::sign_extend32(val << 2);
3904   Valtype branch_target = psymval->value(object, addend);
3905   int32_t branch_offset = branch_target - address;
3906
3907   // We need a stub if the branch offset is too large or if we need
3908   // to switch mode.
3909   bool may_use_blx = arm_target->may_use_v5t_interworking();
3910   Reloc_stub* stub = NULL;
3911
3912   if (!parameters->options().relocatable()
3913       && (Bits<26>::has_overflow32(branch_offset)
3914           || ((thumb_bit != 0)
3915               && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3916     {
3917       Valtype unadjusted_branch_target = psymval->value(object, 0);
3918
3919       Stub_type stub_type =
3920         Reloc_stub::stub_type_for_reloc(r_type, address,
3921                                         unadjusted_branch_target,
3922                                         (thumb_bit != 0));
3923       if (stub_type != arm_stub_none)
3924         {
3925           Stub_table<big_endian>* stub_table =
3926             object->stub_table(relinfo->data_shndx);
3927           gold_assert(stub_table != NULL);
3928
3929           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3930           stub = stub_table->find_reloc_stub(stub_key);
3931           gold_assert(stub != NULL);
3932           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3933           branch_target = stub_table->address() + stub->offset() + addend;
3934           branch_offset = branch_target - address;
3935           gold_assert(!Bits<26>::has_overflow32(branch_offset));
3936         }
3937     }
3938
3939   // At this point, if we still need to switch mode, the instruction
3940   // must either be a BLX or a BL that can be converted to a BLX.
3941   if (thumb_bit != 0)
3942     {
3943       // Turn BL to BLX.
3944       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3945       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3946     }
3947
3948   val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3949   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3950   return (Bits<26>::has_overflow32(branch_offset)
3951           ? This::STATUS_OVERFLOW
3952           : This::STATUS_OKAY);
3953 }
3954
3955 // Relocate THUMB long branches.  This handles relocation types
3956 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3957 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3958 // undefined and we do not use PLT in this relocation.  In such a case,
3959 // the branch is converted into an NOP.
3960
3961 template<bool big_endian>
3962 typename Arm_relocate_functions<big_endian>::Status
3963 Arm_relocate_functions<big_endian>::thumb_branch_common(
3964     unsigned int r_type,
3965     const Relocate_info<32, big_endian>* relinfo,
3966     unsigned char* view,
3967     const Sized_symbol<32>* gsym,
3968     const Arm_relobj<big_endian>* object,
3969     unsigned int r_sym,
3970     const Symbol_value<32>* psymval,
3971     Arm_address address,
3972     Arm_address thumb_bit,
3973     bool is_weakly_undefined_without_plt)
3974 {
3975   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3976   Valtype* wv = reinterpret_cast<Valtype*>(view);
3977   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3978   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3979
3980   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3981   // into account.
3982   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3983   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3984      
3985   // Check that the instruction is valid.
3986   if (r_type == elfcpp::R_ARM_THM_CALL)
3987     {
3988       if (!is_bl_insn && !is_blx_insn)
3989         return This::STATUS_BAD_RELOC;
3990     }
3991   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3992     {
3993       // This cannot be a BLX.
3994       if (!is_bl_insn)
3995         return This::STATUS_BAD_RELOC;
3996     }
3997   else if (r_type == elfcpp::R_ARM_THM_XPC22)
3998     {
3999       // Check for Thumb to Thumb call.
4000       if (!is_blx_insn)
4001         return This::STATUS_BAD_RELOC;
4002       if (thumb_bit != 0)
4003         {
4004           gold_warning(_("%s: Thumb BLX instruction targets "
4005                          "thumb function '%s'."),
4006                          object->name().c_str(),
4007                          (gsym ? gsym->name() : "(local)")); 
4008           // Convert BLX to BL.
4009           lower_insn |= 0x1000U;
4010         }
4011     }
4012   else
4013     gold_unreachable();
4014
4015   // A branch to an undefined weak symbol is turned into a jump to
4016   // the next instruction unless a PLT entry will be created.
4017   // The jump to the next instruction is optimized as a NOP.W for
4018   // Thumb-2 enabled architectures.
4019   const Target_arm<big_endian>* arm_target =
4020     Target_arm<big_endian>::default_target();
4021   if (is_weakly_undefined_without_plt)
4022     {
4023       gold_assert(!parameters->options().relocatable());
4024       if (arm_target->may_use_thumb2_nop())
4025         {
4026           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4027           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4028         }
4029       else
4030         {
4031           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4032           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4033         }
4034       return This::STATUS_OKAY;
4035     }
4036  
4037   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4038   Arm_address branch_target = psymval->value(object, addend);
4039
4040   // For BLX, bit 1 of target address comes from bit 1 of base address.
4041   bool may_use_blx = arm_target->may_use_v5t_interworking();
4042   if (thumb_bit == 0 && may_use_blx)
4043     branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4044
4045   int32_t branch_offset = branch_target - address;
4046
4047   // We need a stub if the branch offset is too large or if we need
4048   // to switch mode.
4049   bool thumb2 = arm_target->using_thumb2();
4050   if (!parameters->options().relocatable()
4051       && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4052           || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4053           || ((thumb_bit == 0)
4054               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4055                   || r_type == elfcpp::R_ARM_THM_JUMP24))))
4056     {
4057       Arm_address unadjusted_branch_target = psymval->value(object, 0);
4058
4059       Stub_type stub_type =
4060         Reloc_stub::stub_type_for_reloc(r_type, address,
4061                                         unadjusted_branch_target,
4062                                         (thumb_bit != 0));
4063
4064       if (stub_type != arm_stub_none)
4065         {
4066           Stub_table<big_endian>* stub_table =
4067             object->stub_table(relinfo->data_shndx);
4068           gold_assert(stub_table != NULL);
4069
4070           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4071           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4072           gold_assert(stub != NULL);
4073           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4074           branch_target = stub_table->address() + stub->offset() + addend;
4075           if (thumb_bit == 0 && may_use_blx) 
4076             branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4077           branch_offset = branch_target - address;
4078         }
4079     }
4080
4081   // At this point, if we still need to switch mode, the instruction
4082   // must either be a BLX or a BL that can be converted to a BLX.
4083   if (thumb_bit == 0)
4084     {
4085       gold_assert(may_use_blx
4086                   && (r_type == elfcpp::R_ARM_THM_CALL
4087                       || r_type == elfcpp::R_ARM_THM_XPC22));
4088       // Make sure this is a BLX.
4089       lower_insn &= ~0x1000U;
4090     }
4091   else
4092     {
4093       // Make sure this is a BL.
4094       lower_insn |= 0x1000U;
4095     }
4096
4097   // For a BLX instruction, make sure that the relocation is rounded up
4098   // to a word boundary.  This follows the semantics of the instruction
4099   // which specifies that bit 1 of the target address will come from bit
4100   // 1 of the base address.
4101   if ((lower_insn & 0x5000U) == 0x4000U)
4102     gold_assert((branch_offset & 3) == 0);
4103
4104   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4105   // We use the Thumb-2 encoding, which is safe even if dealing with
4106   // a Thumb-1 instruction by virtue of our overflow check above.  */
4107   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4108   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4109
4110   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4111   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4112
4113   gold_assert(!Bits<25>::has_overflow32(branch_offset));
4114
4115   return ((thumb2
4116            ? Bits<25>::has_overflow32(branch_offset)
4117            : Bits<23>::has_overflow32(branch_offset))
4118           ? This::STATUS_OVERFLOW
4119           : This::STATUS_OKAY);
4120 }
4121
4122 // Relocate THUMB-2 long conditional branches.
4123 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4124 // undefined and we do not use PLT in this relocation.  In such a case,
4125 // the branch is converted into an NOP.
4126
4127 template<bool big_endian>
4128 typename Arm_relocate_functions<big_endian>::Status
4129 Arm_relocate_functions<big_endian>::thm_jump19(
4130     unsigned char* view,
4131     const Arm_relobj<big_endian>* object,
4132     const Symbol_value<32>* psymval,
4133     Arm_address address,
4134     Arm_address thumb_bit)
4135 {
4136   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4137   Valtype* wv = reinterpret_cast<Valtype*>(view);
4138   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4139   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4140   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4141
4142   Arm_address branch_target = psymval->value(object, addend);
4143   int32_t branch_offset = branch_target - address;
4144
4145   // ??? Should handle interworking?  GCC might someday try to
4146   // use this for tail calls.
4147   // FIXME: We do support thumb entry to PLT yet.
4148   if (thumb_bit == 0)
4149     {
4150       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4151       return This::STATUS_BAD_RELOC;
4152     }
4153
4154   // Put RELOCATION back into the insn.
4155   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4156   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4157
4158   // Put the relocated value back in the object file:
4159   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4160   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4161
4162   return (Bits<21>::has_overflow32(branch_offset)
4163           ? This::STATUS_OVERFLOW
4164           : This::STATUS_OKAY);
4165 }
4166
4167 // Get the GOT section, creating it if necessary.
4168
4169 template<bool big_endian>
4170 Arm_output_data_got<big_endian>*
4171 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4172 {
4173   if (this->got_ == NULL)
4174     {
4175       gold_assert(symtab != NULL && layout != NULL);
4176
4177       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4178
4179       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4180                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4181                                       this->got_, ORDER_DATA, false);
4182
4183       // The old GNU linker creates a .got.plt section.  We just
4184       // create another set of data in the .got section.  Note that we
4185       // always create a PLT if we create a GOT, although the PLT
4186       // might be empty.
4187       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4188       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4189                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4190                                       this->got_plt_, ORDER_DATA, false);
4191
4192       // The first three entries are reserved.
4193       this->got_plt_->set_current_data_size(3 * 4);
4194
4195       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4196       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4197                                     Symbol_table::PREDEFINED,
4198                                     this->got_plt_,
4199                                     0, 0, elfcpp::STT_OBJECT,
4200                                     elfcpp::STB_LOCAL,
4201                                     elfcpp::STV_HIDDEN, 0,
4202                                     false, false);
4203     }
4204   return this->got_;
4205 }
4206
4207 // Get the dynamic reloc section, creating it if necessary.
4208
4209 template<bool big_endian>
4210 typename Target_arm<big_endian>::Reloc_section*
4211 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4212 {
4213   if (this->rel_dyn_ == NULL)
4214     {
4215       gold_assert(layout != NULL);
4216       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4217       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4218                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
4219                                       ORDER_DYNAMIC_RELOCS, false);
4220     }
4221   return this->rel_dyn_;
4222 }
4223
4224 // Insn_template methods.
4225
4226 // Return byte size of an instruction template.
4227
4228 size_t
4229 Insn_template::size() const
4230 {
4231   switch (this->type())
4232     {
4233     case THUMB16_TYPE:
4234     case THUMB16_SPECIAL_TYPE:
4235       return 2;
4236     case ARM_TYPE:
4237     case THUMB32_TYPE:
4238     case DATA_TYPE:
4239       return 4;
4240     default:
4241       gold_unreachable();
4242     }
4243 }
4244
4245 // Return alignment of an instruction template.
4246
4247 unsigned
4248 Insn_template::alignment() const
4249 {
4250   switch (this->type())
4251     {
4252     case THUMB16_TYPE:
4253     case THUMB16_SPECIAL_TYPE:
4254     case THUMB32_TYPE:
4255       return 2;
4256     case ARM_TYPE:
4257     case DATA_TYPE:
4258       return 4;
4259     default:
4260       gold_unreachable();
4261     }
4262 }
4263
4264 // Stub_template methods.
4265
4266 Stub_template::Stub_template(
4267     Stub_type type, const Insn_template* insns,
4268      size_t insn_count)
4269   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4270     entry_in_thumb_mode_(false), relocs_()
4271 {
4272   off_t offset = 0;
4273
4274   // Compute byte size and alignment of stub template.
4275   for (size_t i = 0; i < insn_count; i++)
4276     {
4277       unsigned insn_alignment = insns[i].alignment();
4278       size_t insn_size = insns[i].size();
4279       gold_assert((offset & (insn_alignment - 1)) == 0);
4280       this->alignment_ = std::max(this->alignment_, insn_alignment);
4281       switch (insns[i].type())
4282         {
4283         case Insn_template::THUMB16_TYPE:
4284         case Insn_template::THUMB16_SPECIAL_TYPE:
4285           if (i == 0)
4286             this->entry_in_thumb_mode_ = true;
4287           break;
4288
4289         case Insn_template::THUMB32_TYPE:
4290           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4291             this->relocs_.push_back(Reloc(i, offset));
4292           if (i == 0)
4293             this->entry_in_thumb_mode_ = true;
4294           break;
4295
4296         case Insn_template::ARM_TYPE:
4297           // Handle cases where the target is encoded within the
4298           // instruction.
4299           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4300             this->relocs_.push_back(Reloc(i, offset));
4301           break;
4302
4303         case Insn_template::DATA_TYPE:
4304           // Entry point cannot be data.
4305           gold_assert(i != 0);
4306           this->relocs_.push_back(Reloc(i, offset));
4307           break;
4308
4309         default:
4310           gold_unreachable();
4311         }
4312       offset += insn_size; 
4313     }
4314   this->size_ = offset;
4315 }
4316
4317 // Stub methods.
4318
4319 // Template to implement do_write for a specific target endianness.
4320
4321 template<bool big_endian>
4322 void inline
4323 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4324 {
4325   const Stub_template* stub_template = this->stub_template();
4326   const Insn_template* insns = stub_template->insns();
4327
4328   // FIXME:  We do not handle BE8 encoding yet.
4329   unsigned char* pov = view;
4330   for (size_t i = 0; i < stub_template->insn_count(); i++)
4331     {
4332       switch (insns[i].type())
4333         {
4334         case Insn_template::THUMB16_TYPE:
4335           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4336           break;
4337         case Insn_template::THUMB16_SPECIAL_TYPE:
4338           elfcpp::Swap<16, big_endian>::writeval(
4339               pov,
4340               this->thumb16_special(i));
4341           break;
4342         case Insn_template::THUMB32_TYPE:
4343           {
4344             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4345             uint32_t lo = insns[i].data() & 0xffff;
4346             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4347             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4348           }
4349           break;
4350         case Insn_template::ARM_TYPE:
4351         case Insn_template::DATA_TYPE:
4352           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4353           break;
4354         default:
4355           gold_unreachable();
4356         }
4357       pov += insns[i].size();
4358     }
4359   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4360
4361
4362 // Reloc_stub::Key methods.
4363
4364 // Dump a Key as a string for debugging.
4365
4366 std::string
4367 Reloc_stub::Key::name() const
4368 {
4369   if (this->r_sym_ == invalid_index)
4370     {
4371       // Global symbol key name
4372       // <stub-type>:<symbol name>:<addend>.
4373       const std::string sym_name = this->u_.symbol->name();
4374       // We need to print two hex number and two colons.  So just add 100 bytes
4375       // to the symbol name size.
4376       size_t len = sym_name.size() + 100;
4377       char* buffer = new char[len];
4378       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4379                        sym_name.c_str(), this->addend_);
4380       gold_assert(c > 0 && c < static_cast<int>(len));
4381       delete[] buffer;
4382       return std::string(buffer);
4383     }
4384   else
4385     {
4386       // local symbol key name
4387       // <stub-type>:<object>:<r_sym>:<addend>.
4388       const size_t len = 200;
4389       char buffer[len];
4390       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4391                        this->u_.relobj, this->r_sym_, this->addend_);
4392       gold_assert(c > 0 && c < static_cast<int>(len));
4393       return std::string(buffer);
4394     }
4395 }
4396
4397 // Reloc_stub methods.
4398
4399 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4400 // LOCATION to DESTINATION.
4401 // This code is based on the arm_type_of_stub function in
4402 // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4403 // class simple.
4404
4405 Stub_type
4406 Reloc_stub::stub_type_for_reloc(
4407    unsigned int r_type,
4408    Arm_address location,
4409    Arm_address destination,
4410    bool target_is_thumb)
4411 {
4412   Stub_type stub_type = arm_stub_none;
4413
4414   // This is a bit ugly but we want to avoid using a templated class for
4415   // big and little endianities.
4416   bool may_use_blx;
4417   bool should_force_pic_veneer;
4418   bool thumb2;
4419   bool thumb_only;
4420   if (parameters->target().is_big_endian())
4421     {
4422       const Target_arm<true>* big_endian_target =
4423         Target_arm<true>::default_target();
4424       may_use_blx = big_endian_target->may_use_v5t_interworking();
4425       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4426       thumb2 = big_endian_target->using_thumb2();
4427       thumb_only = big_endian_target->using_thumb_only();
4428     }
4429   else
4430     {
4431       const Target_arm<false>* little_endian_target =
4432         Target_arm<false>::default_target();
4433       may_use_blx = little_endian_target->may_use_v5t_interworking();
4434       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4435       thumb2 = little_endian_target->using_thumb2();
4436       thumb_only = little_endian_target->using_thumb_only();
4437     }
4438
4439   int64_t branch_offset;
4440   bool output_is_position_independent =
4441       parameters->options().output_is_position_independent();
4442   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4443     {
4444       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4445       // base address (instruction address + 4).
4446       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4447         destination = Bits<32>::bit_select32(destination, location, 0x2);
4448       branch_offset = static_cast<int64_t>(destination) - location;
4449         
4450       // Handle cases where:
4451       // - this call goes too far (different Thumb/Thumb2 max
4452       //   distance)
4453       // - it's a Thumb->Arm call and blx is not available, or it's a
4454       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4455       if ((!thumb2
4456             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4457                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4458           || (thumb2
4459               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4460                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4461           || ((!target_is_thumb)
4462               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4463                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4464         {
4465           if (target_is_thumb)
4466             {
4467               // Thumb to thumb.
4468               if (!thumb_only)
4469                 {
4470                   stub_type = (output_is_position_independent
4471                                || should_force_pic_veneer)
4472                     // PIC stubs.
4473                     ? ((may_use_blx
4474                         && (r_type == elfcpp::R_ARM_THM_CALL))
4475                        // V5T and above. Stub starts with ARM code, so
4476                        // we must be able to switch mode before
4477                        // reaching it, which is only possible for 'bl'
4478                        // (ie R_ARM_THM_CALL relocation).
4479                        ? arm_stub_long_branch_any_thumb_pic
4480                        // On V4T, use Thumb code only.
4481                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4482
4483                     // non-PIC stubs.
4484                     : ((may_use_blx
4485                         && (r_type == elfcpp::R_ARM_THM_CALL))
4486                        ? arm_stub_long_branch_any_any // V5T and above.
4487                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4488                 }
4489               else
4490                 {
4491                   stub_type = (output_is_position_independent
4492                                || should_force_pic_veneer)
4493                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4494                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4495                 }
4496             }
4497           else
4498             {
4499               // Thumb to arm.
4500              
4501               // FIXME: We should check that the input section is from an
4502               // object that has interwork enabled.
4503
4504               stub_type = (output_is_position_independent
4505                            || should_force_pic_veneer)
4506                 // PIC stubs.
4507                 ? ((may_use_blx
4508                     && (r_type == elfcpp::R_ARM_THM_CALL))
4509                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4510                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4511
4512                 // non-PIC stubs.
4513                 : ((may_use_blx
4514                     && (r_type == elfcpp::R_ARM_THM_CALL))
4515                    ? arm_stub_long_branch_any_any       // V5T and above.
4516                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4517
4518               // Handle v4t short branches.
4519               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4520                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4521                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4522                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4523             }
4524         }
4525     }
4526   else if (r_type == elfcpp::R_ARM_CALL
4527            || r_type == elfcpp::R_ARM_JUMP24
4528            || r_type == elfcpp::R_ARM_PLT32)
4529     {
4530       branch_offset = static_cast<int64_t>(destination) - location;
4531       if (target_is_thumb)
4532         {
4533           // Arm to thumb.
4534
4535           // FIXME: We should check that the input section is from an
4536           // object that has interwork enabled.
4537
4538           // We have an extra 2-bytes reach because of
4539           // the mode change (bit 24 (H) of BLX encoding).
4540           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4541               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4542               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4543               || (r_type == elfcpp::R_ARM_JUMP24)
4544               || (r_type == elfcpp::R_ARM_PLT32))
4545             {
4546               stub_type = (output_is_position_independent
4547                            || should_force_pic_veneer)
4548                 // PIC stubs.
4549                 ? (may_use_blx
4550                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4551                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4552
4553                 // non-PIC stubs.
4554                 : (may_use_blx
4555                    ? arm_stub_long_branch_any_any       // V5T and above.
4556                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4557             }
4558         }
4559       else
4560         {
4561           // Arm to arm.
4562           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4563               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4564             {
4565               stub_type = (output_is_position_independent
4566                            || should_force_pic_veneer)
4567                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4568                 : arm_stub_long_branch_any_any;         /// non-PIC.
4569             }
4570         }
4571     }
4572
4573   return stub_type;
4574 }
4575
4576 // Cortex_a8_stub methods.
4577
4578 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4579 // I is the position of the instruction template in the stub template.
4580
4581 uint16_t
4582 Cortex_a8_stub::do_thumb16_special(size_t i)
4583 {
4584   // The only use of this is to copy condition code from a conditional
4585   // branch being worked around to the corresponding conditional branch in
4586   // to the stub.
4587   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4588               && i == 0);
4589   uint16_t data = this->stub_template()->insns()[i].data();
4590   gold_assert((data & 0xff00U) == 0xd000U);
4591   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4592   return data;
4593 }
4594
4595 // Stub_factory methods.
4596
4597 Stub_factory::Stub_factory()
4598 {
4599   // The instruction template sequences are declared as static
4600   // objects and initialized first time the constructor runs.
4601  
4602   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4603   // to reach the stub if necessary.
4604   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4605     {
4606       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4607       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4608                                                 // dcd   R_ARM_ABS32(X)
4609     };
4610   
4611   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4612   // available.
4613   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4614     {
4615       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4616       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4617       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4618                                                 // dcd   R_ARM_ABS32(X)
4619     };
4620   
4621   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4622   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4623     {
4624       Insn_template::thumb16_insn(0xb401),      // push {r0}
4625       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4626       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4627       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4628       Insn_template::thumb16_insn(0x4760),      // bx   ip
4629       Insn_template::thumb16_insn(0xbf00),      // nop
4630       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4631                                                 // dcd  R_ARM_ABS32(X)
4632     };
4633   
4634   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4635   // allowed.
4636   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4637     {
4638       Insn_template::thumb16_insn(0x4778),      // bx   pc
4639       Insn_template::thumb16_insn(0x46c0),      // nop
4640       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4641       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4642       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4643                                                 // dcd  R_ARM_ABS32(X)
4644     };
4645   
4646   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4647   // available.
4648   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4649     {
4650       Insn_template::thumb16_insn(0x4778),      // bx   pc
4651       Insn_template::thumb16_insn(0x46c0),      // nop
4652       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4653       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4654                                                 // dcd   R_ARM_ABS32(X)
4655     };
4656   
4657   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4658   // one, when the destination is close enough.
4659   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4660     {
4661       Insn_template::thumb16_insn(0x4778),              // bx   pc
4662       Insn_template::thumb16_insn(0x46c0),              // nop
4663       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4664     };
4665   
4666   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4667   // blx to reach the stub if necessary.
4668   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4669     {
4670       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4671       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4672       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4673                                                 // dcd   R_ARM_REL32(X-4)
4674     };
4675   
4676   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4677   // blx to reach the stub if necessary.  We can not add into pc;
4678   // it is not guaranteed to mode switch (different in ARMv6 and
4679   // ARMv7).
4680   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4681     {
4682       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4683       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4684       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4685       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4686                                                 // dcd   R_ARM_REL32(X)
4687     };
4688   
4689   // V4T ARM -> ARM long branch stub, PIC.
4690   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4691     {
4692       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4693       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4694       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4695       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4696                                                 // dcd   R_ARM_REL32(X)
4697     };
4698   
4699   // V4T Thumb -> ARM long branch stub, PIC.
4700   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4701     {
4702       Insn_template::thumb16_insn(0x4778),      // bx   pc
4703       Insn_template::thumb16_insn(0x46c0),      // nop
4704       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4705       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4706       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4707                                                 // dcd  R_ARM_REL32(X)
4708     };
4709   
4710   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4711   // architectures.
4712   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4713     {
4714       Insn_template::thumb16_insn(0xb401),      // push {r0}
4715       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4716       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4717       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4718       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4719       Insn_template::thumb16_insn(0x4760),      // bx   ip
4720       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4721                                                 // dcd  R_ARM_REL32(X)
4722     };
4723   
4724   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4725   // allowed.
4726   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4727     {
4728       Insn_template::thumb16_insn(0x4778),      // bx   pc
4729       Insn_template::thumb16_insn(0x46c0),      // nop
4730       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4731       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4732       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4733       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4734                                                 // dcd  R_ARM_REL32(X)
4735     };
4736   
4737   // Cortex-A8 erratum-workaround stubs.
4738   
4739   // Stub used for conditional branches (which may be beyond +/-1MB away,
4740   // so we can't use a conditional branch to reach this stub).
4741   
4742   // original code:
4743   //
4744   //    b<cond> X
4745   // after:
4746   //
4747   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4748     {
4749       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4750       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4751       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4752                                                         //      b.w X
4753     };
4754   
4755   // Stub used for b.w and bl.w instructions.
4756   
4757   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4758     {
4759       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4760     };
4761   
4762   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4763     {
4764       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4765     };
4766   
4767   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4768   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4769   // the real destination using an ARM-mode branch.
4770   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4771     {
4772       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4773     };
4774
4775   // Stub used to provide an interworking for R_ARM_V4BX relocation
4776   // (bx r[n] instruction).
4777   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4778     {
4779       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4780       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4781       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4782     };
4783
4784   // Fill in the stub template look-up table.  Stub templates are constructed
4785   // per instance of Stub_factory for fast look-up without locking
4786   // in a thread-enabled environment.
4787
4788   this->stub_templates_[arm_stub_none] =
4789     new Stub_template(arm_stub_none, NULL, 0);
4790
4791 #define DEF_STUB(x)     \
4792   do \
4793     { \
4794       size_t array_size \
4795         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4796       Stub_type type = arm_stub_##x; \
4797       this->stub_templates_[type] = \
4798         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4799     } \
4800   while (0);
4801
4802   DEF_STUBS
4803 #undef DEF_STUB
4804 }
4805
4806 // Stub_table methods.
4807
4808 // Remove all Cortex-A8 stub.
4809
4810 template<bool big_endian>
4811 void
4812 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4813 {
4814   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4815        p != this->cortex_a8_stubs_.end();
4816        ++p)
4817     delete p->second;
4818   this->cortex_a8_stubs_.clear();
4819 }
4820
4821 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4822
4823 template<bool big_endian>
4824 void
4825 Stub_table<big_endian>::relocate_stub(
4826     Stub* stub,
4827     const Relocate_info<32, big_endian>* relinfo,
4828     Target_arm<big_endian>* arm_target,
4829     Output_section* output_section,
4830     unsigned char* view,
4831     Arm_address address,
4832     section_size_type view_size)
4833 {
4834   const Stub_template* stub_template = stub->stub_template();
4835   if (stub_template->reloc_count() != 0)
4836     {
4837       // Adjust view to cover the stub only.
4838       section_size_type offset = stub->offset();
4839       section_size_type stub_size = stub_template->size();
4840       gold_assert(offset + stub_size <= view_size);
4841
4842       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4843                                 address + offset, stub_size);
4844     }
4845 }
4846
4847 // Relocate all stubs in this stub table.
4848
4849 template<bool big_endian>
4850 void
4851 Stub_table<big_endian>::relocate_stubs(
4852     const Relocate_info<32, big_endian>* relinfo,
4853     Target_arm<big_endian>* arm_target,
4854     Output_section* output_section,
4855     unsigned char* view,
4856     Arm_address address,
4857     section_size_type view_size)
4858 {
4859   // If we are passed a view bigger than the stub table's.  we need to
4860   // adjust the view.
4861   gold_assert(address == this->address()
4862               && (view_size
4863                   == static_cast<section_size_type>(this->data_size())));
4864
4865   // Relocate all relocation stubs.
4866   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4867       p != this->reloc_stubs_.end();
4868       ++p)
4869     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4870                         address, view_size);
4871
4872   // Relocate all Cortex-A8 stubs.
4873   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4874        p != this->cortex_a8_stubs_.end();
4875        ++p)
4876     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4877                         address, view_size);
4878
4879   // Relocate all ARM V4BX stubs.
4880   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4881        p != this->arm_v4bx_stubs_.end();
4882        ++p)
4883     {
4884       if (*p != NULL)
4885         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4886                             address, view_size);
4887     }
4888 }
4889
4890 // Write out the stubs to file.
4891
4892 template<bool big_endian>
4893 void
4894 Stub_table<big_endian>::do_write(Output_file* of)
4895 {
4896   off_t offset = this->offset();
4897   const section_size_type oview_size =
4898     convert_to_section_size_type(this->data_size());
4899   unsigned char* const oview = of->get_output_view(offset, oview_size);
4900
4901   // Write relocation stubs.
4902   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4903       p != this->reloc_stubs_.end();
4904       ++p)
4905     {
4906       Reloc_stub* stub = p->second;
4907       Arm_address address = this->address() + stub->offset();
4908       gold_assert(address
4909                   == align_address(address,
4910                                    stub->stub_template()->alignment()));
4911       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4912                   big_endian);
4913     }
4914
4915   // Write Cortex-A8 stubs.
4916   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4917        p != this->cortex_a8_stubs_.end();
4918        ++p)
4919     {
4920       Cortex_a8_stub* stub = p->second;
4921       Arm_address address = this->address() + stub->offset();
4922       gold_assert(address
4923                   == align_address(address,
4924                                    stub->stub_template()->alignment()));
4925       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4926                   big_endian);
4927     }
4928
4929   // Write ARM V4BX relocation stubs.
4930   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4931        p != this->arm_v4bx_stubs_.end();
4932        ++p)
4933     {
4934       if (*p == NULL)
4935         continue;
4936
4937       Arm_address address = this->address() + (*p)->offset();
4938       gold_assert(address
4939                   == align_address(address,
4940                                    (*p)->stub_template()->alignment()));
4941       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4942                   big_endian);
4943     }
4944
4945   of->write_output_view(this->offset(), oview_size, oview);
4946 }
4947
4948 // Update the data size and address alignment of the stub table at the end
4949 // of a relaxation pass.   Return true if either the data size or the
4950 // alignment changed in this relaxation pass.
4951
4952 template<bool big_endian>
4953 bool
4954 Stub_table<big_endian>::update_data_size_and_addralign()
4955 {
4956   // Go over all stubs in table to compute data size and address alignment.
4957   off_t size = this->reloc_stubs_size_;
4958   unsigned addralign = this->reloc_stubs_addralign_;
4959
4960   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4961        p != this->cortex_a8_stubs_.end();
4962        ++p)
4963     {
4964       const Stub_template* stub_template = p->second->stub_template();
4965       addralign = std::max(addralign, stub_template->alignment());
4966       size = (align_address(size, stub_template->alignment())
4967               + stub_template->size());
4968     }
4969
4970   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4971        p != this->arm_v4bx_stubs_.end();
4972        ++p)
4973     {
4974       if (*p == NULL)
4975         continue;
4976
4977       const Stub_template* stub_template = (*p)->stub_template();
4978       addralign = std::max(addralign, stub_template->alignment());
4979       size = (align_address(size, stub_template->alignment())
4980               + stub_template->size());
4981     }
4982
4983   // Check if either data size or alignment changed in this pass.
4984   // Update prev_data_size_ and prev_addralign_.  These will be used
4985   // as the current data size and address alignment for the next pass.
4986   bool changed = size != this->prev_data_size_;
4987   this->prev_data_size_ = size; 
4988
4989   if (addralign != this->prev_addralign_)
4990     changed = true;
4991   this->prev_addralign_ = addralign;
4992
4993   return changed;
4994 }
4995
4996 // Finalize the stubs.  This sets the offsets of the stubs within the stub
4997 // table.  It also marks all input sections needing Cortex-A8 workaround.
4998
4999 template<bool big_endian>
5000 void
5001 Stub_table<big_endian>::finalize_stubs()
5002 {
5003   off_t off = this->reloc_stubs_size_;
5004   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5005        p != this->cortex_a8_stubs_.end();
5006        ++p)
5007     {
5008       Cortex_a8_stub* stub = p->second;
5009       const Stub_template* stub_template = stub->stub_template();
5010       uint64_t stub_addralign = stub_template->alignment();
5011       off = align_address(off, stub_addralign);
5012       stub->set_offset(off);
5013       off += stub_template->size();
5014
5015       // Mark input section so that we can determine later if a code section
5016       // needs the Cortex-A8 workaround quickly.
5017       Arm_relobj<big_endian>* arm_relobj =
5018         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5019       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5020     }
5021
5022   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5023       p != this->arm_v4bx_stubs_.end();
5024       ++p)
5025     {
5026       if (*p == NULL)
5027         continue;
5028
5029       const Stub_template* stub_template = (*p)->stub_template();
5030       uint64_t stub_addralign = stub_template->alignment();
5031       off = align_address(off, stub_addralign);
5032       (*p)->set_offset(off);
5033       off += stub_template->size();
5034     }
5035
5036   gold_assert(off <= this->prev_data_size_);
5037 }
5038
5039 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5040 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5041 // of the address range seen by the linker.
5042
5043 template<bool big_endian>
5044 void
5045 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5046     Target_arm<big_endian>* arm_target,
5047     unsigned char* view,
5048     Arm_address view_address,
5049     section_size_type view_size)
5050 {
5051   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5052   for (Cortex_a8_stub_list::const_iterator p =
5053          this->cortex_a8_stubs_.lower_bound(view_address);
5054        ((p != this->cortex_a8_stubs_.end())
5055         && (p->first < (view_address + view_size)));
5056        ++p)
5057     {
5058       // We do not store the THUMB bit in the LSB of either the branch address
5059       // or the stub offset.  There is no need to strip the LSB.
5060       Arm_address branch_address = p->first;
5061       const Cortex_a8_stub* stub = p->second;
5062       Arm_address stub_address = this->address() + stub->offset();
5063
5064       // Offset of the branch instruction relative to this view.
5065       section_size_type offset =
5066         convert_to_section_size_type(branch_address - view_address);
5067       gold_assert((offset + 4) <= view_size);
5068
5069       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5070                                              view + offset, branch_address);
5071     }
5072 }
5073
5074 // Arm_input_section methods.
5075
5076 // Initialize an Arm_input_section.
5077
5078 template<bool big_endian>
5079 void
5080 Arm_input_section<big_endian>::init()
5081 {
5082   Relobj* relobj = this->relobj();
5083   unsigned int shndx = this->shndx();
5084
5085   // We have to cache original size, alignment and contents to avoid locking
5086   // the original file.
5087   this->original_addralign_ =
5088     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5089
5090   // This is not efficient but we expect only a small number of relaxed
5091   // input sections for stubs.
5092   section_size_type section_size;
5093   const unsigned char* section_contents =
5094     relobj->section_contents(shndx, &section_size, false);
5095   this->original_size_ =
5096     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5097
5098   gold_assert(this->original_contents_ == NULL);
5099   this->original_contents_ = new unsigned char[section_size];
5100   memcpy(this->original_contents_, section_contents, section_size);
5101
5102   // We want to make this look like the original input section after
5103   // output sections are finalized.
5104   Output_section* os = relobj->output_section(shndx);
5105   off_t offset = relobj->output_section_offset(shndx);
5106   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5107   this->set_address(os->address() + offset);
5108   this->set_file_offset(os->offset() + offset);
5109
5110   this->set_current_data_size(this->original_size_);
5111   this->finalize_data_size();
5112 }
5113
5114 template<bool big_endian>
5115 void
5116 Arm_input_section<big_endian>::do_write(Output_file* of)
5117 {
5118   // We have to write out the original section content.
5119   gold_assert(this->original_contents_ != NULL);
5120   of->write(this->offset(), this->original_contents_,
5121             this->original_size_); 
5122
5123   // If this owns a stub table and it is not empty, write it.
5124   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5125     this->stub_table_->write(of);
5126 }
5127
5128 // Finalize data size.
5129
5130 template<bool big_endian>
5131 void
5132 Arm_input_section<big_endian>::set_final_data_size()
5133 {
5134   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5135
5136   if (this->is_stub_table_owner())
5137     {
5138       this->stub_table_->finalize_data_size();
5139       off = align_address(off, this->stub_table_->addralign());
5140       off += this->stub_table_->data_size();
5141     }
5142   this->set_data_size(off);
5143 }
5144
5145 // Reset address and file offset.
5146
5147 template<bool big_endian>
5148 void
5149 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5150 {
5151   // Size of the original input section contents.
5152   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5153
5154   // If this is a stub table owner, account for the stub table size.
5155   if (this->is_stub_table_owner())
5156     {
5157       Stub_table<big_endian>* stub_table = this->stub_table_;
5158
5159       // Reset the stub table's address and file offset.  The
5160       // current data size for child will be updated after that.
5161       stub_table_->reset_address_and_file_offset();
5162       off = align_address(off, stub_table_->addralign());
5163       off += stub_table->current_data_size();
5164     }
5165
5166   this->set_current_data_size(off);
5167 }
5168
5169 // Arm_exidx_cantunwind methods.
5170
5171 // Write this to Output file OF for a fixed endianness.
5172
5173 template<bool big_endian>
5174 void
5175 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5176 {
5177   off_t offset = this->offset();
5178   const section_size_type oview_size = 8;
5179   unsigned char* const oview = of->get_output_view(offset, oview_size);
5180   
5181   typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
5182
5183   Output_section* os = this->relobj_->output_section(this->shndx_);
5184   gold_assert(os != NULL);
5185
5186   Arm_relobj<big_endian>* arm_relobj =
5187     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5188   Arm_address output_offset =
5189     arm_relobj->get_output_section_offset(this->shndx_);
5190   Arm_address section_start;
5191   section_size_type section_size;
5192
5193   // Find out the end of the text section referred by this.
5194   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5195     {
5196       section_start = os->address() + output_offset;
5197       const Arm_exidx_input_section* exidx_input_section =
5198         arm_relobj->exidx_input_section_by_link(this->shndx_);
5199       gold_assert(exidx_input_section != NULL);
5200       section_size =
5201         convert_to_section_size_type(exidx_input_section->text_size());
5202     }
5203   else
5204     {
5205       // Currently this only happens for a relaxed section.
5206       const Output_relaxed_input_section* poris =
5207         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5208       gold_assert(poris != NULL);
5209       section_start = poris->address();
5210       section_size = convert_to_section_size_type(poris->data_size());
5211     }
5212
5213   // We always append this to the end of an EXIDX section.
5214   Arm_address output_address = section_start + section_size;
5215
5216   // Write out the entry.  The first word either points to the beginning
5217   // or after the end of a text section.  The second word is the special
5218   // EXIDX_CANTUNWIND value.
5219   uint32_t prel31_offset = output_address - this->address();
5220   if (Bits<31>::has_overflow32(offset))
5221     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5222   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5223                                                    prel31_offset & 0x7fffffffU);
5224   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5225                                                    elfcpp::EXIDX_CANTUNWIND);
5226
5227   of->write_output_view(this->offset(), oview_size, oview);
5228 }
5229
5230 // Arm_exidx_merged_section methods.
5231
5232 // Constructor for Arm_exidx_merged_section.
5233 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5234 // SECTION_OFFSET_MAP points to a section offset map describing how
5235 // parts of the input section are mapped to output.  DELETED_BYTES is
5236 // the number of bytes deleted from the EXIDX input section.
5237
5238 Arm_exidx_merged_section::Arm_exidx_merged_section(
5239     const Arm_exidx_input_section& exidx_input_section,
5240     const Arm_exidx_section_offset_map& section_offset_map,
5241     uint32_t deleted_bytes)
5242   : Output_relaxed_input_section(exidx_input_section.relobj(),
5243                                  exidx_input_section.shndx(),
5244                                  exidx_input_section.addralign()),
5245     exidx_input_section_(exidx_input_section),
5246     section_offset_map_(section_offset_map)
5247 {
5248   // If we retain or discard the whole EXIDX input section,  we would
5249   // not be here.
5250   gold_assert(deleted_bytes != 0
5251               && deleted_bytes != this->exidx_input_section_.size());
5252
5253   // Fix size here so that we do not need to implement set_final_data_size.
5254   uint32_t size = exidx_input_section.size() - deleted_bytes;
5255   this->set_data_size(size);
5256   this->fix_data_size();
5257
5258   // Allocate buffer for section contents and build contents.
5259   this->section_contents_ = new unsigned char[size];
5260 }
5261
5262 // Build the contents of a merged EXIDX output section.
5263
5264 void
5265 Arm_exidx_merged_section::build_contents(
5266     const unsigned char* original_contents,
5267     section_size_type original_size)
5268 {
5269   // Go over spans of input offsets and write only those that are not
5270   // discarded.
5271   section_offset_type in_start = 0;
5272   section_offset_type out_start = 0;
5273   section_offset_type in_max =
5274     convert_types<section_offset_type>(original_size);
5275   section_offset_type out_max =
5276     convert_types<section_offset_type>(this->data_size());
5277   for (Arm_exidx_section_offset_map::const_iterator p =
5278         this->section_offset_map_.begin();
5279       p != this->section_offset_map_.end();
5280       ++p)
5281     {
5282       section_offset_type in_end = p->first;
5283       gold_assert(in_end >= in_start);
5284       section_offset_type out_end = p->second;
5285       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5286       if (out_end != -1)
5287         {
5288           size_t out_chunk_size =
5289             convert_types<size_t>(out_end - out_start + 1);
5290
5291           gold_assert(out_chunk_size == in_chunk_size
5292                       && in_end < in_max && out_end < out_max);
5293
5294           memcpy(this->section_contents_ + out_start,
5295                  original_contents + in_start,
5296                  out_chunk_size);
5297           out_start += out_chunk_size;
5298         }
5299       in_start += in_chunk_size;
5300     }
5301 }
5302
5303 // Given an input OBJECT, an input section index SHNDX within that
5304 // object, and an OFFSET relative to the start of that input
5305 // section, return whether or not the corresponding offset within
5306 // the output section is known.  If this function returns true, it
5307 // sets *POUTPUT to the output offset.  The value -1 indicates that
5308 // this input offset is being discarded.
5309
5310 bool
5311 Arm_exidx_merged_section::do_output_offset(
5312     const Relobj* relobj,
5313     unsigned int shndx,
5314     section_offset_type offset,
5315     section_offset_type* poutput) const
5316 {
5317   // We only handle offsets for the original EXIDX input section.
5318   if (relobj != this->exidx_input_section_.relobj()
5319       || shndx != this->exidx_input_section_.shndx())
5320     return false;
5321
5322   section_offset_type section_size =
5323     convert_types<section_offset_type>(this->exidx_input_section_.size());
5324   if (offset < 0 || offset >= section_size)
5325     // Input offset is out of valid range.
5326     *poutput = -1;
5327   else
5328     {
5329       // We need to look up the section offset map to determine the output
5330       // offset.  Find the reference point in map that is first offset
5331       // bigger than or equal to this offset.
5332       Arm_exidx_section_offset_map::const_iterator p =
5333         this->section_offset_map_.lower_bound(offset);
5334
5335       // The section offset maps are build such that this should not happen if
5336       // input offset is in the valid range.
5337       gold_assert(p != this->section_offset_map_.end());
5338
5339       // We need to check if this is dropped.
5340      section_offset_type ref = p->first;
5341      section_offset_type mapped_ref = p->second;
5342
5343       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5344         // Offset is present in output.
5345         *poutput = mapped_ref + (offset - ref);
5346       else
5347         // Offset is discarded owing to EXIDX entry merging.
5348         *poutput = -1;
5349     }
5350   
5351   return true;
5352 }
5353
5354 // Write this to output file OF.
5355
5356 void
5357 Arm_exidx_merged_section::do_write(Output_file* of)
5358 {
5359   off_t offset = this->offset();
5360   const section_size_type oview_size = this->data_size();
5361   unsigned char* const oview = of->get_output_view(offset, oview_size);
5362   
5363   Output_section* os = this->relobj()->output_section(this->shndx());
5364   gold_assert(os != NULL);
5365
5366   memcpy(oview, this->section_contents_, oview_size);
5367   of->write_output_view(this->offset(), oview_size, oview);
5368 }
5369
5370 // Arm_exidx_fixup methods.
5371
5372 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5373 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5374 // points to the end of the last seen EXIDX section.
5375
5376 void
5377 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5378 {
5379   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5380       && this->last_input_section_ != NULL)
5381     {
5382       Relobj* relobj = this->last_input_section_->relobj();
5383       unsigned int text_shndx = this->last_input_section_->link();
5384       Arm_exidx_cantunwind* cantunwind =
5385         new Arm_exidx_cantunwind(relobj, text_shndx);
5386       this->exidx_output_section_->add_output_section_data(cantunwind);
5387       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5388     }
5389 }
5390
5391 // Process an EXIDX section entry in input.  Return whether this entry
5392 // can be deleted in the output.  SECOND_WORD in the second word of the
5393 // EXIDX entry.
5394
5395 bool
5396 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5397 {
5398   bool delete_entry;
5399   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5400     {
5401       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5402       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5403       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5404     }
5405   else if ((second_word & 0x80000000) != 0)
5406     {
5407       // Inlined unwinding data.  Merge if equal to previous.
5408       delete_entry = (merge_exidx_entries_
5409                       && this->last_unwind_type_ == UT_INLINED_ENTRY
5410                       && this->last_inlined_entry_ == second_word);
5411       this->last_unwind_type_ = UT_INLINED_ENTRY;
5412       this->last_inlined_entry_ = second_word;
5413     }
5414   else
5415     {
5416       // Normal table entry.  In theory we could merge these too,
5417       // but duplicate entries are likely to be much less common.
5418       delete_entry = false;
5419       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5420     }
5421   return delete_entry;
5422 }
5423
5424 // Update the current section offset map during EXIDX section fix-up.
5425 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5426 // reference point, DELETED_BYTES is the number of deleted by in the
5427 // section so far.  If DELETE_ENTRY is true, the reference point and
5428 // all offsets after the previous reference point are discarded.
5429
5430 void
5431 Arm_exidx_fixup::update_offset_map(
5432     section_offset_type input_offset,
5433     section_size_type deleted_bytes,
5434     bool delete_entry)
5435 {
5436   if (this->section_offset_map_ == NULL)
5437     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5438   section_offset_type output_offset;
5439   if (delete_entry)
5440     output_offset = Arm_exidx_input_section::invalid_offset;
5441   else
5442     output_offset = input_offset - deleted_bytes;
5443   (*this->section_offset_map_)[input_offset] = output_offset;
5444 }
5445
5446 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5447 // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5448 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5449 // If some entries are merged, also store a pointer to a newly created
5450 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5451 // owns the map and is responsible for releasing it after use.
5452
5453 template<bool big_endian>
5454 uint32_t
5455 Arm_exidx_fixup::process_exidx_section(
5456     const Arm_exidx_input_section* exidx_input_section,
5457     const unsigned char* section_contents,
5458     section_size_type section_size,
5459     Arm_exidx_section_offset_map** psection_offset_map)
5460 {
5461   Relobj* relobj = exidx_input_section->relobj();
5462   unsigned shndx = exidx_input_section->shndx();
5463
5464   if ((section_size % 8) != 0)
5465     {
5466       // Something is wrong with this section.  Better not touch it.
5467       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5468                  relobj->name().c_str(), shndx);
5469       this->last_input_section_ = exidx_input_section;
5470       this->last_unwind_type_ = UT_NONE;
5471       return 0;
5472     }
5473   
5474   uint32_t deleted_bytes = 0;
5475   bool prev_delete_entry = false;
5476   gold_assert(this->section_offset_map_ == NULL);
5477
5478   for (section_size_type i = 0; i < section_size; i += 8)
5479     {
5480       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5481       const Valtype* wv =
5482           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5483       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5484
5485       bool delete_entry = this->process_exidx_entry(second_word);
5486
5487       // Entry deletion causes changes in output offsets.  We use a std::map
5488       // to record these.  And entry (x, y) means input offset x
5489       // is mapped to output offset y.  If y is invalid_offset, then x is
5490       // dropped in the output.  Because of the way std::map::lower_bound
5491       // works, we record the last offset in a region w.r.t to keeping or
5492       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5493       // the output offset y0 of it is determined by the output offset y1 of
5494       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5495       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5496       // y0 is also -1.
5497       if (delete_entry != prev_delete_entry && i != 0)
5498         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5499
5500       // Update total deleted bytes for this entry.
5501       if (delete_entry)
5502         deleted_bytes += 8;
5503
5504       prev_delete_entry = delete_entry;
5505     }
5506   
5507   // If section offset map is not NULL, make an entry for the end of
5508   // section.
5509   if (this->section_offset_map_ != NULL)
5510     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5511
5512   *psection_offset_map = this->section_offset_map_;
5513   this->section_offset_map_ = NULL;
5514   this->last_input_section_ = exidx_input_section;
5515   
5516   // Set the first output text section so that we can link the EXIDX output
5517   // section to it.  Ignore any EXIDX input section that is completely merged.
5518   if (this->first_output_text_section_ == NULL
5519       && deleted_bytes != section_size)
5520     {
5521       unsigned int link = exidx_input_section->link();
5522       Output_section* os = relobj->output_section(link);
5523       gold_assert(os != NULL);
5524       this->first_output_text_section_ = os;
5525     }
5526
5527   return deleted_bytes;
5528 }
5529
5530 // Arm_output_section methods.
5531
5532 // Create a stub group for input sections from BEGIN to END.  OWNER
5533 // points to the input section to be the owner a new stub table.
5534
5535 template<bool big_endian>
5536 void
5537 Arm_output_section<big_endian>::create_stub_group(
5538   Input_section_list::const_iterator begin,
5539   Input_section_list::const_iterator end,
5540   Input_section_list::const_iterator owner,
5541   Target_arm<big_endian>* target,
5542   std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5543   const Task* task)
5544 {
5545   // We use a different kind of relaxed section in an EXIDX section.
5546   // The static casting from Output_relaxed_input_section to
5547   // Arm_input_section is invalid in an EXIDX section.  We are okay
5548   // because we should not be calling this for an EXIDX section. 
5549   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5550
5551   // Currently we convert ordinary input sections into relaxed sections only
5552   // at this point but we may want to support creating relaxed input section
5553   // very early.  So we check here to see if owner is already a relaxed
5554   // section.
5555   
5556   Arm_input_section<big_endian>* arm_input_section;
5557   if (owner->is_relaxed_input_section())
5558     {
5559       arm_input_section =
5560         Arm_input_section<big_endian>::as_arm_input_section(
5561           owner->relaxed_input_section());
5562     }
5563   else
5564     {
5565       gold_assert(owner->is_input_section());
5566       // Create a new relaxed input section.  We need to lock the original
5567       // file.
5568       Task_lock_obj<Object> tl(task, owner->relobj());
5569       arm_input_section =
5570         target->new_arm_input_section(owner->relobj(), owner->shndx());
5571       new_relaxed_sections->push_back(arm_input_section);
5572     }
5573
5574   // Create a stub table.
5575   Stub_table<big_endian>* stub_table =
5576     target->new_stub_table(arm_input_section);
5577
5578   arm_input_section->set_stub_table(stub_table);
5579   
5580   Input_section_list::const_iterator p = begin;
5581   Input_section_list::const_iterator prev_p;
5582
5583   // Look for input sections or relaxed input sections in [begin ... end].
5584   do
5585     {
5586       if (p->is_input_section() || p->is_relaxed_input_section())
5587         {
5588           // The stub table information for input sections live
5589           // in their objects.
5590           Arm_relobj<big_endian>* arm_relobj =
5591             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5592           arm_relobj->set_stub_table(p->shndx(), stub_table);
5593         }
5594       prev_p = p++;
5595     }
5596   while (prev_p != end);
5597 }
5598
5599 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5600 // of stub groups.  We grow a stub group by adding input section until the
5601 // size is just below GROUP_SIZE.  The last input section will be converted
5602 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5603 // input section after the stub table, effectively double the group size.
5604 // 
5605 // This is similar to the group_sections() function in elf32-arm.c but is
5606 // implemented differently.
5607
5608 template<bool big_endian>
5609 void
5610 Arm_output_section<big_endian>::group_sections(
5611     section_size_type group_size,
5612     bool stubs_always_after_branch,
5613     Target_arm<big_endian>* target,
5614     const Task* task)
5615 {
5616   // We only care about sections containing code.
5617   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5618     return;
5619
5620   // States for grouping.
5621   typedef enum
5622   {
5623     // No group is being built.
5624     NO_GROUP,
5625     // A group is being built but the stub table is not found yet.
5626     // We keep group a stub group until the size is just under GROUP_SIZE.
5627     // The last input section in the group will be used as the stub table.
5628     FINDING_STUB_SECTION,
5629     // A group is being built and we have already found a stub table.
5630     // We enter this state to grow a stub group by adding input section
5631     // after the stub table.  This effectively doubles the group size.
5632     HAS_STUB_SECTION
5633   } State;
5634
5635   // Any newly created relaxed sections are stored here.
5636   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5637
5638   State state = NO_GROUP;
5639   section_size_type off = 0;
5640   section_size_type group_begin_offset = 0;
5641   section_size_type group_end_offset = 0;
5642   section_size_type stub_table_end_offset = 0;
5643   Input_section_list::const_iterator group_begin =
5644     this->input_sections().end();
5645   Input_section_list::const_iterator stub_table =
5646     this->input_sections().end();
5647   Input_section_list::const_iterator group_end = this->input_sections().end();
5648   for (Input_section_list::const_iterator p = this->input_sections().begin();
5649        p != this->input_sections().end();
5650        ++p)
5651     {
5652       section_size_type section_begin_offset =
5653         align_address(off, p->addralign());
5654       section_size_type section_end_offset =
5655         section_begin_offset + p->data_size(); 
5656       
5657       // Check to see if we should group the previously seen sections.
5658       switch (state)
5659         {
5660         case NO_GROUP:
5661           break;
5662
5663         case FINDING_STUB_SECTION:
5664           // Adding this section makes the group larger than GROUP_SIZE.
5665           if (section_end_offset - group_begin_offset >= group_size)
5666             {
5667               if (stubs_always_after_branch)
5668                 {       
5669                   gold_assert(group_end != this->input_sections().end());
5670                   this->create_stub_group(group_begin, group_end, group_end,
5671                                           target, &new_relaxed_sections,
5672                                           task);
5673                   state = NO_GROUP;
5674                 }
5675               else
5676                 {
5677                   // But wait, there's more!  Input sections up to
5678                   // stub_group_size bytes after the stub table can be
5679                   // handled by it too.
5680                   state = HAS_STUB_SECTION;
5681                   stub_table = group_end;
5682                   stub_table_end_offset = group_end_offset;
5683                 }
5684             }
5685             break;
5686
5687         case HAS_STUB_SECTION:
5688           // Adding this section makes the post stub-section group larger
5689           // than GROUP_SIZE.
5690           if (section_end_offset - stub_table_end_offset >= group_size)
5691            {
5692              gold_assert(group_end != this->input_sections().end());
5693              this->create_stub_group(group_begin, group_end, stub_table,
5694                                      target, &new_relaxed_sections, task);
5695              state = NO_GROUP;
5696            }
5697            break;
5698
5699           default:
5700             gold_unreachable();
5701         }       
5702
5703       // If we see an input section and currently there is no group, start
5704       // a new one.  Skip any empty sections.  We look at the data size
5705       // instead of calling p->relobj()->section_size() to avoid locking.
5706       if ((p->is_input_section() || p->is_relaxed_input_section())
5707           && (p->data_size() != 0))
5708         {
5709           if (state == NO_GROUP)
5710             {
5711               state = FINDING_STUB_SECTION;
5712               group_begin = p;
5713               group_begin_offset = section_begin_offset;
5714             }
5715
5716           // Keep track of the last input section seen.
5717           group_end = p;
5718           group_end_offset = section_end_offset;
5719         }
5720
5721       off = section_end_offset;
5722     }
5723
5724   // Create a stub group for any ungrouped sections.
5725   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5726     {
5727       gold_assert(group_end != this->input_sections().end());
5728       this->create_stub_group(group_begin, group_end,
5729                               (state == FINDING_STUB_SECTION
5730                                ? group_end
5731                                : stub_table),
5732                                target, &new_relaxed_sections, task);
5733     }
5734
5735   // Convert input section into relaxed input section in a batch.
5736   if (!new_relaxed_sections.empty())
5737     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5738
5739   // Update the section offsets
5740   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5741     {
5742       Arm_relobj<big_endian>* arm_relobj =
5743         Arm_relobj<big_endian>::as_arm_relobj(
5744           new_relaxed_sections[i]->relobj());
5745       unsigned int shndx = new_relaxed_sections[i]->shndx();
5746       // Tell Arm_relobj that this input section is converted.
5747       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5748     }
5749 }
5750
5751 // Append non empty text sections in this to LIST in ascending
5752 // order of their position in this.
5753
5754 template<bool big_endian>
5755 void
5756 Arm_output_section<big_endian>::append_text_sections_to_list(
5757     Text_section_list* list)
5758 {
5759   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5760
5761   for (Input_section_list::const_iterator p = this->input_sections().begin();
5762        p != this->input_sections().end();
5763        ++p)
5764     {
5765       // We only care about plain or relaxed input sections.  We also
5766       // ignore any merged sections.
5767       if (p->is_input_section() || p->is_relaxed_input_section())
5768         list->push_back(Text_section_list::value_type(p->relobj(),
5769                                                       p->shndx()));
5770     }
5771 }
5772
5773 template<bool big_endian>
5774 void
5775 Arm_output_section<big_endian>::fix_exidx_coverage(
5776     Layout* layout,
5777     const Text_section_list& sorted_text_sections,
5778     Symbol_table* symtab,
5779     bool merge_exidx_entries,
5780     const Task* task)
5781 {
5782   // We should only do this for the EXIDX output section.
5783   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5784
5785   // We don't want the relaxation loop to undo these changes, so we discard
5786   // the current saved states and take another one after the fix-up.
5787   this->discard_states();
5788
5789   // Remove all input sections.
5790   uint64_t address = this->address();
5791   typedef std::list<Output_section::Input_section> Input_section_list;
5792   Input_section_list input_sections;
5793   this->reset_address_and_file_offset();
5794   this->get_input_sections(address, std::string(""), &input_sections);
5795
5796   if (!this->input_sections().empty())
5797     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5798   
5799   // Go through all the known input sections and record them.
5800   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5801   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5802                         Section_id_hash> Text_to_exidx_map;
5803   Text_to_exidx_map text_to_exidx_map;
5804   for (Input_section_list::const_iterator p = input_sections.begin();
5805        p != input_sections.end();
5806        ++p)
5807     {
5808       // This should never happen.  At this point, we should only see
5809       // plain EXIDX input sections.
5810       gold_assert(!p->is_relaxed_input_section());
5811       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5812     }
5813
5814   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5815
5816   // Go over the sorted text sections.
5817   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5818   Section_id_set processed_input_sections;
5819   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5820        p != sorted_text_sections.end();
5821        ++p)
5822     {
5823       Relobj* relobj = p->first;
5824       unsigned int shndx = p->second;
5825
5826       Arm_relobj<big_endian>* arm_relobj =
5827          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5828       const Arm_exidx_input_section* exidx_input_section =
5829          arm_relobj->exidx_input_section_by_link(shndx);
5830
5831       // If this text section has no EXIDX section or if the EXIDX section
5832       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5833       // of the last seen EXIDX section.
5834       if (exidx_input_section == NULL || exidx_input_section->has_errors())
5835         {
5836           exidx_fixup.add_exidx_cantunwind_as_needed();
5837           continue;
5838         }
5839
5840       Relobj* exidx_relobj = exidx_input_section->relobj();
5841       unsigned int exidx_shndx = exidx_input_section->shndx();
5842       Section_id sid(exidx_relobj, exidx_shndx);
5843       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5844       if (iter == text_to_exidx_map.end())
5845         {
5846           // This is odd.  We have not seen this EXIDX input section before.
5847           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5848           // issue a warning instead.  We assume the user knows what he
5849           // or she is doing.  Otherwise, this is an error.
5850           if (layout->script_options()->saw_sections_clause())
5851             gold_warning(_("unwinding may not work because EXIDX input section"
5852                            " %u of %s is not in EXIDX output section"),
5853                          exidx_shndx, exidx_relobj->name().c_str());
5854           else
5855             gold_error(_("unwinding may not work because EXIDX input section"
5856                          " %u of %s is not in EXIDX output section"),
5857                        exidx_shndx, exidx_relobj->name().c_str());
5858
5859           exidx_fixup.add_exidx_cantunwind_as_needed();
5860           continue;
5861         }
5862
5863       // We need to access the contents of the EXIDX section, lock the
5864       // object here.
5865       Task_lock_obj<Object> tl(task, exidx_relobj);
5866       section_size_type exidx_size;
5867       const unsigned char* exidx_contents =
5868         exidx_relobj->section_contents(exidx_shndx, &exidx_size, false); 
5869
5870       // Fix up coverage and append input section to output data list.
5871       Arm_exidx_section_offset_map* section_offset_map = NULL;
5872       uint32_t deleted_bytes =
5873         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5874                                                       exidx_contents,
5875                                                       exidx_size,
5876                                                       &section_offset_map);
5877
5878       if (deleted_bytes == exidx_input_section->size())
5879         {
5880           // The whole EXIDX section got merged.  Remove it from output.
5881           gold_assert(section_offset_map == NULL);
5882           exidx_relobj->set_output_section(exidx_shndx, NULL);
5883
5884           // All local symbols defined in this input section will be dropped.
5885           // We need to adjust output local symbol count.
5886           arm_relobj->set_output_local_symbol_count_needs_update();
5887         }
5888       else if (deleted_bytes > 0)
5889         {
5890           // Some entries are merged.  We need to convert this EXIDX input
5891           // section into a relaxed section.
5892           gold_assert(section_offset_map != NULL);
5893
5894           Arm_exidx_merged_section* merged_section =
5895             new Arm_exidx_merged_section(*exidx_input_section,
5896                                          *section_offset_map, deleted_bytes);
5897           merged_section->build_contents(exidx_contents, exidx_size);
5898
5899           const std::string secname = exidx_relobj->section_name(exidx_shndx);
5900           this->add_relaxed_input_section(layout, merged_section, secname);
5901           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5902
5903           // All local symbols defined in discarded portions of this input
5904           // section will be dropped.  We need to adjust output local symbol
5905           // count.
5906           arm_relobj->set_output_local_symbol_count_needs_update();
5907         }
5908       else
5909         {
5910           // Just add back the EXIDX input section.
5911           gold_assert(section_offset_map == NULL);
5912           const Output_section::Input_section* pis = iter->second;
5913           gold_assert(pis->is_input_section());
5914           this->add_script_input_section(*pis);
5915         }
5916
5917       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
5918     }
5919
5920   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5921   exidx_fixup.add_exidx_cantunwind_as_needed();
5922
5923   // Remove any known EXIDX input sections that are not processed.
5924   for (Input_section_list::const_iterator p = input_sections.begin();
5925        p != input_sections.end();
5926        ++p)
5927     {
5928       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5929           == processed_input_sections.end())
5930         {
5931           // We discard a known EXIDX section because its linked
5932           // text section has been folded by ICF.  We also discard an
5933           // EXIDX section with error, the output does not matter in this
5934           // case.  We do this to avoid triggering asserts.
5935           Arm_relobj<big_endian>* arm_relobj =
5936             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5937           const Arm_exidx_input_section* exidx_input_section =
5938             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5939           gold_assert(exidx_input_section != NULL);
5940           if (!exidx_input_section->has_errors())
5941             {
5942               unsigned int text_shndx = exidx_input_section->link();
5943               gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5944             }
5945
5946           // Remove this from link.  We also need to recount the
5947           // local symbols.
5948           p->relobj()->set_output_section(p->shndx(), NULL);
5949           arm_relobj->set_output_local_symbol_count_needs_update();
5950         }
5951     }
5952     
5953   // Link exidx output section to the first seen output section and
5954   // set correct entry size.
5955   this->set_link_section(exidx_fixup.first_output_text_section());
5956   this->set_entsize(8);
5957
5958   // Make changes permanent.
5959   this->save_states();
5960   this->set_section_offsets_need_adjustment();
5961 }
5962
5963 // Link EXIDX output sections to text output sections.
5964
5965 template<bool big_endian>
5966 void
5967 Arm_output_section<big_endian>::set_exidx_section_link()
5968 {
5969   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5970   if (!this->input_sections().empty())
5971     {
5972       Input_section_list::const_iterator p = this->input_sections().begin();
5973       Arm_relobj<big_endian>* arm_relobj =
5974         Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5975       unsigned exidx_shndx = p->shndx();
5976       const Arm_exidx_input_section* exidx_input_section =
5977         arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
5978       gold_assert(exidx_input_section != NULL);
5979       unsigned int text_shndx = exidx_input_section->link();
5980       Output_section* os = arm_relobj->output_section(text_shndx);
5981       this->set_link_section(os);
5982     }
5983 }
5984
5985 // Arm_relobj methods.
5986
5987 // Determine if an input section is scannable for stub processing.  SHDR is
5988 // the header of the section and SHNDX is the section index.  OS is the output
5989 // section for the input section and SYMTAB is the global symbol table used to
5990 // look up ICF information.
5991
5992 template<bool big_endian>
5993 bool
5994 Arm_relobj<big_endian>::section_is_scannable(
5995     const elfcpp::Shdr<32, big_endian>& shdr,
5996     unsigned int shndx,
5997     const Output_section* os,
5998     const Symbol_table* symtab)
5999 {
6000   // Skip any empty sections, unallocated sections or sections whose
6001   // type are not SHT_PROGBITS.
6002   if (shdr.get_sh_size() == 0
6003       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6004       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6005     return false;
6006
6007   // Skip any discarded or ICF'ed sections.
6008   if (os == NULL || symtab->is_section_folded(this, shndx))
6009     return false;
6010
6011   // If this requires special offset handling, check to see if it is
6012   // a relaxed section.  If this is not, then it is a merged section that
6013   // we cannot handle.
6014   if (this->is_output_section_offset_invalid(shndx))
6015     {
6016       const Output_relaxed_input_section* poris =
6017         os->find_relaxed_input_section(this, shndx);
6018       if (poris == NULL)
6019         return false;
6020     }
6021
6022   return true;
6023 }
6024
6025 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6026 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6027
6028 template<bool big_endian>
6029 bool
6030 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6031     const elfcpp::Shdr<32, big_endian>& shdr,
6032     const Relobj::Output_sections& out_sections,
6033     const Symbol_table* symtab,
6034     const unsigned char* pshdrs)
6035 {
6036   unsigned int sh_type = shdr.get_sh_type();
6037   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6038     return false;
6039
6040   // Ignore empty section.
6041   off_t sh_size = shdr.get_sh_size();
6042   if (sh_size == 0)
6043     return false;
6044
6045   // Ignore reloc section with unexpected symbol table.  The
6046   // error will be reported in the final link.
6047   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6048     return false;
6049
6050   unsigned int reloc_size;
6051   if (sh_type == elfcpp::SHT_REL)
6052     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6053   else
6054     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6055
6056   // Ignore reloc section with unexpected entsize or uneven size.
6057   // The error will be reported in the final link.
6058   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6059     return false;
6060
6061   // Ignore reloc section with bad info.  This error will be
6062   // reported in the final link.
6063   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6064   if (index >= this->shnum())
6065     return false;
6066
6067   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6068   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6069   return this->section_is_scannable(text_shdr, index,
6070                                    out_sections[index], symtab);
6071 }
6072
6073 // Return the output address of either a plain input section or a relaxed
6074 // input section.  SHNDX is the section index.  We define and use this
6075 // instead of calling Output_section::output_address because that is slow
6076 // for large output.
6077
6078 template<bool big_endian>
6079 Arm_address
6080 Arm_relobj<big_endian>::simple_input_section_output_address(
6081     unsigned int shndx,
6082     Output_section* os)
6083 {
6084   if (this->is_output_section_offset_invalid(shndx))
6085     {
6086       const Output_relaxed_input_section* poris =
6087         os->find_relaxed_input_section(this, shndx);
6088       // We do not handle merged sections here.
6089       gold_assert(poris != NULL);
6090       return poris->address();
6091     }
6092   else
6093     return os->address() + this->get_output_section_offset(shndx);
6094 }
6095
6096 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6097 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6098
6099 template<bool big_endian>
6100 bool
6101 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6102     const elfcpp::Shdr<32, big_endian>& shdr,
6103     unsigned int shndx,
6104     Output_section* os,
6105     const Symbol_table* symtab)
6106 {
6107   if (!this->section_is_scannable(shdr, shndx, os, symtab))
6108     return false;
6109
6110   // If the section does not cross any 4K-boundaries, it does not need to
6111   // be scanned.
6112   Arm_address address = this->simple_input_section_output_address(shndx, os);
6113   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6114     return false;
6115
6116   return true;
6117 }
6118
6119 // Scan a section for Cortex-A8 workaround.
6120
6121 template<bool big_endian>
6122 void
6123 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6124     const elfcpp::Shdr<32, big_endian>& shdr,
6125     unsigned int shndx,
6126     Output_section* os,
6127     Target_arm<big_endian>* arm_target)
6128 {
6129   // Look for the first mapping symbol in this section.  It should be
6130   // at (shndx, 0).
6131   Mapping_symbol_position section_start(shndx, 0);
6132   typename Mapping_symbols_info::const_iterator p =
6133     this->mapping_symbols_info_.lower_bound(section_start);
6134
6135   // There are no mapping symbols for this section.  Treat it as a data-only
6136   // section.  Issue a warning if section is marked as containing
6137   // instructions.
6138   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6139     {
6140       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6141         gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6142                        "erratum because it has no mapping symbols."),
6143                      shndx, this->name().c_str());
6144       return;
6145     }
6146
6147   Arm_address output_address =
6148     this->simple_input_section_output_address(shndx, os);
6149
6150   // Get the section contents.
6151   section_size_type input_view_size = 0;
6152   const unsigned char* input_view =
6153     this->section_contents(shndx, &input_view_size, false);
6154
6155   // We need to go through the mapping symbols to determine what to
6156   // scan.  There are two reasons.  First, we should look at THUMB code and
6157   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6158   // to speed up the scanning.
6159   
6160   while (p != this->mapping_symbols_info_.end()
6161         && p->first.first == shndx)
6162     {
6163       typename Mapping_symbols_info::const_iterator next =
6164         this->mapping_symbols_info_.upper_bound(p->first);
6165
6166       // Only scan part of a section with THUMB code.
6167       if (p->second == 't')
6168         {
6169           // Determine the end of this range.
6170           section_size_type span_start =
6171             convert_to_section_size_type(p->first.second);
6172           section_size_type span_end;
6173           if (next != this->mapping_symbols_info_.end()
6174               && next->first.first == shndx)
6175             span_end = convert_to_section_size_type(next->first.second);
6176           else
6177             span_end = convert_to_section_size_type(shdr.get_sh_size());
6178           
6179           if (((span_start + output_address) & ~0xfffUL)
6180               != ((span_end + output_address - 1) & ~0xfffUL))
6181             {
6182               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6183                                                           span_start, span_end,
6184                                                           input_view,
6185                                                           output_address);
6186             }
6187         }
6188
6189       p = next; 
6190     }
6191 }
6192
6193 // Scan relocations for stub generation.
6194
6195 template<bool big_endian>
6196 void
6197 Arm_relobj<big_endian>::scan_sections_for_stubs(
6198     Target_arm<big_endian>* arm_target,
6199     const Symbol_table* symtab,
6200     const Layout* layout)
6201 {
6202   unsigned int shnum = this->shnum();
6203   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6204
6205   // Read the section headers.
6206   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6207                                                shnum * shdr_size,
6208                                                true, true);
6209
6210   // To speed up processing, we set up hash tables for fast lookup of
6211   // input offsets to output addresses.
6212   this->initialize_input_to_output_maps();
6213
6214   const Relobj::Output_sections& out_sections(this->output_sections());
6215
6216   Relocate_info<32, big_endian> relinfo;
6217   relinfo.symtab = symtab;
6218   relinfo.layout = layout;
6219   relinfo.object = this;
6220
6221   // Do relocation stubs scanning.
6222   const unsigned char* p = pshdrs + shdr_size;
6223   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6224     {
6225       const elfcpp::Shdr<32, big_endian> shdr(p);
6226       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6227                                                   pshdrs))
6228         {
6229           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6230           Arm_address output_offset = this->get_output_section_offset(index);
6231           Arm_address output_address;
6232           if (output_offset != invalid_address)
6233             output_address = out_sections[index]->address() + output_offset;
6234           else
6235             {
6236               // Currently this only happens for a relaxed section.
6237               const Output_relaxed_input_section* poris =
6238               out_sections[index]->find_relaxed_input_section(this, index);
6239               gold_assert(poris != NULL);
6240               output_address = poris->address();
6241             }
6242
6243           // Get the relocations.
6244           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6245                                                         shdr.get_sh_size(),
6246                                                         true, false);
6247
6248           // Get the section contents.  This does work for the case in which
6249           // we modify the contents of an input section.  We need to pass the
6250           // output view under such circumstances.
6251           section_size_type input_view_size = 0;
6252           const unsigned char* input_view =
6253             this->section_contents(index, &input_view_size, false);
6254
6255           relinfo.reloc_shndx = i;
6256           relinfo.data_shndx = index;
6257           unsigned int sh_type = shdr.get_sh_type();
6258           unsigned int reloc_size;
6259           if (sh_type == elfcpp::SHT_REL)
6260             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6261           else
6262             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6263
6264           Output_section* os = out_sections[index];
6265           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6266                                              shdr.get_sh_size() / reloc_size,
6267                                              os,
6268                                              output_offset == invalid_address,
6269                                              input_view, output_address,
6270                                              input_view_size);
6271         }
6272     }
6273
6274   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6275   // after its relocation section, if there is one, is processed for
6276   // relocation stubs.  Merging this loop with the one above would have been
6277   // complicated since we would have had to make sure that relocation stub
6278   // scanning is done first.
6279   if (arm_target->fix_cortex_a8())
6280     {
6281       const unsigned char* p = pshdrs + shdr_size;
6282       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6283         {
6284           const elfcpp::Shdr<32, big_endian> shdr(p);
6285           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6286                                                           out_sections[i],
6287                                                           symtab))
6288             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6289                                                      arm_target);
6290         }
6291     }
6292
6293   // After we've done the relocations, we release the hash tables,
6294   // since we no longer need them.
6295   this->free_input_to_output_maps();
6296 }
6297
6298 // Count the local symbols.  The ARM backend needs to know if a symbol
6299 // is a THUMB function or not.  For global symbols, it is easy because
6300 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6301 // harder because we cannot access this information.   So we override the
6302 // do_count_local_symbol in parent and scan local symbols to mark
6303 // THUMB functions.  This is not the most efficient way but I do not want to
6304 // slow down other ports by calling a per symbol target hook inside
6305 // Sized_relobj_file<size, big_endian>::do_count_local_symbols. 
6306
6307 template<bool big_endian>
6308 void
6309 Arm_relobj<big_endian>::do_count_local_symbols(
6310     Stringpool_template<char>* pool,
6311     Stringpool_template<char>* dynpool)
6312 {
6313   // We need to fix-up the values of any local symbols whose type are
6314   // STT_ARM_TFUNC.
6315   
6316   // Ask parent to count the local symbols.
6317   Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6318   const unsigned int loccount = this->local_symbol_count();
6319   if (loccount == 0)
6320     return;
6321
6322   // Initialize the thumb function bit-vector.
6323   std::vector<bool> empty_vector(loccount, false);
6324   this->local_symbol_is_thumb_function_.swap(empty_vector);
6325
6326   // Read the symbol table section header.
6327   const unsigned int symtab_shndx = this->symtab_shndx();
6328   elfcpp::Shdr<32, big_endian>
6329       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6330   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6331
6332   // Read the local symbols.
6333   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6334   gold_assert(loccount == symtabshdr.get_sh_info());
6335   off_t locsize = loccount * sym_size;
6336   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6337                                               locsize, true, true);
6338
6339   // For mapping symbol processing, we need to read the symbol names.
6340   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6341   if (strtab_shndx >= this->shnum())
6342     {
6343       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6344       return;
6345     }
6346
6347   elfcpp::Shdr<32, big_endian>
6348     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6349   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6350     {
6351       this->error(_("symbol table name section has wrong type: %u"),
6352                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6353       return;
6354     }
6355   const char* pnames =
6356     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6357                                                  strtabshdr.get_sh_size(),
6358                                                  false, false));
6359
6360   // Loop over the local symbols and mark any local symbols pointing
6361   // to THUMB functions.
6362
6363   // Skip the first dummy symbol.
6364   psyms += sym_size;
6365   typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6366     this->local_values();
6367   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6368     {
6369       elfcpp::Sym<32, big_endian> sym(psyms);
6370       elfcpp::STT st_type = sym.get_st_type();
6371       Symbol_value<32>& lv((*plocal_values)[i]);
6372       Arm_address input_value = lv.input_value();
6373
6374       // Check to see if this is a mapping symbol.
6375       const char* sym_name = pnames + sym.get_st_name();
6376       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6377         {
6378           bool is_ordinary;
6379           unsigned int input_shndx =
6380             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6381           gold_assert(is_ordinary);
6382
6383           // Strip of LSB in case this is a THUMB symbol.
6384           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6385           this->mapping_symbols_info_[msp] = sym_name[1];
6386         }
6387
6388       if (st_type == elfcpp::STT_ARM_TFUNC
6389           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6390         {
6391           // This is a THUMB function.  Mark this and canonicalize the
6392           // symbol value by setting LSB.
6393           this->local_symbol_is_thumb_function_[i] = true;
6394           if ((input_value & 1) == 0)
6395             lv.set_input_value(input_value | 1);
6396         }
6397     }
6398 }
6399
6400 // Relocate sections.
6401 template<bool big_endian>
6402 void
6403 Arm_relobj<big_endian>::do_relocate_sections(
6404     const Symbol_table* symtab,
6405     const Layout* layout,
6406     const unsigned char* pshdrs,
6407     Output_file* of,
6408     typename Sized_relobj_file<32, big_endian>::Views* pviews)
6409 {
6410   // Call parent to relocate sections.
6411   Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6412                                                           pshdrs, of, pviews); 
6413
6414   // We do not generate stubs if doing a relocatable link.
6415   if (parameters->options().relocatable())
6416     return;
6417
6418   // Relocate stub tables.
6419   unsigned int shnum = this->shnum();
6420
6421   Target_arm<big_endian>* arm_target =
6422     Target_arm<big_endian>::default_target();
6423
6424   Relocate_info<32, big_endian> relinfo;
6425   relinfo.symtab = symtab;
6426   relinfo.layout = layout;
6427   relinfo.object = this;
6428
6429   for (unsigned int i = 1; i < shnum; ++i)
6430     {
6431       Arm_input_section<big_endian>* arm_input_section =
6432         arm_target->find_arm_input_section(this, i);
6433
6434       if (arm_input_section != NULL
6435           && arm_input_section->is_stub_table_owner()
6436           && !arm_input_section->stub_table()->empty())
6437         {
6438           // We cannot discard a section if it owns a stub table.
6439           Output_section* os = this->output_section(i);
6440           gold_assert(os != NULL);
6441
6442           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6443           relinfo.reloc_shdr = NULL;
6444           relinfo.data_shndx = i;
6445           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6446
6447           gold_assert((*pviews)[i].view != NULL);
6448
6449           // We are passed the output section view.  Adjust it to cover the
6450           // stub table only.
6451           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6452           gold_assert((stub_table->address() >= (*pviews)[i].address)
6453                       && ((stub_table->address() + stub_table->data_size())
6454                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6455
6456           off_t offset = stub_table->address() - (*pviews)[i].address;
6457           unsigned char* view = (*pviews)[i].view + offset;
6458           Arm_address address = stub_table->address();
6459           section_size_type view_size = stub_table->data_size();
6460  
6461           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6462                                      view_size);
6463         }
6464
6465       // Apply Cortex A8 workaround if applicable.
6466       if (this->section_has_cortex_a8_workaround(i))
6467         {
6468           unsigned char* view = (*pviews)[i].view;
6469           Arm_address view_address = (*pviews)[i].address;
6470           section_size_type view_size = (*pviews)[i].view_size;
6471           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6472
6473           // Adjust view to cover section.
6474           Output_section* os = this->output_section(i);
6475           gold_assert(os != NULL);
6476           Arm_address section_address =
6477             this->simple_input_section_output_address(i, os);
6478           uint64_t section_size = this->section_size(i);
6479
6480           gold_assert(section_address >= view_address
6481                       && ((section_address + section_size)
6482                           <= (view_address + view_size)));
6483
6484           unsigned char* section_view = view + (section_address - view_address);
6485
6486           // Apply the Cortex-A8 workaround to the output address range
6487           // corresponding to this input section.
6488           stub_table->apply_cortex_a8_workaround_to_address_range(
6489               arm_target,
6490               section_view,
6491               section_address,
6492               section_size);
6493         }
6494     }
6495 }
6496
6497 // Find the linked text section of an EXIDX section by looking at the first
6498 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6499 // must be linked to its associated code section via the sh_link field of
6500 // its section header.  However, some tools are broken and the link is not
6501 // always set.  LD just drops such an EXIDX section silently, causing the
6502 // associated code not unwindabled.   Here we try a little bit harder to
6503 // discover the linked code section.
6504 //
6505 // PSHDR points to the section header of a relocation section of an EXIDX
6506 // section.  If we can find a linked text section, return true and
6507 // store the text section index in the location PSHNDX.  Otherwise
6508 // return false.
6509
6510 template<bool big_endian>
6511 bool
6512 Arm_relobj<big_endian>::find_linked_text_section(
6513     const unsigned char* pshdr,
6514     const unsigned char* psyms,
6515     unsigned int* pshndx)
6516 {
6517   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6518   
6519   // If there is no relocation, we cannot find the linked text section.
6520   size_t reloc_size;
6521   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6522       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6523   else
6524       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6525   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6526  
6527   // Get the relocations.
6528   const unsigned char* prelocs =
6529       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
6530
6531   // Find the REL31 relocation for the first word of the first EXIDX entry.
6532   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6533     {
6534       Arm_address r_offset;
6535       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6536       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6537         {
6538           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6539           r_info = reloc.get_r_info();
6540           r_offset = reloc.get_r_offset();
6541         }
6542       else
6543         {
6544           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6545           r_info = reloc.get_r_info();
6546           r_offset = reloc.get_r_offset();
6547         }
6548
6549       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6550       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6551         continue;
6552
6553       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6554       if (r_sym == 0
6555           || r_sym >= this->local_symbol_count()
6556           || r_offset != 0)
6557         continue;
6558
6559       // This is the relocation for the first word of the first EXIDX entry.
6560       // We expect to see a local section symbol.
6561       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6562       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6563       if (sym.get_st_type() == elfcpp::STT_SECTION)
6564         {
6565           bool is_ordinary;
6566           *pshndx =
6567             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6568           gold_assert(is_ordinary);
6569           return true;
6570         }
6571       else
6572         return false;
6573     }
6574
6575   return false;
6576 }
6577
6578 // Make an EXIDX input section object for an EXIDX section whose index is
6579 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6580 // is the section index of the linked text section.
6581
6582 template<bool big_endian>
6583 void
6584 Arm_relobj<big_endian>::make_exidx_input_section(
6585     unsigned int shndx,
6586     const elfcpp::Shdr<32, big_endian>& shdr,
6587     unsigned int text_shndx,
6588     const elfcpp::Shdr<32, big_endian>& text_shdr)
6589 {
6590   // Create an Arm_exidx_input_section object for this EXIDX section.
6591   Arm_exidx_input_section* exidx_input_section =
6592     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6593                                 shdr.get_sh_addralign(),
6594                                 text_shdr.get_sh_size());
6595
6596   gold_assert(this->exidx_section_map_[shndx] == NULL);
6597   this->exidx_section_map_[shndx] = exidx_input_section;
6598
6599   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6600     {
6601       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6602                  this->section_name(shndx).c_str(), shndx, text_shndx,
6603                  this->name().c_str());
6604       exidx_input_section->set_has_errors();
6605     } 
6606   else if (this->exidx_section_map_[text_shndx] != NULL)
6607     {
6608       unsigned other_exidx_shndx =
6609         this->exidx_section_map_[text_shndx]->shndx();
6610       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6611                    "%s(%u) in %s"),
6612                  this->section_name(shndx).c_str(), shndx,
6613                  this->section_name(other_exidx_shndx).c_str(),
6614                  other_exidx_shndx, this->section_name(text_shndx).c_str(),
6615                  text_shndx, this->name().c_str());
6616       exidx_input_section->set_has_errors();
6617     }
6618   else
6619      this->exidx_section_map_[text_shndx] = exidx_input_section;
6620
6621   // Check section flags of text section.
6622   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6623     {
6624       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6625                    " in %s"),
6626                  this->section_name(shndx).c_str(), shndx,
6627                  this->section_name(text_shndx).c_str(), text_shndx,
6628                  this->name().c_str());
6629       exidx_input_section->set_has_errors();
6630     }
6631   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6632     // I would like to make this an error but currently ld just ignores
6633     // this.
6634     gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6635                    "%s(%u) in %s"),
6636                  this->section_name(shndx).c_str(), shndx,
6637                  this->section_name(text_shndx).c_str(), text_shndx,
6638                  this->name().c_str());
6639 }
6640
6641 // Read the symbol information.
6642
6643 template<bool big_endian>
6644 void
6645 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6646 {
6647   // Call parent class to read symbol information.
6648   Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6649
6650   // If this input file is a binary file, it has no processor
6651   // specific flags and attributes section.
6652   Input_file::Format format = this->input_file()->format();
6653   if (format != Input_file::FORMAT_ELF)
6654     {
6655       gold_assert(format == Input_file::FORMAT_BINARY);
6656       this->merge_flags_and_attributes_ = false;
6657       return;
6658     }
6659
6660   // Read processor-specific flags in ELF file header.
6661   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6662                                               elfcpp::Elf_sizes<32>::ehdr_size,
6663                                               true, false);
6664   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6665   this->processor_specific_flags_ = ehdr.get_e_flags();
6666
6667   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6668   // sections.
6669   std::vector<unsigned int> deferred_exidx_sections;
6670   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6671   const unsigned char* pshdrs = sd->section_headers->data();
6672   const unsigned char* ps = pshdrs + shdr_size;
6673   bool must_merge_flags_and_attributes = false;
6674   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6675     {
6676       elfcpp::Shdr<32, big_endian> shdr(ps);
6677
6678       // Sometimes an object has no contents except the section name string
6679       // table and an empty symbol table with the undefined symbol.  We
6680       // don't want to merge processor-specific flags from such an object.
6681       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6682         {
6683           // Symbol table is not empty.
6684           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6685              elfcpp::Elf_sizes<32>::sym_size;
6686           if (shdr.get_sh_size() > sym_size)
6687             must_merge_flags_and_attributes = true;
6688         }
6689       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6690         // If this is neither an empty symbol table nor a string table,
6691         // be conservative.
6692         must_merge_flags_and_attributes = true;
6693
6694       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6695         {
6696           gold_assert(this->attributes_section_data_ == NULL);
6697           section_offset_type section_offset = shdr.get_sh_offset();
6698           section_size_type section_size =
6699             convert_to_section_size_type(shdr.get_sh_size());
6700           const unsigned char* view =
6701              this->get_view(section_offset, section_size, true, false);
6702           this->attributes_section_data_ =
6703             new Attributes_section_data(view, section_size);
6704         }
6705       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6706         {
6707           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6708           if (text_shndx == elfcpp::SHN_UNDEF)
6709             deferred_exidx_sections.push_back(i);
6710           else
6711             {
6712               elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6713                                                      + text_shndx * shdr_size);
6714               this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6715             }
6716           // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6717           if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6718             gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6719                          this->section_name(i).c_str(), this->name().c_str());
6720         }
6721     }
6722
6723   // This is rare.
6724   if (!must_merge_flags_and_attributes)
6725     {
6726       gold_assert(deferred_exidx_sections.empty());
6727       this->merge_flags_and_attributes_ = false;
6728       return;
6729     }
6730
6731   // Some tools are broken and they do not set the link of EXIDX sections. 
6732   // We look at the first relocation to figure out the linked sections.
6733   if (!deferred_exidx_sections.empty())
6734     {
6735       // We need to go over the section headers again to find the mapping
6736       // from sections being relocated to their relocation sections.  This is
6737       // a bit inefficient as we could do that in the loop above.  However,
6738       // we do not expect any deferred EXIDX sections normally.  So we do not
6739       // want to slow down the most common path.
6740       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6741       Reloc_map reloc_map;
6742       ps = pshdrs + shdr_size;
6743       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6744         {
6745           elfcpp::Shdr<32, big_endian> shdr(ps);
6746           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6747           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6748             {
6749               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6750               if (info_shndx >= this->shnum())
6751                 gold_error(_("relocation section %u has invalid info %u"),
6752                            i, info_shndx);
6753               Reloc_map::value_type value(info_shndx, i);
6754               std::pair<Reloc_map::iterator, bool> result =
6755                 reloc_map.insert(value);
6756               if (!result.second)
6757                 gold_error(_("section %u has multiple relocation sections "
6758                              "%u and %u"),
6759                            info_shndx, i, reloc_map[info_shndx]);
6760             }
6761         }
6762
6763       // Read the symbol table section header.
6764       const unsigned int symtab_shndx = this->symtab_shndx();
6765       elfcpp::Shdr<32, big_endian>
6766           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6767       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6768
6769       // Read the local symbols.
6770       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6771       const unsigned int loccount = this->local_symbol_count();
6772       gold_assert(loccount == symtabshdr.get_sh_info());
6773       off_t locsize = loccount * sym_size;
6774       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6775                                                   locsize, true, true);
6776
6777       // Process the deferred EXIDX sections. 
6778       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6779         {
6780           unsigned int shndx = deferred_exidx_sections[i];
6781           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6782           unsigned int text_shndx = elfcpp::SHN_UNDEF;
6783           Reloc_map::const_iterator it = reloc_map.find(shndx);
6784           if (it != reloc_map.end())
6785             find_linked_text_section(pshdrs + it->second * shdr_size,
6786                                      psyms, &text_shndx);
6787           elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6788                                                  + text_shndx * shdr_size);
6789           this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6790         }
6791     }
6792 }
6793
6794 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6795 // sections for unwinding.  These sections are referenced implicitly by 
6796 // text sections linked in the section headers.  If we ignore these implicit
6797 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6798 // will be garbage-collected incorrectly.  Hence we override the same function
6799 // in the base class to handle these implicit references.
6800
6801 template<bool big_endian>
6802 void
6803 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6804                                              Layout* layout,
6805                                              Read_relocs_data* rd)
6806 {
6807   // First, call base class method to process relocations in this object.
6808   Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6809
6810   // If --gc-sections is not specified, there is nothing more to do.
6811   // This happens when --icf is used but --gc-sections is not.
6812   if (!parameters->options().gc_sections())
6813     return;
6814   
6815   unsigned int shnum = this->shnum();
6816   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6817   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6818                                                shnum * shdr_size,
6819                                                true, true);
6820
6821   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6822   // to these from the linked text sections.
6823   const unsigned char* ps = pshdrs + shdr_size;
6824   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6825     {
6826       elfcpp::Shdr<32, big_endian> shdr(ps);
6827       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6828         {
6829           // Found an .ARM.exidx section, add it to the set of reachable
6830           // sections from its linked text section.
6831           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6832           symtab->gc()->add_reference(this, text_shndx, this, i);
6833         }
6834     }
6835 }
6836
6837 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6838 // symbols  will be removed in output.  Adjust output local symbol count
6839 // accordingly.  We can only changed the static output local symbol count.  It
6840 // is too late to change the dynamic symbols.
6841
6842 template<bool big_endian>
6843 void
6844 Arm_relobj<big_endian>::update_output_local_symbol_count()
6845 {
6846   // Caller should check that this needs updating.  We want caller checking
6847   // because output_local_symbol_count_needs_update() is most likely inlined.
6848   gold_assert(this->output_local_symbol_count_needs_update_);
6849
6850   gold_assert(this->symtab_shndx() != -1U);
6851   if (this->symtab_shndx() == 0)
6852     {
6853       // This object has no symbols.  Weird but legal.
6854       return;
6855     }
6856
6857   // Read the symbol table section header.
6858   const unsigned int symtab_shndx = this->symtab_shndx();
6859   elfcpp::Shdr<32, big_endian>
6860     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6861   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6862
6863   // Read the local symbols.
6864   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6865   const unsigned int loccount = this->local_symbol_count();
6866   gold_assert(loccount == symtabshdr.get_sh_info());
6867   off_t locsize = loccount * sym_size;
6868   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6869                                               locsize, true, true);
6870
6871   // Loop over the local symbols.
6872
6873   typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6874      Output_sections;
6875   const Output_sections& out_sections(this->output_sections());
6876   unsigned int shnum = this->shnum();
6877   unsigned int count = 0;
6878   // Skip the first, dummy, symbol.
6879   psyms += sym_size;
6880   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6881     {
6882       elfcpp::Sym<32, big_endian> sym(psyms);
6883
6884       Symbol_value<32>& lv((*this->local_values())[i]);
6885
6886       // This local symbol was already discarded by do_count_local_symbols.
6887       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6888         continue;
6889
6890       bool is_ordinary;
6891       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6892                                                   &is_ordinary);
6893
6894       if (shndx < shnum)
6895         {
6896           Output_section* os = out_sections[shndx];
6897
6898           // This local symbol no longer has an output section.  Discard it.
6899           if (os == NULL)
6900             {
6901               lv.set_no_output_symtab_entry();
6902               continue;
6903             }
6904
6905           // Currently we only discard parts of EXIDX input sections.
6906           // We explicitly check for a merged EXIDX input section to avoid
6907           // calling Output_section_data::output_offset unless necessary.
6908           if ((this->get_output_section_offset(shndx) == invalid_address)
6909               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6910             {
6911               section_offset_type output_offset =
6912                 os->output_offset(this, shndx, lv.input_value());
6913               if (output_offset == -1)
6914                 {
6915                   // This symbol is defined in a part of an EXIDX input section
6916                   // that is discarded due to entry merging.
6917                   lv.set_no_output_symtab_entry();
6918                   continue;
6919                 }       
6920             }
6921         }
6922
6923       ++count;
6924     }
6925
6926   this->set_output_local_symbol_count(count);
6927   this->output_local_symbol_count_needs_update_ = false;
6928 }
6929
6930 // Arm_dynobj methods.
6931
6932 // Read the symbol information.
6933
6934 template<bool big_endian>
6935 void
6936 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6937 {
6938   // Call parent class to read symbol information.
6939   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6940
6941   // Read processor-specific flags in ELF file header.
6942   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6943                                               elfcpp::Elf_sizes<32>::ehdr_size,
6944                                               true, false);
6945   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6946   this->processor_specific_flags_ = ehdr.get_e_flags();
6947
6948   // Read the attributes section if there is one.
6949   // We read from the end because gas seems to put it near the end of
6950   // the section headers.
6951   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6952   const unsigned char* ps =
6953     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6954   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6955     {
6956       elfcpp::Shdr<32, big_endian> shdr(ps);
6957       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6958         {
6959           section_offset_type section_offset = shdr.get_sh_offset();
6960           section_size_type section_size =
6961             convert_to_section_size_type(shdr.get_sh_size());
6962           const unsigned char* view =
6963             this->get_view(section_offset, section_size, true, false);
6964           this->attributes_section_data_ =
6965             new Attributes_section_data(view, section_size);
6966           break;
6967         }
6968     }
6969 }
6970
6971 // Stub_addend_reader methods.
6972
6973 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6974
6975 template<bool big_endian>
6976 elfcpp::Elf_types<32>::Elf_Swxword
6977 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6978     unsigned int r_type,
6979     const unsigned char* view,
6980     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6981 {
6982   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6983   
6984   switch (r_type)
6985     {
6986     case elfcpp::R_ARM_CALL:
6987     case elfcpp::R_ARM_JUMP24:
6988     case elfcpp::R_ARM_PLT32:
6989       {
6990         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6991         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6992         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6993         return Bits<26>::sign_extend32(val << 2);
6994       }
6995
6996     case elfcpp::R_ARM_THM_CALL:
6997     case elfcpp::R_ARM_THM_JUMP24:
6998     case elfcpp::R_ARM_THM_XPC22:
6999       {
7000         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7001         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7002         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7003         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7004         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7005       }
7006
7007     case elfcpp::R_ARM_THM_JUMP19:
7008       {
7009         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7010         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7011         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7012         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7013         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7014       }
7015
7016     default:
7017       gold_unreachable();
7018     }
7019 }
7020
7021 // Arm_output_data_got methods.
7022
7023 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7024 // The first one is initialized to be 1, which is the module index for
7025 // the main executable and the second one 0.  A reloc of the type
7026 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7027 // be applied by gold.  GSYM is a global symbol.
7028 //
7029 template<bool big_endian>
7030 void
7031 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7032     unsigned int got_type,
7033     Symbol* gsym)
7034 {
7035   if (gsym->has_got_offset(got_type))
7036     return;
7037
7038   // We are doing a static link.  Just mark it as belong to module 1,
7039   // the executable.
7040   unsigned int got_offset = this->add_constant(1);
7041   gsym->set_got_offset(got_type, got_offset); 
7042   got_offset = this->add_constant(0);
7043   this->static_relocs_.push_back(Static_reloc(got_offset,
7044                                               elfcpp::R_ARM_TLS_DTPOFF32,
7045                                               gsym));
7046 }
7047
7048 // Same as the above but for a local symbol.
7049
7050 template<bool big_endian>
7051 void
7052 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7053   unsigned int got_type,
7054   Sized_relobj_file<32, big_endian>* object,
7055   unsigned int index)
7056 {
7057   if (object->local_has_got_offset(index, got_type))
7058     return;
7059
7060   // We are doing a static link.  Just mark it as belong to module 1,
7061   // the executable.
7062   unsigned int got_offset = this->add_constant(1);
7063   object->set_local_got_offset(index, got_type, got_offset);
7064   got_offset = this->add_constant(0);
7065   this->static_relocs_.push_back(Static_reloc(got_offset, 
7066                                               elfcpp::R_ARM_TLS_DTPOFF32, 
7067                                               object, index));
7068 }
7069
7070 template<bool big_endian>
7071 void
7072 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7073 {
7074   // Call parent to write out GOT.
7075   Output_data_got<32, big_endian>::do_write(of);
7076
7077   // We are done if there is no fix up.
7078   if (this->static_relocs_.empty())
7079     return;
7080
7081   gold_assert(parameters->doing_static_link());
7082
7083   const off_t offset = this->offset();
7084   const section_size_type oview_size =
7085     convert_to_section_size_type(this->data_size());
7086   unsigned char* const oview = of->get_output_view(offset, oview_size);
7087
7088   Output_segment* tls_segment = this->layout_->tls_segment();
7089   gold_assert(tls_segment != NULL);
7090   
7091   // The thread pointer $tp points to the TCB, which is followed by the
7092   // TLS.  So we need to adjust $tp relative addressing by this amount.
7093   Arm_address aligned_tcb_size =
7094     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7095
7096   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7097     {
7098       Static_reloc& reloc(this->static_relocs_[i]);
7099       
7100       Arm_address value;
7101       if (!reloc.symbol_is_global())
7102         {
7103           Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7104           const Symbol_value<32>* psymval =
7105             reloc.relobj()->local_symbol(reloc.index());
7106
7107           // We are doing static linking.  Issue an error and skip this
7108           // relocation if the symbol is undefined or in a discarded_section.
7109           bool is_ordinary;
7110           unsigned int shndx = psymval->input_shndx(&is_ordinary);
7111           if ((shndx == elfcpp::SHN_UNDEF)
7112               || (is_ordinary
7113                   && shndx != elfcpp::SHN_UNDEF
7114                   && !object->is_section_included(shndx)
7115                   && !this->symbol_table_->is_section_folded(object, shndx)))
7116             {
7117               gold_error(_("undefined or discarded local symbol %u from "
7118                            " object %s in GOT"),
7119                          reloc.index(), reloc.relobj()->name().c_str());
7120               continue;
7121             }
7122           
7123           value = psymval->value(object, 0);
7124         }
7125       else
7126         {
7127           const Symbol* gsym = reloc.symbol();
7128           gold_assert(gsym != NULL);
7129           if (gsym->is_forwarder())
7130             gsym = this->symbol_table_->resolve_forwards(gsym);
7131
7132           // We are doing static linking.  Issue an error and skip this
7133           // relocation if the symbol is undefined or in a discarded_section
7134           // unless it is a weakly_undefined symbol.
7135           if ((gsym->is_defined_in_discarded_section()
7136                || gsym->is_undefined())
7137               && !gsym->is_weak_undefined())
7138             {
7139               gold_error(_("undefined or discarded symbol %s in GOT"),
7140                          gsym->name());
7141               continue;
7142             }
7143
7144           if (!gsym->is_weak_undefined())
7145             {
7146               const Sized_symbol<32>* sym =
7147                 static_cast<const Sized_symbol<32>*>(gsym);
7148               value = sym->value();
7149             }
7150           else
7151               value = 0;
7152         }
7153
7154       unsigned got_offset = reloc.got_offset();
7155       gold_assert(got_offset < oview_size);
7156
7157       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7158       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7159       Valtype x;
7160       switch (reloc.r_type())
7161         {
7162         case elfcpp::R_ARM_TLS_DTPOFF32:
7163           x = value;
7164           break;
7165         case elfcpp::R_ARM_TLS_TPOFF32:
7166           x = value + aligned_tcb_size;
7167           break;
7168         default:
7169           gold_unreachable();
7170         }
7171       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7172     }
7173
7174   of->write_output_view(offset, oview_size, oview);
7175 }
7176
7177 // A class to handle the PLT data.
7178
7179 template<bool big_endian>
7180 class Output_data_plt_arm : public Output_section_data
7181 {
7182  public:
7183   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7184     Reloc_section;
7185
7186   Output_data_plt_arm(Layout*, Output_data_space*);
7187
7188   // Add an entry to the PLT.
7189   void
7190   add_entry(Symbol* gsym);
7191
7192   // Return the .rel.plt section data.
7193   const Reloc_section*
7194   rel_plt() const
7195   { return this->rel_; }
7196
7197   // Return the number of PLT entries.
7198   unsigned int
7199   entry_count() const
7200   { return this->count_; }
7201
7202   // Return the offset of the first non-reserved PLT entry.
7203   static unsigned int
7204   first_plt_entry_offset()
7205   { return sizeof(first_plt_entry); }
7206
7207   // Return the size of a PLT entry.
7208   static unsigned int
7209   get_plt_entry_size()
7210   { return sizeof(plt_entry); }
7211
7212  protected:
7213   void
7214   do_adjust_output_section(Output_section* os);
7215
7216   // Write to a map file.
7217   void
7218   do_print_to_mapfile(Mapfile* mapfile) const
7219   { mapfile->print_output_data(this, _("** PLT")); }
7220
7221  private:
7222   // Template for the first PLT entry.
7223   static const uint32_t first_plt_entry[5];
7224
7225   // Template for subsequent PLT entries. 
7226   static const uint32_t plt_entry[3];
7227
7228   // Set the final size.
7229   void
7230   set_final_data_size()
7231   {
7232     this->set_data_size(sizeof(first_plt_entry)
7233                         + this->count_ * sizeof(plt_entry));
7234   }
7235
7236   // Write out the PLT data.
7237   void
7238   do_write(Output_file*);
7239
7240   // The reloc section.
7241   Reloc_section* rel_;
7242   // The .got.plt section.
7243   Output_data_space* got_plt_;
7244   // The number of PLT entries.
7245   unsigned int count_;
7246 };
7247
7248 // Create the PLT section.  The ordinary .got section is an argument,
7249 // since we need to refer to the start.  We also create our own .got
7250 // section just for PLT entries.
7251
7252 template<bool big_endian>
7253 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7254                                                      Output_data_space* got_plt)
7255   : Output_section_data(4), got_plt_(got_plt), count_(0)
7256 {
7257   this->rel_ = new Reloc_section(false);
7258   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7259                                   elfcpp::SHF_ALLOC, this->rel_,
7260                                   ORDER_DYNAMIC_PLT_RELOCS, false);
7261 }
7262
7263 template<bool big_endian>
7264 void
7265 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7266 {
7267   os->set_entsize(0);
7268 }
7269
7270 // Add an entry to the PLT.
7271
7272 template<bool big_endian>
7273 void
7274 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7275 {
7276   gold_assert(!gsym->has_plt_offset());
7277
7278   // Note that when setting the PLT offset we skip the initial
7279   // reserved PLT entry.
7280   gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7281                        + sizeof(first_plt_entry));
7282
7283   ++this->count_;
7284
7285   section_offset_type got_offset = this->got_plt_->current_data_size();
7286
7287   // Every PLT entry needs a GOT entry which points back to the PLT
7288   // entry (this will be changed by the dynamic linker, normally
7289   // lazily when the function is called).
7290   this->got_plt_->set_current_data_size(got_offset + 4);
7291
7292   // Every PLT entry needs a reloc.
7293   gsym->set_needs_dynsym_entry();
7294   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7295                          got_offset);
7296
7297   // Note that we don't need to save the symbol.  The contents of the
7298   // PLT are independent of which symbols are used.  The symbols only
7299   // appear in the relocations.
7300 }
7301
7302 // ARM PLTs.
7303 // FIXME:  This is not very flexible.  Right now this has only been tested
7304 // on armv5te.  If we are to support additional architecture features like
7305 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7306
7307 // The first entry in the PLT.
7308 template<bool big_endian>
7309 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7310 {
7311   0xe52de004,   // str   lr, [sp, #-4]!
7312   0xe59fe004,   // ldr   lr, [pc, #4]
7313   0xe08fe00e,   // add   lr, pc, lr 
7314   0xe5bef008,   // ldr   pc, [lr, #8]!
7315   0x00000000,   // &GOT[0] - .
7316 };
7317
7318 // Subsequent entries in the PLT.
7319
7320 template<bool big_endian>
7321 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7322 {
7323   0xe28fc600,   // add   ip, pc, #0xNN00000
7324   0xe28cca00,   // add   ip, ip, #0xNN000
7325   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7326 };
7327
7328 // Write out the PLT.  This uses the hand-coded instructions above,
7329 // and adjusts them as needed.  This is all specified by the arm ELF
7330 // Processor Supplement.
7331
7332 template<bool big_endian>
7333 void
7334 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7335 {
7336   const off_t offset = this->offset();
7337   const section_size_type oview_size =
7338     convert_to_section_size_type(this->data_size());
7339   unsigned char* const oview = of->get_output_view(offset, oview_size);
7340
7341   const off_t got_file_offset = this->got_plt_->offset();
7342   const section_size_type got_size =
7343     convert_to_section_size_type(this->got_plt_->data_size());
7344   unsigned char* const got_view = of->get_output_view(got_file_offset,
7345                                                       got_size);
7346   unsigned char* pov = oview;
7347
7348   Arm_address plt_address = this->address();
7349   Arm_address got_address = this->got_plt_->address();
7350
7351   // Write first PLT entry.  All but the last word are constants.
7352   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7353                                       / sizeof(plt_entry[0]));
7354   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7355     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7356   // Last word in first PLT entry is &GOT[0] - .
7357   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7358                                          got_address - (plt_address + 16));
7359   pov += sizeof(first_plt_entry);
7360
7361   unsigned char* got_pov = got_view;
7362
7363   memset(got_pov, 0, 12);
7364   got_pov += 12;
7365
7366   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7367   unsigned int plt_offset = sizeof(first_plt_entry);
7368   unsigned int plt_rel_offset = 0;
7369   unsigned int got_offset = 12;
7370   const unsigned int count = this->count_;
7371   for (unsigned int i = 0;
7372        i < count;
7373        ++i,
7374          pov += sizeof(plt_entry),
7375          got_pov += 4,
7376          plt_offset += sizeof(plt_entry),
7377          plt_rel_offset += rel_size,
7378          got_offset += 4)
7379     {
7380       // Set and adjust the PLT entry itself.
7381       int32_t offset = ((got_address + got_offset)
7382                          - (plt_address + plt_offset + 8));
7383
7384       gold_assert(offset >= 0 && offset < 0x0fffffff);
7385       uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7386       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7387       uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7388       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7389       uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7390       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7391
7392       // Set the entry in the GOT.
7393       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7394     }
7395
7396   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7397   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7398
7399   of->write_output_view(offset, oview_size, oview);
7400   of->write_output_view(got_file_offset, got_size, got_view);
7401 }
7402
7403 // Create a PLT entry for a global symbol.
7404
7405 template<bool big_endian>
7406 void
7407 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7408                                        Symbol* gsym)
7409 {
7410   if (gsym->has_plt_offset())
7411     return;
7412
7413   if (this->plt_ == NULL)
7414     {
7415       // Create the GOT sections first.
7416       this->got_section(symtab, layout);
7417
7418       this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7419       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7420                                       (elfcpp::SHF_ALLOC
7421                                        | elfcpp::SHF_EXECINSTR),
7422                                       this->plt_, ORDER_PLT, false);
7423     }
7424   this->plt_->add_entry(gsym);
7425 }
7426
7427 // Return the number of entries in the PLT.
7428
7429 template<bool big_endian>
7430 unsigned int
7431 Target_arm<big_endian>::plt_entry_count() const
7432 {
7433   if (this->plt_ == NULL)
7434     return 0;
7435   return this->plt_->entry_count();
7436 }
7437
7438 // Return the offset of the first non-reserved PLT entry.
7439
7440 template<bool big_endian>
7441 unsigned int
7442 Target_arm<big_endian>::first_plt_entry_offset() const
7443 {
7444   return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7445 }
7446
7447 // Return the size of each PLT entry.
7448
7449 template<bool big_endian>
7450 unsigned int
7451 Target_arm<big_endian>::plt_entry_size() const
7452 {
7453   return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7454 }
7455
7456 // Get the section to use for TLS_DESC relocations.
7457
7458 template<bool big_endian>
7459 typename Target_arm<big_endian>::Reloc_section*
7460 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7461 {
7462   return this->plt_section()->rel_tls_desc(layout);
7463 }
7464
7465 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7466
7467 template<bool big_endian>
7468 void
7469 Target_arm<big_endian>::define_tls_base_symbol(
7470     Symbol_table* symtab,
7471     Layout* layout)
7472 {
7473   if (this->tls_base_symbol_defined_)
7474     return;
7475
7476   Output_segment* tls_segment = layout->tls_segment();
7477   if (tls_segment != NULL)
7478     {
7479       bool is_exec = parameters->options().output_is_executable();
7480       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7481                                        Symbol_table::PREDEFINED,
7482                                        tls_segment, 0, 0,
7483                                        elfcpp::STT_TLS,
7484                                        elfcpp::STB_LOCAL,
7485                                        elfcpp::STV_HIDDEN, 0,
7486                                        (is_exec
7487                                         ? Symbol::SEGMENT_END
7488                                         : Symbol::SEGMENT_START),
7489                                        true);
7490     }
7491   this->tls_base_symbol_defined_ = true;
7492 }
7493
7494 // Create a GOT entry for the TLS module index.
7495
7496 template<bool big_endian>
7497 unsigned int
7498 Target_arm<big_endian>::got_mod_index_entry(
7499     Symbol_table* symtab,
7500     Layout* layout,
7501     Sized_relobj_file<32, big_endian>* object)
7502 {
7503   if (this->got_mod_index_offset_ == -1U)
7504     {
7505       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7506       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7507       unsigned int got_offset;
7508       if (!parameters->doing_static_link())
7509         {
7510           got_offset = got->add_constant(0);
7511           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7512           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7513                              got_offset);
7514         }
7515       else
7516         {
7517           // We are doing a static link.  Just mark it as belong to module 1,
7518           // the executable.
7519           got_offset = got->add_constant(1);
7520         }
7521
7522       got->add_constant(0);
7523       this->got_mod_index_offset_ = got_offset;
7524     }
7525   return this->got_mod_index_offset_;
7526 }
7527
7528 // Optimize the TLS relocation type based on what we know about the
7529 // symbol.  IS_FINAL is true if the final address of this symbol is
7530 // known at link time.
7531
7532 template<bool big_endian>
7533 tls::Tls_optimization
7534 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7535 {
7536   // FIXME: Currently we do not do any TLS optimization.
7537   return tls::TLSOPT_NONE;
7538 }
7539
7540 // Get the Reference_flags for a particular relocation.
7541
7542 template<bool big_endian>
7543 int
7544 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7545 {
7546   switch (r_type)
7547     {
7548     case elfcpp::R_ARM_NONE:
7549     case elfcpp::R_ARM_V4BX:
7550     case elfcpp::R_ARM_GNU_VTENTRY:
7551     case elfcpp::R_ARM_GNU_VTINHERIT:
7552       // No symbol reference.
7553       return 0;
7554
7555     case elfcpp::R_ARM_ABS32:
7556     case elfcpp::R_ARM_ABS16:
7557     case elfcpp::R_ARM_ABS12:
7558     case elfcpp::R_ARM_THM_ABS5:
7559     case elfcpp::R_ARM_ABS8:
7560     case elfcpp::R_ARM_BASE_ABS:
7561     case elfcpp::R_ARM_MOVW_ABS_NC:
7562     case elfcpp::R_ARM_MOVT_ABS:
7563     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7564     case elfcpp::R_ARM_THM_MOVT_ABS:
7565     case elfcpp::R_ARM_ABS32_NOI:
7566       return Symbol::ABSOLUTE_REF;
7567
7568     case elfcpp::R_ARM_REL32:
7569     case elfcpp::R_ARM_LDR_PC_G0:
7570     case elfcpp::R_ARM_SBREL32:
7571     case elfcpp::R_ARM_THM_PC8:
7572     case elfcpp::R_ARM_BASE_PREL:
7573     case elfcpp::R_ARM_MOVW_PREL_NC:
7574     case elfcpp::R_ARM_MOVT_PREL:
7575     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7576     case elfcpp::R_ARM_THM_MOVT_PREL:
7577     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7578     case elfcpp::R_ARM_THM_PC12:
7579     case elfcpp::R_ARM_REL32_NOI:
7580     case elfcpp::R_ARM_ALU_PC_G0_NC:
7581     case elfcpp::R_ARM_ALU_PC_G0:
7582     case elfcpp::R_ARM_ALU_PC_G1_NC:
7583     case elfcpp::R_ARM_ALU_PC_G1:
7584     case elfcpp::R_ARM_ALU_PC_G2:
7585     case elfcpp::R_ARM_LDR_PC_G1:
7586     case elfcpp::R_ARM_LDR_PC_G2:
7587     case elfcpp::R_ARM_LDRS_PC_G0:
7588     case elfcpp::R_ARM_LDRS_PC_G1:
7589     case elfcpp::R_ARM_LDRS_PC_G2:
7590     case elfcpp::R_ARM_LDC_PC_G0:
7591     case elfcpp::R_ARM_LDC_PC_G1:
7592     case elfcpp::R_ARM_LDC_PC_G2:
7593     case elfcpp::R_ARM_ALU_SB_G0_NC:
7594     case elfcpp::R_ARM_ALU_SB_G0:
7595     case elfcpp::R_ARM_ALU_SB_G1_NC:
7596     case elfcpp::R_ARM_ALU_SB_G1:
7597     case elfcpp::R_ARM_ALU_SB_G2:
7598     case elfcpp::R_ARM_LDR_SB_G0:
7599     case elfcpp::R_ARM_LDR_SB_G1:
7600     case elfcpp::R_ARM_LDR_SB_G2:
7601     case elfcpp::R_ARM_LDRS_SB_G0:
7602     case elfcpp::R_ARM_LDRS_SB_G1:
7603     case elfcpp::R_ARM_LDRS_SB_G2:
7604     case elfcpp::R_ARM_LDC_SB_G0:
7605     case elfcpp::R_ARM_LDC_SB_G1:
7606     case elfcpp::R_ARM_LDC_SB_G2:
7607     case elfcpp::R_ARM_MOVW_BREL_NC:
7608     case elfcpp::R_ARM_MOVT_BREL:
7609     case elfcpp::R_ARM_MOVW_BREL:
7610     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7611     case elfcpp::R_ARM_THM_MOVT_BREL:
7612     case elfcpp::R_ARM_THM_MOVW_BREL:
7613     case elfcpp::R_ARM_GOTOFF32:
7614     case elfcpp::R_ARM_GOTOFF12:
7615     case elfcpp::R_ARM_SBREL31:
7616       return Symbol::RELATIVE_REF;
7617
7618     case elfcpp::R_ARM_PLT32:
7619     case elfcpp::R_ARM_CALL:
7620     case elfcpp::R_ARM_JUMP24:
7621     case elfcpp::R_ARM_THM_CALL:
7622     case elfcpp::R_ARM_THM_JUMP24:
7623     case elfcpp::R_ARM_THM_JUMP19:
7624     case elfcpp::R_ARM_THM_JUMP6:
7625     case elfcpp::R_ARM_THM_JUMP11:
7626     case elfcpp::R_ARM_THM_JUMP8:
7627     // R_ARM_PREL31 is not used to relocate call/jump instructions but
7628     // in unwind tables. It may point to functions via PLTs.
7629     // So we treat it like call/jump relocations above.
7630     case elfcpp::R_ARM_PREL31:
7631       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7632
7633     case elfcpp::R_ARM_GOT_BREL:
7634     case elfcpp::R_ARM_GOT_ABS:
7635     case elfcpp::R_ARM_GOT_PREL:
7636       // Absolute in GOT.
7637       return Symbol::ABSOLUTE_REF;
7638
7639     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7640     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7641     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7642     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7643     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7644       return Symbol::TLS_REF;
7645
7646     case elfcpp::R_ARM_TARGET1:
7647     case elfcpp::R_ARM_TARGET2:
7648     case elfcpp::R_ARM_COPY:
7649     case elfcpp::R_ARM_GLOB_DAT:
7650     case elfcpp::R_ARM_JUMP_SLOT:
7651     case elfcpp::R_ARM_RELATIVE:
7652     case elfcpp::R_ARM_PC24:
7653     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7654     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7655     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7656     default:
7657       // Not expected.  We will give an error later.
7658       return 0;
7659     }
7660 }
7661
7662 // Report an unsupported relocation against a local symbol.
7663
7664 template<bool big_endian>
7665 void
7666 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7667     Sized_relobj_file<32, big_endian>* object,
7668     unsigned int r_type)
7669 {
7670   gold_error(_("%s: unsupported reloc %u against local symbol"),
7671              object->name().c_str(), r_type);
7672 }
7673
7674 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7675 // dynamic linker does not support it, issue an error.  The GNU linker
7676 // only issues a non-PIC error for an allocated read-only section.
7677 // Here we know the section is allocated, but we don't know that it is
7678 // read-only.  But we check for all the relocation types which the
7679 // glibc dynamic linker supports, so it seems appropriate to issue an
7680 // error even if the section is not read-only.
7681
7682 template<bool big_endian>
7683 void
7684 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7685                                             unsigned int r_type)
7686 {
7687   switch (r_type)
7688     {
7689     // These are the relocation types supported by glibc for ARM.
7690     case elfcpp::R_ARM_RELATIVE:
7691     case elfcpp::R_ARM_COPY:
7692     case elfcpp::R_ARM_GLOB_DAT:
7693     case elfcpp::R_ARM_JUMP_SLOT:
7694     case elfcpp::R_ARM_ABS32:
7695     case elfcpp::R_ARM_ABS32_NOI:
7696     case elfcpp::R_ARM_PC24:
7697     // FIXME: The following 3 types are not supported by Android's dynamic
7698     // linker.
7699     case elfcpp::R_ARM_TLS_DTPMOD32:
7700     case elfcpp::R_ARM_TLS_DTPOFF32:
7701     case elfcpp::R_ARM_TLS_TPOFF32:
7702       return;
7703
7704     default:
7705       {
7706         // This prevents us from issuing more than one error per reloc
7707         // section.  But we can still wind up issuing more than one
7708         // error per object file.
7709         if (this->issued_non_pic_error_)
7710           return;
7711         const Arm_reloc_property* reloc_property =
7712           arm_reloc_property_table->get_reloc_property(r_type);
7713         gold_assert(reloc_property != NULL);
7714         object->error(_("requires unsupported dynamic reloc %s; "
7715                       "recompile with -fPIC"),
7716                       reloc_property->name().c_str());
7717         this->issued_non_pic_error_ = true;
7718         return;
7719       }
7720
7721     case elfcpp::R_ARM_NONE:
7722       gold_unreachable();
7723     }
7724 }
7725
7726 // Scan a relocation for a local symbol.
7727 // FIXME: This only handles a subset of relocation types used by Android
7728 // on ARM v5te devices.
7729
7730 template<bool big_endian>
7731 inline void
7732 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7733                                     Layout* layout,
7734                                     Target_arm* target,
7735                                     Sized_relobj_file<32, big_endian>* object,
7736                                     unsigned int data_shndx,
7737                                     Output_section* output_section,
7738                                     const elfcpp::Rel<32, big_endian>& reloc,
7739                                     unsigned int r_type,
7740                                     const elfcpp::Sym<32, big_endian>& lsym)
7741 {
7742   r_type = get_real_reloc_type(r_type);
7743   switch (r_type)
7744     {
7745     case elfcpp::R_ARM_NONE:
7746     case elfcpp::R_ARM_V4BX:
7747     case elfcpp::R_ARM_GNU_VTENTRY:
7748     case elfcpp::R_ARM_GNU_VTINHERIT:
7749       break;
7750
7751     case elfcpp::R_ARM_ABS32:
7752     case elfcpp::R_ARM_ABS32_NOI:
7753       // If building a shared library (or a position-independent
7754       // executable), we need to create a dynamic relocation for
7755       // this location. The relocation applied at link time will
7756       // apply the link-time value, so we flag the location with
7757       // an R_ARM_RELATIVE relocation so the dynamic loader can
7758       // relocate it easily.
7759       if (parameters->options().output_is_position_independent())
7760         {
7761           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7762           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7763           // If we are to add more other reloc types than R_ARM_ABS32,
7764           // we need to add check_non_pic(object, r_type) here.
7765           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7766                                       output_section, data_shndx,
7767                                       reloc.get_r_offset());
7768         }
7769       break;
7770
7771     case elfcpp::R_ARM_ABS16:
7772     case elfcpp::R_ARM_ABS12:
7773     case elfcpp::R_ARM_THM_ABS5:
7774     case elfcpp::R_ARM_ABS8:
7775     case elfcpp::R_ARM_BASE_ABS:
7776     case elfcpp::R_ARM_MOVW_ABS_NC:
7777     case elfcpp::R_ARM_MOVT_ABS:
7778     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7779     case elfcpp::R_ARM_THM_MOVT_ABS:
7780       // If building a shared library (or a position-independent
7781       // executable), we need to create a dynamic relocation for
7782       // this location. Because the addend needs to remain in the
7783       // data section, we need to be careful not to apply this
7784       // relocation statically.
7785       if (parameters->options().output_is_position_independent())
7786         {
7787           check_non_pic(object, r_type);
7788           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7789           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7790           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7791             rel_dyn->add_local(object, r_sym, r_type, output_section,
7792                                data_shndx, reloc.get_r_offset());
7793           else
7794             {
7795               gold_assert(lsym.get_st_value() == 0);
7796               unsigned int shndx = lsym.get_st_shndx();
7797               bool is_ordinary;
7798               shndx = object->adjust_sym_shndx(r_sym, shndx,
7799                                                &is_ordinary);
7800               if (!is_ordinary)
7801                 object->error(_("section symbol %u has bad shndx %u"),
7802                               r_sym, shndx);
7803               else
7804                 rel_dyn->add_local_section(object, shndx,
7805                                            r_type, output_section,
7806                                            data_shndx, reloc.get_r_offset());
7807             }
7808         }
7809       break;
7810
7811     case elfcpp::R_ARM_REL32:
7812     case elfcpp::R_ARM_LDR_PC_G0:
7813     case elfcpp::R_ARM_SBREL32:
7814     case elfcpp::R_ARM_THM_CALL:
7815     case elfcpp::R_ARM_THM_PC8:
7816     case elfcpp::R_ARM_BASE_PREL:
7817     case elfcpp::R_ARM_PLT32:
7818     case elfcpp::R_ARM_CALL:
7819     case elfcpp::R_ARM_JUMP24:
7820     case elfcpp::R_ARM_THM_JUMP24:
7821     case elfcpp::R_ARM_SBREL31:
7822     case elfcpp::R_ARM_PREL31:
7823     case elfcpp::R_ARM_MOVW_PREL_NC:
7824     case elfcpp::R_ARM_MOVT_PREL:
7825     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7826     case elfcpp::R_ARM_THM_MOVT_PREL:
7827     case elfcpp::R_ARM_THM_JUMP19:
7828     case elfcpp::R_ARM_THM_JUMP6:
7829     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7830     case elfcpp::R_ARM_THM_PC12:
7831     case elfcpp::R_ARM_REL32_NOI:
7832     case elfcpp::R_ARM_ALU_PC_G0_NC:
7833     case elfcpp::R_ARM_ALU_PC_G0:
7834     case elfcpp::R_ARM_ALU_PC_G1_NC:
7835     case elfcpp::R_ARM_ALU_PC_G1:
7836     case elfcpp::R_ARM_ALU_PC_G2:
7837     case elfcpp::R_ARM_LDR_PC_G1:
7838     case elfcpp::R_ARM_LDR_PC_G2:
7839     case elfcpp::R_ARM_LDRS_PC_G0:
7840     case elfcpp::R_ARM_LDRS_PC_G1:
7841     case elfcpp::R_ARM_LDRS_PC_G2:
7842     case elfcpp::R_ARM_LDC_PC_G0:
7843     case elfcpp::R_ARM_LDC_PC_G1:
7844     case elfcpp::R_ARM_LDC_PC_G2:
7845     case elfcpp::R_ARM_ALU_SB_G0_NC:
7846     case elfcpp::R_ARM_ALU_SB_G0:
7847     case elfcpp::R_ARM_ALU_SB_G1_NC:
7848     case elfcpp::R_ARM_ALU_SB_G1:
7849     case elfcpp::R_ARM_ALU_SB_G2:
7850     case elfcpp::R_ARM_LDR_SB_G0:
7851     case elfcpp::R_ARM_LDR_SB_G1:
7852     case elfcpp::R_ARM_LDR_SB_G2:
7853     case elfcpp::R_ARM_LDRS_SB_G0:
7854     case elfcpp::R_ARM_LDRS_SB_G1:
7855     case elfcpp::R_ARM_LDRS_SB_G2:
7856     case elfcpp::R_ARM_LDC_SB_G0:
7857     case elfcpp::R_ARM_LDC_SB_G1:
7858     case elfcpp::R_ARM_LDC_SB_G2:
7859     case elfcpp::R_ARM_MOVW_BREL_NC:
7860     case elfcpp::R_ARM_MOVT_BREL:
7861     case elfcpp::R_ARM_MOVW_BREL:
7862     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7863     case elfcpp::R_ARM_THM_MOVT_BREL:
7864     case elfcpp::R_ARM_THM_MOVW_BREL:
7865     case elfcpp::R_ARM_THM_JUMP11:
7866     case elfcpp::R_ARM_THM_JUMP8:
7867       // We don't need to do anything for a relative addressing relocation
7868       // against a local symbol if it does not reference the GOT.
7869       break;
7870
7871     case elfcpp::R_ARM_GOTOFF32:
7872     case elfcpp::R_ARM_GOTOFF12:
7873       // We need a GOT section:
7874       target->got_section(symtab, layout);
7875       break;
7876
7877     case elfcpp::R_ARM_GOT_BREL:
7878     case elfcpp::R_ARM_GOT_PREL:
7879       {
7880         // The symbol requires a GOT entry.
7881         Arm_output_data_got<big_endian>* got =
7882           target->got_section(symtab, layout);
7883         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7884         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7885           {
7886             // If we are generating a shared object, we need to add a
7887             // dynamic RELATIVE relocation for this symbol's GOT entry.
7888             if (parameters->options().output_is_position_independent())
7889               {
7890                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7891                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7892                 rel_dyn->add_local_relative(
7893                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7894                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7895               }
7896           }
7897       }
7898       break;
7899
7900     case elfcpp::R_ARM_TARGET1:
7901     case elfcpp::R_ARM_TARGET2:
7902       // This should have been mapped to another type already.
7903       // Fall through.
7904     case elfcpp::R_ARM_COPY:
7905     case elfcpp::R_ARM_GLOB_DAT:
7906     case elfcpp::R_ARM_JUMP_SLOT:
7907     case elfcpp::R_ARM_RELATIVE:
7908       // These are relocations which should only be seen by the
7909       // dynamic linker, and should never be seen here.
7910       gold_error(_("%s: unexpected reloc %u in object file"),
7911                  object->name().c_str(), r_type);
7912       break;
7913
7914
7915       // These are initial TLS relocs, which are expected when
7916       // linking.
7917     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7918     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7919     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7920     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7921     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7922       {
7923         bool output_is_shared = parameters->options().shared();
7924         const tls::Tls_optimization optimized_type
7925             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7926                                                          r_type);
7927         switch (r_type)
7928           {
7929           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7930             if (optimized_type == tls::TLSOPT_NONE)
7931               {
7932                 // Create a pair of GOT entries for the module index and
7933                 // dtv-relative offset.
7934                 Arm_output_data_got<big_endian>* got
7935                     = target->got_section(symtab, layout);
7936                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7937                 unsigned int shndx = lsym.get_st_shndx();
7938                 bool is_ordinary;
7939                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7940                 if (!is_ordinary)
7941                   {
7942                     object->error(_("local symbol %u has bad shndx %u"),
7943                                   r_sym, shndx);
7944                     break;
7945                   }
7946
7947                 if (!parameters->doing_static_link())
7948                   got->add_local_pair_with_rel(object, r_sym, shndx,
7949                                                GOT_TYPE_TLS_PAIR,
7950                                                target->rel_dyn_section(layout),
7951                                                elfcpp::R_ARM_TLS_DTPMOD32, 0);
7952                 else
7953                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7954                                                       object, r_sym);
7955               }
7956             else
7957               // FIXME: TLS optimization not supported yet.
7958               gold_unreachable();
7959             break;
7960
7961           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7962             if (optimized_type == tls::TLSOPT_NONE)
7963               {
7964                 // Create a GOT entry for the module index.
7965                 target->got_mod_index_entry(symtab, layout, object);
7966               }
7967             else
7968               // FIXME: TLS optimization not supported yet.
7969               gold_unreachable();
7970             break;
7971
7972           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
7973             break;
7974
7975           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
7976             layout->set_has_static_tls();
7977             if (optimized_type == tls::TLSOPT_NONE)
7978               {
7979                 // Create a GOT entry for the tp-relative offset.
7980                 Arm_output_data_got<big_endian>* got
7981                   = target->got_section(symtab, layout);
7982                 unsigned int r_sym =
7983                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
7984                 if (!parameters->doing_static_link())
7985                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7986                                             target->rel_dyn_section(layout),
7987                                             elfcpp::R_ARM_TLS_TPOFF32);
7988                 else if (!object->local_has_got_offset(r_sym,
7989                                                        GOT_TYPE_TLS_OFFSET))
7990                   {
7991                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7992                     unsigned int got_offset =
7993                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7994                     got->add_static_reloc(got_offset,
7995                                           elfcpp::R_ARM_TLS_TPOFF32, object,
7996                                           r_sym);
7997                   }
7998               }
7999             else
8000               // FIXME: TLS optimization not supported yet.
8001               gold_unreachable();
8002             break;
8003
8004           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
8005             layout->set_has_static_tls();
8006             if (output_is_shared)
8007               {
8008                 // We need to create a dynamic relocation.
8009                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8010                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8011                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8012                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8013                                    output_section, data_shndx,
8014                                    reloc.get_r_offset());
8015               }
8016             break;
8017
8018           default:
8019             gold_unreachable();
8020           }
8021       }
8022       break;
8023
8024     case elfcpp::R_ARM_PC24:
8025     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8026     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8027     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8028     default:
8029       unsupported_reloc_local(object, r_type);
8030       break;
8031     }
8032 }
8033
8034 // Report an unsupported relocation against a global symbol.
8035
8036 template<bool big_endian>
8037 void
8038 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8039     Sized_relobj_file<32, big_endian>* object,
8040     unsigned int r_type,
8041     Symbol* gsym)
8042 {
8043   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8044              object->name().c_str(), r_type, gsym->demangled_name().c_str());
8045 }
8046
8047 template<bool big_endian>
8048 inline bool
8049 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8050     unsigned int r_type)
8051 {
8052   switch (r_type)
8053     {
8054     case elfcpp::R_ARM_PC24:
8055     case elfcpp::R_ARM_THM_CALL:
8056     case elfcpp::R_ARM_PLT32:
8057     case elfcpp::R_ARM_CALL:
8058     case elfcpp::R_ARM_JUMP24:
8059     case elfcpp::R_ARM_THM_JUMP24:
8060     case elfcpp::R_ARM_SBREL31:
8061     case elfcpp::R_ARM_PREL31:
8062     case elfcpp::R_ARM_THM_JUMP19:
8063     case elfcpp::R_ARM_THM_JUMP6:
8064     case elfcpp::R_ARM_THM_JUMP11:
8065     case elfcpp::R_ARM_THM_JUMP8:
8066       // All the relocations above are branches except SBREL31 and PREL31.
8067       return false;
8068
8069     default:
8070       // Be conservative and assume this is a function pointer.
8071       return true;
8072     }
8073 }
8074
8075 template<bool big_endian>
8076 inline bool
8077 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8078   Symbol_table*,
8079   Layout*,
8080   Target_arm<big_endian>* target,
8081   Sized_relobj_file<32, big_endian>*,
8082   unsigned int,
8083   Output_section*,
8084   const elfcpp::Rel<32, big_endian>&,
8085   unsigned int r_type,
8086   const elfcpp::Sym<32, big_endian>&)
8087 {
8088   r_type = target->get_real_reloc_type(r_type);
8089   return possible_function_pointer_reloc(r_type);
8090 }
8091
8092 template<bool big_endian>
8093 inline bool
8094 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8095   Symbol_table*,
8096   Layout*,
8097   Target_arm<big_endian>* target,
8098   Sized_relobj_file<32, big_endian>*,
8099   unsigned int,
8100   Output_section*,
8101   const elfcpp::Rel<32, big_endian>&,
8102   unsigned int r_type,
8103   Symbol* gsym)
8104 {
8105   // GOT is not a function.
8106   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8107     return false;
8108
8109   r_type = target->get_real_reloc_type(r_type);
8110   return possible_function_pointer_reloc(r_type);
8111 }
8112
8113 // Scan a relocation for a global symbol.
8114
8115 template<bool big_endian>
8116 inline void
8117 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8118                                      Layout* layout,
8119                                      Target_arm* target,
8120                                      Sized_relobj_file<32, big_endian>* object,
8121                                      unsigned int data_shndx,
8122                                      Output_section* output_section,
8123                                      const elfcpp::Rel<32, big_endian>& reloc,
8124                                      unsigned int r_type,
8125                                      Symbol* gsym)
8126 {
8127   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8128   // section.  We check here to avoid creating a dynamic reloc against
8129   // _GLOBAL_OFFSET_TABLE_.
8130   if (!target->has_got_section()
8131       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8132     target->got_section(symtab, layout);
8133
8134   r_type = get_real_reloc_type(r_type);
8135   switch (r_type)
8136     {
8137     case elfcpp::R_ARM_NONE:
8138     case elfcpp::R_ARM_V4BX:
8139     case elfcpp::R_ARM_GNU_VTENTRY:
8140     case elfcpp::R_ARM_GNU_VTINHERIT:
8141       break;
8142
8143     case elfcpp::R_ARM_ABS32:
8144     case elfcpp::R_ARM_ABS16:
8145     case elfcpp::R_ARM_ABS12:
8146     case elfcpp::R_ARM_THM_ABS5:
8147     case elfcpp::R_ARM_ABS8:
8148     case elfcpp::R_ARM_BASE_ABS:
8149     case elfcpp::R_ARM_MOVW_ABS_NC:
8150     case elfcpp::R_ARM_MOVT_ABS:
8151     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8152     case elfcpp::R_ARM_THM_MOVT_ABS:
8153     case elfcpp::R_ARM_ABS32_NOI:
8154       // Absolute addressing relocations.
8155       {
8156         // Make a PLT entry if necessary.
8157         if (this->symbol_needs_plt_entry(gsym))
8158           {
8159             target->make_plt_entry(symtab, layout, gsym);
8160             // Since this is not a PC-relative relocation, we may be
8161             // taking the address of a function. In that case we need to
8162             // set the entry in the dynamic symbol table to the address of
8163             // the PLT entry.
8164             if (gsym->is_from_dynobj() && !parameters->options().shared())
8165               gsym->set_needs_dynsym_value();
8166           }
8167         // Make a dynamic relocation if necessary.
8168         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8169           {
8170             if (gsym->may_need_copy_reloc())
8171               {
8172                 target->copy_reloc(symtab, layout, object,
8173                                    data_shndx, output_section, gsym, reloc);
8174               }
8175             else if ((r_type == elfcpp::R_ARM_ABS32
8176                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8177                      && gsym->can_use_relative_reloc(false))
8178               {
8179                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8180                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8181                                              output_section, object,
8182                                              data_shndx, reloc.get_r_offset());
8183               }
8184             else
8185               {
8186                 check_non_pic(object, r_type);
8187                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8188                 rel_dyn->add_global(gsym, r_type, output_section, object,
8189                                     data_shndx, reloc.get_r_offset());
8190               }
8191           }
8192       }
8193       break;
8194
8195     case elfcpp::R_ARM_GOTOFF32:
8196     case elfcpp::R_ARM_GOTOFF12:
8197       // We need a GOT section.
8198       target->got_section(symtab, layout);
8199       break;
8200       
8201     case elfcpp::R_ARM_REL32:
8202     case elfcpp::R_ARM_LDR_PC_G0:
8203     case elfcpp::R_ARM_SBREL32:
8204     case elfcpp::R_ARM_THM_PC8:
8205     case elfcpp::R_ARM_BASE_PREL:
8206     case elfcpp::R_ARM_MOVW_PREL_NC:
8207     case elfcpp::R_ARM_MOVT_PREL:
8208     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8209     case elfcpp::R_ARM_THM_MOVT_PREL:
8210     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8211     case elfcpp::R_ARM_THM_PC12:
8212     case elfcpp::R_ARM_REL32_NOI:
8213     case elfcpp::R_ARM_ALU_PC_G0_NC:
8214     case elfcpp::R_ARM_ALU_PC_G0:
8215     case elfcpp::R_ARM_ALU_PC_G1_NC:
8216     case elfcpp::R_ARM_ALU_PC_G1:
8217     case elfcpp::R_ARM_ALU_PC_G2:
8218     case elfcpp::R_ARM_LDR_PC_G1:
8219     case elfcpp::R_ARM_LDR_PC_G2:
8220     case elfcpp::R_ARM_LDRS_PC_G0:
8221     case elfcpp::R_ARM_LDRS_PC_G1:
8222     case elfcpp::R_ARM_LDRS_PC_G2:
8223     case elfcpp::R_ARM_LDC_PC_G0:
8224     case elfcpp::R_ARM_LDC_PC_G1:
8225     case elfcpp::R_ARM_LDC_PC_G2:
8226     case elfcpp::R_ARM_ALU_SB_G0_NC:
8227     case elfcpp::R_ARM_ALU_SB_G0:
8228     case elfcpp::R_ARM_ALU_SB_G1_NC:
8229     case elfcpp::R_ARM_ALU_SB_G1:
8230     case elfcpp::R_ARM_ALU_SB_G2:
8231     case elfcpp::R_ARM_LDR_SB_G0:
8232     case elfcpp::R_ARM_LDR_SB_G1:
8233     case elfcpp::R_ARM_LDR_SB_G2:
8234     case elfcpp::R_ARM_LDRS_SB_G0:
8235     case elfcpp::R_ARM_LDRS_SB_G1:
8236     case elfcpp::R_ARM_LDRS_SB_G2:
8237     case elfcpp::R_ARM_LDC_SB_G0:
8238     case elfcpp::R_ARM_LDC_SB_G1:
8239     case elfcpp::R_ARM_LDC_SB_G2:
8240     case elfcpp::R_ARM_MOVW_BREL_NC:
8241     case elfcpp::R_ARM_MOVT_BREL:
8242     case elfcpp::R_ARM_MOVW_BREL:
8243     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8244     case elfcpp::R_ARM_THM_MOVT_BREL:
8245     case elfcpp::R_ARM_THM_MOVW_BREL:
8246       // Relative addressing relocations.
8247       {
8248         // Make a dynamic relocation if necessary.
8249         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8250           {
8251             if (target->may_need_copy_reloc(gsym))
8252               {
8253                 target->copy_reloc(symtab, layout, object,
8254                                    data_shndx, output_section, gsym, reloc);
8255               }
8256             else
8257               {
8258                 check_non_pic(object, r_type);
8259                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8260                 rel_dyn->add_global(gsym, r_type, output_section, object,
8261                                     data_shndx, reloc.get_r_offset());
8262               }
8263           }
8264       }
8265       break;
8266
8267     case elfcpp::R_ARM_THM_CALL:
8268     case elfcpp::R_ARM_PLT32:
8269     case elfcpp::R_ARM_CALL:
8270     case elfcpp::R_ARM_JUMP24:
8271     case elfcpp::R_ARM_THM_JUMP24:
8272     case elfcpp::R_ARM_SBREL31:
8273     case elfcpp::R_ARM_PREL31:
8274     case elfcpp::R_ARM_THM_JUMP19:
8275     case elfcpp::R_ARM_THM_JUMP6:
8276     case elfcpp::R_ARM_THM_JUMP11:
8277     case elfcpp::R_ARM_THM_JUMP8:
8278       // All the relocation above are branches except for the PREL31 ones.
8279       // A PREL31 relocation can point to a personality function in a shared
8280       // library.  In that case we want to use a PLT because we want to
8281       // call the personality routine and the dynamic linkers we care about
8282       // do not support dynamic PREL31 relocations. An REL31 relocation may
8283       // point to a function whose unwinding behaviour is being described but
8284       // we will not mistakenly generate a PLT for that because we should use
8285       // a local section symbol.
8286
8287       // If the symbol is fully resolved, this is just a relative
8288       // local reloc.  Otherwise we need a PLT entry.
8289       if (gsym->final_value_is_known())
8290         break;
8291       // If building a shared library, we can also skip the PLT entry
8292       // if the symbol is defined in the output file and is protected
8293       // or hidden.
8294       if (gsym->is_defined()
8295           && !gsym->is_from_dynobj()
8296           && !gsym->is_preemptible())
8297         break;
8298       target->make_plt_entry(symtab, layout, gsym);
8299       break;
8300
8301     case elfcpp::R_ARM_GOT_BREL:
8302     case elfcpp::R_ARM_GOT_ABS:
8303     case elfcpp::R_ARM_GOT_PREL:
8304       {
8305         // The symbol requires a GOT entry.
8306         Arm_output_data_got<big_endian>* got =
8307           target->got_section(symtab, layout);
8308         if (gsym->final_value_is_known())
8309           got->add_global(gsym, GOT_TYPE_STANDARD);
8310         else
8311           {
8312             // If this symbol is not fully resolved, we need to add a
8313             // GOT entry with a dynamic relocation.
8314             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8315             if (gsym->is_from_dynobj()
8316                 || gsym->is_undefined()
8317                 || gsym->is_preemptible()
8318                 || (gsym->visibility() == elfcpp::STV_PROTECTED
8319                     && parameters->options().shared()))
8320               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8321                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8322             else
8323               {
8324                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8325                   rel_dyn->add_global_relative(
8326                       gsym, elfcpp::R_ARM_RELATIVE, got,
8327                       gsym->got_offset(GOT_TYPE_STANDARD));
8328               }
8329           }
8330       }
8331       break;
8332
8333     case elfcpp::R_ARM_TARGET1:
8334     case elfcpp::R_ARM_TARGET2:
8335       // These should have been mapped to other types already.
8336       // Fall through.
8337     case elfcpp::R_ARM_COPY:
8338     case elfcpp::R_ARM_GLOB_DAT:
8339     case elfcpp::R_ARM_JUMP_SLOT:
8340     case elfcpp::R_ARM_RELATIVE:
8341       // These are relocations which should only be seen by the
8342       // dynamic linker, and should never be seen here.
8343       gold_error(_("%s: unexpected reloc %u in object file"),
8344                  object->name().c_str(), r_type);
8345       break;
8346
8347       // These are initial tls relocs, which are expected when
8348       // linking.
8349     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8350     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8351     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8352     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8353     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8354       {
8355         const bool is_final = gsym->final_value_is_known();
8356         const tls::Tls_optimization optimized_type
8357             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8358         switch (r_type)
8359           {
8360           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8361             if (optimized_type == tls::TLSOPT_NONE)
8362               {
8363                 // Create a pair of GOT entries for the module index and
8364                 // dtv-relative offset.
8365                 Arm_output_data_got<big_endian>* got
8366                     = target->got_section(symtab, layout);
8367                 if (!parameters->doing_static_link())
8368                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8369                                                 target->rel_dyn_section(layout),
8370                                                 elfcpp::R_ARM_TLS_DTPMOD32,
8371                                                 elfcpp::R_ARM_TLS_DTPOFF32);
8372                 else
8373                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8374               }
8375             else
8376               // FIXME: TLS optimization not supported yet.
8377               gold_unreachable();
8378             break;
8379
8380           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8381             if (optimized_type == tls::TLSOPT_NONE)
8382               {
8383                 // Create a GOT entry for the module index.
8384                 target->got_mod_index_entry(symtab, layout, object);
8385               }
8386             else
8387               // FIXME: TLS optimization not supported yet.
8388               gold_unreachable();
8389             break;
8390
8391           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8392             break;
8393
8394           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8395             layout->set_has_static_tls();
8396             if (optimized_type == tls::TLSOPT_NONE)
8397               {
8398                 // Create a GOT entry for the tp-relative offset.
8399                 Arm_output_data_got<big_endian>* got
8400                   = target->got_section(symtab, layout);
8401                 if (!parameters->doing_static_link())
8402                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8403                                            target->rel_dyn_section(layout),
8404                                            elfcpp::R_ARM_TLS_TPOFF32);
8405                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8406                   {
8407                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8408                     unsigned int got_offset =
8409                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8410                     got->add_static_reloc(got_offset,
8411                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
8412                   }
8413               }
8414             else
8415               // FIXME: TLS optimization not supported yet.
8416               gold_unreachable();
8417             break;
8418
8419           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
8420             layout->set_has_static_tls();
8421             if (parameters->options().shared())
8422               {
8423                 // We need to create a dynamic relocation.
8424                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8425                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8426                                     output_section, object,
8427                                     data_shndx, reloc.get_r_offset());
8428               }
8429             break;
8430
8431           default:
8432             gold_unreachable();
8433           }
8434       }
8435       break;
8436
8437     case elfcpp::R_ARM_PC24:
8438     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8439     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8440     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8441     default:
8442       unsupported_reloc_global(object, r_type, gsym);
8443       break;
8444     }
8445 }
8446
8447 // Process relocations for gc.
8448
8449 template<bool big_endian>
8450 void
8451 Target_arm<big_endian>::gc_process_relocs(
8452     Symbol_table* symtab,
8453     Layout* layout,
8454     Sized_relobj_file<32, big_endian>* object,
8455     unsigned int data_shndx,
8456     unsigned int,
8457     const unsigned char* prelocs,
8458     size_t reloc_count,
8459     Output_section* output_section,
8460     bool needs_special_offset_handling,
8461     size_t local_symbol_count,
8462     const unsigned char* plocal_symbols)
8463 {
8464   typedef Target_arm<big_endian> Arm;
8465   typedef typename Target_arm<big_endian>::Scan Scan;
8466
8467   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8468                           typename Target_arm::Relocatable_size_for_reloc>(
8469     symtab,
8470     layout,
8471     this,
8472     object,
8473     data_shndx,
8474     prelocs,
8475     reloc_count,
8476     output_section,
8477     needs_special_offset_handling,
8478     local_symbol_count,
8479     plocal_symbols);
8480 }
8481
8482 // Scan relocations for a section.
8483
8484 template<bool big_endian>
8485 void
8486 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8487                                     Layout* layout,
8488                                     Sized_relobj_file<32, big_endian>* object,
8489                                     unsigned int data_shndx,
8490                                     unsigned int sh_type,
8491                                     const unsigned char* prelocs,
8492                                     size_t reloc_count,
8493                                     Output_section* output_section,
8494                                     bool needs_special_offset_handling,
8495                                     size_t local_symbol_count,
8496                                     const unsigned char* plocal_symbols)
8497 {
8498   typedef typename Target_arm<big_endian>::Scan Scan;
8499   if (sh_type == elfcpp::SHT_RELA)
8500     {
8501       gold_error(_("%s: unsupported RELA reloc section"),
8502                  object->name().c_str());
8503       return;
8504     }
8505
8506   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8507     symtab,
8508     layout,
8509     this,
8510     object,
8511     data_shndx,
8512     prelocs,
8513     reloc_count,
8514     output_section,
8515     needs_special_offset_handling,
8516     local_symbol_count,
8517     plocal_symbols);
8518 }
8519
8520 // Finalize the sections.
8521
8522 template<bool big_endian>
8523 void
8524 Target_arm<big_endian>::do_finalize_sections(
8525     Layout* layout,
8526     const Input_objects* input_objects,
8527     Symbol_table* symtab)
8528 {
8529   bool merged_any_attributes = false;
8530   // Merge processor-specific flags.
8531   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8532        p != input_objects->relobj_end();
8533        ++p)
8534     {
8535       Arm_relobj<big_endian>* arm_relobj =
8536         Arm_relobj<big_endian>::as_arm_relobj(*p);
8537       if (arm_relobj->merge_flags_and_attributes())
8538         {
8539           this->merge_processor_specific_flags(
8540               arm_relobj->name(),
8541               arm_relobj->processor_specific_flags());
8542           this->merge_object_attributes(arm_relobj->name().c_str(),
8543                                         arm_relobj->attributes_section_data());
8544           merged_any_attributes = true;
8545         }
8546     } 
8547
8548   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8549        p != input_objects->dynobj_end();
8550        ++p)
8551     {
8552       Arm_dynobj<big_endian>* arm_dynobj =
8553         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8554       this->merge_processor_specific_flags(
8555           arm_dynobj->name(),
8556           arm_dynobj->processor_specific_flags());
8557       this->merge_object_attributes(arm_dynobj->name().c_str(),
8558                                     arm_dynobj->attributes_section_data());
8559       merged_any_attributes = true;
8560     }
8561
8562   // Create an empty uninitialized attribute section if we still don't have it
8563   // at this moment.  This happens if there is no attributes sections in all
8564   // inputs.
8565   if (this->attributes_section_data_ == NULL)
8566     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8567
8568   const Object_attribute* cpu_arch_attr =
8569     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8570   // Check if we need to use Cortex-A8 workaround.
8571   if (parameters->options().user_set_fix_cortex_a8())
8572     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8573   else
8574     {
8575       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8576       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8577       // profile.  
8578       const Object_attribute* cpu_arch_profile_attr =
8579         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8580       this->fix_cortex_a8_ =
8581         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8582          && (cpu_arch_profile_attr->int_value() == 'A'
8583              || cpu_arch_profile_attr->int_value() == 0));
8584     }
8585   
8586   // Check if we can use V4BX interworking.
8587   // The V4BX interworking stub contains BX instruction,
8588   // which is not specified for some profiles.
8589   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8590       && !this->may_use_v4t_interworking())
8591     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8592                  "the target profile does not support BX instruction"));
8593
8594   // Fill in some more dynamic tags.
8595   const Reloc_section* rel_plt = (this->plt_ == NULL
8596                                   ? NULL
8597                                   : this->plt_->rel_plt());
8598   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8599                                   this->rel_dyn_, true, false);
8600
8601   // Emit any relocs we saved in an attempt to avoid generating COPY
8602   // relocs.
8603   if (this->copy_relocs_.any_saved_relocs())
8604     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8605
8606   // Handle the .ARM.exidx section.
8607   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8608
8609   if (!parameters->options().relocatable())
8610     {
8611       if (exidx_section != NULL
8612           && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8613         {
8614           // Create __exidx_start and __exidx_end symbols.
8615           symtab->define_in_output_data("__exidx_start", NULL,
8616                                         Symbol_table::PREDEFINED,
8617                                         exidx_section, 0, 0, elfcpp::STT_OBJECT,
8618                                         elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8619                                         0, false, true);
8620           symtab->define_in_output_data("__exidx_end", NULL,
8621                                         Symbol_table::PREDEFINED,
8622                                         exidx_section, 0, 0, elfcpp::STT_OBJECT,
8623                                         elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8624                                         0, true, true);
8625
8626           // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8627           // the .ARM.exidx section.
8628           if (!layout->script_options()->saw_phdrs_clause())
8629             {
8630               gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8631                                                       0)
8632                           == NULL);
8633               Output_segment*  exidx_segment =
8634                 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8635               exidx_segment->add_output_section_to_nonload(exidx_section,
8636                                                            elfcpp::PF_R);
8637             }
8638         }
8639       else
8640         {
8641           symtab->define_as_constant("__exidx_start", NULL,
8642                                      Symbol_table::PREDEFINED,
8643                                      0, 0, elfcpp::STT_OBJECT,
8644                                      elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8645                                      true, false);
8646           symtab->define_as_constant("__exidx_end", NULL,
8647                                      Symbol_table::PREDEFINED,
8648                                      0, 0, elfcpp::STT_OBJECT,
8649                                      elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8650                                      true, false);
8651         }
8652     }
8653
8654   // Create an .ARM.attributes section if we have merged any attributes
8655   // from inputs.
8656   if (merged_any_attributes)
8657     {
8658       Output_attributes_section_data* attributes_section =
8659       new Output_attributes_section_data(*this->attributes_section_data_);
8660       layout->add_output_section_data(".ARM.attributes",
8661                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
8662                                       attributes_section, ORDER_INVALID,
8663                                       false);
8664     }
8665
8666   // Fix up links in section EXIDX headers.
8667   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8668        p != layout->section_list().end();
8669        ++p)
8670     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8671       {
8672         Arm_output_section<big_endian>* os =
8673           Arm_output_section<big_endian>::as_arm_output_section(*p);
8674         os->set_exidx_section_link();
8675       }
8676 }
8677
8678 // Return whether a direct absolute static relocation needs to be applied.
8679 // In cases where Scan::local() or Scan::global() has created
8680 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8681 // of the relocation is carried in the data, and we must not
8682 // apply the static relocation.
8683
8684 template<bool big_endian>
8685 inline bool
8686 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8687     const Sized_symbol<32>* gsym,
8688     unsigned int r_type,
8689     bool is_32bit,
8690     Output_section* output_section)
8691 {
8692   // If the output section is not allocated, then we didn't call
8693   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8694   // the reloc here.
8695   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8696       return true;
8697
8698   int ref_flags = Scan::get_reference_flags(r_type);
8699
8700   // For local symbols, we will have created a non-RELATIVE dynamic
8701   // relocation only if (a) the output is position independent,
8702   // (b) the relocation is absolute (not pc- or segment-relative), and
8703   // (c) the relocation is not 32 bits wide.
8704   if (gsym == NULL)
8705     return !(parameters->options().output_is_position_independent()
8706              && (ref_flags & Symbol::ABSOLUTE_REF)
8707              && !is_32bit);
8708
8709   // For global symbols, we use the same helper routines used in the
8710   // scan pass.  If we did not create a dynamic relocation, or if we
8711   // created a RELATIVE dynamic relocation, we should apply the static
8712   // relocation.
8713   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8714   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8715                  && gsym->can_use_relative_reloc(ref_flags
8716                                                  & Symbol::FUNCTION_CALL);
8717   return !has_dyn || is_rel;
8718 }
8719
8720 // Perform a relocation.
8721
8722 template<bool big_endian>
8723 inline bool
8724 Target_arm<big_endian>::Relocate::relocate(
8725     const Relocate_info<32, big_endian>* relinfo,
8726     Target_arm* target,
8727     Output_section* output_section,
8728     size_t relnum,
8729     const elfcpp::Rel<32, big_endian>& rel,
8730     unsigned int r_type,
8731     const Sized_symbol<32>* gsym,
8732     const Symbol_value<32>* psymval,
8733     unsigned char* view,
8734     Arm_address address,
8735     section_size_type view_size)
8736 {
8737   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8738
8739   r_type = get_real_reloc_type(r_type);
8740   const Arm_reloc_property* reloc_property =
8741     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8742   if (reloc_property == NULL)
8743     {
8744       std::string reloc_name =
8745         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8746       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8747                              _("cannot relocate %s in object file"),
8748                              reloc_name.c_str());
8749       return true;
8750     }
8751
8752   const Arm_relobj<big_endian>* object =
8753     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8754
8755   // If the final branch target of a relocation is THUMB instruction, this
8756   // is 1.  Otherwise it is 0.
8757   Arm_address thumb_bit = 0;
8758   Symbol_value<32> symval;
8759   bool is_weakly_undefined_without_plt = false;
8760   bool have_got_offset = false;
8761   unsigned int got_offset = 0;
8762
8763   // If the relocation uses the GOT entry of a symbol instead of the symbol
8764   // itself, we don't care about whether the symbol is defined or what kind
8765   // of symbol it is.
8766   if (reloc_property->uses_got_entry())
8767     {
8768       // Get the GOT offset.
8769       // The GOT pointer points to the end of the GOT section.
8770       // We need to subtract the size of the GOT section to get
8771       // the actual offset to use in the relocation.
8772       // TODO: We should move GOT offset computing code in TLS relocations
8773       // to here.
8774       switch (r_type)
8775         {
8776         case elfcpp::R_ARM_GOT_BREL:
8777         case elfcpp::R_ARM_GOT_PREL:
8778           if (gsym != NULL)
8779             {
8780               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8781               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8782                             - target->got_size());
8783             }
8784           else
8785             {
8786               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8787               gold_assert(object->local_has_got_offset(r_sym,
8788                                                        GOT_TYPE_STANDARD));
8789               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8790                             - target->got_size());
8791             }
8792           have_got_offset = true;
8793           break;
8794
8795         default:
8796           break;
8797         }
8798     }
8799   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8800     {
8801       if (gsym != NULL)
8802         {
8803           // This is a global symbol.  Determine if we use PLT and if the
8804           // final target is THUMB.
8805           if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8806             {
8807               // This uses a PLT, change the symbol value.
8808               symval.set_output_value(target->plt_section()->address()
8809                                       + gsym->plt_offset());
8810               psymval = &symval;
8811             }
8812           else if (gsym->is_weak_undefined())
8813             {
8814               // This is a weakly undefined symbol and we do not use PLT
8815               // for this relocation.  A branch targeting this symbol will
8816               // be converted into an NOP.
8817               is_weakly_undefined_without_plt = true;
8818             }
8819           else if (gsym->is_undefined() && reloc_property->uses_symbol())
8820             {
8821               // This relocation uses the symbol value but the symbol is
8822               // undefined.  Exit early and have the caller reporting an
8823               // error.
8824               return true;
8825             }
8826           else
8827             {
8828               // Set thumb bit if symbol:
8829               // -Has type STT_ARM_TFUNC or
8830               // -Has type STT_FUNC, is defined and with LSB in value set.
8831               thumb_bit =
8832                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8833                  || (gsym->type() == elfcpp::STT_FUNC
8834                      && !gsym->is_undefined()
8835                      && ((psymval->value(object, 0) & 1) != 0)))
8836                 ? 1
8837                 : 0);
8838             }
8839         }
8840       else
8841         {
8842           // This is a local symbol.  Determine if the final target is THUMB.
8843           // We saved this information when all the local symbols were read.
8844           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8845           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8846           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8847         }
8848     }
8849   else
8850     {
8851       // This is a fake relocation synthesized for a stub.  It does not have
8852       // a real symbol.  We just look at the LSB of the symbol value to
8853       // determine if the target is THUMB or not.
8854       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8855     }
8856
8857   // Strip LSB if this points to a THUMB target.
8858   if (thumb_bit != 0
8859       && reloc_property->uses_thumb_bit() 
8860       && ((psymval->value(object, 0) & 1) != 0))
8861     {
8862       Arm_address stripped_value =
8863         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8864       symval.set_output_value(stripped_value);
8865       psymval = &symval;
8866     } 
8867
8868   // To look up relocation stubs, we need to pass the symbol table index of
8869   // a local symbol.
8870   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8871
8872   // Get the addressing origin of the output segment defining the
8873   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8874   Arm_address sym_origin = 0;
8875   if (reloc_property->uses_symbol_base())
8876     {
8877       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8878         // R_ARM_BASE_ABS with the NULL symbol will give the
8879         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8880         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8881         sym_origin = target->got_plt_section()->address();
8882       else if (gsym == NULL)
8883         sym_origin = 0;
8884       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8885         sym_origin = gsym->output_segment()->vaddr();
8886       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8887         sym_origin = gsym->output_data()->address();
8888
8889       // TODO: Assumes the segment base to be zero for the global symbols
8890       // till the proper support for the segment-base-relative addressing
8891       // will be implemented.  This is consistent with GNU ld.
8892     }
8893
8894   // For relative addressing relocation, find out the relative address base.
8895   Arm_address relative_address_base = 0;
8896   switch(reloc_property->relative_address_base())
8897     {
8898     case Arm_reloc_property::RAB_NONE:
8899     // Relocations with relative address bases RAB_TLS and RAB_tp are
8900     // handled by relocate_tls.  So we do not need to do anything here.
8901     case Arm_reloc_property::RAB_TLS:
8902     case Arm_reloc_property::RAB_tp:
8903       break;
8904     case Arm_reloc_property::RAB_B_S:
8905       relative_address_base = sym_origin;
8906       break;
8907     case Arm_reloc_property::RAB_GOT_ORG:
8908       relative_address_base = target->got_plt_section()->address();
8909       break;
8910     case Arm_reloc_property::RAB_P:
8911       relative_address_base = address;
8912       break;
8913     case Arm_reloc_property::RAB_Pa:
8914       relative_address_base = address & 0xfffffffcU;
8915       break;
8916     default:
8917       gold_unreachable(); 
8918     }
8919     
8920   typename Arm_relocate_functions::Status reloc_status =
8921         Arm_relocate_functions::STATUS_OKAY;
8922   bool check_overflow = reloc_property->checks_overflow();
8923   switch (r_type)
8924     {
8925     case elfcpp::R_ARM_NONE:
8926       break;
8927
8928     case elfcpp::R_ARM_ABS8:
8929       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8930         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8931       break;
8932
8933     case elfcpp::R_ARM_ABS12:
8934       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8935         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8936       break;
8937
8938     case elfcpp::R_ARM_ABS16:
8939       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8940         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8941       break;
8942
8943     case elfcpp::R_ARM_ABS32:
8944       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8945         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8946                                                      thumb_bit);
8947       break;
8948
8949     case elfcpp::R_ARM_ABS32_NOI:
8950       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8951         // No thumb bit for this relocation: (S + A)
8952         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8953                                                      0);
8954       break;
8955
8956     case elfcpp::R_ARM_MOVW_ABS_NC:
8957       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8958         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8959                                                     0, thumb_bit,
8960                                                     check_overflow);
8961       break;
8962
8963     case elfcpp::R_ARM_MOVT_ABS:
8964       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8965         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8966       break;
8967
8968     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8969       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8970         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8971                                                         0, thumb_bit, false);
8972       break;
8973
8974     case elfcpp::R_ARM_THM_MOVT_ABS:
8975       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8976         reloc_status = Arm_relocate_functions::thm_movt(view, object,
8977                                                         psymval, 0);
8978       break;
8979
8980     case elfcpp::R_ARM_MOVW_PREL_NC:
8981     case elfcpp::R_ARM_MOVW_BREL_NC:
8982     case elfcpp::R_ARM_MOVW_BREL:
8983       reloc_status =
8984         Arm_relocate_functions::movw(view, object, psymval,
8985                                      relative_address_base, thumb_bit,
8986                                      check_overflow);
8987       break;
8988
8989     case elfcpp::R_ARM_MOVT_PREL:
8990     case elfcpp::R_ARM_MOVT_BREL:
8991       reloc_status =
8992         Arm_relocate_functions::movt(view, object, psymval,
8993                                      relative_address_base);
8994       break;
8995
8996     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8997     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8998     case elfcpp::R_ARM_THM_MOVW_BREL:
8999       reloc_status =
9000         Arm_relocate_functions::thm_movw(view, object, psymval,
9001                                          relative_address_base,
9002                                          thumb_bit, check_overflow);
9003       break;
9004
9005     case elfcpp::R_ARM_THM_MOVT_PREL:
9006     case elfcpp::R_ARM_THM_MOVT_BREL:
9007       reloc_status =
9008         Arm_relocate_functions::thm_movt(view, object, psymval,
9009                                          relative_address_base);
9010       break;
9011         
9012     case elfcpp::R_ARM_REL32:
9013       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9014                                                    address, thumb_bit);
9015       break;
9016
9017     case elfcpp::R_ARM_THM_ABS5:
9018       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9019         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9020       break;
9021
9022     // Thumb long branches.
9023     case elfcpp::R_ARM_THM_CALL:
9024     case elfcpp::R_ARM_THM_XPC22:
9025     case elfcpp::R_ARM_THM_JUMP24:
9026       reloc_status =
9027         Arm_relocate_functions::thumb_branch_common(
9028             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9029             thumb_bit, is_weakly_undefined_without_plt);
9030       break;
9031
9032     case elfcpp::R_ARM_GOTOFF32:
9033       {
9034         Arm_address got_origin;
9035         got_origin = target->got_plt_section()->address();
9036         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9037                                                      got_origin, thumb_bit);
9038       }
9039       break;
9040
9041     case elfcpp::R_ARM_BASE_PREL:
9042       gold_assert(gsym != NULL);
9043       reloc_status =
9044           Arm_relocate_functions::base_prel(view, sym_origin, address);
9045       break;
9046
9047     case elfcpp::R_ARM_BASE_ABS:
9048       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9049         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9050       break;
9051
9052     case elfcpp::R_ARM_GOT_BREL:
9053       gold_assert(have_got_offset);
9054       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9055       break;
9056
9057     case elfcpp::R_ARM_GOT_PREL:
9058       gold_assert(have_got_offset);
9059       // Get the address origin for GOT PLT, which is allocated right
9060       // after the GOT section, to calculate an absolute address of
9061       // the symbol GOT entry (got_origin + got_offset).
9062       Arm_address got_origin;
9063       got_origin = target->got_plt_section()->address();
9064       reloc_status = Arm_relocate_functions::got_prel(view,
9065                                                       got_origin + got_offset,
9066                                                       address);
9067       break;
9068
9069     case elfcpp::R_ARM_PLT32:
9070     case elfcpp::R_ARM_CALL:
9071     case elfcpp::R_ARM_JUMP24:
9072     case elfcpp::R_ARM_XPC25:
9073       gold_assert(gsym == NULL
9074                   || gsym->has_plt_offset()
9075                   || gsym->final_value_is_known()
9076                   || (gsym->is_defined()
9077                       && !gsym->is_from_dynobj()
9078                       && !gsym->is_preemptible()));
9079       reloc_status =
9080         Arm_relocate_functions::arm_branch_common(
9081             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9082             thumb_bit, is_weakly_undefined_without_plt);
9083       break;
9084
9085     case elfcpp::R_ARM_THM_JUMP19:
9086       reloc_status =
9087         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9088                                            thumb_bit);
9089       break;
9090
9091     case elfcpp::R_ARM_THM_JUMP6:
9092       reloc_status =
9093         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9094       break;
9095
9096     case elfcpp::R_ARM_THM_JUMP8:
9097       reloc_status =
9098         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9099       break;
9100
9101     case elfcpp::R_ARM_THM_JUMP11:
9102       reloc_status =
9103         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9104       break;
9105
9106     case elfcpp::R_ARM_PREL31:
9107       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9108                                                     address, thumb_bit);
9109       break;
9110
9111     case elfcpp::R_ARM_V4BX:
9112       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9113         {
9114           const bool is_v4bx_interworking =
9115               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9116           reloc_status =
9117             Arm_relocate_functions::v4bx(relinfo, view, object, address,
9118                                          is_v4bx_interworking);
9119         }
9120       break;
9121
9122     case elfcpp::R_ARM_THM_PC8:
9123       reloc_status =
9124         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9125       break;
9126
9127     case elfcpp::R_ARM_THM_PC12:
9128       reloc_status =
9129         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9130       break;
9131
9132     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9133       reloc_status =
9134         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9135                                           thumb_bit);
9136       break;
9137
9138     case elfcpp::R_ARM_ALU_PC_G0_NC:
9139     case elfcpp::R_ARM_ALU_PC_G0:
9140     case elfcpp::R_ARM_ALU_PC_G1_NC:
9141     case elfcpp::R_ARM_ALU_PC_G1:
9142     case elfcpp::R_ARM_ALU_PC_G2:
9143     case elfcpp::R_ARM_ALU_SB_G0_NC:
9144     case elfcpp::R_ARM_ALU_SB_G0:
9145     case elfcpp::R_ARM_ALU_SB_G1_NC:
9146     case elfcpp::R_ARM_ALU_SB_G1:
9147     case elfcpp::R_ARM_ALU_SB_G2:
9148       reloc_status =
9149         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9150                                             reloc_property->group_index(),
9151                                             relative_address_base,
9152                                             thumb_bit, check_overflow);
9153       break;
9154
9155     case elfcpp::R_ARM_LDR_PC_G0:
9156     case elfcpp::R_ARM_LDR_PC_G1:
9157     case elfcpp::R_ARM_LDR_PC_G2:
9158     case elfcpp::R_ARM_LDR_SB_G0:
9159     case elfcpp::R_ARM_LDR_SB_G1:
9160     case elfcpp::R_ARM_LDR_SB_G2:
9161       reloc_status =
9162           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9163                                               reloc_property->group_index(),
9164                                               relative_address_base);
9165       break;
9166
9167     case elfcpp::R_ARM_LDRS_PC_G0:
9168     case elfcpp::R_ARM_LDRS_PC_G1:
9169     case elfcpp::R_ARM_LDRS_PC_G2:
9170     case elfcpp::R_ARM_LDRS_SB_G0:
9171     case elfcpp::R_ARM_LDRS_SB_G1:
9172     case elfcpp::R_ARM_LDRS_SB_G2:
9173       reloc_status =
9174           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9175                                                reloc_property->group_index(),
9176                                                relative_address_base);
9177       break;
9178
9179     case elfcpp::R_ARM_LDC_PC_G0:
9180     case elfcpp::R_ARM_LDC_PC_G1:
9181     case elfcpp::R_ARM_LDC_PC_G2:
9182     case elfcpp::R_ARM_LDC_SB_G0:
9183     case elfcpp::R_ARM_LDC_SB_G1:
9184     case elfcpp::R_ARM_LDC_SB_G2:
9185       reloc_status =
9186           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9187                                               reloc_property->group_index(),
9188                                               relative_address_base);
9189       break;
9190
9191       // These are initial tls relocs, which are expected when
9192       // linking.
9193     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9194     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9195     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9196     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9197     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9198       reloc_status =
9199         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9200                            view, address, view_size);
9201       break;
9202
9203     // The known and unknown unsupported and/or deprecated relocations.
9204     case elfcpp::R_ARM_PC24:
9205     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9206     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9207     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9208     default:
9209       // Just silently leave the method. We should get an appropriate error
9210       // message in the scan methods.
9211       break;
9212     }
9213
9214   // Report any errors.
9215   switch (reloc_status)
9216     {
9217     case Arm_relocate_functions::STATUS_OKAY:
9218       break;
9219     case Arm_relocate_functions::STATUS_OVERFLOW:
9220       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9221                              _("relocation overflow in %s"),
9222                              reloc_property->name().c_str());
9223       break;
9224     case Arm_relocate_functions::STATUS_BAD_RELOC:
9225       gold_error_at_location(
9226         relinfo,
9227         relnum,
9228         rel.get_r_offset(),
9229         _("unexpected opcode while processing relocation %s"),
9230         reloc_property->name().c_str());
9231       break;
9232     default:
9233       gold_unreachable();
9234     }
9235
9236   return true;
9237 }
9238
9239 // Perform a TLS relocation.
9240
9241 template<bool big_endian>
9242 inline typename Arm_relocate_functions<big_endian>::Status
9243 Target_arm<big_endian>::Relocate::relocate_tls(
9244     const Relocate_info<32, big_endian>* relinfo,
9245     Target_arm<big_endian>* target,
9246     size_t relnum,
9247     const elfcpp::Rel<32, big_endian>& rel,
9248     unsigned int r_type,
9249     const Sized_symbol<32>* gsym,
9250     const Symbol_value<32>* psymval,
9251     unsigned char* view,
9252     elfcpp::Elf_types<32>::Elf_Addr address,
9253     section_size_type /*view_size*/ )
9254 {
9255   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9256   typedef Relocate_functions<32, big_endian> RelocFuncs;
9257   Output_segment* tls_segment = relinfo->layout->tls_segment();
9258
9259   const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9260
9261   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9262
9263   const bool is_final = (gsym == NULL
9264                          ? !parameters->options().shared()
9265                          : gsym->final_value_is_known());
9266   const tls::Tls_optimization optimized_type
9267       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9268   switch (r_type)
9269     {
9270     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9271         {
9272           unsigned int got_type = GOT_TYPE_TLS_PAIR;
9273           unsigned int got_offset;
9274           if (gsym != NULL)
9275             {
9276               gold_assert(gsym->has_got_offset(got_type));
9277               got_offset = gsym->got_offset(got_type) - target->got_size();
9278             }
9279           else
9280             {
9281               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9282               gold_assert(object->local_has_got_offset(r_sym, got_type));
9283               got_offset = (object->local_got_offset(r_sym, got_type)
9284                             - target->got_size());
9285             }
9286           if (optimized_type == tls::TLSOPT_NONE)
9287             {
9288               Arm_address got_entry =
9289                 target->got_plt_section()->address() + got_offset;
9290               
9291               // Relocate the field with the PC relative offset of the pair of
9292               // GOT entries.
9293               RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9294               return ArmRelocFuncs::STATUS_OKAY;
9295             }
9296         }
9297       break;
9298
9299     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9300       if (optimized_type == tls::TLSOPT_NONE)
9301         {
9302           // Relocate the field with the offset of the GOT entry for
9303           // the module index.
9304           unsigned int got_offset;
9305           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9306                         - target->got_size());
9307           Arm_address got_entry =
9308             target->got_plt_section()->address() + got_offset;
9309
9310           // Relocate the field with the PC relative offset of the pair of
9311           // GOT entries.
9312           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9313           return ArmRelocFuncs::STATUS_OKAY;
9314         }
9315       break;
9316
9317     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9318       RelocFuncs::rel32_unaligned(view, value);
9319       return ArmRelocFuncs::STATUS_OKAY;
9320
9321     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9322       if (optimized_type == tls::TLSOPT_NONE)
9323         {
9324           // Relocate the field with the offset of the GOT entry for
9325           // the tp-relative offset of the symbol.
9326           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9327           unsigned int got_offset;
9328           if (gsym != NULL)
9329             {
9330               gold_assert(gsym->has_got_offset(got_type));
9331               got_offset = gsym->got_offset(got_type);
9332             }
9333           else
9334             {
9335               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9336               gold_assert(object->local_has_got_offset(r_sym, got_type));
9337               got_offset = object->local_got_offset(r_sym, got_type);
9338             }
9339
9340           // All GOT offsets are relative to the end of the GOT.
9341           got_offset -= target->got_size();
9342
9343           Arm_address got_entry =
9344             target->got_plt_section()->address() + got_offset;
9345
9346           // Relocate the field with the PC relative offset of the GOT entry.
9347           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9348           return ArmRelocFuncs::STATUS_OKAY;
9349         }
9350       break;
9351
9352     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9353       // If we're creating a shared library, a dynamic relocation will
9354       // have been created for this location, so do not apply it now.
9355       if (!parameters->options().shared())
9356         {
9357           gold_assert(tls_segment != NULL);
9358
9359           // $tp points to the TCB, which is followed by the TLS, so we
9360           // need to add TCB size to the offset.
9361           Arm_address aligned_tcb_size =
9362             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9363           RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9364
9365         }
9366       return ArmRelocFuncs::STATUS_OKAY;
9367     
9368     default:
9369       gold_unreachable();
9370     }
9371
9372   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9373                          _("unsupported reloc %u"),
9374                          r_type);
9375   return ArmRelocFuncs::STATUS_BAD_RELOC;
9376 }
9377
9378 // Relocate section data.
9379
9380 template<bool big_endian>
9381 void
9382 Target_arm<big_endian>::relocate_section(
9383     const Relocate_info<32, big_endian>* relinfo,
9384     unsigned int sh_type,
9385     const unsigned char* prelocs,
9386     size_t reloc_count,
9387     Output_section* output_section,
9388     bool needs_special_offset_handling,
9389     unsigned char* view,
9390     Arm_address address,
9391     section_size_type view_size,
9392     const Reloc_symbol_changes* reloc_symbol_changes)
9393 {
9394   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9395   gold_assert(sh_type == elfcpp::SHT_REL);
9396
9397   // See if we are relocating a relaxed input section.  If so, the view
9398   // covers the whole output section and we need to adjust accordingly.
9399   if (needs_special_offset_handling)
9400     {
9401       const Output_relaxed_input_section* poris =
9402         output_section->find_relaxed_input_section(relinfo->object,
9403                                                    relinfo->data_shndx);
9404       if (poris != NULL)
9405         {
9406           Arm_address section_address = poris->address();
9407           section_size_type section_size = poris->data_size();
9408
9409           gold_assert((section_address >= address)
9410                       && ((section_address + section_size)
9411                           <= (address + view_size)));
9412
9413           off_t offset = section_address - address;
9414           view += offset;
9415           address += offset;
9416           view_size = section_size;
9417         }
9418     }
9419
9420   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9421                          Arm_relocate>(
9422     relinfo,
9423     this,
9424     prelocs,
9425     reloc_count,
9426     output_section,
9427     needs_special_offset_handling,
9428     view,
9429     address,
9430     view_size,
9431     reloc_symbol_changes);
9432 }
9433
9434 // Return the size of a relocation while scanning during a relocatable
9435 // link.
9436
9437 template<bool big_endian>
9438 unsigned int
9439 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9440     unsigned int r_type,
9441     Relobj* object)
9442 {
9443   r_type = get_real_reloc_type(r_type);
9444   const Arm_reloc_property* arp =
9445       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9446   if (arp != NULL)
9447     return arp->size();
9448   else
9449     {
9450       std::string reloc_name =
9451         arm_reloc_property_table->reloc_name_in_error_message(r_type);
9452       gold_error(_("%s: unexpected %s in object file"),
9453                  object->name().c_str(), reloc_name.c_str());
9454       return 0;
9455     }
9456 }
9457
9458 // Scan the relocs during a relocatable link.
9459
9460 template<bool big_endian>
9461 void
9462 Target_arm<big_endian>::scan_relocatable_relocs(
9463     Symbol_table* symtab,
9464     Layout* layout,
9465     Sized_relobj_file<32, big_endian>* object,
9466     unsigned int data_shndx,
9467     unsigned int sh_type,
9468     const unsigned char* prelocs,
9469     size_t reloc_count,
9470     Output_section* output_section,
9471     bool needs_special_offset_handling,
9472     size_t local_symbol_count,
9473     const unsigned char* plocal_symbols,
9474     Relocatable_relocs* rr)
9475 {
9476   gold_assert(sh_type == elfcpp::SHT_REL);
9477
9478   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9479     Relocatable_size_for_reloc> Scan_relocatable_relocs;
9480
9481   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9482       Scan_relocatable_relocs>(
9483     symtab,
9484     layout,
9485     object,
9486     data_shndx,
9487     prelocs,
9488     reloc_count,
9489     output_section,
9490     needs_special_offset_handling,
9491     local_symbol_count,
9492     plocal_symbols,
9493     rr);
9494 }
9495
9496 // Relocate a section during a relocatable link.
9497
9498 template<bool big_endian>
9499 void
9500 Target_arm<big_endian>::relocate_for_relocatable(
9501     const Relocate_info<32, big_endian>* relinfo,
9502     unsigned int sh_type,
9503     const unsigned char* prelocs,
9504     size_t reloc_count,
9505     Output_section* output_section,
9506     off_t offset_in_output_section,
9507     const Relocatable_relocs* rr,
9508     unsigned char* view,
9509     Arm_address view_address,
9510     section_size_type view_size,
9511     unsigned char* reloc_view,
9512     section_size_type reloc_view_size)
9513 {
9514   gold_assert(sh_type == elfcpp::SHT_REL);
9515
9516   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9517     relinfo,
9518     prelocs,
9519     reloc_count,
9520     output_section,
9521     offset_in_output_section,
9522     rr,
9523     view,
9524     view_address,
9525     view_size,
9526     reloc_view,
9527     reloc_view_size);
9528 }
9529
9530 // Perform target-specific processing in a relocatable link.  This is
9531 // only used if we use the relocation strategy RELOC_SPECIAL.
9532
9533 template<bool big_endian>
9534 void
9535 Target_arm<big_endian>::relocate_special_relocatable(
9536     const Relocate_info<32, big_endian>* relinfo,
9537     unsigned int sh_type,
9538     const unsigned char* preloc_in,
9539     size_t relnum,
9540     Output_section* output_section,
9541     off_t offset_in_output_section,
9542     unsigned char* view,
9543     elfcpp::Elf_types<32>::Elf_Addr view_address,
9544     section_size_type,
9545     unsigned char* preloc_out)
9546 {
9547   // We can only handle REL type relocation sections.
9548   gold_assert(sh_type == elfcpp::SHT_REL);
9549
9550   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9551   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9552     Reltype_write;
9553   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9554
9555   const Arm_relobj<big_endian>* object =
9556     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9557   const unsigned int local_count = object->local_symbol_count();
9558
9559   Reltype reloc(preloc_in);
9560   Reltype_write reloc_write(preloc_out);
9561
9562   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9563   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9564   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9565
9566   const Arm_reloc_property* arp =
9567     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9568   gold_assert(arp != NULL);
9569
9570   // Get the new symbol index.
9571   // We only use RELOC_SPECIAL strategy in local relocations.
9572   gold_assert(r_sym < local_count);
9573
9574   // We are adjusting a section symbol.  We need to find
9575   // the symbol table index of the section symbol for
9576   // the output section corresponding to input section
9577   // in which this symbol is defined.
9578   bool is_ordinary;
9579   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9580   gold_assert(is_ordinary);
9581   Output_section* os = object->output_section(shndx);
9582   gold_assert(os != NULL);
9583   gold_assert(os->needs_symtab_index());
9584   unsigned int new_symndx = os->symtab_index();
9585
9586   // Get the new offset--the location in the output section where
9587   // this relocation should be applied.
9588
9589   Arm_address offset = reloc.get_r_offset();
9590   Arm_address new_offset;
9591   if (offset_in_output_section != invalid_address)
9592     new_offset = offset + offset_in_output_section;
9593   else
9594     {
9595       section_offset_type sot_offset =
9596           convert_types<section_offset_type, Arm_address>(offset);
9597       section_offset_type new_sot_offset =
9598           output_section->output_offset(object, relinfo->data_shndx,
9599                                         sot_offset);
9600       gold_assert(new_sot_offset != -1);
9601       new_offset = new_sot_offset;
9602     }
9603
9604   // In an object file, r_offset is an offset within the section.
9605   // In an executable or dynamic object, generated by
9606   // --emit-relocs, r_offset is an absolute address.
9607   if (!parameters->options().relocatable())
9608     {
9609       new_offset += view_address;
9610       if (offset_in_output_section != invalid_address)
9611         new_offset -= offset_in_output_section;
9612     }
9613
9614   reloc_write.put_r_offset(new_offset);
9615   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9616
9617   // Handle the reloc addend.
9618   // The relocation uses a section symbol in the input file.
9619   // We are adjusting it to use a section symbol in the output
9620   // file.  The input section symbol refers to some address in
9621   // the input section.  We need the relocation in the output
9622   // file to refer to that same address.  This adjustment to
9623   // the addend is the same calculation we use for a simple
9624   // absolute relocation for the input section symbol.
9625
9626   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9627
9628   // Handle THUMB bit.
9629   Symbol_value<32> symval;
9630   Arm_address thumb_bit =
9631      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9632   if (thumb_bit != 0
9633       && arp->uses_thumb_bit() 
9634       && ((psymval->value(object, 0) & 1) != 0))
9635     {
9636       Arm_address stripped_value =
9637         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9638       symval.set_output_value(stripped_value);
9639       psymval = &symval;
9640     } 
9641
9642   unsigned char* paddend = view + offset;
9643   typename Arm_relocate_functions<big_endian>::Status reloc_status =
9644         Arm_relocate_functions<big_endian>::STATUS_OKAY;
9645   switch (r_type)
9646     {
9647     case elfcpp::R_ARM_ABS8:
9648       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9649                                                               psymval);
9650       break;
9651
9652     case elfcpp::R_ARM_ABS12:
9653       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9654                                                                psymval);
9655       break;
9656
9657     case elfcpp::R_ARM_ABS16:
9658       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9659                                                                psymval);
9660       break;
9661
9662     case elfcpp::R_ARM_THM_ABS5:
9663       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9664                                                                   object,
9665                                                                   psymval);
9666       break;
9667
9668     case elfcpp::R_ARM_MOVW_ABS_NC:
9669     case elfcpp::R_ARM_MOVW_PREL_NC:
9670     case elfcpp::R_ARM_MOVW_BREL_NC:
9671     case elfcpp::R_ARM_MOVW_BREL:
9672       reloc_status = Arm_relocate_functions<big_endian>::movw(
9673           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9674       break;
9675
9676     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9677     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9678     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9679     case elfcpp::R_ARM_THM_MOVW_BREL:
9680       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9681           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9682       break;
9683
9684     case elfcpp::R_ARM_THM_CALL:
9685     case elfcpp::R_ARM_THM_XPC22:
9686     case elfcpp::R_ARM_THM_JUMP24:
9687       reloc_status =
9688         Arm_relocate_functions<big_endian>::thumb_branch_common(
9689             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9690             false);
9691       break;
9692
9693     case elfcpp::R_ARM_PLT32:
9694     case elfcpp::R_ARM_CALL:
9695     case elfcpp::R_ARM_JUMP24:
9696     case elfcpp::R_ARM_XPC25:
9697       reloc_status =
9698         Arm_relocate_functions<big_endian>::arm_branch_common(
9699             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9700             false);
9701       break;
9702
9703     case elfcpp::R_ARM_THM_JUMP19:
9704       reloc_status =
9705         Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9706                                                        psymval, 0, thumb_bit);
9707       break;
9708
9709     case elfcpp::R_ARM_THM_JUMP6:
9710       reloc_status =
9711         Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9712                                                       0);
9713       break;
9714
9715     case elfcpp::R_ARM_THM_JUMP8:
9716       reloc_status =
9717         Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9718                                                       0);
9719       break;
9720
9721     case elfcpp::R_ARM_THM_JUMP11:
9722       reloc_status =
9723         Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9724                                                        0);
9725       break;
9726
9727     case elfcpp::R_ARM_PREL31:
9728       reloc_status =
9729         Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9730                                                    thumb_bit);
9731       break;
9732
9733     case elfcpp::R_ARM_THM_PC8:
9734       reloc_status =
9735         Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9736                                                     0);
9737       break;
9738
9739     case elfcpp::R_ARM_THM_PC12:
9740       reloc_status =
9741         Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9742                                                      0);
9743       break;
9744
9745     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9746       reloc_status =
9747         Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9748                                                       0, thumb_bit);
9749       break;
9750
9751     // These relocation truncate relocation results so we cannot handle them
9752     // in a relocatable link.
9753     case elfcpp::R_ARM_MOVT_ABS:
9754     case elfcpp::R_ARM_THM_MOVT_ABS:
9755     case elfcpp::R_ARM_MOVT_PREL:
9756     case elfcpp::R_ARM_MOVT_BREL:
9757     case elfcpp::R_ARM_THM_MOVT_PREL:
9758     case elfcpp::R_ARM_THM_MOVT_BREL:
9759     case elfcpp::R_ARM_ALU_PC_G0_NC:
9760     case elfcpp::R_ARM_ALU_PC_G0:
9761     case elfcpp::R_ARM_ALU_PC_G1_NC:
9762     case elfcpp::R_ARM_ALU_PC_G1:
9763     case elfcpp::R_ARM_ALU_PC_G2:
9764     case elfcpp::R_ARM_ALU_SB_G0_NC:
9765     case elfcpp::R_ARM_ALU_SB_G0:
9766     case elfcpp::R_ARM_ALU_SB_G1_NC:
9767     case elfcpp::R_ARM_ALU_SB_G1:
9768     case elfcpp::R_ARM_ALU_SB_G2:
9769     case elfcpp::R_ARM_LDR_PC_G0:
9770     case elfcpp::R_ARM_LDR_PC_G1:
9771     case elfcpp::R_ARM_LDR_PC_G2:
9772     case elfcpp::R_ARM_LDR_SB_G0:
9773     case elfcpp::R_ARM_LDR_SB_G1:
9774     case elfcpp::R_ARM_LDR_SB_G2:
9775     case elfcpp::R_ARM_LDRS_PC_G0:
9776     case elfcpp::R_ARM_LDRS_PC_G1:
9777     case elfcpp::R_ARM_LDRS_PC_G2:
9778     case elfcpp::R_ARM_LDRS_SB_G0:
9779     case elfcpp::R_ARM_LDRS_SB_G1:
9780     case elfcpp::R_ARM_LDRS_SB_G2:
9781     case elfcpp::R_ARM_LDC_PC_G0:
9782     case elfcpp::R_ARM_LDC_PC_G1:
9783     case elfcpp::R_ARM_LDC_PC_G2:
9784     case elfcpp::R_ARM_LDC_SB_G0:
9785     case elfcpp::R_ARM_LDC_SB_G1:
9786     case elfcpp::R_ARM_LDC_SB_G2:
9787       gold_error(_("cannot handle %s in a relocatable link"),
9788                  arp->name().c_str());
9789       break;
9790
9791     default:
9792       gold_unreachable();
9793     }
9794
9795   // Report any errors.
9796   switch (reloc_status)
9797     {
9798     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9799       break;
9800     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9801       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9802                              _("relocation overflow in %s"),
9803                              arp->name().c_str());
9804       break;
9805     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9806       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9807         _("unexpected opcode while processing relocation %s"),
9808         arp->name().c_str());
9809       break;
9810     default:
9811       gold_unreachable();
9812     }
9813 }
9814
9815 // Return the value to use for a dynamic symbol which requires special
9816 // treatment.  This is how we support equality comparisons of function
9817 // pointers across shared library boundaries, as described in the
9818 // processor specific ABI supplement.
9819
9820 template<bool big_endian>
9821 uint64_t
9822 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9823 {
9824   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9825   return this->plt_section()->address() + gsym->plt_offset();
9826 }
9827
9828 // Map platform-specific relocs to real relocs
9829 //
9830 template<bool big_endian>
9831 unsigned int
9832 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9833 {
9834   switch (r_type)
9835     {
9836     case elfcpp::R_ARM_TARGET1:
9837       // This is either R_ARM_ABS32 or R_ARM_REL32;
9838       return elfcpp::R_ARM_ABS32;
9839
9840     case elfcpp::R_ARM_TARGET2:
9841       // This can be any reloc type but usually is R_ARM_GOT_PREL
9842       return elfcpp::R_ARM_GOT_PREL;
9843
9844     default:
9845       return r_type;
9846     }
9847 }
9848
9849 // Whether if two EABI versions V1 and V2 are compatible.
9850
9851 template<bool big_endian>
9852 bool
9853 Target_arm<big_endian>::are_eabi_versions_compatible(
9854     elfcpp::Elf_Word v1,
9855     elfcpp::Elf_Word v2)
9856 {
9857   // v4 and v5 are the same spec before and after it was released,
9858   // so allow mixing them.
9859   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9860       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9861       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9862     return true;
9863
9864   return v1 == v2;
9865 }
9866
9867 // Combine FLAGS from an input object called NAME and the processor-specific
9868 // flags in the ELF header of the output.  Much of this is adapted from the
9869 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9870 // in bfd/elf32-arm.c.
9871
9872 template<bool big_endian>
9873 void
9874 Target_arm<big_endian>::merge_processor_specific_flags(
9875     const std::string& name,
9876     elfcpp::Elf_Word flags)
9877 {
9878   if (this->are_processor_specific_flags_set())
9879     {
9880       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9881
9882       // Nothing to merge if flags equal to those in output.
9883       if (flags == out_flags)
9884         return;
9885
9886       // Complain about various flag mismatches.
9887       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9888       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9889       if (!this->are_eabi_versions_compatible(version1, version2)
9890           && parameters->options().warn_mismatch())
9891         gold_error(_("Source object %s has EABI version %d but output has "
9892                      "EABI version %d."),
9893                    name.c_str(),
9894                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9895                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9896     }
9897   else
9898     {
9899       // If the input is the default architecture and had the default
9900       // flags then do not bother setting the flags for the output
9901       // architecture, instead allow future merges to do this.  If no
9902       // future merges ever set these flags then they will retain their
9903       // uninitialised values, which surprise surprise, correspond
9904       // to the default values.
9905       if (flags == 0)
9906         return;
9907
9908       // This is the first time, just copy the flags.
9909       // We only copy the EABI version for now.
9910       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9911     }
9912 }
9913
9914 // Adjust ELF file header.
9915 template<bool big_endian>
9916 void
9917 Target_arm<big_endian>::do_adjust_elf_header(
9918     unsigned char* view,
9919     int len) const
9920 {
9921   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9922
9923   elfcpp::Ehdr<32, big_endian> ehdr(view);
9924   unsigned char e_ident[elfcpp::EI_NIDENT];
9925   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9926
9927   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9928       == elfcpp::EF_ARM_EABI_UNKNOWN)
9929     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9930   else
9931     e_ident[elfcpp::EI_OSABI] = 0;
9932   e_ident[elfcpp::EI_ABIVERSION] = 0;
9933
9934   // FIXME: Do EF_ARM_BE8 adjustment.
9935
9936   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9937   oehdr.put_e_ident(e_ident);
9938 }
9939
9940 // do_make_elf_object to override the same function in the base class.
9941 // We need to use a target-specific sub-class of
9942 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9943 // Hence we need to have our own ELF object creation.
9944
9945 template<bool big_endian>
9946 Object*
9947 Target_arm<big_endian>::do_make_elf_object(
9948     const std::string& name,
9949     Input_file* input_file,
9950     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9951 {
9952   int et = ehdr.get_e_type();
9953   // ET_EXEC files are valid input for --just-symbols/-R,
9954   // and we treat them as relocatable objects.
9955   if (et == elfcpp::ET_REL
9956       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9957     {
9958       Arm_relobj<big_endian>* obj =
9959         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9960       obj->setup();
9961       return obj;
9962     }
9963   else if (et == elfcpp::ET_DYN)
9964     {
9965       Sized_dynobj<32, big_endian>* obj =
9966         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9967       obj->setup();
9968       return obj;
9969     }
9970   else
9971     {
9972       gold_error(_("%s: unsupported ELF file type %d"),
9973                  name.c_str(), et);
9974       return NULL;
9975     }
9976 }
9977
9978 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9979 // Returns -1 if no architecture could be read.
9980 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9981
9982 template<bool big_endian>
9983 int
9984 Target_arm<big_endian>::get_secondary_compatible_arch(
9985     const Attributes_section_data* pasd)
9986 {
9987   const Object_attribute* known_attributes =
9988     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9989
9990   // Note: the tag and its argument below are uleb128 values, though
9991   // currently-defined values fit in one byte for each.
9992   const std::string& sv =
9993     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9994   if (sv.size() == 2
9995       && sv.data()[0] == elfcpp::Tag_CPU_arch
9996       && (sv.data()[1] & 128) != 128)
9997    return sv.data()[1];
9998
9999   // This tag is "safely ignorable", so don't complain if it looks funny.
10000   return -1;
10001 }
10002
10003 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10004 // The tag is removed if ARCH is -1.
10005 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10006
10007 template<bool big_endian>
10008 void
10009 Target_arm<big_endian>::set_secondary_compatible_arch(
10010     Attributes_section_data* pasd,
10011     int arch)
10012 {
10013   Object_attribute* known_attributes =
10014     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10015
10016   if (arch == -1)
10017     {
10018       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10019       return;
10020     }
10021
10022   // Note: the tag and its argument below are uleb128 values, though
10023   // currently-defined values fit in one byte for each.
10024   char sv[3];
10025   sv[0] = elfcpp::Tag_CPU_arch;
10026   gold_assert(arch != 0);
10027   sv[1] = arch;
10028   sv[2] = '\0';
10029
10030   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10031 }
10032
10033 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10034 // into account.
10035 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10036
10037 template<bool big_endian>
10038 int
10039 Target_arm<big_endian>::tag_cpu_arch_combine(
10040     const char* name,
10041     int oldtag,
10042     int* secondary_compat_out,
10043     int newtag,
10044     int secondary_compat)
10045 {
10046 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10047   static const int v6t2[] =
10048     {
10049       T(V6T2),   // PRE_V4.
10050       T(V6T2),   // V4.
10051       T(V6T2),   // V4T.
10052       T(V6T2),   // V5T.
10053       T(V6T2),   // V5TE.
10054       T(V6T2),   // V5TEJ.
10055       T(V6T2),   // V6.
10056       T(V7),     // V6KZ.
10057       T(V6T2)    // V6T2.
10058     };
10059   static const int v6k[] =
10060     {
10061       T(V6K),    // PRE_V4.
10062       T(V6K),    // V4.
10063       T(V6K),    // V4T.
10064       T(V6K),    // V5T.
10065       T(V6K),    // V5TE.
10066       T(V6K),    // V5TEJ.
10067       T(V6K),    // V6.
10068       T(V6KZ),   // V6KZ.
10069       T(V7),     // V6T2.
10070       T(V6K)     // V6K.
10071     };
10072   static const int v7[] =
10073     {
10074       T(V7),     // PRE_V4.
10075       T(V7),     // V4.
10076       T(V7),     // V4T.
10077       T(V7),     // V5T.
10078       T(V7),     // V5TE.
10079       T(V7),     // V5TEJ.
10080       T(V7),     // V6.
10081       T(V7),     // V6KZ.
10082       T(V7),     // V6T2.
10083       T(V7),     // V6K.
10084       T(V7)      // V7.
10085     };
10086   static const int v6_m[] =
10087     {
10088       -1,        // PRE_V4.
10089       -1,        // V4.
10090       T(V6K),    // V4T.
10091       T(V6K),    // V5T.
10092       T(V6K),    // V5TE.
10093       T(V6K),    // V5TEJ.
10094       T(V6K),    // V6.
10095       T(V6KZ),   // V6KZ.
10096       T(V7),     // V6T2.
10097       T(V6K),    // V6K.
10098       T(V7),     // V7.
10099       T(V6_M)    // V6_M.
10100     };
10101   static const int v6s_m[] =
10102     {
10103       -1,        // PRE_V4.
10104       -1,        // V4.
10105       T(V6K),    // V4T.
10106       T(V6K),    // V5T.
10107       T(V6K),    // V5TE.
10108       T(V6K),    // V5TEJ.
10109       T(V6K),    // V6.
10110       T(V6KZ),   // V6KZ.
10111       T(V7),     // V6T2.
10112       T(V6K),    // V6K.
10113       T(V7),     // V7.
10114       T(V6S_M),  // V6_M.
10115       T(V6S_M)   // V6S_M.
10116     };
10117   static const int v7e_m[] =
10118     {
10119       -1,       // PRE_V4.
10120       -1,       // V4.
10121       T(V7E_M), // V4T.
10122       T(V7E_M), // V5T.
10123       T(V7E_M), // V5TE.
10124       T(V7E_M), // V5TEJ.
10125       T(V7E_M), // V6.
10126       T(V7E_M), // V6KZ.
10127       T(V7E_M), // V6T2.
10128       T(V7E_M), // V6K.
10129       T(V7E_M), // V7.
10130       T(V7E_M), // V6_M.
10131       T(V7E_M), // V6S_M.
10132       T(V7E_M)  // V7E_M.
10133     };
10134   static const int v4t_plus_v6_m[] =
10135     {
10136       -1,               // PRE_V4.
10137       -1,               // V4.
10138       T(V4T),           // V4T.
10139       T(V5T),           // V5T.
10140       T(V5TE),          // V5TE.
10141       T(V5TEJ),         // V5TEJ.
10142       T(V6),            // V6.
10143       T(V6KZ),          // V6KZ.
10144       T(V6T2),          // V6T2.
10145       T(V6K),           // V6K.
10146       T(V7),            // V7.
10147       T(V6_M),          // V6_M.
10148       T(V6S_M),         // V6S_M.
10149       T(V7E_M),         // V7E_M.
10150       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
10151     };
10152   static const int* comb[] =
10153     {
10154       v6t2,
10155       v6k,
10156       v7,
10157       v6_m,
10158       v6s_m,
10159       v7e_m,
10160       // Pseudo-architecture.
10161       v4t_plus_v6_m
10162     };
10163
10164   // Check we've not got a higher architecture than we know about.
10165
10166   if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10167     {
10168       gold_error(_("%s: unknown CPU architecture"), name);
10169       return -1;
10170     }
10171
10172   // Override old tag if we have a Tag_also_compatible_with on the output.
10173
10174   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10175       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10176     oldtag = T(V4T_PLUS_V6_M);
10177
10178   // And override the new tag if we have a Tag_also_compatible_with on the
10179   // input.
10180
10181   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10182       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10183     newtag = T(V4T_PLUS_V6_M);
10184
10185   // Architectures before V6KZ add features monotonically.
10186   int tagh = std::max(oldtag, newtag);
10187   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10188     return tagh;
10189
10190   int tagl = std::min(oldtag, newtag);
10191   int result = comb[tagh - T(V6T2)][tagl];
10192
10193   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10194   // as the canonical version.
10195   if (result == T(V4T_PLUS_V6_M))
10196     {
10197       result = T(V4T);
10198       *secondary_compat_out = T(V6_M);
10199     }
10200   else
10201     *secondary_compat_out = -1;
10202
10203   if (result == -1)
10204     {
10205       gold_error(_("%s: conflicting CPU architectures %d/%d"),
10206                  name, oldtag, newtag);
10207       return -1;
10208     }
10209
10210   return result;
10211 #undef T
10212 }
10213
10214 // Helper to print AEABI enum tag value.
10215
10216 template<bool big_endian>
10217 std::string
10218 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10219 {
10220   static const char* aeabi_enum_names[] =
10221     { "", "variable-size", "32-bit", "" };
10222   const size_t aeabi_enum_names_size =
10223     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10224
10225   if (value < aeabi_enum_names_size)
10226     return std::string(aeabi_enum_names[value]);
10227   else
10228     {
10229       char buffer[100];
10230       sprintf(buffer, "<unknown value %u>", value);
10231       return std::string(buffer);
10232     }
10233 }
10234
10235 // Return the string value to store in TAG_CPU_name.
10236
10237 template<bool big_endian>
10238 std::string
10239 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10240 {
10241   static const char* name_table[] = {
10242     // These aren't real CPU names, but we can't guess
10243     // that from the architecture version alone.
10244    "Pre v4",
10245    "ARM v4",
10246    "ARM v4T",
10247    "ARM v5T",
10248    "ARM v5TE",
10249    "ARM v5TEJ",
10250    "ARM v6",
10251    "ARM v6KZ",
10252    "ARM v6T2",
10253    "ARM v6K",
10254    "ARM v7",
10255    "ARM v6-M",
10256    "ARM v6S-M",
10257    "ARM v7E-M"
10258  };
10259  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10260
10261   if (value < name_table_size)
10262     return std::string(name_table[value]);
10263   else
10264     {
10265       char buffer[100];
10266       sprintf(buffer, "<unknown CPU value %u>", value);
10267       return std::string(buffer);
10268     } 
10269 }
10270
10271 // Merge object attributes from input file called NAME with those of the
10272 // output.  The input object attributes are in the object pointed by PASD.
10273
10274 template<bool big_endian>
10275 void
10276 Target_arm<big_endian>::merge_object_attributes(
10277     const char* name,
10278     const Attributes_section_data* pasd)
10279 {
10280   // Return if there is no attributes section data.
10281   if (pasd == NULL)
10282     return;
10283
10284   // If output has no object attributes, just copy.
10285   const int vendor = Object_attribute::OBJ_ATTR_PROC;
10286   if (this->attributes_section_data_ == NULL)
10287     {
10288       this->attributes_section_data_ = new Attributes_section_data(*pasd);
10289       Object_attribute* out_attr =
10290         this->attributes_section_data_->known_attributes(vendor);
10291
10292       // We do not output objects with Tag_MPextension_use_legacy - we move
10293       //  the attribute's value to Tag_MPextension_use.  */
10294       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10295         {
10296           if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10297               && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10298                 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10299             {
10300               gold_error(_("%s has both the current and legacy "
10301                            "Tag_MPextension_use attributes"),
10302                          name);
10303             }
10304
10305           out_attr[elfcpp::Tag_MPextension_use] =
10306             out_attr[elfcpp::Tag_MPextension_use_legacy];
10307           out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10308           out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10309         }
10310
10311       return;
10312     }
10313
10314   const Object_attribute* in_attr = pasd->known_attributes(vendor);
10315   Object_attribute* out_attr =
10316     this->attributes_section_data_->known_attributes(vendor);
10317
10318   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
10319   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10320       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10321     {
10322       // Ignore mismatches if the object doesn't use floating point.  */
10323       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10324         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10325             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10326       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10327                && parameters->options().warn_mismatch())
10328         gold_error(_("%s uses VFP register arguments, output does not"),
10329                    name);
10330     }
10331
10332   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10333     {
10334       // Merge this attribute with existing attributes.
10335       switch (i)
10336         {
10337         case elfcpp::Tag_CPU_raw_name:
10338         case elfcpp::Tag_CPU_name:
10339           // These are merged after Tag_CPU_arch.
10340           break;
10341
10342         case elfcpp::Tag_ABI_optimization_goals:
10343         case elfcpp::Tag_ABI_FP_optimization_goals:
10344           // Use the first value seen.
10345           break;
10346
10347         case elfcpp::Tag_CPU_arch:
10348           {
10349             unsigned int saved_out_attr = out_attr->int_value();
10350             // Merge Tag_CPU_arch and Tag_also_compatible_with.
10351             int secondary_compat =
10352               this->get_secondary_compatible_arch(pasd);
10353             int secondary_compat_out =
10354               this->get_secondary_compatible_arch(
10355                   this->attributes_section_data_);
10356             out_attr[i].set_int_value(
10357                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10358                                      &secondary_compat_out,
10359                                      in_attr[i].int_value(),
10360                                      secondary_compat));
10361             this->set_secondary_compatible_arch(this->attributes_section_data_,
10362                                                 secondary_compat_out);
10363
10364             // Merge Tag_CPU_name and Tag_CPU_raw_name.
10365             if (out_attr[i].int_value() == saved_out_attr)
10366               ; // Leave the names alone.
10367             else if (out_attr[i].int_value() == in_attr[i].int_value())
10368               {
10369                 // The output architecture has been changed to match the
10370                 // input architecture.  Use the input names.
10371                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10372                     in_attr[elfcpp::Tag_CPU_name].string_value());
10373                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10374                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10375               }
10376             else
10377               {
10378                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10379                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10380               }
10381
10382             // If we still don't have a value for Tag_CPU_name,
10383             // make one up now.  Tag_CPU_raw_name remains blank.
10384             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10385               {
10386                 const std::string cpu_name =
10387                   this->tag_cpu_name_value(out_attr[i].int_value());
10388                 // FIXME:  If we see an unknown CPU, this will be set
10389                 // to "<unknown CPU n>", where n is the attribute value.
10390                 // This is different from BFD, which leaves the name alone.
10391                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10392               }
10393           }
10394           break;
10395
10396         case elfcpp::Tag_ARM_ISA_use:
10397         case elfcpp::Tag_THUMB_ISA_use:
10398         case elfcpp::Tag_WMMX_arch:
10399         case elfcpp::Tag_Advanced_SIMD_arch:
10400           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10401         case elfcpp::Tag_ABI_FP_rounding:
10402         case elfcpp::Tag_ABI_FP_exceptions:
10403         case elfcpp::Tag_ABI_FP_user_exceptions:
10404         case elfcpp::Tag_ABI_FP_number_model:
10405         case elfcpp::Tag_VFP_HP_extension:
10406         case elfcpp::Tag_CPU_unaligned_access:
10407         case elfcpp::Tag_T2EE_use:
10408         case elfcpp::Tag_Virtualization_use:
10409         case elfcpp::Tag_MPextension_use:
10410           // Use the largest value specified.
10411           if (in_attr[i].int_value() > out_attr[i].int_value())
10412             out_attr[i].set_int_value(in_attr[i].int_value());
10413           break;
10414
10415         case elfcpp::Tag_ABI_align8_preserved:
10416         case elfcpp::Tag_ABI_PCS_RO_data:
10417           // Use the smallest value specified.
10418           if (in_attr[i].int_value() < out_attr[i].int_value())
10419             out_attr[i].set_int_value(in_attr[i].int_value());
10420           break;
10421
10422         case elfcpp::Tag_ABI_align8_needed:
10423           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10424               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10425                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10426                       == 0)))
10427             {
10428               // This error message should be enabled once all non-conforming
10429               // binaries in the toolchain have had the attributes set
10430               // properly.
10431               // gold_error(_("output 8-byte data alignment conflicts with %s"),
10432               //            name);
10433             }
10434           // Fall through.
10435         case elfcpp::Tag_ABI_FP_denormal:
10436         case elfcpp::Tag_ABI_PCS_GOT_use:
10437           {
10438             // These tags have 0 = don't care, 1 = strong requirement,
10439             // 2 = weak requirement.
10440             static const int order_021[3] = {0, 2, 1};
10441
10442             // Use the "greatest" from the sequence 0, 2, 1, or the largest
10443             // value if greater than 2 (for future-proofing).
10444             if ((in_attr[i].int_value() > 2
10445                  && in_attr[i].int_value() > out_attr[i].int_value())
10446                 || (in_attr[i].int_value() <= 2
10447                     && out_attr[i].int_value() <= 2
10448                     && (order_021[in_attr[i].int_value()]
10449                         > order_021[out_attr[i].int_value()])))
10450               out_attr[i].set_int_value(in_attr[i].int_value());
10451           }
10452           break;
10453
10454         case elfcpp::Tag_CPU_arch_profile:
10455           if (out_attr[i].int_value() != in_attr[i].int_value())
10456             {
10457               // 0 will merge with anything.
10458               // 'A' and 'S' merge to 'A'.
10459               // 'R' and 'S' merge to 'R'.
10460               // 'M' and 'A|R|S' is an error.
10461               if (out_attr[i].int_value() == 0
10462                   || (out_attr[i].int_value() == 'S'
10463                       && (in_attr[i].int_value() == 'A'
10464                           || in_attr[i].int_value() == 'R')))
10465                 out_attr[i].set_int_value(in_attr[i].int_value());
10466               else if (in_attr[i].int_value() == 0
10467                        || (in_attr[i].int_value() == 'S'
10468                            && (out_attr[i].int_value() == 'A'
10469                                || out_attr[i].int_value() == 'R')))
10470                 ; // Do nothing.
10471               else if (parameters->options().warn_mismatch())
10472                 {
10473                   gold_error
10474                     (_("conflicting architecture profiles %c/%c"),
10475                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10476                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10477                 }
10478             }
10479           break;
10480         case elfcpp::Tag_VFP_arch:
10481             {
10482               static const struct
10483               {
10484                   int ver;
10485                   int regs;
10486               } vfp_versions[7] =
10487                 {
10488                   {0, 0},
10489                   {1, 16},
10490                   {2, 16},
10491                   {3, 32},
10492                   {3, 16},
10493                   {4, 32},
10494                   {4, 16}
10495                 };
10496
10497               // Values greater than 6 aren't defined, so just pick the
10498               // biggest.
10499               if (in_attr[i].int_value() > 6
10500                   && in_attr[i].int_value() > out_attr[i].int_value())
10501                 {
10502                   *out_attr = *in_attr;
10503                   break;
10504                 }
10505               // The output uses the superset of input features
10506               // (ISA version) and registers.
10507               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10508                                  vfp_versions[out_attr[i].int_value()].ver);
10509               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10510                                   vfp_versions[out_attr[i].int_value()].regs);
10511               // This assumes all possible supersets are also a valid
10512               // options.
10513               int newval;
10514               for (newval = 6; newval > 0; newval--)
10515                 {
10516                   if (regs == vfp_versions[newval].regs
10517                       && ver == vfp_versions[newval].ver)
10518                     break;
10519                 }
10520               out_attr[i].set_int_value(newval);
10521             }
10522           break;
10523         case elfcpp::Tag_PCS_config:
10524           if (out_attr[i].int_value() == 0)
10525             out_attr[i].set_int_value(in_attr[i].int_value());
10526           else if (in_attr[i].int_value() != 0
10527                    && out_attr[i].int_value() != 0
10528                    && parameters->options().warn_mismatch())
10529             {
10530               // It's sometimes ok to mix different configs, so this is only
10531               // a warning.
10532               gold_warning(_("%s: conflicting platform configuration"), name);
10533             }
10534           break;
10535         case elfcpp::Tag_ABI_PCS_R9_use:
10536           if (in_attr[i].int_value() != out_attr[i].int_value()
10537               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10538               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10539               && parameters->options().warn_mismatch())
10540             {
10541               gold_error(_("%s: conflicting use of R9"), name);
10542             }
10543           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10544             out_attr[i].set_int_value(in_attr[i].int_value());
10545           break;
10546         case elfcpp::Tag_ABI_PCS_RW_data:
10547           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10548               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10549                   != elfcpp::AEABI_R9_SB)
10550               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10551                   != elfcpp::AEABI_R9_unused)
10552               && parameters->options().warn_mismatch())
10553             {
10554               gold_error(_("%s: SB relative addressing conflicts with use "
10555                            "of R9"),
10556                            name);
10557             }
10558           // Use the smallest value specified.
10559           if (in_attr[i].int_value() < out_attr[i].int_value())
10560             out_attr[i].set_int_value(in_attr[i].int_value());
10561           break;
10562         case elfcpp::Tag_ABI_PCS_wchar_t:
10563           if (out_attr[i].int_value()
10564               && in_attr[i].int_value()
10565               && out_attr[i].int_value() != in_attr[i].int_value()
10566               && parameters->options().warn_mismatch()
10567               && parameters->options().wchar_size_warning())
10568             {
10569               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10570                              "use %u-byte wchar_t; use of wchar_t values "
10571                              "across objects may fail"),
10572                            name, in_attr[i].int_value(),
10573                            out_attr[i].int_value());
10574             }
10575           else if (in_attr[i].int_value() && !out_attr[i].int_value())
10576             out_attr[i].set_int_value(in_attr[i].int_value());
10577           break;
10578         case elfcpp::Tag_ABI_enum_size:
10579           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10580             {
10581               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10582                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10583                 {
10584                   // The existing object is compatible with anything.
10585                   // Use whatever requirements the new object has.
10586                   out_attr[i].set_int_value(in_attr[i].int_value());
10587                 }
10588               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10589                        && out_attr[i].int_value() != in_attr[i].int_value()
10590                        && parameters->options().warn_mismatch()
10591                        && parameters->options().enum_size_warning())
10592                 {
10593                   unsigned int in_value = in_attr[i].int_value();
10594                   unsigned int out_value = out_attr[i].int_value();
10595                   gold_warning(_("%s uses %s enums yet the output is to use "
10596                                  "%s enums; use of enum values across objects "
10597                                  "may fail"),
10598                                name,
10599                                this->aeabi_enum_name(in_value).c_str(),
10600                                this->aeabi_enum_name(out_value).c_str());
10601                 }
10602             }
10603           break;
10604         case elfcpp::Tag_ABI_VFP_args:
10605           // Already done.
10606           break;
10607         case elfcpp::Tag_ABI_WMMX_args:
10608           if (in_attr[i].int_value() != out_attr[i].int_value()
10609               && parameters->options().warn_mismatch())
10610             {
10611               gold_error(_("%s uses iWMMXt register arguments, output does "
10612                            "not"),
10613                          name);
10614             }
10615           break;
10616         case Object_attribute::Tag_compatibility:
10617           // Merged in target-independent code.
10618           break;
10619         case elfcpp::Tag_ABI_HardFP_use:
10620           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10621           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10622               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10623             out_attr[i].set_int_value(3);
10624           else if (in_attr[i].int_value() > out_attr[i].int_value())
10625             out_attr[i].set_int_value(in_attr[i].int_value());
10626           break;
10627         case elfcpp::Tag_ABI_FP_16bit_format:
10628           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10629             {
10630               if (in_attr[i].int_value() != out_attr[i].int_value()
10631                   && parameters->options().warn_mismatch())
10632                 gold_error(_("fp16 format mismatch between %s and output"),
10633                            name);
10634             }
10635           if (in_attr[i].int_value() != 0)
10636             out_attr[i].set_int_value(in_attr[i].int_value());
10637           break;
10638
10639         case elfcpp::Tag_DIV_use:
10640           // This tag is set to zero if we can use UDIV and SDIV in Thumb
10641           // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10642           // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10643           // CPU.  We will merge as follows: If the input attribute's value
10644           // is one then the output attribute's value remains unchanged.  If
10645           // the input attribute's value is zero or two then if the output
10646           // attribute's value is one the output value is set to the input
10647           // value, otherwise the output value must be the same as the
10648           // inputs.  */ 
10649           if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1) 
10650             { 
10651               if (in_attr[i].int_value() != out_attr[i].int_value())
10652                 {
10653                   gold_error(_("DIV usage mismatch between %s and output"),
10654                              name);
10655                 }
10656             } 
10657
10658           if (in_attr[i].int_value() != 1)
10659             out_attr[i].set_int_value(in_attr[i].int_value()); 
10660           
10661           break;
10662
10663         case elfcpp::Tag_MPextension_use_legacy:
10664           // We don't output objects with Tag_MPextension_use_legacy - we
10665           // move the value to Tag_MPextension_use.
10666           if (in_attr[i].int_value() != 0
10667               && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10668             {
10669               if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10670                   != in_attr[i].int_value())
10671                 {
10672                   gold_error(_("%s has has both the current and legacy "
10673                                "Tag_MPextension_use attributes"), 
10674                              name);
10675                 }
10676             }
10677
10678           if (in_attr[i].int_value()
10679               > out_attr[elfcpp::Tag_MPextension_use].int_value())
10680             out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10681
10682           break;
10683
10684         case elfcpp::Tag_nodefaults:
10685           // This tag is set if it exists, but the value is unused (and is
10686           // typically zero).  We don't actually need to do anything here -
10687           // the merge happens automatically when the type flags are merged
10688           // below.
10689           break;
10690         case elfcpp::Tag_also_compatible_with:
10691           // Already done in Tag_CPU_arch.
10692           break;
10693         case elfcpp::Tag_conformance:
10694           // Keep the attribute if it matches.  Throw it away otherwise.
10695           // No attribute means no claim to conform.
10696           if (in_attr[i].string_value() != out_attr[i].string_value())
10697             out_attr[i].set_string_value("");
10698           break;
10699
10700         default:
10701           {
10702             const char* err_object = NULL;
10703
10704             // The "known_obj_attributes" table does contain some undefined
10705             // attributes.  Ensure that there are unused.
10706             if (out_attr[i].int_value() != 0
10707                 || out_attr[i].string_value() != "")
10708               err_object = "output";
10709             else if (in_attr[i].int_value() != 0
10710                      || in_attr[i].string_value() != "")
10711               err_object = name;
10712
10713             if (err_object != NULL
10714                 && parameters->options().warn_mismatch())
10715               {
10716                 // Attribute numbers >=64 (mod 128) can be safely ignored.
10717                 if ((i & 127) < 64)
10718                   gold_error(_("%s: unknown mandatory EABI object attribute "
10719                                "%d"),
10720                              err_object, i);
10721                 else
10722                   gold_warning(_("%s: unknown EABI object attribute %d"),
10723                                err_object, i);
10724               }
10725
10726             // Only pass on attributes that match in both inputs.
10727             if (!in_attr[i].matches(out_attr[i]))
10728               {
10729                 out_attr[i].set_int_value(0);
10730                 out_attr[i].set_string_value("");
10731               }
10732           }
10733         }
10734
10735       // If out_attr was copied from in_attr then it won't have a type yet.
10736       if (in_attr[i].type() && !out_attr[i].type())
10737         out_attr[i].set_type(in_attr[i].type());
10738     }
10739
10740   // Merge Tag_compatibility attributes and any common GNU ones.
10741   this->attributes_section_data_->merge(name, pasd);
10742
10743   // Check for any attributes not known on ARM.
10744   typedef Vendor_object_attributes::Other_attributes Other_attributes;
10745   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10746   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10747   Other_attributes* out_other_attributes =
10748     this->attributes_section_data_->other_attributes(vendor);
10749   Other_attributes::iterator out_iter = out_other_attributes->begin();
10750
10751   while (in_iter != in_other_attributes->end()
10752          || out_iter != out_other_attributes->end())
10753     {
10754       const char* err_object = NULL;
10755       int err_tag = 0;
10756
10757       // The tags for each list are in numerical order.
10758       // If the tags are equal, then merge.
10759       if (out_iter != out_other_attributes->end()
10760           && (in_iter == in_other_attributes->end()
10761               || in_iter->first > out_iter->first))
10762         {
10763           // This attribute only exists in output.  We can't merge, and we
10764           // don't know what the tag means, so delete it.
10765           err_object = "output";
10766           err_tag = out_iter->first;
10767           int saved_tag = out_iter->first;
10768           delete out_iter->second;
10769           out_other_attributes->erase(out_iter); 
10770           out_iter = out_other_attributes->upper_bound(saved_tag);
10771         }
10772       else if (in_iter != in_other_attributes->end()
10773                && (out_iter != out_other_attributes->end()
10774                    || in_iter->first < out_iter->first))
10775         {
10776           // This attribute only exists in input. We can't merge, and we
10777           // don't know what the tag means, so ignore it.
10778           err_object = name;
10779           err_tag = in_iter->first;
10780           ++in_iter;
10781         }
10782       else // The tags are equal.
10783         {
10784           // As present, all attributes in the list are unknown, and
10785           // therefore can't be merged meaningfully.
10786           err_object = "output";
10787           err_tag = out_iter->first;
10788
10789           //  Only pass on attributes that match in both inputs.
10790           if (!in_iter->second->matches(*(out_iter->second)))
10791             {
10792               // No match.  Delete the attribute.
10793               int saved_tag = out_iter->first;
10794               delete out_iter->second;
10795               out_other_attributes->erase(out_iter);
10796               out_iter = out_other_attributes->upper_bound(saved_tag);
10797             }
10798           else
10799             {
10800               // Matched.  Keep the attribute and move to the next.
10801               ++out_iter;
10802               ++in_iter;
10803             }
10804         }
10805
10806       if (err_object && parameters->options().warn_mismatch())
10807         {
10808           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
10809           if ((err_tag & 127) < 64)
10810             {
10811               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10812                          err_object, err_tag);
10813             }
10814           else
10815             {
10816               gold_warning(_("%s: unknown EABI object attribute %d"),
10817                            err_object, err_tag);
10818             }
10819         }
10820     }
10821 }
10822
10823 // Stub-generation methods for Target_arm.
10824
10825 // Make a new Arm_input_section object.
10826
10827 template<bool big_endian>
10828 Arm_input_section<big_endian>*
10829 Target_arm<big_endian>::new_arm_input_section(
10830     Relobj* relobj,
10831     unsigned int shndx)
10832 {
10833   Section_id sid(relobj, shndx);
10834
10835   Arm_input_section<big_endian>* arm_input_section =
10836     new Arm_input_section<big_endian>(relobj, shndx);
10837   arm_input_section->init();
10838
10839   // Register new Arm_input_section in map for look-up.
10840   std::pair<typename Arm_input_section_map::iterator, bool> ins =
10841     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10842
10843   // Make sure that it we have not created another Arm_input_section
10844   // for this input section already.
10845   gold_assert(ins.second);
10846
10847   return arm_input_section; 
10848 }
10849
10850 // Find the Arm_input_section object corresponding to the SHNDX-th input
10851 // section of RELOBJ.
10852
10853 template<bool big_endian>
10854 Arm_input_section<big_endian>*
10855 Target_arm<big_endian>::find_arm_input_section(
10856     Relobj* relobj,
10857     unsigned int shndx) const
10858 {
10859   Section_id sid(relobj, shndx);
10860   typename Arm_input_section_map::const_iterator p =
10861     this->arm_input_section_map_.find(sid);
10862   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10863 }
10864
10865 // Make a new stub table.
10866
10867 template<bool big_endian>
10868 Stub_table<big_endian>*
10869 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10870 {
10871   Stub_table<big_endian>* stub_table =
10872     new Stub_table<big_endian>(owner);
10873   this->stub_tables_.push_back(stub_table);
10874
10875   stub_table->set_address(owner->address() + owner->data_size());
10876   stub_table->set_file_offset(owner->offset() + owner->data_size());
10877   stub_table->finalize_data_size();
10878
10879   return stub_table;
10880 }
10881
10882 // Scan a relocation for stub generation.
10883
10884 template<bool big_endian>
10885 void
10886 Target_arm<big_endian>::scan_reloc_for_stub(
10887     const Relocate_info<32, big_endian>* relinfo,
10888     unsigned int r_type,
10889     const Sized_symbol<32>* gsym,
10890     unsigned int r_sym,
10891     const Symbol_value<32>* psymval,
10892     elfcpp::Elf_types<32>::Elf_Swxword addend,
10893     Arm_address address)
10894 {
10895   typedef typename Target_arm<big_endian>::Relocate Relocate;
10896
10897   const Arm_relobj<big_endian>* arm_relobj =
10898     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10899
10900   bool target_is_thumb;
10901   Symbol_value<32> symval;
10902   if (gsym != NULL)
10903     {
10904       // This is a global symbol.  Determine if we use PLT and if the
10905       // final target is THUMB.
10906       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10907         {
10908           // This uses a PLT, change the symbol value.
10909           symval.set_output_value(this->plt_section()->address()
10910                                   + gsym->plt_offset());
10911           psymval = &symval;
10912           target_is_thumb = false;
10913         }
10914       else if (gsym->is_undefined())
10915         // There is no need to generate a stub symbol is undefined.
10916         return;
10917       else
10918         {
10919           target_is_thumb =
10920             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10921              || (gsym->type() == elfcpp::STT_FUNC
10922                  && !gsym->is_undefined()
10923                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10924         }
10925     }
10926   else
10927     {
10928       // This is a local symbol.  Determine if the final target is THUMB.
10929       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10930     }
10931
10932   // Strip LSB if this points to a THUMB target.
10933   const Arm_reloc_property* reloc_property =
10934     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10935   gold_assert(reloc_property != NULL);
10936   if (target_is_thumb
10937       && reloc_property->uses_thumb_bit()
10938       && ((psymval->value(arm_relobj, 0) & 1) != 0))
10939     {
10940       Arm_address stripped_value =
10941         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10942       symval.set_output_value(stripped_value);
10943       psymval = &symval;
10944     } 
10945
10946   // Get the symbol value.
10947   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10948
10949   // Owing to pipelining, the PC relative branches below actually skip
10950   // two instructions when the branch offset is 0.
10951   Arm_address destination;
10952   switch (r_type)
10953     {
10954     case elfcpp::R_ARM_CALL:
10955     case elfcpp::R_ARM_JUMP24:
10956     case elfcpp::R_ARM_PLT32:
10957       // ARM branches.
10958       destination = value + addend + 8;
10959       break;
10960     case elfcpp::R_ARM_THM_CALL:
10961     case elfcpp::R_ARM_THM_XPC22:
10962     case elfcpp::R_ARM_THM_JUMP24:
10963     case elfcpp::R_ARM_THM_JUMP19:
10964       // THUMB branches.
10965       destination = value + addend + 4;
10966       break;
10967     default:
10968       gold_unreachable();
10969     }
10970
10971   Reloc_stub* stub = NULL;
10972   Stub_type stub_type =
10973     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10974                                     target_is_thumb);
10975   if (stub_type != arm_stub_none)
10976     {
10977       // Try looking up an existing stub from a stub table.
10978       Stub_table<big_endian>* stub_table = 
10979         arm_relobj->stub_table(relinfo->data_shndx);
10980       gold_assert(stub_table != NULL);
10981    
10982       // Locate stub by destination.
10983       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10984
10985       // Create a stub if there is not one already
10986       stub = stub_table->find_reloc_stub(stub_key);
10987       if (stub == NULL)
10988         {
10989           // create a new stub and add it to stub table.
10990           stub = this->stub_factory().make_reloc_stub(stub_type);
10991           stub_table->add_reloc_stub(stub, stub_key);
10992         }
10993
10994       // Record the destination address.
10995       stub->set_destination_address(destination
10996                                     | (target_is_thumb ? 1 : 0));
10997     }
10998
10999   // For Cortex-A8, we need to record a relocation at 4K page boundary.
11000   if (this->fix_cortex_a8_
11001       && (r_type == elfcpp::R_ARM_THM_JUMP24
11002           || r_type == elfcpp::R_ARM_THM_JUMP19
11003           || r_type == elfcpp::R_ARM_THM_CALL
11004           || r_type == elfcpp::R_ARM_THM_XPC22)
11005       && (address & 0xfffU) == 0xffeU)
11006     {
11007       // Found a candidate.  Note we haven't checked the destination is
11008       // within 4K here: if we do so (and don't create a record) we can't
11009       // tell that a branch should have been relocated when scanning later.
11010       this->cortex_a8_relocs_info_[address] =
11011         new Cortex_a8_reloc(stub, r_type,
11012                             destination | (target_is_thumb ? 1 : 0));
11013     }
11014 }
11015
11016 // This function scans a relocation sections for stub generation.
11017 // The template parameter Relocate must be a class type which provides
11018 // a single function, relocate(), which implements the machine
11019 // specific part of a relocation.
11020
11021 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11022 // SHT_REL or SHT_RELA.
11023
11024 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
11025 // of relocs.  OUTPUT_SECTION is the output section.
11026 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11027 // mapped to output offsets.
11028
11029 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11030 // VIEW_SIZE is the size.  These refer to the input section, unless
11031 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11032 // the output section.
11033
11034 template<bool big_endian>
11035 template<int sh_type>
11036 void inline
11037 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11038     const Relocate_info<32, big_endian>* relinfo,
11039     const unsigned char* prelocs,
11040     size_t reloc_count,
11041     Output_section* output_section,
11042     bool needs_special_offset_handling,
11043     const unsigned char* view,
11044     elfcpp::Elf_types<32>::Elf_Addr view_address,
11045     section_size_type)
11046 {
11047   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11048   const int reloc_size =
11049     Reloc_types<sh_type, 32, big_endian>::reloc_size;
11050
11051   Arm_relobj<big_endian>* arm_object =
11052     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11053   unsigned int local_count = arm_object->local_symbol_count();
11054
11055   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11056
11057   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11058     {
11059       Reltype reloc(prelocs);
11060
11061       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11062       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11063       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11064
11065       r_type = this->get_real_reloc_type(r_type);
11066
11067       // Only a few relocation types need stubs.
11068       if ((r_type != elfcpp::R_ARM_CALL)
11069          && (r_type != elfcpp::R_ARM_JUMP24)
11070          && (r_type != elfcpp::R_ARM_PLT32)
11071          && (r_type != elfcpp::R_ARM_THM_CALL)
11072          && (r_type != elfcpp::R_ARM_THM_XPC22)
11073          && (r_type != elfcpp::R_ARM_THM_JUMP24)
11074          && (r_type != elfcpp::R_ARM_THM_JUMP19)
11075          && (r_type != elfcpp::R_ARM_V4BX))
11076         continue;
11077
11078       section_offset_type offset =
11079         convert_to_section_size_type(reloc.get_r_offset());
11080
11081       if (needs_special_offset_handling)
11082         {
11083           offset = output_section->output_offset(relinfo->object,
11084                                                  relinfo->data_shndx,
11085                                                  offset);
11086           if (offset == -1)
11087             continue;
11088         }
11089
11090       // Create a v4bx stub if --fix-v4bx-interworking is used.
11091       if (r_type == elfcpp::R_ARM_V4BX)
11092         {
11093           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11094             {
11095               // Get the BX instruction.
11096               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11097               const Valtype* wv =
11098                 reinterpret_cast<const Valtype*>(view + offset);
11099               elfcpp::Elf_types<32>::Elf_Swxword insn =
11100                 elfcpp::Swap<32, big_endian>::readval(wv);
11101               const uint32_t reg = (insn & 0xf);
11102
11103               if (reg < 0xf)
11104                 {
11105                   // Try looking up an existing stub from a stub table.
11106                   Stub_table<big_endian>* stub_table =
11107                     arm_object->stub_table(relinfo->data_shndx);
11108                   gold_assert(stub_table != NULL);
11109
11110                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11111                     {
11112                       // create a new stub and add it to stub table.
11113                       Arm_v4bx_stub* stub =
11114                         this->stub_factory().make_arm_v4bx_stub(reg);
11115                       gold_assert(stub != NULL);
11116                       stub_table->add_arm_v4bx_stub(stub);
11117                     }
11118                 }
11119             }
11120           continue;
11121         }
11122
11123       // Get the addend.
11124       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11125       elfcpp::Elf_types<32>::Elf_Swxword addend =
11126         stub_addend_reader(r_type, view + offset, reloc);
11127
11128       const Sized_symbol<32>* sym;
11129
11130       Symbol_value<32> symval;
11131       const Symbol_value<32> *psymval;
11132       bool is_defined_in_discarded_section;
11133       unsigned int shndx;
11134       if (r_sym < local_count)
11135         {
11136           sym = NULL;
11137           psymval = arm_object->local_symbol(r_sym);
11138
11139           // If the local symbol belongs to a section we are discarding,
11140           // and that section is a debug section, try to find the
11141           // corresponding kept section and map this symbol to its
11142           // counterpart in the kept section.  The symbol must not 
11143           // correspond to a section we are folding.
11144           bool is_ordinary;
11145           shndx = psymval->input_shndx(&is_ordinary);
11146           is_defined_in_discarded_section =
11147             (is_ordinary
11148              && shndx != elfcpp::SHN_UNDEF
11149              && !arm_object->is_section_included(shndx)
11150              && !relinfo->symtab->is_section_folded(arm_object, shndx));
11151
11152           // We need to compute the would-be final value of this local
11153           // symbol.
11154           if (!is_defined_in_discarded_section)
11155             {
11156               typedef Sized_relobj_file<32, big_endian> ObjType;
11157               typename ObjType::Compute_final_local_value_status status =
11158                 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11159                                                       relinfo->symtab); 
11160               if (status == ObjType::CFLV_OK)
11161                 {
11162                   // Currently we cannot handle a branch to a target in
11163                   // a merged section.  If this is the case, issue an error
11164                   // and also free the merge symbol value.
11165                   if (!symval.has_output_value())
11166                     {
11167                       const std::string& section_name =
11168                         arm_object->section_name(shndx);
11169                       arm_object->error(_("cannot handle branch to local %u "
11170                                           "in a merged section %s"),
11171                                         r_sym, section_name.c_str());
11172                     }
11173                   psymval = &symval;
11174                 }
11175               else
11176                 {
11177                   // We cannot determine the final value.
11178                   continue;  
11179                 }
11180             }
11181         }
11182       else
11183         {
11184           const Symbol* gsym;
11185           gsym = arm_object->global_symbol(r_sym);
11186           gold_assert(gsym != NULL);
11187           if (gsym->is_forwarder())
11188             gsym = relinfo->symtab->resolve_forwards(gsym);
11189
11190           sym = static_cast<const Sized_symbol<32>*>(gsym);
11191           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11192             symval.set_output_symtab_index(sym->symtab_index());
11193           else
11194             symval.set_no_output_symtab_entry();
11195
11196           // We need to compute the would-be final value of this global
11197           // symbol.
11198           const Symbol_table* symtab = relinfo->symtab;
11199           const Sized_symbol<32>* sized_symbol =
11200             symtab->get_sized_symbol<32>(gsym);
11201           Symbol_table::Compute_final_value_status status;
11202           Arm_address value =
11203             symtab->compute_final_value<32>(sized_symbol, &status);
11204
11205           // Skip this if the symbol has not output section.
11206           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11207             continue;
11208           symval.set_output_value(value);
11209
11210           if (gsym->type() == elfcpp::STT_TLS)
11211             symval.set_is_tls_symbol();
11212           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11213             symval.set_is_ifunc_symbol();
11214           psymval = &symval;
11215
11216           is_defined_in_discarded_section =
11217             (gsym->is_defined_in_discarded_section()
11218              && gsym->is_undefined());
11219           shndx = 0;
11220         }
11221
11222       Symbol_value<32> symval2;
11223       if (is_defined_in_discarded_section)
11224         {
11225           if (comdat_behavior == CB_UNDETERMINED)
11226             {
11227               std::string name = arm_object->section_name(relinfo->data_shndx);
11228               comdat_behavior = get_comdat_behavior(name.c_str());
11229             }
11230           if (comdat_behavior == CB_PRETEND)
11231             {
11232               // FIXME: This case does not work for global symbols.
11233               // We have no place to store the original section index.
11234               // Fortunately this does not matter for comdat sections,
11235               // only for sections explicitly discarded by a linker
11236               // script.
11237               bool found;
11238               typename elfcpp::Elf_types<32>::Elf_Addr value =
11239                 arm_object->map_to_kept_section(shndx, &found);
11240               if (found)
11241                 symval2.set_output_value(value + psymval->input_value());
11242               else
11243                 symval2.set_output_value(0);
11244             }
11245           else
11246             {
11247               if (comdat_behavior == CB_WARNING)
11248                 gold_warning_at_location(relinfo, i, offset,
11249                                          _("relocation refers to discarded "
11250                                            "section"));
11251               symval2.set_output_value(0);
11252             }
11253           symval2.set_no_output_symtab_entry();
11254           psymval = &symval2;
11255         }
11256
11257       // If symbol is a section symbol, we don't know the actual type of
11258       // destination.  Give up.
11259       if (psymval->is_section_symbol())
11260         continue;
11261
11262       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11263                                 addend, view_address + offset);
11264     }
11265 }
11266
11267 // Scan an input section for stub generation.
11268
11269 template<bool big_endian>
11270 void
11271 Target_arm<big_endian>::scan_section_for_stubs(
11272     const Relocate_info<32, big_endian>* relinfo,
11273     unsigned int sh_type,
11274     const unsigned char* prelocs,
11275     size_t reloc_count,
11276     Output_section* output_section,
11277     bool needs_special_offset_handling,
11278     const unsigned char* view,
11279     Arm_address view_address,
11280     section_size_type view_size)
11281 {
11282   if (sh_type == elfcpp::SHT_REL)
11283     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11284         relinfo,
11285         prelocs,
11286         reloc_count,
11287         output_section,
11288         needs_special_offset_handling,
11289         view,
11290         view_address,
11291         view_size);
11292   else if (sh_type == elfcpp::SHT_RELA)
11293     // We do not support RELA type relocations yet.  This is provided for
11294     // completeness.
11295     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11296         relinfo,
11297         prelocs,
11298         reloc_count,
11299         output_section,
11300         needs_special_offset_handling,
11301         view,
11302         view_address,
11303         view_size);
11304   else
11305     gold_unreachable();
11306 }
11307
11308 // Group input sections for stub generation.
11309 //
11310 // We group input sections in an output section so that the total size,
11311 // including any padding space due to alignment is smaller than GROUP_SIZE
11312 // unless the only input section in group is bigger than GROUP_SIZE already.
11313 // Then an ARM stub table is created to follow the last input section
11314 // in group.  For each group an ARM stub table is created an is placed
11315 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
11316 // extend the group after the stub table.
11317
11318 template<bool big_endian>
11319 void
11320 Target_arm<big_endian>::group_sections(
11321     Layout* layout,
11322     section_size_type group_size,
11323     bool stubs_always_after_branch,
11324     const Task* task)
11325 {
11326   // Group input sections and insert stub table
11327   Layout::Section_list section_list;
11328   layout->get_allocated_sections(&section_list);
11329   for (Layout::Section_list::const_iterator p = section_list.begin();
11330        p != section_list.end();
11331        ++p)
11332     {
11333       Arm_output_section<big_endian>* output_section =
11334         Arm_output_section<big_endian>::as_arm_output_section(*p);
11335       output_section->group_sections(group_size, stubs_always_after_branch,
11336                                      this, task);
11337     }
11338 }
11339
11340 // Relaxation hook.  This is where we do stub generation.
11341
11342 template<bool big_endian>
11343 bool
11344 Target_arm<big_endian>::do_relax(
11345     int pass,
11346     const Input_objects* input_objects,
11347     Symbol_table* symtab,
11348     Layout* layout,
11349     const Task* task)
11350 {
11351   // No need to generate stubs if this is a relocatable link.
11352   gold_assert(!parameters->options().relocatable());
11353
11354   // If this is the first pass, we need to group input sections into
11355   // stub groups.
11356   bool done_exidx_fixup = false;
11357   typedef typename Stub_table_list::iterator Stub_table_iterator;
11358   if (pass == 1)
11359     {
11360       // Determine the stub group size.  The group size is the absolute
11361       // value of the parameter --stub-group-size.  If --stub-group-size
11362       // is passed a negative value, we restrict stubs to be always after
11363       // the stubbed branches.
11364       int32_t stub_group_size_param =
11365         parameters->options().stub_group_size();
11366       bool stubs_always_after_branch = stub_group_size_param < 0;
11367       section_size_type stub_group_size = abs(stub_group_size_param);
11368
11369       if (stub_group_size == 1)
11370         {
11371           // Default value.
11372           // Thumb branch range is +-4MB has to be used as the default
11373           // maximum size (a given section can contain both ARM and Thumb
11374           // code, so the worst case has to be taken into account).  If we are
11375           // fixing cortex-a8 errata, the branch range has to be even smaller,
11376           // since wide conditional branch has a range of +-1MB only.
11377           //
11378           // This value is 48K less than that, which allows for 4096
11379           // 12-byte stubs.  If we exceed that, then we will fail to link.
11380           // The user will have to relink with an explicit group size
11381           // option.
11382             stub_group_size = 4145152;
11383         }
11384
11385       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11386       // page as the first half of a 32-bit branch straddling two 4K pages.
11387       // This is a crude way of enforcing that.  In addition, long conditional
11388       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
11389       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
11390       // cortex-A8 stubs from long conditional branches.
11391       if (this->fix_cortex_a8_)
11392         {
11393           stubs_always_after_branch = true;
11394           const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11395           stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11396         }
11397
11398       group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11399      
11400       // Also fix .ARM.exidx section coverage.
11401       Arm_output_section<big_endian>* exidx_output_section = NULL;
11402       for (Layout::Section_list::const_iterator p =
11403              layout->section_list().begin();
11404            p != layout->section_list().end();
11405            ++p)
11406         if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11407           {
11408             if (exidx_output_section == NULL)
11409               exidx_output_section =
11410                 Arm_output_section<big_endian>::as_arm_output_section(*p);
11411             else
11412               // We cannot handle this now.
11413               gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11414                            "non-relocatable link"),
11415                           exidx_output_section->name(),
11416                           (*p)->name());
11417           }
11418
11419       if (exidx_output_section != NULL)
11420         {
11421           this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11422                                    symtab, task);
11423           done_exidx_fixup = true;
11424         }
11425     }
11426   else
11427     {
11428       // If this is not the first pass, addresses and file offsets have
11429       // been reset at this point, set them here.
11430       for (Stub_table_iterator sp = this->stub_tables_.begin();
11431            sp != this->stub_tables_.end();
11432            ++sp)
11433         {
11434           Arm_input_section<big_endian>* owner = (*sp)->owner();
11435           off_t off = align_address(owner->original_size(),
11436                                     (*sp)->addralign());
11437           (*sp)->set_address_and_file_offset(owner->address() + off,
11438                                              owner->offset() + off);
11439         }
11440     }
11441
11442   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
11443   // beginning of each relaxation pass, just blow away all the stubs.
11444   // Alternatively, we could selectively remove only the stubs and reloc
11445   // information for code sections that have moved since the last pass.
11446   // That would require more book-keeping.
11447   if (this->fix_cortex_a8_)
11448     {
11449       // Clear all Cortex-A8 reloc information.
11450       for (typename Cortex_a8_relocs_info::const_iterator p =
11451              this->cortex_a8_relocs_info_.begin();
11452            p != this->cortex_a8_relocs_info_.end();
11453            ++p)
11454         delete p->second;
11455       this->cortex_a8_relocs_info_.clear();
11456
11457       // Remove all Cortex-A8 stubs.
11458       for (Stub_table_iterator sp = this->stub_tables_.begin();
11459            sp != this->stub_tables_.end();
11460            ++sp)
11461         (*sp)->remove_all_cortex_a8_stubs();
11462     }
11463   
11464   // Scan relocs for relocation stubs
11465   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11466        op != input_objects->relobj_end();
11467        ++op)
11468     {
11469       Arm_relobj<big_endian>* arm_relobj =
11470         Arm_relobj<big_endian>::as_arm_relobj(*op);
11471       // Lock the object so we can read from it.  This is only called
11472       // single-threaded from Layout::finalize, so it is OK to lock.
11473       Task_lock_obj<Object> tl(task, arm_relobj);
11474       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11475     }
11476
11477   // Check all stub tables to see if any of them have their data sizes
11478   // or addresses alignments changed.  These are the only things that
11479   // matter.
11480   bool any_stub_table_changed = false;
11481   Unordered_set<const Output_section*> sections_needing_adjustment;
11482   for (Stub_table_iterator sp = this->stub_tables_.begin();
11483        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11484        ++sp)
11485     {
11486       if ((*sp)->update_data_size_and_addralign())
11487         {
11488           // Update data size of stub table owner.
11489           Arm_input_section<big_endian>* owner = (*sp)->owner();
11490           uint64_t address = owner->address();
11491           off_t offset = owner->offset();
11492           owner->reset_address_and_file_offset();
11493           owner->set_address_and_file_offset(address, offset);
11494
11495           sections_needing_adjustment.insert(owner->output_section());
11496           any_stub_table_changed = true;
11497         }
11498     }
11499
11500   // Output_section_data::output_section() returns a const pointer but we
11501   // need to update output sections, so we record all output sections needing
11502   // update above and scan the sections here to find out what sections need
11503   // to be updated.
11504   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11505       p != layout->section_list().end();
11506       ++p)
11507     {
11508       if (sections_needing_adjustment.find(*p)
11509           != sections_needing_adjustment.end())
11510         (*p)->set_section_offsets_need_adjustment();
11511     }
11512
11513   // Stop relaxation if no EXIDX fix-up and no stub table change.
11514   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11515
11516   // Finalize the stubs in the last relaxation pass.
11517   if (!continue_relaxation)
11518     {
11519       for (Stub_table_iterator sp = this->stub_tables_.begin();
11520            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11521             ++sp)
11522         (*sp)->finalize_stubs();
11523
11524       // Update output local symbol counts of objects if necessary.
11525       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11526            op != input_objects->relobj_end();
11527            ++op)
11528         {
11529           Arm_relobj<big_endian>* arm_relobj =
11530             Arm_relobj<big_endian>::as_arm_relobj(*op);
11531
11532           // Update output local symbol counts.  We need to discard local
11533           // symbols defined in parts of input sections that are discarded by
11534           // relaxation.
11535           if (arm_relobj->output_local_symbol_count_needs_update())
11536             {
11537               // We need to lock the object's file to update it.
11538               Task_lock_obj<Object> tl(task, arm_relobj);
11539               arm_relobj->update_output_local_symbol_count();
11540             }
11541         }
11542     }
11543
11544   return continue_relaxation;
11545 }
11546
11547 // Relocate a stub.
11548
11549 template<bool big_endian>
11550 void
11551 Target_arm<big_endian>::relocate_stub(
11552     Stub* stub,
11553     const Relocate_info<32, big_endian>* relinfo,
11554     Output_section* output_section,
11555     unsigned char* view,
11556     Arm_address address,
11557     section_size_type view_size)
11558 {
11559   Relocate relocate;
11560   const Stub_template* stub_template = stub->stub_template();
11561   for (size_t i = 0; i < stub_template->reloc_count(); i++)
11562     {
11563       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11564       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11565
11566       unsigned int r_type = insn->r_type();
11567       section_size_type reloc_offset = stub_template->reloc_offset(i);
11568       section_size_type reloc_size = insn->size();
11569       gold_assert(reloc_offset + reloc_size <= view_size);
11570
11571       // This is the address of the stub destination.
11572       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11573       Symbol_value<32> symval;
11574       symval.set_output_value(target);
11575
11576       // Synthesize a fake reloc just in case.  We don't have a symbol so
11577       // we use 0.
11578       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11579       memset(reloc_buffer, 0, sizeof(reloc_buffer));
11580       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11581       reloc_write.put_r_offset(reloc_offset);
11582       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11583       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11584
11585       relocate.relocate(relinfo, this, output_section,
11586                         this->fake_relnum_for_stubs, rel, r_type,
11587                         NULL, &symval, view + reloc_offset,
11588                         address + reloc_offset, reloc_size);
11589     }
11590 }
11591
11592 // Determine whether an object attribute tag takes an integer, a
11593 // string or both.
11594
11595 template<bool big_endian>
11596 int
11597 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11598 {
11599   if (tag == Object_attribute::Tag_compatibility)
11600     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11601             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11602   else if (tag == elfcpp::Tag_nodefaults)
11603     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11604             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11605   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11606     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11607   else if (tag < 32)
11608     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11609   else
11610     return ((tag & 1) != 0
11611             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11612             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11613 }
11614
11615 // Reorder attributes.
11616 //
11617 // The ABI defines that Tag_conformance should be emitted first, and that
11618 // Tag_nodefaults should be second (if either is defined).  This sets those
11619 // two positions, and bumps up the position of all the remaining tags to
11620 // compensate.
11621
11622 template<bool big_endian>
11623 int
11624 Target_arm<big_endian>::do_attributes_order(int num) const
11625 {
11626   // Reorder the known object attributes in output.  We want to move
11627   // Tag_conformance to position 4 and Tag_conformance to position 5
11628   // and shift everything between 4 .. Tag_conformance - 1 to make room.
11629   if (num == 4)
11630     return elfcpp::Tag_conformance;
11631   if (num == 5)
11632     return elfcpp::Tag_nodefaults;
11633   if ((num - 2) < elfcpp::Tag_nodefaults)
11634     return num - 2;
11635   if ((num - 1) < elfcpp::Tag_conformance)
11636     return num - 1;
11637   return num;
11638 }
11639
11640 // Scan a span of THUMB code for Cortex-A8 erratum.
11641
11642 template<bool big_endian>
11643 void
11644 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11645     Arm_relobj<big_endian>* arm_relobj,
11646     unsigned int shndx,
11647     section_size_type span_start,
11648     section_size_type span_end,
11649     const unsigned char* view,
11650     Arm_address address)
11651 {
11652   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11653   //
11654   // The opcode is BLX.W, BL.W, B.W, Bcc.W
11655   // The branch target is in the same 4KB region as the
11656   // first half of the branch.
11657   // The instruction before the branch is a 32-bit
11658   // length non-branch instruction.
11659   section_size_type i = span_start;
11660   bool last_was_32bit = false;
11661   bool last_was_branch = false;
11662   while (i < span_end)
11663     {
11664       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11665       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11666       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11667       bool is_blx = false, is_b = false;
11668       bool is_bl = false, is_bcc = false;
11669
11670       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11671       if (insn_32bit)
11672         {
11673           // Load the rest of the insn (in manual-friendly order).
11674           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11675
11676           // Encoding T4: B<c>.W.
11677           is_b = (insn & 0xf800d000U) == 0xf0009000U;
11678           // Encoding T1: BL<c>.W.
11679           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11680           // Encoding T2: BLX<c>.W.
11681           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11682           // Encoding T3: B<c>.W (not permitted in IT block).
11683           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11684                     && (insn & 0x07f00000U) != 0x03800000U);
11685         }
11686
11687       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11688                            
11689       // If this instruction is a 32-bit THUMB branch that crosses a 4K
11690       // page boundary and it follows 32-bit non-branch instruction,
11691       // we need to work around.
11692       if (is_32bit_branch
11693           && ((address + i) & 0xfffU) == 0xffeU
11694           && last_was_32bit
11695           && !last_was_branch)
11696         {
11697           // Check to see if there is a relocation stub for this branch.
11698           bool force_target_arm = false;
11699           bool force_target_thumb = false;
11700           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11701           Cortex_a8_relocs_info::const_iterator p =
11702             this->cortex_a8_relocs_info_.find(address + i);
11703
11704           if (p != this->cortex_a8_relocs_info_.end())
11705             {
11706               cortex_a8_reloc = p->second;
11707               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11708
11709               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11710                   && !target_is_thumb)
11711                 force_target_arm = true;
11712               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11713                        && target_is_thumb)
11714                 force_target_thumb = true;
11715             }
11716
11717           off_t offset;
11718           Stub_type stub_type = arm_stub_none;
11719
11720           // Check if we have an offending branch instruction.
11721           uint16_t upper_insn = (insn >> 16) & 0xffffU;
11722           uint16_t lower_insn = insn & 0xffffU;
11723           typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11724
11725           if (cortex_a8_reloc != NULL
11726               && cortex_a8_reloc->reloc_stub() != NULL)
11727             // We've already made a stub for this instruction, e.g.
11728             // it's a long branch or a Thumb->ARM stub.  Assume that
11729             // stub will suffice to work around the A8 erratum (see
11730             // setting of always_after_branch above).
11731             ;
11732           else if (is_bcc)
11733             {
11734               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11735                                                               lower_insn);
11736               stub_type = arm_stub_a8_veneer_b_cond;
11737             }
11738           else if (is_b || is_bl || is_blx)
11739             {
11740               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11741                                                          lower_insn);
11742               if (is_blx)
11743                 offset &= ~3;
11744
11745               stub_type = (is_blx
11746                            ? arm_stub_a8_veneer_blx
11747                            : (is_bl
11748                               ? arm_stub_a8_veneer_bl
11749                               : arm_stub_a8_veneer_b));
11750             }
11751
11752           if (stub_type != arm_stub_none)
11753             {
11754               Arm_address pc_for_insn = address + i + 4;
11755
11756               // The original instruction is a BL, but the target is
11757               // an ARM instruction.  If we were not making a stub,
11758               // the BL would have been converted to a BLX.  Use the
11759               // BLX stub instead in that case.
11760               if (this->may_use_v5t_interworking() && force_target_arm
11761                   && stub_type == arm_stub_a8_veneer_bl)
11762                 {
11763                   stub_type = arm_stub_a8_veneer_blx;
11764                   is_blx = true;
11765                   is_bl = false;
11766                 }
11767               // Conversely, if the original instruction was
11768               // BLX but the target is Thumb mode, use the BL stub.
11769               else if (force_target_thumb
11770                        && stub_type == arm_stub_a8_veneer_blx)
11771                 {
11772                   stub_type = arm_stub_a8_veneer_bl;
11773                   is_blx = false;
11774                   is_bl = true;
11775                 }
11776
11777               if (is_blx)
11778                 pc_for_insn &= ~3;
11779
11780               // If we found a relocation, use the proper destination,
11781               // not the offset in the (unrelocated) instruction.
11782               // Note this is always done if we switched the stub type above.
11783               if (cortex_a8_reloc != NULL)
11784                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11785
11786               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11787
11788               // Add a new stub if destination address in in the same page.
11789               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11790                 {
11791                   Cortex_a8_stub* stub =
11792                     this->stub_factory_.make_cortex_a8_stub(stub_type,
11793                                                             arm_relobj, shndx,
11794                                                             address + i,
11795                                                             target, insn);
11796                   Stub_table<big_endian>* stub_table =
11797                     arm_relobj->stub_table(shndx);
11798                   gold_assert(stub_table != NULL);
11799                   stub_table->add_cortex_a8_stub(address + i, stub);
11800                 }
11801             }
11802         }
11803
11804       i += insn_32bit ? 4 : 2;
11805       last_was_32bit = insn_32bit;
11806       last_was_branch = is_32bit_branch;
11807     }
11808 }
11809
11810 // Apply the Cortex-A8 workaround.
11811
11812 template<bool big_endian>
11813 void
11814 Target_arm<big_endian>::apply_cortex_a8_workaround(
11815     const Cortex_a8_stub* stub,
11816     Arm_address stub_address,
11817     unsigned char* insn_view,
11818     Arm_address insn_address)
11819 {
11820   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11821   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11822   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11823   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11824   off_t branch_offset = stub_address - (insn_address + 4);
11825
11826   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11827   switch (stub->stub_template()->type())
11828     {
11829     case arm_stub_a8_veneer_b_cond:
11830       // For a conditional branch, we re-write it to be an unconditional
11831       // branch to the stub.  We use the THUMB-2 encoding here.
11832       upper_insn = 0xf000U;
11833       lower_insn = 0xb800U;
11834       // Fall through
11835     case arm_stub_a8_veneer_b:
11836     case arm_stub_a8_veneer_bl:
11837     case arm_stub_a8_veneer_blx:
11838       if ((lower_insn & 0x5000U) == 0x4000U)
11839         // For a BLX instruction, make sure that the relocation is
11840         // rounded up to a word boundary.  This follows the semantics of
11841         // the instruction which specifies that bit 1 of the target
11842         // address will come from bit 1 of the base address.
11843         branch_offset = (branch_offset + 2) & ~3;
11844
11845       // Put BRANCH_OFFSET back into the insn.
11846       gold_assert(!Bits<25>::has_overflow32(branch_offset));
11847       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11848       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11849       break;
11850
11851     default:
11852       gold_unreachable();
11853     }
11854
11855   // Put the relocated value back in the object file:
11856   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11857   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11858 }
11859
11860 template<bool big_endian>
11861 class Target_selector_arm : public Target_selector
11862 {
11863  public:
11864   Target_selector_arm()
11865     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11866                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11867                       (big_endian ? "armelfb" : "armelf"))
11868   { }
11869
11870   Target*
11871   do_instantiate_target()
11872   { return new Target_arm<big_endian>(); }
11873 };
11874
11875 // Fix .ARM.exidx section coverage.
11876
11877 template<bool big_endian>
11878 void
11879 Target_arm<big_endian>::fix_exidx_coverage(
11880     Layout* layout,
11881     const Input_objects* input_objects,
11882     Arm_output_section<big_endian>* exidx_section,
11883     Symbol_table* symtab,
11884     const Task* task)
11885 {
11886   // We need to look at all the input sections in output in ascending
11887   // order of of output address.  We do that by building a sorted list
11888   // of output sections by addresses.  Then we looks at the output sections
11889   // in order.  The input sections in an output section are already sorted
11890   // by addresses within the output section.
11891
11892   typedef std::set<Output_section*, output_section_address_less_than>
11893       Sorted_output_section_list;
11894   Sorted_output_section_list sorted_output_sections;
11895
11896   // Find out all the output sections of input sections pointed by
11897   // EXIDX input sections.
11898   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11899        p != input_objects->relobj_end();
11900        ++p)
11901     {
11902       Arm_relobj<big_endian>* arm_relobj =
11903         Arm_relobj<big_endian>::as_arm_relobj(*p);
11904       std::vector<unsigned int> shndx_list;
11905       arm_relobj->get_exidx_shndx_list(&shndx_list);
11906       for (size_t i = 0; i < shndx_list.size(); ++i)
11907         {
11908           const Arm_exidx_input_section* exidx_input_section =
11909             arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11910           gold_assert(exidx_input_section != NULL);
11911           if (!exidx_input_section->has_errors())
11912             {
11913               unsigned int text_shndx = exidx_input_section->link();
11914               Output_section* os = arm_relobj->output_section(text_shndx);
11915               if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11916                 sorted_output_sections.insert(os);
11917             }
11918         }
11919     }
11920
11921   // Go over the output sections in ascending order of output addresses.
11922   typedef typename Arm_output_section<big_endian>::Text_section_list
11923       Text_section_list;
11924   Text_section_list sorted_text_sections;
11925   for (typename Sorted_output_section_list::iterator p =
11926         sorted_output_sections.begin();
11927       p != sorted_output_sections.end();
11928       ++p)
11929     {
11930       Arm_output_section<big_endian>* arm_output_section =
11931         Arm_output_section<big_endian>::as_arm_output_section(*p);
11932       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11933     } 
11934
11935   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11936                                     merge_exidx_entries(), task);
11937 }
11938
11939 Target_selector_arm<false> target_selector_arm;
11940 Target_selector_arm<true> target_selector_armbe;
11941
11942 } // End anonymous namespace.